WO2014107119A1 - Analyse d'objets de données complexes et de systèmes à plusieurs paramètres - Google Patents
Analyse d'objets de données complexes et de systèmes à plusieurs paramètres Download PDFInfo
- Publication number
- WO2014107119A1 WO2014107119A1 PCT/RU2013/001211 RU2013001211W WO2014107119A1 WO 2014107119 A1 WO2014107119 A1 WO 2014107119A1 RU 2013001211 W RU2013001211 W RU 2013001211W WO 2014107119 A1 WO2014107119 A1 WO 2014107119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- axes
- dimension
- display output
- generating
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
- G09G5/06—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/206—Drawing of charts or graphs
Definitions
- the present disclosure relates to computerized system for visualization and analysis of complex data objects including multiple related parameters.
- dynamic visualization refers to visualization of input data representing an object in an N-dimensional domain space, including displaying the object data in a window of a display screen as a model for the object in a three or two-dimensional subspace of N-dimensional space according to geometry of the subspace and the object itself, changing the object and viewing the changes in the window of the display.
- Such visualization may be useful for discerning details about the object's features based on the display and observable changes in it.
- Another method for dynamic visualization of object data representing an object in N-dimensional domain space includes displaying object data in a window of a display screen as object's model in three-dimensional or two- dimensional sub-space of N-dimensional space according geometry of the sub-space and object, with alternation of data about object's geometry and displaying this alternation on screen.
- the display screen has at least one additional window for displaying of object data in another sub-space of N-dimensional space in addition to the first window. Alternation of visual representation in first window causes alternation of object representation in the additional window.
- these methods may suffer from certain disadvantages. For example, prior art methods do not permit visualization of a complex object characterized by data in the object's N- dimensional space as a whole.
- Hierarchical data organization and filtering of information to be displayed is an existing tactic used to display smaller subsets of data.
- simple tree-like hierarchical structures with a single tree branch selection are proposed to date.
- the present technology enables visualization and analysis of state and forecast of development of a multiple-object, multiple-parameter system.
- a computer is used to facilitate analysis and forecast of complex multiple-objects and multiple-parameters systems development by a human user.
- the computer displays information about the system on a display screen in the form of three-dimensional axonometric space with the mutually perpendicular axes, each being a respective one of an object axis, a parameter axis, and a time axis.
- the object-parameter-time space is referred to herein as a "data space” or data "cube.”
- the computer may also display information about the system on a display screen with the geographic coordinates and time as axes.
- the object-parameter-time space and coordinates-time space may be displayed while filtering selected data from appearing in the display.
- data values may be reordered along the axes to display what is referred to herein as "process bodies".
- the computer provides a user interface that enables control of the display and access to data by dividing the displayed data space by slices for each object, parameter, or time unit along the axes.
- the computer serves data slices in the form of tables, graphs, or diagrams in response to user interactions with a displayed data space, at a rate set by an analyst and not less than the maximum rate of acquisition of information for a human brain.
- the computer also enables rapid navigation through related data spaces using predetermined hierarchical relationships between , parameters and objects.
- the computer may generate a display output depicting the lower-order cubic data space defined by the first data point and having three mutually perpendicular axes comprising a lower-order object axis, a lower-order parameter axis, and a time axis. Relationships between higher-order spaces and lower-order spaces are defined according to a hierarchy or related spaces.
- the computer may generate a display output depicting a two-dimensional data slice parallel to any two of the mutually perpendicular axes defined by the second data point. So the system provides two distinct kinds of navigating through a data spaces, depending on the status of the selected data axis; namely, whether or not the selected axis is related to a lower-order cubic data space.
- the system enables analysis of any displayed data space by applying logical and mathematical operations to displayed values in response to user input.
- the visualization and analysis system also enables forecast of a data space's future development by extrapolation of features and properties visualized for past time points of the time axis into future time points.
- Fig. 1A is a perspective view of a conceptual three-dimensional axonometric data space with mutually perpendicular object, parameter, and time axes used for display of system data.
- Fig. 1 B is an alternative view of the data space display of Fig. 1 , showing additional detail in discrete data planes.
- Fig. 2 is a block diagram showing elements of a computer system suitable for implementing methods as described herein.
- Fig. 3A is a conceptual diagram showing examples of a hierarchy of data spaces (lower-order spaces and higher-order spaces).
- Fig. 3B is a conceptual diagram showing an example graph connecting various data spaces.
- Fig. 3C is a conceptual diagram showing an example evolution of volumetric display outputs with the change of time.
- Fig. 3D is a conceptual diagram showing an example of evolution of display outputs for a set of data sets, which is conceptually similar to the evolution illustrated by Fig. 3C.
- Fig. 3E is an example set of display outputs for a corresponding set of data sets.
- Fig. 4 is a screenshot showing an example of a user interface for selecting ones of hierarchically ordered object spaces for display.
- Fig. 5 is a screenshot showing an example of a user interface for setting parameters of a numerical filter to be applied to a data display.
- Figs. 6A-B are screenshots showing examples of geometric map tools for object selection.
- Fig. 7 is a screenshot showing an example of a user interface for setting up a data forecast analysis.
- Figs. 8A-B are screenshots showing examples of output from a data forecast operation and user interface for display of the output.
- Fig. 9 is a screenshot showing an example of a user interface for selection and display of data slices and slice data in tabular form.
- Fig. 10 is a screenshot showing an example of a user interface for selecting a color palette for display of data values.
- Fig. 11 is a screenshot showing an example of a user interface for displaying and interacting with an object table with a data space showing slices in a data space.
- Fig. 12 is a screenshot showing an example of a user interface for displaying and interacting with object and parameter definitions for an extrapolated future slice with a display of a 3D data space.
- Fig. 13A is a screenshot showing an example of a user interface for controlling a color palette with a display of a multiple-object, multiple parameter 3D data space.
- Fig. 13B-D are screenshots showing example process bodies for forecasted, actual, and forecasted difference actual data sets.
- Fig. 14 is a screenshot showing an example of a user interface for displaying an interacting with 2-D slice from the 3D data space shown in Fig. 13.
- Figs. 15 and 16 are screenshots showing examples of a user interface for displaying and interacting with a 2-D data table including both numerical and graphical displays.
- Figs. 17 and 18 are screenshots showing examples of a user interface for generating and interacting with charts using system data values.
- Fig. 19 is a screenshot showing an example of a user interface for defining a data group and numerical operation for system data.
- Fig. 20 is a screenshot showing an example of a user interface for displaying results of a numerical analysis of system data.
- Fig. 21 is a flow chart showing an example of a method for data visualization and analysis.
- an interactive computer system for presenting information from a data system in a figurative visualized form 100 on a computer display, as shown in Fig. 1.
- the display 100 uses a number of display dimensions not less than three realized in the form of 3D cube.
- the computer system places on respective axes (I, II, and III) of the cube data according to the following classifications: a list of the objects making system (an objective axis - 1), a list of parameters for each object (a parametrical axis - II) and time (an event-time axis - III).
- the computer system enables selection of information for analysis - for example, extrapolated forecasts -- performed by slicing the cube using data planes (slices) 101 , 102 and 103 perpendicular to cube axes, each of which represents a table of numbers combined with color diagrams for data along the two axes parallel to the data plane.
- data plane 101 represents a slice or table for a single parameter, showing data for multiple objects and time values
- the data plane 102 represents a slice or table for a single object, showing data for multiple parameters and time values
- the data plane 103 represents a slice or table for a single time value, showing data for multiple parameters and objects.
- Fig. 2 shows a stack of time slices 103 for the display 100.
- Each time slice includes multiple parameter values Pn . . . PNM corresponding to the multiple objects Oi . . O and multiple parameters Pi . . P M .
- the data value Pi 2 104 is the value for the parameter P 2 or object O 1 at the time indicated at time slice tk.
- Viewing of the loaded numerical data may be realized using slices and 2-D windows.
- a slice is a two- dimensional selection from a cube along one of three axes
- a 2-D window is a slice opened in the form of a separate window.
- a slice presented as numerical values in tabular form may be referred to as a slice table.
- a data space with axes "Objects”, “Parameters”, “Time” is formed using the program and the loaded numerical data are transformed into a data cube.
- Each point of a cube has co-ordinates Object, Parameter, Time point (e.g., date or hour).
- Time point e.g., date or hour.
