WO2014108075A1 - 一种角度磁编码器和电子水表 - Google Patents

一种角度磁编码器和电子水表 Download PDF

Info

Publication number
WO2014108075A1
WO2014108075A1 PCT/CN2014/070360 CN2014070360W WO2014108075A1 WO 2014108075 A1 WO2014108075 A1 WO 2014108075A1 CN 2014070360 W CN2014070360 W CN 2014070360W WO 2014108075 A1 WO2014108075 A1 WO 2014108075A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
displacement sensor
magnetic field
angular displacement
magnet unit
Prior art date
Application number
PCT/CN2014/070360
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US14/760,094 priority Critical patent/US9638561B2/en
Priority to JP2015551974A priority patent/JP6412014B2/ja
Priority to EP14738320.2A priority patent/EP2944917A4/en
Publication of WO2014108075A1 publication Critical patent/WO2014108075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/065Indicating or recording devices with transmission devices, e.g. mechanical
    • G01F15/066Indicating or recording devices with transmission devices, e.g. mechanical involving magnetic transmission devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the invention relates to a permanent magnet in the field of measurement technology, in particular to a permanent magnet suitable for an angular magnetic encoder, an angular magnetic encoder comprising the permanent magnet and an electronic water meter.
  • the photoelectric coding technology can realize direct reading and measurement of the digital counting wheel code, and does not need to be accumulated, thereby being widely used.
  • this technology generally has a carry-on error phenomenon, and has poor anti-interference ability to bubbles, glare, dirt, leakage and the like.
  • the angular magnetic coding technology has higher resolution, no carry error phenomenon, good stability, and can completely eradicate various kinds of bad faults caused by photoelectric technology, and becomes an alternative coding technique for photoelectric coding.
  • the angular magnetic coding technique obtains the measurement reading by encoding the digital counting wheel.
  • the principle is to use a magnetoresistive sensor such as a tunnel magnetoresistive angular displacement sensor to sense the rotating magnetic field phase of the annular permanent magnet mounted on the digital counting wheel.
  • the angle is used to measure the corner and position of the wheel and is electronically converted into a corresponding digital reading.
  • the measurement accuracy of the angular magnetic coding technique depends on the performance characteristics of the two components of the magnetic-sensitive angular displacement sensor and the permanent magnet.
  • magnetoresistive sensors such as tunnel magnetoresistive sensors have higher magnetic field sensitivity, and their power consumption and size can be greatly reduced.
  • the tunnel magnetoresistive angular displacement sensor comprises two mutually orthogonal tunnel magnetoresistive sensors.
  • the two sine and cosine outputs formed by the tunnel magnetoresistive angular displacement sensor and the magnetic field component detected by the permanent magnet that is, the component of the magnetic field generated by the permanent magnet in the detection plane and the phase of the rotating magnetic field formed between the sensitive axis of the tunnel magnetoresistive angular displacement sensor angle ⁇ , also referred to herein as the phase angle of the detected magnetic field, is related as follows:
  • the phase angle of the rotating magnetic field can be calculated from the output of the tunnel magnetoresistive angular displacement sensor OUT1 and OUT2. Angle:
  • ATAN ( OUT2/OUT1 ).
  • the rotation phase angle ⁇ of the permanent magnet during the rotation is defined as the position vector point of the permanent magnet in the course of the rotation through the tunnel magnetoresistive angular displacement sensor.
  • the phase angle of r and the detected magnetic field component of the permanent magnet cause the tunnel magnetoresistive angular displacement sensor to induce.
  • the permanent magnet rotation phase angle ⁇ and the rotating magnetic field phase angle f form a linear relationship, satisfying 0 ⁇ 360
  • the phase relationship between the phase angle ⁇ of the rotating magnetic field detected by the tunnel magnetoresistive angular displacement sensor and the rotational phase angle ⁇ of the permanent magnet can be correlated.
  • the tunnel magnetoresistive angle magnetic encoder technology has special requirements for the design performance of permanent magnets when applied to electronic water meters, and the permanent magnets used in the existing angle magnetic encoders have the following disadvantages:
  • the existing angular magnetic encoder mostly uses a Hall sensor as an angle sensor, and the corresponding detection magnetic field component is a component of a magnetic field generated by a permanent magnet perpendicular to the detection surface, and the detection magnetic field component corresponding to the tunnel magnetoresistive angular displacement sensor is a magnetic field.
  • the permanent magnet of the existing angular magnetic encoder cannot satisfy the requirements of the magnetic field measurement of the tunnel magnetoresistive angular displacement sensor.
  • the existing angular magnetic encoder permanent magnets generally adopt a solid cylindrical design, and the electronic water meter is to minimize the installation space, and the permanent magnets are required to be circularly arranged to be directly mounted on the runner.
  • the object of the present invention is to overcome the above-mentioned shortcomings in the prior art, and to provide a permanent magnet suitable for an angular magnetic encoder, which can be mounted on an electronic water meter runner, save installation space, and can meet the tunnel reluctance angle.
  • the phase angle of the rotating magnetic field between the displacement sensor and the magnetic field component in the detection plane The linear relationship between ⁇ and the rotational phase angle ⁇ of the permanent magnet increases the measurement accuracy of the angular magnetic encoder.
  • an angular magnetic encoder comprising:
  • a tunnel magnetoresistive angular displacement sensor on the permanent magnet detecting surface for sensing a component of a magnetic field generated by the permanent magnet in the detecting surface and outputting a sensing signal
  • a digital processing circuit for calculating and outputting a code characterizing a rotation angle of the digital wheel according to a sensing signal from the tunnel magnetoresistive angular displacement sensor
  • the permanent magnet has a columnar annular structure and includes a first permanent magnet unit and a second permanent magnet unit, the first permanent magnet unit and the second permanent magnet unit being symmetrical with respect to a diameter cross section, the diameter cross section being a permanent magnet a cross section of the outer diameter and the axial length,
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are parallel to the axial direction of the cylindrical ring and are opposite in direction, or
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are perpendicular to the diameter section, and the directions are parallel and uniform.
  • the tunnel magnetoresistive angular displacement sensor is located in a region of the detection surface of the permanent magnet within a specific radius range of the axis of the permanent magnet columnar ring, the size of the region of the specific radius range and the radius of the permanent magnet of the columnar ring structure Depending on the size, in the region of the specific radius, the phase angle of the rotating magnetic field of the component of the magnetic field generated by the permanent magnet in the detecting plane is linearly related to the rotational phase angle of the permanent magnet.
  • the tunnel magnetoresistive angular displacement sensor comprises two uniaxial rotation sensors or Wheatstone bridges arranged orthogonally to each other. Rotating two-axis rotation sensor.
  • the detecting surface corresponding to the permanent magnet is located in front of the cylindrical annular end surface and parallel to the end surface.
  • the distance between the detecting surface of the tunnel magnetoresistive angular displacement sensor and the cylindrical annular end surface of the permanent magnet is 1-5 mm .
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are the same.
  • the permanent magnet of the columnar annular structure has an outer diameter of 3-200 mm, an inner diameter of 1-100 mm, and an axial length of 1-50 mm.
  • an electronic water meter comprising a plurality of counting units and digital processing circuits,
  • Each of the counting units includes:
  • a tunnel magnetoresistive angular displacement sensor on the permanent magnet detecting surface for sensing a component of the magnetic field generated by the permanent magnet in the detecting surface and outputting a sensing signal
  • the number of revolutions of the number counting wheel in the adjacent counting unit is N:1, and N is an integer greater than 1.
  • the digital processing circuit is coupled to each tunnel magnetoresistive angular displacement sensor to convert the output of the tunneled magnetoresistive angular displacement sensor into a digital reading.
  • the permanent magnet has a columnar annular structure and includes a first permanent magnet unit and a second permanent magnet unit, the first permanent magnet unit and the second permanent magnet unit being geometrically symmetric with respect to a diameter section, the diameter section being a permanent magnet a cross section of the outer diameter and the axial length,
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are parallel to the axial direction of the cylindrical ring and are opposite in direction, or
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are perpendicular to the diameter section, and the directions are parallel and uniform.
  • the tunnel magnetoresistive angular displacement sensor is located in a region of the detection surface of the permanent magnet within a specific radius range of the axis of the permanent magnet columnar ring, the size of the region of the specific radius range and the radius of the permanent magnet of the columnar ring structure Relating to the size, in the region of the specific radius, the phase angle of the rotating magnetic field of the component of the magnetic field generated by the permanent magnet in the detecting plane is linearly related to the rotational phase angle of the permanent magnet .
  • the tunnel magnetoresistive angular displacement sensor comprises two uniaxial rotation sensors or Wheatstone bridges arranged orthogonally to each other.
  • a two-axis rotation sensor that rotates.
  • the electronic water meter further includes a meter reading interface coupled to the digital processing circuit.
  • the detecting surface corresponding to the permanent magnet is located in front of the cylindrical annular end surface and parallel to the end surface, and the distance from the cylindrical annular end surface of the permanent magnet is 1-5 mm.
  • the magnetization of the first permanent magnet unit and the magnetization of the second permanent magnet unit are the same.
  • the permanent magnet of the columnar annular structure has an outer diameter of 3-20 mm and an inner diameter of 1-15 mm, and the axial length is 1-10 mm.
  • the electronic water meter comprises 2-10 counting units.
  • the digital count wheel rotation turns ratio in the adjacent counting unit is 10:1.
  • the columnar circular permanent magnet used in the invention has a simple structure and can be directly embedded in the digital wheel of the water meter to reduce the requirement for the installation space.
  • the columnar circular permanent magnet used in the present invention comprises two simple permanent magnet units, and the magnetization configuration is simple and easy to implement.
  • the cylindrical annular permanent magnet used in the present invention has a specific detection region having a linear relationship between the rotational phase angle of the detected magnetic field component and the rotational phase angle of the permanent magnet in the detecting surface, and satisfies the measurement requirement of the tunnel magnetoresistive angular displacement sensor.
