WO2014109427A1 - Cathode material for lithium secondary battery including lithium manganese metal oxide having substituted heterogeneous metals and preparation method therefor - Google Patents

Cathode material for lithium secondary battery including lithium manganese metal oxide having substituted heterogeneous metals and preparation method therefor Download PDF

Info

Publication number
WO2014109427A1
WO2014109427A1 PCT/KR2013/000751 KR2013000751W WO2014109427A1 WO 2014109427 A1 WO2014109427 A1 WO 2014109427A1 KR 2013000751 W KR2013000751 W KR 2013000751W WO 2014109427 A1 WO2014109427 A1 WO 2014109427A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
secondary battery
lithium secondary
positive electrode
Prior art date
Application number
PCT/KR2013/000751
Other languages
French (fr)
Korean (ko)
Inventor
정연욱
김원태
강경완
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2014109427A1 publication Critical patent/WO2014109427A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a cathode material for a lithium secondary battery including a lithium-manganese metal oxide substituted with a dissimilar metal and a method of manufacturing the same
  • the present invention relates to a positive electrode material for a lithium secondary battery including a lithium-manganese metal oxide substituted with a dissimilar metal and a method of manufacturing the positive electrode material using the coprecipitation method.
  • a general lithium secondary battery that is currently commercialized uses lithium-cobalt-based metal oxide as a cathode material and carbon is used as a cathode material.
  • the lithium-cobalt metal oxide may have a limit doegie synthesis is relatively easy, and excellent in stability and cyclic characteristics, but with a "high capacity of the battery.
  • lithium-manganese-based metal oxides and lithium-nickel-based metal oxides have recently attracted attention as materials to replace lithium-cobalt-based metal oxides.
  • Lithium-manganese-based metal oxides having this layered structure have advantages over lithium-cobalt-based metal oxides in terms of capacity but are known to have poor cycle characteristics due to unstable structure.
  • the spinel lithium-manganese-based metal oxides have excellent thermal stability, but have a disadvantage in that they are lower than lithium-cobalt-based metal oxides in terms of capacity.
  • lithium-nickel-based metal oxides may exhibit high capacities but have poor cycle characteristics and complicated manufacturing methods.
  • the present invention is to provide a positive electrode material that enables the provision of a lithium secondary battery having more improved layer and discharge capacity and excellent cycle characteristics.
  • the present invention is to provide a method for more efficiently manufacturing the positive electrode material using the coprecipitation method.
  • a cathode active material for a lithium secondary battery including a metal oxide represented by the following Chemical Formula 1 is provided:
  • X and y are 0 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.25, respectively.
  • a first metal salt solution containing a chromium compound and a vanadium compound and a hydrogen ion concentration (pH) of 9 to 13;
  • a second metal salt comprising manganese salt in the first metal salt solution after adjusting the hydrogen silver concentration (pH) of the first metal salt solution to 2 to 6. Mixing the solution;
  • a cathode active material for a lithium secondary battery including:
  • X and y are 0 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.25, respectively.
  • first component may also be referred to as the second component
  • second component may also be referred to as the first component
  • a cathode active material for a lithium secondary battery including a metal oxide represented by Formula 1 is provided:
  • X and y are 0 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.25, respectively. That is, the inventors of the present invention, in the course of repeating the study on the lithium secondary battery, when used as a positive electrode material of the metal oxide ol lithium secondary battery represented by the formula (1), a lithium secondary secondary battery having an improved layer discharge capacity and excellent cycle characteristics It was confirmed that the provision of the battery was possible, and the present invention was completed.
  • the positive electrode active material of the present invention is a chromium and vanadium substituted as a dissimilar metal in the lithium-manganese-based metal oxide, and as each metal component is included in the above ratio, it is possible to improve lithium capacity and express high stability A battery can be provided.
  • X and y may be values satisfying 0 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.25, preferably 0.1 ⁇ x ⁇ 0.25 and 0.1 ⁇ y ⁇ 0.25, respectively.
  • the positive electrode active material according to the present invention is further substituted with a dissimilar metal including chromium and vanadium to the previous lithium-manganese-based metal oxide, wherein in Formula 1 X and y are 0 ⁇ x, 0 ⁇ y, and x It can have any value that satisfies the relationship of + y ⁇ 0.5. Furthermore, preferably in Formula 1, X and y each have a value of 0.1 or more, which may be advantageous for the expression of the effect according to the present invention (that is, the expression of more stable electrical performance).
  • manganese in order to fully express the synergistic effect of lithium-manganese-chromium-vanadium metal with the effect of substitution of a dissimilar metal including chromium and vanadium, manganese (Mn) It is desirable to include more than a certain level. That is, according to the present invention, in the formula 1, X and y satisfy the relationship that ⁇ ⁇ 0.25 and y ⁇ 0.25 (in other words, 1- (x + y)> 0.5), respectively, in terms of expression of the above-described effects. May be advantageous.
  • X and y satisfy the above-mentioned range in the general formula (1).
  • Such a metal oxide is, a non-limiting example, Li 2 (Mn 0. 95 Cro.o 25 V 0 .o 25) 0 3,
  • Li 2 (Mn 0. 7 5Cr 0. 125 Vo.i25) 0 3, Li 2 (Mno.7Cr 0 .i5Vo. 15) 0 3, Li 2 (Mn 0.65 Cr 0. 175 Vo. 1 75) 0 3, Li 2 may be a (M 3 ⁇ 4. 6 Cr 02 V 0. 2) O 3, Li 2 (Mn 0. 55 Cr 0. 225 V 0 ⁇ .
  • the metal oxide may have a particle size suitable for being applied to a cathode active material for a lithium secondary battery, and may preferably have a particle size of 1 to 30 ⁇ , more preferably 2 to 50 ⁇ , on average. That is, when the average particle diameter of the cathode active material is too small, there may be a problem in that impurities are formed on the surface of the particles due to an increase in surface area. On the contrary, when the average particle diameter is too large, a distance in which lithium ions diffuse into the metal oxide particles. There may be a problem that the speed characteristic is lowered to increase. Therefore, the average particle diameter of the metal oxide is advantageously controlled within the above-mentioned range. Meanwhile, according to another embodiment of the present invention,
  • a cathode active material for a lithium secondary battery including:
  • X and y are each 0 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.25.
  • the above-described positive electrode active material obtains metal oxide precursor particles having a specific composition by co-precipitation by inducing a change in the oxidation number of manganese, chromium and vanadium metals at the same time, and converting the precursor particles into lithium. It can be obtained by mixing with a compound and firing.
  • the first metal salt solution may be prepared by dissolving a chromium compound and a vanadium compound in a basic aqueous solution.
  • the hydrogen ion concentration (pH) of the basic aqueous solution may be 9 to 13, preferably 9 to 12, more preferably 9.5 to 11. That is, when the hydrogen ion concentration of the basic aqueous solution for the production of the first metal salt solution is less than P H 9 may be difficult to dissolve the vanadium compound, On the contrary, when pH 13 is exceeded, the sedimentation of chromium compound may start.
  • the chromium compound is chromium fluoride (CrF 2 , CrF 3 , CrF 4 , CrF 5 , CrF 6 ), chromium chloride (CrCl 2 , CrCl 3 , CrCl 4 ), chromium bromide (CrBr 2 , CrBr 3 , CrBr 4 ), chromium oxide (Cr0 2 , Cr0 3 , Cr 2 0 3 , Cr 3 0 4 ), chromium sulfide (CrS, Cr 2 S 3 ), and chromium nitride (CrN, Cr (N0 3 ) 3 '93 ⁇ 40) It may include one or more selected from the group consisting of.
  • the vanadium compound is vanadium oxide (v 2 o 5 , V 2 0 4 , v 2 o 3 , V 3 0 4 ), vanadium oxychloride (V0C1 3 ), vanadium tetrachloride (VC1 4 ), vanadium trichloride (VC1 3 ), one or more selected from the group consisting of ammonium metavanadate (NH 4 V0 3 ), sodium metavanadate (NaV0 3 ), and potassium metavanadate ( ⁇ 3 ).
  • the total concentration of the metal salt contained in the first metal salt solution may be 85 to 1.25 M, preferably 0.85 to 1.0 M. That is, in consideration of the yield of the entire process ' , the concentration of the metal salt contained in the first metal salt solution is preferably 0.85 M or more. On the contrary, when the concentration of the metal salt is higher than necessary, an imbalance in the composition may occur and the reactivity may be decreased. In order to prevent this, the concentration of the metal salt in the first metal salt solution is preferably 1.25 M or less.
  • the method for producing a positive electrode active material according to the present invention after adjusting the hydrogen ion concentration (pH) of the first metal salt solution to 2 to 6, the second metal salt solution containing manganese salt in the first metal salt solution Matching steps can be performed.
  • the above step is to prepare a second metal salt solution including manganese salt, separately from the first metal salt solution prepared above, and then mix them to obtain a mixed solution.
  • the manganese salt contained in the second metal salt solution may be at least one selected from the group consisting of manganese sulfate, manganese nitrate, manganese acetate, manganese acetate, manganese chloride, manganese dioxide, manganese trioxide, and manganese tetraoxide.
  • the hydrogen ion concentration (pH) of the first metal salt solution it is preferable to adjust the hydrogen ion concentration (pH) of the first metal salt solution to acidity.
  • the reason for controlling the acidity of the first metal salt solution is to dissolve manganese salt and to inhibit precipitation of chromium and manganese
  • the hydrogen ion concentration of the first metal salt solution is pH 2 to 6, preferably pH 2 to 5, more preferably may be adjusted to pH 3 to 5. That is, when the hydrogen silver concentration of the first metal salt solution is less than pH 2, precipitation of the vanadium compound may occur. When the pH exceeds 6, the manganese compound may be difficult to dissolve and some precipitate may be formed.
  • the concentration of each metal salt included in the mixed solution of the first metal salt solution and the second metal salt solution may be determined in consideration of the composition of the metal oxide precursor particles of the formula (a) and the composition of the metal oxide of the formula (1) obtained in a subsequent step.
  • the method for producing a positive electrode active material according to the present invention the first metal salt solution and the second .
  • the step of obtaining the metal oxide precursor particles represented by Chemical Formula a by co-precipitation may be performed by adding a reducing agent to a mixed solution containing a metal salt solution.
  • the step is a step of inducing co-precipitation by the change in the oxidation number of each metal by adding a reducing agent to the mixed solution
  • the reducing agent used in the step is KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 and LiAlH 4 It may be one or more compounds selected from the group consisting of. '
  • the hydrogen silver concentration (pH) of the mixed solution it is advantageous to adjust the hydrogen silver concentration (pH) of the mixed solution to 9 to 13, preferably 9 to 12, more preferably 9.5 to 11, and then add the reducing agent to the effective progress of coprecipitation.
  • the aging time is 5 to 48 hours, preferably 5 to 36 hours, more preferably 10 to 24 hours to ensure effective progress before coprecipitation May be advantageous.
  • the metal oxide precursor particles represented by a may be obtained in the chemistry, and the metal oxide precursor particles may be amorphous.
  • the obtained metal oxide precursor particles may contain impurities.
  • the metal oxide precursor particles are washed and filtered about 3 to 5 times using distilled water or the like, followed by 60 to 100 Preference is given to drying sufficiently for 12 to 48 hours under temperature conditions of ° C.
  • the step of firing the mixture may be performed to obtain a metal oxide represented by the formula (1).
  • the lithium compound may include at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium iodide and lithium chloride .
  • the mixing ratio of the metal oxide precursor particles and the lithium compound is such that the mole number of lithium included in the lithium compound is 1: 0.5 to 1: 1.5 based on the mole number of metal contained in the metal oxide precursor particles. It is preferable in view of the composition of the metal oxide finally obtained. And, the firing of the mixture may be preferable to form a more stable metal oxide that is carried out divided into two or more steps of heat treatment. That is, according to the present invention, the firing of the mixture of the metal oxide precursor particles and the lithium compound, the first firing step of heat treatment for 7 to 24 hours under a temperature condition of 300 to 1000 0 C; And a second firing step of thermally treating the resultant of the first firing for 5 to 24 hours under a temperature condition of 300 to 800 ° C.
