WO2014108010A1 - 一种基于组合式快速合闸开关的故障电流限制器 - Google Patents
一种基于组合式快速合闸开关的故障电流限制器 Download PDFInfo
- Publication number
- WO2014108010A1 WO2014108010A1 PCT/CN2013/089000 CN2013089000W WO2014108010A1 WO 2014108010 A1 WO2014108010 A1 WO 2014108010A1 CN 2013089000 W CN2013089000 W CN 2013089000W WO 2014108010 A1 WO2014108010 A1 WO 2014108010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- reactor
- closing switch
- coupled double
- series
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 303
- 239000003990 capacitor Substances 0.000 claims abstract description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
Definitions
- the invention relates to a fault current limiter. Background technique
- the circuit breaker is widely used in the world to break the short-circuit current. Since the short-circuit current level is directly related to the capacity of the system, when the rated breaking current level of the circuit breaker is constant, the full-breaking short-circuit current will be used. The capacity of the power system is limited to increase, and the circuit breaker is expensive and its price rises rapidly as its rated breaking current increases. With the expansion of grid capacity and scale, the breaking capacity of circuit breakers has become increasingly difficult to adapt to the needs of grid operation.
- the short-circuit fault current limiter provides a new idea for solving this problem. At present, the more mature fault current limiter technologies mainly include series current limiting reactors, series resonant fault current limiters, and TC series fault current limiters.
- the fault current limiter technology in the research stage mainly uses new materials.
- Current limiting technologies are implemented, including superconducting current limiters, PTC thermistor current limiters, and solid state current limiters.
- the technology of series current limiting reactor and series resonance type current limiter is the most mature and the highest reliability.
- the series resonant current limiter has no reactive power loss and has great application prospects.
- the capacitor bypass circuit is a key technology, mainly including the following bypass circuits: bypass circuits based on saturated reactors (comparison of the operating characteristics of two economical fault current limiters, Journal of Electric Power Systems and Automation, 2005, 17 ( 4 ) : 71-75 ), Surge Circuit Based on Arrester (The Effect of Zinc Oxide Arrester Fault Current Limiter on Power System Transient Stability, Power Automation Equipment, 2007, 27 ( 8 ) : 51 -54 ) and bypass circuits based on power electronics and fast switching (simulation of series resonant fault current limiters based on fast switching, High Voltage Technology, 2006, 32 ( 5 ) : 80-83 ) .
- bypass circuits need to pass close to all short-circuit currents. Therefore, the capacitor bypass circuit components need to be designed to withstand all short-circuit currents, and the cost is high. Summary of the invention
- the object of the present invention is to overcome the shortcomings of the conventional series resonance type fault current limiter, and propose a fault current limiter based on a combined fast closing switch.
- the combined quick closing switch adopts a branch of a tightly coupled double-winding reactor with the opposite end of the same name in series with the quick closing switch, which can reduce the short-circuit inrush current of the quick closing switch;
- one branch of the two-stage double-winding reactor is connected in series with the quick closing switch, which can reduce the short-circuit inrush current of the quick closing switch to a lower level;
- the short-circuit inrush current and over-voltage of the quick-closing switch can be reduced by connecting one branch of each reactor in the opposite-coupled double-winding reactor and a set of quick-closing switches in series.
- the fault current limiter based on the combined quick closing switch proposed by the invention is flexible and easy to implement, and can be applied to various power system systems with different voltage levels and different capacities.
- the technical solution adopted by the present invention is as follows.
- the fault current limiter based on the combined quick closing switch of the invention is composed of a conventional reactor or a same tightly coupled reactor of the same name, a capacitor and a combined quick closing switch.
- the combined quick closing switch and the capacitor are connected in parallel and then connected in series with the conventional reactor, or one branch of the same tightly coupled double winding reactor of the same name is connected in series with the combined quick closing switch, and the same name is the same tightly coupled double winding
- the other branch of the reactor is in series with the capacitor.
- the combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and Quick closing switch consists of.
- the same type of the same tightly coupled double-winding reactor is composed of a first winding, a second winding and a rectangular hollow core, a closed or semi-closed iron core, and the first winding and the second winding have the same number of turns, It is wound in parallel on the stem.
- a reverse-coupled double-winding reactor of the same name that constitutes a combined quick-closing switch is composed of a first winding, a second winding, and a rectangular hollow core, a closed or semi-closed iron core, and the first winding and the second winding The turns are the same and are wound on the stem in an anti-parallel manner.
- the fault current limiter is connected in series in the grid system.
- the present invention can adopt the following two technical solutions.
- the first fault current limiter is connected in parallel with the conventional reactor by using a combined quick-close switch in parallel with the capacitor.
- the combined quick-close switch In normal operation, the combined quick-close switch is in a large impedance state, and the current mainly flows through a circuit composed of a series of conventional reactors and capacitors.
- the conventional reactor and the capacitor form a series resonant circuit, which is in a low-impedance state and affects the power grid system. Very small.
- the combined quick-closing switch reacts quickly to a small impedance state, and the short-circuit current is transferred from the capacitor branch to the fast closing switch branch.
- the impedance of the entire grid system increases and the short-circuit current decreases.
- the second fault current limiter uses a branch of the same tightly coupled double-winding reactor of the same name in series with the combined fast closing switch, and the other branch of the same tightly coupled double winding reactor of the same name is connected in series with the capacitor;
- the combined quick-close switch is in a large impedance state, and the current mainly flows through a circuit consisting of the same tight-coupled double-winding reactor and capacitor in series with the same name, and the same type of tight-coupled double-winding reactor and capacitor form a series resonant circuit. It has a low impedance state and has little impact on the grid system.
- the combined quick closing switch can also adopt the following three technical solutions.
- the first combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and a quick closing switch.
- the first winding of the opposite-coupled double-winding reactor of the same name is first connected in series with the quick-closing switch, and then connected in parallel with the second winding of the opposite-coupled double-winding reactor of the same name.
- the quick closing switch is composed of one or more sets of mechanical switch, thyristor, controllable trigger gap and lightning arrester; in the case of short circuit fault, fast closing with low short circuit current can be selected
- the switch realizes closing of the first winding of the opposite-coupled double-winding reactor of the same name end. After the first winding of the opposite-coupled double-winding reactor of the same name is turned on, the reactances generated by the first winding and the second winding of the opposite-coupled double-winding reactor of the same name cancel each other out, and the total reactance decreases.
- the second combined quick-close switch adopts a combination of a two-stage cascaded reverse-coupling double-winding reactor of the same name and a quick closing switch.
- the reverse-coupling double-winding reactor of the same name end is connected in a two-stage cascade manner, and the first winding of the second-stage opposite-phase end-coupled double-winding reactor and the quick-closing switch are connected in series, and then the second The first winding of the opposite-named opposite-coupled double-winding reactor and the second-stage of the second-stage opposite-coupled double-winding reactor of the same-name end are connected in parallel; the second-stage opposite-name end-coupled double-winding reactor and the same The first winding of the first-stage opposite end of the tightly coupled double-winding reactor is connected in series, and then connected in parallel with the second winding of the first-stage end of the opposite-coupled double-winding reactor.
- the quick closing switch is composed of one or more sets of mechanical switches, thyristors, controllable trigger gaps and arresters; in the case of short circuit faults, a fast closing switch with a short circuit current can be selected to achieve the second The junction of the first winding of the stage tightly coupled double winding reactor. After the first winding of the two-stage tightly coupled double-winding reactor is turned on, the reactances generated by the windings of the first-stage tight-coupling double-winding reactor and the two-stage tight-coupled double-winding reactor can cancel each other, and the total reactance is reduced.
- the third combined quick closing switch is composed of two sets of oppositely-coupled double-winding reactors and a quick closing switch of the same name end connected in series.
- the windings are connected in parallel; the first winding of the second group of oppositely-coupled double-winding reactors of the same name and the second group of fast-closing switches are connected in series, and then connected in parallel with the second winding of the second group of opposite-coupled double-winding reactors of the same name; The first set of oppositely-coupled double-winding reactors of the same name end and the second set of opposite-coupled double-winding reactors of the same name are finally connected in series.
- the quick closing switch is composed of one or more groups of mechanical switch, thyristor, controllable trigger gap and lightning arrester; in the case of short circuit fault, the short circuit current and voltage can be selected to be low.
- the quick closing switch realizes the closing of the first windings of two sets of oppositely coupled double winding reactors of the same name. After the first windings of the two sets of oppositely-coupled double-winding reactors with the same name are turned on, the reactances generated by the two sets of windings of the opposite-coupled double-winding reactors with the same name end can cancel each other, and the total reactance decreases.
- the fault current limiter of the present invention exhibits a low impedance during normal operation and a large impedance in the event of a short circuit fault.
- the tightly coupled double-winding reactor in the fault current limiter of the invention can adopt the hollow core, iron core or half iron core structure; the tightly coupled double winding reactor and the fast closing switch can adopt the three-phase independent structure or the three-phase combined structure. .
