WO2014103867A1 - Phase shift mask and method for producing same - Google Patents

Phase shift mask and method for producing same Download PDF

Info

Publication number
WO2014103867A1
WO2014103867A1 PCT/JP2013/084059 JP2013084059W WO2014103867A1 WO 2014103867 A1 WO2014103867 A1 WO 2014103867A1 JP 2013084059 W JP2013084059 W JP 2013084059W WO 2014103867 A1 WO2014103867 A1 WO 2014103867A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
line
layer
transmittance
light
Prior art date
Application number
PCT/JP2013/084059
Other languages
French (fr)
Japanese (ja)
Inventor
聖 望月
中村 大介
影山 景弘
Original Assignee
アルバック成膜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック成膜株式会社 filed Critical アルバック成膜株式会社
Priority to CN201380054682.8A priority Critical patent/CN104737072B/en
Priority to KR1020157015967A priority patent/KR102168151B1/en
Priority to JP2014554374A priority patent/JP5982013B2/en
Publication of WO2014103867A1 publication Critical patent/WO2014103867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides

Definitions

  • the present invention relates to a phase shift mask capable of forming a fine and highly accurate exposure pattern and a manufacturing method thereof, and more particularly to a technique suitable for use in manufacturing a flat panel display.
  • a phase shift mask is used to expose and transfer a fine pattern onto a resist film formed on a substrate made of silicon, glass, or the like.
  • the line width size has been further refined by improving the patterning accuracy, and the image quality has been greatly improved.
  • the gap between the photomask and the substrate during exposure becomes smaller. Since the glass substrate used for the flat panel has a large size exceeding 300 mm, the waviness or surface roughness of the glass substrate becomes a large value, and it is easily affected by the depth of focus.
  • the FPD exposure uses the combined wavelength of g-line (436 nm), h-line (405 nm), and i-line (365 nm), and the same-size proxy proximity exposure method is used. (For example, refer to Patent Document 1).
  • An aspect according to the present invention has been made to solve the above-described problems, and provides a phase shift mask capable of efficiently forming a fine, high-precision exposure pattern with a large area as in FPD manufacturing, and a method for manufacturing the same.
  • the purpose is to do.
  • a method of manufacturing a phase shift mask includes a step of forming a light shielding layer mainly composed of Cr patterned on a transparent substrate; an inert gas, a nitriding gas, and an oxidizing gas Is sputtered with a target of a chromium-based material in an atmosphere of a mixed gas that includes: and a phase difference of about 180 ° with respect to i-line, and the oxidizing gas in the mixed gas is 10.4% or less forming and patterning a phase shift layer mainly composed of Cr capable of setting the difference between the g-line transmittance and the i-line transmittance to 5% or less.
  • a phase shift mask includes a light-shielding layer mainly composed of Cr formed on a transparent substrate; a phase difference of about 180 ° with respect to i-line; A phase shift layer containing Cr as a main component, which can make the difference between the transmittance and the transmittance of the i-line 5% or less.
  • the phase shift mask is formed such that the light shielding layer is formed on the surface of the transparent substrate, the phase shift layer is formed on the light shielding layer, or the transparent substrate Etching mainly comprising at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf on the surface.
  • a stopper layer may be formed, and the light shielding layer may be formed on the etching stopper layer.
  • a step of forming a light shielding layer mainly composed of Cr patterned on a transparent substrate, and under an atmosphere of a mixed gas containing an inert gas, a nitriding gas, and an oxidizing gas Sputtering a chromium-based material target gives a phase difference of about 180 ° with respect to the i-line, and reduces the oxidizing gas in the mixed gas to 10.4% or less and the transmittance of the g-line.
  • phase shift mask blank having substantially the same transmittance with respect to any light and a manufacturing method capable of manufacturing the phase shift mask.
  • the phase shift mask blank can be a phase shift mask blank for a photomask used for exposure processing with a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm).
  • the light shielding layer mainly composed of Cr formed on the transparent substrate, the phase difference of about 180 ° with respect to the i-line, and the transmittance of the g-line By having a phase shift layer mainly composed of Cr that can make the difference between the transmittance of the h-line and the transmittance of the i-line 5% or less, it has a large area such as an FPD. Even in the object to be processed, high-definition exposure processing can be performed, and the manufacturing cost can be reduced.
  • the light shielding layer is formed on the surface of the transparent substrate, and the phase shift layer is formed on the light shielding layer, or the phase shift layer is formed on the surface of the transparent substrate.
  • An etching stopper layer mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf is formed on the phase shift layer;
  • the light shielding layer may be formed of a phase shift mask blank on which the light shielding layer is formed on the etching stopper layer.
  • a phase shift mask blank having a reduced difference in transmittance due to wavelength can be manufactured, so that a defect in an exposure process can be reduced in an object having a large area such as an FPD, and a high definition can be achieved. It is possible to provide a manufacturing method, a phase shift mask blank, and a manufacturing method thereof capable of manufacturing a phase shift mask capable of manufacturing a large object to be processed with a high yield.
  • the production method of the present invention may include a step of patterning the light shielding layer on the transparent substrate.
  • a phase shift layer is formed on the transparent substrate so as to cover the light shielding layer.
  • the phase shift layer has an atmosphere of a mixed gas containing at least an inert gas, a nitriding gas of 40% or more and 90% or less, and an oxidizing gas of 10.4% or less, more preferably 40% or more and 70%. It is formed by sputtering a target of a chromium-based material in an atmosphere of a mixed gas containing the following nitriding gas and 9.2% to 10.4% oxidizing gas.
  • the phase shift layer has a phase difference of 180 ° with respect to any light in a wavelength region of 300 nm or more and 500 nm or less, and light having a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm).
  • the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance is 5% or less.
  • the formed phase shift layer is patterned into a predetermined shape.
  • the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance may be 5% or less and have a phase difference of about 180 °. It has a possible phase shift layer. Therefore, according to the phase shift mask, the inversion action of the phase can be achieved by using the composite wavelength including light in the above-mentioned wavelength region, particularly g-line (436 nm), h-line (405 nm), and i-line (365 nm) as exposure light. Thus, a region where the light intensity is minimized can be formed, and the exposure pattern can be made clearer.
  • the difference between the g-line transmittance and the i-line transmittance is more preferably 2.5% or more and 5% or less.
  • phase shift layer is formed of a chromium oxynitride-based material
  • a sputtered film having a desired transmittance and refractive index can be stabilized by using a mixed gas atmosphere containing an oxidizing gas of 10.4% or less. Can be formed. If the oxidizing gas is 9.2% or more, a desired refractive index can be obtained. Therefore, the transmittance of g-line, h-line, and i-line is increased, and the phase shift effect is increased, which is preferable. However, even if the oxidizing gas is less than 9.2%, the transmittance value is low, and the phase shift effect is reduced, but the effect is recognized. It is good if the oxidizing gas is 6.5% or more.
  • the oxidizing gas exceeds 10.4%, the oxygen concentration in the film is too high and the desired transmittance and refractive index cannot be obtained, and oxidation of the target cannot be suppressed and stable sputtering can be performed. It becomes difficult.
  • the nitriding gas is less than 40%, target oxidation cannot be suppressed, and stable sputtering becomes difficult.
  • the nitriding gas exceeds 70%, it is difficult to obtain desired film properties such as transmittance and refractive index.
  • a phase shift layer having a transmittance of 1 to 20% with respect to i-line can be obtained. Even if the transmittance of the i-line is less than 1%, it is possible to obtain the effect of the phase shift layer slightly, and it may be 0.5% or more.
  • the thickness of the phase shift layer can be set to a thickness that gives a phase difference of about 180 ° to the i-line. Furthermore, the above-described phase shift layer may be formed with a thickness capable of giving a phase difference of about 180 ° with respect to the h-line or the g-line.
  • substantially 180 ° means 180 ° or near 180 °, and is, for example, 180 ° ⁇ 10 ° or less.
  • the thickness of the phase shift layer is such that the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance is 5% or less, and the phase difference applied to the i-line and g
  • the thickness can be set such that the difference from the phase difference applied to the line is 40 ° or less.
  • the mixed gas may further contain an inert gas. Thereby, stable formation of plasma becomes possible. Further, the concentrations of the nitriding gas and the oxidizing gas can be easily adjusted.
  • the FPD manufacturing method using the phase shift mask of the present invention includes a step of forming a photoresist layer on a substrate.
  • a phase shift mask is disposed in proximity to the photoresist layer.
  • the phase shift mask has a phase difference of 180 ° with respect to any light in a wavelength region of 300 nm or more and 500 nm or less, and transmits the g-line transmittance, the h-line transmittance, and the i-line transmittance.
  • the phase shift layer is made of a chromium oxynitride-based material that can be 5% or less.
  • the photoresist layer irradiates the phase shift mask with light having a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm) as light having a composite wavelength of 300 nm to 500 nm. It is exposed with.