- the cube either contains a sign of absence of data, or has exact numerical value, which is the value of the parameter for the object for the indicated time.
- a data space formed by geographic coordinates and time may be formed and displayed in the same way as the data space with axes "Objects", “Parameters”, “Time” described above, and can be based on the same data set wherein geographic coordinates are also used as parameters.
- the axes will be time and geographic coordinates such as, for example: 1 ) x, indicating a distance along some line, for example a pipeline, a river, or any other line; 2) x and y indicating objects or object properties on a two-dimensional surface such as the earth surface; and 3) x, y, and z indicating objects or object properties in a 3D space such as oil deposits under the earth surface.
- a 4-dimensional data space formed by time and 3Dimensional geographic coordinates may be be displayed as an animated 3D cube where displayed values change over time or as a set of 3Dimensional cubes displayed for a discrete number of time values.
- the computer may display values as a color selected from a color spectrum occupying a corresponding region of space.
- An example of this form of display is shown in Fig. 13.
- Figs. 1 and 2 are conceptual diagrams and are not intended to illustrate actual displays produced by the computer systems, although the system may be configured to generate such displays 100 if desired.
- Data may be represented by numerical values where it is possible (for example, in the slice table) and using color-mapping, that is using representation of numbers by the color selected from a palette of colors when displaying in graphical form.
- Slices are defined in response to user input, including for example either or both of keyboard or pointer input.
- the computer system may be programmed to respond to user input to model movement of a slice indicator along cube axes for data selection of one or more slices; addition, subtraction, division, multiplication or other operations for data contained in multiple selected slices; comparison of data in multiple slices; definition of relations of each slice to a slice for a defined time point; definition of relations in percentage in percentage terms; differentiation of slices with respect to time or other parameter; or other operations.
- a stack of slices represents a data matrix, and operations may be performed on corresponding cells, or any useful matrix operation performed on the matrix defined by a slice stack.
- Control of speed of feeding and perception of information at a rate comfortable for the researcher may be performed in response to user input, for example, in response to movement of a mouse or other pointing device.
- the system responds to user input to enable complex visualization independently of the type of the analyzed information by fast visualization of its parts in a table, graph or volumetric form. This enables the data researcher to construct an analysis on the basis of simple and intuitive approaches and procedures, providing near-immediate feedback to the researcher by data transformation with simultaneous visualization of the subject data.
- FIG. 2 shows elements of a computer system 200 suitable for implementing methods as described herein.
- a computer 202 comprises at least a processor 204 coupled to a memory 206.
- the memory may hold program instructions that when executed by the processor cause the computer to perform steps of methods as described herein.
- the processor may comprise multiple processing components, for example multiple processing units or a central processing unit couple to a graphics processor and other processors. Any suitable single processor or combination of processors may be used. Multiple computers 202 working in cooperation may also be used.
- the processor 204 may be coupled to a display device 210 via any suitable interface and connection as known in the art.
- the display device may receive a digital video signal from the processor 204 and use it to provide a computer graphical display using a LCD screen, CRT, projector or other display modality.
- the processor may further be coupled to an input device 208 or multiple input devices; for example, a keyboard, touchscreen interface, pointing device, microphone, motion sensor, or other input device.
- the input device 208 acts as a transducer to convert physical input by a user into digital electronic signals for processing by the processor 204.
- the processor 204 may be coupled to a media interface 214; for example, a media reader such as an optical disc drive, magnetic media reader or portable electronic memory interface.
- the media interface 214 may enable the processor to access data and/or program instructions encoded on a computer-readable medium 220; for example an optical, magnetic, or electronic medium.
- System 200 is useful for processing massive amounts of data.
- the processor 204 is operatively coupled to a data storage resource 212; for example, a data server or server farm, a cloud computing resource, or a data storage device.
- Data 218 may be added to the data storage resource 212 independently of processor 204 via one or more interfaces 216.
- data provided to processor 204 may be added to the data store 212.
- External data 218 may be organized through a variety of methods. Typically, but not exclusively, data is organized in a relational database. However, data may be organized in any useful data structure and access to the data for the visualization engine 202 may be provided in any suitable manner.
- data is comprised primarily of parameter values, comprising, spatial, non-spatial, material and/or non-material characteristics of objects parameters.
- Each parameter value is associated with an object and with a parameter for the object, and with a time value, which may represent a time of measurement or recording of the value.
- the system enables the user to select a number and arrangement of researched objects depending on an object in view, for example, in the scope of the subject of the federation, company, deposit, branch of industry, and so forth.
- data loaded into the system represents information on behavior of so- called objects in time.
- Objects may be various by nature depending on subject space. They may be, for example, goods, contracts of rent, wells, people, insurance policies, and so forth.
- Objects may possess classification properties not changing in time which are referred to herein as characteristics.
- a characteristic may be an accessory to "group of the goods"; for wells, a characteristic may be a territorial arrangement, appointment; for people, a characteristic may be a nationality or gender. Stability of characteristics in time may not always be assumed, even for a nationality and a gender, and whether or not a value is considered characteristic may depend on the task at hand.
- parameters refer to values that vary with time.
- parameters may comprise “price”, “quantity” and so forth; for wells, parameters may comprise “oil recovery”, “load waters” and so forth; and for people, parameters may comprise “weight”, “temperature”, “salary” and so forth.
- Change of parameters for objects over time may be defined by additional data.
- values of parameters of goods during different periods of time depend also on different locations where the goods are.
- Values of parameters of wells during various periods of time may be additionally defined, for example, by a reservoir from which the well extracts.
- Such additional data may be referred to herein as data attributes.
- Both objects and parameters may be arranged on corresponding axes in various orders.
- objects may be arranged in alphabetic order or on increase (decrease) of parameter values.
- Parameters may be arranged in an order defined in response to user input. Such ordering may be referred to as sorting.
- a user may select goods relating to one group, or same-gender people. Or a user may select wells, which have extracted oil not less than a preset value, for the specified period of time. Such selections are referred to herein as filters.
- Objects may have hierarchical relationships to one another.
- Fig. 3A is a conceptual diagram showing how the system may organize objects in hierarchies 300 that appear in various 3D data space displays 302-314 of a data system.
- the object axis is drawn horizontally, the time axis vertically and the parameter axis downward to the left.
- a high level object classification may comprise, for example, countries. Therefore the data space 302 may be displayed with a list of country identifiers along the object axis, labels for country parameters along the parameter axis and time values along the time axis.
- Data may by displayed in volumetric cells using a color coding scheme, as described more fully elsewhere herein.
- the top-level volumetric data space 302 is associated with a lower-order data space via the object axis. Selection of a point along the object access by user input amounts to selection of one of the listed objects, for example, a country such as the Russian Federation ("RF").
- RF Russian Federation
- the computer may generate a data slice perpendicular to the object access (e.g., a time-parameter table for the selected object), or provided that the object is associated with a lower-order volumetric data space, a new display of the lower-order space 304.
- Selection of one of these options may be determined in response to additional user input; for example, selection of a menu item prior to the object selection or activation of a designated control key on an input device while selecting the option.
- selection of the option may depend solely on the available data, for example, whether or hot a lower-order volumetric data space is associated with and available for the . selected object.
- the computer selectively displays one of the 2-D slice or the 3D lower-order space in response to selection of an object, depending on at least one of additional user input or data available for the object.
- the lower-order volumetric space 304 is populated by multiple objects that are included in the higher-order selected object from space 302.
- the selected country object "Russian Federation" includes multiple subjects (a.k.a provinces) within itself.
- Each of the plural subject objects is likewise associated with plural parameters in the lower order space 304.
- this sort of containment relationship between higher and lower order objects provides a logical basis for an object hierarchy, which is consistent for the examples shown in Fig. 3A.
- the technology is not limited thereby; all that is required is that a plural number of lower- order objects be associated with each higher-order object in a hierarchy.
- volumetric data space 302 may be associated with a lower-order volumetric space 306 populated by plural industry type objects (e.g., oil, agriculture, steel making, etc.) having plural industry parameters.
- industry type objects e.g., oil, agriculture, steel making, etc.
- industry objects in data space 306 may be associated with a lower-order volumetric data space 308 populated by company objects having plural company parameters.
- company objects may be associated with a lower-order volumetric data space 310 populated by oil deposit objects having plural deposit parameters.