  • the cylindrical annular permanent magnet used in the invention has the distance between the detecting surface and the end surface, and the distance between the specific detecting area and the axis in the detecting surface can be varied within a large range, so that the installation space of the tunnel magnetoresistive angular displacement sensor is flexible. .
  • the magnetic encoder and the electronic water meter according to the present invention have a small volume and high measurement accuracy.
  • Figure 1 is a top plan view of a permanent magnet according to Embodiment 1 of the present invention.
  • Figure 2 is a front view of the permanent magnet shown in Figure 1.
  • Figure 3 is a top plan view of a permanent magnet according to Embodiment 2 of the present invention.
  • Figure 4 is a front view of the permanent magnet shown in Figure 3.
  • Figure 5 is a top plan view of the mounting position of the permanent magnet relative to the tunnel magnetoresistive angular displacement sensor in accordance with the present invention.
  • Figure 6 is a side elevational view of the mounting position of the permanent magnet relative to the tunnel magnetoresistive angular displacement sensor in accordance with the present invention.
  • Fig. 7 is a three-dimensional magnetic field vector distribution diagram of the permanent magnet of the first embodiment in the detection plane.
  • Fig. 8 is a view showing a phase angle of a rotating magnetic field ⁇ and a rotational phase angle of a permanent magnet for detecting a magnetic field component in the permanent magnet detecting surface of the first embodiment Typical linear relationship diagram.
  • Fig. 9 is a view showing the phase angle of the rotating magnetic field ⁇ and the rotational phase angle of the permanent magnet of the magnetic field component detected by the permanent magnet in the embodiment 1.
  • Figure 10 is a diagram showing the phase angle of the rotating magnetic field ⁇ and the rotational phase angle of the permanent magnet for detecting the magnetic field component in the permanent magnet detecting surface of the first embodiment. A graph of the relationship between linear and nonlinear.
  • Figure 11 shows the magnetic field amplitude of the magnetic field component Bx-y and the rotational phase angle of the permanent magnet in the permanent magnet detection plane of the first embodiment. relation chart.
  • a linear fitting parameter R 2 for detecting a relationship between a rotating magnetic field phase angle ⁇ of a magnetic field component and a rotational phase angle ⁇ of a permanent magnet in the permanent magnet detecting surface of Embodiment 1, and a relative position of the tunneling magnetoresistive angular displacement sensor from the axial center. /Ro diagram.
  • Figure 13 is the embodiment 1 In the permanent magnet detection plane, the relationship between the regular magnetic field amplitude of the detected magnetic field component and the relative position of the tunnel magnetoresistive angular displacement sensor from the axis is r/Ro.
  • Fig. 14 is a three-dimensional magnetic field vector distribution diagram of the permanent magnet of the second embodiment in the detection plane.
  • Figure 15 is a diagram showing the phase angle of the rotating magnetic field ⁇ and the rotational phase angle of the permanent magnet for detecting the magnetic field component in the permanent magnet detecting surface of the second embodiment. Typical linear relationship diagram.
  • Figure 16 is a diagram showing the phase angle of the rotating magnetic field ⁇ and the rotational phase angle of the permanent magnet for detecting the magnetic field component in the permanent magnet detecting surface of the embodiment 2. Nonlinear relationship diagram.
  • Figure 17 is a diagram showing the phase angle of the rotating magnetic field ⁇ and the rotational phase angle of the permanent magnet of the rotating magnetic field component of the permanent magnet detected in Example 2. A graph of the relationship between linear and nonlinear.
  • Figure 18 is a diagram showing the magnetic field amplitude of the magnetic field component detected by the permanent magnet in the second embodiment. Bx-y and the rotational phase angle of the permanent magnet ⁇ relation chart.
  • Figure 20 is the embodiment 2 In the permanent magnet detection plane, the relationship between the regular magnetic field amplitude of the detected magnetic field component and the relative position of the tunnel magnetoresistive angular displacement sensor from the axis is r/Ro.
  • Figure 21 is a schematic diagram of the structure of an electronic water meter.
  • FIG. 1 and 2 schematically show schematic views of a permanent magnet 100 according to Embodiment 1 of the present invention.
  • Permanent magnet 100 The cylindrical ring geometry includes a permanent magnet unit 101 and a permanent magnet unit 102, and the permanent magnet unit 101 and the permanent magnet unit 102 are geometrically symmetric with a diameter section 110.
  • Permanent magnet unit 101 The magnetization 103 and the magnetization 104 of the permanent magnet unit 102 are anti-parallel in the direction of the axis.
  • the magnetization 103 of the permanent magnet 101 and the magnetization of the permanent magnet unit 102 104 is the same size.
  • the size of the permanent magnet 100 can design the size of the permanent magnet 100 as needed.
  • the inner diameter of the cylindrical ring of the permanent magnet 100 is 1-100mm
  • the outer diameter of the cylindrical ring is 3-200 mm
  • the axial length of the cylindrical ring is 1-50 mm.
  • the detecting surface 120 corresponding to the permanent magnet 100 is located in front of the cylindrical annular end surface and parallel to the end surface. Preferably, the detecting surface 120 The distance from the end face of the cylindrical ring is 1-5 mm.
  • the detected magnetic field component 121 corresponding to the permanent magnet 100 is a component of the magnetic field generated by the permanent magnet in the detecting surface 120.
  • the detection surface The specific detection area 122 corresponding to 120 is located in a region of a specific radius from the axis of the cylindrical ring, in which the rotational phase angle of the magnetic field component 121 and the permanent magnet 100 are detected.
  • the rotational phase angle has a linear variation characteristic, which will be described in detail below.
  • the constituent material of the permanent magnet 100 is Alnico.
  • the constituent material of the permanent magnet 100 is a ferrite ceramic material MO ⁇ 6Fe 2 O 3 , M is Ba, Sr or a combination of both.
  • the constituent material of the permanent magnet 100 is a FeCrCo alloy or an NbFeB alloy.
  • the permanent magnet 100 is a composite of a powder of the above permanent magnet material and a plastic, rubber or resin.
  • Permanent magnet 300 It is a cylindrical ring geometry comprising a permanent magnet unit 301 and a permanent magnet unit 302, and the permanent magnet unit 301 and the permanent magnet unit 302 are geometrically symmetric with a diameter section 310.
  • Permanent magnet unit 301 The magnetization 303 and the magnetization 304 of the permanent magnet unit 302 are parallel in a direction perpendicular to the diameter cross section.
  • the magnetization 303 and the permanent magnet unit 302 of the permanent magnet unit 301 The magnetization 304 is the same size.
  • the size of the permanent magnet 300 can design the size of the permanent magnet 300 as needed.
  • the inner diameter of the cylindrical ring of the permanent magnet 300 is 1-100mm
  • the outer diameter of the cylindrical ring is 3-200 mm
  • the axial length of the cylindrical ring is 1-50 mm.
  • the detecting surface 320 corresponding to the permanent magnet 300 is located in front of the end surface of the cylindrical ring and is parallel to the end surface. Preferably, the detecting surface 320 The distance from the end face of the cylindrical ring is 1-5 mm.
  • the detected magnetic field component 321 corresponding to the permanent magnet 300 is a component of the magnetic field generated by the permanent magnet in the detecting surface 320.
  • the detection surface A specific detection area 322 corresponding to 320 is located in a region from a specific radius of the axis of the cylindrical ring in which the rotational phase angle of the magnetic field component 321 and the permanent magnet 300 are detected.
  • the rotational phase angle has a linear variation characteristic, which will be described in detail below.
  • the constituent material of the permanent magnet 300 is Alnico.
  • the constituent material of the permanent magnet 300 is a ferrite ceramic material MO ⁇ 6Fe 2 O 3 , M is Ba, Sr or a combination of both.
  • the constituent material of the permanent magnet 300 is a FeCrCo alloy or an NbFeB alloy.
  • the permanent magnet 300 is a composite of a powder of the above permanent magnet material and a plastic, rubber or resin.
  • Embodiment 3 is an angle magnetic encoder according to the present invention, including A digital wheel that can be rotated around the axis, a permanent magnet embedded in the digital wheel, a tunnel magnetoresistive angular displacement sensor and a digital processing circuit.
  • the permanent magnet is a permanent magnet according to the invention.
  • the tunnel magnetoresistive angular displacement sensor is located on the permanent magnet detecting surface for sensing a component of the magnetic field generated by the permanent magnet in the detecting surface and outputting a sensing signal.
  • the tunnel magnetoresistive angular displacement sensor is disposed in a region of the detection surface of the permanent magnet within a specific radius range of the axis of the permanent magnet columnar ring, and the magnetic field generated by the permanent magnet is in the detection plane in the region of the specific radius Phase angle of the rotating magnetic field ⁇ has a linear relationship with the rotational phase angle ⁇ of the permanent magnet.
  • a digital processing circuit is operative to calculate and output a code characterizing the angle of rotation of the permanent magnet based on a sensed signal from the tunneled magnetoresistive angular displacement sensor.
  • Figures 5 and 6 are the permanent magnets 100, 300 and the tunnel magnetoresistive angular displacement sensor 500 in the embodiment 3, respectively.
  • X-Y is established in the detecting faces 120, 320 with the permanent magnet axis as the origin
  • the coordinate system is shown in Figure 5. It is assumed that the inner radius of the cylindrical ring of the permanent magnets 100, 300 is Ri, the outer radius is Ro, the thickness is t, and the tunnel magnetoresistive angular displacement sensor 500 is on the detecting surface.
  • the position vector in 120, 320 is r(x, y) whose azimuth is ⁇ with respect to the X axis. Assume that the detected magnetic field component at r is Bx-y(Bx , By) ⁇ .
  • the relationship between angle ⁇ and angle ⁇ is as follows:
  • ⁇ and ⁇ vary between (-180 0 , 180 0 ).
  • the tunnel magnetoresistive angular displacement sensor 500 When the angular magnetic encoder is operated, the tunnel magnetoresistive angular displacement sensor 500 remains fixed while the permanent magnets 100, 300 Rotating around the axis, the point in the detection plane is centered on the origin, and the point on the circle where r is the radius passes through the tunnel magnetoresistive angular displacement sensor 500 in sequence, and generates a rotating magnetic field whose phase angle and amplitude are the tunnel magnetoresistive angular displacement sensor. 500 measurements. This is equivalent to the permanent magnets 100, 300 remaining fixed, tunnel magnetoresistive angular displacement sensor 500 Shift to different points on the circumference and measure the detected magnetic field. At this time, the rotation phase angle of the permanent magnet is ⁇ , and the phase angle of the rotating magnetic field is ⁇ .
  • FIG. 7 is a three-dimensional magnetic field vector diagram of the permanent magnet 100 on the detecting plane 120.
  • the relationship between the phase angle ⁇ and the rotational phase angle ⁇ of the permanent magnet may be a linear relationship, a nonlinear relationship or a relationship characteristic between linear and nonlinear.
