WO2014104869A1 - Système destiné à une régulation intelligente de la circulation - Google Patents

Système destiné à une régulation intelligente de la circulation Download PDF

Info

Publication number
WO2014104869A1
WO2014104869A1 PCT/MY2013/000046 MY2013000046W WO2014104869A1 WO 2014104869 A1 WO2014104869 A1 WO 2014104869A1 MY 2013000046 W MY2013000046 W MY 2013000046W WO 2014104869 A1 WO2014104869 A1 WO 2014104869A1
Authority
WO
WIPO (PCT)
Prior art keywords
servers
junction
junction servers
traffic
intelligent
Prior art date
Application number
PCT/MY2013/000046
Other languages
English (en)
Inventor
Fui Thung David CHONG
Boon Chiat TAN
Sui Jiun WANG
George LIST
Original Assignee
Sena Traffic Systems Sdn. Bhd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sena Traffic Systems Sdn. Bhd. filed Critical Sena Traffic Systems Sdn. Bhd.
Priority to KR1020157015080A priority Critical patent/KR20150103666A/ko
Priority to IN3274DEN2015 priority patent/IN2015DN03274A/en
Priority to CN201380068643.3A priority patent/CN105027176A/zh
Priority to SG11201502921PA priority patent/SG11201502921PA/en
Publication of WO2014104869A1 publication Critical patent/WO2014104869A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the technical field of the invention relates to intelligent traffic management.
  • BACKGROUND OF INVENTION Present traffic management systems for networks function on a cycle time model, whereby the changes of the traffic light stages at a junction are based on a predetermined, cycle-based pattern. During peak traffic periods the cycle times are increased to allow a greater volume of traffic to clear while during off peak periods the cycle times are reduced to reduce the delay time (i.e. waiting time) at a junction when the roads are clear of vehicles.
  • the objective of the present invention is to improve the effectiveness and efficiency of traffic management systems.
  • the invention provides a system that intelligently manages traffic by using a plurality of intelligent junction servers located at the traffic intersections being controlled.
  • the servers communicate real time traffic data between each other via a mesh network and use that information to control the signal timings.
  • each junction server determines stage sequences and associated switching times that will best accommodate the vehicle arrivals. These decisions are based on traffic performance metrics such as average delay time per vehicle, percentage of green light utilization, queue length, platoon arrival times, long gaps in the arriving traffic stream, and combinations of these and possibly other metrics.
  • Each junction server updates its control parameter values by assessing the quality of the control it provides.
  • Each junction server passes information about its expected stage sequences and switching times to its neighboring controllers. It also passes information about its departing vehicles.
  • junction servers create minimum delay trajectories by providing green bands for oncoming vehicles just before they arrive or soon thereafter as possible.
  • junction servers manage the traffic flows at their respective intersections based on the last data received and previously recorded daily patterns when communications are lost.
  • Figure 1 illustrates a preferred embodiment of the present invention.
  • junction servers (110a, 110b, 110c, 1 lOd, 1 lOe) are located at traffic intersections to collect real time traffic data and control traffic movements via signal timings. The data collected is shared with adjacent servers (110a, 110b, 110c, 1 lOd, 11 Oe) so that they can manage the traffic flows at their respective intersections (llOa, 110b, 110c, llOd, HOe). The direction of traffic flow may be departing or arriving or a combination of the two at every intersection.
  • a central server (200) remotely updates the settings and data of the junction servers (110a, 110b, 110c, llOd, HOe) when updates become available.
  • the central server (200) remotely tweaks the general traffic control guidance provided to the junction servers (110a, 110b, 110c, llOd, 11 Oe), such as the paths for green waves, but does not process real time data to instruct the junction servers (110a, 110b, 110c, llOd, 11 Oe) as to how to manage traffic.
  • the system is a decentralized traffic management system, whereby decisions are made by the junction servers (110a, 110b, 110c, llOd, llOe) independently and in parallel.
  • This method provides greater efficiency, flexibility in determining decisions, as the junction servers (1 10a, 1 10b, 1 10c, 1 l Od, 1 l Oe) are not dependent on real-time instructions from a central server (200).
  • junction servers receive data from their upstream counterparts ( 1 10a, 1 10b, 1 10c, 1 1 Od, 1 1 Oe) and individually determine stage sequences and associated switching times that will best accommodate the arriving vehicles.
  • the data received come from at least one arriving vehicle and at least one upstream controller.