- Fig. 3A illustrates the enormous amount of data that can be rapidly navigated and visualized using hierarchically linked volumetric data spaces (e.g., spaces 302-314) together with the innovative use of the computer to selectively display one of the 2-D slice or the 3D lower-order space in response to selection of a data point on an axis, depending on at least one of additional user input or data available for the data point.
- hierarchically linked volumetric data spaces e.g., spaces 302-314
- objects can form hierarchies that follow any directed graph allowing one or multiple ways to go up from each 3D data space display and go down from each object used on any 3D data space display. Going down can be based on the object hierarchy or based on the object's properties hierarchy.
- Such a directed graph can form cycles one example of which is illustrated in Fig. 3B.
- Data space depicted at 322 lists countries as objects. Following Russia to "Kinds of Industry" at data space 324 selecting “Oil”, selecting “Lukoil” from “Oil Companies” of Russia data space 326, selecting “West Qurna” from Lukoil "Deposits" data space 328, we reach data space 330 with individual wells as objects.
- This graph connecting each object with none, one, or multiple data spaces and each data space with none, one, or multiple objects can be constructed manually or automatically.
- One example of such automation may be based on general hierarchical rules for certain object property types (such as for geographic coordinates). If a set of objects has geographic coordinates x and y on the earth's surface and there exists a mapping of coordinates to named geographic areas that are also objects such as countries or continents it is possible to automatically classify objects of any type based on their coordinates.
- the mapping can be, in turn, defined in advance such as geometric shapes on earth that match an Object in question with each country defined by the shape if object's in question coordinates fall inside of the matching shape.
- each oil well, each deposit, and each oil company can be assigned to a country data space 322 based on their coordinates (for example, coordinates of the main office in case of oil companies).
- Such graph construction can be performed in advance or on-demand. For example, by selecting Russia from the data space 322 the existence of the option to follow the graph to data spaces with deposits can be calculated after Russia is selected.
- Fig. 3C shows an example evolution 350 of a volumetric data space in time.
- three data displays 351 , 352, 353 are shown with orthogonal geographic coordinate axes ⁇ , ⁇ , ⁇ for three values of time: t
- Three-dimensional slices 354 show alternative representations for selected values of time (t) or Cartesian space coordinate value (X, Y or Z).
- Two dimensional slices 355 may be used to provide a graphical display over any selected two- coordinate spaces, and corresponding numerical values of the displayed parameter (P) may be displayed using tabular views 356.
- each of the 2D graphs 355 and corresponding one of the tables 356 is provided in a corresponding one of the text boxes underneath the tables 356.
- Any of the foregoing three- dimensional representations 354 may be displayed as projections on a display device using a computer graphics processor, and manipulated in response to user input.
- the two-dimensional or tabular views 355, 356 may similarly be output on a computer display and manipulated.
- Fig. 3D shows how the same organizing principles may be applied to an evolution 360 in an object-parameter space (OPS) of knowledge areas including a set of displayed data sets 361 , 363, 363 with the time, object, and parameter axes for data sets characterized by respective knowledge areas Y 2 , Y 3 .
- OPS object-parameter space
- Each of the data sets 361 , 363, 363 may be a subset of some other data set or be the same subset as some other dataset but have a different hierarchy defined, or may be an exact copy of some other subset.
- Each of the data sets 361 , 363, 363 may correspond to a knowledge area familiar to a specialist performing the data analysis.
- Three- dimensional slices 364 show alternative representations for selected values of time (t) or OPS coordinate values of objects (O), parameters (P) or knowledge areas (Y).
- Two dimensional slices 355 may be used to provide a graphical display over any selected two-coordinate portion of the OPS, and corresponding numerical values of a parameter (P) or multiple parameters may be displayed using tabular views 366.
- a brief description of each of the 2D graphs 365 and corresponding one of the tables 366 is provided in a corresponding one of the text boxes underneath the tables 366.
- Any of the foregoing three-dimensional representations 364 may be displayed as projections on a display device using a computer graphics processor, and manipulated in response to user input.
- the two-dimensional or tabular views 365, 366 may similarly be output on a computer display and manipulated.
- Fig. 3E shows a further detailed example screenshot 370 of the aforementioned displaying of multiple data sets together for several knowledge areas, in a set of windows 371 , further illustrating displays of an OPS.
- a set of data sets corresponds to countries and companies and some of their specific knowledge sub- areas.
- Figs. 4-20 depict a variety of screenshots in a windowed graphical user interface (GUI) environment.
- GUI windowed graphical user interface
- the basic window generated by a computer 202 may appear as a standard window in a standard graphical user interface.
- a main menu comprising of "Operations", "Windows” and "Help”.
- buttons of which duplicate points of the main menu In response to targeting of a user input pointer on the button there may appear information (tool tip) regarding action, which corresponds to this button.
- information (tool tip) regarding action, which corresponds to this button.
- program "desktop" In the center of the window there may appear a program "desktop", on which the windows opened during the work process may be arranged.
- a status bar On which the windows opened during the work process may be arranged.
- a bar a bar displaying a course of performance of some operation.
- data attributes described above are incorporated in the loaded data they have the fixed values at any moment of work with the program. These values may be changed.
- additional non-numerical data on which values of object parameters during any period of time depend are understood as data attributes. For example, if a person's salary is a parameter for the person "object", and it is assumed that the person can work simultaneously in several offices, the organization paying the salary to the person may be understood as a data attribute.
- Another example of a data attributes is an indicator that may be applicable in many subject fields, indicating whether the given value of a parameter is actual or look-ahead.
- the computer system may enable users to set values for data attributes in response to a menu command, keyboard command, or other user input.
- the system may cause a window (not shown) to be displayed on the client for setting data attributes.
- a window may display several lists, the number of which corresponds to the number of loaded data attributes. Each list contains two or more values for the corresponding attribute; for example, different employers for the same person as attributes for a salary parameter.
- Selection of the desired or current value of the attribute may be enabled by selection input from a pointing device or other user input indicating the desired value.
- the computer system may cause the selected attribute value to apply in all current and future data space displays.
- Lists of the loaded objects and their parameters may be viewed in windows containing corresponding tables. These tables may be generated by the computer system by applying selected filters to system data. That is, application of one or more filters by the system causes only such data as satisfies filter condition to appear in the generated tables. If filters are not applied all the data for a selected object-parameter pair and selected time may appear.
- the system may generate a window (not shown) to display tabular data with an interactive tools bar for providing user input.
- the window may include a heading a number of lines for the table, below which the table is displayed in row-column form.
- the computer system may perform, for example, the following actions: printing of information content of the window, sorting of lines of the table, filtering of data according to user-defined filtering criteria and search in the table.
- filters permit selection of a data subset for viewing or other processing according to some defined filtering criteria.
- a special case is filtering according to hierarchy, made possible because of hierarchical relationships between data spaces as described above.
- a hierarchical filter uses objects characteristics located in a certain order. Such order, as a rule, sets some classification of objects with various levels of hierarchy. For example, supposing the characteristic of deposits is in order of: 1. Federal district, 2. The oil company, 3. The subject of the Russian Federation, the system permits setting classification levels so as to first divide deposits on subjects of the Russian Federation, then on federal districts, and, at last, on oil companies.
- values of object characteristics distributed in a similar way, form a tree structure.
- Each branch of the tree represents a set of values of the object characteristics, and the branches are at different levels.
- the first level represents values of the first characteristic
- the second level represent values of the first and second characteristic, and so forth.
- the computer system may provide a hierarchical filter selection window 400, as shown in Fig. 4.
- the selection window 400 may comprise the filter tree 402 as described above.
- the window 400 may further comprise a button for changing an operating mode of the filter, a button for adjusting the filter and description of the current highlighted branch of a tree.
- the system may enable users to work with the filter one of two modes: simple and expanded.
- the window 400 may comprise a button as shown at the upper left of the window.
- the computer system enables user selection of only one unit of a tree.
- the computer system In the expanded mode, the computer system enables user selection of several units of a tree.
- the tree window 400 in this case contains a selection box near each unit for selection, as shown in the depicted tree 402. Thus, several units even of various levels may be selected at the same time. Having selected necessary units by a mouse click in a window near them, and, having pressed the button 'To apply", the computer system responds by setting the filter to the selected units.
- the structure and order of the object characteristics defining the structure of a hierarchy may be automatically configured at an initial step of data loading.