  • the difference between the transmittance of the g-line, the transmittance of the h-line, and the transmittance of the i-line is 5% or less, and any of wavelength regions of 300 nm to 500 nm is used. It has a phase shift layer capable of giving a phase difference of 180 ° to light. Therefore, according to the manufacturing method, the pattern accuracy based on the phase shift effect can be improved by using the light in the wavelength region, and a fine and highly accurate pattern can be formed. Thereby, a high-quality flat panel display can be manufactured.
  • light having the composite wavelength light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) can be used.
  • the phase shift mask of the present invention includes a transparent substrate, a light shielding layer, and a phase shift layer.
  • the light shielding layer is formed on the transparent substrate.
  • the phase shift layer is formed around the light-shielding layer, and the difference in transmittance between g-line, h-line, and i-line is 5% or less, and any of composite wavelength regions of 300 nm to 500 nm. It is made of a chromium oxynitride material capable of having a phase difference of 180 ° with respect to the light.
  • phase shift mask it is possible to improve the pattern accuracy based on the phase shift effect by using the light of the composite wavelength, and it is possible to form a fine and highly accurate pattern.
  • the above effect becomes more prominent by using an exposure technique in which light having different wavelengths (for example, g-line (436 nm), h-line (405 nm), i-line (365 nm)) in the wavelength range is combined.
  • the thickness of the phase shift layer is such that the difference in transmittance between g-line, h-line and i-line is 5% or less, and the difference between the phase difference applied to i-line and the phase difference applied to g-line
  • the thickness can be set to 30 ° or less.
  • FIG. 1 is a process diagram schematically showing a method of manufacturing a phase shift mask according to the present embodiment.
  • the phase shift mask of this embodiment is configured as a patterning mask for an FPD glass substrate, for example.
  • a composite wavelength of i-line, h-line and g-line is used for exposure light.
  • a light shielding layer 11 is formed on a transparent substrate 10.
  • the transparent substrate 10 a material excellent in transparency and optical isotropy is used, for example, a quartz glass substrate is used.
  • the size in particular of the transparent substrate 10 is not restrict
  • the present invention can be applied to a substrate having a diameter of about 100 mm, a rectangular substrate having a side of about 50 to 100 mm to a side of 300 mm or more, a quartz substrate having a length of 450 mm, a width of 550 mm, and a thickness of 8 mm. Even a substrate of 1000 mm or more can be used.
  • the surface roughness of the transparent substrate 10 may be reduced by polishing the surface of the transparent substrate 10.
  • the flatness of the transparent substrate 10 can be set to 50 ⁇ m or less, for example. As a result, the depth of focus of the mask is increased, and it is possible to greatly contribute to the formation of a fine and highly accurate pattern.
  • the flatness of the transparent substrate is more preferably 20 ⁇ m or less, and it is preferably 10 ⁇ m or less because the contribution to the formation of a fine and high-definition pattern is further increased.
  • the light shielding layer 11 is made of metal chromium or a chromium compound (hereinafter also referred to as a chromium-based material), but is not limited thereto, and is a metal silicide-based material (for example, MoSi, TaSi, TiSi, WSi) or an oxide thereof. Nitride and oxynitride are applicable.
  • the thickness of the light shielding layer 11 is not particularly limited, and may be a thickness (for example, 80 to 200 nm) at which an optical density equal to or higher than a predetermined value is obtained.
  • an electron beam vapor deposition method As a film forming method, an electron beam vapor deposition method, a laser vapor deposition method, an atomic layer film formation method (ALD method), an ion assist sputtering method, or the like can be applied. Especially in the case of a large substrate, the film thickness is uniform by a DC sputtering method. It is possible to form a film with excellent properties.
  • a photoresist layer 12 is formed on the light shielding layer 11.
  • the photoresist layer 12 may be a positive type or a negative type.
  • a liquid resist is used, but a dry film resist may be used.
  • the photoresist layer 12 is exposed and developed to remove the region 12a and form a resist pattern 12P1 on the light shielding layer 11 (FIG. 1). (C)).
  • the resist pattern 12P1 functions as an etching mask for the light shielding layer 11, and the shape is appropriately determined according to the etching pattern of the light shielding layer 11.
  • the light shielding layer 11 is etched into a predetermined pattern shape.
  • the light shielding layer 11P1 patterned into a predetermined shape is formed on the transparent substrate 10.
  • a wet etching method or a dry etching method can be applied to the etching process of the light shielding layer 11, and in particular, when the substrate 10 is large, an etching process with high in-plane uniformity can be realized by adopting the wet etching method. Become.
  • the etching solution for the light shielding layer 11 can be appropriately selected.
  • the light shielding layer 11 is a chromium-based material, for example, an aqueous solution of ceric ammonium nitrate and perchloric acid can be used. Since this etching solution has a high selection ratio with the glass substrate, the substrate 10 can be protected when the light shielding layer 11 is patterned.
  • the light shielding layer 11 is made of a metal silicide material, for example, ammonium hydrogen fluoride can be used as the etchant.
  • the resist pattern 12P1 is removed as shown in FIG.
  • a sodium hydroxide aqueous solution can be used for removing the resist pattern 12P1.
  • the phase shift layer 13 is formed.
  • the phase shift layer 13 is formed on the transparent substrate 10 so as to cover the light shielding layer 11P1.
  • an electron beam (EB) vapor deposition method As a film formation method of the phase shift layer 13, an electron beam (EB) vapor deposition method, a laser vapor deposition method, an atomic layer film formation (ALD) method, an ion assisted sputtering method, or the like can be applied.
  • EB electron beam
  • ALD atomic layer film formation
  • ion assisted sputtering method By adopting the DC sputtering method, it is possible to form a film with excellent film thickness uniformity.
  • the present invention is not limited to the DC sputtering method, and an AC sputtering method or an RF sputtering method may be applied.
  • the phase shift layer 13 is made of a chromium-based material.
  • the phase shift layer 13 is made of chromium nitride oxide.
  • the chromium-based material good patternability can be obtained particularly on a large substrate.
  • metal silicide type materials such as MoSi, TaSi, WSi, CrSi, NiSi, CoSi, ZrSi, NbSi, TiSi, or these compounds, may be used.
  • Al, Ti, Ni, or a compound thereof may be used.
  • phase shift layer 13 made of chromium oxynitride is formed by sputtering
  • a mixed gas of a nitriding gas and an oxidizing gas, or a mixed gas of an inert gas, a nitriding gas, and an oxidizing gas is used as a process gas.
  • the film forming pressure can be set to 0.1 Pa to 0.5 Pa, for example.
  • the inert gas halogen, especially argon can be applied.
  • the oxidizing gas includes CO, CO 2 , NO, N 2 O, NO 2 , O 2 and the like.
  • the nitriding gas includes NO, N 2 O, NO 2 , N 2 and the like.
  • Ar, He, Xe or the like is used as the inert gas, but typically Ar is used.
  • the mixed gas may further contain a carbonizing gas such as CH 4 .
  • the flow rate (concentration) of the nitriding gas and the oxidizing gas in the mixed gas is an important parameter for determining the optical properties (transmittance, refractive index, etc.) of the phase shift layer 13.
  • the mixed gas is adjusted under conditions of a nitriding gas of 40% to 70% and an oxidizing gas of 9.2% to 10.4%. By adjusting the gas conditions, it is possible to optimize the refractive index, transmittance, reflectance, thickness and the like of the phase shift layer 13.
  • the oxygen concentration in the film is too low and the transmittance is too low. Further, when the oxidizing gas exceeds 10.4%, the oxygen concentration in the film is too high, and the variation in transmittance due to the wavelength of light becomes too large, and the oxidation of the target cannot be suppressed and is stable. Sputtering becomes difficult.
  • carbon dioxide can be raised as the oxidizing gas. If the nitriding gas is less than 40%, target oxidation cannot be suppressed, and stable sputtering becomes difficult. On the other hand, if the nitriding gas exceeds 90%, the oxygen concentration in the film is too low and it becomes difficult to obtain a desired refractive index.
  • nitrogen gas can be given as the nitriding gas.
  • a phase shift layer having a transmittance of 1 to 20% with respect to i-line can be obtained.
  • the transmittance may be 0.5% or more.
  • the thickness of the phase shift layer 13 is set to a thickness capable of giving a phase difference of 180 ° to any of g-line, h-line, and i-line light in a wavelength region of 300 nm to 500 nm.
  • the light to which the phase difference of 180 ° is given is inverted in phase, so that the intensity of the light is canceled by the interference action with the light that does not pass through the phase shift layer 13.
  • a region where the light intensity is minimum (for example, zero) is formed, so that the exposure pattern becomes clear and a fine pattern can be formed with high accuracy.
  • the light in the wavelength region is a composite light (polychromatic light) of i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm).
  • the phase shift layer 13 is formed with a thickness that can give a phase difference of 180 °.
  • the light having the target wavelength may be any of i-line, h-line, and g-line, or light in a wavelength region other than these. As the light whose phase is to be inverted has a shorter wavelength, a finer pattern can be formed.
  • the phase shift layer 13 can be formed with a thickness such that the difference between the phase difference applied to the i-line and the phase difference applied to the g-line is 30 ° or less.