  • Each junction server develops an evolving switching plan; and 10 tracks its actual signal timing decisions relative to that plan; and passes information to its neighboring controllers about its departing vehicles and switching plans.
  • Each junction server ( 1 10a, 1 10b, 1 10c, 1 1 Od, l l Oe) independently determines the switching sequences and switching times that provide minimal delays and stops for its I S arriving vehicles. Thus, it provides the best possible junction performance for the vehicles it is serving.
  • junction servers ( 1 1 0a, 1 10b, 1 10c, 1 1 Od, l l Oe) provide minimum delay trajectories by providing green bands for oncoming vehicles just before they arrive or 0 soon thereafter as possible.
  • the system uses traffic performance metrics to determine when the stages should end and the sequence of movement combinations to service.
  • the performance metrics are communicated between the junction servers ( 1 10a, 1 10b, 1 10c, 1 1 Od, 1 1 Oe), vehicles, 5 and upstream controllers.
  • the following traffic performance metrics are among the most useful: average delay time per vehicle, percentage of green time utilization, queue length, platoon arrival times, long gaps in the arriving traffic stream. Other metrics can also be employed.
  • 0 Minimizing the average delay per vehicle aims to keep all the queue lengths short and ensure that vehicles on the minor movements are serviced quickly. Queue lengths are also monitored when employing this metric.
  • the average delay per vehicle is monitored by tracking the vehicle arrivals and departures. Total delay is computed by summing the delay for the vehicles in queue. As each vehicle departs, its delay is deleted from the total. The delay for every other vehicle is incremented as time progresses.
  • the average delay is derived by dividing the total delay by the number of vehicles in queue.
  • Green time utilization is defined as the time required to service the vehicles divided by the duration of the green. This ensures that the processing capacity of the signal is used to the maximum extent possible, similar to minimizing the maximum average delay. It helps minimize the maximum volume-to-capacity ratio among the movements. Implementation of this metric requires the monitoring of the vehicle departures by lane and the green time durations. Monitoring the percentage of green time utilization can be implemented by utilizing vehicle actuated sensors, such as detectors at the stop bars. Vehicle actuated sensors detect the number of vehicles arriving at the stop bar during green.
  • Minimizing the maximum queue length aims to minimize total delay time.
  • the maximum queue length is the difference between the total of vehicle arrivals and the total vehicle departures.
  • the junction servers ( 1 10a, 1 10b, 1 10c, 1 l Od, 1 l Oe) count the number of vehicle arrivals during red, and take this as the queue length. If the upstream vehicle actuated sensors stay on during red, then the queue stretches back to at least the vehicle actuated sensor. Providing a green light when the platoon arrives at the traffic junction helps to minimize delay for all the platooned vehicles through the use of platoon arrival time. Thus, minimizing trip times, maximizing signal utilization on the main approaches, avoid delays, and minimizing traffic stops.
  • junction servers (1 10a, 1 10b, 1 1 0c, 1 l Od, 1 l Oe) use dynamic markers to convey messages with one another about when to provide green time for specific movements.
  • a dynamic marker indicates the next point in time when a subject junction controller should be commencing green for a specific movement.
  • markers are dynamic in that the time interval between successive markers is variable.
  • a dilemma zone is a period of time where an approaching vehicle can neither stop short of the intersection nor pass through it before the signal turns red. It is typically 2-5 seconds before the signal turns yellow.
  • junction server ( 1 10a, 1 10b, 1 10c, 1 l Od, 1 l Oe) loses communications with other junction servers ( 1 1 0a, 1 1 0b, 1 10c, U Od, 1 l Oe) it manages traffic flow based on its last received data and previously observed daily patterns and operates independently.
  • junction servers (1 10a, 1 10b, 1 10c, l l Od, H Oe) can also use static markers to establish patterns of coordination between and among the intersections. Static markers indicate fixed intervals between the beginnings of green for specific movements.
  • the system employs wireless means, non-wireless means, or a combination to allow the central server (200) and the junction servers ( 1 10a, 1 1 0b, 1 10c, U Od, H Oe) to communicate amongst each other.
  • Wireless means include Wi-Fi protocols, mobile communication protocols such as, Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Wideband Code Division Multiple Access (W-CDMA), Code Division Multiple Access (CDMA), but not limited to these.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • W-CDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

