WO2014104823A1 - Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery - Google Patents

Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery Download PDF

Info

Publication number
WO2014104823A1
WO2014104823A1 PCT/KR2013/012323 KR2013012323W WO2014104823A1 WO 2014104823 A1 WO2014104823 A1 WO 2014104823A1 KR 2013012323 W KR2013012323 W KR 2013012323W WO 2014104823 A1 WO2014104823 A1 WO 2014104823A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
active material
lithium
positive electrode
secondary battery
Prior art date
Application number
PCT/KR2013/012323
Other languages
French (fr)
Korean (ko)
Inventor
최수안
이승원
윤미혜
정봉준
Original Assignee
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프신소재 filed Critical 주식회사 엘앤에프신소재
Publication of WO2014104823A1 publication Critical patent/WO2014104823A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery.
  • a battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium silver is intercalated / deintercalated in a positive electrode and a negative electrode.
  • the lithium secondary battery is manufactured by using a reversible intercalation / de-intercalation material of lithium silver as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, relatively inexpensive, have the best thermal stability compared to other active materials during overheating, and have low environmental pollution and are attractive materials. Although it has a disadvantage, it has a small capacity.
  • LiCo3 ⁇ 4 has good electrical conductivity and high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability and discharge capacity. It is a typical cathode active material commercialized and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
  • LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage of being difficult to synthesize.
  • the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility. In other words, it is having difficulty in commercialization due to incomplete stability.
  • JP2011-216485 discloses to provide a positive electrode active material for lithium secondary batteries in which lithium nickel composite oxides having different particle size distributions and compositions are mixed, and the degree of improvement is physically equivalent to that of the positive electrode active material. This is explained by the synergy effect.
  • KR2012-0017004 discloses to provide a positive electrode active material for a lithium secondary battery prepared by mixing precursors of different compositions, firing with a lithium compound, but in order to achieve the best performance of each composition according to the Ni / Co / Mn ratio The reason for the different firing temperatures is that the technique is limited to the mixing of very similar precursor compositions.
  • cathode active material having a high capacity and improved life characteristics and safety.
  • a precursor represented by the formula (1) A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; And preparing a lithium feed material to prepare a mixture; It provides a method for producing a cathode active material for a lithium secondary battery comprising a; and firing the prepared mixture.
  • A Ni a CopMny, ⁇ 0.3 ⁇ a ⁇ 0.3, 0.68 ⁇ ⁇ 0.81, 0.09 ⁇ ⁇ 0.14 and 0.10 ⁇ ⁇ 0.18,
  • A Ni Q Co p Mn Y
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti
  • E is one or more elements selected from the group consisting of P, F and S
  • the weight ratio of the precursor represented by Formula 1 to the lithium composite oxide capable of intercalating / deintercalating the lithium silver represented by Formula 2 may be 95/5 to 70/30.
  • the lithium feed material may be nitrate, carbonate, acetate, oxalate, oxide, hydroxide, sulfate or sulfates comprising lithium. It can be a combination of.
  • the precursor represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • A Ni a CopMny, wherein 0.3 ⁇ a ⁇ 0.3, 0.73 ⁇ ⁇ 0.81, 0.09 ⁇ 0.14 and 0.10 ⁇ ⁇ 0.13.
  • the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
  • A Ni a Co 3 Mn Y
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti and ⁇ E is composed of P, F and S At least one element selected from the group, -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0b ⁇ 0.05, 0.39 ⁇ ⁇ 0.52, 0.12 ⁇ ⁇ 0.25 and 0.36 ⁇ ⁇ 0.49.
  • the firing temperature of the step of firing the prepared mixture may be 700 to 1000 ° c.
  • the C (carbon) content may be 350 ppm or less.
  • the prepared cathode active material has two different Ni Q Co p MnY composition groups. Particles having a high Ni content among these compositions may be cathode active materials having a lower Ni content than the inside thereof.
  • the Ni content of the positive electrode active material derived from Chemical Formula 1 may be reduced to less than 5% based on the Ni content of the positive electrode active material obtained by firing the precursor represented by Chemical Formula 1 alone.
  • the Ni content may be reduced from 80 to 76 mol% based on 80% mol%.
  • the Ni content standard deviation may be less than 1.00.
  • the intercalable lithium composite oxide is prepared from a precursor of Formula 1, and the surface Ni content of the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by the following Formula 5 is the precursor.
  • A Ni a Co p Mn Y
  • D is at least one element selected from the group consisting of Mg, A1, B and Ti
  • E is at least one element selected from the group consisting of P, F and S
  • A Ni a Co P Mn Y
  • D is at least one element selected from the group consisting of Mg, A1, B and Ti
  • E is at least one element selected from the group consisting of P, F and S
  • Lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; and lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Formula 5 The weight ratio can be 95/5 to 70/30.
  • the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 5 may be represented by the following Chemical Formula 6.
  • A Ni a Co p Mn Y
  • D is at least one element selected from the group consisting of Mg, A1, B and Ti
  • E is at least one element selected from the group consisting of P, F and S
  • a lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
  • A Ni a Co ⁇ 3Mn Y
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti
  • E is one or more selected from the group consisting of P, F and S Element, -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0b ⁇ 0.05, and 0.39 ⁇ ⁇ 0.52, 0.12 ⁇ ⁇ 0.25 and 0.36 ⁇ ⁇ 0.49.
  • a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte, the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, It provides a lithium secondary battery comprising the positive electrode active material described above.
  • cathode active material having a high capacity and improved life characteristics and safety.
  • FIG. 1 is a schematic view of a lithium secondary battery.
  • FIG. 2 is a graph of layer conformation curves of a coin cell manufactured using the cathode active material according to Example 4 and Comparative Examples 2 to 4.
  • FIG. 2 is a graph of layer conformation curves of a coin cell manufactured using the cathode active material according to Example 4 and Comparative Examples 2 to 4.
  • a precursor represented by the formula (1) doing Preparing a complex by preparing a lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Formula 2 and a lithium supply material; It provides a method for producing a cathode active material for a lithium secondary battery comprising a; and firing the prepared mixture.
  • A Ni a Co p Mr1 ⁇ 2, ⁇ 0.3 ⁇ a ⁇ 0.3, 0.68 ⁇ ⁇ 0.81, 0.09 ⁇ ⁇ 0.14 and 0.10 ⁇ y ⁇ 0.18,
  • A Ni a Co p Mn Y
  • D is at least one element selected from the group consisting of Mg, Al, B and Ti
  • E is at least one element selected from the group consisting of P, F and S
  • the precursor represented by Formula 1 may exhibit high capacity characteristics, and the lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2 may exhibit long life and thermally stable properties.
  • the weight ratio (precursor / lithium composite oxide) of the precursor represented by the formula (1) to the lithium composite oxide capable of intercalating / deintercalating the lithium ion represented by the formula (2) is 95/5 to 70/30 Can be.
  • high capacity and / or high efficiency characteristics may be derived from the precursor composition represented by Chemical Formula 1 as described above.
  • the lithium composite oxide represented by Chemical Formula 2 may ensure stable characteristics even at high voltage, and thus may exhibit more excellent battery characteristics.
  • the lithium supply material is lithium Nitrate, carbonate, acetate, oxalate, oxide, hydroxide sulfate, or combinations thereof, including, but not limited to, nitrate, carbonate, acetate, acetate, oxalate, oxalate, Does not. More specifically, the precursor represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • A Ni a Co p Mn Y , -3 ⁇ a ⁇ 0.3, 0.73 ⁇ ⁇ 0.81, 0.09 ⁇ ⁇ 0.14 and 0.10 ⁇ ⁇ 0.13. More specifically, the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
  • A Ni aCopMny
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti
  • E is one or more elements selected from the group consisting of P, F and S,- 0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.39 ⁇ ⁇ 0.52, 0.12 ⁇ ⁇ 0.25 and 0.36 ⁇ ⁇ 0.49.
  • the firing degree of the step of firing the prepared mixture may be 700 to loocrc.
  • the above range may be a range suitable for simultaneously firing the precursor and the lithium composite oxide according to one embodiment of the present invention.
  • Calcining the prepared mixture; after the C content may be 350 ppm or less. Alternatively, the C content may be 350 to 200 ppm.
  • the C content is a C content based on 100% by weight of the total amount of the lithium composite oxide prepared after the step of firing the prepared mixture.
  • the precursors are prepared by firing a mixture of precursor, lithium composite oxide, and lithium compound at the optimum temperature of the precursor composition. Even if there is a difference in NiaCopMny composition between the lithium composite oxide and the lithium composite oxide, battery characteristics superior to those of the prior art may be realized without deteriorating powder and battery performance.
  • the optimum calcined silver of the lithium composite oxide is higher than the optimal calcined silver of the precursor, the mixture of the precursor, the lithium complex oxide, and the lithium compound is calcined according to the optimum temperature of the precursor composition according to an embodiment of the present invention. From the standpoint of lithium complex oxide, there can be no major changes in terms of powder and structure.
  • the amount of residual water-soluble lithium may be reduced by 20 to 50% compared to the water-soluble residual lithium when firing the precursor represented by the formula (1) alone.
  • the residual lithium reduction can significantly solve the problem of electrode plate instability due to high residual lithium and gas generation after battery application.
  • the positive electrode active material surface Ni content derived from Chemical Formula 1 may be reduced to less than 5% of the positive electrode active material surface Ni content obtained by firing the precursor represented by Chemical Formula 1 alone.
  • the Ni mol 80 may range from 80 to 76 mol%.
  • the Ni content standard deviation may be less than 1.00 when surface analysis by arbitrarily selecting 10 positive electrode active material particles derived from Formula 1 of the positive electrode active material for lithium secondary batteries.
  • the prepared positive electrode active material has two different Ni a C 0i3 Mn Y composition groups. Among these compositions, the Ni-containing particles have a higher Ni content than that of the inside. It may be a cathode active material having a low content.
  • the lithium feed material when the lithium feed material is added to the mixture of the precursor and the lithium composite oxide and calcined, the lithium feed material reacts with the precursor and the lithium composite oxide.
  • chemical reactions with a precursor, a lithium composite oxide (eg, a heterogeneous active material), and Li are fired by mixing a lithium supply material with a precursor having a different Ni a CopMn y composition and a lithium composite oxide.
  • a concentration gradient occurs between two different Ni a Co p Mn Y compositions due to chemical reaction by precursors, lithium composite oxides and lithium.
  • an unexpected charge / discharge curve difference occurs. It is different from the physical precursor of single precursor plasticity or simple heterogeneous active material which increases the tangent slope due to the filling curve which reduces the slope of the tangent of the layered curve in the region of 4.2V or higher. Combination is possible.
  • the particles having a high Ni content in these compositions may be a cathode active material having a lower Ni content than the inside thereof.
  • Mn which is known to have excellent reactivity with lithium, reacts selectively to lithium toward a composition having a high Mn content, thereby fundamentally suppressing the generation of water-soluble residual lithium generated at a high Ni content.
  • a lithium composite oxide capable of intercalating / deintercalating lithium silver represented by the following Chemical Formula 5 and the following Lithium composite battery capable of intercalating / deintercalating the lithium ion represented by the formula (2); and a positive electrode active material for a lithium secondary battery comprising a lithium ion represented by the formula (5)
  • the lithium composite oxide which can be oxidized is prepared from the precursor of Formula 1, and the surface Ni content of the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by the following Formula 5 is the precursor alone. It provides a cathode active material for a lithium secondary battery that is less than the surface Ni content of the lithium composite oxide prepared by firing.
  • A Ni a Co p Mn Y
  • D is at least one element selected from the group consisting of Mg, Al, B and Ti
  • E is at least one element selected from the group consisting of P, F and S And —0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, and 0.68 ⁇ ⁇ 0.81, 0.09 ⁇ ⁇ 0.14 and 0.10 ⁇ ⁇ 0.18.
  • A ⁇ ⁇ ) ⁇ ⁇ ⁇ ⁇
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti
  • E is one or more elements selected from the group consisting of P, F and S
  • the particle size of the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Formula 5 may include the lithium composite oxide capable of intercalating / deintercalating the lithium silver represented by Formula 2. It may be larger than the particle size.
  • the amount of water-soluble lithium remaining after firing can be reduced and the discharge capacity characteristics of the battery can be improved at the same time.
  • the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 5 may be represented by the following Chemical Formula 6.
  • A ⁇ ⁇ ) ⁇ ⁇
  • D is at least one element selected from the group consisting of Mg, A1, B, and Ti
  • E is at least one element selected from the group consisting of P, F, and S -0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, 0.73 ⁇ ⁇ 0.81, 0.09 ⁇ ⁇ 0.14 and 0.10 ⁇ ⁇ 0.13.
  • the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
  • A Ni Q Co p Mn y
  • D is one or more elements selected from the group consisting of Mg, Al, B and Ti
  • E is one or more selected from the group consisting of P, F and S Element, -0.05 ⁇ ⁇ 0.1, 0 ⁇ a ⁇ 0.05 and 0 ⁇ b ⁇ 0.05, and 0.39 ⁇ ⁇ 0.52, 0.12 ⁇ ⁇ 0.25 and 0.36 ⁇ ⁇ 0.49.