- the initial configuration may be changed using an interactive window (not shown) for adjustment of the filter which the systems may open in response to user input.
- An adjustment window may comprise, for example, a list of characteristics of objects according to the initial or current configuration.
- the arrangement and ranking of items in the hierarchy may be changed in response to user input, for example, by simple dragging of a mouse or other pointing device.
- the system may enable addition or removal from a displayed list in response to selection input.
- a user may select it in a left part of a window and to then press a button "»" to move it to the right; conversely, to remove the characteristic from the list it a user may select it in a list located to the right part of the window and then press button " «" to move it to the right.
- Parametrical filtering allows making data selections of objects in response to parameter values.
- the system enables users to select objects for which a selected parameter does not exceed a defined value.
- the user may also specify the scope of data to which the parameter filter should be applied, for example, to data for one or more periods of time.
- the parametrical filter may be controlled using a parametrical filter window 500 as shown in Fig. 5, which may be opened in response to user command input.
- a command button "Use filter” may be provided as a toggle input to indicate whether the parametrical filter should be switched on or off.
- the window 500 contains a section of conditions of the filter, the list of designations of the parameters used in a condition, a time period and a filter scope in the selection period.
- the condition may be set by expression input, for example:
- the system may enable addition of a new designation via a button "Add” as shown, for example, under the list of designations in the lower portion 504 of window 500.
- the system may generate a second input window (not shown), enabling the user to specify a line-designation of a parameter it is desired to add and to select the parameter from a list.
- the system may enable changing or removing parameters, for example via the depicted input buttons "Change” and to "Remove", enabling the user to change a designation of parameters or to select other parameters for a designation and to remove a designation from the list.
- buttons facilitating input of a condition may be provided.
- the buttons may be configured such that button selection causes the system to insert a corresponding operation into the text editor at the present cursor location.
- the window 500 may include a button, for example, one labeled "Designation,” configured such that selection of the button will cause the system to allocate the necessary line in the list of designations.
- An applicable time period may be selected by indicating a beginning and end time, as shown at the bottom of window 500. If the mode "For all time” is switched on, the values of the beginning and the end may be ignored and the parameter condition will be applied regardless of time period.
- the window 500 may further comprise an area or action field for selecting one of two values "AH" and "At least one," as shown at lower right. In the first case (All), all of the objects for which the condition is carried out will readout. In the second case, the presence of at least one readout will be enough.
- the "Apply” button at lower left may be used to indicate acceptance of a displayed condition, to which the system will response by applying the indicated conditions to selected data.
- the system may enable application of a geometrical filter.
- the geometrical filter allows selecting those objects, which coordinates are within a defined boundary or are in nodes of a broken line.
- the system may generate a window interface 600, as shown in Fig. 6A.
- This window 600 may include a region 602 depicting a window of 2-D space with numerical axes X and Y.
- Objects, e.g., the indicated object 604 may be displayed as points in the 2-D space
- the system may display only those objects, for which conditions of other filters are satisfied.
- the window 600 may comprise a shortcut menu bar, including an option
- buttons of a tool bar for the window may be arranged. These will be described in detail by way of example, and not of limitation;
- buttons at the left of the upper tool bar allow drawing the various figures setting the filter.
- the buttons may be used to call closed broken line, rectangle and, so-called profile operations, respectively.
- a profile means a broken line, on which the nodes thereof represent objects in the data hierarchy.
- a user may select a corresponding button and make the certain action using a pointing device. For example, to draw a rectangle a user may select the corresponding button and move a mouse from one node of the future rectangle to the opposite node on a diagonal.
- a user may select this tool and draw at first a piece connecting two its nodes, and then, grasping its any side with the mouse to move the mouse breaking thereby a side and creating a new node.
- the figure, representing a boundary or profile is automatically added into the geometrical filter. Removal of a figure from the filter may be performed by selecting an option "Remove" in its shortcut menu bar. Selecting a figure and clicking a right mouse button (or other selection action) may be used to open the shortcut menu bar for a drawn boundary or profile.
- buttons on the tool bar may be used for changing, rotating and moving all figures, except a profile.
- a user may select a corresponding button (the first of the four) and move the figure nodes and edges grasping them with a mouse.
- a user may create new nodes in the closed broken line.
- the following button allows rotating a figure, and the last allows moving it.
- the geometrical filter may be automatically updated. .
- buttons on the tool bar of the geometrical filter serve for changing of the center of rotation of figures and switching on/off the mode of display of objects' names, accordingly.
- the last two buttons open a window of options for associating of images with the geometrical filter and a window of options of objects display, accordingly.
- Associating of the image with the geometrical filter may be performed to help the user to orientate in an arrangement of objects better.
- some image is selected as a background for objects, for example, it may be a district map.
- the image should be stored as a graphic file of one of commonly used formats, for example, JPEG or BMP.
- the resulting window 650 may appear as shown in Fig. 6B, with drawing and selection features as described above for Fig. 6A
- the position and size of the map image 652 may not correspond to co-ordinates of the objects, at least because they may be received from different sources. To bring them into accord, the associating of a map, which is made as follows, is carried out.
- the associating window (not shown) is opened, in the window of the geometrical filter there is an image of three special points. By default they are located in top left, bottom left and bottom right window corners. If necessary these points may be moved by preliminary pressing the button “Moving of an associating point” in the associating window. It is also possible to change the color of these points by setting the components of color RGB using cams in the associating window. The given points set three points on the map. After pressing the button "The map associating" in the associating window, moving of associating points using the mouse leads to occurrence of points of their new positions, which then may be moved independently.
- 3D Data View One of the methods for visualization of the loaded data is its viewing in a window 700 of a 3D cube 702, as shown in Fig. 7.
- the cube image 702 In the central part of the window 700 there is the cube image 702, and in the top part there are buttons for a tool bar of the window.
- buttons for a tool bar of the window Just over the image of the cube and to the right of it a button for a zoom feature is located.
- the values of attributes of the data established at the moment are displayed.
- Four buttons on the tool bar of the windows located to the right of the print button are intended for "Drill down" option and will be considered later.
- the cube image contains three axes of space corresponding to quadruple of parallel edges.
- the axis "Object” corresponds to horizontal edges of a cube (in its standard arrangement), an axis “Parameter” to edges on diagonals and an axis “Date” or “Time” to vertical edges.
- the objects selected using the current filter and sorted according to current sorting may be located on the axis "Object”.
- On the axis "Parameter” the parameters of objects selected using the filter and sorted in an order, defined by the user may be located. At edges of each of axes designations of their first and last elements may be displayed.
- the time period, for which the data is loaded may be located. This period may be changed as desired. For example, a user may select the main menu option "Windows.Filters.On date/time", to indicate initial and final date of the period in the opened window.
- the system may enable a user to change the type of a projection in the window using a command button "Projection” and to switch off the display of inscriptions to axes by using a command button "Inscriptions".
- the cube 702 may be rotated in two ways. First, round its center. For example, a user may select the button “Rotation of top of a 3D-cube" of the tool bar of the window of the program and, "having seized” the nearest top of a cube with the mouse to move the mouse in the necessary direction, causing the computer to rotate the view in response to the user input. Secondly, the cube 702 may be rotated around each of its central axes. For example, a user may select the button "Rotation of an axis of a 3D-cube” and move one of three nearest edges of a cube with the mouse, causing the computer to rotate the view in response to the user input.
- the system may enable a user to return the cube in initial position by activating a button "Drop" in the right top part of the tool bar of the window of the cube.
- Enlargement (zooming) in a 3D window may be performed in response to user selection of a button "Window Part” on the tool bar of the window of a cube and the subsequent allocation of the rectangle on any side by the mouse. After releasing the mouse the highlighted rectangle may become a visible part of this side.
- a user may click the button “Slice moving” on the tool bar of the window of the program and to move a black strip on the cube edge, which displays position of a visible part, having grasped it with the mouse.
- a user may select the button “Cancel” in the tool bar of the window of the cube and to click the button “Return” to switch to zooming again.
- Data viewing in a cube may be realized using 2-D cross sections (slices), for example as shown in window 800 of Figs. 8A and 8B.
- Slices 2-D cross sections
- To set a slice a user may first select the button "Creation of regular cross-section” on the tool bar of the program and to "brush" on the nearest edge of the cube 802, which should cross the cross-section, with a mouse or other pointing device.