  • the phase shift layer can be formed to a film thickness that can give a phase difference of about 180 ° (180 ° ⁇ 10 °) to the h-line that is the intermediate wavelength region of the composite wavelength.
  • a phase difference close to 180 ° can be imparted to any of the i-line and g-line light, and the same phase shift effect can be obtained for each light.
  • the film thickness of the phase shift layer 13 is preferably uniform in the plane of the transparent substrate 10.
  • the phase shift layer 13 is formed with a film thickness difference such that the difference in phase difference in the substrate plane is 20 ° or less for each single wavelength light of g-line, h-line, and i-line. . If the difference in phase difference exceeds 20 °, the intensity of light intensity decreases due to the effect of superimposing the light intensity at the composite wavelength, and the patterning accuracy decreases. By setting the difference of the phase difference to 15 ° or less, further 10 ° or less, the patterning accuracy can be further improved.
  • the transmittance of the phase shift layer 13 can be in the range of 1% to 20% for i-line, for example.
  • the transmittance may be 0.5% or more.
  • the transmittance can be in the range of 2% to 15%. Further, in the above range, the transmittance can be 3% or more and 10% or less.
  • the reflectance of the phase shift layer 13 is 40% or less, for example. Thereby, it is difficult to form a ghost pattern when patterning a substrate to be processed (flat panel substrate or semiconductor substrate) using the phase shift mask, and good pattern accuracy can be ensured.
  • the transmittance and reflectance of the phase shift layer 13 can be arbitrarily adjusted according to the gas conditions during film formation. According to the mixed gas conditions described above, a transmittance of 1% to 20% and a reflectance of 40% or less can be obtained with respect to i-line.
  • the transmittance may be 0.5% or more.
  • the thickness of the phase shift layer 13 can be appropriately set within the range in which the above-described optical characteristics can be obtained.
  • the optical characteristics described above can be obtained by optimizing the thickness of the phase shift layer 13.
  • the film thickness of the phase shift layer 13 that can obtain the optical characteristics depending on the gas conditions is, for example, 100 nm or more and 130 nm or less. In this range, the thickness of the phase shift layer 13 can be in the range of 110 nm to 125 nm.
  • the transmittance for i-line is 3.10. %
  • the phase difference at the i-line can be 180 °
  • the transmittance at the g-line can be 7.95%
  • the phase difference can be 150 °.
  • N 2 was used as the nitriding gas
  • CO 2 was used as the oxidizing gas
  • Ar was used as the inert gas.
  • the film forming pressure was 0.4 Pa.
  • the transmittance for i-line is 3.10% and the phase difference for i-line is 180 °.
  • the transmittance in g-line can be 7.95%.
  • the phase shift layer with a thickness that can give a phase difference of 180 ° ⁇ 10 ° to the i-line, the difference in transmittance between the i-line, the h-line, and the g-line is reduced to 5% or less. Can be suppressed.
  • the transmittance of i-line can be set in the range of 1% to 10%.
  • a photoresist layer 14 is formed on the phase shift layer 13.
  • the photoresist layer 14 may be a positive type or a negative type.
  • the photoresist layer 14 is exposed and developed to form a resist pattern 14P1 on the phase shift layer 13.
  • the resist pattern 14 ⁇ / b> P ⁇ b> 1 functions as an etching mask for the phase shift layer 13, and the shape is appropriately determined according to the etching pattern for the phase shift layer 13.
  • the phase shift layer 13 is etched into a predetermined pattern shape.
  • the phase shift layer 13P1 patterned in a predetermined shape is formed on the transparent substrate 10.
  • a wet etching method or a dry etching method can be applied to the etching process of the phase shift layer 13, and when the substrate 10 is large, an etching process with high in-plane uniformity can be realized by adopting the wet etching method. It becomes.
  • the etching solution for the phase shift layer 13 can be appropriately selected.
  • an aqueous solution of ceric ammonium nitrate and perchloric acid can be used. Since this etching solution has a high selectivity with respect to the glass substrate, the substrate 10 can be protected when the phase shift layer 13 is patterned.
  • the resist pattern 14P1 is removed as shown in FIG.
  • a sodium hydroxide aqueous solution can be used to remove the resist pattern 14P1.
  • the phase shift mask 1 is manufactured.
  • the phase shift layer 13P1 having the above-described configuration is formed around the light shielding layer pattern 11P1.
  • the i-line, h-line, and g-line the difference in transmittance between them can be suppressed to 5% or less, and the pattern accuracy based on the phase shift effect can be improved, so that a fine and highly accurate pattern can be formed.
  • a photoresist layer is formed on the surface of the glass substrate on which the insulating layer and the wiring layer are formed.
  • a spin coater is used to form the photoresist layer.
  • the photoresist layer is subjected to a heating (baking) process and then subjected to an exposure process using the phase shift mask 1.
  • the phase shift mask 1 is disposed in the vicinity of the photoresist layer.
  • the surface of the glass substrate is irradiated with a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm) of 300 nm to 500 nm through the phase shift mask 1.
  • composite light of g-line, h-line, and i-line is used as the light of the composite wavelength.
  • the phase shift mask 1 suppresses the difference in transmittance between the i-line, the h-line, and the g-line to 5% or less, and applies any light in a wavelength region of 300 nm to 500 nm.
  • the phase shift layer 13P1 capable of giving a phase difference of 180 ° is provided. Therefore, according to the manufacturing method, since the pattern accuracy based on the phase shift effect can be improved by using the light in the wavelength region, and the depth of focus can be increased, a fine and highly accurate pattern can be obtained. Formation is possible. Thereby, a high-quality flat panel display can be manufactured.
  • FIG. 4 is a process diagram for explaining a method of manufacturing a phase shift mask according to the second embodiment of the present invention.
  • portions corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the phase shift mask 2 (FIG. 4 (J)) of the present embodiment has an alignment mark for alignment at the periphery, and this alignment mark is formed by the light shielding layer 11P2.
  • this alignment mark is formed by the light shielding layer 11P2.
  • the light shielding layer 11 is formed on the transparent substrate 10 (FIG. 4A).
  • a photoresist layer 12 is formed on the light shielding layer 11 (FIG. 4B).
  • the photoresist layer 12 may be a positive type or a negative type.
  • a resist pattern 12P2 is formed on the light shielding layer 11 (FIG. 4C).
  • the resist pattern 12P2 functions as an etching mask for the light shielding layer 11, and the shape is appropriately determined according to the etching pattern of the light shielding layer 11.
  • FIG. 4C shows an example in which a resist pattern 12P2 is formed so as to leave the light shielding layer over a predetermined range on the periphery of the substrate 10.
  • the light shielding layer 11 is etched into a predetermined pattern shape.
  • the light shielding layer 11P2 patterned in a predetermined shape is formed on the transparent substrate 10 (FIG. 4D).
  • the resist pattern 12P2 is removed (FIG. 4E).
  • an aqueous sodium hydroxide solution can be used to remove the resist pattern 12P2.
  • the phase shift layer 13 is formed.
  • the phase shift layer 13 is formed on the transparent substrate 10 so as to cover the light shielding layer 11P2 (FIG. 4F).
  • the phase shift layer 13 is made of a chromium oxynitride material and is formed by a DC sputtering method.
  • a mixed gas of a nitriding gas and an oxidizing gas, or a mixed gas of an inert gas, a nitriding gas, and an oxidizing gas can be used as the process gas.
  • the phase shift layer 13 is formed under the same film formation conditions as in the first embodiment described above.
  • a photoresist layer 14 is formed on the phase shift layer 13 (FIG. 4G).
  • a resist pattern 14P2 is formed on the phase shift layer 13 (FIG. 4H).
  • the resist pattern 14P2 functions as an etching mask for the phase shift layer 13, and the shape is appropriately determined according to the etching pattern for the phase shift layer 13.
  • phase shift layer 13 is etched into a predetermined pattern shape.
  • the phase shift layer 13P2 patterned in a predetermined shape is formed on the transparent substrate 10 (FIG. 4I).
  • the resist pattern 14P2 is removed (FIG. 4J).
  • a sodium hydroxide aqueous solution can be used to remove the resist pattern 14P2.
  • the phase shift mask 2 according to this embodiment is manufactured. According to the phase shift mask 2 of the present embodiment, since the alignment mark is formed of the light shielding layer 11P2, the alignment mark can be easily recognized optically, and high-accuracy alignment is possible. This embodiment can be implemented in combination with the first embodiment described above.
  • phase shift layer 13 can function as a halftone layer (semi-transmissive layer). In this case, it is possible to make a difference in exposure amount between light transmitted through the phase shift layer 13 and light not transmitted.
  • the phase shift layer is formed and patterned after the light shielding layer is patterned.
  • the present invention is not limited to this.
  • the light shielding layer is formed. Films and patterning may be performed. That is, it is possible to change the stacking order of the light shielding layer and the phase shift layer.
  • the etching (not shown) whose main component is at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W, and Hf is provided between the light shielding layer and the phase shift layer.
  • a stopper layer is preferably provided.