  • the first firing step is maintained for about 3 to 7 hours at a temperature of 600 to 800 ° C under an air atmosphere (preferably oxygen. Atmosphere), and then about 10 to about 10 to a temperature of 800 to 1000 ° C. Can be performed for 18 hours have.
  • the second firing step may be performed for about 5 to 10 hours at a temperature of 300 to 500 ° C under an air atmosphere (preferably oxygen atmosphere).
  • the result of the first firing step may include impurities, in order to remove such impurities, after washing the resultant of the first firing step by ultrasonic and dried, performing the second firing step It is preferable.
  • the quality represented by Chemical Formula 1 may be obtained with a metal oxide of indigo powder.
  • the positive electrode for a lithium secondary battery including the positive electrode active material containing the metal oxide prepared a paste containing the positive electrode active material, and uniformly applied to the current collector for the electrode, such as copper, aluminum, stainless, nickel, Drying may be made by a method including a process.
  • the paste can be included in the positive electrode active material, a binder, a conductive material and a solvent.
  • the binder is a component serving as a binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, styrene-butadiene rubber (SBR), polyimide, poly It may be at least one compound selected from the group consisting of acrylic acid (Polyacrylic acid), poly methyl methacrylate (PMMA), and polyacrylonitrile (PAN).
  • the conductive material is a component for improving the output of the battery by reducing the resistance of the electrode, carbon block, vapor-grown carbon fiber, acetylene black and the like can be used.
  • the solvent is a component that serves as a dispersion medium of the slurry, N-methylpyrrolidone (NMP), isopropyl alcohol, acetone, water and the like can be used.
  • the lithium secondary battery including the cathode active material according to the present invention may include the cathode, the anode, the separator, and the electrolyte.
  • the negative electrode in the lithium secondary battery is not particularly limited since the conventional one can be applied in the art.
  • the separation membrane is positioned between the positive electrode and the negative electrode to block internal short circuits and to impregnate the electrolyte, and the material may be polypropylene, polyethylene, or the like.
  • the electrolyte may be a lithium compound dissolved in an organic solvent.
  • the positive electrode material for a lithium secondary battery including the metal oxide according to the present invention enables the provision of a lithium secondary battery having more improved layered discharge capacity and excellent cycle characteristics.
  • Figure 1 is a positive electrode active material prepared in Example 1 of the present invention (L ⁇ Mno.sCrojVo. Os) X- ray diffraction analysis indicated the graph (a) and scanning electron microscope (SEM) image of a positive electrode active material was observed on the enlarged 5,000 times (b).
  • Figure 2 is a cathode active material prepared in Example 2 of the present invention (Li 2 (M no. 7 Cr 0. 15 Vo. 15) 0 3)
  • Graph (a) shows the X- ray diffraction analysis of the positive electrode active material and The scanning electron micrograph (b) which observed the magnification 5,000 times.
  • Example 3 is an X-ray diffraction analysis of the positive electrode active material (Li 2 (Mno. 6 Cro. 2 Vo . 2 ) 0 3 ) prepared in Example 3 of the present invention. It is a scanning electron micrograph (b) which observed and magnified 5,000 times the graph (a) and the positive electrode active material which were shown.
  • Figure 4 is a positive electrode active material (Li 2 (Mn 0. 5 Cr 0.25 V 0. 25) O 3) Graph (a) and the positive electrode active material shows the X- ray diffraction analysis of the prepared in Control Example 1 of the present invention; It is the scanning electron micrograph (b) observed 3,000 times magnification.
  • FIG. 5 is a graph (a) showing the results of X-ray diffraction analysis of the positive electrode active material (Li 2 Mn0 3 ) prepared in Comparative Example 2 of the present invention and a scanning electron micrograph (b) of 5,000 times magnification of the positive electrode active material. to be.
  • a NH 4 OH solution with a pH of about 10.5 was charged to the reactor.
  • KOH (about 2.84 g) and LiOH (about 3.05 g) were dissolved in 50 ml of distilled water to prepare a basic solution having a pH of about 10.5, and about 0.91 g of a vanadium compound (V 2 0 5 ) was added to the basic solution.
  • (About 0.1 mol) and about 4.00 g (about 0.1 mol) of chromium compound (Cr (NO) 3 ⁇ 93 ⁇ 40) were added and dissolved to prepare a first metal salt solution.
  • the mixture was heat treated at a temperature of about 700 ° C. for about 5 hours under an air atmosphere, and then heated to 900 ° C., and then heat-treated for about 12 hours to proceed with the first firing.
  • the result of the first firing was added to distilled water, washed with ultrasonic waves for about 50 minutes, and dried at a temperature of 80 0 C for about 12 hours.
  • the second firing was conducted by heat-treating the dried product at a temperature of about 400 ° C. for about 7 hours under an air atmosphere.
  • vagina obtained indigo powder (average particle size about ⁇ ⁇ ), and the composition of the powder was confirmed as L ⁇ Mno.sCrojVcn) ⁇ as a result of X-ray diffraction analysis, which will be described later.
  • a reddish brown powder (average particle size about 12 ⁇ ) was obtained by the same method as Example 1 except that the first metal salt solution was not used in Example 1 and the second metal salt solution was used. As a result of X-ray diffraction analysis, the composition of the powder was found to be Li 2 Mn0 3 .
  • a coin cell was prepared including the metal oxide particles according to Example 1 as a cathode active material. Specifically, the metal oxide according to Example 1, polyvinylidene fluoride (PVDF) as a binder, and carbon black (manufacturer: Timcal) as a conductive agent are mixed at a ratio of 8:10:10, and the aluminum current collector is mixed. After coating on, it was dried and pressed to prepare a positive electrode. And a coin cell containing the positive electrode and the electrolyte (lMLiPF 6 EC / DMC) was prepared.
  • PVDF polyvinylidene fluoride
  • Timcal carbon black
  • the positive electrode active material of Control Example 1 (Li 2 (Mn 0. 5 C r025 V 0.25) O 3) can be seen that the presence of impurities on the surface.
  • the positive electrode active material of Comparative Example 1 was shown that the cycle characteristics are sharply reduced as compared to the positive electrode active material of Examples 1 to 3 as impurities are present on the surface.
  • the coin cells of Preparation Examples 1 to 3 each had a layer discharge capacity compared to the Coin Sal of Preparation Example 4 at 10 th cycle in which the positive electrode active material forms an electrochemically stabilized phase. This was confirmed to be large.
  • the coin cell of Preparation Example 3 showed the best layer discharge capacity, it was confirmed that even after 30 th cycle to maintain a 96.7% layer discharge capacity excellent cycle characteristics.
  • the coin cell according to Preparation Example 1 was once charged and discharged at a rate of C / 10 in a range of 1.5 to 4.8 V, and then charged at a rate of C / 5, C / 5, C / 2, 1C, and 2C. Discharge was performed at the speed
  • the coin sal according to Preparation Example 3 was 228 mAh / g at the discharge rate C / 5, 215 mAh / g at the discharge rate C / 2, 200 mAh / g at the discharge rate 1C, and 175 mAh / g at the discharge rate 2C. It was confirmed that the output characteristics are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a cathode material for a lithium secondary battery including lithium manganese oxide having substituted heterogeneous metals and a preparation method for the cathode material using co-precipitation. The cathode material, according to the present invention, enables a lithium secondary battery having a more improved charging/discharging capacity and excellent cycle characteristics to be provided.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
이종 금속이 치환된 리튬-망간계 금속 산화물을 포함하는 리튬 이차 전지용 양극 재료 및 이의 제조방법  A cathode material for a lithium secondary battery including a lithium-manganese metal oxide substituted with a dissimilar metal and a method of manufacturing the same
【기술분야】  Technical Field
본 발명은 이종 금속이 치환된 리튬-망간계 금속 산화물을 포함하는 리튬 이차 전지용 양극 재료 및 공침법을 이용하여 상기 양극 재료를 제조하는 방법에 관한 것이다.  The present invention relates to a positive electrode material for a lithium secondary battery including a lithium-manganese metal oxide substituted with a dissimilar metal and a method of manufacturing the positive electrode material using the coprecipitation method.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
최근 휴대 전화, 노트북 둥 휴대기기의 소형화 및 박형화 추세에 따라, 이들 휴대기기의 에너지원으로 사용되고 있는 리튬 이차 전지의 고용량화가 요구되고 있다.  In recent years, with the trend toward miniaturization and thinning of mobile phones and portable notebook devices, high capacity of lithium secondary batteries used as energy sources of these mobile devices is required.
현재 상용화되고 있는 일반적인 리튬 이차 전지는 양극 재료로 리튬- 코발트계 금속 산화물이 사용되고, 음극 재료로 탄소가 사용되고 있다. 상기 리튬-코발트계 금속 산화물은 합성이 비교적 용이하고, 안정성 및 사이클 특성이 우수하지만, 전지의 '고용량화에 적용되기에는 한계가 있다. A general lithium secondary battery that is currently commercialized uses lithium-cobalt-based metal oxide as a cathode material and carbon is used as a cathode material. The lithium-cobalt metal oxide may have a limit doegie synthesis is relatively easy, and excellent in stability and cyclic characteristics, but with a "high capacity of the battery.
이러한 문제점으로 인해 최근 리튬-코발트계 금속 산화물을 대체할 물질로서 리튬-망간계 금속 산화물이나 리튬-니켈계 금속 산화물이 주목을 받고 있다. 이 증 층상 구조를 갖는 리튬-망간계 금속 산화물은 용량면에서는 리튬-코발트계 금속 산화물보다 우수한 장점이 있으나 구조가 불안정하여 사이클 특성이 좋지 않은 것으로 알려져 있다. 그리고, 스피넬 리튬-망간계 금속 산화물은 열안정성이 우수하지만, 용량면에서 리튬- 코발트계 금속 산화물보다 낮다는 단점이 있다. 또한, 리튬-니켈계 금속 산화물은 고용량을 나타낼 수 있지만 사이클 특성이 좋지 않고, 제조 방법이 복잡한 문제점이 있다.  Due to these problems, lithium-manganese-based metal oxides and lithium-nickel-based metal oxides have recently attracted attention as materials to replace lithium-cobalt-based metal oxides. Lithium-manganese-based metal oxides having this layered structure have advantages over lithium-cobalt-based metal oxides in terms of capacity but are known to have poor cycle characteristics due to unstable structure. In addition, the spinel lithium-manganese-based metal oxides have excellent thermal stability, but have a disadvantage in that they are lower than lithium-cobalt-based metal oxides in terms of capacity. In addition, lithium-nickel-based metal oxides may exhibit high capacities but have poor cycle characteristics and complicated manufacturing methods.
그에 따라, 양극 재료에 다른 금속을 일부 치환하여 열 안정성, 용량, 사이클 특성들을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선의 정도가 미흡한 실정이다. 【발명의 내용】 【해결하고자 하는 과제】 Accordingly, many attempts have been made to improve thermal stability, capacity, and cycle characteristics by partially replacing other metals in the cathode material, but the degree of improvement is still insufficient. [Content of invention] Problem to be solved
본 발명은 보다 향상된 층.방전 용량과 우수한 사이클 특성을 갖는 리튬 이차 전지의 제공을 가능케 하는 양극 물질을 제공하기 위한 것이다. 또한, 본 발명은 공침법을 이용하여 상기 양극 물질을 보다 효율적으로 제조하는 방법을 제공하기 위한 것이다.  The present invention is to provide a positive electrode material that enables the provision of a lithium secondary battery having more improved layer and discharge capacity and excellent cycle characteristics. In addition, the present invention is to provide a method for more efficiently manufacturing the positive electrode material using the coprecipitation method.