- the invention has the following main advantages:
- the fault current limiter of the present invention has a small steady-state influence on the power grid. In normal operation, the steady-state impedance of the fault current is small and does not increase the reactive power of the power system.
- the invention suppresses the peak value of the fault current by the impedance change of the tightly coupled double-winding reactor in the combined quick closing switch, and then suppresses the steady state value of the fault current by closing the quick closing switch, therefore, the fault
- the current limiter responds quickly to fault currents and has a simple structure and high reliability.
- the present invention can be used to construct a large-capacity fault current limiter.
- the single-branch of the tight-coupled double-winding reactor is connected in series with the quick-closing switch to reduce the short-circuit capacity of the quick-closing switch, which reduces the technical difficulty and cost of the large-scale quick-close switch, and has a market.
- Figure 1 is a schematic diagram of the circuit and magnetic circuit of the combined quick-closing switch in steady state operation
- Figure 2 is a schematic diagram of the circuit and magnetic circuit of the combined quick-closing switch in the short circuit
- Figure 3 is the combined quick-closing switch Equivalent circuit diagram
- FIG. 4 is an equivalent circuit diagram of a two-stage cascade structure combined quick closing switch
- FIG. 5 is an equivalent circuit diagram of two sets of series structure combined quick closing switches
- FIG. 6 is a combination of the specific embodiment according to the present invention The equivalent circuit diagram of the fault current limiter of the closing switch;
- FIG. 7 is an equivalent circuit diagram of another fault current limiter based on a combined quick closing switch according to a second embodiment of the present invention.
- FIG. 8 is an equivalent circuit diagram of a fault current limiter based on a two-stage cascade structure combined quick closing switch according to an embodiment of the present invention
- FIG. 9 is an equivalent circuit diagram of a fault current limiter based on a two-stage cascade structure combined quick-close switch according to a fourth embodiment of the present invention.
- Fig. 10 is a diagram showing an equivalent circuit diagram of a fault current limiter based on two sets of series-connected quick-closing switches according to a specific embodiment of the present invention.
- FIG. 1 is an equivalent circuit diagram of a fault current limiter based on two sets of series structure combined quick closing switches according to an embodiment of the present invention. detailed description
- the fault current limiter based on the combined quick closing switch of the invention is composed of a conventional reactor or a same tightly coupled double winding reactor of the same name, a capacitor and a combined quick closing switch.
- the combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and a quick closing switch K.
- Figure 1 shows the circuit and magnetic circuit of the combined quick-close switch in steady state operation.
- the combined quick closing switch is composed of a reverse-coupling double-winding reactor of the same name and a quick closing switch ⁇ , and the opposite end of the same-named double-winding reactor is connected by the first winding L1.
- the second winding L2 is composed of a rectangular hollow core, a closed or semi-closed iron core.
- the first winding L1 and the second winding L2 have the same number of turns, and are wound on the stem in an anti-parallel manner.
- the first winding L1 of the opposite-coupled double-winding reactor of the same name end is first connected in series with the quick closing switch K and then in parallel with the second winding L2.
- the quick closing switch K is in the open state, and the fast closing switch has an impedance value of £ 2 and a large impedance.
- Figure 2 shows the circuit and magnetic circuit diagram of the combined quick-closing switch in the event of a short-circuit fault in the grid system.
- the quick closing switch K is closed, and the current of the first winding L1 and the second winding L2 of the tightly coupled double winding reactor of the same name end is the same, and the generated magnetic fluxes are equal in magnitude and opposite in direction. Since the magnetic flux generated by the opposite-coupled double-winding reactor of the same name is mainly leakage flux, the leakage inductance is relatively small, so it is in a small impedance state. In addition, the short-circuit current of the first winding L1 and the second winding L2 is half of the total short-circuit current of the system.
- FIG. 3 shows the equivalent circuit diagram of the combined quick-close switch.
- the combined quick closing switch is composed of a combination of the opposite end of the same name and a tightly coupled double winding reactor and a quick closing switch K.
- the first winding L1 of the opposite-coupled double-winding reactor of the same name is first connected in series with the quick-closing switch K, and then in parallel with the second winding L2 of the opposite-coupled double-winding reactor of the same name.
- Figure 4 shows the equivalent circuit diagram of the combined quick-closing switch of the two-stage cascade structure.
- the two-stage cascade combined quick-closing switch is composed of a first-stage opposite-side tight-coupled double-winding reactor of the same name, a second-stage opposite-side tight-coupled double-winding reactor and a quick-closing switch.
- the first stage of the same name end is oppositely coupled to the two winding reactors of the two windings L1 and L2
- the structure of the second-stage reverse-coupling double-winding reactor with the same name is similar to that of the first-stage opposite-coupled double-coupling reactor.
- the gate switch K is connected in series, and then connected in parallel with the second winding L12 of the second-stage reverse-coupled double-winding reactor of the second-stage end of the same name; the second-stage opposite-end-coupled double-winding reactor and the first-stage tight-coupled double-winding reactor
- the first winding L1 is connected in series and then connected in parallel with the second winding L2 of the first stage of the same name end oppositely coupled to the double winding reactor.
- Figure 5 shows the equivalent circuit diagram of the combined fast closing switch of two sets of series structures.
- the two sets of combined quick-close switch of series structure are composed of the first group of opposite-coupled double-winding reactors with the same name, the first set of fast-closed switches, the second set of opposite-coupled double-winding reactors with the same name and the second group of fast The closing switch is combined.
- FIG. 6 is a topological circuit diagram of the fault current limiter based on the combined quick closing switch of Embodiment 1.
- Embodiment 1 of the present invention is composed of a conventional reactor L, a capacitor C and a combined quick closing switch, and the combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and a quick closing switch.
- the self-inductance of the two windings L1 and L2 of the same-name end reverse-coupling double-winding reactor in the combined quick-closing switch is A and 2 , respectively, and the mutual inductance is M.
- the opposite-coupled double-winding reactor of the same name can adopt hollow core, iron core or semi-core structure.
- the combined quick-close switch can be used in several kinds of switch devices: mechanical switch ⁇ , thyristor ⁇ , controllable trigger gap G and arrester MOV. One or more groups are composed in parallel. FIG.
- Embodiment 7 is a topological circuit diagram of the fault current limiter based on the combined quick closing switch of Embodiment 2.
- Embodiment 2 of the present invention is composed of the same tightly coupled double winding reactor of the same name, capacitor C and combined quick closing switch, and the combined quick closing switch is connected by the same name end and tightly coupled double winding reactor and fast closing
- the switch consists of two sets of oppositely-coupled double-winding reactors of the same name and connected in series.
- the self-inductance of the two windings L1 and L2 of the same-name end opposite-coupled double-winding reactor in the combined quick-closing switch is ⁇ and ⁇ , respectively, and the mutual inductance is M.
- the first winding L1 of the opposite-coupled double-winding reactor of the same name is first connected in series with the quick-closing switch, and then connected in parallel with the second winding L2 of the opposite-coupled double-winding reactor of the same name; the difference from the first embodiment is:
- the first branch L21 of the same tightly coupled double-winding reactor of the same name is connected in series with the combined quick closing switch, and the second branch L22 of the same tightly coupled double winding reactor of the same name is connected in series with the capacitor C.
- the fault current is transferred from the capacitor C branch to the combined fast closing switch branch, the impedance of the current limiter is increased to suppress the short circuit current, and the short circuit current through the fast closing switch is low, so A quick closing switch with a low short-circuit current can be used, and the cost is reduced, and the reliability can be improved.
- the same type of tightly coupled double-winding reactor and the opposite end of the same type of double-coiled reactor can use hollow core, iron core or half iron core structure.
- the combined quick closing switch can adopt mechanical switch K, thyristor, and controllable.
- One or more sets of the trigger gap G and the arrester MOV are connected in parallel. As shown in FIG.
- Embodiment 3 of the present invention is a fault current limiter based on a two-stage cascade structure combined quick closing switch.
- Embodiment 3 of the present invention is composed of a conventional reactor L, a capacitor C and a combined quick closing switch, and the combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and a quick closing switch, two groups.
- the opposite-coupled double-winding reactor of the same name end uses a two-stage cascade structure.
- the structure of the oppositely tightly coupled double-winding reactor is similar to that of the first stage of the opposite end of the tightly coupled double winding reactor.
- the mutual inductance of the first winding L1 1 and the second winding L12 of the second stage of the opposite end of the tightly coupled double winding reactor For M 1 ; self-inductance
- L n L l2 ; the first winding of the second-stage reverse-coupling double-winding reactor of the second-stage end of the same name is first connected in series with the quick-closing switch, and then the second-stage opposite end of the second-stage reactor
- the winding L12 is connected in parallel; the second stage of the same name end oppositely coupled double winding reactor and the first stage L1 of the first stage opposite end of the tightly coupled double winding reactor are connected in series, and then the second stage winding reactor is oppositely coupled with the first stage of the same name end
- the second winding L2 is connected in parallel.