  • the light shielding layer 11P1 is formed by etching a necessary portion. Instead, the formation region of the light shielding layer 11P1 is opened. After the resist pattern to be formed is formed, the light shielding layer 11 may be formed. After the formation of the light shielding layer 11, the light shielding layer 11P1 can be formed in a necessary region by removing the resist pattern (lift-off method).
  • Phase shift mask 10 Transparent substrate 11, 11P1 ... Light shielding layer 12P1, 14P1 ... Resist pattern 13P1 ... Phase shift layer

Abstract

A method for producing a phase shift mask includes the step of sputtering a target made of a chromium-based material in an atmosphere of a mixture gas containing 10.4 % or less of an acidic gas.

Description

位相シフトマスクおよびその製造方法Phase shift mask and manufacturing method thereof
 本発明は、微細かつ高精度な露光パターンを形成することが可能な位相シフトマスクおよびその製造方法に関し、特にフラットパネルディスプレイの製造に用いて好適な技術に関する。
 本願は、2012年12月27日に、日本に出願された日本国特願2012-285845号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a phase shift mask capable of forming a fine and highly accurate exposure pattern and a manufacturing method thereof, and more particularly to a technique suitable for use in manufacturing a flat panel display.
This application claims priority based on Japanese Patent Application No. 2012-285845 filed in Japan on December 27, 2012, the contents of which are incorporated herein by reference.
 半導体デバイスやフラットパネルディスプレイ(FPD)の製造工程では、シリコンやガラス等からなる基板に形成されたレジスト膜に微細パターンを露光、転写するために位相シフトマスクが用いられている。
 FPDでは、昨今、パターニングの精度を向上させることで線幅サイズをより微細にし、画像の品質を大幅に向上させるに至っている。フォトマスクの線幅精度、転写側の基板の線幅精度がより微細になると、露光時におけるフォトマスクと基板のギャップがより小さくなる。フラットパネルに使用されるガラス基板は300mmを越える大きなサイズとなることから、ガラス基板のうねり、もしくは表面粗さが大きな値となり、焦点深度の影響を受け易い状況にある。
In a manufacturing process of a semiconductor device or a flat panel display (FPD), a phase shift mask is used to expose and transfer a fine pattern onto a resist film formed on a substrate made of silicon, glass, or the like.
In the FPD, the line width size has been further refined by improving the patterning accuracy, and the image quality has been greatly improved. As the line width accuracy of the photomask and the line width accuracy of the substrate on the transfer side become finer, the gap between the photomask and the substrate during exposure becomes smaller. Since the glass substrate used for the flat panel has a large size exceeding 300 mm, the waviness or surface roughness of the glass substrate becomes a large value, and it is easily affected by the depth of focus.
 FPDの露光は、ガラス基板が大型サイズであることから、g線(436nm)、h線(405nm)、i線(365nm)の複合波長を用いて、等倍プロキシミリティ露光法が用いられている(例えば特許文献1参照)。 Since the glass substrate is a large size, the FPD exposure uses the combined wavelength of g-line (436 nm), h-line (405 nm), and i-line (365 nm), and the same-size proxy proximity exposure method is used. (For example, refer to Patent Document 1).
 一方、半導体では、ArF(193nm)の単一波長によるパターニングが行われており、より微細化を達成するための手法としてハーフトーン型位相シフトマスクが用いられている(例えば特許文献2参照)。この方法によれば、193nmにて位相が180°となることで、光強度がゼロとなる箇所を設定してパターニング精度を向上させることが可能となる。また、光強度がゼロになる箇所があることで、焦点深度を大きく設定することが可能となり、露光条件の緩和もしくはパターニングの歩留まり向上が図れる。 On the other hand, patterning with a single wavelength of ArF (193 nm) is performed on semiconductors, and a halftone phase shift mask is used as a technique for achieving further miniaturization (see, for example, Patent Document 2). According to this method, when the phase is 180 ° at 193 nm, it is possible to set the location where the light intensity becomes zero and improve the patterning accuracy. Further, since there is a portion where the light intensity becomes zero, it is possible to set a large depth of focus, and it is possible to ease exposure conditions or improve patterning yield.
日本国特開2007-271720号公報(段落[0031])Japanese Unexamined Patent Publication No. 2007-271720 (paragraph [0031]) 日本国特開2006-78953号公報(段落[0002]、[0005])Japanese Unexamined Patent Publication No. 2006-78953 (paragraphs [0002] and [0005])
 近年におけるFPDの配線パターンの微細化に伴って、FPDの製造に用いられるフォトマスクにも微細な線幅精度の要求が高まっている。しかし、フォトマスクの微細化に対する露光条件、現像条件等の検討だけでは対応が非常に難しくなってきており、さらなる微細化を達成するための新しい技術が求められるようになってきている。
 特に、上述したようにg線、h線、i線の複合波長を用いた際、それぞれの波長に対するマスクにおける透過率が異なるため、FPDのように大面積を対象として露光処理をおこなう場合には、高精細化したパターニングにおいて遮光あるいは位相シフトによる不具合が生じ、結果的に高精細に対応できないという問題が発生している。
 また高精細に対応しようとして特定の波長に限定して高精細に対応した処理をおこなおうとした場合には、他の波長域の光は効率的に利用できず、処理効率が低下し製造コストが増大するという問題があった。
With the recent miniaturization of FPD wiring patterns, there is an increasing demand for fine line width accuracy in photomasks used in FPD manufacturing. However, it has become very difficult to deal with only the exposure conditions and development conditions for photomask miniaturization, and new techniques for achieving further miniaturization have been demanded.
In particular, when the composite wavelength of g-line, h-line, and i-line is used as described above, the transmittance in the mask for each wavelength is different, so when performing an exposure process for a large area like an FPD. However, in high-definition patterning, a problem due to light shielding or phase shift occurs, resulting in a problem that high-definition cannot be handled.
In addition, when trying to handle a high-definition process that is limited to a specific wavelength in order to support high-definition, light in other wavelength ranges cannot be used efficiently, resulting in a reduction in processing efficiency and manufacturing costs. There was a problem that increased.
 本発明に係る態様は上記課題を解決するためになされたものであり、FPD製造のように大面積で微細かつ高精度な露光パターンが効率的に形成可能な位相シフトマスクおよびその製造方法を提供することを目的とする。 An aspect according to the present invention has been made to solve the above-described problems, and provides a phase shift mask capable of efficiently forming a fine, high-precision exposure pattern with a large area as in FPD manufacturing, and a method for manufacturing the same. The purpose is to do.
(1)本発明に係る一態様の位相シフトマスクの製造方法は、透明基板上にパターニングされたCrを主成分とする遮光層を形成する工程と;不活性ガスと窒化性ガスと酸化性ガスとを含む混合ガスの雰囲気下、クロム系材料のターゲットをスパッタすることで、i線に対して略180°の位相差をもたせるとともに、前記混合ガスにおける前記酸化性ガスを10.4%以下としてg線の透過率と前記i線の透過率との差を5%以下とすることが可能なCrを主成分とする位相シフト層を形成してパターニングする工程と、を有する。
(2)本発明に係る一態様の位相シフトマスクは、透明基板上に形成されたCrを主成分とする遮光層と;i線に対して略180°の位相差をもたせるとともに、g線の透過率と前記i線の透過率との差を5%以下とすることが可能なCrを主成分とする位相シフト層とを有する。
(3)上記(2)の態様において、位相シフトマスクは、前記透明基板の表面に前記遮光層が形成され、該遮光層上に前記位相シフト層が形成されるか、または、前記透明基板の表面に前記位相シフト層が形成され、該位相シフト層上にNi、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層が形成され、該エッチングストッパー層上に前記遮光層が形成されてもよい。
(1) A method of manufacturing a phase shift mask according to one aspect of the present invention includes a step of forming a light shielding layer mainly composed of Cr patterned on a transparent substrate; an inert gas, a nitriding gas, and an oxidizing gas Is sputtered with a target of a chromium-based material in an atmosphere of a mixed gas that includes: and a phase difference of about 180 ° with respect to i-line, and the oxidizing gas in the mixed gas is 10.4% or less forming and patterning a phase shift layer mainly composed of Cr capable of setting the difference between the g-line transmittance and the i-line transmittance to 5% or less.
(2) A phase shift mask according to one aspect of the present invention includes a light-shielding layer mainly composed of Cr formed on a transparent substrate; a phase difference of about 180 ° with respect to i-line; A phase shift layer containing Cr as a main component, which can make the difference between the transmittance and the transmittance of the i-line 5% or less.
(3) In the aspect of the above (2), the phase shift mask is formed such that the light shielding layer is formed on the surface of the transparent substrate, the phase shift layer is formed on the light shielding layer, or the transparent substrate Etching mainly comprising at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf on the surface. A stopper layer may be formed, and the light shielding layer may be formed on the etching stopper layer.