【과제의 해결 수단】  [Measures of problem]
이러한 본 발명에 따르면, 하기 화학식 1 로 표시되는 금속 산화물을 포함하는 리튬 이차 전지용 양극 활물질이 제공된다:  According to the present invention, a cathode active material for a lithium secondary battery including a metal oxide represented by the following Chemical Formula 1 is provided:
[화학식 1]  [Formula 1]
Li2[Mn1-(x+y)CrxVy]03 Li 2 [Mn 1- (x + y ) Cr x V y ] 0 3
상기 화학식 1에서, X 및 y는 각각 0<x<0.25 및 0<y<0.25 이다. 또한, 본 발명에 따르면, 크로뮴 화합물과 바나듐 화합물을 포함하고 수소이온농도 (pH)가 9 내지 13인 제 1 금속염 용액을 준비하는 단계;  In Formula 1, X and y are 0 <x <0.25 and 0 <y <0.25, respectively. In addition, according to the present invention, comprising the steps of preparing a first metal salt solution containing a chromium compound and a vanadium compound and a hydrogen ion concentration (pH) of 9 to 13;
상기 제 1 금속염 용액의 수소이은농도 (pH)를 2 내지 6 으로 조절한 후, 상기 제 1 금속염 용액에 망간염을 포함하는 제 2 금속염. 용액을 흔합하는 단계;  A second metal salt comprising manganese salt in the first metal salt solution after adjusting the hydrogen silver concentration (pH) of the first metal salt solution to 2 to 6. Mixing the solution;
상기 흔합 용액에 환원제를 첨가하여 공침전 (co-precipitation)에 의해 하기 화학식 a로 표시되는 금속 산화물 전구체 입자를 얻는 단계; 및 Adding a reducing agent to the mixed solution to obtain metal oxide precursor particles represented by Chemical Formula a by co-precipitation; And
상기 금속 산화물 전구체 입자를 리튬 화합물과 흔합한 후, 상기 흔합물을 소성하여 상기 화학식 1로 표시되는 금속 산화물을 얻는 단계  Mixing the metal oxide precursor particles with a lithium compound, and then calcining the mixture to obtain a metal oxide represented by Chemical Formula 1
를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법이 제공된다: Provided is a method of manufacturing a cathode active material for a lithium secondary battery, including:
[화학식 a] [Formula a]
[Mn1-(x+y)CrxVy]OH [Mn 1- (x + y) Cr x V y ] OH
상기 화학식 a에서 X 및 y는 각각 0<x<0.25 및 0<y<0.25 이다. 이하, 발명의 구체적인 구현예에 따른 리튬 이차 전지용 양극 재료 및 이의 제조 방법에 관하여 보다 상세하게 설명하기로 한다. In Formula a , X and y are 0 <x <0.25 and 0 <y <0.25, respectively. Hereinafter, a positive electrode material for a lithium secondary battery and a method of manufacturing the same according to a specific embodiment of the present invention will be described in detail.
그에 앞서, 본 명세서 전체에서 명시적인 언급이 없는 한, 전문 용어는 단지 특정 구현 예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.  Prior to that, unless otherwise stated throughout the specification, the terminology is merely for reference to specific embodiments and is not intended to limit the invention.
그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형 태들도 포함한다. And, as used herein, the singular forms of "a", and Unless otherwise indicated, plural forms are included.
또한, 명세서에서 사용되는 '포함 '의 의 미는 특정 특성 , 영 역 , 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영 역 , 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.  In addition, as used herein, the meaning of "includes" specifies a specific characteristic, area, integer, step, operation, element, or component, and adds to another specific characteristic, area, integer, step, operation, element, or component. It does not exclude.
또한, 본 명세서 전체에서 '제 Γ 또는 '제 2' 둥과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있으나, 상기 구성요소들은 상기 용어들에 의해 한정되지 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로도 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.  In addition, terms including ordinal numbers such as 'first' or 'second' in the present specification may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may also be referred to as the second component, and similarly, the second component may also be referred to as the first component.
이하, 첨부한 도면을 참조하여 본 발명의 구현예들에 대하여 본 발명 이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명 한다. 그러나 본 발명은 여 러 가지 상이 한 형 태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 먼저, 본 발명의 일 구현예에 따르면, 하기 화학식 1 로 표시되는 금속 산화물을 포함하는 리튬 이차 전지용 양극 활물질이 제공된다:  DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various ways, all without departing from the spirit or scope of the present invention. First, according to one embodiment of the present invention, a cathode active material for a lithium secondary battery including a metal oxide represented by Formula 1 is provided:
[화학식 1] .  [Formula 1].
Li2[Mn1-(x+y)CrxVy]03 Li 2 [Mn 1- (x + y) Cr x V y ] 0 3
상기 화학식 1 에서 , X 및 y 는 각각 0 < x < 0.25 및 0 < y< 0.25 이다. 즉, 본 발명자들은 리튬 이차 전지에 대한 연구를 거듭하는 과정 에서, 상기 화학식 1 로 표시되는 금속 산화물올 리튬 이차 전지의 양극 재료로 사용할 경우, 보다 향상된 층ᅳ방전 용량과 우수한 사이클 특성을 갖는 리튬 이차 전지의 제공을 가능케 함을 확인하여, 본 발명을 완성하였다.  In Formula 1, X and y are 0 <x <0.25 and 0 <y <0.25, respectively. That is, the inventors of the present invention, in the course of repeating the study on the lithium secondary battery, when used as a positive electrode material of the metal oxide ol lithium secondary battery represented by the formula (1), a lithium secondary secondary battery having an improved layer discharge capacity and excellent cycle characteristics It was confirmed that the provision of the battery was possible, and the present invention was completed.
특히 , 본 발명의 양극 활물질은 리튬-망간계 금속 산화물에 이종 금속으로 크로뮴과 바나듐이 치환된 것으로서, 각 금속 성분이 상기 비율로 포함됨에 따라, 보다 향상된 고용량화 및 고안정성의 발현이 가능한 리튬 이 전 전지가 제공될 수 있다. 본 발명에 따르면, 상기 화학식 1 에서, X 및 y는 각각 0<x<0.25 및 0<y<0.25, 바람직하게는 0.1≤x<0.25 및 0.1≤y<0.25 를 만족시키는 값일 수 있다. 즉, 본 발명에 따른 양극 활물질은 이전의 리튬-망간계 금속 산화물에 크로뮴과 바나듐을 포함하는 이종 금속이 더욱 치환된 것으로서, 상기 화학식 1 에서 X 와 y 는 0<x, 0<y, 그리고 x+y<0.5 의 관계를 만족하는 임의의 값을 가질 수 있다. 나아가, 바람직하게는 상기 화학식 1 에서 X 와 y 는 각각 0.1 이상의 값을 갖는 것이 본 발명에 따른 효과의 발현 (즉, 보다 안정적인 전기적 성능 발현)에 유리할 수 있다. In particular, the positive electrode active material of the present invention is a chromium and vanadium substituted as a dissimilar metal in the lithium-manganese-based metal oxide, and as each metal component is included in the above ratio, it is possible to improve lithium capacity and express high stability A battery can be provided. According to the present invention, in Chemical Formula 1, X and y may be values satisfying 0 <x <0.25 and 0 <y <0.25, preferably 0.1≤x <0.25 and 0.1≤y <0.25, respectively. That is, the positive electrode active material according to the present invention is further substituted with a dissimilar metal including chromium and vanadium to the previous lithium-manganese-based metal oxide, wherein in Formula 1 X and y are 0 <x, 0 <y, and x It can have any value that satisfies the relationship of + y <0.5. Furthermore, preferably in Formula 1, X and y each have a value of 0.1 or more, which may be advantageous for the expression of the effect according to the present invention (that is, the expression of more stable electrical performance).
그리고, 본 발명에 있어서, 크로뮴과 바나듬을 포함하는 이종 금속의 치환에 따른 효과와 함께, 리튬-망간-크로뮴-바나듐 금속에 의한 시너지 효과가 층분히 발현될 수 있도록 하기 위해서는, 망간 (Mn)이 일정 수준 이상으로 포함되도록 하는 것이 바람직하다. 즉, 본 발명에 따르면, 상기 화학식 1 에서 X 와 y 는 각각 χ<0.25 및 y<0.25 (바꾸어 말하면, 1- (x+y)> 0.5)인 관계를 만족하는 것이 전술한 효과의 발현 측면에서 유리할 수 있다. 나아가, 크로뮴과 바나듐을 포함하는 이종 금속의 치환량이 일정 수준을 초과하는 경우 양극 활물질의 표면에 불순물이 존재하게 될 수 있으며, 상기 불순물은 전기화학 반응에 불리하게 작용할 수 있다. 이러한 점들을 종합적으로 감안할 때, 상기 화학식 1 에서 X 및 y는 전술한 범위를 만족하는 것이 바람직하다.  In addition, in the present invention, in order to fully express the synergistic effect of lithium-manganese-chromium-vanadium metal with the effect of substitution of a dissimilar metal including chromium and vanadium, manganese (Mn) It is desirable to include more than a certain level. That is, according to the present invention, in the formula 1, X and y satisfy the relationship that χ <0.25 and y <0.25 (in other words, 1- (x + y)> 0.5), respectively, in terms of expression of the above-described effects. May be advantageous. Furthermore, when the amount of substitution of the dissimilar metal including chromium and vanadium exceeds a certain level, impurities may exist on the surface of the cathode active material, and the impurities may adversely affect the electrochemical reaction. In view of these points as a whole, it is preferable that X and y satisfy the above-mentioned range in the general formula (1).
이와 같은 금속 산화물은, 비제한적인 예로, Li2(Mn0.95Cro.o25V0.o25)03,Such a metal oxide is, a non-limiting example, Li 2 (Mn 0. 95 Cro.o 25 V 0 .o 25) 0 3,
Li2(Mn0.9Cro.05Vo.o5)03, Li2(Mno.s5Cr().075V0.075)03, L^iMno.gCrdVo. Os, Li 2 (Mn 0 .9Cro .05 Vo.o 5) 0 3, Li2 (Mno. S5 Cr (). 075 V 0. 075) 0 3, L ^ iMno.gCr d Vo. Os,
Li2(Mn0.75Cr0.125Vo.i25)03, Li2(Mno.7Cr0.i5Vo.15)03, Li2(Mn0.65Cr0.175Vo.175)03, Li2(M¾.6Cr02V0.2)O3,Li2(Mn0.55Cr0.225V0^ 일 수 있다. Li 2 (Mn 0. 7 5Cr 0. 125 Vo.i25) 0 3, Li 2 (Mno.7Cr 0 .i5Vo. 15) 0 3, Li 2 (Mn 0.65 Cr 0. 175 Vo. 1 75) 0 3, Li 2 may be a (M ¾. 6 Cr 02 V 0. 2) O 3, Li 2 (Mn 0. 55 Cr 0. 225 V 0 ^.