  • a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte, the positive electrode is a current collector and the current Comprising a positive electrode active material layer formed on a current collector, the positive electrode active material layer provides a lithium secondary battery comprising the above-described positive electrode active material.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres positively to the positive electrode active material particles to each other, and also serves to adhere the positive electrode active material well to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell. Rose, polyvinylchloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene polyvinylidene fluoride, polyethylene , Polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin nylon, etc. may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial graphite, carbon black, and acetylene black.
  • Carbon-based materials such as ketjen black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver;
  • Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium silver, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used.
  • Carbon, amorphous carbon or these can be used together.
  • Crystalline Examples of carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural or artificial graphite, and examples of amorphous carbon include soft carbon (low temperature calcined carbon) or Hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • alloy of the lithium metal lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca
  • Alloys of metals selected from the group consisting of Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn may be used.
  • Examples of the material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, or a transition metal). , A rare earth element and an element selected from the group consisting of, not Si), Sn, Sn0 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, Group 13 element, Group 14 element, transition metal Or a rare earth element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them and Si0 2 may be used in combination.
  • transition metal oxide examples include vanadium oxide and lithium vanadium oxide.
  • the negative electrode active material layer also includes a binder, and optionally may further include a conductive material.
  • the binder adheres the anode active material particles well to each other, and also serves to adhere the anode active material well to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose and polyvinyl chloride.
  • Carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to an electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial alum, carbon black, and acetylene black.
  • Carbon-based materials such as ketjen black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver;
  • Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
  • A1 may be used as the current collector, but is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. N-methylpyridone may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used
  • the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl Propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like can be used.
  • the ether solvent 201 examples include dimethyl carbonate (DMC), diethy
  • Dibutyl ether, tetraglyme, diglyme, dimethicethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used.
  • ketone solvent cyclonuxanone may be used.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R_CN (R is a linear, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms, Amides such as nitrile dimethylformamide, dioxolane sulfolanes such as 1,3-dioxolane, and the like.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more of the mixtures may be appropriately adjusted according to the desired battery performance, which may be used by those skilled in the art. It can be widely understood.
  • the carbonate solvent it is preferable to use a cyclic carbonate and a chain carbonate in combination.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 8 may be used as the aromatic hydrocarbon-based organic solvent.
  • ⁇ to 3 ⁇ 4 are each independently hydrogen, halogen C1 to C10 alkyl group, haloalkyl group, or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3'difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3 ⁇ trichlorobenzene, 1,2, 4 ⁇ Trichlorobenzene, Iodobenzene, 1,2-Diiodobenzene, 1,3-Diiodobenzene, 1,4-Diiodobenzene 1,2,3-triiodobenzene, 1,2,4- Triiodobenzen
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by Formula 9 to improve battery life.
  • R 7 and 3 ⁇ 4 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ), or a C1 to C5 fluoroalkyl group, and at least one of R 7 and 3 ⁇ 4 is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
  • ethylene carbonate compounds include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, or fluoroethylene carbonate. Lift back Can be. If more of these life improving additives are used, their amount can be adjusted accordingly.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6) LiAsF 6) LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCl 4 , ⁇ ⁇ ( ( : ⁇ ⁇ 2 ⁇ + 1 30 2 ) ⁇ ⁇ +1 30 2 ) (where x and y are natural numbers), LiCl, Lil and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB)
  • At least one of two or more supported electrolytic salts should be used in the range of 0.1 to 2.0 M. If the concentration of lithium salt is in the above range, the electrolyte will have the appropriate conductivity and viscosity. Since it
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin, and pouch types according to their type. Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery 1 schematically shows a typical structure of a lithium secondary battery of the present invention.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
  • the container 5 and the battery container 5 And an encapsulation member 6.
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 42 Co 0 . 16 Mn 0 . 42 (0H) 2 is mixed in a weight ratio of 1: 1.03 (Metal: Li) using a mixer, but the reaction time is 6 hours at elevated temperature in air, 1005 ° C, 7 hours in the holding section, and the total firing time is 20 hours. , A fired body was prepared.
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 38 Co 0 . 20 Mn 0 . 42 (0H) 2 is mixed at a weight ratio of 1: 1.03 (Metal: Li) using a mixer, but the reaction time is 6 hours in air, 990 ° C, 7 hours in the holding section, and the total firing time is 20 hours. , A fired body was prepared.
  • Example 1 Preparation of a Mixed Firing Cathode Active Material
  • Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10, 02 and Li.Ni 0.42 Co 0.16 Mn 0.42 The weight ratio of 02 is such that the 80:20 LiNi 0. 42 Co 0 . 16 Mn 0 .
  • a positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 .
  • Example 3 Preparation of a Mixed Calcined Cathode Active Material
  • Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 and LiNi 0 . 42 Co 0.16 Mn 0.42 0 2 The ratio of LiNi 0 . 42 Co 0 . 16 Mn 0 .
  • a positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 .
  • Example 4 Preparation of a Mixed Calcined Cathode Active Material
  • Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . LiNi 0.42 Co 0 so that the weight ratio of 10 0 2 and LiNi 0.42 Co 0.16 Mn 0.42 0 2 is 80:20.
  • a positive electrode active material was prepared in the same manner except that 16 Mn 0.42 0 2 was added and mixed, and then calcined at 770 ° C. in the holding section.
  • Example 5 Preparation of a Mixed Calcined Cathode Active Material
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 80 Co 0.10 Mn 0.10 (0H) 2 in a weight ratio of 1: 1.02 (Metal: Li), after mixing using a mixer, MgC03 powder based on the mixture
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 42 Co 0 . 16 Mn 0 . After mixing 42 (0H) 2 in a weight ratio of 1: 1.03 (Metal: Li) using a mixer, the Ti02 powder was mixed on the basis of the above mixture.
  • Ti-doped Li 0 prepared in the same manner as in Synthesis example 1, except that the dry mix was further mixed at a weight ratio of 100: 0.2.
  • a positive electrode active material was prepared in the same manner as in Example 1.
  • Example 6 Preparation of a Mixed Calcined Cathode Active Material
  • Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 and LiNi 0 . 42 Co 0 . 16 Mn 0 . LiNi 0 so that the ratio of 42 0 2 is 60:40. 42 Co 0 . 16 Mn 0 .
  • a positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 . Comparative Example 2
  • Li 2 CO 3 (trade name: SQM) and LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 (() H) 2 was mixed using a mixer at a weight ratio of 1: 1.03 (Metal: Li).
  • 42 Co 0 . 16 Mn 0 . Combine 42 0 2 with the weight ratio 80:20
  • a positive electrode active material was prepared. Comparative Example 5
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 and Ni 0.42 Co 0.16 Mn 0.42 (0H) 2 are mixed in a weight ratio of l: 1.02 (Metal: Li) using a mixer,
  • Li 2 CO 3 (trade name: SQM) and Ni 0 . 73 Co 0 . 10 Mn 0.17 (0H) 2 was mixed using a mixer using a mixer at a weight ratio of 1: 1.02 (Metal: LO).
  • the resulting mixture was heated in air for 6 hours, in a holding section at 800 ° C. for 7 hours, and a total firing time of 20 hours.
  • the obtained fired body was slowly carved out and pulverized to prepare a positive electrode active material powder.
  • the positive electrode slurry is a positive electrode current collector having a thickness of 20 to 40
  • the positive electrode was manufactured by coating and vacuum drying the aluminum (Al) thin film and performing a roll press.
  • Li-metal was used as the negative electrode.
  • a coin cell type half cell was manufactured by using the cathode and the Li-metal prepared as described above and using 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Charging and discharging were conducted in the range of 4.3-3.0V (room temperature) and 4.5-3.0V (45 ° C).
  • Table 1 and Table 2 are the battery characteristics evaluation and residual lithium, DSC results of the coin cell prepared in the experimental example.
  • Examples 1 to 5 have an initial capacity of 200mAh / g or more and a high C content of 200 to 310 units.
  • 30-cycle holding characteristics of 4.3-3.0V (room temperature) and 4.5-3.0V (45 ° C) the retention rate of around 90% and the improved capacity retention rate of 80% sec / mV respectively are shown.
  • the outstanding battery characteristic is also shown in Table 2 Example 6 which shows the battery characteristic of the positive electrode active material combination from which a composition differs.
  • Example 2 the difference in Formation efficiency appears according to the micro-difference of firing temperature.
  • FIG. 2 a phenomenon in which the layer capacitance is increased while having a layer curve in which a tangential slope is reduced in a region of 4.2 V or more is confirmed. This is a characteristic that can be seen as the efficiency control is thought to be possible to be combined with various negative electrodes in the battery.
  • Example 2 10 particles having a relatively high Ni content were randomly selected and the surface analysis results are shown as Examples 2-1 to 2-10.
  • the results of surface analysis by arbitrarily selecting ten particles having a relatively high Ni content in the cathode active material obtained in Comparative Example 5 are shown as Comparative Examples 5-1 to 5-10.
  • Example 2 which is a mixed calcined cathode active material of the present invention precursor and the cathode active material, has two different Ni a Co p Mn Y composition groups, which are mixed with the results of EDS analysis for particles having high Ni content among these compositions. It is confirmed that the content of Ni on the surface is reduced in comparison with Comparative Example 2 that did not fire.
  • Comparative Example 5 in which precursors of different compositions are mixed and calcined, has two different Ni a Co P Mn Y composition groups, and it can be seen that the reduction of Ni content on the surface of particles having a high Ni content is large among these compositions.
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for preparing a cathode active material for a lithium secondary battery and the cathode active material for a lithium secondary battery, and the method comprises the steps of: producing a mixture by preparing a precursor expressed in chemical formula 1 below, a lithium composite oxide capable of carrying out intercalation/deintercalation for a lithium ion expressed in chemical formula 2 below, and a lithium-fed material; and calcining the produced mixture. [Chemical formula 1] A (OH) 2-a [Chemical formula 2] Li [LizA (1-z-a) Da] EbO2-b

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질  Manufacturing method of positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery
【기술분야】  Technical Field
리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다.  It relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery.
【배경기술】 Background Art
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 ^지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.  Recently, with the trend toward miniaturization and light weight of portable electronic devices, the necessity for high performance and high capacity of messages used as power sources of these devices is increasing.
전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이은이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차전지가 있다.  A battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium silver is intercalated / deintercalated in a positive electrode and a negative electrode.
상기 리튬 이차전지는 리튬 이은의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.  The lithium secondary battery is manufactured by using a reversible intercalation / de-intercalation material of lithium silver as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
리튬 이차전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02, LiMn204, LiNi02, LiMn02 등의 복합금속 산화물들이 연구되고 있다. A lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
상기 양극 활물질 중 LiMn204, LiMn02 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과층전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점올 가지고 있다. Among the cathode active materials, Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, relatively inexpensive, have the best thermal stability compared to other active materials during overheating, and have low environmental pollution and are attractive materials. Although it has a disadvantage, it has a small capacity.
LiCo¾는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성 , 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다. LiCo¾ has good electrical conductivity and high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability and discharge capacity. It is a typical cathode active material commercialized and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
또한 LiNi02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아을러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다. In addition, LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage of being difficult to synthesize. In addition, the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility. In other words, it is having difficulty in commercialization due to incomplete stability.
전지의 안정성과 용량 개선을 위해 JP2011-216485에 따르면 서로 다른 입도 분포와 조성을 가지는 리튬 니켈 복합 산화물들이 흔합 된 리튬 이차 전지용 양극 활물질을 제공하는 것이 개시되어 있고 개선의 정도는 서로 다른 양극 활물질의 물리적 흔합에 의한 시너지효과로 설명 된다.  In order to improve the stability and capacity of the battery, JP2011-216485 discloses to provide a positive electrode active material for lithium secondary batteries in which lithium nickel composite oxides having different particle size distributions and compositions are mixed, and the degree of improvement is physically equivalent to that of the positive electrode active material. This is explained by the synergy effect.
또한 KR2012-0017004에서는 서로 다른 조성의 전구체를 흔합, 리튬화합물과 소성하여 제조 된 리튬 이차 전지용 양극 활물질을 제공하는 것이 개시되어 있으나, 각 조성별 최적의 성능을 내기 위해서는 Ni/Co/Mn 비율에 따라 소성온도를 다르게 해야 하는 이유로해서 해당 기술에서는 매우 유사한 전구체 조성의 흔합으로 제한되어 있다.  In addition, KR2012-0017004 discloses to provide a positive electrode active material for a lithium secondary battery prepared by mixing precursors of different compositions, firing with a lithium compound, but in order to achieve the best performance of each composition according to the Ni / Co / Mn ratio The reason for the different firing temperatures is that the technique is limited to the mixing of very similar precursor compositions.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
고용량이면서 수명특성 및 안전성이 개선된 양극 활물질을 제공하는 것이다.  It is to provide a cathode active material having a high capacity and improved life characteristics and safety.