 上記(1)の態様によれば、透明基板上にパターニングされたCrを主成分とする遮光層を形成する工程と、不活性ガスと窒化性ガスと酸化性ガスとを含む混合ガスの雰囲気下、クロム系材料のターゲットをスパッタすることで、前記i線に対して略180°の位相差をもたせるとともに、前記混合ガスにおける酸化性ガスを10.4%以下として前記g線の透過率と前記i線の透過率との差を5%以下とすることが可能なCrを主成分とする位相シフト層を形成してパターニングする工程と、を有することにより、300nm以上500nm以下の複合波長領域のいずれかの光に対して透過率のほぼ等しい位相シフトマスクブランクスおよび、位相シフトマスクを製造できる製造方法を提供することができる。
 上記位相シフトマスクブランクスは、g線(436nm)、h線(405nm)、i線(365nm)を含む複合波長による露光処理に用いられるフォトマスク用の位相シフトマスクブランクスとすることができる。
According to the above aspect (1), a step of forming a light shielding layer mainly composed of Cr patterned on a transparent substrate, and under an atmosphere of a mixed gas containing an inert gas, a nitriding gas, and an oxidizing gas Sputtering a chromium-based material target gives a phase difference of about 180 ° with respect to the i-line, and reduces the oxidizing gas in the mixed gas to 10.4% or less and the transmittance of the g-line. forming a phase shift layer mainly composed of Cr capable of making the difference from the transmittance of the i-line 5% or less, and patterning the composite wavelength region of 300 nm to 500 nm. It is possible to provide a phase shift mask blank having substantially the same transmittance with respect to any light and a manufacturing method capable of manufacturing the phase shift mask.
The phase shift mask blank can be a phase shift mask blank for a photomask used for exposure processing with a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm).
 上記(2)の態様によれば、透明基板上に形成されたCrを主成分とする遮光層と、前記i線に対して略180°の位相差をもたせるとともに、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とすることが可能なCrを主成分とする位相シフト層とを有することにより、FPDなどの大面積を有する被処理体においても、高精細な露光処理を可能とし、製造コストを低減することができる。 According to the above aspect (2), the light shielding layer mainly composed of Cr formed on the transparent substrate, the phase difference of about 180 ° with respect to the i-line, and the transmittance of the g-line By having a phase shift layer mainly composed of Cr that can make the difference between the transmittance of the h-line and the transmittance of the i-line 5% or less, it has a large area such as an FPD. Even in the object to be processed, high-definition exposure processing can be performed, and the manufacturing cost can be reduced.
 上記(3)の場合、位相シフトマスクは、前記透明基板の表面に遮光層が形成され、該遮光層上に前記位相シフト層が形成されるか、または、前記透明基板の表面に位相シフト層が形成され、該位相シフト層上にNi、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層が形成され、該エッチングストッパー層上に前記遮光層が形成される位相シフトマスクブランクスからなることができる。 In the case of (3) above, in the phase shift mask, the light shielding layer is formed on the surface of the transparent substrate, and the phase shift layer is formed on the light shielding layer, or the phase shift layer is formed on the surface of the transparent substrate. An etching stopper layer mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf is formed on the phase shift layer; The light shielding layer may be formed of a phase shift mask blank on which the light shielding layer is formed on the etching stopper layer.
 本発明に係る態様によれば、波長による透過率の差を低減した位相シフトマスクブランクスを製造できるので、FPDなどの大面積を有する被処理体において露光処理での不具合を低減して、高精細な被処理物を歩留まりよく製造することが可能な位相シフトマスクを製造可能な製造方法および位相シフトマスクブランクスとその製造方法を提供することができる。 According to the aspect of the present invention, a phase shift mask blank having a reduced difference in transmittance due to wavelength can be manufactured, so that a defect in an exposure process can be reduced in an object having a large area such as an FPD, and a high definition can be achieved. It is possible to provide a manufacturing method, a phase shift mask blank, and a manufacturing method thereof capable of manufacturing a phase shift mask capable of manufacturing a large object to be processed with a high yield.
本発明の第1の実施形態に係る位相シフトマスクの製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the phase shift mask which concerns on the 1st Embodiment of this invention. 上記位相シフトマスクの位相シフト層の透過率と透過光波長との関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability of the phase shift layer of the said phase shift mask, and a transmitted light wavelength. 上記位相シフトマスクの位相シフト層の成膜条件と光学特性との関係を示す実験結果である。It is an experimental result which shows the relationship between the film-forming conditions of the phase shift layer of the said phase shift mask, and an optical characteristic. 本発明の第2の実施形態に係る位相シフトマスクの製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the phase shift mask which concerns on the 2nd Embodiment of this invention.
 本発明の製造方法においては、透明基板上の遮光層をパターニングする工程を含むことができる。上記透明基板上に上記遮光層を被覆するように位相シフト層が形成される。上記位相シフト層は、少なくとも不活性ガスと、40%以上90%以下の窒化性ガスと、10.4%以下の酸化性ガスとを含む混合ガスの雰囲気下、より好ましくは40%以上70%以下の窒化性ガス及び9.2%以上10.4%以下の酸化性ガスを含む混合ガスの雰囲気下、クロム系材料のターゲットをスパッタすることで形成される。上記位相シフト層は、300nm以上500nm以下の波長領域のいずれかの光、g線(436nm)、h線(405nm)、i線(365nm)を含む複合波長による光に対して180°の位相差をもたせ、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とすることが可能な厚みで形成される。さらに、形成された上記位相シフト層は、所定形状にパターニングされる。 The production method of the present invention may include a step of patterning the light shielding layer on the transparent substrate. A phase shift layer is formed on the transparent substrate so as to cover the light shielding layer. The phase shift layer has an atmosphere of a mixed gas containing at least an inert gas, a nitriding gas of 40% or more and 90% or less, and an oxidizing gas of 10.4% or less, more preferably 40% or more and 70%. It is formed by sputtering a target of a chromium-based material in an atmosphere of a mixed gas containing the following nitriding gas and 9.2% to 10.4% oxidizing gas. The phase shift layer has a phase difference of 180 ° with respect to any light in a wavelength region of 300 nm or more and 500 nm or less, and light having a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm). Thus, the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance is 5% or less. Further, the formed phase shift layer is patterned into a predetermined shape.
 本発明の位相シフトマスクは、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とするとともに略180°の位相差をもたせることが可能な位相シフト層を有する。したがって、当該位相シフトマスクによれば、上記波長領域の光、特にg線(436nm)、h線(405nm)、i線(365nm)を含む複合波長を露光光として用いることで、位相の反転作用により光強度が最小となる領域を形成して、露光パターンをより鮮明にすることができる。このような位相シフト効果により、パターン精度が大幅に向上し、微細かつ高精度なパターン形成が可能となる。前記g線の透過率と前記i線の透過率との差は、2.5%以上、5%以下とすることがより好ましい。前記g線の透過率と前記i線の透過率との差を小さくすることで各波長での透過率差異が小さくなり、各波長における位相シフト効果が高くなることとなる。 In the phase shift mask of the present invention, the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance may be 5% or less and have a phase difference of about 180 °. It has a possible phase shift layer. Therefore, according to the phase shift mask, the inversion action of the phase can be achieved by using the composite wavelength including light in the above-mentioned wavelength region, particularly g-line (436 nm), h-line (405 nm), and i-line (365 nm) as exposure light. Thus, a region where the light intensity is minimized can be formed, and the exposure pattern can be made clearer. By such a phase shift effect, the pattern accuracy is greatly improved, and a fine and highly accurate pattern can be formed. The difference between the g-line transmittance and the i-line transmittance is more preferably 2.5% or more and 5% or less. By reducing the difference between the transmittance of the g-line and the transmittance of the i-line, the difference in transmittance at each wavelength is reduced, and the phase shift effect at each wavelength is increased.
 上記位相シフト層を酸化窒化クロム系材料で形成する際に、10.4%以下の酸化性ガスを含む混合ガス雰囲気とすることにより、所望の透過率および屈折率を有するスパッタ膜を安定して形成することができる。酸化性ガスは9.2%以上であれば、所望の屈折率が得られるために、g線、h線、i線での透過率が高くなって、位相シフト効果が高くなり、好ましい。しかし、酸化性ガスが9.2%未満であっても、透過率値は低くなり、位相シフト効果が小さくはなるものの効果が認められるため、良好である。酸化性ガスが6.5%以上であれば良好である。酸化性ガスが10.4%を超えると、膜中の酸素濃度が高すぎて所望とする透過率および屈折率が得られなくなるとともに、ターゲットの酸化を抑制することができず、安定したスパッタが困難となる。一方、窒化性ガスが40%未満の場合、ターゲットの酸化を抑制することができず、安定したスパッタが困難となる。また、窒化性ガスが70%を越えると、所望とする透過率および屈折率等の膜特性が得られ難くなる。上記条件の混合ガス雰囲気で成膜することにより、例えばi線に関しての透過率が1~20%である位相シフト層を得ることができる。i線の透過率が1%未満であっても若干ながら位相シフト層の効果を得ることも可能であり、0.5%以上であればよい。 When the phase shift layer is formed of a chromium oxynitride-based material, a sputtered film having a desired transmittance and refractive index can be stabilized by using a mixed gas atmosphere containing an oxidizing gas of 10.4% or less. Can be formed. If the oxidizing gas is 9.2% or more, a desired refractive index can be obtained. Therefore, the transmittance of g-line, h-line, and i-line is increased, and the phase shift effect is increased, which is preferable. However, even if the oxidizing gas is less than 9.2%, the transmittance value is low, and the phase shift effect is reduced, but the effect is recognized. It is good if the oxidizing gas is 6.5% or more. If the oxidizing gas exceeds 10.4%, the oxygen concentration in the film is too high and the desired transmittance and refractive index cannot be obtained, and oxidation of the target cannot be suppressed and stable sputtering can be performed. It becomes difficult. On the other hand, when the nitriding gas is less than 40%, target oxidation cannot be suppressed, and stable sputtering becomes difficult. If the nitriding gas exceeds 70%, it is difficult to obtain desired film properties such as transmittance and refractive index. By forming a film in a mixed gas atmosphere under the above conditions, for example, a phase shift layer having a transmittance of 1 to 20% with respect to i-line can be obtained. Even if the transmittance of the i-line is less than 1%, it is possible to obtain the effect of the phase shift layer slightly, and it may be 0.5% or more.