- the combined quick-closing switch of the capacitor C and the two-stage cascade structure is connected in parallel and then connected in series with the conventional reactor.
- the fault current is transferred from the capacitor C branch to the combined fast closing switch branch, the impedance of the current limiter is increased to suppress the short-circuit current, and the short-circuit current through the fast closing switch can be further reduced.
- the first stage of the same name end oppositely coupled double winding reactor and the second stage of the same name end oppositely coupled double winding reactor can adopt air core, iron core or half iron core structure, the combined quick closing switch can adopt mechanical switch, One or more of the thyristor T, the controllable trigger gap G and the arrester MOV are connected in parallel.
- Embodiment 4 of the present invention is another fault current limiter based on a two-stage cascade structure combined fast closing switch.
- Embodiment 4 of the present invention is composed of the same tightly coupled double winding reactor of the same name, a capacitor C and a combined quick closing switch, and the combined quick closing switch is a tightly coupled double winding reactor of the same name and a fast closing
- the switch consists of two sets of opposite-coupled double-winding reactors with the same name and a two-stage cascade structure.
- the structure of the second-stage reverse-coupled double-winding reactor of the same name is similar to that of the first-stage opposite-coupled double-coupling reactor of the same name;
- the first winding L11 of the second-stage opposite-coupled double-winding reactor of the same-stage end is connected in series with the quick-closing switch, and then with the same-end end of the second-stage
- the second winding L12 of the tightly coupled double-winding reactor is connected in parallel;
- the second stage of the same name end oppositely coupled double winding reactor is
- a branch L21 of the same tight-coupled double-winding reactor of the same name and a combined fast-closed switch of the second-stage cascade structure are connected in series, and the same-named end is the same tight-coupled double-winding reactor.
- Another branch L22 and Capacitor C is connected in series. Reactance value of the combined quick-closing switch during normal operation
- the first-stage tightly coupled double-winding reactor and the second-stage tight-coupling double-winding reactor with the same name and the same tight-coupled double-winding reactor with the same name can be air-core, iron core or half-core structure.
- the closing switch can be composed of one or more sets of several kinds of switch devices: mechanical switch K, thyristor ⁇ , controllable trigger gap G and arrester MOV.
- Embodiment 5 of the present invention is a fault current limiter based on two sets of combined structure quick closing switches.
- Embodiment 5 of the present invention is composed of a conventional reactor L, a capacitor C and a combined quick closing switch, and the combined quick closing switch is composed of a reverse-coupled double-winding reactor of the same name and a quick-connecting switch, two groups.
- the combined quick closing switch adopts a series structure.
- the structure of the opposite-coupled double-winding reactor 2 of the same name end is similar to that of the first group of the opposite-coupled double-winding reactor 1 of the same name;
- the second group of the first-numbered end of the opposite-coupled double-winding reactor 2 has the first winding L1 1 and the first The mutual inductance of the two windings L12 is M 1 ;
- the first set of the opposite end of the opposite-coupled double-winding reactor 1 has a first winding L1 which is first connected in series with the first quick-closing switch 1 and then in parallel with the first set of the same-named end-coupled double-winding reactor
- the second winding L2 of 1 is connected in parallel;
- the second winding L1 1 of the second group of oppositely-coupled double-winding reactors 2 of the same name is first connected in series with the second quick-closing switch 2, and then the same name as the second group
- the second winding L12 of the oppositely tightly coupled double winding reactor is connected in parallel.
- the difference from the third embodiment is as follows:
- the two sets of combined quick closing switches do not adopt the cascading mode but adopt the series mode, and the two sets of combined quick closing switches are connected in series with the capacitor C in parallel.