【과제의 해결 수단】 [Measures of problem]
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 전구체; 하기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물; 및 리튬 공급 물질을 준비하여 흔합물을 제조하는 단계; 및 상기 제조된 흔합물을 소성하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. ,  In one embodiment of the present invention, a precursor represented by the formula (1); A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; And preparing a lithium feed material to prepare a mixture; It provides a method for producing a cathode active material for a lithium secondary battery comprising a; and firing the prepared mixture. ,
[화학식 1] A(0H)2-a [Formula 1] A (0H) 2 - a
상기 화학식 1에서 A = NiaCopMny이고, -0.3 < a < 0.3, 0.68 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.18 이고, In Formula 1, A = Ni a CopMny, −0.3 <a <0.3, 0.68 <α <0.81, 0.09 <β <0.14 and 0.10 <γ <0.18,
[화학식 2]  [Formula 2]
Li [LizA(i_z-a)Da]Eb02-i) Li [Li z A ( i_ z - a ) D a ] E b 0 2- i)
상기 화학식 2에서 A = NiQCopMnY이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< β <0.29 및 0.36< γ <0.53 이다. In Formula 2, A = Ni Q Co p Mn Y , D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is one or more elements selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.35 <α <0.52, 0.12 <β <0.29 and 0.36 <γ <0.53.
상기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 1로 표시되는 전구체의 중량비는 95/5 내지 70/30 일 수 있다.  The weight ratio of the precursor represented by Formula 1 to the lithium composite oxide capable of intercalating / deintercalating the lithium silver represented by Formula 2 may be 95/5 to 70/30.
상기 리튬 공급 물질은, 리튬을 포함하는 나이트레이트 (nitrate), 카보네이트 (carbonate), 아세테이트 (acetate), 옥살레이트 (oxalate), 옥사이드 (oxide), 하이드록사이드 (hydoxide), 설페이트 (sulfate) 또는 이들의 조합일 수 있다.  The lithium feed material may be nitrate, carbonate, acetate, oxalate, oxide, hydroxide, sulfate or sulfates comprising lithium. It can be a combination of.
상기 화학식 1로 표시되는 전구체는 하기 화학식 3으로 표시될 수 있다.  The precursor represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
[화학식 3]  [Formula 3]
A(OH)2-a A (OH) 2 - a
상기 화학식 3에서, A = NiaCopMny이고, ᅳ0.3 < a < 0.3, 0.73 < α < 0.81, 0.09< β 0.14 및 0.10< γ <0.13 이다. In Formula 3, A = Ni a CopMny, wherein 0.3 <a <0.3, 0.73 <α <0.81, 0.09 <β 0.14 and 0.10 <γ <0.13.
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시될 수 있다.  The lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
[화학식 4]  [Formula 4]
Li [LizA(i-z-a)Da ] Eb02-b Li [Li z A (i- z -a) D a ] E b 0 2 - b
상기 화학식 4에서, A = NiaCo3MnY이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고ᅳ E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 b < 0.05 이고, 0.39 < α < 0.52, 0.12< β <0.25 및 0.36< γ <0.49 이다. In Formula 4, A = Ni a Co 3 Mn Y , D is one or more elements selected from the group consisting of Mg, Al, B and Ti and ᅳ E is composed of P, F and S At least one element selected from the group, -0.05 <z <0.1, 0 <a <0.05 and 0b <0.05, 0.39 <α <0.52, 0.12 <β <0.25 and 0.36 <γ <0.49.
상기 제조된 흔합물을 소성하는 단계의 소성 온도는 700 내지 1000 °c일 수 있다. The firing temperature of the step of firing the prepared mixture may be 700 to 1000 ° c.
상기 제조된 흔합물을 소성 하는 단계를 수행한 뒤 C (카본) 함량은 350ppm 이 하일 수 있다.  After performing the step of firing the prepared mixture, the C (carbon) content may be 350 ppm or less.
상기 제조된 양극활물질은 서로 다른 2개의 Ni QCop MnY 조성 그룹을 가지 게 되는데 이들 조성 중 Ni함량이 높은 조성의 입자는 내부 보다 표면의 Ni 함량이 작은 양극 활물질일 수 있다 . The prepared cathode active material has two different Ni Q Co p MnY composition groups. Particles having a high Ni content among these compositions may be cathode active materials having a lower Ni content than the inside thereof.
상기 제조된 흔합물을 소성하는 단계 ;를 수행하여 얻어지는 리튬 이차전지용 양극활물질 중, 상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시되는 전구체를 단독으로 소성하여 얻어진 양극 활물질 표면 Ni 함량보다 감소할 수 있다.  Calcining the prepared mixture; the cathode active material surface Ni content derived from Formula 1 of the cathode active material for a lithium secondary battery obtained by performing the surface of the cathode active material obtained by firing the precursor represented by Formula 1 alone May be reduced than the Ni content.
상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시 되는 전구체를 단독으로 소성 하여 얻어진 양극 활물질 표면 Ni 함량 기준 5% 미만으로 감소할 수 있다.  The Ni content of the positive electrode active material derived from Chemical Formula 1 may be reduced to less than 5% based on the Ni content of the positive electrode active material obtained by firing the precursor represented by Chemical Formula 1 alone.
보다 구체적 인 예를 들어, Ni mol% 80 기준으로 80 에서 76 mol% 함량으로 감소할 수 있다.  More specifically, for example, the Ni content may be reduced from 80 to 76 mol% based on 80% mol%.
상기 리튬 이차전지용 양극 활물질 중 화학식 1로부터 유래되는 양극 활물질 입자를 임의로 10개 선정하여 표면분석 하였을 때 Ni 함량 표준 편차가 1.00 미만일 수 있다.  When the surface analysis is performed by arbitrarily selecting ten positive electrode active material particles derived from Formula 1 among the positive electrode active materials for lithium secondary batteries, the Ni content standard deviation may be less than 1.00.
본 발명의 다른 일 구현예에서는, 하기 화학식 5로 표시 되는 리튬 이온을 인터칼레이션 /디 인터칼레이션할 수 있는 리튬 복합 산화물 ; 및 하기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디 인터칼레이션할 수 있는 리튬 복합 산화물;을 포함하는 리튬 이차전지용 양극 활물질이되, 하기 화학식 5로 표시 되는 리튬 이온을 인터칼레이션 /디 인터칼레이션할 수 있는 리튬 복합 산화물;은 화학식 1의 전구체로부터 제조되며, 하기 화학식 5로 표시되는 리튬 이은을 인터칼레이션 /디 인터칼레이션할 수 있는 리륨 복합 산화물의 표면 Ni 함량은, 상기 전구체를 단독으로 소성 하여 제조된 리튬 복합 산화물의 표면 Ni 함량보다 감소하는 것인 리튬 이차전지용 양극 활물질을 제공한다. In another embodiment of the present invention, a lithium composite oxide capable of intercalating / de-intercalating lithium ions represented by the following formula (5); And a lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; and a cathode active material for a lithium secondary battery, wherein the lithium ions represented by Formula 5 are intercalated / di The intercalable lithium composite oxide is prepared from a precursor of Formula 1, and the surface Ni content of the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by the following Formula 5 is the precursor. Lithium prepared by firing alone It provides a cathode active material for a lithium secondary battery that is less than the surface Ni content of the composite oxide.
을 제공한다.  To provide.
[화학식 5]  [Formula 5]
Li [LizA(i-2-a)Da]Eb02-b Li [Li z A (i- 2 - a ) D a ] E b 02-b
상기 화학식 5에서 A = NiaCopMnY이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.68 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.18 이다. In Formula 5, A = Ni a Co p Mn Y , D is at least one element selected from the group consisting of Mg, A1, B and Ti, E is at least one element selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.68 <α <0.81, 0.09 <β <0.14 and 0.10 <γ <0.18.
[화학식 2]  [Formula 2]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a ) D a ] E b 02-b
상기 화학식 2에서 A = NiaCoPMnY이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< |3 <0.29 및 0.36< γ <0.53 이다. In Formula 2, A = Ni a Co P Mn Y , D is at least one element selected from the group consisting of Mg, A1, B and Ti, E is at least one element selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.35 <α <0.52, 0.12 <| 3 <0.29 and 0.36 <γ <0.53.
상기 화학식 2로 표시되는 리튬 이온을 인터¾레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 5로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합산화물의 중량비는 95/5 내지 70/30일 수 있다.  Lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; and lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Formula 5 The weight ratio can be 95/5 to 70/30.
상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 6으로 표시될 수 있다.  The lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 5 may be represented by the following Chemical Formula 6.
[화학식 6]  [Formula 6]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z -a) D a ] E b 02-b
상기 화학식 6에서 A = NiaCopMnY이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 b < 0.05 이고, 0.73 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.13 이다. In Formula 6, A = Ni a Co p Mn Y , D is at least one element selected from the group consisting of Mg, A1, B and Ti, E is at least one element selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 b <0.05, 0.73 <α <0.81, 0.09 <β <0.14 and 0.10 < γ <0.13.
상기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시될 수 있다.  A lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
[화학식 4]  [Formula 4]
Li[LizA(i-z-a)DjEb02-b Li [Li z A (i- z - a ) DjE b 02-b
상기 화학식 4에서, A = NiaCo{3MnY이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 b < 0.05 이고, 0.39 < α < 0.52, 0.12 β <0.25 및 0.36< γ <0.49 이다. In Formula 4, A = Ni a Co {3Mn Y , D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is one or more selected from the group consisting of P, F and S Element, -0.05 <z <0.1, 0 <a <0.05 and 0b <0.05, and 0.39 <α <0.52, 0.12 β <0.25 and 0.36 <γ <0.49.
본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차전지이며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은, 전술한 양극 활물질을 포함하는 것인 리튬 이차전지를 제공한다.  In another embodiment of the present invention, a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte, the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, It provides a lithium secondary battery comprising the positive electrode active material described above.
【발명의 효과】 【Effects of the Invention】
고용량이면서 수명특성 및 안전성이 개선된 양극 활물질을 제공하는 것이다.  It is to provide a cathode active material having a high capacity and improved life characteristics and safety.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 리튬 이차전지의 개략도이다.  1 is a schematic view of a lithium secondary battery.
도 2는 실시예 4, 및 비교예 2 내지 4에 따른 양극 활물질을 이용하여 제조한 코인셀의 층전곡선 그래프이다.  FIG. 2 is a graph of layer conformation curves of a coin cell manufactured using the cathode active material according to Example 4 and Comparative Examples 2 to 4. FIG.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다 . 다만 , 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 전구체; 하기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물; 및 리튬 공급 물질을 준비하여 흔합물을 제조하는 단계; 및 상기 제조된 흔합물을 소성하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. In one embodiment of the present invention, a precursor represented by the formula (1); doing Preparing a complex by preparing a lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Formula 2 and a lithium supply material; It provides a method for producing a cathode active material for a lithium secondary battery comprising a; and firing the prepared mixture.
[화학식 1]  [Formula 1]
A(0H)2-a A (0H) 2 - a
상기 화학식 1에서 A = NiaCopMr½이고, ᅳ 0.3 < a < 0.3, 0.68 < α < 0.81, 0.09< β <0.14 및 0.10< y <0.18 이고, In Formula 1, A = Ni a Co p Mr½, ᅳ 0.3 <a <0.3, 0.68 <α <0.81, 0.09 <β <0.14 and 0.10 <y <0.18,
[화학식 2]  [Formula 2]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a ) Da] Eb 0 2- b
상기 화학식 2에서 A = NiaCopMnY이고, D는 Mg, Al , B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< β <0.29 및 0.36< γ <0.53 이다. 상기 화학식 1로 표시되는 전구체는 고용량 특성을 나타낼 수 있으며, 상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 장수명 및 열적으로 안정한 특성을 나타낼 수 있다. In Formula 2, A = Ni a Co p Mn Y , D is at least one element selected from the group consisting of Mg, Al, B and Ti, E is at least one element selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.35 <α <0.52, 0.12 <β <0.29 and 0.36 <γ <0.53. The precursor represented by Formula 1 may exhibit high capacity characteristics, and the lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2 may exhibit long life and thermally stable properties.