그리고, 상기 금속 산화물은 리튬 이차 전지용 양극 활물질에 적용되기 적합한 입자 크기를 가질 '수 있으며, 바람직하게는 평균 입경 1 내지 30 μιη, 보다 바람직하게는 2 내지 50 μιη의 입자 크기를 가질 수 있다. 즉, 양극 활물질의 평균 입경이 너무 작을 경우 표면적의 증가로 인해 입자 표면에 불순물의 형성이 증가하게 되는 문제점이 있을 수 있고, 반대로 평균 입경이 너무 클 경우 리튬 이온이 금속 산화물 입자 내부로 확산되는 거리가 증가하게 되어 속도 특성이 저하되는 문제점이 있을 수 있다. 그러므로, 상기 금속 산화물의 평균 입경은 전술한 범위 내에서 조절되는 것 이 유리 하다. 한편, 본 발명의 다른 구현예에 따르면, In addition, the metal oxide may have a particle size suitable for being applied to a cathode active material for a lithium secondary battery, and may preferably have a particle size of 1 to 30 μιη, more preferably 2 to 50 μιη, on average. That is, when the average particle diameter of the cathode active material is too small, there may be a problem in that impurities are formed on the surface of the particles due to an increase in surface area. On the contrary, when the average particle diameter is too large, a distance in which lithium ions diffuse into the metal oxide particles. There may be a problem that the speed characteristic is lowered to increase. Therefore, the average particle diameter of the metal oxide is advantageously controlled within the above-mentioned range. Meanwhile, according to another embodiment of the present invention,
크로뮴 화합물과 바나듐 화합물을 포함하고 수소이온농도 (pH)가 9 내지 13 인 제 1 금속염 용액을 준비하는 단계;  Preparing a first metal salt solution containing a chromium compound and a vanadium compound and having a hydrogen ion concentration (pH) of 9 to 13;
상기 제 1 금속염 용액의 수소이온농도 (pH)2 내지 6 으로 조절한 후, 상기 제 1 금속염 용액에 망간염을 포함하는 제 2 금속염 용액을 흔합하는 단계; Adjusting a hydrogen ion concentration (p H) of the first metal salt solution to 2 to 6 and then mixing a second metal salt solution including manganese salt in the first metal salt solution;
상기 흔합 용액에 환원제를 첨가하여 공침 전 (co-precipitation)에 의해 하기 화학식 a 로 표시되는 금속 산화물 전구체 입자를 얻는 단계 ; 및  Adding a reducing agent to the mixed solution to obtain metal oxide precursor particles represented by Chemical Formula a by co-precipitation; And
상기 금속 산화물 전구체 입자를 리튬 화합물과 흔합한 후, 상기 흔합물을 소성하여 하기 화학식 1 로 표시되는 금속 산화물을 얻는 단계  Mixing the metal oxide precursor particles with a lithium compound, and then calcining the mixture to obtain a metal oxide represented by the following Chemical Formula 1
를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법 이 제공된다: [화학식 a]  Provided is a method of manufacturing a cathode active material for a lithium secondary battery, including:
[MnI-(x+y)CrxVy]OH [Mn I- (x + y) Cr x V y ] OH
[화학식 1]  [Formula 1]
Li2[Mn1-(x+y)CrxVy]03 Li 2 [Mn 1- (x + y) Cr x V y ] 0 3
상기 화학식 a 및 화학식 1 에서, X 및 y 는 각각 0 < x < 0.25 및 0 < y < 0.25 이다. In Formulas a and 1, X and y are each 0 <x <0.25 and 0 <y <0.25.
즉, 본 발명에 따르면, 전술한 양극 활물질은 망간, 크로뮴 및 바나듐 금속의 산화수 변화를 유도하여 동시에 침 전시키는 방법 (co-precipitation)으로 특정 조성의 금속 산화물 전구체 입자를 얻고, 상기 전구체 입자를 리튬 화합물과 혼합하여 소성하는 방법으로 얻어 질 수 있다.  That is, according to the present invention, the above-described positive electrode active material obtains metal oxide precursor particles having a specific composition by co-precipitation by inducing a change in the oxidation number of manganese, chromium and vanadium metals at the same time, and converting the precursor particles into lithium. It can be obtained by mixing with a compound and firing.
구체적으로, 상기 제 1 금속염 용액은 염 기성 수용액에 크로뮴 화합물과 바나듐 화합물을 용해시켜 준비 될 수 있다.  Specifically, the first metal salt solution may be prepared by dissolving a chromium compound and a vanadium compound in a basic aqueous solution.
여 기서, 상기 염 기성 수용액의 수소이온농도 (pH)는 9 내지 13, 바람직하게는 9 내지 12, 보다 바람직하게는 9.5 내지 11 일 수 있다. 즉, 상기 제 1 금속염 용액의 제조를 위한 염 기성 수용액의 수소이온농도가 PH 9 미만일 경우 상기 바나듐 화합물의 용해가 어 려운 문제점 이 나타날 수 있고, 반대로 pH 13 을 초과할 경우 크로뮴 화합물의 침 전이 시 작되는 문제점 이 나타날 수 있다. Here, the hydrogen ion concentration (pH) of the basic aqueous solution may be 9 to 13, preferably 9 to 12, more preferably 9.5 to 11. That is, when the hydrogen ion concentration of the basic aqueous solution for the production of the first metal salt solution is less than P H 9 may be difficult to dissolve the vanadium compound, On the contrary, when pH 13 is exceeded, the sedimentation of chromium compound may start.
본 발명에 따르면, 상기 크로뮴 화합물은 불화크로뮴 (CrF2, CrF3, CrF4, CrF5, CrF6), 염화크로뮴 (CrCl2, CrCl3, CrCl4), 브롬화크로뮴 (CrBr2, CrBr3, CrBr4), 산화크로뮴 (Cr02, Cr03, Cr203, Cr304), 황화크로뮴 (CrS, Cr2S3), 및 질화크로뮴 (CrN, Cr(N03)3 ' 9¾0)으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. According to the present invention, the chromium compound is chromium fluoride (CrF 2 , CrF 3 , CrF 4 , CrF 5 , CrF 6 ), chromium chloride (CrCl 2 , CrCl 3 , CrCl 4 ), chromium bromide (CrBr 2 , CrBr 3 , CrBr 4 ), chromium oxide (Cr0 2 , Cr0 3 , Cr 2 0 3 , Cr 3 0 4 ), chromium sulfide (CrS, Cr 2 S 3 ), and chromium nitride (CrN, Cr (N0 3 ) 3 '9¾0) It may include one or more selected from the group consisting of.
또한, 상기 바나듬 화합물은 산화바나듐 (v2o5, V204, v2o3, V304), 옥시 염화바나듐 (V0C13), 사염화바나듐 (VC14), 삼염화바나듐 (VC13), 메타바나듐산암모늄 (NH4V03), 메타바나듐산나트륨 (NaV03) 및 메타바나듐산칼륨 (κνο3)으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. In addition, the vanadium compound is vanadium oxide (v 2 o 5 , V 2 0 4 , v 2 o 3 , V 3 0 4 ), vanadium oxychloride (V0C1 3 ), vanadium tetrachloride (VC1 4 ), vanadium trichloride (VC1 3 ), one or more selected from the group consisting of ammonium metavanadate (NH 4 V0 3 ), sodium metavanadate (NaV0 3 ), and potassium metavanadate (κνο 3 ).
그리고, 본 발명에 따르면, 상기 제 1 금속염 용액에 포함되는 금속염의 전체 농도는 으85 내지 1.25 M, 바람직하게는 0.85 내지 1.0 M 일 수 있다. 즉, 전체 공정'의 수율을 고려하여 상기 제 1 금속염 용액에 포함되는 금속염의 농도는 0.85 M 이상인 것이 바람직하다. 반대로, 금속염 의 농도가 필요 이상으로 높을 경우 조성의 불균형 이 발생할 수 있고 반응성 이 떨어 질 수 있는데, 이를 방지하기 위하여 상기 제 1 금속염 용액에 포함되는 금속염의 농도는 1.25 M 이하인 것 이 바람직하다. And, according to the present invention, the total concentration of the metal salt contained in the first metal salt solution may be 85 to 1.25 M, preferably 0.85 to 1.0 M. That is, in consideration of the yield of the entire process ' , the concentration of the metal salt contained in the first metal salt solution is preferably 0.85 M or more. On the contrary, when the concentration of the metal salt is higher than necessary, an imbalance in the composition may occur and the reactivity may be decreased. In order to prevent this, the concentration of the metal salt in the first metal salt solution is preferably 1.25 M or less.
한편, 본 발명에 따른 양극 활물질의 제조 방법은, 상기 제 1 금속염 용액의 수소이온농도 (pH)를 2 내지 6 으로 조절한 후, 상기 제 1 금속염 용액에 망간염을 포함하는 제 2 금속염 용액을 흔합하는 단계가 수행될 수 있다.  On the other hand, the method for producing a positive electrode active material according to the present invention, after adjusting the hydrogen ion concentration (pH) of the first metal salt solution to 2 to 6, the second metal salt solution containing manganese salt in the first metal salt solution Matching steps can be performed.
즉, 상기 단계는, 앞서 준비된 제 1 금속염 용액과 별도로, 망간염을 포함하는 제 2 금속염 용액을 준비 한 후, 이를 흔합하여 흔합 용액을 얻는 단계이다.  That is, the above step is to prepare a second metal salt solution including manganese salt, separately from the first metal salt solution prepared above, and then mix them to obtain a mixed solution.
이 때, 상기 제 2 금속염 용액에 포함되는 상기 망간염은 황산망간, 질산망간, 초산망간, 망간아세트산, 염화망간, 이산화망간, 삼산화망간, 및 사산화망간으로 이루어진 군에서 선택된 1 종 이상일 수 있다. 그리고, 본 발명에 따르면, 상기 제 1 금속염 용액과 제 2 금속염 용액을 흔합하기 전에, 상기 제 1 금속염 용액의 수소이온농도 (pH)를 산성으로 조절하는 것이 바람직하다. 즉, 상기 제 1 금속염 용액올 산성으로 조절하는 이유는 망간염을 용해시킴과 동시에 크로뮴과 망간의 침전을 억제하기 위한 것으로서, 본 발명에 따르면, 상기 제 1 금속염 용액의 수소이온농도는 pH 2 내지 6, 바람직하게는 pH 2 내지 5, 보다 바람직하게는 pH 3 내지 5 로 조절될 수 있다. 즉, 상기 제 1· 금속염 용액의 수소이은농도가 pH 2 미만일 경우 바나듐 화합물의 침전이 발생할 수 있으며, pH 6 을 초과할 경우 망간 화합물의 용해가 어렵고 일부 침전물이 형성될 수 있다. In this case, the manganese salt contained in the second metal salt solution may be at least one selected from the group consisting of manganese sulfate, manganese nitrate, manganese acetate, manganese acetate, manganese chloride, manganese dioxide, manganese trioxide, and manganese tetraoxide. In addition, according to the present invention, before mixing the first metal salt solution and the second metal salt solution, it is preferable to adjust the hydrogen ion concentration (pH) of the first metal salt solution to acidity. That is, the reason for controlling the acidity of the first metal salt solution is to dissolve manganese salt and to inhibit precipitation of chromium and manganese, and according to the present invention, the hydrogen ion concentration of the first metal salt solution is pH 2 to 6, preferably pH 2 to 5, more preferably may be adjusted to pH 3 to 5. That is, when the hydrogen silver concentration of the first metal salt solution is less than pH 2, precipitation of the vanadium compound may occur. When the pH exceeds 6, the manganese compound may be difficult to dissolve and some precipitate may be formed.
한편, 상기 제 1 금속염 용액과 제 2 금속염 용액의 흔합 용액에 포함되는 각 금속염의 농도는, 후속 단계에서 얻어지는 화학식 a 의 금속 산화물 전구체 입자의 조성과 화학식 1 의 금속 산화물의 조성 등을 고려하여 결정될 수 있다. 즉, 본 발명에 따르면, 상기 흔합 포함되는 망간 (Mn)에 대한 크로뮴 (Cr)의 몰수비는 1:0.10 내지 1:().25, 그리고 망간 (Mn)에 대한 바나듐 (V)의 몰수비는 1:0.10 내지 1:0.25 로 조절되는 것이 본 발명에 따른 조성을 만족하는 금속 산화물의 확보 측면에서 바람직하다. 한편, 본 발명에 따른 양극 활물질의 제조 방법은, 상기 제 1 금속염 용액과 제 2.금속염 용액을 포함하는 흔합 용액에 환원제를 첨가하여 공침전 (co-precipitation)에 의해 상기 화학식 a 로 표시되는 금속 산화물 전구체 입자를 얻는 단계가 수행될 수 있다. Meanwhile, the concentration of each metal salt included in the mixed solution of the first metal salt solution and the second metal salt solution may be determined in consideration of the composition of the metal oxide precursor particles of the formula (a) and the composition of the metal oxide of the formula (1) obtained in a subsequent step. Can be. That is, according to the present invention, the molar ratio of chromium (Cr) to manganese (Mn), which is included in the mixture, is 1: 0.10 to 1 :(). 25, and the molar ratio of vanadium (V) to manganese (Mn). Is preferably adjusted from 1: 0.10 to 1: 0.25 in terms of securing a metal oxide that satisfies the composition according to the present invention. On the other hand, the method for producing a positive electrode active material according to the present invention, the first metal salt solution and the second . The step of obtaining the metal oxide precursor particles represented by Chemical Formula a by co-precipitation may be performed by adding a reducing agent to a mixed solution containing a metal salt solution.