  • the curve 18 shown in Fig. 8 is a typical linear relationship between the rotating magnetic field phase angle ⁇ and the permanent magnet rotating phase angle ⁇ .
  • the curve 19 shown in Fig. 9 is the rotating magnetic field phase angle ⁇ and the permanent magnet rotating phase angle ⁇ .
  • the typical nonlinear relationship that may occur between the curves 20 shown in Figure 10 is a linear and nonlinear relationship between the phase angle ⁇ of the rotating magnetic field and the rotational phase angle ⁇ of the permanent magnet.
  • Figure 11 is a plot of the relationship between the amplitude of the rotating magnetic field Bx-y and the angle of rotation ⁇ , curve 21. As seen from curve 21, the magnitude of the rotating magnetic field is a periodic W-shaped change, and its corresponding maximum and minimum values are B H , B L .
  • the fluctuation of the magnetic field amplitude of the permanent magnet during rotation is as small as possible to ensure that the sensor signal is not affected.
  • a linear function is used to fit the relationship between ⁇ and ⁇ as shown in Figures 8, 9, and 10, and the linear fitting parameter R 2 is calculated. The closer R 2 is to 1, the better the linearity.
  • the degree of magnetic field fluctuations shown by curve 21 can be characterized by the following relationship:
  • Figure 12 is a plot of the linear fit parameters R 2 and r/Ro. As can be seen from the curve 22, in the region 23, its value is close to 1, indicating that the rotating magnetic field phase angle ⁇ and the permanent magnet rotating phase angle ⁇ are close to a linear relationship in this region, so the region 23 is the tunnel magnetoresistive angular displacement sensor.
  • the specific detection area corresponding to the detection surface 120 of the permanent magnet 100 is suitable for placing the tunnel magnetoresistive angular displacement sensor 17 and is not suitable for the placement of the tunnel magnetoresistive angular displacement sensor 17 in the region 24.
  • Figure 13 shows the relative position of the normalized B and the tunnel magnetoresistive angular displacement sensor 500 in the detection surface 120.
  • the amplitude of the magnetic field variation in the specific detection region 23 is suitable for the signal detection of the tunnel magnetoresistive angular displacement sensor 17.
  • Embodiment 4 is another angle magnetic encoder according to the present invention, which is rotatable about an axis as embodied in Embodiment 2
  • the permanent magnet of the structure, the tunnel magnetoresistive angular displacement sensor and the digital processing circuit are also included in the embodiment 4 .
  • the embodiment 4 is the same as the embodiment 3, and details are not described herein again.
  • Figure 14 is a vector diagram of the three-dimensional magnetic field of the permanent magnet 300 in the detection surface 320, through the detection plane 310
  • the internal two-dimensional magnetic field component Bx-y distribution characteristics are calculated, and the phase angle ⁇ of the rotating magnetic field and the rotational phase angle of the permanent magnet in the detecting surface 320 as shown in Figs. 15, 16, 17 are obtained.
  • the presence of a linear relationship curve 26 indicates a permanent magnet 300
  • there is a region in which the phase angle ⁇ of the rotating magnetic field and the rotational phase angle ⁇ of the permanent magnet are linear, and the permanent magnet can be applied to the angular magnetic encoder.
  • Figure 18 is a plot of the relationship between the amplitude of the rotating magnetic field Bx-y and the rotational phase angle of the permanent magnet. From the curve 29, the rotating magnetic field Bx-y follows the rotational phase angle ⁇ as a periodic M-shaped wave relationship.
  • the ⁇ - ⁇ relationship curves of the different relative position r/Ro values are fitted, and the linear fitting parameter R 2 curve shown in Fig. 19 is obtained, which can be obtained by the curve 30.
  • the specific detection area 31 in the detection surface 320 is suitable for the working area of the tunnel magnetoresistive angular displacement sensor 500, while in the area 32 it is not suitable for placing the tunnel magnetoresistive angular displacement sensor 500.
  • the variation amplitude of the normalized B with the tunnel magnetoresistive angular displacement sensor 500 relative position r/Ro relationship 33 in the specific detection region 31 is small with respect to the non-working region 32.
  • the detection planes 120 and 320 are Inside, there are specific detection areas 23 and 31 such that the tunneling magnetoresistive angular displacement sensor 500 has a rotating magnetic field phase angle ⁇ and a permanent magnet rotating phase angle in this region. There is a linear relationship between them, and the amplitude of the magnetic field fluctuations satisfies the requirements of the sensor. In this way, the angle of the rotating magnetic field measured by the tunnel magnetoresistive angular displacement sensor can be changed into the rotation angle of the permanent magnet, and The digital processing circuit calculates and outputs a code that characterizes the rotation angle of the permanent magnet, and realizes angular encoding of the angular magnetic encoder.
  • the angular magnetic encoder according to the present invention can be applied to fields such as electronic water meters.
  • Figure 21 shows the structure of an electronic water meter with an angular magnetic coding unit with permanent magnets 100 or 300 installed.
  • the angular magnetic coding unit describes an electronic water meter according to the present invention.
  • the electronic water meter includes a central rotating shaft, a digital counting wheel and at least one angular magnetic encoding unit.
  • the rotational axes of the angular magnetic coding units arranged in sequence have a determined number of revolutions.
  • the electronic water meter includes a cylindrical ring permanent magnet 100 in which the digital counting wheel 2001 is mounted and rotated together with the digital counting wheel.
  • a tunnel magnetoresistive angular displacement sensor 500 is mounted on the circuit board opposite the digital counting wheel.
  • the center shaft passes through the center of the digital counting wheel.
  • the cylindrical ring permanent magnet 100 and the digital counting wheel 2001 together with the tunnel magnetoresistive angular displacement sensor 500 on the permanent magnet detecting surface form a magnetic encoding unit.
  • the electronic water meter may contain from 2 to 10 such coding units.
  • the number of revolutions of the digital counting wheel in the adjacent coding unit is N:1, and N is an integer greater than 1.
  • a digital processing circuit is coupled to each tunnel magnetoresistive angular displacement sensor to convert the output of the tunneled magnetoresistive angular displacement sensor to a digital reading.
  • the number of rotations of the digital counting wheel in the adjacent coding unit is 10:1, that is, if the first coding unit on the left rotates 10 M times, M is an integer greater than 1, and the adjacent right side is made.
  • the counting unit rotates 10 M -1 turn, and so on.
  • the output of each tunnel magnetoresistive angular displacement sensor is connected to a digital processing circuit on the circuit board, and the output of the digital processing circuit is connected to the meter reading interface.
  • the tunnel magnetoresistive angular displacement sensor consists of two magnetic tunnel junction bridge sensors.
  • the magnetization directions of the pinning layers of the two magnetic tunnel junction bridge sensors are perpendicular to each other, so that an output having a phase difference of 90 degrees from each other can be generated, and the angular displacement of the tunnel can be calculated by the generated sine and cosine output.
  • the direction of the magnetic field on the sensor is the phase angle ⁇ of the rotating magnetic field.
  • the permanent magnet 100 is a columnar ring structure including a permanent magnet unit 101 and a permanent magnet unit 102. And geometrically symmetric with respect to the diameter section 110, the corresponding magnetizations 103 and 104 of the permanent magnet unit 101 and the permanent magnet unit 102 are anti-parallel in the axial direction and are the same size.
  • the permanent magnet 100 has an outer diameter of 3-20 mm and an inner diameter of 1 -15 mm.
  • the axial length is 1.5-10 mm
  • the permanent magnet 100 is mounted in the digital wheel 2001, and the digital wheel rotates around the central axis 2003.
  • the tunnel magnetoresistive angular displacement sensor 500 The distance centered in the detection surface 120 of 1-5 mm from the end face of the permanent magnet 100 r/Ro Specific detection area 23 Within this particular detection region, the phase angle ⁇ of the rotating magnetic field that detects the magnetic field component is linear with the rotational phase angle ⁇ of the permanent magnet. Detecting the magnetic field component 121 as a magnetic field on the detection surface 120 The component inside.
  • the tunnel magnetoresistive angular displacement sensor 500 is located on the circuit board 2002, and signals at both ends thereof are output through the circuit board 2002.
  • Digital wheel 2001 installed on the central axis 2003 On, it is fixed on the water meter rack 2004 together with the board 2002. Due to the detected magnetic field component 121, the rotating magnetic field phase angle ⁇ and the permanent magnet phase angle ⁇ The linear relationship between them, therefore, the phase angle ⁇ of the rotating magnetic field and the phase angle of the permanent magnet measured by the tunnel magnetoresistive angular displacement sensor 500 can be obtained.
  • the angle of the rotating magnetic field measured by the tunnel magnetoresistive angular displacement sensor can be changed into the rotation angle of the digital counting wheel, and The digital processing circuit calculates and outputs a code that characterizes the angle of rotation of the counting digital wheel.
  • Different digital reels on the digital water meter shaft are used to read different digits, and the number of revolutions of N:1 between adjacent digital reels.
  • N Is 10 .
  • the angular displacement of each digital wheel is the rotation phase angle ⁇ of the permanent magnet, and the permanent magnet 100 fixed in the digital wheel can be passed through each tunnel magnetoresistive angular displacement sensor 500. The measurement of the rotating magnetic field is calculated.
  • the digital processing circuit processing on 2002 is shown in digital code form.
  • the electronic water meter reading display can be obtained by reading the numbers corresponding to different digital wheels.
  • Permanent magnet 300 It is a cylindrical ring structure comprising a permanent magnet unit 301 and a permanent magnet unit 302, and is geometrically symmetrical with respect to the diameter section 310. Permanent magnet unit 301 and permanent magnet unit 302 The magnetizations are of the same magnitude and the directions are parallel to the direction perpendicular to the diameter section 310.
  • the permanent magnet 300 has an outer diameter of, for example, 5-20 mm, an inner diameter of 1-5 mm, and an axial length of 1-5 mm. .
  • the tunnel magnetoresistive angular displacement sensor 500 is mounted on a detection surface 320 which is 1-5 mm from the end face of the permanent magnet 300 and has a distance from the axis center of r/Ro.
  • the phase angle ⁇ of the rotating magnetic field for detecting the magnetic field component is linear with the rotational phase ⁇ of the permanent magnet.
  • Detecting the magnetic field component 321 is the magnetic field on the detection surface 320 The component inside. The detection process is similar to the electronic water meter using the permanent magnet 100, and will not be described here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种角度磁编码器,包括数字转轮(2001),与数字转轮同轴安装的永磁体(100,300),隧道磁阻角位移传感器(500),以及数字处理电路。在该编码器中,隧道磁阻角位移传感器位于永磁体(100,300)的检测面(120,320)内距离永磁体(100,300)柱状圆环轴心特定半径范围的区域内,在该特定半径范围的区域内,永磁体(100,300)产生的磁场在检测面(120,320)内的分量的旋转磁场相位角(Φ)与永磁体旋转相位角(α)呈线性变化关系。还公开了一种电子水表,包括多个计数单元和数字处理电路,计数单元进一步包括数字计数转轮(2001)、永磁体(100,300)和隧道磁阻角位移传感器(500),数字处理电路与每一隧道磁阻角位移传感器连接,将隧道磁阻角位移传感器的输出转换为数字读数。该角度磁编码器和电子水表具有体积小、测量精度高的优点。