 上記位相シフト層の厚みは、i線に対して略180°の位相差をもたせる厚みとすることができる。さらに、h線またはg線に対して略180°の位相差をもたせることが可能な厚みで上記位相シフト層を形成してもよい。
 ここで「略180°」とは、180°又は180°近傍を意味し、例えば、180°±10°以下である。
The thickness of the phase shift layer can be set to a thickness that gives a phase difference of about 180 ° to the i-line. Furthermore, the above-described phase shift layer may be formed with a thickness capable of giving a phase difference of about 180 ° with respect to the h-line or the g-line.
Here, “substantially 180 °” means 180 ° or near 180 °, and is, for example, 180 ° ± 10 ° or less.
 上記位相シフト層の厚みは、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とするとともに、i線に付与する位相差とg線に付与する位相差との差が40°以下となるような厚みとすることができる。
 これにより、各波長光に対して一定の位相シフト効果が得られることで、微細かつ高精度なパターン形成を確保することができる。
The thickness of the phase shift layer is such that the difference between the g-line transmittance, the h-line transmittance, and the i-line transmittance is 5% or less, and the phase difference applied to the i-line and g The thickness can be set such that the difference from the phase difference applied to the line is 40 ° or less.
As a result, a constant phase shift effect can be obtained for each wavelength light, thereby ensuring a fine and highly accurate pattern formation.
 上記混合ガスは、不活性ガスをさらに含んでいてもよい。
 これにより、プラズマの安定した形成が可能となる。また、窒化性ガス及び酸化性ガスの濃度を容易に調整することができる。
The mixed gas may further contain an inert gas.
Thereby, stable formation of plasma becomes possible. Further, the concentrations of the nitriding gas and the oxidizing gas can be easily adjusted.
 本発明の位相シフトマスクを用いたFPDの製造方法としては、基板上にフォトレジスト層を形成する工程を含む。上記フォトレジスト層に近接して、位相シフトマスクが配置される。上記位相シフトマスクは、300nm以上500nm以下の波長領域のいずれかの光に対して180°の位相差をもたせ、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とすることが可能な酸化窒化クロム系材料からなる位相シフト層を有する。上記フォトレジスト層は、上記300nm以上500nm以下の複合波長の光として、g線(436nm)、h線(405nm)、i線(365nm)を含む複合波長の光を上記位相シフトマスクに照射することで露光される。 The FPD manufacturing method using the phase shift mask of the present invention includes a step of forming a photoresist layer on a substrate. A phase shift mask is disposed in proximity to the photoresist layer. The phase shift mask has a phase difference of 180 ° with respect to any light in a wavelength region of 300 nm or more and 500 nm or less, and transmits the g-line transmittance, the h-line transmittance, and the i-line transmittance. The phase shift layer is made of a chromium oxynitride-based material that can be 5% or less. The photoresist layer irradiates the phase shift mask with light having a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm) as light having a composite wavelength of 300 nm to 500 nm. It is exposed with.
 上記位相シフトマスクは、前記g線の透過率と前記h線の透過率と前記i線の透過率との差をいずれも5%以下とするとともに、300nm以上500nm以下の波長領域のいずれかの光に対して180°の位相差をもたせることが可能な位相シフト層を有する。したがって、上記製造方法によれば、上記波長領域の光を用いることで位相シフト効果に基づくパターン精度の向上を図ることができ、微細かつ高精度なパターン形成が可能となる。これにより、高画質のフラットパネルディスプレイを製造することができる。 In the phase shift mask, the difference between the transmittance of the g-line, the transmittance of the h-line, and the transmittance of the i-line is 5% or less, and any of wavelength regions of 300 nm to 500 nm is used. It has a phase shift layer capable of giving a phase difference of 180 ° to light. Therefore, according to the manufacturing method, the pattern accuracy based on the phase shift effect can be improved by using the light in the wavelength region, and a fine and highly accurate pattern can be formed. Thereby, a high-quality flat panel display can be manufactured.
 上記複合波長の光としては、g線(436nm)、h線(405nm)、i線(365nm)を含む光を用いることができる。 As the light having the composite wavelength, light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) can be used.
 本発明の位相シフトマスクは、透明基板と、遮光層と、位相シフト層とを具備する。上記遮光層は、上記透明基板上に形成される。上記位相シフト層は、上記遮光層の周囲に形成され、g線とh線とi線の透過率の差がいずれも5%以下とされるとともに、300nm以上500nm以下の複合波長領域のいずれかの光に対して180°の位相差をもたせることが可能な酸化窒化クロム系材料からなる。 The phase shift mask of the present invention includes a transparent substrate, a light shielding layer, and a phase shift layer. The light shielding layer is formed on the transparent substrate. The phase shift layer is formed around the light-shielding layer, and the difference in transmittance between g-line, h-line, and i-line is 5% or less, and any of composite wavelength regions of 300 nm to 500 nm. It is made of a chromium oxynitride material capable of having a phase difference of 180 ° with respect to the light.
 上記位相シフトマスクによれば、上記複合波長の光を用いることで位相シフト効果に基づくパターン精度の向上を図ることができ、微細かつ高精度なパターン形成が可能となる。上記効果は、上記波長範囲において異なる波長の光(例えば、g線(436nm)、h線(405nm)、i線(365nm))を複合化させた露光技術を用いることで、より顕著となる。 According to the phase shift mask, it is possible to improve the pattern accuracy based on the phase shift effect by using the light of the composite wavelength, and it is possible to form a fine and highly accurate pattern. The above effect becomes more prominent by using an exposure technique in which light having different wavelengths (for example, g-line (436 nm), h-line (405 nm), i-line (365 nm)) in the wavelength range is combined.
 上記位相シフト層の厚みは、g線とh線とi線の透過率の差がいずれも5%以下とされるとともに、i線に付与する位相差とg線に付与する位相差との差が30°以下となるような厚みとすることができる。
 これにより、各波長光に対して一定の位相シフト効果が得られことで、微細かつ高精度なパターン形成を確保することができる。
The thickness of the phase shift layer is such that the difference in transmittance between g-line, h-line and i-line is 5% or less, and the difference between the phase difference applied to i-line and the phase difference applied to g-line The thickness can be set to 30 ° or less.
As a result, a constant phase shift effect is obtained for each wavelength light, and fine and highly accurate pattern formation can be ensured.
<第1の実施形態>
 以下では、本発明に係る位相シフトマスクの製造方法の一実施形態について、図面に基づいて説明する。
 図1は、本実施形態に係る位相シフトマスクの製造方法を模式的に示す工程図である。
<First Embodiment>
Below, one Embodiment of the manufacturing method of the phase shift mask which concerns on this invention is described based on drawing.
FIG. 1 is a process diagram schematically showing a method of manufacturing a phase shift mask according to the present embodiment.
 本実施形態の位相シフトマスクは、例えばFPD用ガラス基板に対するパターニング用マスクとして構成される。後述するように、当該マスクを用いたガラス基板のパターニングには、露光光にi線、h線及びg線の複合波長が用いられる。 The phase shift mask of this embodiment is configured as a patterning mask for an FPD glass substrate, for example. As will be described later, for the patterning of the glass substrate using the mask, a composite wavelength of i-line, h-line and g-line is used for exposure light.
 本実施形態に係る位相シフトマスクの製造方法においては、まず、図1(a)に示すように、透明基板10上に遮光層11が形成される。 In the method of manufacturing a phase shift mask according to the present embodiment, first, as shown in FIG. 1A, a light shielding layer 11 is formed on a transparent substrate 10.