즉, 상기 단계는 상기 흔합 용액에 환원제를 첨가하여 각 금속의 산화수 변화에 의한 공침전을 유도하는 단계로서, 상기 단계에 사용되는 환원제는 KBH4, LiBH4, NaBH4, NaAlH4 및 LiAlH4로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다. ' That is, the step is a step of inducing co-precipitation by the change in the oxidation number of each metal by adding a reducing agent to the mixed solution, the reducing agent used in the step is KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 and LiAlH 4 It may be one or more compounds selected from the group consisting of. '
이때, 상기 단계는 흔합 용액의 수소이은농도 (pH)를 9 내지 13, 바람직하게는 9 내지 12, 보다 바람직하게는 9.5 내지 11 로 조절한 후에 상기 환원제를 첨가하는 것이 공침전의 효과적인 진행에 유리할 수 있다. 그리고, 상기 흔합 용액에 환원제를 첨가한 후 체류시간 (aging time)은 5 내지 48 시간, 바람직하게는 5 내지 36 시간, 보다 바람직하게는 10 내지 24 시간으로 확보되는 것 이 공침 전의 효과적 인 진행에 유리할 수 있다. In this step, it is advantageous to adjust the hydrogen silver concentration (pH) of the mixed solution to 9 to 13, preferably 9 to 12, more preferably 9.5 to 11, and then add the reducing agent to the effective progress of coprecipitation. Can be. After the addition of the reducing agent to the mixed solution, the aging time is 5 to 48 hours, preferably 5 to 36 hours, more preferably 10 to 24 hours to ensure effective progress before coprecipitation May be advantageous.
전술한 바와 같은 공침 전이 진행됨 에 따라, 상기 화학시 a 로 표시되는 금속 산화물 전구체 입자가 얻어 질 수 있는데, 상기 금속 산화물 전구체 입자는 비정 질상일 수 있다. 그리고, 얻어진 금속 산화물 전구체 입자에는 불순물이 포함되어 있올 수 있는데, 이 러 한 불순물의 제거를 위하여, 증류수 등을 사용하여 상기 금속 산화물 전구체 입자를 3 내지 5 회 정도 세척 및 여과한 후, 60 내지 100 °C 의 온도 조건 하에서 12 내지 48 시간 동안 충분히 건조하는 것 이 바람직하다.  As the coprecipitation transition as described above proceeds, the metal oxide precursor particles represented by a may be obtained in the chemistry, and the metal oxide precursor particles may be amorphous. In addition, the obtained metal oxide precursor particles may contain impurities. In order to remove these impurities, the metal oxide precursor particles are washed and filtered about 3 to 5 times using distilled water or the like, followed by 60 to 100 Preference is given to drying sufficiently for 12 to 48 hours under temperature conditions of ° C.
한편, 본 발명에 따른 양극 활물질의 제조 방법은, 상기 금속 산화물 전구체 입자를 리튬 화합물과 흔합한 후, 상기 흔합물을 소성하여 상기 화학식 1 로 표시되는 금속 산화물을 얻는 단계가 수행될 수 있다.  On the other hand, in the method for producing a cathode active material according to the present invention, after mixing the metal oxide precursor particles with a lithium compound, the step of firing the mixture may be performed to obtain a metal oxide represented by the formula (1).
이 때, 상기 리튬 화합물은 탄산리튬, 수산화리튬, 초산리튬, 황산리튬, 아황산리튬, 플루오르화리튬, 질산리튬, 브롬화리튬, 요오드화리튬 및 염화리튬으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.  In this case, the lithium compound may include at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium iodide and lithium chloride .
그리고, 상기 금속 산화물 전구체 입자와 리튬 화합물의 흔합 비율은, 상기 리튬 화합물에 포함되는 리튬의 몰수가 상기 금속 산화물 전구체 입자에 포함되는 금속의 몰수를 기준으로 1 :0.5 내지 1 :1.5 가 되도록 하는 것이 , 최종적으로 얻어지는 금속 산화물의 조성을 감안할 때 바람직하다. 그리고, 상기 흔합물에 대한 소성은 두 단계 이상의 열처 리로 나누어 수행되는 것 이 보다 안정 적 인 금속 산화물의 형성올 위하여 바람직할 수 있다. 즉, 본 발명에 따르면, 상기 금속 산화물 전구체 입자와 리튬 화합물의 흔합물에 대한 소성은, 300 내지 1000 0C 의 온도 조건 하에서 7 내지 24 시간 동안 열처 리하는 제 1 소성 단계; 및 상기 제 1 소성 의 결과물을 300 내지 800 °C 의 온도 조건 하에서 5 내지 24 시간 동안 열처 리하는 제 2 소성 단계를 포함하여 수행될 수 있다. The mixing ratio of the metal oxide precursor particles and the lithium compound is such that the mole number of lithium included in the lithium compound is 1: 0.5 to 1: 1.5 based on the mole number of metal contained in the metal oxide precursor particles. It is preferable in view of the composition of the metal oxide finally obtained. And, the firing of the mixture may be preferable to form a more stable metal oxide that is carried out divided into two or more steps of heat treatment. That is, according to the present invention, the firing of the mixture of the metal oxide precursor particles and the lithium compound, the first firing step of heat treatment for 7 to 24 hours under a temperature condition of 300 to 1000 0 C; And a second firing step of thermally treating the resultant of the first firing for 5 to 24 hours under a temperature condition of 300 to 800 ° C.
보다 구체적으로, 상기 제 1 소성 단계는 air 분위기 (바람직하게는 산소. 분위기) 하에서 600 내지 800 °C 의 온도로 약 3 내지 7 시간 동안 유지한 후, 800 내지 1000 °C 의 온도로 약 10 내지 18 시간 동안 수행될 수 있다. 그리고, 상기 제 2 소성 단계는 air 분위기 (바람직하게는 산소 분위기) 하에서 300 내지 500 °C 의 온도로 약 5 내지 10 시간 동안 수행될 수 있다. 이때, 상기 제 1 소성 단계의 결과물에는 불순물이 포함되 어 있을 수 있는데, 이 러한 불순물의 제거를 위하여 , 상기 제 1 소성 단계의 결과물을 초음파로 세척하고 건조한 후에 , 상기 제 2 소성 단계를 수행하는 것 이 바람직하다. 이와 같은 방법을 통해 상기 화학식 1 로 표시되는 질은 남색 분말의 금속 산화물을 얻을 수 있다. 한편, 상기 금속 산화물이 포함된 양극 활물질을 포함하는 리튬 이차 전지용 양극은 상기 양극 활물질을 포함하는 페이스트를 제조하고, 이를 구리 , 알루미늄, 스테인레스, 니켈 등의 전극용 집 전체에 균일하게 도포한 후, 건조시 키는 공정을 포함하는 방법으로 제조될 수 있다. More specifically, the first firing step is maintained for about 3 to 7 hours at a temperature of 600 to 800 ° C under an air atmosphere (preferably oxygen. Atmosphere), and then about 10 to about 10 to a temperature of 800 to 1000 ° C. Can be performed for 18 hours have. And, the second firing step may be performed for about 5 to 10 hours at a temperature of 300 to 500 ° C under an air atmosphere (preferably oxygen atmosphere). At this time, the result of the first firing step may include impurities, in order to remove such impurities, after washing the resultant of the first firing step by ultrasonic and dried, performing the second firing step It is preferable. Through such a method, the quality represented by Chemical Formula 1 may be obtained with a metal oxide of indigo powder. On the other hand, the positive electrode for a lithium secondary battery including the positive electrode active material containing the metal oxide prepared a paste containing the positive electrode active material, and uniformly applied to the current collector for the electrode, such as copper, aluminum, stainless, nickel, Drying may be made by a method including a process.
여 기서 , 상기 페이스트에는 상기 양극 활물질, 결합재, 도전재 및 용매가 포함될 수 있다. 그 중 상기 결합재는 바인더 역할을 하는 성분으로서, 폴리테트라플루오르에 틸렌 (PTFE), 폴리비닐리 덴 플루오라이드 (PVdF), 셀롤로오스, 스타이 렌부타다이 엔러버 (SBR), 폴리 이미드, 폴리아크릴릭산 (Polyacrylic acid), 폴리 메틸메타그릴레이트 (PMMA), 및 폴리아크릴로나이트릴 (PAN)로 이루어진 군에서 선택되는 1 종 이상의 화합물일 수 있다. 상기 도전재는 전극의 저항을 줄여 전지의 출력을 향상시 키 기 위한 성분으로서, 카본 블택, 기상성장 탄소섬유, 아세틸렌 블랙 등이 사용될 수 있다. 또한, 상기 용매는 슬러 리의 분산매 역할을 하는 성분으로서 , N-메틸피를리돈 (NMP), 이소프로필 알콜, 아세톤, 물 등이 사용될 수 있다. ■, where, the paste can be included in the positive electrode active material, a binder, a conductive material and a solvent. The binder is a component serving as a binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, styrene-butadiene rubber (SBR), polyimide, poly It may be at least one compound selected from the group consisting of acrylic acid (Polyacrylic acid), poly methyl methacrylate (PMMA), and polyacrylonitrile (PAN). The conductive material is a component for improving the output of the battery by reducing the resistance of the electrode, carbon block, vapor-grown carbon fiber, acetylene black and the like can be used. In addition, the solvent is a component that serves as a dispersion medium of the slurry, N-methylpyrrolidone (NMP), isopropyl alcohol, acetone, water and the like can be used.
한편, 본 발명 에 따른 양극 활물질을 포함하는 리튬 이차 전지는 상기 양극, 음극, 분리막 및 전해질을 포함할 수 있다. 상기 리튬 이차 전지 에서 음극으로는 본 발명 이 속하는 기술분야에서 통상적인 것이 적용될 수 있으므로 특별히 제한되지 않는다. 그리고, 상기 분리 막은 양극과 음극 사이에 위 치하여 내부 단락을 차단하고 전해액을 함침하는 역할을 하는 것으로서, 그 소재는 폴리프로필렌, 폴리 에틸렌 등일 수 있다. 또한, 상기 전해질은 유기용매에 리튬 화합물이 용해된 것 일 수 있다. 【발명의 효과】 Meanwhile, the lithium secondary battery including the cathode active material according to the present invention may include the cathode, the anode, the separator, and the electrolyte. The negative electrode in the lithium secondary battery is not particularly limited since the conventional one can be applied in the art. In addition, the separation membrane is positioned between the positive electrode and the negative electrode to block internal short circuits and to impregnate the electrolyte, and the material may be polypropylene, polyethylene, or the like. In addition, the electrolyte may be a lithium compound dissolved in an organic solvent. 【Effects of the Invention】
본 발명에 따른 금속 산화물을 포함하는 리튬 이차 전지용 양극 재료는 보다 향상된 층ᅳ방전 용량과 우수한 사이클 특성을 갖는 리튬 이차 전지의 제공을 가능케 한다.  The positive electrode material for a lithium secondary battery including the metal oxide according to the present invention enables the provision of a lithium secondary battery having more improved layered discharge capacity and excellent cycle characteristics.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 은 본 발명의 실시예 1 에서 제조된 양극 활물질 (L^Mno.sCrojVo. Os)에 대한 X-선 회절 분석 결과를 나타낸 그래프 (a)와 양극 활물질을 5,000 배 확대 관찰한 주사 전자 현미경 사진 (b)이다. Figure 1 is a positive electrode active material prepared in Example 1 of the present invention (L ^ Mno.sCrojVo. Os) X- ray diffraction analysis indicated the graph (a) and scanning electron microscope (SEM) image of a positive electrode active material was observed on the enlarged 5,000 times (b).