Description

一种角度磁编码器和电子水表
技术领域
本发明涉及的是一种测量技术领域的永磁体,具体是涉及一种适用于角度磁编码器的永磁体,包含该永磁体的角度磁编码器和电子水表。
背景技术
随着传感器技术的迅猛发展,传统的机械水表逐渐向新颖的电子水表过渡。在各种传感器技术中,光电编码技术可以实现数字计数转轮代码的直接读取计量,而且不需要累积,从而得到广泛应用。但该技术普遍存在进位误码现象,而且对气泡、强光、污垢、渗漏等因素的抗干扰能力差。 与光电编码技术相比,角度磁编码技术分辨率更高,无进位误码现象,稳定性好,而且可以完全根除光电技术引起的各种不良故障,成为一种可替代光电编码的编码技术。 角度磁编码技术通过对数字计数转轮进行编码来得到计量读数,其原理是利用磁阻传感器如隧道磁阻角位移传感器来感应安装在数字计数转轮上的环形永磁体的旋转磁场相位 角来测量转轮的转角和位置,并采用电子技术转变成相应数字读数。
角度磁编码技术的测量精度取决于磁敏角位移传感器和永磁体两个组成部分的性能特征。与霍尔传感器相比,磁阻传感器如隧道磁阻传感器具有更高的磁场灵敏度,其功耗和尺寸也可大大降低。隧道磁阻角位移传感器包含两个相互正交的隧道磁阻传感器。隧道磁阻角位移传感器工作时形成的两个正弦和余弦输出与永磁体检测磁场分量即永磁体产生的磁场在检测面内的分量及隧道磁阻角位移传感器敏感轴之间形成的旋转磁场相位角 φ ,本文中也称为探测磁场相位角,关系如下:
OUT1=COS ( φ )
OUT2=SIN ( φ )
利用反正切函数,就能根据隧道磁阻角位移传感器的输出 OUT1 和 OUT2 计算出旋转磁场相位角 φ 角度:
φ =ATAN ( OUT2/OUT1 )。
永磁体在旋转过程中其旋转相位角 α ,定义为永磁体在旋转过程中依次经过隧道磁阻角位移传感器的位置矢量点 r 的相位角,永磁体的检测磁场分量使隧道磁阻角位移传感器产生感应。当永磁体旋转相位角 α 和旋转磁场相位角 f 之间形成线性关系,满足在 0~360 °范围内一一对应时,就可以将隧道磁阻角位移传感器所探测的旋转磁场相位角 φ 和永磁体旋转相位角 α 位置关系对应起来。例如为了能使 0-9 这 10 个代表数字在转轮的某一直径的圆周上以等间距角度增量间隔开,事先将 α 的范围划分成 10 个区间,每一区间用一个预期的数字表示。通过将永磁体角度进行编码,进而通过电子技术转化,可以实现水表读数的直接输出。
因此,隧道磁阻角度磁编码器技术在应用于电子水表时对于永磁体的设计性能将具有特殊要求,而现有的角度磁编码器采用的永磁体具有如下缺点:
( 1 )现有的角度磁编码器大都采用霍尔传感器作为角度传感器,其对应的检测磁场分量为永磁体产生的磁场垂直于检测面的分量,而隧道磁阻角位移传感器对应的检测磁场分量为磁场在检测面内的分量,因此现有角度磁编码器的永磁体不能满足于隧道磁阻角位移传感器磁场测量的要求。
( 2 )现有的角度磁编码器永磁体一般采用的是实心圆柱设计,而电子水表为尽量减少安装空间,要求永磁体为圆环形以便直接安装在转轮上。
发明内容
本发明的目的在于克服现有技术中存在的上述缺点,提供一种适用于角度磁编码器的永磁体,使之能够安装在电子水表转轮上,节省安装空间,并能够满足隧道磁阻角位移传感器与检测面内磁场分量之间的旋转磁场相位角 φ 和永磁体旋转相位角 α 之间线性关系的要求,从而提高角度磁编码器的测量精度。
根据本发明的一个方面,提供一种角度磁编码器,该角度磁编码器包括:
数字转轮;
与所述数字转轮同轴安装的永磁体,
隧道磁阻角位移传感器,位于所述永磁体检测面上用于感测所述永磁体产生的磁场在该检测面内的分量并输出感测信号,以及
数字处理电路,用于根据来自所述隧道磁阻角位移传感器的感测信号计算并输出表征所述数字转轮旋转角度的代码,
该永磁体具有柱状圆环结构,并包含第一永磁单元和第二永磁单元,所述第一永磁单元和第二永磁单元相对于直径截面何对称,所述直径截面为永磁体的外直径与轴向长度所构成的截面,
所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度平行于柱状圆环的轴向,且方向相反,或
所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度垂直于所述直径截面,且方向平行一致,
所述隧道磁阻角位移传感器位于所述永磁体的检测面内距离永磁体柱状圆环轴心特定半径范围的区域内,所述特定半径范围的区域大小和柱状圆环结构的永磁体的半径大小有关,在该特定半径范围的区域内,所述永磁体产生的磁场在检测面内的分量的旋转磁场相位角与永磁体旋转相位角呈线性变化关系。
优选地, 所述隧道磁阻角位移传感器包括两个彼此正交设置的单轴旋转传感器或惠斯通桥相对彼此 90 度旋转的双轴旋转传感器 。
优选地,所述永磁体所对应的检测面位于柱状圆环端面前方且平行于端面。
优选地,所述隧道磁阻角位移传感器所在检测面与所述永磁体的柱状圆环端面之间的距离为 1-5 mm 。
优选地,所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度大小相同。
优选地,所述柱状圆环结构的永磁体的外径为 3-200mm ,内径为 1-100 mm ,轴向长度为 1-50 mm 。
根据本发明的另一方面,提供一种电子水表,包括多个计数单元和数字处理电路,
所述每个计数单元包括:
与转动轴连接的数字计数转轮,
与所述数字计数转轮同轴安装的永磁体,和
隧道磁阻角位移传感器,位于所述永磁体检测面上用于感测所述永磁体产生的磁场在该检测面内的分量并输出感测信号 ,
相邻计数单元中的数字计数转轮旋转圈数是 N:1 , N 是大于 1 的整数,
所述数字处理电路与每一隧道磁阻角位移传感器连接,将所述隧道磁阻角位移传感器的输出转换为数字读数,
该永磁体具有柱状圆环结构,并包含第一永磁单元和第二永磁单元,所述第一永磁单元和第二永磁单元相对于直径截面几何对称,所述直径截面为永磁体的外直径与轴向长度所构成的截面,
所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度平行于柱状圆环的轴向,且方向相反,或
所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度垂直于所述直径截面,且方向平行一致,
所述隧道磁阻角位移传感器位于所述永磁体的检测面内距离永磁体柱状圆环轴心特定半径范围的区域内,所述特定半径范围的区域大小和柱状圆环结构的永磁体的半径大小有关,在该特定半径范围的区域内,所述永磁体产生的磁场在检测面内的分量的旋转磁场相位角与永磁体旋转相位角呈线性变化关系 。
优选地 ,所述隧道磁阻角位移传感器包括两个彼此正交设置的单轴旋转传感器或惠斯通桥相对彼此 90 度旋转的双轴旋转传感器。
优选地 ,该电子水表进一步包括与所述数字处理电路连接的抄表接口。
优选地, 所述永磁体所对应的检测面位于柱状圆环端面前方且平行于端面,与所述永磁体的柱状圆环端面之间的距离为 1-5 mm 。
优选地, 所述第一永磁单元的 磁化强度 和第二永磁单元的磁化强度大小相同 。
优选地, 所述柱状圆环结构的永磁体的外径为 3-20 mm ,内径为 1-15 mm ,轴向长度为 1-10 mm 。
优选地,该电子水表包括 2-10 个计数单元。
优选地,相邻计数单元中的数字计数转轮旋转圈数比是 10:1 。
本发明具有如下有益效果:
1 )本发明采用的柱状圆环永磁体,结构简单,能够直接镶嵌在水表数字转轮内,减小对安装空间的要求。
2 )本发明采用的柱状圆环永磁体,包含两个简单永磁单元,其磁化组态简单,易于实现。
3 )本发明采用的柱状圆环永磁体,在检测面内存在检测磁场分量旋转相位角和永磁体旋转相位角之间具有线性关系的特定检测区域,满足隧道磁阻角位移传感器的测量要求。
4 )本发明采用的柱状圆环永磁体,检测面与端面距离,检测面内的特定检测区域与轴心的距离都可以在较大范围内变化,使得隧道磁阻角位移传感器的安装空间较为灵活。
5 )根据本发明的磁编码器和电子水表具有小的体积和高的测量精度。
附图说明
图 1 为根据本发明实施例 1 的永磁体的顶视图。
图 2 为图 1 所示永磁体的前视图。
图 3 为根据本发明实施例 2 的永磁体的顶视图。
图 4 为图 3 所示永磁体的前视图。
图 5 为根据本发明的永磁体相对于隧道磁阻角位移传感器的安装位置顶视图。