 透明基板10としては、透明性及び光学的等方性に優れた材料が用いられ、例えば、石英ガラス基板が用いられる。透明基板10の大きさは特に制限されず、当該マスクを用いて露光する基板(例えばFPD用基板、半導体基板)に応じて適宜選定される。本実施形態では、径寸法100mm程度の基板や、一辺50~100mm程度から、一辺300mm以上の矩形基板に適用可能であり、更に、縦450mm、横550mm、厚み8mmの石英基板や、基板寸法が1000mm以上の基板であっても用いることができる。 As the transparent substrate 10, a material excellent in transparency and optical isotropy is used, for example, a quartz glass substrate is used. The size in particular of the transparent substrate 10 is not restrict | limited, According to the board | substrate (for example, board | substrate for FPD, a semiconductor substrate) exposed using the said mask, it selects suitably. In this embodiment, the present invention can be applied to a substrate having a diameter of about 100 mm, a rectangular substrate having a side of about 50 to 100 mm to a side of 300 mm or more, a quartz substrate having a length of 450 mm, a width of 550 mm, and a thickness of 8 mm. Even a substrate of 1000 mm or more can be used.
 また、透明基板10の表面を研磨することで、透明基板10の表面粗さを低減するようにしてもよい。透明基板10のフラットネスは、例えば、50μm以下とすることができる。これにより、マスクの焦点深度が深くなり、微細かつ高精度なパターン形成に大きく貢献することが可能となる。透明基板のフラットネスについては20μm以下であれば、より好ましく、10μm以下であれば、微細かつ高精細なパターン形成への寄与がより高くなるので好ましい。 Further, the surface roughness of the transparent substrate 10 may be reduced by polishing the surface of the transparent substrate 10. The flatness of the transparent substrate 10 can be set to 50 μm or less, for example. As a result, the depth of focus of the mask is increased, and it is possible to greatly contribute to the formation of a fine and highly accurate pattern. The flatness of the transparent substrate is more preferably 20 μm or less, and it is preferably 10 μm or less because the contribution to the formation of a fine and high-definition pattern is further increased.
 遮光層11は金属クロム又はクロム化合物(以下、クロム系材料ともいう。)で構成されるが、これに限られず、金属シリサイド系材料(例えば、MoSi、TaSi、TiSi、WSi)又はこれらの酸化物、窒化物、酸窒化物が適用可能である。遮光層11の厚みは特に制限されず、所定以上の光学濃度が得られる厚み(例えば、80~200nm)であればよい。成膜方法は、電子ビーム蒸着法、レーザー蒸着法、原子層成膜法(ALD法)、イオンアシストスパッタリング法等が適用可能であり、特に大型基板の場合には、DCスパッタリング法によって膜厚均一性に優れた成膜が可能である。 The light shielding layer 11 is made of metal chromium or a chromium compound (hereinafter also referred to as a chromium-based material), but is not limited thereto, and is a metal silicide-based material (for example, MoSi, TaSi, TiSi, WSi) or an oxide thereof. Nitride and oxynitride are applicable. The thickness of the light shielding layer 11 is not particularly limited, and may be a thickness (for example, 80 to 200 nm) at which an optical density equal to or higher than a predetermined value is obtained. As a film forming method, an electron beam vapor deposition method, a laser vapor deposition method, an atomic layer film formation method (ALD method), an ion assist sputtering method, or the like can be applied. Especially in the case of a large substrate, the film thickness is uniform by a DC sputtering method. It is possible to form a film with excellent properties.
 次に、図1(b)に示すように、遮光層11の上にフォトレジスト層12が形成される。フォトレジスト層12は、ポジ型でもよいしネガ型でもよい。フォトレジスト層12としては、液状レジストが用いられるが、ドライフィルムレジストが用いられてもよい。 Next, as shown in FIG. 1B, a photoresist layer 12 is formed on the light shielding layer 11. The photoresist layer 12 may be a positive type or a negative type. As the photoresist layer 12, a liquid resist is used, but a dry film resist may be used.
 続いて、図1(c)(d)に示すように、フォトレジスト層12を露光及び現像することで、領域12aを除去して遮光層11の上にレジストパターン12P1が形成される(図1(C))。レジストパターン12P1は、遮光層11のエッチングマスクとして機能し、遮光層11のエッチングパターンに応じて適宜形状が定められる。 Subsequently, as shown in FIGS. 1C and 1D, the photoresist layer 12 is exposed and developed to remove the region 12a and form a resist pattern 12P1 on the light shielding layer 11 (FIG. 1). (C)). The resist pattern 12P1 functions as an etching mask for the light shielding layer 11, and the shape is appropriately determined according to the etching pattern of the light shielding layer 11.
 続いて、図1(e)に示すように、遮光層11が所定のパターン形状にエッチングされる。これにより、透明基板10上に所定形状にパターニングされた遮光層11P1が形成される。 Subsequently, as shown in FIG. 1E, the light shielding layer 11 is etched into a predetermined pattern shape. Thereby, the light shielding layer 11P1 patterned into a predetermined shape is formed on the transparent substrate 10.
 遮光層11のエッチング工程は、ウェットエッチング法又はドライエッチング法が適用可能であり、特に基板10が大型である場合、ウェットエッチング法を採用することによって面内均一性の高いエッチング処理が実現可能となる。 A wet etching method or a dry etching method can be applied to the etching process of the light shielding layer 11, and in particular, when the substrate 10 is large, an etching process with high in-plane uniformity can be realized by adopting the wet etching method. Become.
 遮光層11のエッチング液は適宜選択可能であり、遮光層11がクロム系材料である場合、例えば、硝酸第2セリウムアンモニウムと過塩素酸の水溶液を用いることができる。
 このエッチング液は、ガラス基板との選択比が高いため、遮光層11のパターニング時に基板10を保護することができる。一方、遮光層11が金属シリサイド系材料で構成される場合、エッチング液としては、例えば、フッ化水素アンモニウムを用いることができる。
The etching solution for the light shielding layer 11 can be appropriately selected. When the light shielding layer 11 is a chromium-based material, for example, an aqueous solution of ceric ammonium nitrate and perchloric acid can be used.
Since this etching solution has a high selection ratio with the glass substrate, the substrate 10 can be protected when the light shielding layer 11 is patterned. On the other hand, when the light shielding layer 11 is made of a metal silicide material, for example, ammonium hydrogen fluoride can be used as the etchant.
 遮光層11P1のパターニング後、図1(f)に示すように、レジストパターン12P1は除去される。レジストパターン12P1の除去には、例えば、水酸化ナトリウム水溶液を用いることができる。 After the patterning of the light shielding layer 11P1, the resist pattern 12P1 is removed as shown in FIG. For example, a sodium hydroxide aqueous solution can be used for removing the resist pattern 12P1.
 次に、図1(g)に示すように、位相シフト層13が形成される。位相シフト層13は、透明基板10の上に遮光層11P1を被覆するように形成される。 Next, as shown in FIG. 1G, the phase shift layer 13 is formed. The phase shift layer 13 is formed on the transparent substrate 10 so as to cover the light shielding layer 11P1.
 位相シフト層13の成膜方法としては、電子ビーム(EB)蒸着法、レーザー蒸着法、原子層成膜(ALD)法、イオンアシストスパッタリング法等が適用可能であり、特に大型基板の場合には、DCスパッタリング法を採用することによって、膜厚均一性に優れた成膜が可能である。なお、DCスパッタリング法に限られず、ACスパッタリング法やRFスパッタリング法が適用されてもよい。 As a film formation method of the phase shift layer 13, an electron beam (EB) vapor deposition method, a laser vapor deposition method, an atomic layer film formation (ALD) method, an ion assisted sputtering method, or the like can be applied. By adopting the DC sputtering method, it is possible to form a film with excellent film thickness uniformity. Note that the present invention is not limited to the DC sputtering method, and an AC sputtering method or an RF sputtering method may be applied.
 位相シフト層13は、クロム系材料で構成される。特に本実施形態では、位相シフト層13は、窒化酸化クロムで構成される。クロム系材料によれば、特に大型の基板上において良好なパターニング性を得ることができる。なお、クロム系材料に限られず、例えば、MoSi、TaSi、WSi、CrSi、NiSi、CoSi、ZrSi、NbSi、TiSi又はこれらの化合物等の金属シリサイド系材料が用いられてもよい。さらに、Al、Ti、Ni又はこれらの化合物などが用いられてもよい。 The phase shift layer 13 is made of a chromium-based material. In particular, in the present embodiment, the phase shift layer 13 is made of chromium nitride oxide. According to the chromium-based material, good patternability can be obtained particularly on a large substrate. In addition, it is not restricted to chromium system material, For example, metal silicide type materials, such as MoSi, TaSi, WSi, CrSi, NiSi, CoSi, ZrSi, NbSi, TiSi, or these compounds, may be used. Furthermore, Al, Ti, Ni, or a compound thereof may be used.
 酸化窒化クロムからなる位相シフト層13をスパッタリング法で形成する場合、プロセスガスとして、窒化性ガス及び酸化性ガスの混合ガス、又は、不活性ガス、窒化性ガス及び酸化性ガスの混合ガスを用いることができる。成膜圧力は、例えば、0.1Pa~0.5Paとすることができる。不活性性ガスとしては、ハロゲン、特にアルゴンを適用することができる。 When the phase shift layer 13 made of chromium oxynitride is formed by sputtering, a mixed gas of a nitriding gas and an oxidizing gas, or a mixed gas of an inert gas, a nitriding gas, and an oxidizing gas is used as a process gas. be able to. The film forming pressure can be set to 0.1 Pa to 0.5 Pa, for example. As the inert gas, halogen, especially argon can be applied.