- a user may select a tool button “Cross-section move” on the tool bar of the program, to grasp and move the slice using a left button of the mouse or other selection input.
- the button "Cross- section move” may be automatically switched on after creation of a new slice.
- the corresponding value may be displayed on an axis.
- the system may enable deletion of the slice in response to selection of a corresponding option on a shortcut menu 810 bar "Delete", after having selected the slice the necessary option in the appeared menu.
- the system may enable an operation of cutting off of a part of one figure by another.
- This operation may be performed in response to capture with the right button of a pointer and throwing of a cutting figure on a cut part of the other figure. Therefore, to cut a part of the slice by another slice a user may throw one slice on another. Cancellation of cutting off may be performed in response to a repeated throw of the cut object on visible yet part.
- a cutting off operation is used for viewing a part of a figure covered by another figure.
- the system may provide an operation of search of object, which means the slice setting on an axis of objects in exact value.
- a user may specify which slice will be controlled by this operation, to associate the slice with the geometrical filter.
- the indication of a slice may be made by throwing or dragging onto on a Window of the geometrical filter.
- the object on which the slice is set may be immediately highlighted.
- a user may select the option "Search object" of shortcut menu bar for this object image in a window of the geometrical filter. If the slice is not associated with the geometrical filter or the object image is not included into the preset filter, the said option of the menu may be made inaccessible.
- Slices may be used to display numerical data using color mapping to map numerical values to different parts of a color spectrum.
- window 800 shown in Figs, 8A and 8B data is displayed in slices using different colors.
- each point of a cube has coordinates Object, Parameter, Time. Therefore, in each point of a cube we have a number, which means value of Parameter for Object on Date or Time. For example, value of an oil recovery for a deposit YASNOYE in 2008, or temperature of patient Ivanov in the morning on January, 20th, 2002.
- numerical values should be represented using some visual graphics feature. Therefore, in certain graphical displays the system displays numerical values using color.
- the system may apply a defined rule for selecting of the color for values of a cube, for example as follows.
- the palette in which the colors are distributed between minimum and maximum values of a cube, may be fixed. Further, for any value of a cube the relation, in which it is between minimum and maximum values, is defined and the color may be selected proportionally.
- This palette may be seen when opening the window 1000 of a palette using a corresponding option "Palette” of a shortcut menu bar of a slice or other user input, as shown in Fig. 10. Distribution of colors between minimum and maximum values of parameters is displayed in this window 1000.
- the graph to the right of the palette represents frequency of value in a range.
- the element "Type” may allow user selection of a scale type "Linear” or “Logarithmic”.
- In the second-to-left column of the window 1000 there are located the borders of the palette on the extreme left, which may be changed for example in response to pointer movement and selection input, or numerical values input via a shortcut menu bar.
- the system may enable returning these borders to default minimum and maximum values in response to user input.
- the system may also enable data filtering in the palette window by "cutting out” value intervals from the palette using mouse or other pointer input.
- the rule of color-mapping described above is non-specific to the sense or quality of the data, because the cube contains values different in sense and units of parameters measurements.
- the minimum value of a cube may be, for example, the number of wells, and the maximum one may be the oil recovery. That is why several rules of color-mapping distinct from a default or standard may be provided.
- Selection of the color mapping rule may be made in a corresponding window (not shown) in response to user input.
- the window may contain a list of methods for encoding of a cube values with color registered in the program.
- To change the rule of encoding may allocate the corresponding line in the list. All the encoding rules, except the first one, may be normalized. That is, before a color selection a cube value may be replaced with percent between minimum and maximum. Two types of normalization may be provided: upon parameters and upon objects and parameters.
- Normalization upon parameters means that the minimum and maximum values are defined for each parameter separately. For example, if the cubed minimum value of weight of one person is 50, and the maximum value of another one is 100, and the minimum temperature of one person is 36, and maximum one of another is 40 than the first person's weight 75 and the second person's temperature 38 will be replaced by value of 50 % in both cases. Such method of normalization allows comparing different objects with one another for all parameters.
- the system may provide a mode "Normalize within the filter".
- this mode in the case of normalization upon parameters the minimum and maximum values are calculated only among the objects that satisfy filter conditions. This mode may be entered for viewing the objects with minimum and maximum values at data visualization.
- Normalization upon parameters and objects means that the minimum and maximum values are defined for each parameter and each object. For example, if the minimum value of weight of one person is 50, and the maximum value is 100, and the minimum temperature of another person is 36, and the maximum value is 40 than the first person's weight 75 and the second person's temperature 38 will be replaced by value of 50 % in both cases. Such method of normalization allows considering of data behavior independently of the object or parameter.
- the second and third rules in the list of color mapping rules mean the above- mentioned normalizations are applied to the initial data of a data space.
- Four subsequent rules are two normalized variants of the data rate of change.
- the fourth and the fifth rules rate of change is understood as an increment of values of a cube on a date axis, that is differences of values between the following and current dates are normalized.
- the last two rules rate of change is understood as the logarithm of the relation of values for the following and current date.
- the system may display information on real values of numerical parameters in separate points of visualization windows. For example, in window 900, slice data is presented numerically in the separate data tables 904, 906, and 908, as shown in Fig. 9.
- a user may perform a selection operation, for example while depressing the left button of a mouse, and having guided its pointer closer to a desired point, then holding down the key "Ctrl" on the keyboard, and moving the mouse a little.
- This action may be referred to as "touching" a slice.
- the system may display values for the data point in a small rectangle as well as the values of co-ordinates of a point. This is also shown in window 1200 of Fig. 12 for different data
- the system may enable receiving detailed information on the object, which is the value of coordinate of a point, in the various ways. For example, if. the window of the objects table is open, then in response to a slice or other element of visualization touching, the line containing the information on the object will be highlighted in a data table as shown in window 1 102 of Fig. 11.
- a user may open a special "Information" window 1202 using a menu option or other input, in which window full information on point coordinates is displayed, as shown in Fig. 12.
- the terms "process body” and "data body” are used interchangeably and have the same meaning.
- the data body represents a set of conditions on numerical data loaded into a data space.
- This data contains values of parameters of a different nature and units of measure it is advantageous to formulate visualization rules using data normalization. That is why the body may be defined in the program using rules applied to color- mapping. Rather than the parametrical filter these conditions filter not objects but the cube's points.
- the data for adjacent parameters or objects in adjacent slices is not initially closely correlated because parameters and objects are typically initially ordered based on the alphabetical order of their names or the order in the source dataset.
- object and parameter axes are axes indexing other data dimensions and can be displayed with various ordering. Therefore, it is possible to change the order of parameters and objects on the axes based on the correlation of the values in the corresponding slices along the time axis.
- algorithms that can calculate correlation between two sequences of data values. For example, earth mover's distance algorithm can be applied to two sequences of data values but there are many more algorithms that are known in the art. It is possible, therefore, to apply one of such algorithms to pairs of data sequences along the time axis and select the positions of objects and parameters on the axes for a more optimal visual appearance of overall data set values.
- object and parameter slices with correlated values may be placed closer to each other and data areas with close parameter values may be clustered together forming correlated areas.
- clustered areas depict the underlying business process evolution over time in the visual form that is convenient for human perception.
- data objects with similar parameter changing trajectories would be located close to each other in the visualization space. Therefore, the human brain can think and perform analysis in terms of multidimensional areas with likely similar underlying business processes rather than in terms of each point in the multi-dimensional space separately.
- Body visualization may be performed in the 3D window 1300 in the form of surfaces of conditions (borders of conditions) infringement, as shown in Fig. 13A.
- the window 1300 may be used for adjustment of body parameters.- If these parameters are already set, the body itself will be displayed in the 3D window. Adjustment of the body parameters may comprise defining a condition of a body, which is made similarly to filtrations of the data in a palette window, that is, by "cutting" of the values intervals using a pointer or the like as shown in the window 1304.
- the body 1302 may be represented using cubes or quadrangular volumes of different color, each of which represents a cube point, for which the body condition is satisfied and which is painted according to the selected rule of color mapping.
- a user may select the corresponding item in its shortcut menu bar.
- FIG. 13B-D depict several examples of process bodies with geographic coordinates and time axes.
- Fig. 13B shows a user interface 1352 including a 3D visualization of a first (forecast) data set 1352.