图 6 为根据本发明的永磁体相对于隧道磁阻角位移传感器的安装位置侧视图。
图 7 为实施例 1 的永磁体在检测面内的三维磁场矢量分布图。
图 8 为实施例 1 的永磁体检测面内检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的典型线性关系图。
图 9 为实施例 1 的永磁体检测面内检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的非线性关系曲线图。
图 10 为实施例 1 的永磁体检测面内检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的介于线性和非线性之间的关系图。
图 11 为实施例 1 的永磁体检测面内检测磁场分量磁场幅度 Bx-y 和永磁体旋转相位角度 α 关系图。
图 12 为实施例 1 的永磁体检测面内,检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 关系的直线拟合参数 R2 与隧道磁阻角位移传感器距离轴心相对位置 r/Ro 关系图。
图 13 为实施例 1 的永磁体检测面内,检测磁场分量的正则磁场幅度与隧道磁阻角位移传感器距离轴心相对位置 r/Ro 关系图。
图 14 为实施例 2 的永磁体在检测面内的三维磁场矢量分布图。
图 15 为实施例 2 的永磁体检测面内检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的典型线性关系图。
图 16 为实施例 2 的永磁体检测面内检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的非线性关系图。
图 17 为实施例 2 的永磁体检测面内旋转磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的介于线性和非线性之间的关系图。
图 18 为实施例 2 的永磁体检测面内检测磁场分量的磁场幅度 Bx-y 与永磁体旋转相位角度 α 关系图。
图 19 为实施例 2 的永磁体检测面内,检测磁场分量的旋转磁场相位角 φ 和永磁体旋转相位角 α 的直线拟合参数 R2 与隧道磁阻角位移传感器距离轴心相对位置 r/Ro 的关系图。
图 20 为实施例 2 的永磁体检测面内,检测磁场分量的正则磁场幅度与隧道磁阻角位移传感器距离轴心相对位置 r/Ro 关系图。
图 21 为电子水表结构示意图。
具体实施方式
下面将参照附图并结合具体实施例对本发明进行详细的说明。
实施例 1
图 1 和图 2 示意性示出根据本发明实施例 1 的永磁体 100 的示意图。永磁体 100 为柱状圆环几何结构,包含永磁单元 101 和永磁单元 102 ,永磁单元 101 和永磁单元 102 以直径截面 110 几何对称。永磁单元 101 的磁化强度 103 和永磁单元 102 的磁化强度 104 沿轴心方向反平行。优选的,所述永磁体 101 的磁化强度 103 和永磁单元 102 的磁化强度 104 大小相同。
本领域技术人员可以根据需要设计永磁体 100 的尺寸。优选的,永磁体 100 的柱状圆环的内径为 1-100mm ,柱状圆环的外径为 3-200 mm ,柱状圆环的轴向长度为 1-50 mm 。
永磁体 100 对应的检测面 120 位于柱状圆环端面前方且平行于端面。优选的,该检测面 120 与柱状圆环端面之间的距离为 1-5 mm 。本文中,永磁体 100 所对应的检测磁场分量 121 为永磁体产生的磁场在检测面 120 内的分量。本文中,检测面 120 内所对应的特定检测区域 122 位于距离柱状圆环轴心特定半径范围的区域内,在该特定检测区域内,检测磁场分量 121 的旋转相位角和永磁体 100 旋转相位角具有线性变化特征,这将在下文具体描述。
优选的,永磁体 100 的组成材料为 Alnico 。可替换地,永磁体 100 的组成材料为铁氧体陶瓷材料 MO·6Fe2O3 , M 为 Ba , Sr 或者两者的组合。可替换地,永磁体 100 的组成材料为 RECo5 , RE=Sm 和 / 或 Pr ; RE2TM17 , RE=Sm , TM=Fe , Cu , Co , Zr 和 / 或 Hf 以及 RE2TM14B , RE=Nd , Pr 和 / 或 Dy , TM=Fe 和 / 或 Co 。可替换地,所述永磁体 100 的组成材料为 FeCrCo 合金或 NbFeB 合金。优选的,所述永磁体 100 为上述永磁体材料的粉末和塑料、橡胶或树脂等形成的复合体。
实施例 2
图 3 和图 4 示意性示出根据本发明实施例 2 的永磁体 300 的示意图。永磁体 300 为柱状圆环几何结构,包含永磁单元 301 和永磁单元 302 ,永磁单元 301 和永磁单元 302 以直径截面 310 几何对称。永磁单元 301 的磁化强度 303 和永磁单元 302 的磁化强度 304 沿垂直于直径截面方向平行一致。优选的,所述永磁单元 301 的磁化强度 303 和永磁单元 302 的磁化强度 304 大小相同。
本领域技术人员可以根据需要设计永磁体 300 的尺寸。优选的,永磁体 300 的柱状圆环的内径为 1-100mm ,柱状圆环的外径为 3-200 mm ,柱状圆环的轴向长度为 1-50 mm 。
永磁体 300 对应的检测面 320 位于柱状圆环端面前方且平行于端面。优选的,该检测面 320 与柱状圆环端面之间的距离为 1-5 mm 。本文中,永磁体 300 所对应的检测磁场分量 321 为永磁体产生的磁场在检测面 320 内的分量。本文中,检测面 320 内所对应的特定检测区域 322 位于距离柱状圆环轴心特定半径范围的区域内,在该特定检测区域内,检测磁场分量 321 的旋转相位角和永磁体 300 旋转相位角具有线性变化特征,这将在下文具体描述。
优选的,永磁体 300 的组成材料为 Alnico 。可替换地,永磁体 300 的组成材料为铁氧体陶瓷材料 MO·6Fe2O3 , M 为 Ba , Sr 或者两者的组合。可替换地,永磁体 300 的组成材料为 RECo5 , RE=Sm , Pr ,或 RE2TM17 , RE=Sm , TM=Fe , Cu , Co , Zr , Hf 以及 RE2TM14B , RE=Nd , Pr , Dy , TM=Fe , Co 。可替换地,所述永磁体 300 的组成材料为 FeCrCo 合金或 NbFeB 合金。优选的,所述永磁体 300 为上述永磁体材料的粉末和塑料、橡胶或树脂等形成的复合体。
实施例 3
实施例 3 为根据本发明的一种角度磁编码器,包括 可绕轴旋转的数字转轮,镶嵌在数字转轮中的永磁体,隧道磁阻角位移传感器和数字处理电路。永磁体为根据本发明的永磁体。隧道磁阻角位移传感器位于所述永磁体检测面上,用于感测所述永磁体产生的磁场在该检测面内的分量并输出感测信号。隧道磁阻角位移传感器被布置在永磁体的检测面内距离永磁体柱状圆环轴心特定半径范围的区域内,在该特定半径范围的区域内,所述永磁体产生的磁场在检测面内的分量的旋转磁场相位角 φ 与永磁体旋转相位角 α 呈线性变化关系。数字处理电路用于根据来自所述隧道磁阻角位移传感器的感测信号计算并输出表征所述永磁体旋转角度的代码。
图 5 和图 6 分别为实施例 3 中永磁体 100 , 300 和隧道磁阻 角位移 传感器 500 安装位置的顶视图和侧视图,检测面 120 , 320 距离永磁体端面距离为 d 。以永磁体轴心为原点在检测面 120 , 320 内建立 X-Y 坐标系统,如图 5 所示。假定永磁体 100 , 300 的柱状圆环内半径为 Ri ,外半径为 Ro ,厚度为 t ,隧道磁阻角位移传感器 500 在检测面 120 , 320 内的位置矢量为 r(x , y) ,其相对于 X 轴的方位角为 α 。假定 r 处的检测磁场分量 Bx-y(Bx , By) 方位角度为 β 。角度 α 和角度 β 的计算关系如下:
Figure PCTCN2014070360-appb-I000001
, (x>0) ,
Figure PCTCN2014070360-appb-I000002
, (x<0 , y>0) ,
Figure PCTCN2014070360-appb-I000003
, (x<0 , y<0) ,