- the fault current is transferred from the capacitor C branch to the combined fast closing switch branch, the impedance of the current limiter is increased to suppress the short circuit current, and the short circuit current through the fast closing switch is low, so A quick closing switch with a low short-circuit current can be used, and the cost is reduced, and the reliability can be improved.
- the voltage of each group of fast-type closing switches can also be reduced.
- the first set of the opposite end of the tightly coupled double winding reactor 1 and the second set of the opposite end of the tightly coupled double winding reactor 2 are both hollow core, iron core or half core structure
- the first quick closing switch 1 can be mechanical One or more sets of switch K1, thyristor Tl, controllable trigger gap G1 and arrester MOV1 are connected in parallel
- the second fast closing switch 2 can also adopt mechanical switch ⁇ 2, thyristor ⁇ 2, controllable trigger gap G2 It consists of one or more groups of several types of switching devices of the arrester MOV2. It should be noted that the embodiment can be extended to the series of two or more combined quick closing switches, so that each group of combined quick closing switches is subjected to a lower voltage. As shown in FIG.
- the sixth embodiment of the present invention is another fault current limiter based on two sets of series structure combined quick closing switches.
- Inventive example 6 is composed of the same tight-coupled double-winding reactor of the same name, a capacitor C and a combined quick-closing switch, and the combined quick-closing switch is composed of a reverse-coupled double-winding reactor and a quick-closing switch of the same name Composition, the two sets of combined quick closing switches adopt a series structure.
- the first set of opposite ends of the tightly coupled double-winding reactor 1 has two inductances L1 and L2 having a self-inductance of ⁇ and £ 2 , respectively, and a mutual inductance of M.
- the structure of the second set of oppositely-coupled double-winding reactors 2 of the same name is similar to that of the first set of opposite-coupled double-winding reactors 1 of the same name; the second set of opposite-coupled double-winding reactors 2 of the same name First
- one branch L21 of the same tight-coupled double-winding reactor of the same name and the two sets of combined quick-close switch of the series structure are connected in series, and the same type of the same tightly coupled double-winding reactor
- One branch L22 is connected in series with capacitor C. Reactance values of two sets of combined quick-closing switches during normal operation
- the fault current is transferred from the capacitor C branch to the combined fast closing switch branch, the impedance of the current limiter is increased to suppress the short circuit current, and the short circuit current through the fast closing switch is low, so A quick closing switch with a low short-circuit current can be used, and the cost is reduced, and the reliability can be improved.
- the withstand voltage of each group of fast closing switches can also be reduced.
- the first set of the opposite end of the tightly coupled double winding reactor 1 and the second set of the opposite end of the tightly coupled double winding reactor 2 are both hollow core, iron core or half core structure
- the first quick closing switch 1 can be mechanical One or more sets of switch K1, thyristor Tl, controllable trigger gap G1 and arrester MOV1 are connected in parallel
- the second fast closing switch 2 can also adopt mechanical switch ⁇ 2, thyristor ⁇ 2, controllable trigger gap G2 It consists of one or more groups of several types of switching devices of the arrester MOV2. It should be noted that this embodiment can also be extended to a series of two or more combined quick closing switches, so that each group of combined quick closing switches is subjected to a lower voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
一种基于组合式快速合闸开关的故障电流限制器,采用组合式快速合闸开关与电容器(C)先并联之后,再与常规电抗器(L)串联;组合式快速合闸开关由同名端相反的紧耦合双绕组电抗器和快速合闸开关组合而成,紧耦合双绕组电抗器的第一绕组(L1)先和快速合闸开关串联,然后和第二绕组(L2)并联,快速合闸开关由机械开关(K)、晶闸管(T)、可控触发间隙(G)和避雷器(MOV)中的一组或多组并联组成;在短路故障时,可选用耐受短路电流较低的快速合间开关实现对紧耦合双绕组电抗器第一绕组(L1)的合间。在第一绕组(L1)导通后,紧耦合双绕组电抗器的第一绕组(L1)和第二绕组(L2)产生的电抗互相抵消而使电抗减小。
Description
一种基于组合式快速合闸开关的故障电流限制器
技术领域
本发明涉及一种故障电流限制器。 背景技术
随着国民经济的快速发展, 社会对电力的需求不断增加, 带动了 电力系统的不断发展, 单机和发电厂容量、 变电所容量、 城市和工业 中心负荷不断增加, 就使得电力系统之间互联, 各级电网中的短路电 流水平不断提高, 短路故障对电力系统及其相连的电气设备的破坏性 也越来越大。 而且, 在对电能的需求量日益增长的同时, 人们对电能 质量、 供电可靠性和安全性等也提出了更高的要求。 然而, 大电网的 暂态稳定性问题比较突出, 其中最重要的原因之一是由于常规电力技 术缺乏行之有效的短路故障电流限制技术。 目前, 世界上广泛采用断 路器对短路电流全额开断, 由于短路电流水平与系统的容量直接相关, 在断路器的额定开断电流水平一定的情况下, 采用全额开断短路电流 将会限制电力系统的容量的增长, 并且断路器价格昂贵且其价格随其 额定开断电流的增加而迅速上升。 随着电网容量和规模的扩大, 断路 器的开断能力已经越来越难以适应电网运行的需要。 短路故障限流器为这一问题的解决提供了新思路。 当前比较成熟 的故障限流器技术主要有串联限流电抗器、 串联谐振型故障电流限制 器、 可控串补故障电流限制器等, 而处于研究阶段的故障限流器技术 主要是应用新材料实现的限流技术, 包括超导限流器、 PTC 热敏电阻 限流器和固态限流器。 在当前的限流器技术中, 以串联限流电抗器和 串联谐振型限流器的技术最为成熟, 可靠性也最高。 串联谐振型限流 器没有无功功率损耗, 具有很大的应用前景。 对于串联谐振型限流器 而言, 电容器旁通电路是一个关键技术, 主要有以下几种旁通电路: 基于饱和电抗器的旁通电路 (两种经济型故障限流器的工作特性比较,