- Fig. 13C shows a user interface 1360 including a 3D visualization of a second (actual) data set 1362.
- Fig. 13D shows a user interface 1370 including a 3D visualization of a third (difference) data set 1372, computed by subtracting the second data set 1362 from the first data set 1352.
- the process body depicted as described above can be subject to any other operations and transformations described in this embodiment and can be further manipulated in the same ways as a human would manipulate a real physical object.
- One possible example of such interaction is stretching and rotation of the process body 3D visualization with a mouse along any line in a 3D visualization space.
- Data displayed in a slice may be viewed in more detail using 2-D representations, referred to herein as a "slice window” or “slice table” respectively.
- the data in these 2-D windows may be automatically updated to display the data located on the current slice.
- the 2-D windows opened for it may automatically be closed. The same may be performed for all 2-D windows at 3D window closing.
- a user may execute a so-called "grasping and throwing" of the slice on working area of an application window.
- the system may cause a window 1400 to open in a point where the mouse button has been released, as shown in Fig. 14, in response to defined user input. For example, a user may move the mouse from a part of a windows desktop, having pressed the right button of the mouse on the slice, i.e. having seized it, and then releasing the right button of the mouse, to open a slice window.
- the data may be represented using color mapping in a region 1402.
- a user may carry out enlargement (zooming) highlighting a rectangular area in a window, preliminary having pressed the corresponding button of the tool bar of the window.
- Receiving the information about the exact point of the window may be performed similarly by "touching" with the mouse.
- FIG. 15 Another method of data presentation in a 2-D form is a slice table.
- This window allows simultaneous viewing of numerical values of parameters and their color- mapping depending on the selected coding. Color mapping percentage painting of cells of the table by the coded characteristic may also be used.
- a first example of a slice table is presented in window 1500 of Fig. 15.
- a second example is presented in window 1600 of Fig. 16.
- the system may enable an exchange of axes, change of the axes direction, switching color mapping on and off, sorting on cube axes, or summation in response to user selection of corresponding buttons of the tool bar of the table window.
- Window 1600 shows a result of selecting a summation operation in the right-most column.
- the system may display the value of the coordinate on an axis crossed by the slice at a point of the axis crossed by the slice, and in the table column and line headings the system may arrange the values upon two other axes of a the data space.
- buttons allow changing direction of columns and lines of the table, accordingly, to the contrary.
- the fourth button switches on and off the color-mapping display of the data.
- the next three buttons allow realizing operations of the data sorting and will be considered in detail below.
- the eighth button (indicated by a summation symbol) allows the user to view the total data for all columns and lines.
- the system may enable viewing of the loaded data in the form of graphs of dependence on time. Examples are shown in window 1700 of Fig. 17 showing a line chart, and window 1800 of Fig. 18 showing a bar chart.
- Such windows may comprise two basic sections.
- a first section may display a graph, shown in the upper portion of the examples 1700, 1800, and the second section displays lists of parameters and objects for user selection, shown in the lower portion of the examples.
- Lists of parameters and objects in the second section for selecting may be under the influence of all earlier described filters. Except for filtered out attributes, the lists of data attributes, if any, may be arranged here.
- a user may select at least on one element in each of the lists of the second section. Selecting in the lists may be performed similarly to selecting in the windows of objects and parameters tables. Color of curves may be appointed automatically oh the fixed palette of colors.
- a user may operate on a window "Palette" (not shown) which opens at selecting the main menu option "Windows. Palettes”.
- a user may conduct zooming for example by selecting the corresponding button "Zoom" located in the right part of the tool bar of a window.
- zoom a part of the window a user may highlight the corresponding rectangular area with the mouse. At dropping the mouse the said area will occupy all the section of graphs. Re-turn to the previous condition may be realized by the next button "Cancel”, and returning again to the selected zooming may be realized b the button "Return”.
- a user may select the type of a scale of values - "Linear” or “Logarithmic”, to select the mode of the grid display, to set a kind of the data display - either in curves or in histogram, to switch on/off the legend display and to choose its arrangement, to set thickness of a line and the size of points.
- the normalization mode means that values of all displayed curves will be normalized on the general scale with borders from 0 % to 100 %. If this mode is switched off the borders of a scale of values are automatically calculated upon all the set of displayed curves. These borders can also be set manually, having specified their exact values. A user may also fix the borders of a scale of values so that they will not be updated automatically.
- the legend allows defining data, which is displayed by a curve (a histogram column), on this curve (a histogram column) color. If the mode of grouping of the legend is switched on than descriptions of the data will be grouped with purpose to reduce the number of repeating names. Real values, both of curves and histograms may be seen by touching with the mouse, and also by selecting the corresponding option of the shortcut menu bar of the curve (histogram).
- the sorting of lines in a table of objects may not necessarily cause the system to sort objects on the corresponding axis of a cube.
- a user may use one of two ways arranging objects in ascending order (decrease) of parameter values: sorting using slice tables and sorting using slices crossing.
- a user may use the sorting buttons on the tool bar of the window of the table containing objects either as lines, or as columns.
- the first two buttons may be used to define the sorting direction, and the third one to define the sorting cancellation.
- a user may click on the column heading (if objects are set by lines of the table), or on the line heading (if objects are set by columns). For example, to order deposits on increase of parameter values "Operating wells liquid rate" for 2007, a user may click the heading of a column "2007" with the left button of the mouse after pressing the first of three buttons (sorting on increase).
- the ordered column may be displayed in the table with a mark of corresponding sorting in the heading. Streamlining as it has already been described may be simultaneously realized on the axis of objects of the data cube as well.
- the set sorting may be dynamic in the sense that in response to slice moving with the mouse the order of objects may change continuously supporting the selected sorting.
- Sorting under crossing of slices may be executed directly in the 3D window. It should be apparent that selection of a column or a line for sorting in the slice table actually means selecting of two slices crossing. Namely, in the last example of the previous section selecting of the column "Operating wells liquid rate" in the table for sorting is similar to selecting of crossing the slice of the table with another slice located on the axes "Parameters" in the point of Operating wells liquid rate". Accordingly, another method of sorting the objects provided in the program consists in selecting of corresponding point of the shortcut menu bar of the slice at its activation in points of intersection with another slice.
- Dynamism of the sorting set in such a way is already provided with moving of both slices, which form crossing. If sorting is defined then the option "Sorting" in the shortcut menu bar of the slice may be highlighted or flagged and the user may select the highlighted object to cause cancellation of sorting.
- Aggregation operations are operations such as, for example, summation realized for a group of objects.
- the program provides two methods for performance of such operations. They are grouping and drill-down.
- Grouping in the program means summation on groups of the objects formed by values of characteristics of objects. For example, summation of the data on deposits for each federal district, summation of salaries of employees on their gender or nationality.
- a user may open a window 1900 of grouping as shown in. Fig. 19.
- the grouping window 1900 may contain a list of characteristics of objects, in which a user may highlight the necessary one and to press button "Apply”.
- the system may perform first calculation of total values, then instead of names of the objects on the axis in the cube display the names of values of the selected characteristic, and use the sums or other aggregation as values of the displayed 3D data space.
- the window 2000 shows a summation detail in tabular form for a selected group "Federal District.” A user may return to a usual mode of values of the data space by clicking the button "Restore" in the grouping window.
- the drill-down procedure may be understood as a hybrid of grouping and hierarchical filtering. Drill-down may be performed in the 3D window and include the use of four special buttons on the tool bar or other user input. First the drill-down mode should be switched on to enable this procedure, using a window button or other input. When the drill-down mode is switched on the grouping under the characteristic set as first in options of the hierarchical filter is performed. That is, there is a summation on the uppermost level of classification.
- a user may request a "detail" the data he is interested in.
- the hierarchical filter on value of the characteristic selected by the mouse will be set, and summation on the following level of hierarchy defined in options of the hierarchical filter will be performed.
- the loaded data may be subjected to various transformations using division in slice or crossing of slices, and calculations on their basis of the derivative data, for example using a window "2D-Calculator" (not shown).
- Slice division allows "associating" all data of the data space with the data with the fixed coordinate of a point. For example, division in slice crossing an axis of parameters allows viewing the data in relation to the fixed parameter. Division in slice crossing an axis of objects allows comparing the data with the data of the exact object. Division in slice located on the date axis allows associating the data with the data for certain date.