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 1로 표시되는 전구체의 중량비 (전구체 /리튬 복합 산화물)는 95/5 내지 70/30일 수 있다. 이러한 범위를 만족하는 경우, 소성 후에 잔류하는 리튬의 양을 줄일 수 있으며 전지의 열적 안정성을 향상시켜 DSC 발열 은도를 을릴 수 있으며, 전지의 충방전 효율을 제어 할 수 있다. 또한 상기 서술한 것과 같이 상기 화학식 1로 표시되는 전구체 조성에서 고용량 및 /또는 고효율 특성이 유래될 수 있다. 이에 더하여 상기 화학식 2로 표시되는 리튬 복합 산화물은 고전압에서도 안정한 특성을 확보할 수 있어 보다 우수한 전지 특성을 나타낼 수 있다. 상기 리튬 공급 물질은, 리튬을 포함하는 나이트레이트 (nitrate), 카보네이트 (carbonate), 아세테이트 (acetate), 옥살레이트 (oxalate), 옥사이드 (oxide), 하이드록사이드 (hydoxide) 설페이트 (sulfate) 또는 이들의 조합일 수 있으나, 이에 제한되지는 않는다. 보다 구체적으로, 상기 화학식 1로 표시되는 전구체는 하기 화학식 3으로 표시될 수 있다. The weight ratio (precursor / lithium composite oxide) of the precursor represented by the formula (1) to the lithium composite oxide capable of intercalating / deintercalating the lithium ion represented by the formula (2) is 95/5 to 70/30 Can be. When satisfying this range, it is possible to reduce the amount of lithium remaining after firing, to improve the thermal stability of the battery to reduce the DSC heat generation silver, and to control the charge and discharge efficiency of the battery. In addition, high capacity and / or high efficiency characteristics may be derived from the precursor composition represented by Chemical Formula 1 as described above. In addition, the lithium composite oxide represented by Chemical Formula 2 may ensure stable characteristics even at high voltage, and thus may exhibit more excellent battery characteristics. The lithium supply material is lithium Nitrate, carbonate, acetate, oxalate, oxide, hydroxide sulfate, or combinations thereof, including, but not limited to, nitrate, carbonate, acetate, acetate, oxalate, oxalate, Does not. More specifically, the precursor represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
[화학식 3]  [Formula 3]
A(0H)2-a A (0H) 2 - a
상기 화학식 3에서, A = Ni aCopMnY이고, -으3 < a < 0.3, 0.73 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.13 이다. 보다 구체적으로, 상기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시될 수 있다. In Chemical Formula 3, A = Ni a Co p Mn Y , -3 <a <0.3, 0.73 <α <0.81, 0.09 <β <0.14 and 0.10 <γ <0.13. More specifically, the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
. [화학식 4]  . [Formula 4]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a ) D a ] Eb 0 2 -b
상기 화학식 4에서, A = Ni aCopMny이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.39 < α < 0.52, 0.12< β <0.25 및 0.36< γ <0.49 이다. 상기 제조된 흔합물을 소성하는 단계의 소성 은도는 700 내지 loocrc일 수 있다. 상기 범위는 본 발명의 일 구현예에 따른 전구체와 리튬 복합 산화물을 동시에 소성하기에 적합한 범위일 수 있다.  In Formula 4, A = Ni aCopMny, D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is one or more elements selected from the group consisting of P, F and S,- 0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.39 <α <0.52, 0.12 <β <0.25 and 0.36 <γ <0.49. The firing degree of the step of firing the prepared mixture may be 700 to loocrc. The above range may be a range suitable for simultaneously firing the precursor and the lithium composite oxide according to one embodiment of the present invention.
상기 제조된 흔합물을 소성하는 단계;를 수행한 뒤 C함량은 350ppm 이하일 수 있다. 또는, 상기 C함량은 350 내지 200ppm 일 수 있다.  Calcining the prepared mixture; after the C content may be 350 ppm or less. Alternatively, the C content may be 350 to 200 ppm.
상기 C함량은 상기 제조된 흔합물을 소성하는 단계를 수행한뒤 제조된 리튬 복합산화물 총 양을 100중량 %로 기준을 정하였을 때의 C함량이다.  The C content is a C content based on 100% by weight of the total amount of the lithium composite oxide prepared after the step of firing the prepared mixture.
상기 C함량 저감은 종전 높은 잔류 리튬으로 인한 극판 슬러리 블안정성 및 전지 적용 후의 가스 발생의 문제를 상당부분 해결할 수 있다. 이는 종래의 기술인 서로 다른 조성의 NiaCopMnY 전구체를 흔합, 특정 온도에서 소성하는 방법과는 달리 전구체, 리튬 복합 산화물, 리튬 화합물의 흔합물을 전구체 조성의 최적온도에 맞추어 소성함으로써, 전구체와 리튬 복합 산화물 간에 NiaCopMny 조성 차이가 있더라도 분체 및 전지성능 저하 없이 종래의 기술 보다 뛰어난 전지 특성을 구현 할 수 있다. 상기 리튬 복합 산화물의 최적 소성은도는 상기 전구체의 최적 소성 은도보다 높기 때문에, 전구체, 리튬 복합 산화물, 및 리튬 화합물의 흔합물을 전구체 조성의 최적온도에 맞춰 소성하는 본 발명의 일 구현예에 따른 리튬 복합 산화물 입장에서는 분체 및 구조적 측면에서 큰 변화점이 없을 수 .있다. Reduction of the C content is the electrode plate slurry due to the high residual lithium The problem of stability and gas generation after battery application can be largely solved. Unlike conventional methods for mixing Ni a Co p Mn Y precursors having different compositions, and firing at a specific temperature, the precursors are prepared by firing a mixture of precursor, lithium composite oxide, and lithium compound at the optimum temperature of the precursor composition. Even if there is a difference in NiaCopMny composition between the lithium composite oxide and the lithium composite oxide, battery characteristics superior to those of the prior art may be realized without deteriorating powder and battery performance. Since the optimum calcined silver of the lithium composite oxide is higher than the optimal calcined silver of the precursor, the mixture of the precursor, the lithium complex oxide, and the lithium compound is calcined according to the optimum temperature of the precursor composition according to an embodiment of the present invention. From the standpoint of lithium complex oxide, there can be no major changes in terms of powder and structure.
상기 제조된 흔합물을 소성하는 단계;를 수행한 뒤 수용성 잔류 리튬의 양은 상기 화학식 1로 표시되는 전구체를 단독으로 소성하였을 때의 수용성 잔류 리튬 대비 20 내지 50% 감소할 수 있다.  After firing the prepared mixture; the amount of residual water-soluble lithium may be reduced by 20 to 50% compared to the water-soluble residual lithium when firing the precursor represented by the formula (1) alone.
상기 잔류 리튬 저감은 종전 높은 잔류 리튬으로 인한 극판 슬러리 불안정성 및 전지 적용 후의 가스 발생의 문제를 상당부분 해결할 수 있다. 상기 제조된 흔합물을 소성하는 단계;를 수행하여 얻어지는 리튬 이차전지용 양극활물질 증, 상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시되는 전구체를 단독으로 소성하여 얻어진 양극 활물질 표면 Ni 함량보다 감소할 수 있다.  The residual lithium reduction can significantly solve the problem of electrode plate instability due to high residual lithium and gas generation after battery application. Calcining the prepared mixture; a cathode active material for lithium secondary battery obtained by performing the above, the surface of the cathode active material obtained by calcining the precursor represented by the formula (1) by the Ni content of the cathode active material surface derived from Formula 1 alone May be reduced than the Ni content.
보다 구체적으로, 상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시되는 전구체를 단독으로 소성하여 얻어진 양극 활물질 표면 Ni 함량보다 5% 미만으로 감소할 수 있다. 예를 들어 Ni mol 80 기준, 80 에서 76 mol% 사이의 범위 일 수 있다.  More specifically, the positive electrode active material surface Ni content derived from Chemical Formula 1 may be reduced to less than 5% of the positive electrode active material surface Ni content obtained by firing the precursor represented by Chemical Formula 1 alone. For example, the Ni mol 80 may range from 80 to 76 mol%.
보다 구체적으로, 상기 리튬 이차전지용 양극 활물질 중 화학식 1로부터 유래되는 양극 활물질 입자를 임의로 10개 선정하여 표면분석 하였을 때 Ni 함량 표준 편차가 1.00 미만일 수 있다.  More specifically, the Ni content standard deviation may be less than 1.00 when surface analysis by arbitrarily selecting 10 positive electrode active material particles derived from Formula 1 of the positive electrode active material for lithium secondary batteries.
상기 Ni의 함량에 대한 구체적인 설명은 다음과 같다.  Detailed description of the content of Ni is as follows.
상기 제조된 양극활물질은 서로 다른 2개의 NiaC0i3MnY 조성 그룹을 가지게 되는데 이들 조성 중 Ni함량이 높은 입자는 내부 보다 표면의 Ni 함량이 낮은 양극 활물질 일 수 있다. The prepared positive electrode active material has two different Ni a C 0i3 Mn Y composition groups. Among these compositions, the Ni-containing particles have a higher Ni content than that of the inside. It may be a cathode active material having a low content.
이는 서로 다른 NiaCo Mrn 조성의 양극 활물질을 개별 소성 후 일정 비율로 흔합하는 종래의 기술과는 상이할 수 있다.  This may be different from the prior art in which positive electrode active materials having different NiaCo Mrn compositions are mixed at a predetermined ratio after individual firing.
본 발명의 일 구현예와 같이 전구체와 리튬 복합 산화물의 흔합물에 리튬 공급 물질을 추가하여 소성할 경우, 리튬 공급 물질은 전구체 및 리튬 복합 산화물과 같이 반응하게 된다.  As an embodiment of the present invention, when the lithium feed material is added to the mixture of the precursor and the lithium composite oxide and calcined, the lithium feed material reacts with the precursor and the lithium composite oxide.
종래의 활물질 흔합은 단순 물리적 흔합으로 분체 특성 및 전지 특성 개선에는 한계가 있을 수 밖에 없다.  Conventional active material mixing is a simple physical mixing, there is no limit in improving the powder characteristics and battery characteristics.
본 발명의 일 구현예와 같이 전구체, 리튬 복합 산화물 (예를 들어, 이종의 활물질) 및 Li과의 화학적 반응은 서로 다른 NiaCopMny 조성을 갖는 전구체와 리튬 복합 산화물에 리튬 공급 물질을 흔합하여 소성함으로 전구체, 리튬 복합 산화물과 리튬에 의한 화학적 반웅에 의하여 두 개의 서로 다른 NiaCopMnY조성 간에 농도구배가 발생하게 된다. 이때 예측 하지 못한 충방전 곡선의 차이가 발생하게 된다. 4.2V 이상의 영역에서 층전 곡선의 접선의 기울기가 줄어드는 충전 커브 형태를 가져 접선의 기울기가 늘어나는 단독 전구체 소성 또는 단순 이종 활물질의 물리적 흔합과는 다른 특징으로 이는 전지에서 효율 제어가 가능하여 음극과의 다양한 조합이 가능 하다. As in one embodiment of the present invention, chemical reactions with a precursor, a lithium composite oxide (eg, a heterogeneous active material), and Li are fired by mixing a lithium supply material with a precursor having a different Ni a CopMn y composition and a lithium composite oxide. As a result, a concentration gradient occurs between two different Ni a Co p Mn Y compositions due to chemical reaction by precursors, lithium composite oxides and lithium. At this time, an unexpected charge / discharge curve difference occurs. It is different from the physical precursor of single precursor plasticity or simple heterogeneous active material which increases the tangent slope due to the filling curve which reduces the slope of the tangent of the layered curve in the region of 4.2V or higher. Combination is possible.
이때 이들 조성 중 Ni함량이 높은 입자는 내부 보다 표면의 Ni 함량이 낮은 양극 활물질일 수 있다.  In this case, the particles having a high Ni content in these compositions may be a cathode active material having a lower Ni content than the inside thereof.
이러한 화학적 농도 구배 반응 뿐만 아니라 리튬과의 반응성이 뛰어나다고 알려진 Mn에 의하여 Mn함량이 높은 조성 쪽으로 리튬이 좀더 선택적으로 반웅하여 Ni함량이 높은 조성에서 발생되는 수용성 잔류 리튬의 발생을 근본적으로 억제하는 효과 또한 얻을 수 있다.  In addition to the chemical concentration gradient reaction, Mn, which is known to have excellent reactivity with lithium, reacts selectively to lithium toward a composition having a high Mn content, thereby fundamentally suppressing the generation of water-soluble residual lithium generated at a high Ni content. You can also get
본 발명의 일 구현예는 전구체와 리튬 복합 산화물간의 One embodiment of the invention between the precursor and the lithium composite oxide
^^( !^조성비에 차이를 둠으로써 전구체 조성에서는 고용량 특성을 얻을 수 있으며, 리륨 복합 산화물 조성에서는 고전압에서도 안정한 수명특성을 얻을 수 있다. ^^ (! ^ By varying the composition ratio, high capacity characteristics can be obtained in the precursor composition, and stable life characteristics can be obtained even at high voltage in the lithium composite oxide composition.
본 발명의 다른 일 구현예에서는, 하기 화학식 5로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물; 및 하기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;을 포함하는 리튬 이차전지용 양극 활물질이되, 하기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;은 화학식 1의 전구체로부터 제조되며, 하기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물의 표면 Ni 함량은, 상기 전구체를 단독으로 소성하여 제조된 리튬 복합 산화물의 표면 Ni 함량보다 감소하는 것인 리튬 이차전지용 양극 활물질을 제공한다. In another embodiment of the present invention, a lithium composite oxide capable of intercalating / deintercalating lithium silver represented by the following Chemical Formula 5; And the following Lithium composite battery capable of intercalating / deintercalating the lithium ion represented by the formula (2); and a positive electrode active material for a lithium secondary battery comprising a lithium ion represented by the formula (5) The lithium composite oxide which can be oxidized; is prepared from the precursor of Formula 1, and the surface Ni content of the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by the following Formula 5 is the precursor alone. It provides a cathode active material for a lithium secondary battery that is less than the surface Ni content of the lithium composite oxide prepared by firing.
[화학식 5]  [Formula 5]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A ( i- z - a ) D a ] Eb 0 2- b
상기 화학식 5에서 A = NiaCopMnY이고, D는 Mg, Al , B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, —0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.68 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.18 이다. In Formula 5, A = Ni a Co p Mn Y , D is at least one element selected from the group consisting of Mg, Al, B and Ti, E is at least one element selected from the group consisting of P, F and S And —0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.68 <α <0.81, 0.09 <β <0.14 and 0.10 <γ <0.18.