도 2 는 본 발명의 실시예 2 에서 제조된 양극 활물질 (Li2(Mno.7Cr0.15Vo.15)03)에 대한 X-선 회절 분석 결과를 나타낸 그래프 (a)와 양극 활물질을 5,000 배 확대 관찰한 주사 전자 현미경 사진 (b)이다. Figure 2 is a cathode active material prepared in Example 2 of the present invention (Li 2 (M no. 7 Cr 0. 15 Vo. 15) 0 3) Graph (a) shows the X- ray diffraction analysis of the positive electrode active material and The scanning electron micrograph (b) which observed the magnification 5,000 times.
도 3 은 본 발명의 실시예 3 에서 제조된 양극 활물질 (Li2(Mno.6Cro.2Vo.2)03)에 대한 X-선 회절 분석 .결과를. 나타낸 그래프 (a)와 양극 활물질을 5,000 배 확대 관찰한 주사 전자 현미경 사진 (b)이다. 3 is an X-ray diffraction analysis of the positive electrode active material (Li 2 (Mno. 6 Cro. 2 Vo . 2 ) 0 3 ) prepared in Example 3 of the present invention. It is a scanning electron micrograph (b) which observed and magnified 5,000 times the graph (a) and the positive electrode active material which were shown.
도 4 는 본 발명의 대조예 1 에서 제조된 양극 활물질 (Li2(Mn0.5Cr0.25V0.25)O3)에 대한 X-선 회절 분석 결과를 나타낸 그래프 (a)와 양극 활물질을 3,000 배 확대 관찰한 주사 전자 현미경 사진 (b)이다. Figure 4 is a positive electrode active material (Li 2 (Mn 0. 5 Cr 0.25 V 0. 25) O 3) Graph (a) and the positive electrode active material shows the X- ray diffraction analysis of the prepared in Control Example 1 of the present invention; It is the scanning electron micrograph (b) observed 3,000 times magnification.
도 5 는 본 발명의 대조예 2 에서 제조된 양극 활물질 (Li2Mn03)에 대한 X-선 회절 분석 결과를 나타낸 그래프 (a)와 양극 활물질을 5,000 배 확대 관찰한 주사 전자 현미경 사진 (b)이다. 5 is a graph (a) showing the results of X-ray diffraction analysis of the positive electrode active material (Li 2 Mn0 3 ) prepared in Comparative Example 2 of the present invention and a scanning electron micrograph (b) of 5,000 times magnification of the positive electrode active material. to be.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다.  Hereinafter, preferred embodiments will be presented to aid in understanding the present invention. However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited by the following examples.
실시예 1  Example 1
우선, pH 약 10.5인 NH4OH 용액 약 200ml를 반응기에 채웠다. 이와 별도로, KOH (약 2.84g) 및 LiOH (약 3.05g)를 50 ml 의 증류수에 용해시켜 pH 약 10.5 인 염기성 용액을 제조한 후, 상기 염기성 용액에 바나듐 화합물 (V205) 약 0.91 g (약 O.lmol)과 크로뮴 화합물 (Cr(NO)3 · 9¾0) 약 4.00g (약 O.lmol)을 첨가하고 용해시켜 제 1 금속염 용액을 준비하였다. First, about 200 ml of a NH 4 OH solution with a pH of about 10.5 was charged to the reactor. Separately, KOH (about 2.84 g) and LiOH (about 3.05 g) were dissolved in 50 ml of distilled water to prepare a basic solution having a pH of about 10.5, and about 0.91 g of a vanadium compound (V 2 0 5 ) was added to the basic solution. (About 0.1 mol) and about 4.00 g (about 0.1 mol) of chromium compound (Cr (NO) 3 · 9¾0) were added and dissolved to prepare a first metal salt solution.
그리고, 상기 제 1 금속염 용액에 HC1을 첨가하여 pH 4로 조절한 후, 망간염 (MnS04'5H20) 약 19.29 g (약 0.8 mol)을 포함하는 제 2 금속염 용액을 첨가하여 흔합하였다 (망간에 대한 크로뮴의 몰수비 = 약 1: 0.125, 망간에' 대한 바나듐의 몰수비 = 약 1:0.125)· Then, a second metal salt solution containing the second was adjusted to pH 4 by the addition of HC1 1 in the metal salt solution, manganese (MnS0 4 '5H 2 0) of about 1 9 .29 g (about 0.8 mol) was added was heunhap (molar ratio = about 1 of chromium to manganese: "for molar ratio = from about 1 to 0.125 of vanadium, manganese: 0.125),
이어서, 상기 제 1 금속염 용액 및 제 2 금속염 용액의 흔합 용액과, 환원제 (KBH4)를 상기 반응기에 투입하면서, 반응기 내에 포함된 용액의 수소이온농도를 pH 10.5 가 되도록 유지하였다. 그리고, 체류시간 약 12 시간 동안 공침전이 진행되었고, 침전된 금속 산화물 전구체 입자를 회수하여 증류수로 5회 세척 및 여과 후, 약 80°C에서 24 시간 동안 건조시켰다. 이어서, 리튬 화합물 (Li2C03) 약 0.87 g 과 상기 금속 산화물 전구체 입자 약 1.13 g을 흔합 (금속 산화물 전구체 입자에 포함된 금속의 몰수: 리튬 화합물에 포함된 리튬의 몰수 =1:0.5)한 후 펠리타이징 (pelletizing)하였다. 그리고, 상기 흔합물을 공기 분위기 하에서 약 700 °C의 온도로 약 5 시간 동안 열처리하고, 이어서 900 °C 로 승온시켜 약 12 시간 동안 열처리하는 방법으로 제 1 소성을 진행하였다. 그리고, 제 1 소성의 결과물올 증류수에 첨가하고 초음파로 약 50 분 동안 세척한 후 80 0C 의 온도로 약 12 시간 동안 건조하였다. 이어서, 건조된 결과물을 공기 분위기 하에서 약 400 °C 의 온도로 약 7 시간 동안 열처리하는 방법으로 제 2 소성을 진행하였다. Subsequently, while the mixed solution of the first metal salt solution and the second metal salt solution and a reducing agent (KBH 4 ) were added to the reactor, the hydrogen ion concentration of the solution contained in the reactor was maintained at pH 10.5. Then, co-precipitation proceeded for a residence time of about 12 hours, the precipitated metal oxide precursor particles were recovered, washed five times with distilled water and filtered, and dried at about 80 ° C. for 24 hours. Subsequently, about 0.87 g of the lithium compound (Li 2 CO 3 ) and about 1.13 g of the metal oxide precursor particles were mixed (moles of metal contained in the metal oxide precursor particles: moles of lithium contained in the lithium compound = 1: 0.5). After pelleting (pelletizing). Then, the mixture was heat treated at a temperature of about 700 ° C. for about 5 hours under an air atmosphere, and then heated to 900 ° C., and then heat-treated for about 12 hours to proceed with the first firing. Then, the result of the first firing was added to distilled water, washed with ultrasonic waves for about 50 minutes, and dried at a temperature of 80 0 C for about 12 hours. Subsequently, the second firing was conducted by heat-treating the dried product at a temperature of about 400 ° C. for about 7 hours under an air atmosphere.
상기 과정을 통해 질은 남색의 분말 (평균 입경 약 ΙΟ μιη)을 얻었으며, 후술할 X-선 회절 분석의 결과 상기 분말의 조성은 L^Mno.sCrojVcn)^으로 확인되었다.  Through this process, the vagina obtained indigo powder (average particle size about ΙΟ μιη), and the composition of the powder was confirmed as L ^ Mno.sCrojVcn) ^ as a result of X-ray diffraction analysis, which will be described later.
실시예 2  Example 2
상기 실시예 1 에서 바나듐 화합물 (V205), 크로뮴 화합물 (&(ΝΟ)3·9Η20), 및 망간염 (MnS(V5¾0)의 함량을 금속 성분의 몰비가 Mn: Cr: V = 0.7: 0.15: 0.15 가 되도록 조절한 것을 제외하고, 실시예 1 과 동일한 방법으로 질은 남색의 분말 (평균 입경 약 15 μιη)을 얻었으며, 후술할 X-선 회절 분석의 결과 상기 분말의 조성은 Li2(Mno.7Cr0.15Vo.15)03으로 확인되었다. In Example 1, the molar ratio of the vanadium compound (V 2 0 5 ), the chromium compound (& (ΝΟ) 3 · 9Η 2 0), and manganese salt (MnS (V5¾0)) of the metal component was Mn: Cr: V = Example was adjusted to be 0.7: 0.15: 0.15 Quality in the same manner as in 1 was obtained in a dark blue powder (average particle size of about 15 μιη), X- ray diffraction analysis results of later-described composition of the powder is Li 2 (Mno. 7 Cr 0 . 15 Vo. 15) 0 3 was confirmed.
실시예 3  Example 3
상기 실시예 1 에서 바나듐 화합물 (V205), 크로뮴 화합물 (Ο·(Ν0)3·9Η20), 및 망간염 (MnS V5H20)의 함량을 금속 성분의 몰비가 Mn: Cr: V = 0.6: 0.2: 0.2 가 되도록 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 질은 남색의 분말 (평균 입경 약 15 μιη)을 얻었으며, 후술할 X-선 회절 분석의 결과, 상기 분말의 조성은 Li2(Mno.6Cro.2V0.2)03 으로 확인되었다. In Example 1, the molar ratio of the vanadium compound (V 2 0 5 ), the chromium compound (Ο · (Ν 0) 3 · 9Η 2 0), and manganese salt (MnS V5H 2 0) was calculated as Mn: Cr: V = 0.6: 0.2: 0.2, except that a control such that, in example 1, was obtained the quality of the blue powder (average particle size of about 15 μι η) in the same manner, the results of the X- ray diffraction analysis to be described later, the the composition of the powder is Li 2 (Mno. 6 C ro . 2 V 0. 2) was found to be 03.
대조예 1  Comparative Example 1
상기 실시예 1 에서 바나듐 화합물 (V205), 크로뮴 화합물 ( (ΝΟ)3·9Η20), 및 망간염 (MnS V5H20)의 함량을 금속 성분의 몰비가 Mn: Cr: V = 0.5: 0.25: 0.25 가 되도록 조절한 것을 제외하고, 실시예 1 과 동일한 방법으로 짙은 남색의 분말 (평균 입경 약 15 μπι)을 얻었으며, 후술할 X-선 회절 분석의 결과, 상기 분말의 조성은 Li2(Mno.5Cro.25V0.25)03으로 확인되었다. In Example 1, the molar ratio of the vanadium compound (V 2 0 5 ), the chromium compound ((ΝΟ) 3 · 9Η 2 0), and the manganese salt (MnS V5H 2 0) was calculated as Mn: Cr: V = A dark blue powder (average particle size about 15 μπι) was obtained in the same manner as in Example 1, except that 0.5: 0.25: 0.25 was adjusted. As a result of X-ray diffraction analysis to be described later, the composition of the powder was Li 2 (Mno. 5 Cro. 25 V 0. 25 ) 0 3 was identified.