- This operation may be performed for example in response to user selection of an option "Divide in slice” of the shortcut menu bar of the slice in the 3D window. Upon selecting this action all values of the data cube may be shared on values in projection points on slice. If at activation of the shortcut menu bar the mouse pointer has touched on a crossing of two slices the option "Divide into crossing" may be accessible. Division into values in points of projections to the slices crossing line will be executed. Return to the initial data may be accomplished in the shortcut menu bar of the slice using a option "Restore".
- the system may enable calculations of the virtual slice using operations of one direction over slices in the 2-D calculator.
- the axes appointed as designations in the formula Selecting of a slice may be performed by its addition into the list of designations by throwing the slice into this list with the right button of the mouse. Slices of only one direction may simultaneously be selected in the list.
- One or more formulas, according to which calculation of virtual slice is performed, may be indicated in a formula section of the window.
- Buttons may be provided near the formulas window to allow more convenient forming of it similarly to the case of the parametrical filter.
- Calculation of the virtual slice may be performed according to the input formula. Results may be presented in a data window displayed using color mapping in the form of a slice table. For this purpose a user may select the corresponding option of its shortcut menu bar, in which a palette window can also be opened.
- a set of virtual slices introduced above can be used to form a multi-dimensional data cube.
- two datasets representing an experimental situation depicted in Fig. 8A and a forecasted dataset representing the expected or forecasted situation depicted in Fig. 7 may be subtracted from each other to form a new virtual dataset depicting the difference between the expected situation and reality.
- the resulting dataset can be represented as a set of virtual slices and either shown separately using a separate data view or can be selected from all data using filtering.
- experimental and forecasted datasets as well as the resulting virtual dataset can be reordered and filtered to be represented as process bodies for easier visual perception and analysis.
- a data cube can be formed based on one dataset. For example, subtracting dataset values from itself but at different points in time may visually reveal the evolution of the dataset over time.
- FIGs. 13B-D depict three process bodies of oil extraction volume from an oil field over a period of time.
- the data sets are displayed using geographical coordinates X and Y on the earth surface above an oil field and with the vertical time axis.
- the data points are filtered based on the values and thus the data sets are displayed as process bodies.
- Fig. 13B shows a forecasted data set with data based on a model of the expected oil extraction.
- Fig. 13C shows the data set representing historical data related to the actual oil extraction.
- Fig. 13D shows the data difference of these two data sets (actual historical data set is subtracted from the forecasted data set calculated based on a model).
- a data cube from virtual slices can be calculated to validate a business model connecting parts of a data set or two or more data sets together.
- data sets about different systems may be related and this relation may be expressed mathematically.
- One example is about data sets describing oil extraction in a country, oil consumption by refineries, oil storage, and oil export and import data sets.
- Each data set may contain only the data about the oil flows related to its area.
- this information when this information is combined one can calculate the sum of all oil flows in a country that should sum up to zero in an ideal world. In the real world the sum would represent losses and may show unexpectedly high losses in certain areas that may indicate poor management.
- Inconsistencies between the data sets such as reported oil flows from one area higher than the reported oil flows on the receiving part of the oil flow may indicate intentional theft and attempts to artificially alter the data to hide these practices in a specific organization or area. Drilling down from the level of the country to a specific pipeline or refinery or oil field is a useful instrument to investigate the causes of oil losses.
- business model may be represented as:
- relational multi-parameter numeric data is loaded or accessed using a computer system, in any suitable manner.
- the data is organized into three classifications of object, parameter and time, each corresponding respectively to one axis of a three-dimensional data space. For example, given a particular numeric data value, the system assigns to it a particular time value, parameter label describing what parameter the numeric value describes, and a particular object value describing an object to which the parameter pertains.
- the data should include numeric values assigned plural time, plural parameter, and plural object classifications.
- the classifications may be determined by querying a database from which the data is obtained, or by any other suitable method.
- a system computer defines an object hierarchy for object classifications within the data space.
- the hierarchy may be defined in response to user input, for example using manual classification by a user.
- the hierarchy may be defined automatically using an algorithm processing data relationships. For example, an object that is assigned to numeric data that is also assigned to two or more other objects may be assumed to be in a higher-order relationship to the other two objects.
- the system may define display parameters for the data. This may include, for example, filtering or sorting data as described above. Clear examples of filtering, sorting, and other display parameters have been described in the foregoing description.
- a computer may generate a three-axis display output 21 10 from multiparameter data.
- the display output 2110 may depict a volumetric data space having three mutually perpendicular axes comprising an object axis, a parameter axis, and a time axis.
- the display output of the first volumetric space may be generated as an axonometric projection.
- a computer may generate, in response 2112 to user input 2116 selecting a first data point along one of the mutually perpendicular axes associated with a lower-order volumetric data space, a display output depicting the lower-order volumetric data space defined by the first data point and having three mutually perpendicular axes comprising a lower-order object axis, a lower-order parameter axis, and a time axis.
- This may be understood as retrieving 2114 the lower order data in response 2112 to the selection input 21 16 and then generating 2108 a three axis display.
- the computer may receive the selection input 2116 via a user input device comprising at least one of a touchscreen, a keyboard, and a pointing device.
- a computer may generate, in response 2112 to user input 2116 selecting a second data point along one of the mutually perpendicular axes that is not associated with a lower-order volumetric data space, a display output 2120 depicting a two-dimensional data slice parallel to any two of the mutually perpendicular axes defined by the second data point.
- the computer may generate the display output of the two-dimensional data slice as a data table.
- the computer may generate the display output of the two-dimensional data slice as a color-coded graphical map.
- the computer may apply a defined mathematical transformation to selected data to generate transformed two-dimensional data slices, in response to user input.
- the defined mathematical transformation may be selected from: translation of data along the axes of the volumetric data space; summation of slices; comparing of slices by the means of subtraction, division, or multiplication; determining of each slice's relation to a slice having a defined date; determining of ratio between data elements; time differentiation; or parameter differentiation.
- the computer may generate the display output depicting a two-dimensional data slice responsive to movement of the second data point along one of the mutually perpendicular axes to display successive data slices. Each of the successive data slices may be displayed as a data table or a graph simultaneously with the display output depicting the volumetric data space.
- the computer may return to any desired prior state. If user input indicates that the user desires to continue data analysis and visualization, the computer may retrieve an original or prior data configuration 2124 to enable additional data navigation and analysis.
- the computer therefore may display, for data having a number of dimensions more than three, a number N of related three or two dimensional data cubes, number N of which is determined by formulas C N 2 and C N 3 , where N equals the number of data dimensions and C equals the number of combinations of this number on 2 or 3, respectively.
- the computer may generate a display output of the volumetric data space, the lower-order volumetric data space or the two-dimensional data slice in response to user selection of a data point or region on a two-dimensional geographic map.
- a computer may display a 5-dimensional data set in
- a 2-dimensional data cube is synonymous to a slice or a table; a 1 - dimensional data cube is a directed line with points; and a 4-dimensional data cube may be visualized as a time-changing visualization of a 3Dimensional cube or as a series of 3Dimensional cubes.
- This 5-dimensional dataset may correspond to a set of objects such as oil wells with geographic coordinates on the earth surface and parameters that change over time.
- 6 dimensions being: geographic coordinates (x, y, and z); time (t); objects (o); and parameters (p).
- This 6-dimensional dataset may correspond to a set of objects such as oil deposits with geographic coordinates below the earth surface and parameters that change over time.
- Object or parameter names refer to some objects or parameters by these names and can be ordered on the axis in any way.
- Other dimensions such as geographic coordinates (for example, x, y, and z) are dimensions directly representing the real world. Note that these dimensions can also be any other forms of coordinates such as the distance along an oil pipeline from a fixed point.
- Time (t) is a special dimension that captures evolution of any other dimension over time.
- the star symbol ( * ) in the tables above marks data cubes formed by pseudo- dimensions indirectly referencing data (e.g., o and p) and dimensions with the data representing the real world directly except time (e.g., x t y, z).
- data cubes formed by pseudo- dimensions indirectly referencing data (e.g., o and p) and dimensions with the data representing the real world directly except time (e.g., x t y, z).
- an extra data dimension related to data set hierarchy or knowledge area may be added to a state data space of multi-object systems.
- a computer may be programmed to display a set of data sets that each correspond to a separate data set or a sub-set of some other data set, or be a copy of some other data set potentially with a different name or hierarchy definition.