电力系统及其自动化学报, 2005, 17 ( 4 ) : 71-75 ) 、 基于避雷器的旁 通电路 (氧化锌避雷器式故障限流器对电力系统暂态稳定性的影响, 电力自动化设备, 2007, 27 ( 8 ) : 51 -54 ) 和基于电力电子和快速开关 的旁通电路 (基于快速开关的串联谐振型故障限流器的仿真, 高电压 技术, 2006, 32 ( 5 ) : 80-83 ) 。 但是上述所有的电容器旁通电路都需 通过接近于全部的短路电流, 因此, 电容器旁通电路部件需要根据耐 受全部短路电流来设计, 造价很高。 发明内容
本发明的目的在于克服常规串联谐振型故障电流限制器的缺点, 提出一种基于组合式快速合闸开关的故障电流限制器。 该组合式快速 合闸开关采用同名端相反的紧耦合双绕组电抗器的一个支路与快速合 闸开关串联的方式, 可将快速合闸开关的短路冲击电流降低; 也可采 用二级级联结构紧耦合双绕组电抗器中二级双绕组电抗器的一个支路 与快速合闸开关串联的方式, 可将快速合闸开关的短路冲击电流降至 更低; 也可采用两组串联结构同名端相反紧耦合双绕组电抗器中每组 电抗器的一个支路和一组快速合闸开关串联的方式, 可将快速合闸开 关的短路冲击电流和过电压均降低。 本发明提出的基于组合式快速合 闸开关的故障电流限制器, 灵活、 易实施, 可应用于各种不同电压等 级、 不同容量的电网系统中。 为了实现上述目的, 本发明采用的技术方案如下。 本发明基于组合式快速合闸开关的故障电流限制器由常规电抗器 或同名端相同紧耦合电抗器、 电容器和组合式快速合闸开关构成。 所 述的组合式快速合闸开关与电容器先并联再与常规电抗器串联, 或者 同名端相同紧耦合双绕组电抗器的一个支路与组合式快速合闸开关串 联, 同名端相同紧耦合双绕组电抗器的另一个支路与电容器串联。 所述的组合式快速合闸开关由同名端相反紧耦合双绕组电抗器和
快速合闸开关组成。 所述的同名端相同紧耦合双绕组电抗器由第一绕组、 第二绕组和 矩形的空芯、 闭合或半闭合铁芯组成, 所述的第一绕组和第二绕组的 匝数相同, 以并联方式绕制在芯柱上。 组成组合式快速合闸开关的同名端相反紧耦合双绕组电抗器由第 一绕组、 第二绕组和矩形的空芯、 闭合或半闭合铁芯组成, 所述的第 一绕组和第二绕组的匝数相同, 以反并联方式绕制在芯柱上。 所述的故障电流限制器串联在电网系统中。 本发明可以采用以下两种技术方案。 第一种故障电流限制器采用组合式快速合闸开关与电容器先并联 之后, 再与常规电抗器串联。 在正常工作时, 组合式快速合闸开关呈 大阻抗状态, 电流主要从常规电抗器和电容器串联组成的电路中流过, 常规电抗器和电容器组成串联谐振电路, 呈低阻抗状态, 对电网系统 影响很小。 在电网系统发生故障短路时, 组合式快速合闸开关快速反 应呈小阻抗状态, 短路电流从电容器支路转移到快速合闸开关支路, 整个电网系统的阻抗增加, 短路电流下降。 第二种故障电流限制器采用同名端相同紧耦合双绕组电抗器的一 个支路与组合式快速合闸开关串联, 同名端相同紧耦合双绕组电抗器 的另一个支路与电容器串联; 在正常工作时, 组合式快速合闸开关呈 大阻抗状态, 电流主要从同名端相同紧耦合双绕组电抗器和电容器串 联组成的电路中流过, 同名端相同紧耦合双绕组电抗器和电容器组成 串联谐振电路呈低阻抗状态, 对电网系统影响很小。 在电网系统发生 故障短路时, 组合式快速合闸开关快速反应呈小阻抗状态, 短路电流 从电容器支路转移到快速合闸开关支路, 整个电网系统的阻抗增加,
短路电流下降。 所述的组合式快速合闸开关也可采用以下三种技术方案。 第一种组合式快速合闸开关由同名端相反紧耦合双绕组电抗器和 快速合闸开关组合而成。 所述同名端相反紧耦合双绕组电抗器的第一 绕组先和快速合闸开关串联, 然后和所述同名端相反紧耦合双绕组电 抗器的第二绕组并联。 所述的快速合闸开关由机械开关、 晶闸管、 可 控触发间隙和避雷器几种开关设备中的一组或多组并联组成; 在短路 故障时, 可选用耐受短路电流较低的快速合闸开关实现对所述同名端 相反紧耦合双绕组电抗器第一绕组的合闸。 在所述同名端相反紧耦合 双绕组电抗器的第一绕组接通后, 所述同名端相反紧耦合双绕组电抗 器的第一绕组和第二绕组产生的电抗互相抵消, 总电抗减小。 第二种组合式快速合闸开关采用二级级联的同名端相反紧耦合双 绕组电抗器和快速合闸开关组合而成。 所述的同名端相反紧耦合双绕 组电抗器采用二级级联方式连接, 第二级同名端相反紧耦合双绕组电 抗器的第一绕组和快速合闸开关先串联, 然后所述的第二级同名端相 反紧耦合双绕组电抗器的第一绕组和第二级同名端相反紧耦合双绕组 电抗器的第二绕组并联; 所述的第二级同名端相反紧耦合双绕组电抗 器与第一级同名端相反紧耦合双绕组电抗器的第一绕组串联, 然后和 第一级同名端相反紧耦合双绕组电抗器的第二绕组并联。 所述的快速 合闸开关由机械开关、 晶闸管、 可控触发间隙和避雷器中的一组或多 组并联组成; 在短路故障时, 可选用耐受短路电流更低的快速合闸开 关实现对二级紧耦合双绕组电抗器第一绕组的合间。 在二级紧耦合双 绕组电抗器的第一绕组导通后, 一级紧耦合双绕组电抗器和二级紧耦 合双绕组电抗器各支路绕组产生的电抗可以互相抵消, 总电抗减小。 第三种组合式快速合闸开关采用串联连接的两组同名端相反紧耦 合双绕组电抗器和快速合闸开关组合构成。 两组同名端相反紧耦合双
绕组电抗器串联连接, 第一组同名端相反紧耦合双绕组电抗器的第一 绕组和第一组快速合闸开关先串联, 然后和第一组同名端相反紧耦合 双绕组电抗器的第二绕组并联; 第二组同名端相反紧耦合双绕组电抗 器的第一绕组和第二组快速合闸开关先串联, 然后和第二组同名端相 反紧耦合双绕组电抗器的第二绕组并联; 第一组同名端相反紧耦合双 绕组电抗器和第二组同名端相反紧耦合双绕组电抗器最后串联。 所述 的快速合闸开关由机械开关、 晶闸管、 可控触发间隙和避雷器几种开 关设备中的一组或多组并联组成; 在短路故障时, 可选用耐受短路电 流和电压都较低的快速合闸开关实现对两组同名端相反紧耦合双绕组 电抗器第一绕组的合闸。 在两组同名端相反紧耦合双绕组电抗器的第 一绕组都导通后, 两组同名端相反紧耦合双绕组电抗器各支路绕组产 生的电抗可以互相抵消, 总电抗减小。 本发明故障电流限制器在正常运行时表现为低阻抗, 而在短路故 障时表现为大阻抗。 本发明故障电流限制器中的紧耦合双绕组电抗器 可以采用空芯、 铁芯或半铁芯结构; 紧耦合双绕组电抗器和快速合闸 开关均可以采用三相独立结构或三相组合结构。 本发明具有以下主要优点:
1 ) 本发明故障电流限制器对电网的稳态影响小。 在正常运行时, 故障电流器的稳态阻抗很小, 不会增加电力系统无功。
2 )本发明通过组合式快速合闸开关中紧耦合双绕组电抗器自身的 阻抗变化来抑制故障电流的峰值, 然后通过快速合闸开关的闭合来抑 制故障电流的稳态值, 因此, 该故障电流限制器对故障电流响应快, 且结构简单、 可靠性高。
3 )本发明可用于构造大容量的故障电流限制器。 采用紧耦合双绕 组电抗器单个支路与快速合闸开关串联的方式降低快速合闸开关的短 路容量, 降低了大型快速合闸开关制作的技术难度和成本, 更有市场
竞争力。 附图说明
以下结合附图和具体实施方式对本发明作进一步说明。 图 1为组合式快速合闸开关在稳态运行时的电路和磁路示意图; 图 2为组合式快速合闸开关在短路时的电路和磁路示意图; 图 3为组合式快速合闸开关的等效电路图;
图 4为二级级联结构组合式快速合闸开关的等效电路图; 图 5为两组串联结构组合式快速合闸开关的等效电路图; 图 6为本发明具体实施例 1基于组合式快速合闸开关的故障电流 限制器等效电路图;
图 7为本发明具体实施例 2另一种基于组合式快速合闸开关的故 障电流限制器等效电路图;
图 8为本发明具体实施例 3基于二级级联结构组合式快速合闸开 关的故障电流限制器等效电路图;
图 9为本发明具体实施例 4另一种基于二级级联结构组合式快速 合闸开关的故障电流限制器等效电路图。
图 10为本发明具体实施例 5—种基于两组串联结构组合式快速合 闸开关的故障电流限制器等效电路图。
图 1 1为本发明具体实施例 6另一种基于两组串联结构组合式快速 合闸开关的故障电流限制器等效电路图。 具体实施方式
本发明基于组合式快速合闸开关的故障电流限制器由常规电抗器 或同名端相同紧耦合双绕组电抗器、 电容器和组合式快速合闸开关构 成。 所述的组合式快速合闸开关由同名端相反紧耦合双绕组电抗器和 快速合闸开关 K构成。 图 1 所示为组合式快速合闸开关在稳态运行时的电路和磁路示意
图。 如图 1 所示, 所述的组合式快速合闸开关由同名端相反紧耦合双 绕组电抗器, 以及快速合闸开关 κ组合而成, 同名端相反紧耦合双绕 组电抗器由第一绕组 Ll、 第二绕组 L2和矩形的空芯、 闭合或半闭合 的铁芯组成。 所述的同名端相反紧耦合双绕组电抗器中, 所述的第一 绕组 L1和第二绕组 L2的匝数相同, 以反并联方式绕制在芯柱上。 同 名端相反紧耦合双绕组电抗器的第一绕组 L1 先和快速合闸开关 K 串 联, 然后再和所述的第二绕组 L2并联。 在稳态工作时, 快速合闸开关 K处于开断状态, 快速合闸开关的阻抗值为 £2, 呈大阻抗。 图 2所示为组合式快速合闸开关在电网系统发生短路故障时的电 路和磁路示意图。 在发生故障短路时, 快速合闸开关 K闭合, 同名端 相反紧耦合双绕组电抗器第一绕组 L1和第二绕组 L2通过的电流相同, 产生的磁通大小相等, 方向相反。 由于该同名端相反紧耦合双绕组电 抗器产生的磁通主要为漏磁通, 漏感相对很小, 因此呈小阻抗状态。 另外, 所述的第一绕组 L1和第二绕组 L2的短路电流为系统总短路电 流的一半, 因此, 快速合闸开关 K可以选择耐受短路电流更低的快速 合闸开关, 快速合闸开关的可靠性提高, 造价降低。 图 3所示为组合式快速合闸开关的等效电路图。 组合式快速合闸 开关由同名端相反紧耦合双绕组电抗器和快速合闸开关 K组合而成。 同名端相反紧耦合双绕组电抗器两个绕组 L1和 L2的自感分别为 A和 L2 , 互感为 M。 由于双绕组匝数相同, 同名端相反, 因此 A =^, 互感 M与 ^和 £2非常接近。 同名端相反紧耦合双绕组电抗器的第一绕组 L1 先和快速合闸开关 K串联, 然后再和同名端相反紧耦合双绕组电抗器 的第二绕组 L2并联。 图 4所示为二级级联结构的组合式快速合闸开关的等效电路图。 二级级联结构组合式快速合闸开关由第一级同名端相反紧耦合双绕组 电抗器、 第二级同名端相反紧耦合双绕组电抗器和快速合闸开关组合 而成。 第一级同名端相反紧耦合双绕组电抗器两个绕组 L1和 L2的自