Figure PCTCN2014070360-appb-I000004
, (Bx>0) ,
Figure PCTCN2014070360-appb-I000005
, (Bx<0 , By>0) ,
Figure PCTCN2014070360-appb-I000006
, (Bx<0 , By<0) ,
α 和 β 在 (-1800 , 1800) 之间变化。
隧道磁阻角位移传感器 500 所测量的为检测磁场分量 Bx-y 与其敏感轴的夹角 φ = β -α 。
当角度磁编码器工作时,隧道磁阻角位移传感器 500 保持固定,而永磁体 100 , 300 围绕轴心旋转,则检测平面内以原点为圆心, r 为半径的圆上各点依次经过隧道磁阻角位移传感器 500 ,并产生旋转磁场,其相位角度和幅度被隧道磁阻角位移传感器 500 所测量。这等效于永磁体 100 , 300 保持固定,隧道磁阻角位移传感器 500 依次平移到圆周上不同位置点并测量检测磁场。则此时,永磁体旋转相位角为 α ,而旋转磁场相位角为 φ 。
图 7 为永磁体 100 在检测平面 120 上的三维磁场矢量图,通过对检测平面 120 内二维磁场分量 Bx-y 分布特征进行计算,可以得到 r 在 (0 , Ro) 范围内变化时旋转磁场相位角 φ 和永磁体旋转相位角 α 的关系,其关系可以是线性关系,非线性关系或介于线性和非线性之间的关系特征。例如,图 8 所示曲线 18 为 旋转磁场相位角 φ 和永磁体旋转相位角 α 之间可能出现的典型的线性关系,图 9 所示曲线 19 为旋转磁场相位角 φ 和永磁体旋转相位角 α 之间可能出现的典型非线性关系,图 10 所示曲线 20 为旋转磁场相位角 φ 和永磁体旋转相位角 α 之间可能出现的介于线性和非线性之间关系特征。图 11 为旋转磁场幅度 Bx-y 和旋转角度 α 关系图,曲线 21 。由曲线 21 看出,旋转磁场幅度是周期 W 形变化,其对应的最大值和最小值为 BH , BL 。对于磁阻角度传感器而言,希望永磁体在旋转过程中磁场幅度的波动尽可能小,以保证传感器信号不受影响。
采用直线函数来拟合如图 8 , 9 , 10 所示的 φ 和 α 之间关系,并计算其线性拟合参数 R2 , R2 越接近 1 表示线性越好。
曲线 21 所示的磁场波动程度可以采用如下关系式进行表征:
Figure PCTCN2014070360-appb-I000007
normalized B 数值越小,表明磁场波动越小。
为了确定检测面 120 内旋转磁场相位角 φ 和永磁体旋转相位角 α 之间线性的区域以及非线性的区域的范围,对 r 在( 0 , Ro )之间取不同值时的旋转磁场相位角 φ 和永磁体旋转相位角 α 关系 曲线进行拟合,并计算得到磁场波动关系 normalized B 与永磁体旋转相位角 α 关系曲线。
图 12 为线性拟合参数 R2 与 r/Ro 的关系图。从曲线 22 可以看出,在区域 23 内,其值接近于 1 ,表明在此区域内旋转磁场相位角 φ 和永磁体旋转相位角 α 接近线性关系,因此区域 23 即为隧道磁阻角位移传感器在永磁体 100 的检测面 120 内所对应的特定检测区域,该区域适合于放置隧道磁阻角位移传感器 17 ,而在区域 24 范围内则不适合于隧道磁阻角位移传感器 17 的放置。
图 13 为检测面 120 内, normalized B 与隧道磁阻角位移传感器 500 相对位置 r/Ro 的关系曲线。从曲线 25 可以看出,在特定检测区域 23 内磁场变化幅度适合于隧道磁阻角位移传感器 17 的信号探测。
实施例 4
实施例 4 为根据本发明的另一种角度磁编码器,包括 可绕轴旋转的如具体如实施例 2 所述结构的永磁体,隧道磁阻角位移传感器和数字处理电路。除永磁体外,实施例 4 与实施例 3 相同,这里不再赘述。
图 14 为永磁体 300 在检测面 320 内的三维磁场矢量图,通过对检测平面 310 内二维磁场分量 Bx-y 分布特征进行计算,得到如图 15 , 16 , 17 所示的检测面 320 内旋转磁场相位角 φ 和永磁体旋转相位角 α 之间线性关系曲线 26 ,非线性关系曲线 27 和介于线性非线性的关系曲线 28 。线性关系曲线 26 的存在表明永磁体 300 在其检测面上存在旋转磁场相位角 φ 和永磁体旋转相位角 α 之间呈线性关系的区域,该永磁体可以应用于角度磁编码器。
图 18 为旋转磁场幅度 Bx-y 与永磁体旋转相位角度 α 关系图,从曲线 29 可以看出,旋转磁场 Bx-y 随旋转相位角 α 为周期性 M 形波动关系。
同样,为了确定线性区域在检测面 320 内的范围,对不同相对位置 r/Ro 数值的 φ -α 关系曲线进行拟合,得到图 19 所示的线性拟合参数 R2 曲线,由曲线 30 可以看出,检测面 320 内的特定检测区域 31 为适合于隧道磁阻角位移传感器 500 的工作区域,而在区域 32 内则不适合于放置隧道磁阻角位移传感器 500 。进一步,由图 20 可以看出, Normalized B 随隧道磁阻角位移传感器 500 相对位置 r/Ro 关系曲线 33 在特定检测区域 31 内变化幅度相对于非工作区域 32 变化较小。
以上分析可以看出,对于永磁体 100 和永磁体 300 ,在检测平面 120 和 320 内,存在着特定检测区域 23 和 31 ,使得隧道磁阻角位移传感器 500 在该区域内旋转磁场相位角 φ 与永磁体旋转相位角 α 之间存在线性关系,并且其磁场波动幅度满足传感器的要求。这样,隧道磁阻角位移传感器所测量的旋转磁场角度可被转变化成永磁体旋转角度,并由 数字处理电路计算并输出为表征所述永磁体旋转角度的代码, 实现角度磁编码器的角度编码。根据本发明的角度磁编码器可应用于电子水表等领域。
实施例 5
图 21 所示为安装有永磁体 100 或 300 的角度磁编码单元的电子水表结构图。下面结合实施例 1 的永磁体和实施例 4 的角度磁编码单元描述根据本发明的电子水表。电子水表包括中心转轴,数字计数转轮和至少一个角度磁编码单元。当电子水表包括多个角度磁编码单元时, 依次排列的角度磁编码单元的转轴间具有确定的转数关系。
该电子水表包括与数字计数转轮 2001 镶嵌在其中与数字计数转轮一同旋转的柱状圆环永磁体 100 。在数字计数转轮对面的电路板上安装有隧道磁阻角位移传感器 500 。中心转轴穿过数字计数转轮的中心。柱状圆环永磁体 100 与数字计数转轮 2001 连同位于永磁体检测面上的隧道磁阻角位移传感器 500 ,形成一个磁编码单元。优选地,电子水表可包含有 2 到 10 个这样的编码单元。相邻编码单元中数字计数转轮的旋转圈数成 N:1 的关系, N 是大于 1 的整数。数字处理电路与每一隧道磁阻角位移传感器连接,将所述隧道磁阻角位移传感器的输出转换为数字读数。优选地,相邻编码单元中数字计数转轮的旋转圈数成 10:1 的关系,即若左边第 1 个编码单元旋转 10M 圈的话, M 为大于 1 的整数,就会使相邻右边的计数单元旋转 10M -1 圈,以此类推。每一隧道磁阻角位移传感器的输出端与电路板上的数字处理电路连接,数字处理电路的输出端与抄表接口连接。隧道磁阻角位移传感器由两个磁隧道结电桥传感器组成。这两个磁隧道结电桥传感器的钉扎层的磁化方向相互垂直,这样就能产生彼此有 90 度相位差的输出,通过所产生的正余弦输出就能计算出施加到隧道磁阻角位移传感器上的磁场方向即 旋转磁场相位角 φ 。这两种输出函数可能是由两个彼此正交的单轴旋转传感器提供,或者是一个双轴旋转传感器提供。这些旋转传感器的代表型号有由江苏多维科技有限公司生产的 MMA153F 和 MMA253F ,但不限于上面所说的两个型号。
如实施例 1 所述,永磁体 100 为柱状圆环结构,包含永磁单元 101 和永磁单元 102 ,且相对于直径截面 110 几何对称,永磁单元 101 和永磁单元 102 的对应磁化强度 103 和 104 沿轴线方向反平行,且大小相同。