- This creation of data set sub-sets or copies or sets of classifications may facilitate human analysis because people naturally classify data and, sometimes, classify the same data based on the knowledge area. For example, the same natural phenomenon may be described in a chemistry book and a history book and a human being will recall both sources and may or may not quickly correlate the phenomenon with the other related data.
- the data may be divided into a set of data sets that correspond to various knowledge areas and classifications.
- the data from the different knowledge areas may be integrated into a displayat the same time and organized by knowledge area.
- the different display outputs may be correlated by selecting the same value of time to be used for data slice positions as well as same values for positions of slices on object and parameter axes.
- the described data management apparatus may enable such correlating in response to user input selecting time or other coordinate values, or may automatically display correlated output based on a single user-selected or system- selected coordinate value.
- a visual display may first be simultaneously presented to a group of people and one, several, or all participants using one or more computers, and the participants may provide user input controlling which data view, data body, axes, zoom values, filtering values, transformations, slices, or other displaying mechanisms are used for displaying the data at any point in time.
- Each person involved in the analysis or discussion may have his or her own display to visualize the same data set, or may have have a separate copy of the data. Examples of such system configurations may include computer workstations, tablets, cell phones or other devices capable of displaying multi-dimensional data sets. These devices may access the data from their local storage or request it from a centralized server or a network of servers.
- These centralized servers or network of servers may also perform some or all calculations and functions necessary to display and transform the data before displaying.
- each participant may be allowed to update the data sets in a centralized repository or on data replicas as well.
- user terminals participating in the analysis mayshare states of visualization parameters such as positions of slices, bodies, filters, zoom values, transformations, display positions, axes, and other displaying mechanisms. This state sharing may be performed by sharing the views as screen-shots or by sharing parameter values that characterize each data display state between terminals and thus, can be used to recreate the display state for the same or similar data sets and the same or sufficiently similar visualization system elsewhere.
- Multi-dimensional data visualization may be used as a language to guide discussions in groups of people to minimize incorrect decisions or conclusions from nalysis of large data set. Such language may include a set of policies that require discussion arguments to be supported by multi-dimensional data views. Arguments not supported by displayed data should either be supported by
- the number of people that can participate in the aforementioned data analysis or discussions is practically unlimited. For example, out of about 10 10 people on earth at least about 10 9 can use a computer and can participate in the data set analysis looking for requested patterns or correlations or using their own life experiences and intuition to look for new conclusions. This presents new opportunities for civilization as a whole for discovering new phenomena, making better conclusions, and allowing advanced self-education based on shared access to large data sets.
- Creating and building data sets may be a complex and time-consuming task that includes data collection, cleansing, correlation, relationships identification and hierarchy creation.
- a data visualization system may facilitate distributing this task among data analysts so that many people can populate and amend the data sets. For example, a vast amount of data is available in the Internet, and search engines are used to locate sorted sets of potential data sources. Once a search engine discovers a potential data source, a human can confirm that a data source is most likely valid and get the data either programmatically or manually from a web site pointed to by a search engine. Data from these or other sources may be loaded into a data set of a visualization system for subsequent displaying using data cubes and other visualization tools as described herein.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a computer.
- such computer-readable media can comprise RAM, ROM, EEPROM, CD- ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- Disk and disc includes Compact Disc (CD), laser disc, optical disc, Digital Versatile Disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer- readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
L'invention concerne un ordinateur facilitant l'analyse de plusieurs données paramétriques au moyen de procédés de visualisation et de navigation spéciaux. Les données à analyser sont chargées à partir d'une source externe et l'ordinateur affiche les données en réponse à l'entrée utilisateur au moyen d'une diversité de procédés comprenant les tables de données, les tranches d'espaces de données, les espaces de données parcourus de façon hiérarchique, les tables de tranches dynamiques, les filtres, le tri, le mappage de couleurs, les opérations numériques et d'autres procédés. Les données et les entrées sont partagées par plusieurs utilisateurs pour une analyse collaborative.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/735,993 | 2013-01-07 | ||
US13/735,993 US8566749B2 (en) | 2010-07-08 | 2013-01-07 | Analysis of complex data objects and multiple parameter systems |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014107119A1 true WO2014107119A1 (fr) | 2014-07-10 |
Family
ID=51062369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2013/001211 WO2014107119A1 (fr) | 2013-01-07 | 2013-12-31 | Analyse d'objets de données complexes et de systèmes à plusieurs paramètres |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014107119A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104462645A (zh) * | 2014-10-30 | 2015-03-25 | 中国南方电网有限责任公司 | 基于自由模板的间隔分图自动生成的方法 |
US10186058B2 (en) | 2015-11-11 | 2019-01-22 | Microsoft Technology Licensing, Llc | Visualization of cross-pivoted data |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080288306A1 (en) * | 2001-10-11 | 2008-11-20 | Visual Sciences Technologies, Llc | System, method and computer program product for processing and visualization of information |
US20100070904A1 (en) * | 2008-09-16 | 2010-03-18 | Beckman Coulter, Inc. | Interactive Tree Plot for Flow Cytometry Data |
US20120284670A1 (en) * | 2010-07-08 | 2012-11-08 | Alexey Kashik | Analysis of complex data objects and multiple parameter systems |
-
2013
- 2013-12-31 WO PCT/RU2013/001211 patent/WO2014107119A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080288306A1 (en) * | 2001-10-11 | 2008-11-20 | Visual Sciences Technologies, Llc | System, method and computer program product for processing and visualization of information |
US20100070904A1 (en) * | 2008-09-16 | 2010-03-18 | Beckman Coulter, Inc. | Interactive Tree Plot for Flow Cytometry Data |
US20120284670A1 (en) * | 2010-07-08 | 2012-11-08 | Alexey Kashik | Analysis of complex data objects and multiple parameter systems |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104462645A (zh) * | 2014-10-30 | 2015-03-25 | 中国南方电网有限责任公司 | 基于自由模板的间隔分图自动生成的方法 |
US10186058B2 (en) | 2015-11-11 | 2019-01-22 | Microsoft Technology Licensing, Llc | Visualization of cross-pivoted data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8566749B2 (en) | Analysis of complex data objects and multiple parameter systems | |
US8352883B2 (en) | Analysis of complex data objects and multiple parameter systems | |
US8225233B2 (en) | Analysis of complex data objects and multiple parameter systems | |
Ghosh et al. | A comprehensive review of tools for exploratory analysis of tabular industrial datasets | |
Cao et al. | Dicon: Interactive visual analysis of multidimensional clusters | |
Heer et al. | Interactive dynamics for visual analysis: A taxonomy of tools that support the fluent and flexible use of visualizations | |
Sadana et al. | Onset: A visualization technique for large-scale binary set data | |
US6995768B2 (en) | Interactive business data visualization system | |
WO2009154480A1 (fr) | Procédé pour représentation graphique d'une structure arborescente | |
Krause et al. | Seekaview: An intelligent dimensionality reduction strategy for navigating high-dimensional data spaces | |
Sun et al. | A five-level design framework for bicluster visualizations | |
US10353958B2 (en) | Discriminative clustering | |
Cao et al. | Untangle map: Visual analysis of probabilistic multi-label data | |
CN107368506A (zh) | 非结构化数据分析系统和方法 | |
Zhang et al. | Enconvis: A unified framework for ensemble contour visualization | |
WO2014107119A1 (fr) | Analyse d'objets de données complexes et de systèmes à plusieurs paramètres | |
Siang et al. | An overview of immersive data visualisation methods using type by task taxonomy | |
Kammer et al. | Exploring big data landscapes with elastic displays | |
Naimul Hoque et al. | Dataopsy: Scalable and fluid visual exploration using aggregate query sculpting | |
Lin et al. | Untangle: visual mining for data with uncertain multi-labels via triangle map | |
Dos Santos | A framework for the visualization of multidimensional and multivariate data | |
Alvarado-Pérez et al. | Knowledge discovery in databases from a perspective of intelligent information visualization | |
Dang | FSelector: Variable Selection Using Visual Features. | |
Wang | Enabling effective visual data exploration for solvent discovery in material science | |
Schoening et al. | BIIGLE Tools–a Web 2.0 approach for visual Bioimage database mining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13870194 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13870194 Country of ref document: EP Kind code of ref document: A1 |