感分别为 A和 , 互感为 M, k = L2 ; 第二级同名端相反紧耦合双绕组 电抗器的结构与第一级同名端相反紧耦合双绕组电抗器类似, 第二级 同名端相反紧耦合双绕组电抗器的第一绕组 L1 1和第二绕组 L12的互 感为 , 自感^ = £12 ; 第二级同名端相反紧耦合双绕组电抗器的第一 绕组 L1 1先和快速合闸开关 K串联, 然后再和第二级同名端相反紧耦 合双绕组电抗器的第二绕组 L12 并联; 第二级同名端相反紧耦合双绕 组电抗器和第一级紧耦合双绕组电抗器的第一绕组 L1 串联, 然后和第 一级同名端相反紧耦合双绕组电抗器的第二绕组 L2并联。 图 5所示为两组串联结构的组合式快速合闸开关的等效电路图。 两组串联结构的组合式快速合闸开关由第一组同名端相反紧耦合双绕 组电抗器、 第一组快速合闸开关、 第二组同名端相反紧耦合双绕组电 抗器和第二组快速合闸开关组合而成。 第一组同名端相反紧耦合双绕 组电抗器两个绕组 L1和 L2的自感分别为 ^和£2, 互感为 M, Ll = L2 ; 第二组同名端相反紧耦合双绕组电抗器的结构与第一组同名端相反紧 耦合双绕组电抗器类似, 第二组同名端相反紧耦合双绕组电抗器的第 一绕组 L1 1和第二绕组 L12的互感为 M1 ; 自感 = £12 ; 第一组同名端 相反紧耦合双绕组电抗器的第一绕组 L1先和快速合闸开关 K1 串联, 然后再和所述的第一组同名端相反紧耦合双绕组电抗器的第二绕组 L2 并联; 第二组同名端相反紧耦合双绕组电抗器的第一绕组 L1 1 先和快 速合闸开关 K2串联,然后再和第二组同名端相反紧耦合双绕组电抗器 的第二绕组 L12并联; 两组同名端相反紧耦合双绕组电抗器最后串联。 图 6所示为实施例 1基于组合式快速合闸开关的故障电流限制器 拓扑电路图。 本发明实施例 1 由常规电抗器 L、 电容器 C和组合式快 速合闸开关构成, 所述的组合式快速合闸开关由同名端相反紧耦合双 绕组电抗器和快速合闸开关组成。 组合式快速合闸开关中的同名端相 反紧耦合双绕组电抗器两个绕组 L1和 L2的自感分别为 A和 2, 互感 为 M。 由于双绕组匝数相同, 同名端相反, 因此 Α = , 互感 Μ与^和 £2非常接近。 同名端相反紧耦合双绕组电抗器的第一绕组 L1先和快速
合闸开关串联, 然后再和同名端相反紧耦合双绕组电抗器的第二绕组
L2 并联; 电容器 C和组合式快速合闸开关并联后再和常规电抗器 串 联。 在电网系统正常运行时, 快速合闸开关的电抗值 Ζ = 2, 通过合理 设计可使 '为一非常大的值,这样电流主要从 £和(:组成的串联谐振电 路中流过, 对电网系统影响很小; 在电网系统发生故障短路时, 组合 式快速合闸开关的电抗变为
扁 ' 〜 ,
2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 故障电流限制器的阻抗增大而抑制短路电流, 快速合闸开 关通过的短路电流较低, 这样可以用短路电流较低的快速合闸开关, 成本更低, 而可靠性可提高。 同名端相反紧耦合双绕组电抗器可采用 空芯、 铁芯或半铁芯结构, 组合式快速合闸开关可采用机械开关 κ、 晶闸管 Τ、可控触发间隙 G和避雷器 MOV几种开关设备中的一组或多 组并联组成。 图 7所示为实施例 2基于组合式快速合闸开关的故障电流限制器 拓扑电路图。 本发明实施例 2 由同名端相同紧耦合双绕组电抗器、 电 容器 C和组合式快速合闸开关构成, 所述的组合式快速合闸开关由同 名端相反紧耦合双绕组电抗器和快速合闸开关组成, 两组同名端相反 紧耦合双绕组电抗器串联连接。 与实施例 1 相同的是, 组合式快速合 闸开关中的同名端相反紧耦合双绕组电抗器两个绕组 L1和 L2的自感 分别为 Α和 ^, 互感为 M。 由于双绕组匝数相同, 同名端相反, 因此 h = L2 , 互感 M与 A和 £2非常接近。 同名端相反紧耦合双绕组电抗器的 第一绕组 L1先和快速合闸开关串联, 然后再和同名端相反紧耦合双绕 组电抗器的第二绕组 L2并联; 与实施例 1不同的是: 所述的同名端相 同紧耦合双绕组电抗器的第一支路 L21 和组合式快速合闸开关串联, 同名端相同紧耦合双绕组电抗器的第二支路 L22 和电容器 C串联。 在 电网系统正常运行时, 组合式快速合闸开关的电抗值 Ζ = £2, 通过合理 设计可使 为一非常大的值, 这样电流主要从同名端相同紧耦合双绕 组电抗器的第二支路 和 C组成的串联谐振支路中流过, 对电网系统
影响很小; 在电网系统发生故障短路时, 组合式快速合闸开关的电抗 变为
扁 ' 〜 ,
2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 限流器的阻抗增大而抑制短路电流, 快速合闸开关通过的 短路电流较低, 这样可以用短路电流较低的快速合闸开关, 成本降低, 而可靠性可提高。 同名端相同紧耦合双绕组电抗器和同名端相反紧耦 合双绕组电抗器均可采用空芯、 铁芯或半铁芯结构, 组合式快速合闸 开关可采用机械开关 K、 晶闸管 Τ、可控触发间隙 G和避雷器 MOV几 种开关设备中的一组或多组并联组成。 如图 8所示, 本发明实施例 3为基于二级级联结构组合式快速合 闸开关的故障电流限制器。 本发明实施例 3由常规电抗器 L、 电容器 C 和组合式快速合闸开关构成, 所述的组合式快速合闸开关由同名端相 反紧耦合双绕组电抗器和快速合闸开关组成, 两组同名端相反紧耦合 双绕组电抗器采用二级级联结构。 组合式快速合闸开关中, 第一级同 名端相反紧耦合双绕组电抗器两个绕组 L1和 L2的自感分别为 ^和 £2, 互感为 M, Ll = L2 ; 第二级同名端相反紧耦合双绕组电抗器的结构与第 一级同名端相反紧耦合双绕组电抗器类似, 第二级同名端相反紧耦合 双绕组电抗器的第一绕组 L1 1 和第二绕组 L12 的互感为 M1 ; 自感
Ln = Ll2 ; 第二级同名端相反紧耦合双绕组电抗器的第一绕组 L1 1 先和 快速合闸开关串联, 然后再和第二级同名端相反紧耦合双绕组电抗器 的第二绕组 L12 并联; 第二级同名端相反紧耦合双绕组电抗器和第一 级同名端相反紧耦合双绕组电抗器的第一绕组 L1 串联, 然后和第一级 同名端相反紧耦合双绕组电抗器的第二绕组 L2并联。 电容器 C和二级 级联结构的组合式快速合闸开关并联后再和常规电抗器 串联。在正常 工作时组合式快速合闸开关的电抗值为
^ + + Ll2 L2 + M
通过合理设计 A和 ^、 和 的数值, 可使 '为一非常大的值, 这样
电流主要从 和 c组成的串联谐振电路中流过, 对电网系统影响很小; 在电网系统发生故障短路时, 组合式快速合闸开关的电抗变为
扁 ' 〜 ,
2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 限流器的阻抗增大而抑制短路电流, 快速合闸开关通过的 短路电流可更为降低, 这样可以用短路电流更低的快速合闸开关, 成 本降低, 而可靠性可提高。 第一级同名端相反紧耦合双绕组电抗器和 第二级同名端相反紧耦合双绕组电抗器均可采用空芯、 铁芯或半铁芯 结构, 组合式快速合闸开关可采用机械开关 、 晶闸管 T、 可控触发间 隙 G和避雷器 MOV几种开关设备中的一组或多组并联组成。 需要说 明的是, 本实施例可推广至两级以上组合式快速合闸开关级联的形式, 这样快速合闸开关所承受的电流更低。 如图 9所示, 本发明实施例 4为另一种基于二级级联结构组合式 快速合闸开关的故障电流限制器。 本发明实施例 4 由同名端相同紧耦 合双绕组电抗器、 电容器 C和组合式快速合闸开关构成, 所述的组合 式快速合闸开关由同名端相反紧耦合双绕组电抗器和快速合闸开关组 成, 两组同名端相反紧耦合双绕组电抗器采用二级级联结构。 组合式 快速合闸开关中, 与实施例 3 相同的是: 第一级同名端相反紧耦合双 绕组电抗器两个绕组 L1禾卩 L2的自感分别为 Α和 £2,互感为 Μ, A = £2; 第二级同名端相反紧耦合双绕组电抗器的结构与第一级同名端相反紧 耦合双绕组电抗器类似; 第二级同名端相反紧耦合双绕组电抗器的第 一绕组 L11和第二绕组 L12的互感为 M1 ; 自感 = £12 ; 第二级同名端 相反紧耦合双绕组电抗器的第一绕组 L11 先和快速合闸开关串联, 然 后再和第二级同名端相反紧耦合双绕组电抗器的第二绕组 L12 并联; 第二级同名端相反紧耦合双绕组电抗器和第一级同名端相反紧耦合双 绕组电抗器的第一绕组 L1串联, 然后和第一级同名端相反紧耦合双绕 组电抗器的第二绕组 L2并联。 与实施例 3不同的是: 所述的同名端相 同紧耦合双绕组电抗器的一个支路 L21 和二级级联结构的组合式快速 合闸开关串联, 同名端相同紧耦合双绕组电抗器的另一个支路 L22和
电容器 C串联。 在正常工作时组合式快速合闸开关的电抗值
L{ + M + Ln L2 + M
通过合理设计 A和 ^、 和 的数值, 可使 '为一非常大的值, 这样 电流主要从同名端相同紧耦合双绕组电抗器的第二支路 和 C组成的 串联谐振电路中流过, 对电网系统影响很小; 在电网系统发生故障短 路时, 组合式快速合闸开关的电抗变为
扁 ' 〜 ,
2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 限流器的阻抗增大而抑制短路电流, 快速合闸开关通过的 短路电流更低, 这样可以用短路电流更低的快速合闸开关, 成本降低, 而可靠性可提高。 同名端相反的一级紧耦合双绕组电抗器和二级紧耦 合双绕组电抗器, 以及同名端相同的紧耦合双绕组电抗器均可采用空 芯、 铁芯或半铁芯结构, 组合式快速合闸开关可采用机械开关 K、 晶 闸管 Τ、可控触发间隙 G和避雷器 MOV几种开关设备中的一组或多组 并联组成。 如图 10所示,本发明实施例 5为一种基于两组串联结构组合式快 速合闸开关的故障电流限制器。本发明实施例 5由常规电抗器 L、 电容 器 C和组合式快速合闸开关构成, 所述的组合式快速合闸开关由同名 端相反紧耦合双绕组电抗器和快速合间开关组成, 两组组合式快速合 闸开关采用串联结构。 与实施例 3 相同的是: 第一组同名端相反紧耦 合双绕组电抗器 1 的两个绕组 L1和 L2的自感分别为 ^和£2, 互感为 M , Ll = L2 ; 第二组同名端相反紧耦合双绕组电抗器 2的结构与第一组 同名端相反紧耦合双绕组电抗器 1 类似; 第二组同名端相反紧耦合双 绕组电抗器 2 的第一绕组 L1 1 和第二绕组 L12 的互感为 M1 ; 自感
Ln = Ll2 ; 第一组同名端相反紧耦合双绕组电抗器 1的第一绕组 L1先和 第一快速合闸开关 1 串联, 然后再和第一组同名端相反紧耦合双绕组 电抗器 1的第二绕组 L2并联; 第二组同名端相反紧耦合双绕组电抗器 2的第一绕组 L1 1先和第二快速合闸开关 2串联,然后再和第二组同名
端相反紧耦合双绕组电抗器的第二绕组 L12并联。 与实施例 3不同的 是: 两组组合式快速合闸开关不采用级联方式、 而采用串联方式, 两 组组合式快速合闸开关串联后和电容器 C并联。 在正常工作时组合式 快速合闸开关的电抗值 Ζ = Α + , 通过合理设计 4和 2、 和 的数 值, 可使 '为一非常大的值, 这样电流主要从 £和(:组成的串联谐振支 路中流过, 对电网系统影响很小; 在电网系统发生故障短路时, 组合 式快速合闸开关的电抗变为