[화학식 2]  [Formula 2]
Li [LizAa— z a)Da]Eb02-b Li [Li z Aa— za ) D a ] E b 0 2 -b
상기 화학식 2에서 A = Νία )βΜηγ이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< β <0.29 및 0.36< γ <0.53 이다. In Formula 2, A = Νί α ) β Μη γ , D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is one or more elements selected from the group consisting of P, F and S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.35 <α <0.52, 0.12 <β <0.29 and 0.36 <γ <0.53.
상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물의 입경은 상기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물의 입경보다 클 수 있다.  The particle size of the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Formula 5 may include the lithium composite oxide capable of intercalating / deintercalating the lithium silver represented by Formula 2. It may be larger than the particle size.
이에 대한 설명은 전술한 본 발명의 일 구현예에 따른 리튬 이차전지용 양극 활물질의 제조 방법과 동일하기에 생략하도록 한다. 상기 화학식 2로 표시되는 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물의 중량비 (화학식 5/화학식 2)는 95/5 내지 70/30일 수 있다. The description thereof will be omitted because it is the same as the method of manufacturing the cathode active material for a lithium secondary battery according to the embodiment of the present invention described above. Represented by Formula 2 The weight ratio of the lithium composite oxide capable of intercalating / deintercalating the lithium ion represented by Formula 5 to the intercalation / deintercalating lithium composite oxide; 95/5 to 70/30.
이러한 범위를 만족하는 경우, 소성 후에 잔류하는 수용성 리튬의 양을 줄일 수 있음과 동시에 전지의 방전 용량 특성을 동시에 개선할 수 있다.  When this range is satisfied, the amount of water-soluble lithium remaining after firing can be reduced and the discharge capacity characteristics of the battery can be improved at the same time.
보다 구체적으로, 상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 6으로 표시될 수 있다.  More specifically, the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by Chemical Formula 5 may be represented by the following Chemical Formula 6.
[화학식 6]  [Formula 6]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a) D a ] E b 0 2- b
상기 화학식 6에서 A = Ν^ )βΜηγ이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.73 < α < 0.81, 0.09< β <0.14 및 0.10< γ <0.13 이다. In Formula 6, A = Ν ^) βΜη γ , D is at least one element selected from the group consisting of Mg, A1, B, and Ti, and E is at least one element selected from the group consisting of P, F, and S -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.73 <α <0.81, 0.09 <β <0.14 and 0.10 <γ <0.13.
보다 구체적으로, 상기 화학식 2로 표시되는 리튬 이은을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시될 수 있다.  More specifically, the lithium composite oxide capable of intercalating / deintercalating lithium silver represented by Chemical Formula 2 may be represented by the following Chemical Formula 4.
[화학식 4]  [Formula 4]
Li [LizA(i-2-a)Da]Eb02-b Li [Li z A (i- 2 - a ) D a ] Eb02-b
상기 화학식 4에서, A = NiQCopMny이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < ζ < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.39 < α < 0.52, 0.12< β <0.25 및 0.36< γ <0.49 이다. 본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차전지이며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은, 전술한 양극 활물질을 포함하는 것인 리튬 이차전지를 제공한다. In Formula 4, A = Ni Q Co p Mn y , D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is one or more selected from the group consisting of P, F and S Element, -0.05 <ζ <0.1, 0 <a <0.05 and 0 <b <0.05, and 0.39 <α <0.52, 0.12 <β <0.25 and 0.36 <γ <0.49. In another embodiment of the present invention, a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte, the positive electrode is a current collector and the current Comprising a positive electrode active material layer formed on a current collector, the positive electrode active material layer provides a lithium secondary battery comprising the above-described positive electrode active material.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록 한다.  Descriptions related to the cathode active material are omitted because they are the same as the above-described embodiments of the present invention.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.  The positive electrode active material layer may include a binder and a conductive material.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜 , 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 디아세틸셀 를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐 플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴 리우레탄, 폴리테트라플루오로에틸렌 폴리비닐리덴 플루오라이드, 폴리에 틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디 엔 러버, 에폭시 수지 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.  The binder adheres positively to the positive electrode active material particles to each other, and also serves to adhere the positive electrode active material well to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell. Rose, polyvinylchloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene polyvinylidene fluoride, polyethylene , Polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin nylon, etc. may be used, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 흑연, 카본 블랙, 아 세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.  The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial graphite, carbon black, and acetylene black. Carbon-based materials such as ketjen black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포 함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.  The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
상기 음극 활물질로는 리튬 이은을 가역적으로 인터칼레이션 /디인터 칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.  The anode active material includes a material capable of reversibly intercalating / deintercalating lithium silver, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있 는 물질로는 탄소 물질로서, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 혹 연 또는 인조 혹연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used. Carbon, amorphous carbon or these can be used together. Crystalline Examples of carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural or artificial graphite, and examples of amorphous carbon include soft carbon (low temperature calcined carbon) or Hard carbon, mesophase pitch carbide, calcined coke, and the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca As the alloy of the lithium metal, lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca
Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택 되는 금속의 합금이 사용될 수 있다. Alloys of metals selected from the group consisting of Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn may be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원 소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, Sn02, Sn-Y (상기 Y는 알칼리 금속, 알칼리 토금 속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이 루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf , Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt , Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti , Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으 로 이루어진 군에서 선택될 수 있다. Examples of the material capable of doping and undoping lithium include Si, SiO x (0 <x <2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, or a transition metal). , A rare earth element and an element selected from the group consisting of, not Si), Sn, Sn0 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, Group 13 element, Group 14 element, transition metal Or a rare earth element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them and Si0 2 may be used in combination. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등올 들 수 있다.  Examples of the transition metal oxide include vanadium oxide and lithium vanadium oxide.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재 를 더욱 포함할 수도 있다.  The negative electrode active material layer also includes a binder, and optionally may further include a conductive material.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴 리비닐알콜 , 카르복시메틸샐를로즈, 히드록시프로필셀를로즈, 폴리비닐클로 라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플 루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스 티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아 세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다. The binder adheres the anode active material particles well to each other, and also serves to adhere the anode active material well to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose and polyvinyl chloride. Carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto. The conductive material is used to impart conductivity to an electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial alum, carbon black, and acetylene black. Carbon-based materials such as ketjen black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니 켈 발포체 (foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이 들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.  The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아 니다.  A1 may be used as the current collector, but is not limited thereto.
상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.  The negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. N-methylpyridone may be used as the solvent, but is not limited thereto.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.  The electrolyte contains a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들 이 이동할 수 있는 매질 역할을 한다.  The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케 톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이 트계 용매로는 디메틸 카보네이트 (DMC), 디에틸 카보네이트 (DEC), 디프로필 카보네이트 (DPC), 메틸프로필 카보네이트 (MPC), 에틸프로필 카보네이트 (EPC), 메틸에틸 카보네이트 (MEC), 에틸렌 카보네이트 (EC), 프로필렌 카보 네이트 (PC), 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며, 상기 에스테르 계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디 메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ—부티로락톤, 데카놀라이드 (decanolide), 발레로락톤, 메발로노락톤 (mevalono lactone ), 카프로락톤 (caprolactone), 등이 사용될 수 있다. 상기 에테르계 용매로는 201 As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used. The carbonate solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used, and the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl Propionate, γ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like can be used. As the ether solvent 201
디부틸 에테르, 테트라글라임, 디글라임, 디메특시에탄, 2-메틸테트라히드 로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코을계 용매로는 에틸알코 올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R_CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기 이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴 류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란 (sulfolane)류 등이 사용될 수 있다. Dibutyl ether, tetraglyme, diglyme, dimethicethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used. As the ketone solvent, cyclonuxanone may be used. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R_CN (R is a linear, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms, Amides such as nitrile dimethylformamide, dioxolane sulfolanes such as 1,3-dioxolane, and the like.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비을은 목적하는 전 지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람 들에게는 널리 이해될 수 있다.  The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more of the mixtures may be appropriately adjusted according to the desired battery performance, which may be used by those skilled in the art. It can be widely understood.
또한, 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사 슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카 보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 흔합하여 사용하 는 것이 전해액의 성능이 우수하게 나타날 수 있다.  In the case of the carbonate solvent, it is preferable to use a cyclic carbonate and a chain carbonate in combination. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카 보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비 로 흔합될 수 있다.  The non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. At this time, the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 8의 방향족 탄화 수소계 화합물이 사용될 수 있다.  As the aromatic hydrocarbon-based organic solvent, an aromatic hydrocarbon compound of Formula 8 may be used.
[화학식 8]  [Formula 8]
Figure imgf000018_0001
Figure imgf000018_0001
(상기 화학식 8에서, ^ 내지 ¾는 각각 독립적으로 수소, 할로겐 C1 내지 C10 알킬기, 할로알킬기 또는 이들의 조합이다.) 상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2—디플루 오로벤젠, 1,3ᅳ디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤 젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2—디클로로벤젠, 1,3-디클로로 벤젠, 1,4-디클로로벤젠, 1,2,3ᅳ트리클로로벤젠, 1,2, 4ᅳ트리클로로벤젠, 아 이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 틀루엔, 플루오로를루엔 1 , 2-디플루오로를루엔, 1, 3-디플루오로를루엔, 1, 4-디플루오로를루엔 , 1,2,3-트리플루오로를루엔, 1,2, 4-트리플루오로를루엔, 클로로를루엔, 1,2- 디클로로를루엔, 1,3—디클로로를루엔, 1,4-디클로로를루엔, 1,2,3-트리클로 로를루엔, 1,2,4-트리클로로를루엔, 아이오도를루엔, 1,2-디아이오도를루엔 1,3-디아이오도를루엔, 1,4-디아이오도틀루엔 1,2,3-트리아이오도를루엔, 1, 2, 4-트리아이오도를루엔 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다. (In Formula 8, ^ to ¾ are each independently hydrogen, halogen C1 to C10 alkyl group, haloalkyl group, or a combination thereof.) The aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3'difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3 ᅳ trichlorobenzene, 1,2, 4 ᅳ Trichlorobenzene, Iodobenzene, 1,2-Diiodobenzene, 1,3-Diiodobenzene, 1,4-Diiodobenzene 1,2,3-triiodobenzene, 1,2,4- Triiodobenzene, toluene, fluoroluene 1, 2-difluoroluene, 1, 3-difluoroluene, 1, 4-difluoroluene, 1,2,3-trifluoro Lorluene, 1,2,4-trifluoroluene, chloroluene, 1,2-dichloroluene, 1,3—dichloroluene, 1,4-dichloroluene, 1,2,3- Trichlorochlorene , 1, 2 , 4-trichloroluene , Child Odoluene, 1,2-Diiodoluene 1,3-Diiodoluene, 1,4-Diiodoluene 1,2,3-Triiodoluene, 1, 2, 4-triiodo Toluene xylene, and combinations thereof.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네 이트 또는 하기 화학식 9의 에틸렌 카보네이트계 화합물을 더욱 포함할 수 도 있다.  The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by Formula 9 to improve battery life.
[화학식 9] [Formula 9]
Figure imgf000019_0001
Figure imgf000019_0001
(상기 화학식 9에서, R7 및 ¾는 각각 독립적으로 수소, 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7 과 ¾중 적어도 하나는 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내 지 C5의 플루오로알킬기이다.) In Formula 9, R 7 and ¾ are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ), or a C1 to C5 fluoroalkyl group, and at least one of R 7 and ¾ is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에 틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브 로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네 이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적 절하게 조절할 수 있다. Representative examples of the ethylene carbonate compounds include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, or fluoroethylene carbonate. Lift back Can be. If more of these life improving additives are used, their amount can be adjusted accordingly.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급 원으로 작용하여 기본적인 리튬 이차전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6) LiAsF6) LiC4F9S03, LiC104, LiA102, LiAlCl4, ^Ν((:χΡ2χ+1302)α ί^+1302) (여기서., x 및 y는 자연수임), LiCl, Lil 및 LiB(C204)2(리튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이 상을 지지 (supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함 되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6) LiAsF 6) LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCl 4 , ^ Ν ( ( : χ Ρ 2χ + 1 30 2 ) α ί ^ +1 30 2 ) (where x and y are natural numbers), LiCl, Lil and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB) At least one of two or more supported electrolytic salts should be used in the range of 0.1 to 2.0 M. If the concentration of lithium salt is in the above range, the electrolyte will have the appropriate conductivity and viscosity. Since it can have excellent electrolyte performance, lithium ions can move effectively.
리튬 이차전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레이터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3층 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다.  Depending on the type of lithium secondary battery, a separator may exist between the positive electrode and the negative electrode. As the separator, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
리튬 이차전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.  Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin, and pouch types according to their type. Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
도 1에 본 발명의 리튬 이차전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과 같이 상기 리튬 이차전지 (1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액을 포함하는 전지 용기 (5)와, 상기 전지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다. 1 schematically shows a typical structure of a lithium secondary battery of the present invention. As shown in FIG. 1, the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2. The container 5 and the battery container 5 And an encapsulation member 6.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예  Hereinafter, examples and comparative examples of the present invention are described. Such following examples are only examples of the present invention, and the present invention is not limited to the following examples. Example
합성예 1: 리튬 복합 산화물의 제조  Synthesis Example 1 Preparation of Lithium Composite Oxide
Li2C03(상품명 : SQM)과 Ni0.42Co0.16Mn0.42(0H)2을 1: 1.03(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하되 공기 중에서 승온 반웅 시간 6 시간, 유지 구간에서 1005 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. Li 2 CO 3 (trade name: SQM) and Ni 0 . 42 Co 0 . 16 Mn 0 . 42 (0H) 2 is mixed in a weight ratio of 1: 1.03 (Metal: Li) using a mixer, but the reaction time is 6 hours at elevated temperature in air, 1005 ° C, 7 hours in the holding section, and the total firing time is 20 hours. , A fired body was prepared.