在每个 角度磁编码单元 中,永磁体 100 外径为 3-20 mm ,内径为 1 -15 mm ,轴向长度为 1.5-10 mm ,永磁体 100 镶嵌在数字转轮 2001 中,数字转轮围绕中心轴 2003 转动,隧道磁阻角位移传感器 500 安装在距离永磁体 100 端面 1-5 mm 的检测面 120 内的距离轴心 r/Ro 特定检测区域 23 内,在该特定检测区域内,检测磁场分量的旋转磁场相位角 φ 与永磁体旋转相位角 α 呈线性关系。检测磁场分量 121 为磁场在检测面 120 内的分量。隧道磁阻角位移传感器 500 位于电路板 2002 上,其两端信号通过电路板 2002 输出。数字转轮 2001 安装在中心轴 2003 上,和电路板 2002 一起固定在水表机架 2004 上。由于检测磁场分量 121 的旋转磁场相位角 φ 和永磁体相位角 α 之间的线性关系,因此,能够将根据隧道磁阻角位移传感器 500 测量得到的旋转磁场相位角 φ 和永磁体相位角 α 一一对应起来。隧道磁阻角位移传感器所测量的旋转磁场角度可被转变化成数字计数转轮的旋转角度,并由 数字处理电路计算并输出为表征所述计数数字转轮旋转角度的代码。
数字水表转轴上不同的数字转轮用于读出不同的位数,相邻数字转轮之间为 N:1 的转数关系。优选地, N 为 10 。各数字转轮的角位移即为永磁体旋转相位角 α ,可通过各隧道磁阻角位移传感器 500 对固定在数字转轮中的永磁体 100 的旋转磁场的测量计算得到。通过将转轮的角度在 0~360 °内分成十个等分,并分别用十个数字进行表征,就可以建立转轮的角位移和数字之间的关系,并通过电路板 2002 上的数字处理电路处理显示成数字代码形式。通过对不同的数字转轮所对应的数字的读取,即可获得电子水表读数显示。
安装有永磁体 300 的电子水表的工作原理类似于采用永磁体 100 的电子水表。永磁体 300 为柱状圆环结构,包含永磁单元 301 和永磁单元 302 ,且相对于直径截面 310 几何对称。永磁单元 301 和永磁单元 302 磁化强度大小相同,方向沿垂直于直径截面 310 方向平行。永磁体 300 外径例如为 5-20 mm ,内径为 1-5 mm ,轴向长度为 1-5 mm 。隧道磁阻角位移传感器 500 安装在距离永磁体 300 端面 1-5 mm 的检测面 320 内的距离轴心距离为 r/Ro 的特定检测区域 31 内,在该特定检测区域内,检测磁场分量的旋转磁场相位角 φ 与永磁体旋转相位 α 呈线性关系。检测磁场分量 321 为磁场在检测面 320 内的分量。其检测过程类似于采用永磁体 100 的电子水表,这里不再赘述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1 .一种角度磁编码器,该角度磁编码器包括:
数字转轮;
与所述数字转轮同轴固定安装的永磁体(100,300),
隧道磁阻角位移传感器,位于所述永磁体检测面上用于感测所述永磁体产生的磁场在该检测面内的分量并输出感测信号,以及
数字处理电路,用于根据来自所述隧道磁阻角位移传感器的感测信号计算并输出表征所述数字转轮旋转角度的代码,
其特征在于,
该永磁体(100,300)具有柱状圆环结构,并包含第一永磁单元(101,301)和第二永磁单元(102,302),所述第一永磁单元(101,301)和第二永磁单元(102,302)相对于直径截面(110,310)几何对称,
所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)平行于柱状圆环的轴向,且方向相反,或
所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)垂直于所述直径截面(110,310),且方向平行一致,
所述隧道磁阻角位移传感器位于所述永磁体的检测面内距离永磁体柱状圆环轴心一特定半径范围的区域内,在该特定半径范围的区域内,所述永磁体产生的磁场在检测面内的分量的旋转磁场相位角( f )与永磁体旋转相位角( a ) 呈线性变化关系。
2 .根据权利要求1所述的角度磁编码器,其特征在于,所述隧道磁阻角位移传感器包括两个彼此正交设置的单轴旋转传感器或惠斯通桥相对彼此90度旋转的双轴旋转传感器。
3 .根据权利要求1所述的角度磁编码器,其特征在于,所述永磁体(100,300)所对应的检测面(120,320)位于柱状圆环端面前方且平行于该端面。
4 .根据权利要求1所述的角度磁编码器,其特征在于,所述隧道磁阻角位移传感器所在检测面与所述永磁体的柱状圆环端面之间的距离为1-5 mm。
5 .根据权利要求1所述的角度磁编码器,其特征在于,所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)大小相同。
6 .根据权利要求1所述的角度磁编码器,其特征在于,所述柱状圆环结构的永磁体(100,300)的外径为3-200mm,内径为1-100 mm,轴向长度为1-50 mm。
7 .一种电子水表,包括多个计数单元和数字处理电路,
所述每个计数单元包括:
与转动轴连接的数字计数转轮,
与所述数字计数转轮同轴固定安装的永磁体,和
隧道磁阻角位移传感器,位于所述永磁体检测面上用于感测所述永磁体产生的磁场在该检测面内的分量并输出感测信号,
相邻计数单元中的数字计数转轮旋转圈数比是N:1,N是大于1的整数,
所述数字处理电路与每一隧道磁阻角位移传感器连接,将所述隧道磁阻角位移传感器的输出转换为数字读数,
该永磁体(100,300)具有柱状圆环结构,并包含第一永磁单元(101,301)和第二永磁单元(102,302),所述第一永磁单元(101,301)和第二永磁单元(102,302)相对于直径截面(110,310)几何对称,
所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)平行于柱状圆环的轴向,且方向相反,或
所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)垂直于所述直径截面(110,310),且方向平行一致,
所述隧道磁阻角位移传感器位于所述永磁体的检测面内距离永磁体柱状圆环轴心特定半径范围的区域内,在该特定半径范围的区域内,所述永磁体产生的磁场在检测面内的分量的旋转磁场相位角(φ)与永磁体旋转相位角(α)呈线性变化关系。
8 .根据权利要求7所述的电子水表,其特征在于,所述隧道磁阻角位移传感器包括两个彼此正交设置的单轴旋转传感器或惠斯通桥相对彼此90度旋转的双轴旋转传感器。
9 .根据权利要求7所述的电子水表,其特征在于,该电子水表进一步包括与所述数字处理电路连接的抄表接口。
10 .根据权利要求7所述的电子水表,其特征在于, 所述永磁体(100,300)所对应的检测面(120,320)位于柱状圆环端面前方且平行于端面,与所述永磁体的柱状圆环端面之间的距离为1-5 mm。
11 .根据权利要求7所述的电子水表,其特征在于, 所述第一永磁单元(101,301)的磁化强度(103,303)和第二永磁单元(102,302)的磁化强度(104,304)大小相同。
12 .根据权利要求7所述的电子水表,其特征在于, 所述柱状圆环结构的永磁体(100,300)的外径为3-20 mm,内径为1-15 mm,轴向长度为1-10 mm。
13 .根据权利要求7所述的电子水表,其特征在于,该电子水表包括2-10个计数单元。
14 .根据权利要求7所述的电子水表,其特征在于,相邻计数单元中的数字计数转轮旋转圈数比是10:1。
PCT/CN2014/070360 2013-01-09 2014-01-09 一种角度磁编码器和电子水表 WO2014108075A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/760,094 US9638561B2 (en) 2013-01-09 2014-01-09 Magnetic angle encoder and electronic water meter
JP2015551974A JP6412014B2 (ja) 2013-01-09 2014-01-09 磁気角エンコーダおよび電子水道メータ
EP14738320.2A EP2944917A4 (en) 2013-01-09 2014-01-09 MAGNETIC ANGLE CODIER AND ELECTRONIC WATER METER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310007695.1 2013-01-09
CN201310007695.1A CN103913183A (zh) 2013-01-09 2013-01-09 一种角度磁编码器和电子水表