대조예 2  Comparative Example 2
상기 실시예 1 에서 제 1 금속염 용액을 사용하지 않고, 상기 제 2 금속염 용액을 사용하여 수행한 것을 제외하고, 실시예 1 과 동일한 방법으로 적갈색의 분말 (평균 입경 약 12 μπι)을 얻었으며, 후술할 X-선 회절 분석의 결과, 상기 분말의 조성은 Li2Mn03으로 확인되었다. 제조예 1 A reddish brown powder (average particle size about 12 μπι) was obtained by the same method as Example 1 except that the first metal salt solution was not used in Example 1 and the second metal salt solution was used. As a result of X-ray diffraction analysis, the composition of the powder was found to be Li 2 Mn0 3 . Preparation Example 1
실시예 1 에 따른 금속 산화물 입자를 양극 활물질로 포함하는 코인셀을 제조하였다. 구체적으로, 실시예 1 에 따른 금속 산화물과, 바인더인 폴리비닐리덴플로라이드 (PVDF)과, 도전제인 카본블랙 (제조사: Timcal)을 8으ᅳ10:10 의 비율로 흔합하여, 이를 알루미늄 집전체에 코팅한 후, 이를 건조시키고 를 프레스하여 양극을 제조하였다. 그리고 상기 양극과 전해질 (lMLiPF6EC/DMC)을 포함하는 코인 셀을 제조하였다. 제조예 2 내지 제조예 5 A coin cell was prepared including the metal oxide particles according to Example 1 as a cathode active material. Specifically, the metal oxide according to Example 1, polyvinylidene fluoride (PVDF) as a binder, and carbon black (manufacturer: Timcal) as a conductive agent are mixed at a ratio of 8:10:10, and the aluminum current collector is mixed. After coating on, it was dried and pressed to prepare a positive electrode. And a coin cell containing the positive electrode and the electrolyte (lMLiPF 6 EC / DMC) was prepared. Preparation Example 2 to Preparation Example 5
실시예 1 에 따른 금속 산화물 입자 대신, 실시예 2(제조예 2), 실시예 3(제조예 3), 대조예 1(제조예 4) 및 대조예 2(제조예 5)에 따른 각각의 금속 산화물 입자를 사용한 것을 제외하고, 제조예 1 과 동일한 방법으로 제조예 2 내지 제조예 5의 코인 샐을 각각 제조하였다. 시험예 1  Instead of the metal oxide particles according to Example 1, the respective metals according to Example 2 (Preparation Example 2), Example 3 (Preparation Example 3), Control Example 1 (Preparation Example 4) and Control Example 2 (Preparation Example 5) Coin sal of Preparation Examples 2 to 5 was prepared in the same manner as in Preparation Example 1, except that oxide particles were used. Test Example 1
(X-선 회절 분석을 통한 결정구조 확인)  (Crystal structure confirmation through X-ray diffraction analysis)
실시예 1 내지 실시예 3, 그리고 대조예 1 및 대조예 2 에 따른 각각의 금속 산화물 입자에 대하여, XRD 장치 (제조사: PANalytical, 모델명: X'Pert pro MPD)를 이용하여 결정 구조를 확인하였고, 그 결과를 도 1 의 (a) 내지 도 5의 (a)에 각각 나타내었다. 이때, X-선 회절 분석 시험은 2Θ값이 10 내지 80° 범위에서 샘플링 폭이 0.01°, 스캔 속도 4 분인 조건 하에서 Cu- Κα선을 이용하여 수행되었다.  For each of the metal oxide particles according to Examples 1 to 3, and Comparative Examples 1 and 2, the crystal structure was confirmed using an XRD apparatus (manufacturer: PANalytical, model name: X'Pert pro MPD), The results are shown in FIGS. 1A to 5A, respectively. At this time, the X-ray diffraction analysis test was performed using Cu-kα rays under the condition that the sample width was 0.01 ° and the scan rate was 4 minutes in the range of 10-80 °.
시험예 2  Test Example 2
(주사 전자 현미경을 사용한 입자 크기 및 형상 관찰)  (Observation of particle size and shape using scanning electron microscope)
실시예 1 내지 실시예 3, 그리고 대조예 1 및 대조예 2 에 따른 각각의 금속 산화물 입자에 대하여, 주사 전자 현미경 (제조사: HITACHI, 모델명: S-4200)을 이용하여 입자 크기 및 형상을 관찰하였고, 그 결과를 도 1의 (b) 내지 도 5의 (b)에 각각 나타내었다.  For each of the metal oxide particles according to Examples 1 to 3 and Comparative Examples 1 and 2, particle size and shape were observed using a scanning electron microscope (manufacturer: HITACHI, model name: S-4200). And the results are shown in FIGS. 1B to 5B, respectively.
그 중, 도 4 의 (b)에 따르면, 상기 대조예 1 의 양극 활물질 (Li2(Mn0.5Cr025V0.25)O3)은 표면에 불순물이 존재함을 확인할 수 있다. 그리고, 하기 표 1 을 통해 알 수 있는 바와 같이, 상기 대조예 1 의 양극 활물질은 표면에 불순물이 존재함에 따라, 실시예 1 내지 3 의 양극 활물질에 비하여 사이클 특성이 급격하게 저하되는 것으로 나타났다. According to those, of Figure 4 (b), the positive electrode active material of Control Example 1 (Li 2 (Mn 0. 5 C r025 V 0.25) O 3) can be seen that the presence of impurities on the surface. And, as can be seen through Table 1, the positive electrode active material of Comparative Example 1 was shown that the cycle characteristics are sharply reduced as compared to the positive electrode active material of Examples 1 to 3 as impurities are present on the surface.
시험예 3  Test Example 3
(전지의 사이클 특성 평가)  (Evaluation of cycle characteristics of battery)
제조예 1 내지 제조예 5어 Γ따른 코인 셀에 대하여, 각각 1.5 내지 4.8 V 범위에서 C/10 의 속도로 층전 및 방전을 실시하여 사이클 특성을 평가하였고, 그 결과를 하기 표 1에 나타내었다. 【표 1】 For the coin cells according to Preparation Example 1 to Preparation Example 5, the cycle characteristics were evaluated by performing layer deposition and discharge at a rate of C / 10 in the range of 1.5 to 4.8 V, respectively, and the results are shown in Table 1 below. Table 1
Figure imgf000016_0001
표 1 을 통해 알 수 있는 바와 같이, 제조예 1 내지 제조예 3 의 코인 셀은 각각 양극 활물질이 전기화학적으로 안정화된 상을 형성하는 10th 사이클에서 제조예 4 의 코인 샐에 비 하여 층방전 용량이 큰 것으로 확인되 었다. 특히 , 제조예 3 의 코인 셀은 가장 우수한 층방전 용량을 나타내었으며 , 30th 사이클 이후에서도 96.7%의 층전 용량을 유지하는 것으로 나타나 사이클 특성 이 우수함을 확인할 수 있었다.
Figure imgf000016_0001
As can be seen from Table 1, the coin cells of Preparation Examples 1 to 3 each had a layer discharge capacity compared to the Coin Sal of Preparation Example 4 at 10 th cycle in which the positive electrode active material forms an electrochemically stabilized phase. This was confirmed to be large. In particular, the coin cell of Preparation Example 3 showed the best layer discharge capacity, it was confirmed that even after 30 th cycle to maintain a 96.7% layer discharge capacity excellent cycle characteristics.
시험 예 4  Test Example 4
(전지의 출력 특성 평가)  (Evaluation of output characteristics of battery)
제조예 1 에 따른 코인 셀에 대하여 1.5 내지 4.8 V 범위에서 C/10 의 속도로 1 회 충전 및 방전을 실시한 후, C/5 의 속도로 충전을, C/5, C/2, 1C, 2C 의 속도로 방전을 각각 실시하였다.  The coin cell according to Preparation Example 1 was once charged and discharged at a rate of C / 10 in a range of 1.5 to 4.8 V, and then charged at a rate of C / 5, C / 5, C / 2, 1C, and 2C. Discharge was performed at the speed | rate of each.
그 결과, 제조예 3 에 따른 코인 샐은 방전속도 C/5 에서 228 mAh/g, 방전속도 C/2 에서 215 mAh/g, 방전속도 1C 에서 200 mAh/g, 방전속도 2C 에서 175 mAh/g 을 나타내 출력 특성 이 우수함을 확인할 수 있었다.  As a result, the coin sal according to Preparation Example 3 was 228 mAh / g at the discharge rate C / 5, 215 mAh / g at the discharge rate C / 2, 200 mAh / g at the discharge rate 1C, and 175 mAh / g at the discharge rate 2C. It was confirmed that the output characteristics are excellent.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1 로 표시되는 금속 산화물을 포함하는 리튬 이차 전지용 양극 활물질: Claims Claim 1 Cathode active material for a lithium secondary battery containing a metal oxide represented by the following formula (1):
[화학식 1]  [Formula 1]
Li2[Mn1-(x+y)CrxVy]03 Li 2 [Mn 1- (x + y) Cr x V y ] 0 3
상기 화학식 1에서, X 및 y는 각각 0<x<0.25 및 0<y<0.25 이다.  In Formula 1, X and y are 0 <x <0.25 and 0 <y <0.25, respectively.
【청구항 2] [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 화학식 1 에서 X 및 y 는 각각 0.1≤x<0.25 및 0.1≤y<0.25 를 만족하는 리튬 이차 전지용 양극 활물질.  In Formula 1, X and y are 0.1 ≦ x <0.25 and 0.1 ≦ y <0.25, respectively.
【청구항 3】 [Claim 3]
제 1 항에 있어서,  The method of claim 1,
. 상기 금속 산화물은 Li2(Mn0.95Cr0.o25Vo.o25)03, Li2(Mn0.9Cr0.05V0.05)O3, Li2(Mn0.85Cro.o75Vo.o75)03, ^(Mno.sCro.iVo. Oa, Li2(Mn0.75Cro.125Vo.125)03, Li2(Mn0.7Cr0.15Vcn5)O3, Li2(Mn0.65Cr0.175V0.175)O3, Li2(Mn0.6Cr0.2V0.2)O3, 및 Li2(Mn0.55Cro.225Vo.225)03 로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질. . The metal oxide is Li 2 (Mn 0. 95 Cr 0 .o 25 Vo.o 25) 0 3, Li 2 (Mn 0. 9 Cr 0. 05 V 0. 05) O 3, Li 2 (Mn 0. 85 Cro.o7 5 Vo.o 7 5) 0 3 , ^ (Mno.sCro.iVo. Oa, (. Mn 0. 75 Cro. 12 5Vo Li2 12 5) 0 3, Li 2 (Mn 0. 7 Cr 0. 15 Vcn 5) O 3, Li 2 (Mn 0. 65 Cr 0. 175 V 0. 175) O 3, Li 2 (Mn 0. 6 Cr 0. 2 V 0. 2) O 3, and Li 2 (Mn 0. 55 Cro. 22 5Vo. 22 5) lithium containing at least one selected from the group consisting of 03 secondary battery positive electrode active material.
【청구항 4】 [Claim 4]
제 1 항에 있어서,  The method of claim 1,
상기 금속 산화물은 1 내지 30 μπι 의 평균 입경을 갖는 리튬 이차 전지용 양극 활물질.  The metal oxide is a cathode active material for a lithium secondary battery having an average particle diameter of 1 to 30 μπι.