얻어진 소성체를 천천히 냉각하고, 분쇄하여 본 발명의 일 실시예의 흔합소성을 위한 리튬 복합산화물 분말을 제조하였다. 합성예 2: 리튬 복합 산화물의 제조  The resulting fired body was slowly cooled and pulverized to prepare a lithium composite oxide powder for intermixing plasticity in one embodiment of the present invention. Synthesis Example 2 Preparation of Lithium Composite Oxide
Li2C03(상품명 : SQM)과 Ni0.38Co0.20Mn0.42(0H)2을 1: 1.03(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하되 공기 중에서 승온 반응 시간 6 시간, 유지 구간에서 990°C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. Li 2 CO 3 (trade name: SQM) and Ni 0 . 38 Co 0 . 20 Mn 0 . 42 (0H) 2 is mixed at a weight ratio of 1: 1.03 (Metal: Li) using a mixer, but the reaction time is 6 hours in air, 990 ° C, 7 hours in the holding section, and the total firing time is 20 hours. , A fired body was prepared.
얻어진 소성체를 천천히 냉각하고, 분쇄하여 본 발명의 일 실시예의 흔합소성을 위한 리륨 복합 산화물 분말을 제조하였다. 실시예 1: 흔합 소성 양극 활물질의 제조  The resulting fired body was cooled slowly and pulverized to prepare a lithium composite oxide powder for intermixing plasticity in one embodiment of the present invention. Example 1: Preparation of a Mixed Firing Cathode Active Material
U2C03(상품명 : SQM)와 Ni0.80Co0.10Mn0.10(0H)2를 1:ᄂ 02(Metal :LO의 중량 비을로, 믹서를 사용하여 흔합하되, U 2 C0 3 (trade name: SQM) and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 is mixed in a 1: b 02 (Metal: LO weight ratio using a mixer,
최종 소성 후 LiNi0.80Co0.10Mn0.1002과 합성예 1의 Li0.42Co0.16Mn0.4202의 중량 비율이 90:10이 되도록 LiNi0.42Co0.16Mn0.4202을 추가하여 흔합하였다. 얻어진 흔합물을 공기 중에서 승온 반웅 시간 6 시간, 유지 구간에서 750 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. 얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질을 제조하였다. 실시예 2: 흔합 소성 양극 활물질의 제조 LiNi 0 after final firing. 80 Co 0 . 10 Mn 0 . 10 0 2 and Li 0 of Synthesis Example 1. 42 Co 0 . LiNi 0. So that the weight ratio of 16 Mn 0.42 0 2 is 90:10. 42 Co 0 . 16 Mn 0 . 42 0 2 was added and mixed. The resulting mixture was heated in a reaction chamber for 6 hours, a 750 ° C., 7 hours in a holding section, and a total firing time of 20 hours, thereby preparing a fired body. The resulting fired body was slowly engraved and milled to obtain a positive electrode active material. Prepared. Example 2: Preparation of a Mixed Calcined Cathode Active Material
상기 실시예 1에서 LiNi0.80Co0.10Mn0.1002과 Li.Ni0.42Co0.16Mn0.4202의 중량 비율이 80:20이 되도록 LiNi0.42Co0.16Mn0.4202을 추가하여 흔합 소성한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 실시예 3: 흔합 소성 양극 활물질의 제조 In Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10, 02 and Li.Ni 0.42 Co 0.16 Mn 0.42 The weight ratio of 02 is such that the 80:20 LiNi 0. 42 Co 0 . 16 Mn 0 . A positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 . Example 3: Preparation of a Mixed Calcined Cathode Active Material
상기 실시예 1에서 LiNi0.80Co0.10Mn0.1002과 LiNi0.42Co0.16Mn0.4202의 비율이 70:30이 되도록 LiNi0.42Co0.16Mn0.4202을 추가하여 흔합 소성한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 실시예 4: 흔합 소성 양극 활물질의 제조 In Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 and LiNi 0 . 42 Co 0.16 Mn 0.42 0 2 The ratio of LiNi 0 . 42 Co 0 . 16 Mn 0 . A positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 . Example 4: Preparation of a Mixed Calcined Cathode Active Material
상기 실시예 1에서 LiNi0.80Co0.10Mn0.1002과 LiNi0.42Co0.16Mn0.4202의 중량 비율이 80 :20이 되도록 LiNi0.42Co0.16Mn0.4202을 추가하여 흔합하여 유지 구간에서 770 °C 소성한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 실시예 5: 흔합 소성 양극 활물질의 제조 In Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . LiNi 0.42 Co 0 so that the weight ratio of 10 0 2 and LiNi 0.42 Co 0.16 Mn 0.42 0 2 is 80:20. A positive electrode active material was prepared in the same manner except that 16 Mn 0.42 0 2 was added and mixed, and then calcined at 770 ° C. in the holding section. Example 5: Preparation of a Mixed Calcined Cathode Active Material
Li2C03(상품명 : SQM)와 Ni0.80Co0.10Mn0.10(0H)2를 1: 1.02(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합 후, MgC03 분말을 상기 흔합물 기준Li 2 CO 3 (trade name: SQM) and Ni 0 . 80 Co 0.10 Mn 0.10 (0H) 2 in a weight ratio of 1: 1.02 (Metal: Li), after mixing using a mixer, MgC03 powder based on the mixture
100:0.2 의 중량비로 추가 건식 흔합하여 Additional dry mix at a weight ratio of 100: 0.2
최종 소성 후 Mg이 도핑 된 LiNi0.80Co0.10Mn0.1002과 합성예 1에서Mg-doped LiNi 0.80 Co 0.10 Mn 0.10 0 2 after final firing and in Synthesis Example 1
Li2C03(상품명 : SQM)과 Ni0.42Co0.16Mn0.42(0H)2을 1: 1.03(Metal :Li)의 중량 비율로, 믹서를 사용하여 흔합 후, Ti02 분말을 상기 흔합물 기준Li 2 CO 3 (trade name: SQM) and Ni 0 . 42 Co 0 . 16 Mn 0 . After mixing 42 (0H) 2 in a weight ratio of 1: 1.03 (Metal: Li) using a mixer, the Ti02 powder was mixed on the basis of the above mixture.
100:0.2의 중량비로 추가 건식 흔합한 것을 제외하고 합성예 1과 동일한 방법으로 제조한 Ti이 도핑 된 Li0.42Co0.16Mn0.4202의 중량 비율이 80:20이 되도록 Ti이 도핑 된 LiNi0.42Coo.16Mn0.4202을 추가한 것을 제외하고, 실시예Ti-doped Li 0 prepared in the same manner as in Synthesis example 1, except that the dry mix was further mixed at a weight ratio of 100: 0.2. Ti-doped LiNi 0 to a weight ratio of 42 Co 0.16 Mn 0.42 0 2 to 80:20. 42 Coo. 16 Mn 0 . Example adds 42 0 2
1과 동일한 방법으로 양극 활물질을 제조하였다. 실시예 6: 흔합 소성 양극 활물질의 제조 A positive electrode active material was prepared in the same manner as in Example 1. Example 6: Preparation of a Mixed Calcined Cathode Active Material
Li2C03(상품명 : SQM)와 Nio^Coo. Mr^COH^를 1: 1.02(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하되, Li 2 C0 3 (trade name: SQM) and Nio ^ Coo. Mr ^ COH ^ is mixed in a weight ratio of 1: 1.02 (Metal: Li) using a mixer,
최종 소성 후 LiNi0.73Co0.10Mn0.1702과 합성예 2의 Li0.38Co0.20Mn0.4202의 중량 비율이 80 :20이 되도록 LiNi0.38Co0.20Mn0.4202을 추가하여 흔합하였다. 얻어진 흔합물을 공기 중에서 승온 반응 시간 6 시간, 유지 구간에서 800 °C , 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. 얻어진 소성체를 천천히 냉각하고, 분쇄하여 양극 활물질을 제조하였다. 비교예 1: 흔합 소성 양극 활물질의 제조 LiNi 0 after final firing. 73 Co 0 . 10 Mn 0 . 17 0 2 and Li 0 of Synthesis Example 2. 38 Co 0 . 20 Mn 0 . LiNi 0. So that the weight ratio of 42 0 2 is 80:20. 38 Co 0 . 20 Mn 0 . 42 0 2 was added and mixed. The resulting mixture was heated in air for 6 hours, in a holding section at 800 ° C. for 7 hours, and a total firing time of 20 hours. The obtained fired body was cooled slowly and pulverized to prepare a positive electrode active material. Comparative Example 1: Preparation of Mixed Plastic Cathode Active Material
상기 실시예 1에서 LiNi0.80Co0.10Mn0.1002과 LiNi0.42Co0.16Mn0.4202의 비율이 60 :40이 되도록 LiNi0.42Co0.16Mn0.4202을 추가하여 흔합 소성한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 비교예 2 In Example 1 LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 and LiNi 0 . 42 Co 0 . 16 Mn 0 . LiNi 0 so that the ratio of 42 0 2 is 60:40. 42 Co 0 . 16 Mn 0 . A positive electrode active material was prepared in the same manner except that the mixture was calcined by adding 42 0 2 . Comparative Example 2
Li2C03(상품명 : SQM)와 LiNi0.80Co0.10Mn0.1002(()H)2를 1: 1.03(Metal :Li )의 중량 비율로, 믹서를 사용하여 흔합하였다 Li 2 CO 3 (trade name: SQM) and LiNi 0 . 80 Co 0 . 10 Mn 0 . 10 0 2 (() H) 2 was mixed using a mixer at a weight ratio of 1: 1.03 (Metal: Li).
얻어진 흔합물을 공기 중에서 승온 반응 시간 6 시간, 유지 구간에서 750 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. 얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질 분말을 제조하였다. 비교예 3 The resulting mixture was heated for 6 hours in air, and a total firing time of 20 hours at 750 ° C. and 7 hours in a holding section, to produce a fired body. The obtained fired body was slowly carved out and pulverized to prepare a positive electrode active material powder. Comparative Example 3
상기 합성예 1에서 제조한 LiNi0.42Co0.16Mn0.4202을 양극 활물질로 이용하였다. 비교예 4 LiNi 0 prepared in Synthesis Example 1. 42 Co 0 . 16 Mn 0 . 42 0 2 was used as the positive electrode active material. Comparative Example 4
상기 비교예 2에서 제조한 LiNi0.80Co0.10Mn0.1002(0H)2 과 상기 합성예 1에서 제조한 LiNi0.42Co0.16Mn0.4202을 중량 비율이 80:20이 되도록 흔합하여 양극 활물질을 제조하였다. 비교예 5 LiNi 0 prepared in Comparative Example 2. 80 Co 0 . 10 Mn 0 . 10 0 2 (0H) 2 and LiNi 0 prepared in Synthesis Example 1. 42 Co 0 . 16 Mn 0 . Combine 42 0 2 with the weight ratio 80:20 A positive electrode active material was prepared. Comparative Example 5
Li2C03(상품명 : SQM)와 Ni0.80Co0.10Mn0.10(0H)2과 Ni0.42Co0.16Mn0.42(0H)2를 l:1.02(Metal:Li)의 중량 비율로, 믹서를 사용하여 흔합하되, Li 2 CO 3 (trade name: SQM) and Ni 0 . 80 Co 0 . 10 Mn 0 . 10 (0H) 2 and Ni 0.42 Co 0.16 Mn 0.42 (0H) 2 are mixed in a weight ratio of l: 1.02 (Metal: Li) using a mixer,
상기 Ni0.80Coo.10Mn0.10(OH)2 과 Nio^Co eMno.^ OH 의 증량 비율이 80 :20이 되도록 흔합하였다. Ni 0 . 80 Coo. 10 Mn 0 . 10 (OH) 2 and Nio ^ Co eMno . ^ OH was mixed so that an increase ratio of 80:20.
얻어진 흔합물을 공기 중에서 승은 반응 시간 6 시간, 유지 구간에서 750 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. 얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질을 제조하였다. 비교예 6 The resulting mixture in air was a reaction time of 6 hours, in the holding section, 750 ° C., 7 hours in total firing time 20 hours, a fired body was prepared. The obtained fired body was slowly carved out and pulverized to prepare a positive electrode active material. Comparative Example 6
Li2C03(상품명 : SQM)와 Ni0.73Co0.10Mn0.17(0H)2를 1: 1.02(Metal :LO의 중량 비율로, 믹서를 사용하여 믹서를 사용하여 흔합하였다 Li 2 CO 3 (trade name: SQM) and Ni 0 . 73 Co 0 . 10 Mn 0.17 (0H) 2 was mixed using a mixer using a mixer at a weight ratio of 1: 1.02 (Metal: LO).