L"—. L「M n -Mx
2 2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 限流器的阻抗增大而抑制短路电流, 快速合闸开关通过的 短路电流较低, 这样可以用短路电流较低的快速合闸开关, 成本降低, 而可靠性可提高。 另外, 由于采用两组组合式快速合闸开关串联结构, 每组快速式合闸开关的电压也可降低。 第一组同名端相反紧耦合双绕 组电抗器 1 和第二组同名端相反紧耦合双绕组电抗器 2均采用空芯、 铁芯或半铁芯结构, 第一快速合闸开关 1可采用机械开关 Kl、 晶闸管 Tl、 可控触发间隙 G1和避雷器 MOV1几种开关设备中的一组或多组 并联组成, 第二快速合闸开关 2也可采用机械开关 Κ2、 晶闸管 Τ2、 可 控触发间隙 G2和避雷器 MOV2几种开关设备的一组或多组并联组成。 需要说明的是, 本实施例可推广至两组以上组合式快速合闸开关串联 的形式, 这样每一组组合式快速合闸开关所承受的电压更低。 如图 1 1所示,本发明实施例 6为另一种基于两组串联结构组合式 快速合闸开关的故障电流限制器。 本发明实例 6 由同名端相同紧耦合 双绕组电抗器、 电容器 C和组合式快速合闸开关构成, 所述的组合式 快速合闸开关由同名端相反紧耦合双绕组电抗器和快速合闸开关组 成, 两组组合式快速合闸开关采用串联结构。 组合式快速合闸开关中, 与实施例 5相同的是: 第一组同名端相反紧耦合双绕组电抗器 1 的两 个绕组 L1和 L2的自感分别为 Α和 £2, 互感为 M, Ll = L2 ; 第二组同 名端相反紧耦合双绕组电抗器 2 的结构与第一组同名端相反紧耦合双 绕组电抗器 1 类似; 第二组同名端相反紧耦合双绕组电抗器 2的第一
绕组 Ll l和第二绕组 L12的互感为 M1 ; 自感^ = £12 ; 第一组同名端相 反紧耦合双绕组电抗器 1的第一绕组 L1先和第一快速合闸开关 1串联, 然后再和第一组同名端相反紧耦合双绕组电抗器 1 的第二绕组 L2 并 联; 第二组同名端相反紧耦合双绕组电抗器 2的第一绕组 L1 1 先和和 第二快速合闸开关 2 串联, 然后再和第二组同名端相反紧耦合双绕组 电抗器 2的第二绕组 L12并联。 与实施例 5不同的是: 所述的同名端 相同紧耦合双绕组电抗器的一个支路 L21 和串联结构的两组组合式快 速合闸开关串联, 同名端相同紧耦合双绕组电抗器的另一个支路 L22 和电容器 C串联。 在正常工作时两组组合式快速合闸开关的电抗值
L' = Ll + Ln , 通过合理设计 ^和£2、 和 £22的数值, 可使 为一非常大 的值, 这样电流主要从同名端相同紧耦合双绕组电抗器的第二支路 和 C组成的串联谐振电路中流过, 对电网系统影响很小; 在电网系统发 生故障短路时, 两组组合式快速合闸开关的电抗变为
L"—. L「M | L^ -M,
2 2
为一非常小的电抗值;故障电流从电容器 C支路转移到组合式快速合闸 开关支路, 限流器的阻抗增大而抑制短路电流, 快速合闸开关通过的 短路电流较低, 这样可以用短路电流较低的快速合闸开关, 成本降低, 而可靠性可提高。 另外, 由于采用两组组合式快速合闸开关串联结构, 每组快速式合闸开关的耐受电压也可降低。 第一组同名端相反紧耦合 双绕组电抗器 1 和第二组同名端相反紧耦合双绕组电抗器 2均采用空 芯、 铁芯或半铁芯结构, 第一快速合闸开关 1可采用机械开关 Kl、 晶 闸管 Tl、 可控触发间隙 G1和避雷器 MOV1几种开关设备中的一组或 多组并联组成,第二快速合闸开关 2也可采用机械开关 Κ2、晶闸管 Τ2、 可控触发间隙 G2和避雷器 MOV2几种开关设备的一组或多组并联组 成。 需要说明的是, 本实施例也可推广至两组以上组合式快速合闸开 关串联的型式, 这样每一组组合式快速合闸开关所承受的电压更低。
Claims
1. 一种基于组合式快速合闸开关的故障电流限制器,其特征在于, 所述的故障电流限制器由常规电抗器或同名端相同紧耦合电抗器、 电 容器 (C ) 和组合式快速合闸开关构成; 所述的组合式快速合闸开关与 电容器 (C ) 先并联再与常规电抗器 (L) 串联, 或者同名端相同紧耦 合双绕组电抗器的一个支路 (L21 ) 与组合式快速合闸开关串联, 同名 端相同紧耦合双绕组电抗器的另一个支路 (L22 ) 与电容器 (C ) 串联。
2. 按照权利要求 1所述的故障电流限制器, 其特征在于, 所述的 组合式快速合闸开关由同名端相反紧耦合双绕组电抗器和快速合闸开 关组成; 所述的同名端相同紧耦合双绕组电抗器由第一绕组、 第二绕 组和矩形的空芯、 闭合或半闭合铁芯组成, 所述的第一绕组和第二绕 组的匝数相同, 以并联方式绕制在芯柱上; 组成所述的组合式快速合 闸开关的同名端相反紧耦合双绕组电抗器由第一绕组、 第二绕组和矩 形的空芯、 闭合或半闭合铁芯组成, 所述的第一绕组和第二绕组的匝 数相同, 以反并联方式绕制在芯柱上; 所述的故障电流限制器串联在 电网系统中。
3. 按照权利要求 1所述的故障电流限制器, 其特征在于, 所述的 组合式快速合闸开关与电容器 (C) 先并联再与常规电抗器 (L) 串联; 在正常工作时, 组合式快速合闸开关呈大阻抗状态, 电流主要从常规 电抗器 (L) 和电容器 (C) 串联组成的电路中流过, 常规电抗器 (L) 和电容器(C)组成串联谐振电路呈低阻抗状态, 对电网系统影响很小; 在电网系统发生故障短路时, 组合式快速合闸开关呈小阻抗状态, 短 路电流从电容器 (C ) 支路转移到快速合闸开关支路, 整个电网系统的 阻抗增加, 短路电流下降。
4. 按照权利要求 1所述的故障电流限制器, 其特征在于, 所述的
故障电流限制器中,同名端相同紧耦合双绕组电抗器的一个支路(L21 ) 与组合式快速合闸开关串联, 同名端相同紧耦合双绕组电抗器的另一 个支路 (L22 ) 与电容器 (C ) 串联; 在正常工作时, 组合式快速合闸 开关呈大阻抗状态, 电流从电抗器支路 (L22) 和电容器 (C ) 串联组 成的电路中流过, 电抗器支路 (L22) 和电容器 (C ) 组成串联谐振电 路, 呈低阻抗状态, 对电网系统影响很小; 在电网系统发生故障短路 时, 组合式快速合闸开关呈小阻抗状态, 短路电流从电容器 (C) 支路 转移到快速合闸开关支路, 整个电网系统的阻抗增加, 短路电流下降。
5. 根据权利要求 1或 2所述的故障电流限制器, 其特征在于, 所 述的组合式快速合闸开关由同名端相反的紧耦合双绕组电抗器和快速 合闸开关组合而成, 所述紧耦合双绕组电抗器的第一绕组 (L1 ) 先和 快速合闸开关串联, 然后和第二绕组 (L2 ) 并联; 所述的快速合闸开 关由机械开关(K)、晶闸管(T)、可控触发间隙(G)和避雷器(MOV) 中的一组或多组并联组成; 在短路故障时, 所述的快速合闸开关实现 对紧耦合双绕组电抗器第一绕组 (L1 ) 的合闸; 在第一绕组 (L1 ) 接 通后, 紧耦合双绕组电抗器的第一绕组 (L1 ) 和第二绕组 (L2 ) 产生 的电抗互相抵消, 总电抗减小。
6. 根据权利要求 1或 2所述的故障电流限制器, 其特征在于, 所 述组合式快速合闸开关中, 同名端相反的紧耦合双绕组电抗器采用二 级级联方式连接, 二级紧耦合双绕组电抗器的第一绕组 (L11 ) 和快速 合闸开关先串联, 然后所述的第一绕组 (L11 ) 和第二绕组 (L12 ) 并 联; 所述的二级紧耦合双绕组电抗器与一级紧耦合双绕组电抗器的第 一绕组 (L1 ) 串联, 然后和第二绕组 (L2 ) 进行并联; 所述的快速合 闸开关由机械开关 (K) 、 晶闸管 (T) 、 可控触发间隙 (G) 和避雷 器 (MOV) 中的一组或多组并联组成; 在短路故障时, 快速合闸开关 实现对二级紧耦合双绕组电抗器第一绕组 (L11 ) 的合闸; 在二级紧耦 合双绕组电抗器的第一绕组 (L11 ) 导通后, 一级紧耦合双绕组和二级 紧耦合双绕组电抗器各支路绕组产生的电抗互相抵消, 总电抗减小。
7. 根据权利要求 1或 2所述的故障电流限制器, 其特征在于, 所 述组合式快速合闸开关中, 同名端相反的紧耦合双绕组电抗器采用两 组串联结构; 第一组紧耦合双绕组电抗器的第一绕组 (L1) 先和第一 快速合闸开关串联, 然后再和第二绕组 (L2) 并联; 第二组紧耦合双 绕组电抗器的第一绕组 (L11) 先和第二快速合闸开关串联, 然后再和 第二绕组 (L12) 并联; 所述的第一快速合闸开关由机械开关 (K1) 、 晶闸管 (T1) 、 可控触发间隙 (G1) 和避雷器 (MOV1) 中的一组或 多组并联组成, 第二快速合闸开关由机械开关 (K2) 、 晶闸管 (T2) 、 可控触发间隙 (G2) 和避雷器 (MOV2) 中的一组或多组并联组成; 在短路故障时, 快速合闸开关实现对第一组紧耦合双绕组电抗器第一 绕组 (L1) 和第二组紧耦合双绕组电抗器第一绕组 (L11) 的合闸; 在 两组紧耦合双绕组电抗器的第一绕组 (L1) 和 (L11) 均导通后, 两组 电抗器各支路绕组产生的电抗互相抵消, 总电抗减小。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310007027.9 | 2013-01-09 | ||
CN201310007027.9A CN103078306B (zh) | 2013-01-09 | 2013-01-09 | 一种基于组合式快速合闸开关的故障电流限制器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014108010A1 true WO2014108010A1 (zh) | 2014-07-17 |
Family
ID=48154755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/089000 WO2014108010A1 (zh) | 2013-01-09 | 2013-12-10 | 一种基于组合式快速合闸开关的故障电流限制器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103078306B (zh) |
WO (1) | WO2014108010A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108092250A (zh) * | 2017-12-20 | 2018-05-29 | 南京南瑞继保电气有限公司 | 一种故障限流设备及控制方法 |
CN111525501A (zh) * | 2020-05-28 | 2020-08-11 | 中国科学院电工研究所 | 一种模块化大容量限流断路器 |