【청구항 5】 [Claim 5]
크로뮴 화합물과 바나듐 화합물을 포함하고 수소이온농도 (pH)가 9 내지 13인 제 1 금속염 용액을 준비하는 단계; 상기 제 1 금속염 용액의 수소이온농도 (pH)를 2 내지 6 으로 조절한 후, 상기 제 1 금속염 용액에 망간염을 포함하는 제 2 금속염 용액을 흔합하는 단계; Preparing a first metal salt solution containing a chromium compound and a vanadium compound and having a hydrogen ion concentration (pH) of 9 to 13; Adjusting a hydrogen ion concentration (p H) of the first metal salt solution to 2 to 6 and then mixing a second metal salt solution including manganese salt in the first metal salt solution;
상기 흔합 용액에 환원제를 첨가하여 공침전 (co-precipitation)에 의해 하기 화학식 a로 표시되는 금속 산화물 전구체 입자를 얻는 단계; 및  Adding a reducing agent to the mixed solution to obtain metal oxide precursor particles represented by Chemical Formula a by co-precipitation; And
상기 금속 산화물 전구체 입자를 리튬 화합물과 흔합한 후, 상기 흔합물을 소성하여 하기 화학식 1로 표시되는 금속 산화물을 얻는 단계  Mixing the metal oxide precursor particles with a lithium compound, and then calcining the mixture to obtain a metal oxide represented by the following Chemical Formula 1
를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법:  Method for producing a cathode active material for a lithium secondary battery comprising:
[화학식 a]  [Formula a]
[Mn1-(x+y)CrxVy]OH [Mn 1- (x + y) Cr x V y ] OH
[화학식 1]  [Formula 1]
Li2[Mni-(x+y)CrxVy]03 Li 2 [Mni- (x + y) Cr x V y ] 0 3
상기 화학식 a 및 화학식 1 에서, X 및 y 는 각각 0<x<0.25 및 0<y<0.25 이다. In Formulas a and 1, X and y are each 0 <x <0.25 and 0 <y <0.25.
【청구항 6】 [Claim 6]
제 5 항에 있어서,  The method of claim 5,
상기 제 1 금속염 용액은 수소이은농도 (pH)가 9.5 내지 11 인 리튬 이차 전지용 양극 활물질의 제조 방법. The first metal salt solution is a method for producing a positive electrode active material for a lithium secondary battery having a hydrogen silver concentration (pH ) of 9.5 to 11.
.  .
【청구항 7】  [Claim 7]
제 5 항에 있어서,  The method of claim 5,
상기 크로뮴 화합물은 불화크로뮴 (CrF2, CrF3, CrF4, CrF5, CrF6), 염화크로뮴 (CrCl2, CrCl3, CrCl4), 브롬화크로뮴 (CrBr2, CrBr3, CrBr4), 산화크로뮴 (CrC , Cr03, Cr203, Cr304), 황화크로뮴 (CrS, Cr2S3), 및 질화크로뮴 (CrN, Cr(N03)3'9¾0)으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법. The chromium compound is chromium fluoride (CrF 2 , CrF 3 , CrF 4 , CrF 5 , CrF 6 ), chromium chloride (CrCl 2 , CrCl 3 , CrCl 4 ), chromium bromide (CrBr 2 , CrBr 3 , CrBr 4 ), oxidation 1 selected from the group consisting of chromium (CrC, Cr0 3 , Cr 2 0 3 , Cr 3 0 4 ), chromium sulfide (CrS, Cr 2 S 3 ), and chromium nitride (CrN, Cr (N0 3 ) 3 '9¾0) The manufacturing method of the positive electrode active material for lithium secondary batteries containing species or more.
【청구항 8】 [Claim 8]
제 5 항에 있어서, 상기 바나듐 화합물은 산화바나듐 (v2o5, v2o4, v2o3, V304), 옥시염화바나듐 (V(X ), 사염화바나듬 (VC14), 삼염화바나듐 (VC13), 메타바나듐산암모늄 (NH4V03), 메타바나듐산나트륨 (NaV03) 및 메타바나듐산칼륨 (KV03)으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법. The method of claim 5, The vanadium compound is vanadium oxide (v 2 o 5 , v 2 o 4 , v 2 o 3 , V 3 0 4 ), vanadium oxychloride (V (X), vanadium tetrachloride (VC1 4 ), vanadium trichloride (VC1 3) ), A method for producing a positive electrode active material for a lithium secondary battery comprising at least one member selected from the group consisting of ammonium metavanadate (NH 4 V0 3 ), sodium metavanadate (NaV0 3 ) and potassium metavanadate (KV0 3 ).
【청구항 9】 [Claim 9]
제 5 항에 있어서,  The method of claim 5,
상기 망간염은 황산망간, 질산망간, 초산망간, 망간아세트산, 염화망간, 이산화망간, 삼산화망간, 및 사산화망간으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법.  The manganese salt is a method of manufacturing a positive electrode active material for a lithium secondary battery comprising at least one selected from the group consisting of manganese sulfate, manganese nitrate, manganese acetate, manganese acetate, manganese dioxide, manganese dioxide, manganese trioxide, and manganese tetraoxide.
【청구항 10] [Claim 10]
제 5 항에 있어서,  The method of claim 5,
상기 흔합 .용액에 포함되는 망간 (Mn)에 대한 크로뮴 (Cr)의 몰수비는 The molar ratio of chromium (Cr) to manganese (Mn) contained in the mixed solution
1:0.10 내지 1:0.25인 리륨 이차 전지용 양극 활물질의 제조 방법. The manufacturing method of the positive electrode active material for lithium secondary batteries of 1: 0.10 to 1: 0.25.
【청구항 11] [Claim 11]
제 5 항에 있어서,  The method of claim 5,
상기 흔합 용액에 포함되는 망간 (Mn)에 대한 바나듐 (V)의 몰수비는 The molar ratio of vanadium (V) to manganese (Mn) contained in the mixed solution is
1:0.10 내지 1:0.25인 리튬 이차 전지용 양극 활물질의 제조 방법. The manufacturing method of the positive electrode active material for lithium secondary batteries which is 1: 0.10-1: 0.25.
【청구항 12】 [Claim 12]
제 5 항에 있어서,  The method of claim 5,
상기 공침전은 수소이은농도 (pH) 9 내지 13 의 조건 하에서 체류시간 The co-precipitation is a residence time under the condition of hydrogen silver concentration (pH) 9 to 13
5 내지 48 시간 동안 수행되는 리튬 이차 전지용 양극 활물질의 제조 방법. Method for producing a positive electrode active material for a lithium secondary battery is carried out for 5 to 48 hours.
【청구항 13] [Claim 13]
제 5 항에 있어서, 상기 환원제는 KBH4, LiBH4, NaBH4, NaAlH4 및 LiAlH4 로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법 . The method of claim 5, The reducing agent is a method for producing a positive electrode active material for a lithium secondary battery comprising at least one selected from the group consisting of KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 and LiAlH 4 .
【청구항 14】 [Claim 14]
제 5 항에 있어서,  The method of claim 5,
상기 공침 전된 금속 산화물 전구체 입자는 비정 질상인 리튬 이차 전지용 양극 활물질의 제조 방법 .  The co-precipitated metal oxide precursor particles are amorphous phase manufacturing method of a positive electrode active material for a lithium secondary battery.
【청구항 15】 [Claim 15]
제 5 항에 있어서 ,  The method of claim 5,
상기 리튬 화합물은 탄산리튬, 수산화리튬, 초산리튬, 황산리튬, 아황산리튬, 플루오르화리튬, 질산리튬, 브롬화리튬, 요오드화리튬 및 염화리튬으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법 .  The lithium compound is a lithium secondary battery positive electrode active material containing at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium iodide and lithium chloride Method of Preparation
【청구항 16] [Claim 16]
제 5 항에 있어서 ,  The method of claim 5,
상기 리튬 화합물에 포함되는 리튬의 몰수는 상기 금속 산화물 전구체 입자에 포함되는 금속의 몰수에 대하여 1 :0.8 내지 1 : 1.5 인 리튬 이차 전지용 양극 활물질의 제조 방법 .  The number-of-moles of lithium contained in the said lithium compound are the manufacturing methods of the positive electrode active material for lithium secondary batteries which are 1: 0.8-1: 1.5 with respect to the number-of-moles of the metal contained in the said metal oxide precursor particle | grains.
【청구항 17】 [Claim 17]
제 5 항에 있어서,  The method of claim 5,
상기 소성은, 300 내지 1000 °C 의 온도 조건 하에서 7 내지 24 시 간 동안 열처 리하는 제 1 소성 단계; 및 상기 제 1 소성의 결과물을 300 내지 800 °C 의 온도 조건 하에서 5 내지 24 시간 동안 열처리하는 제 2 소성 단계를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법 . 【청구항 18】 제 1 항에 따른 양극 활물질을 포함하는 리튬 이차 전지 The firing, the first firing step of heat treatment for 7 to 24 hours under a temperature condition of 300 to 1000 ° C; And a second firing step of heat-treating the resultant of the first firing for 5 to 24 hours under a temperature condition of 300 ° C. to 800 ° C. [Claim 18] A lithium secondary battery comprising the cathode active material according to claim 1
PCT/KR2013/000751 2013-01-10 2013-01-30 Cathode material for lithium secondary battery including lithium manganese metal oxide having substituted heterogeneous metals and preparation method therefor WO2014109427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0003085 2013-01-10
KR1020130003085A KR101418065B1 (en) 2013-01-10 2013-01-10 Positive composition for lithium secondary battery comprising lithium-manganese based metal oxide substituted other metal and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2014109427A1 true WO2014109427A1 (en) 2014-07-17

Family

ID=51167069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000751 WO2014109427A1 (en) 2013-01-10 2013-01-30 Cathode material for lithium secondary battery including lithium manganese metal oxide having substituted heterogeneous metals and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101418065B1 (en)
WO (1) WO2014109427A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028381A (en) * 2015-09-16 2018-05-11 罗伯特·博世有限公司 Active material, positive electrode and battery assembly module for the positive electrode of battery assembly module
CN113651360A (en) * 2021-08-18 2021-11-16 江南大学 Synthesis method and application of vanadium oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326449B1 (en) * 2000-01-03 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing same
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
US20040234855A1 (en) * 2003-04-03 2004-11-25 Guohua Li Cathode material, method of manufacturing the same, and battery using the same
US20080206644A1 (en) * 2007-02-27 2008-08-28 Sumitomo Chemical Company, Limited Lithium manganese composite oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326449B1 (en) * 2000-01-03 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing same
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
US20040234855A1 (en) * 2003-04-03 2004-11-25 Guohua Li Cathode material, method of manufacturing the same, and battery using the same
US20080206644A1 (en) * 2007-02-27 2008-08-28 Sumitomo Chemical Company, Limited Lithium manganese composite oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028381A (en) * 2015-09-16 2018-05-11 罗伯特·博世有限公司 Active material, positive electrode and battery assembly module for the positive electrode of battery assembly module
CN113651360A (en) * 2021-08-18 2021-11-16 江南大学 Synthesis method and application of vanadium oxide

Also Published As

Publication number Publication date
KR101418065B1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
KR100959589B1 (en) Novel Precursor for Preparation of Lithium Composite Transition Metal Oxide
JP6029118B2 (en) Novel precursor for producing lithium composite transition metal compound, composite transition metal compound, method for producing lithium-transition metal composite oxide, and method for producing lithium secondary battery
US9553313B2 (en) 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
US20090155691A1 (en) Positive electrode for a lithium battery
CN109843811B (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
WO2015039490A1 (en) Lithium-rich anode material and preparation method thereof
JP2012169066A (en) Method for producing cathode active material for lithium ion secondary battery
TWI622212B (en) Cathode compositions for lithium-ion batteries
CN111699577A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, method for evaluating positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013129589A (en) Composite oxide, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2017135416A1 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR101449421B1 (en) Surface-treated cathode material for oxide-based litium secondary battery with solid super acids and manufacturing method thereof
WO2019088032A1 (en) Lithium composite metal compound, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2014222583A (en) Method of producing cathode active material
WO2012127796A1 (en) Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
WO2014109427A1 (en) Cathode material for lithium secondary battery including lithium manganese metal oxide having substituted heterogeneous metals and preparation method therefor
JP7157219B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR101142517B1 (en) manufacturing method of cathode active material and lithium battery thereby
KR101490406B1 (en) Positive electrode active material coated with fluorine compounds for lithium secondary battery and preparation method thereof
KR101741027B1 (en) Composite precursor, composite prepared therefrom, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
JP6957013B2 (en) Positive electrode material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2002338246A (en) Method for manufacturing lithium/manganese compound oxide and lithium cell formed using lithium/manganese compound oxide
JP2001093527A (en) Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871168

Country of ref document: EP

Kind code of ref document: A1