얻어진 흔합물을 공기 중에서 승온 반응 시간 6 시간, 유지 구간에서 800 °C, 7 시간으로 총 소성 시간은 20 시간으로, 소성체를 제조하였다. 얻어진 소성체를 천천히 넁각하고, 분쇄하여 양극 활물질 분말을 제조하였다. The resulting mixture was heated in air for 6 hours, in a holding section at 800 ° C. for 7 hours, and a total firing time of 20 hours. The obtained fired body was slowly carved out and pulverized to prepare a positive electrode active material powder.
상기 LiNi0.73Co0.10Mn0.1702(0H)2 과 상기 합성예 2에서 제조한LiNi 0.73 Co 0 . 10 Mn 0.17 0 2 (0H) 2 And prepared in Synthesis Example 2
LiNi0.38Co0.20Mn0.4202을 중량 비율이 80:20이 되도록 흔합하여 양극 활물질을 제조하였다. 실험예 1 LiNi 0 . 38 Co 0 . 20 Mn 0 . 42 0 2 was mixed to a weight ratio of 80:20 to prepare a cathode active material. Experimental Example 1
코인셀의 제조  Production of coin cell
상기 실시예 1 내지 6 및 비교예 1 내지 6에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N-메틸 -2 피롤리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다.  95% by weight of the positive electrode active material prepared in Examples 1 to 6 and Comparative Examples 1 to 6, 2.5% by weight of carbon black as a conductive agent, 2.5% by weight of PVDF as a binder, N-methyl-2 as a solvent (solvent) A positive electrode slurry was prepared by adding 5.0% by weight of pyrrolidone (NMP).
상기 양극 슬러리를 두께 20 내지 40 의 양극 집전체인 알루미늄 (Al) 박막에 도포 및 진공 건조하고 를 프레스 (roll press)를 실시하여 양극을 제조하였다. The positive electrode slurry is a positive electrode current collector having a thickness of 20 to 40 The positive electrode was manufactured by coating and vacuum drying the aluminum (Al) thin film and performing a roll press.
음극으로는 Li-금속을 이용하였다.  Li-metal was used as the negative electrode.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M LiPF6EC:DMC(l:lvol%)을 사용하여 코인 샐 타입의 반쪽 전지를 제조하였다. 충방전은 4.3-3.0V (상온), 4.5-3.0V(45°C) 범위에서 실시하였다 코인셀의 특성 평가  A coin cell type half cell was manufactured by using the cathode and the Li-metal prepared as described above and using 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Charging and discharging were conducted in the range of 4.3-3.0V (room temperature) and 4.5-3.0V (45 ° C).
하기 표 1 및 표 2는 상기 실험예에서 제조한 코인셀의 전지 특성 평가 및 잔류리튬, DSC 결과이다.  Table 1 and Table 2 are the battery characteristics evaluation and residual lithium, DSC results of the coin cell prepared in the experimental example.
[표 1]  TABLE 1
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000025_0001
Figure imgf000026_0001
[표 2]
Figure imgf000026_0002
Figure imgf000027_0001
상기 표 1에서 실시예 1 내지 5은 초기용량은 200mAh/g 이상의 고용량을 가지면서 C함량은 200 내지 310대의 적절한 값을 유지하고 있다. 4.3-3.0V (상온), 4.5-3.0V(45°C) 30사이클 유지 특성에서 각각 90% 전후의 유지율 및 80% 초 /중반대의 향상된 용량유지율을 나타내고 있다. 또한 조성이 다른 양극 활물질 조합의 전지 특성을 나타낸 표 2 실시예 6에서도 우수한 전지 특성을 나타내고 있다.
TABLE 2
Figure imgf000026_0002
Figure imgf000027_0001
In Table 1, Examples 1 to 5 have an initial capacity of 200mAh / g or more and a high C content of 200 to 310 units. In the 30-cycle holding characteristics of 4.3-3.0V (room temperature) and 4.5-3.0V (45 ° C), the retention rate of around 90% and the improved capacity retention rate of 80% sec / mV respectively are shown. Moreover, the outstanding battery characteristic is also shown in Table 2 Example 6 which shows the battery characteristic of the positive electrode active material combination from which a composition differs.
보다 자세히 살펴보면 실시예 2와 실시예 4에서 소성온도의 미세 차이에 따라 Formation 효율 차이가 나타남을 확인 할 수 있다. 도 2에서 4.2V 이상의 영역에서 접선의 기울기가 줄어드는 형태를 갖는 층전 곡선을 가지면서 층전 용량이 증가하는 현상이 확인 된다. 이는 효율 제어가 가능하다고 볼 수 있는 특징으로 전지에서 다양한 음극과의 조합이 가능 할 수 있을 것으로 생각 된다.  Looking in more detail, it can be seen that in Example 2 and Example 4, the difference in Formation efficiency appears according to the micro-difference of firing temperature. In FIG. 2, a phenomenon in which the layer capacitance is increased while having a layer curve in which a tangential slope is reduced in a region of 4.2 V or more is confirmed. This is a characteristic that can be seen as the efficiency control is thought to be possible to be combined with various negative electrodes in the battery.
상기 표 1에서 잔류 리튬 값을 비교해 보면 비교예 2에 비하여 실시예 1 내지 5에서 잔류 리튬 감소가 확인 된다. 잔류 리튬 값은 비교예 2 와 3의 잔류 리튬 값을 이용하여 흔합비 별 잔류리튬 값을 계산하더라도 본 발명의 일 실시예의 잔류 리튬 저감에 현저한 효과가 있다는 것을 알 수 있다.  Comparing the residual lithium values in Table 1, the residual lithium decreases in Examples 1 to 5 compared to Comparative Example 2. It can be seen that the residual lithium value has a remarkable effect on the residual lithium reduction in one embodiment of the present invention even when the residual lithium value for each mixing ratio is calculated using the residual lithium values of Comparative Examples 2 and 3.
또한 DSC 값을 보더라도 본 발명의 일 실시예의 발열온도가 더 높음이 확인 된다. 실험예 2: C함량의 분석  In addition, it is confirmed that the exothermic temperature of the embodiment of the present invention is higher even if the DSC value is viewed. Experimental Example 2: Analysis of C Content
실시예 1 내지 6와 비교예 1 내지 6의 C 함량은 C/S 분석기를 사용하여 분석하였다. 실험예 3: 수용성 잔류리튬의 분석 실시예 1 내지 6와 비교예 1 내지 6의 수용성 잔류 리튬은 o The C contents of Examples 1 to 6 and Comparative Examples 1 to 6 were analyzed using a C / S analyzer. Experimental Example 3 Analysis of Water-Soluble Residual Lithium The water-soluble residual lithium of Examples 1 to 6 and Comparative Examples 1 to 6 is o
적정법 (titration) 을 사용하여 분석하였다. Analysis was performed using titration.
o 실험예 4: 제조된 양극 활물질의 EDS분석  o Experimental Example 4: EDS analysis of the prepared cathode active material
Nio.soCoo.ioMno.io조성의 전구체 입자 10개와 비교예 2의 입자 10개를 임의로 선정하여 EDS 분석 (에너지 분산 분광기, x-act, OXFORD사)을 실시, 평균값과 표준 편차를 표 3에 나타내었다.  Ten precursor particles of Nio.soCoo.ioMno.io composition and ten particles of Comparative Example 2 were randomly selected and subjected to EDS analysis (Energy Dispersion Spectrometer, x-act, OXFORD), and the average values and standard deviations are shown in Table 3. It was.
실시예 2에서 얻어진 양극활물질 중 Ni의 함량이 상대적으로 높은 조성의 입자 10개를 임의로 선정하여 표면분석 한 결과를 실시예 2-1 내지 2-10으로 나타내었다. 비교예 5에서 얻어진 양극활물질 중 Ni의 함량이 상대적으로 높은 조성의 입자 10개를 임의로 선정하여 표면분석 한 결과를 비교예 5-1 내지 5-10으로 나타내었다.  In the cathode active material obtained in Example 2, 10 particles having a relatively high Ni content were randomly selected and the surface analysis results are shown as Examples 2-1 to 2-10. The results of surface analysis by arbitrarily selecting ten particles having a relatively high Ni content in the cathode active material obtained in Comparative Example 5 are shown as Comparative Examples 5-1 to 5-10.
[표 3]  TABLE 3
ΛΗ EDS N i (몰%)  ΛΗ EDS N i (mol%)
평균값 표준편치" Mean Standard Deviation "
80 81 ±0.67  80 81 ± 0.67
비교예 2 80 68 ±0.72  Comparative Example 2 80 68 ± 0.72
실시예 2(평균) 77 64  Example 2 (average) 77 64
실시예 2-1 77 22  Example 2-1 77 22
실시예 2-2 77 36  Example 2-2 77 36
실시예 2-3 77 18  Example 2-3 77 18
실시예 2-4 76 92  Example 2-4 76 92
실시예 2-5 76 65 ±0.76  Example 2-5 76 65 ± 0.76
실시예 2-6 77 61  Example 2-6 77 61
실시예 2-7 78 16  Example 2-7 78 16
실시예 2-8 77 65  Example 2-8 77 65
실시예 2-9 78 54  Example 2-9 78 54
실시예 2-10 79 12  Example 2-10 79 12
비교예 5(평균) 75 06 ±1.11 Comparative Example 5 (Average) 75 06 ± 1.11
Figure imgf000029_0001
상기 표 3에서 본 발명인 전구체와 양극 활물질의 흔합 소성 된 양극 활물질인 실시예 2는 서로 다른 2개의 NiaCopMnY 조성 그룹을 가지게 되는데 이들 조성 중 Ni함량이 높은 입자에 대한 EDS 분석 결과 흔합 소성을 하지 않은 비교예 2에 비하여 표면의 Ni의 함량이 감소됨이 확인 된다.
Figure imgf000029_0001
In Table 3, Example 2, which is a mixed calcined cathode active material of the present invention precursor and the cathode active material, has two different Ni a Co p Mn Y composition groups, which are mixed with the results of EDS analysis for particles having high Ni content among these compositions. It is confirmed that the content of Ni on the surface is reduced in comparison with Comparative Example 2 that did not fire.
서로 다른 조성의 전구체를 흔합하여 소성하는 비교예 5는 서로 다른 2개의 NiaCopMnY 조성 그룹을 가지게 되는데 이들 조성 중 Ni함량이 높은 입자 표면의 Ni 함량 감소가 큼을 볼 수 있다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. Comparative Example 5, in which precursors of different compositions are mixed and calcined, has two different Ni a Co P Mn Y composition groups, and it can be seen that the reduction of Ni content on the surface of particles having a high Ni content is large among these compositions. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 전구체; 하기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물; 및 리튬 공급 물질을 준비하여 흔합물을 제조하는 단계 ; 및 상기 제조된 흔합불을 소성하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법 : Claims Claim 1 Precursor represented by the following formula (1); A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; And preparing a lithium feed material to prepare a mixture; And firing the prepared mixed fire; a method of manufacturing a cathode active material for a lithium secondary battery comprising:
[화학식 1]  [Formula 1]
A(0H)2-a A (0H) 2 - a
상기 화학식 1에서 A = NiaCo{3Mny이고, -0.3 < a < 0.3, 0.68 < α < 0.81, 0.09< β <0.17 및 0.10< γ <0.18 이고, In Formula 1, A = Ni a Co {3Mn y , −0.3 <a <0.3, 0.68 <α <0.81, 0.09 <β <0.17 and 0.10 <γ <0.18,
[화학식 2]  [Formula 2]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a ) D a ] E b 0 2 -b
. 상기 화학식 2에서 A = NiaCopMnY이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< β <0.29 및 0.36< γ <0.53 이다. 【청구항 2】 . In Formula 2, A = Ni a CopMn Y , D is at least one element selected from the group consisting of Mg, A1, B and Ti, E is at least one element selected from the group consisting of P, F and S, -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.35 <α <0.52, 0.12 <β <0.29 and 0.36 <γ <0.53. [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 1로 표시되는 전구체의 중량비는 95/5 내지 70/30 인 것인 리튬 이차전지용 양극 활물질의 제조 방법 .  The weight ratio of the precursor represented by the formula (1) to the lithium composite oxide capable of intercalating / deintercalating the lithium ions represented by the formula (2); 95/5 to 70/30 positive electrode for a lithium secondary battery Method for Producing Active Material.
【청구항 3] [Claim 3]
거 U항에 있어서,  In U,
상기 리튬 공급 물질은, 리륨을 포함하는 나이트레이트 (nitrate), 카보네이트 (carbonate), 아세테이트 (acetate), 옥살레이트 (oxalate), 옥사이드 (oxide), 하이드록사이드 (hydoxide), 설페이트 (sulfate) 또는 이들의 조합인 것인 리튬 이차전지용 양극 활물질의 제조 방법. The lithium feed material includes nitrate, carbonate, acetate, oxalate, including lithium, Method of producing a positive electrode active material for a lithium secondary battery which is an oxide, hydroxide, sulfate or a combination thereof.
【청구항 4] [Claim 4]
거 U항에 있어서,  In U,
상기 화학식 1로 표시되는 전구체는 하기 화학식 3으로 표시되는 것인 리튬 이차전지용 양극 활물질의 제조 방법:  The precursor represented by the formula (1) is a method of producing a positive electrode active material for a lithium secondary battery that is represented by the formula (3):
[화학식 3]  [Formula 3]
A(OH)2-a A (OH) 2 - a
상기 화학식 3에서, A = Νία(:οβΜηγ이고, —0.3 < a < 0.3, 0.73 < α < 0.81, 0.09< β <0.14 및 0·10< y <0.130 이다. In Formula 3, A = Νί α (: οβΜηγ, —0.3 <a <0.3, 0.73 <α <0.81, 0.09 <β <0.14 and 0 · 10 <y <0.130.