Publications (1)

Publication Number Publication Date
WO2014108075A1 true WO2014108075A1 (zh) 2014-07-17

Family

ID=51039046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070360 WO2014108075A1 (zh) 2013-01-09 2014-01-09 一种角度磁编码器和电子水表

Country Status (5)

Country Link
US (1) US9638561B2 (zh)
EP (1) EP2944917A4 (zh)
JP (1) JP6412014B2 (zh)
CN (1) CN103913183A (zh)
WO (1) WO2014108075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638561B2 (en) 2013-01-09 2017-05-02 MultiDimension Technology Co., Ltd. Magnetic angle encoder and electronic water meter

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737907A (zh) * 2014-12-30 2016-07-06 林肯工业公司 用于润滑系统的流量测量装置
CN104596605B (zh) * 2015-02-04 2019-04-26 江苏多维科技有限公司 一种磁自动化流量记录器
CN105490596B (zh) * 2016-02-01 2017-12-08 重庆理工大学 一种永磁交流伺服电机的嵌入式位置检测系统
CN105890701A (zh) * 2016-06-13 2016-08-24 深圳市捷先数码科技股份有限公司 一种计量流体流量的固态计数器
CN107314782A (zh) * 2017-05-18 2017-11-03 重庆神缘智能科技有限公司 一种霍尔计数装置
CN107655399A (zh) * 2017-07-12 2018-02-02 北京军立方机器人科技有限公司 一种多圈绝对值编码器及位置检测方法
SE542950C2 (en) * 2018-02-01 2020-09-22 Leine & Linde Ab Methods, computer programs, devices and encoders for signal error correction
CN110120724B (zh) * 2019-05-31 2024-04-26 宁波拓普集团股份有限公司 一种电机转子角度测量装置及方法
CN111928915B (zh) * 2020-07-20 2022-05-03 安徽翼迈科技股份有限公司 一种无源光电直读机电分离表模块直读方法
CN112129211A (zh) * 2020-09-10 2020-12-25 宁波金兴量具有限公司 一种基于变化磁场的抗干扰测距方法
CN114608629A (zh) * 2021-11-02 2022-06-10 杭州微光技术有限公司 一种基于amr技术的增量式编码器
CN115325929A (zh) * 2022-07-20 2022-11-11 山东大学 基于磁场变化检测扣件松动的装置、方法和机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2186396Y (zh) * 1993-12-30 1994-12-28 北京市公用事业科学研究所 远传与直读式气体涡轮流量计
CN201748928U (zh) * 2010-09-07 2011-02-16 王建国 隧道磁电阻效应磁性编码器
CN102564498A (zh) * 2012-01-04 2012-07-11 合肥精大仪表股份有限公司 一种微型涡轮流量计
CN102564468A (zh) * 2010-12-15 2012-07-11 Nxp股份有限公司 磁场传感器
CN202648615U (zh) * 2012-03-05 2013-01-02 旭化成微电子株式会社 磁编码器
CN202974369U (zh) * 2012-08-24 2013-06-05 江苏多维科技有限公司 直读式计量装置和直读式水表
CN203116756U (zh) * 2013-01-09 2013-08-07 江苏多维科技有限公司 一种角度磁编码器和电子水表
CN203300354U (zh) * 2013-01-05 2013-11-20 江苏多维科技有限公司 一种适用于角度磁编码器的永磁体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1156692A (en) * 1991-01-04 1992-08-17 Scientific Generics Limited Remotely readable data storage devices and apparatus
JP2000308326A (ja) * 1999-04-15 2000-11-02 Japan Science & Technology Corp 発電装置およびそれを使用した生体用電子機器
JP4132835B2 (ja) * 2002-01-23 2008-08-13 株式会社デンソー 回転数検出装置
EP1408305B9 (de) * 2002-10-10 2008-10-22 ebm-papst St. Georgen GmbH & Co. KG Vorrichtung zum Erfassen des Absolutwinkels einer Welle
US7400265B2 (en) * 2005-03-24 2008-07-15 Innovative Technology Concepts Remotely readable gas meter and method of using the same
US7714570B2 (en) * 2006-06-21 2010-05-11 Allegro Microsystems, Inc. Methods and apparatus for an analog rotational sensor having magnetic sensor elements
DE102007013755B4 (de) * 2007-03-22 2020-10-29 Te Connectivity Germany Gmbh Indikatorelement für einen magnetischen Drehwinkelgeber
JP2010145371A (ja) * 2008-12-22 2010-07-01 Aisin Seiki Co Ltd 角度検出装置
JP5231365B2 (ja) * 2009-09-08 2013-07-10 Ntn株式会社 回転角度検出センサ
DE102009029431A1 (de) * 2009-09-14 2011-03-24 Dr. Johannes Heidenhain Gmbh Multiturn-Drehgeber
JP5079846B2 (ja) * 2010-06-03 2012-11-21 東京コスモス電機株式会社 位置検出装置
FR2965347B1 (fr) * 2010-09-29 2015-04-03 Moving Magnet Tech Capteur de position ameliore
CN202119391U (zh) * 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN103915233B (zh) * 2013-01-05 2017-02-08 江苏多维科技有限公司 一种适用于角度磁编码器的永磁体
CN103913183A (zh) 2013-01-09 2014-07-09 江苏多维科技有限公司 一种角度磁编码器和电子水表

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2186396Y (zh) * 1993-12-30 1994-12-28 北京市公用事业科学研究所 远传与直读式气体涡轮流量计
CN201748928U (zh) * 2010-09-07 2011-02-16 王建国 隧道磁电阻效应磁性编码器
CN102564468A (zh) * 2010-12-15 2012-07-11 Nxp股份有限公司 磁场传感器
CN102564498A (zh) * 2012-01-04 2012-07-11 合肥精大仪表股份有限公司 一种微型涡轮流量计
CN202648615U (zh) * 2012-03-05 2013-01-02 旭化成微电子株式会社 磁编码器
CN202974369U (zh) * 2012-08-24 2013-06-05 江苏多维科技有限公司 直读式计量装置和直读式水表
CN203300354U (zh) * 2013-01-05 2013-11-20 江苏多维科技有限公司 一种适用于角度磁编码器的永磁体
CN203116756U (zh) * 2013-01-09 2013-08-07 江苏多维科技有限公司 一种角度磁编码器和电子水表

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638561B2 (en) 2013-01-09 2017-05-02 MultiDimension Technology Co., Ltd. Magnetic angle encoder and electronic water meter

Also Published As

Publication number Publication date
US9638561B2 (en) 2017-05-02
EP2944917A1 (en) 2015-11-18
CN103913183A (zh) 2014-07-09
JP6412014B2 (ja) 2018-10-24
JP2016503173A (ja) 2016-02-01
EP2944917A4 (en) 2016-08-31
US20150355010A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2014108075A1 (zh) 一种角度磁编码器和电子水表
WO2014108096A1 (zh) 一种多圈绝对磁编码器
WO2014106471A1 (zh) 一种适用于角度磁编码器的永磁体
KR101516033B1 (ko) 외부장에 감응하지 않는 각도 또는 선형 자기 위치 센서
WO2015043506A1 (zh) 多圈滑轮式液位传感器装置
WO2014117734A2 (zh) 绝对式磁旋转编码器
US20100231205A1 (en) Position sensor with variable direction of magnetization and method of production
US9285438B2 (en) Circuits and methods for processing signals generated by a plurality of magnetic field sensing elements
US7598736B2 (en) Integrated circuit including magneto-resistive structures
JP2021516333A (ja) 磁場角度センサに関する角度誤差を低減するためのシステム及び方法
WO2016026419A1 (zh) 一种单芯片偏轴磁电阻z-x角度传感器和测量仪
US11327127B2 (en) Magnetic field sensor with reduced influence of external stray magnetic fields
WO2015139643A1 (zh) 一种磁电阻音频采集器
JP2016223894A (ja) 磁気センサ
US8261458B2 (en) Geomagnetic sensor device and digital compass with the same
JP2012127736A (ja) 磁気センサ
JP2013002835A (ja) 回転角度検出装置
EP1797438A1 (en) Sensor
US20230105657A1 (en) A position sensor system, optical lens system and display
JP2009204331A (ja) 位置検出磁気センサ
JP7316494B2 (ja) 磁気式位置検出装置
CN110567353B (zh) 磁性编码器
KR20220027050A (ko) 낮은 각도 오차로 고자기장을 감지하기 위한 자기 각도 센서 장치
CN111693909A (zh) 用于确定旋转构件的至少一个旋转参数的系统
Ma et al. Subdivision circuit design for nanometer grating based second order moire fringe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14760094

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014738320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014738320

Country of ref document: EP