La présente invention concerne un système qui gère intelligemment la circulation. Il est composé d'une pluralité de serveurs de carrefours (110a, 110b, 110c, 110d, 110e) situés au niveau des intersections en cours de régulation. Les serveurs communiquent entre eux des données de circulation en temps réel par le biais d'un réseau maillé. Un serveur central (200) met à jour à distance des paramètres et un logiciel des serveurs de carrefours (110a, 110b, 110c, 110d, 110e), mais ne commande pas la synchronisation des signaux. Les serveurs de carrefours (110a, 110b, 110c, 110d, 110e) déterminent des retards moyens par véhicule pour chaque mouvement au niveau de leurs intersections respectives.
PCT/MY2013/000046 2012-12-31 2013-03-04 Système destiné à une régulation intelligente de la circulation WO2014104869A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157015080A KR20150103666A (ko) 2012-12-31 2013-03-04 지능형 교통 제어 시스템
IN3274DEN2015 IN2015DN03274A (fr) 2012-12-31 2013-03-04
CN201380068643.3A CN105027176A (zh) 2012-12-31 2013-03-04 用于智能交通控制的系统
SG11201502921PA SG11201502921PA (en) 2012-12-31 2013-03-04 A system for intelligent traffic control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2012701326 2012-12-31
MYPI2012701326A MY187372A (en) 2012-12-31 2012-12-31 A system for intelligent traffic control

Publications (1)

Publication Number Publication Date
WO2014104869A1 true WO2014104869A1 (fr) 2014-07-03

Family

ID=51021796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2013/000046 WO2014104869A1 (fr) 2012-12-31 2013-03-04 Système destiné à une régulation intelligente de la circulation

Country Status (6)

Country Link
KR (1) KR20150103666A (fr)
CN (1) CN105027176A (fr)
IN (1) IN2015DN03274A (fr)
MY (1) MY187372A (fr)
SG (1) SG11201502921PA (fr)
WO (1) WO2014104869A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300048A1 (fr) * 2016-09-26 2018-03-28 Kyland Technology Co., Ltd. Procédé et équipement de commande coordonnée dans un système intelligent de contrôle de circulation dans les nuages
WO2018187747A1 (fr) * 2017-04-07 2018-10-11 The Regents Of The University Of Michigan Commande de feu de circulation à l'aide de données de trajectoire de véhicule
US10574590B2 (en) 2016-09-26 2020-02-25 Kyland Technology Co., Ltd. Central system in intelligent traffic cloud control system
DE102019210218A1 (de) * 2019-07-10 2021-01-14 Zf Friedrichshafen Ag Verkehrsregelung im Bereich einer Überschneidung oder Zusammenführung von wenigstens zwei Verkehrswegen
US11587440B2 (en) 2021-03-23 2023-02-21 Kyndryl, Inc. Prediction method for resilient interconnected traffic management

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3114774A1 (fr) * 2018-11-19 2020-05-28 Fortran Traffic Systems Limited Systemes et procedes pour gerer un flux de trafic en utilisant des donnees de vehicule connecte
CN112419752B (zh) * 2019-08-23 2022-04-15 比亚迪股份有限公司 路口交通信号的控制方法和装置
CN113570837B (zh) * 2020-04-28 2023-06-27 新疆宏开电子系统集成有限公司 多区域级联式安防监控系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116118A1 (en) * 1999-12-17 2002-08-22 Stallard Charlie Monroe Generalized adaptive signal control method and system
US20080074289A1 (en) * 2006-09-21 2008-03-27 Adc Telecommunications, Inc. Wireless internet-protocol-based traffic signal light management

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936999A (zh) * 2006-10-17 2007-03-28 大连理工大学 一种基于无线传感器网络的城市区域交通协同控制方法
CN101739833B (zh) * 2008-12-22 2012-07-25 昆明理工大学 预编队无等待交通流控制方法
CN102063796B (zh) * 2010-09-26 2013-06-05 广西工学院 基于无线Mesh自组网的智能交通控制系统及控制方法
CN102024335B (zh) * 2010-12-24 2012-12-05 同济大学 服务于城市干线道路绿波控制的速度引导方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116118A1 (en) * 1999-12-17 2002-08-22 Stallard Charlie Monroe Generalized adaptive signal control method and system
US20080074289A1 (en) * 2006-09-21 2008-03-27 Adc Telecommunications, Inc. Wireless internet-protocol-based traffic signal light management