【청구항 5】 [Claim 5]
거] 1항에 있어서,  The method of claim 1,
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시되는 것인 리튬 이차전지용 양극 활물질의 제조 방법:  Method for producing a cathode active material for a lithium secondary battery which is a lithium composite oxide capable of intercalating / deintercalating the lithium ion represented by Formula 2 is represented by the following formula (4):
[화학식 4]  [Formula 4]
Li [LizA(i-z-a)Da]Eb02-b Li [Li z A (i- z - a ) D a ] Eb 0 2 -b
상기 화학식 4에서, A = NiaCopMr^이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, 0.05 < ζ < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.39 < α < 0.52, 0.12< β <0.25 및 0.36< y <0.49 이다.  In Formula 4, A = NiaCopMr ^, D is at least one element selected from the group consisting of Mg, Al, B and Ti, E is at least one element selected from the group consisting of P, F and S, 0.05 <ζ <0.1, 0 <a <0.05 and 0 <b <0.05, 0.39 <α <0.52, 0.12 <β <0.25 and 0.36 <y <0.49.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 제조된 흔합물을 소성하는 단계의 소성 온도는 700 내지 loocrc인 것인 리튬 이차전지용 양극 활물질의 제조 방법. The firing temperature of the step of firing the prepared mixture is 700 to loocrc method for producing a positive electrode active material for a lithium secondary battery.
【청구항 7】 [Claim 7]
거 U항에 있어서,  In U,
상기 제조된 흔합물을 소성하는 단계;를 수행한 뒤 C함량은 350ppm 이하인 것인 리튬 이차전지용 양극 활물질의 제조 방법.  Calcining the prepared mixture; after the C content is 350 ppm or less, a method of manufacturing a cathode active material for a lithium secondary battery.
【청구항 8】 [Claim 8]
게 1항에 있어서,  According to claim 1,
상기 제조된 흔합물을 소성하는 단계;를 수행한 뒤 수용성 잔류 리튬의 양은 상기 화학식 1로 표시되는 전구체를 단독으로 소성하였을 때의 수용성 잔류리튬 대비 20 내지 50% 감소하는 것인 리튬 이차전지용 양극 활물질의 제조 방법.  Calcining the prepared mixture; after performing the amount of the water-soluble residual lithium is reduced by 20 to 50% compared to the water-soluble residual lithium when firing the precursor represented by the formula (1) alone Method of preparation.
【청구항 9】 [Claim 9]
거 U항에 있어서,  In U,
상기 제조된 흔합물을 소성하는 단계;를 수행하여 얻어지는 리튬 이차전지용 양극활물질 중,  Calcining the prepared mixture; of the cathode active material for a lithium secondary battery obtained by performing the
상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시되는 전구체를 단독으로 소성하여 얻어진 양극 활물질 표면 Ni 함량보다 감소하는 것인 리륨 이차전지용 양극 활물질.  The positive electrode active material surface active material derived from the general formula (1) is less than the positive electrode active material surface Ni content obtained by firing the precursor represented by the general formula (1) alone.
【청구항 10】 [Claim 10]
게 9항에 있어서,  According to claim 9,
상기 화학식 1로부터 유래되는 양극 활물질 표면 Ni 함량이, 상기 화학식 1로 표시되는 전구체를 단독으로 소성하여 얻어진 양극 활물질 표면 Ni 함량보다 5% 미만으로 감소하는 것인 리튬 이차전지용 양극 활물질.  The positive electrode active material surface Ni content derived from the formula (1) is reduced to less than 5% than the positive electrode active material surface Ni content obtained by firing the precursor represented by the formula (1) alone.
【청구항 11】 [Claim 11]
거 19항에 있어서,  According to claim 19,
상기 리튬 이차전지용 양극 활물질 증 화학식 1로부터 유래되는 양극 활물질 입자를 임의로 10개 선정하여 표면분석 하였을 때 Ni 함량 표준 편차가 1.00 미만인 것인 리튬 이차전지용 양극 활물질. Ni content standard when surface analysis by randomly selecting 10 positive electrode active material particles derived from the formula 1 of the positive electrode active material for lithium secondary batteries The positive electrode active material for lithium secondary batteries having a deviation of less than 1.00.
【청구항 12】 [Claim 12]
거 U항에 있어서,  In U,
상기 제조된 흔합물을 소성하는 단계;를 수행하여 얻어지는 리튬 이차전지용 양극활물질은,  Calcining the prepared mixture; a cathode active material for a lithium secondary battery obtained by performing the
층방전 곡선에서 4.2V 이상의 영역에서 충전 곡선 상에서 접선의 기울기가 줄어드는 형태를 갖는 충전 커브를 갖는 것인 리튬 이차전지용 양극 활물질.  The positive electrode active material for a lithium secondary battery having a charging curve having a form in which the slope of the tangent decreases on the charging curve in a region of 4.2 V or more in the layer discharge curve.
【청구항 13】 [Claim 13]
하기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물; 및 하기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;을 포함하는 리튬 이차전지용 양극 활물질 :  A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 5; And a lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2 below;
[화학식 5]  [Formula 5]
Li[LizA( l-z~a )Da]Eb02-b Li [Li z A ( lz ~ a) D a ] E b 0 2- b
상기 화학식 5에서 A = NiaCoeMnY이고, D는 Mg, A1, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고 , E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.68 < α < 0.81, 0.09< β <0.And in Formula 5 A = Ni a Co e Mn Y, D is Mg, is at least one element selected from the group consisting of A1, B and Ti, E is P, F, and at least one element selected from the group consisting of S And -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.68 <α <0.81, 0.09 <β <0.
14 및 0.10< γ <0.18 이다. 14 and 0.10 <γ <0.18.
[화학식 2]  [Formula 2]
Li [LizA(i-z-a)Da] Eb -b Li [Li z A (i- z -a) D a ] Eb -b
상기 화학식 2에서 A = NiaCopMnY이고, D는 Mg, Al , B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.35 < α < 0.52, 0.12< β <0.29 및 0.36< γ <0.53 이다. 【청구항 14】 In Formula 2, A = Ni a CopMn Y , D is at least one element selected from the group consisting of Mg, Al, B and Ti, E is at least one element selected from the group consisting of P, F and S, -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.35 <α <0.52, 0.12 <β <0.29 and 0.36 <γ <0.53. [Claim 14]
제 13항에 있어서,  The method of claim 13,
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물;에 대한 상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물의 중량비는 95/5 내지 70/30인 것인 리튬 이차전지용 양극 활물질.  Lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 2; of lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Formula 5 The weight ratio is 95/5 to 70/30 positive electrode active material for a lithium secondary battery.
【청구항 15] [Claim 15]
제 13항에 있어서,  The method of claim 13,
상기 화학식 5로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 6으로 표시되는 것인 리튬 이차전지용 양극 활물질:  A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Chemical Formula 5 may be represented by Chemical Formula 6 below:
[화학식 6]  [Formula 6]
Li [LizA(1-z-a)Da]Eb02-b Li [Li z A ( 1 - z - a ) D a ] Eb 0 2- b
상기 화학식 6에서 , A = NiaCopMnx이고, . D는 Mg, A1 , B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고, -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.73 < a < 0.81, 0.09< β <0.14 및 0.10< γ <0.13 이다. And in formula 6, A = Ni x Mn a Co p,. D is at least one element selected from the group consisting of Mg, A1, B and Ti, E is at least one element selected from the group consisting of P, F and S, -0.05 <z <0.1, 0 <a <0.05 And 0 <b <0.05, 0.73 <a <0.81, 0.09 <β <0.14 and 0.10 <γ <0.13.
【청구항 16】 [Claim 16]
제 13항에 있어서,  The method of claim 13,
상기 화학식 2로 표시되는 리튬 이온을 인터칼레이션 /디인터칼레이션할 수 있는 리튬 복합 산화물은 하기 화학식 4로 표시되는 것인 리튬 이차전지용 양극 활물질:  A lithium composite oxide capable of intercalating / deintercalating lithium ions represented by Chemical Formula 2 may be represented by Chemical Formula 4 below:
[화학식 4]  [Formula 4]
Li [LizA(1-z-a)Da]Eb02-b Li [Li z A ( 1 - z - a ) D a ] E b 02-b
상기 화학식 4에서, A = NiQCopMnY이고, D는 Mg, Al, B 및 Ti로 이루어진 군에서 선택된 1종 이상의 원소이고, E는 P, F 및 S로 이루어진 군에서 선택된 1종 이상의 원소이고 -0.05 < z < 0.1, 0 < a < 0.05 및 0 < b < 0.05 이고, 0.39 < α < 0.52, 0.12< β <0.25 및 0.36< γ <0.49 이다. , In Formula 4, A = Ni Q CopMn Y , D is one or more elements selected from the group consisting of Mg, Al, B and Ti, E is composed of P, F and S At least one element selected from the group -0.05 <z <0.1, 0 <a <0.05 and 0 <b <0.05, 0.39 <α <0.52, 0.12 <β <0.25 and 0.36 <γ <0.99. ,
【청구항 17] [Claim 17]
양극, 음극 및 전해질을 포함하는 리튬 이차전지이며,  Lithium secondary battery including a positive electrode, a negative electrode and an electrolyte,
상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며,  The positive electrode includes a current collector and a positive electrode active material layer formed on the current collector,
상기 양극 활물질층은, 제 13항에 따른 양극 활물질을 포함하는 것인 리튬 이차전지 .  The positive electrode active material layer, lithium secondary battery comprising the positive electrode active material according to claim 13.
PCT/KR2013/012323 2012-12-28 2013-12-27 Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery WO2014104823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120157175 2012-12-28
KR10-2012-0157175 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104823A1 true WO2014104823A1 (en) 2014-07-03

Family

ID=51021761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012323 WO2014104823A1 (en) 2012-12-28 2013-12-27 Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR101586804B1 (en)
WO (1) WO2014104823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878920B1 (en) * 2015-05-21 2018-07-16 주식회사 엘 앤 에프 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101937926B1 (en) 2016-12-23 2019-01-11 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargable lithium battery, positive electrode active material for rechargable lithium battery manufacture using the same, and rechargable lithium battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090032138A (en) * 2007-06-21 2009-03-31 에이지씨 세이미 케미칼 가부시키가이샤 Lithium containing composite oxide powder and process for production of the same
US20100068376A1 (en) * 2008-09-17 2010-03-18 Ningbo Jinhe New Materials Co., Ltd. Method of preparing cobalt and lithium ion-coated nickel and manganese-based cathode material
KR20100085939A (en) * 2007-09-28 2010-07-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of making cathode compositions
KR20110063376A (en) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, the method for manufacturing the same and lithium secondary battery using the same
KR20110109879A (en) * 2010-03-31 2011-10-06 삼성에스디아이 주식회사 Positive active material, and positive electrode and lithium battery containing the material
WO2011122448A1 (en) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090032138A (en) * 2007-06-21 2009-03-31 에이지씨 세이미 케미칼 가부시키가이샤 Lithium containing composite oxide powder and process for production of the same
KR20100085939A (en) * 2007-09-28 2010-07-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of making cathode compositions
US20100068376A1 (en) * 2008-09-17 2010-03-18 Ningbo Jinhe New Materials Co., Ltd. Method of preparing cobalt and lithium ion-coated nickel and manganese-based cathode material
KR20110063376A (en) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, the method for manufacturing the same and lithium secondary battery using the same
WO2011122448A1 (en) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
KR20110109879A (en) * 2010-03-31 2011-10-06 삼성에스디아이 주식회사 Positive active material, and positive electrode and lithium battery containing the material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system

Also Published As

Publication number Publication date
KR20140086905A (en) 2014-07-08
KR101586804B1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR101666879B1 (en) Cathode active material for lithium secondary battery, method for preparing cathode active material for lithium secondary battery and lithium secondary battery including cathode active material
WO2015083901A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
KR101309149B1 (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
WO2015083900A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
KR101586806B1 (en) Method for manufacturing positive active material for lithium secondary battery, positive active material for lithium secondary battery and lithium secondary battery
WO2015053586A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2015084026A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
JP2019040875A (en) Method for manufacturing positive electrode active material for lithium secondary battery, and lithium secondary battery including the positive electrode active material
WO2016032290A1 (en) Cathode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
WO2017150915A1 (en) Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same
KR102114229B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2014157743A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery using same
CN109802102B (en) Positive active material for rechargeable lithium battery, rechargeable lithium battery including the same, and battery module including the same
WO2017155240A1 (en) Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
KR101512087B1 (en) Method for manufacturing positive active material for lithium secondary battery and positive active material for lithium secondary battery
KR20160093854A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20110136001A (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
WO2016186479A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2014104823A1 (en) Method for preparing cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
WO2016122278A1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR101493747B1 (en) Method for manufacturing positive active material for lithium secondary battery, positive active material for lithium secondary battery and lithium secondary battery
KR101646702B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101668799B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20170106810A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160083818A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869033

Country of ref document: EP

Kind code of ref document: A1