CN117240183A (zh) * | 2023-08-11 | 2023-12-15 | 安徽合凯电气科技股份有限公司 | 一种大型电动机防电压暂降装置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078306B (zh) * | 2013-01-09 | 2015-01-21 | 中国科学院电工研究所 | 一种基于组合式快速合闸开关的故障电流限制器 |
CN103956719B (zh) * | 2014-03-26 | 2017-04-05 | 中国科学院电工研究所 | 一种多柱组合式超导阻感型限流器 |
CN103887782B (zh) * | 2014-04-11 | 2017-09-22 | 武汉大学 | 一种混合型磁通耦合超导故障限流器及限流方法 |
CN104134979B (zh) * | 2014-07-18 | 2017-02-15 | 中国科学院电工研究所 | 一种谐振式超导短路故障限流器 |
CN104377695B (zh) * | 2014-11-20 | 2017-11-14 | 清华大学 | 一种串联电容补偿装置、输电电路和抑制trv的方法 |
US10177557B2 (en) * | 2015-06-12 | 2019-01-08 | Abb Schweiz Ag | Passive electronic fuse for protecting a DC application |
US10447031B2 (en) * | 2016-10-31 | 2019-10-15 | Varian Semiconductor Equipment Associates, Inc. | Fault current limiter with modular mutual reactor |
CN107248730B (zh) * | 2017-08-14 | 2020-04-03 | 广东电网有限责任公司电力科学研究院 | 柔性直流输电系统的短路保护电路 |
CN107863765B (zh) * | 2017-11-06 | 2019-07-09 | 山东大学 | 改进电弧电流转移型交流故障限流器及限流方法 |
CN108767833A (zh) * | 2018-07-27 | 2018-11-06 | 国电南瑞科技股份有限公司 | 单相磁约束型故障电流限制器 |
CN111541230B (zh) * | 2020-04-20 | 2022-04-19 | 国网新疆电力有限公司塔城供电公司 | 一种涌流过电压治理装置及治理方法 |
CN112366668B (zh) * | 2020-11-16 | 2022-08-09 | 中国科学院电工研究所 | 一种低损耗分裂电抗型限流断路器 |
CN112952783B (zh) * | 2021-02-04 | 2022-08-09 | 中国科学院电工研究所 | 一种交流短路故障限流器 |
CN113224739B (zh) * | 2021-04-19 | 2024-02-09 | 国网江苏省电力有限公司检修分公司 | 一种同步调相机接地线接地时刻的限流装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5957524A (ja) * | 1982-09-25 | 1984-04-03 | Mitsubishi Electric Corp | 交流限流形半導体しや断器 |
CN201887453U (zh) * | 2010-11-29 | 2011-06-29 | 山东电力研究院 | 故障限流器 |
CN102646968A (zh) * | 2012-05-04 | 2012-08-22 | 中国科学院电工研究所 | 一种电抗器型短路故障限流器 |
CN103078306A (zh) * | 2013-01-09 | 2013-05-01 | 中国科学院电工研究所 | 一种基于组合式快速合闸开关的故障电流限制器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158864A (en) * | 1977-07-05 | 1979-06-19 | Electric Power Research Institute, Inc. | Fault current limiter |
CN2674738Y (zh) * | 2004-02-19 | 2005-01-26 | 山东大学 | 一种故障电流限制器 |
CN101982916A (zh) * | 2010-11-29 | 2011-03-02 | 山东电力研究院 | 故障限流器 |
CN102231515B (zh) * | 2011-07-11 | 2013-11-13 | 中电普瑞科技有限公司 | 一种串联电容器装置的控制保护方法、装置与系统 |
CN102790382B (zh) * | 2012-07-19 | 2014-12-24 | 中国科学院电工研究所 | 一种限流软开断装置 |
-
2013
- 2013-01-09 CN CN201310007027.9A patent/CN103078306B/zh not_active Expired - Fee Related
- 2013-12-10 WO PCT/CN2013/089000 patent/WO2014108010A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5957524A (ja) * | 1982-09-25 | 1984-04-03 | Mitsubishi Electric Corp | 交流限流形半導体しや断器 |
CN201887453U (zh) * | 2010-11-29 | 2011-06-29 | 山东电力研究院 | 故障限流器 |
CN102646968A (zh) * | 2012-05-04 | 2012-08-22 | 中国科学院电工研究所 | 一种电抗器型短路故障限流器 |
CN103078306A (zh) * | 2013-01-09 | 2013-05-01 | 中国科学院电工研究所 | 一种基于组合式快速合闸开关的故障电流限制器 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108092250A (zh) * | 2017-12-20 | 2018-05-29 | 南京南瑞继保电气有限公司 | 一种故障限流设备及控制方法 |
CN108092250B (zh) * | 2017-12-20 | 2023-05-12 | 南京南瑞继保电气有限公司 | 一种故障限流设备及控制方法 |
CN111525501A (zh) * | 2020-05-28 | 2020-08-11 | 中国科学院电工研究所 | 一种模块化大容量限流断路器 |
CN111525501B (zh) * | 2020-05-28 | 2022-05-27 | 中国科学院电工研究所 | 一种模块化大容量限流断路器 |
CN117240183A (zh) * | 2023-08-11 | 2023-12-15 | 安徽合凯电气科技股份有限公司 | 一种大型电动机防电压暂降装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103078306A (zh) | 2013-05-01 |
CN103078306B (zh) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014108010A1 (zh) | 一种基于组合式快速合闸开关的故障电流限制器 | |
WO2013163853A1 (zh) | 一种电抗器型短路故障限流器 | |
CN102790382B (zh) | 一种限流软开断装置 | |
US9331476B2 (en) | Solid state fault current limiter | |
CN103647248B (zh) | 一种高压直流快速断路器 | |
WO2015081615A1 (zh) | 一种直流断路器 | |
CN105409079A (zh) | 限流电抗器装置 | |
CN110265982A (zh) | 一种基于lc缓冲限流电路的混合式直流断路器 | |
Yang et al. | Air-core-transformer-based solid-state fault-current limiter for bidirectional HVdc systems | |
CN102684179A (zh) | 一种混合型短路故障限流器 | |
CN102779667B (zh) | 一种有载分接开关 | |
Song et al. | A novel low-loss bidirectional T-source circuit breaker with physical isolation for low-voltage DC distribution network | |
JP2012505634A (ja) | 超電導限流器 | |
Ren et al. | Techno-economic evaluation of a novel flux-coupling type superconducting fault current limiter | |
CN103414175A (zh) | 一种短路故障限流器 | |
WO2012092698A1 (zh) | 一种三相电流限制装置及方法 | |
CN109193739B (zh) | 一种基于换流站的直流转换开关电路与直流输电系统 | |
CN110880746A (zh) | 一种无源式柔性直流电网故障限流器及其控制方法 | |
Yu et al. | A novel current-limiting hybrid DC breaker based on thyristors | |
Larruskain et al. | Fault current limiting in VSC-HVDC systems with MMC converters | |
CN105356434A (zh) | 一种新型桥式固态故障电流限制器及其使用方法 | |
CN205178490U (zh) | 一种新型桥式固态故障电流限制器 | |
CN115663757A (zh) | 一种限流式混合直流断路器 | |
US20180123338A1 (en) | Fault current limiter with modular mutual reactor | |
CN208623324U (zh) | 单相磁约束型故障电流限制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13870910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13870910 Country of ref document: EP Kind code of ref document: A1 |