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300048A1 (fr) * 2016-09-26 2018-03-28 Kyland Technology Co., Ltd. Procédé et équipement de commande coordonnée dans un système intelligent de contrôle de circulation dans les nuages
US10382559B2 (en) 2016-09-26 2019-08-13 Kyland Technology Co., Ltd. Method and equipment for coordinated control in intelligent traffic cloud control system
US10574590B2 (en) 2016-09-26 2020-02-25 Kyland Technology Co., Ltd. Central system in intelligent traffic cloud control system
WO2018187747A1 (fr) * 2017-04-07 2018-10-11 The Regents Of The University Of Michigan Commande de feu de circulation à l'aide de données de trajectoire de véhicule
US10497259B2 (en) 2017-04-07 2019-12-03 The Regents Of The University Of Michigan Traffic signal control using vehicle trajectory data
DE102019210218A1 (de) * 2019-07-10 2021-01-14 Zf Friedrichshafen Ag Verkehrsregelung im Bereich einer Überschneidung oder Zusammenführung von wenigstens zwei Verkehrswegen
US11587440B2 (en) 2021-03-23 2023-02-21 Kyndryl, Inc. Prediction method for resilient interconnected traffic management

Also Published As

Publication number Publication date
MY187372A (en) 2021-09-22
SG11201502921PA (en) 2015-07-30
IN2015DN03274A (fr) 2015-10-09
CN105027176A (zh) 2015-11-04
KR20150103666A (ko) 2015-09-11

Similar Documents

Publication Publication Date Title
WO2014104869A1 (fr) Système destiné à une régulation intelligente de la circulation
Cesme et al. Self-organizing traffic signals using secondary extension and dynamic coordination
Kouvelas et al. Maximum pressure controller for stabilizing queues in signalized arterial networks
KR101254957B1 (ko) 교통 신호 제어 장치 및 방법
Tubaishat et al. Wireless sensor networks in intelligent transportation systems
CN103985264B (zh) 一种能减少路口排队长度的路口控制系统及方法
Kwatirayo et al. Adaptive traffic light control using VANET: A case study
US20190012905A1 (en) Traffic analysis system using wireless networking devices
Azimi et al. V2v-intersection management at roundabouts
Noori et al. A connected vehicle based traffic signal control strategy for emergency vehicle preemption
DE60035339D1 (de) Versammeln und berichterstellung von überwachungsdaten von entfernten netzwerksonden
ATE354151T1 (de) Luftverkehrs-verwaltungssystem
Xie et al. Platoon-based self-scheduling for real-time traffic signal control
EP2235709B1 (fr) Procédé et système destinés à déterminer des embouteillages sur la base d'informations obtenues à partir d'un plmn
CN102722988A (zh) 一种实现道路交叉口车流控制的方法和装置
CN110491144A (zh) 基于路况预测的调整红绿灯时长的方法及相关设备
EP2974182A1 (fr) Système d'analyse de trafic utilisant des périphériques réseau sans fil
CN102632910B (zh) 一种基于感知控制的高速列车闭塞区间智能控制系统
Rashid et al. Intelligent traffic light control based on clustering using vehicular ad-hoc networks
Ghavami et al. Delay analysis of signal control policies for an isolated intersection
Ross et al. A computer control scheme for critical-intersection control in an urban network
Hiari et al. A dynamic decentralized traffic light management system: A tcp inspired approach
Gartner Development and implementation of an adaptive control strategy in a traffic signal network: the virtual-fixed-cycle approach
FR3081637B1 (fr) Systeme embarque, identifiant et procede d'evaluation d'une distance
DE602006011274D1 (de) Verfahren und vorrichtung zum durchsetzen der sendezeitquote in wartungsintervallen in drahtlosen lokalen netzwerken

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380068643.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015080

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201503398

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869143

Country of ref document: EP

Kind code of ref document: A1