 酸化性ガスには、CO、CO、NO、NO、NO、O等が含まれる。窒化性ガスには、NO、NO、NO、N等が含まれる。不活性ガスとしては、Ar、He、Xe等が用いられるが、典型的には、Arが用いられる。なお、上記混合ガスに、CH等の炭化性ガスがさらに含まれてもよい。 The oxidizing gas includes CO, CO 2 , NO, N 2 O, NO 2 , O 2 and the like. The nitriding gas includes NO, N 2 O, NO 2 , N 2 and the like. Ar, He, Xe or the like is used as the inert gas, but typically Ar is used. Note that the mixed gas may further contain a carbonizing gas such as CH 4 .
 混合ガス中の窒化性ガス及び酸化性ガスの流量(濃度)は、位相シフト層13の光学的性質(透過率、屈折率など)を決定する上で重要なパラメータである。本実施形態では、窒化性ガス40%以上70%以下及び酸化性ガス9.2%以上10.4%以下の条件で、混合ガスが調整される。ガス条件を調整することで、位相シフト層13の屈折率、透過率、反射率、厚み等を最適化することが可能である。 The flow rate (concentration) of the nitriding gas and the oxidizing gas in the mixed gas is an important parameter for determining the optical properties (transmittance, refractive index, etc.) of the phase shift layer 13. In the present embodiment, the mixed gas is adjusted under conditions of a nitriding gas of 40% to 70% and an oxidizing gas of 9.2% to 10.4%. By adjusting the gas conditions, it is possible to optimize the refractive index, transmittance, reflectance, thickness and the like of the phase shift layer 13.
 酸化性ガスが9.2%未満の場合、膜中の酸素濃度が低すぎて透過率が低くなりすぎる。また、酸化性ガスが10.4%を超えると、膜中の酸素濃度が高すぎて光の波長による透過率のバラツキが大きくなりすぎるとともに、ターゲットの酸化を抑制することができず、安定したスパッタが困難となる。ここで、酸化性ガスとしては、二酸化炭素をあげることができる。窒化性ガスが40%未満の場合、ターゲットの酸化を抑制することができず、安定したスパッタが困難となる。また、窒化性ガスが90%を越えると、膜中の酸素濃度が低すぎて所望とする屈折率が得られ難くなる。ここで、窒化ガスとしては窒素ガスをあげることができる。上記条件の混合ガス雰囲気で成膜することにより、例えばi線に関しての透過率が1~20%である位相シフト層を得ることができる。透過率は0.5%以上であってもよい。 When the oxidizing gas is less than 9.2%, the oxygen concentration in the film is too low and the transmittance is too low. Further, when the oxidizing gas exceeds 10.4%, the oxygen concentration in the film is too high, and the variation in transmittance due to the wavelength of light becomes too large, and the oxidation of the target cannot be suppressed and is stable. Sputtering becomes difficult. Here, carbon dioxide can be raised as the oxidizing gas. If the nitriding gas is less than 40%, target oxidation cannot be suppressed, and stable sputtering becomes difficult. On the other hand, if the nitriding gas exceeds 90%, the oxygen concentration in the film is too low and it becomes difficult to obtain a desired refractive index. Here, nitrogen gas can be given as the nitriding gas. By forming a film in a mixed gas atmosphere under the above conditions, for example, a phase shift layer having a transmittance of 1 to 20% with respect to i-line can be obtained. The transmittance may be 0.5% or more.
 位相シフト層13の厚みは、300nm以上500nm以下の波長領域にあるg線とh線とi線のいずれかの光に対して180°の位相差をもたせることが可能な厚みとされる。180°の位相差が付与された光は、位相が反転することで、位相シフト層13を透過しない光との間の干渉作用によって、当該光の強度が打ち消される。このような位相シフト効果により、光強度が最小(例えばゼロ)となる領域が形成されるため露光パターンが鮮明となり、微細パターンを高精度に形成することが可能となる。 The thickness of the phase shift layer 13 is set to a thickness capable of giving a phase difference of 180 ° to any of g-line, h-line, and i-line light in a wavelength region of 300 nm to 500 nm. The light to which the phase difference of 180 ° is given is inverted in phase, so that the intensity of the light is canceled by the interference action with the light that does not pass through the phase shift layer 13. By such a phase shift effect, a region where the light intensity is minimum (for example, zero) is formed, so that the exposure pattern becomes clear and a fine pattern can be formed with high accuracy.
 本実施形態では、上記波長領域の光は、i線(波長365nm)、h線(波長405nm)及びg線(波長436nm)の複合光(多色光)であり、目的とする波長の光に対して180°の位相差を付与し得る厚みで位相シフト層13が形成される。上記目的とする波長の光はi線、h線及びg線のうち何れでもよいし、これら以外の波長領域の光でもよい。位相を反転するべき光が短波長であるほど微細なパターンを形成することができる。 In the present embodiment, the light in the wavelength region is a composite light (polychromatic light) of i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm). Thus, the phase shift layer 13 is formed with a thickness that can give a phase difference of 180 °. The light having the target wavelength may be any of i-line, h-line, and g-line, or light in a wavelength region other than these. As the light whose phase is to be inverted has a shorter wavelength, a finer pattern can be formed.
 本実施形態では、i線に付与する位相差とg線に付与する位相差との差が30°以下となるような厚みで位相シフト層13を形成することができる。これにより、各波長の光に対して一定の位相シフト効果を得ることができる。例えば、上記複合波長のうち中間の波長領域であるh線に対して略180°(180°±10°)の位相差を付与し得る膜厚に位相シフト層を形成することができる。これにより、i線及びg線の何れの光に対しても180°に近い位相差を付与することができるため、各々の光について同様な位相シフト効果を得ることが可能となる。 In this embodiment, the phase shift layer 13 can be formed with a thickness such that the difference between the phase difference applied to the i-line and the phase difference applied to the g-line is 30 ° or less. Thereby, a fixed phase shift effect can be obtained for light of each wavelength. For example, the phase shift layer can be formed to a film thickness that can give a phase difference of about 180 ° (180 ° ± 10 °) to the h-line that is the intermediate wavelength region of the composite wavelength. As a result, a phase difference close to 180 ° can be imparted to any of the i-line and g-line light, and the same phase shift effect can be obtained for each light.
 位相シフト層13の膜厚は、透明基板10の面内において均一であることが好ましい。
 本実施形態では、g線、h線及びi線の各々の単一波長光について、基板面内における位相差の差分が20°以下となる膜厚差で、位相シフト層13が形成されている。当該位相差の差分が20°を越えると、複合波長における光強度の重ね合わせ効果により光強度の強弱が小さくなり、パターニング精度が低下してしまう。上記位相差の差分は、15°以下、更には10°以下とすることで、パターニング精度のより一層の向上を図ることができる。
The film thickness of the phase shift layer 13 is preferably uniform in the plane of the transparent substrate 10.
In the present embodiment, the phase shift layer 13 is formed with a film thickness difference such that the difference in phase difference in the substrate plane is 20 ° or less for each single wavelength light of g-line, h-line, and i-line. . If the difference in phase difference exceeds 20 °, the intensity of light intensity decreases due to the effect of superimposing the light intensity at the composite wavelength, and the patterning accuracy decreases. By setting the difference of the phase difference to 15 ° or less, further 10 ° or less, the patterning accuracy can be further improved.
 位相シフト層13の透過率は、例えばi線について1%以上20%以下の範囲とすることができる。透過率は0.5%以上であってもよい。透過率が0.5%未満の場合、十分な位相シフト効果が得られにくくなるため、微細なパターンを高精度に露光することが困難となる。また、透過率が20%を越える場合、成膜速度が低下し、生産性が悪化する。
 上記の範囲において更に、透過率は、2%以上15%以下の範囲とすることができる。さらに、上記の範囲において透過率は、3%以上10%以下とすることができる。
The transmittance of the phase shift layer 13 can be in the range of 1% to 20% for i-line, for example. The transmittance may be 0.5% or more. When the transmittance is less than 0.5%, it is difficult to obtain a sufficient phase shift effect, and it becomes difficult to expose a fine pattern with high accuracy. On the other hand, when the transmittance exceeds 20%, the film forming rate is lowered and the productivity is deteriorated.
In the above range, the transmittance can be in the range of 2% to 15%. Further, in the above range, the transmittance can be 3% or more and 10% or less.
 位相シフト層13の反射率は、例えば、40%以下とする。これにより、当該位相シフトマスクを用いた被処理基板(フラットパネル基板又は半導体基板)のパターニング時にゴーストパターンを形成し難くして良好なパターン精度を確保することができる。 The reflectance of the phase shift layer 13 is 40% or less, for example. Thereby, it is difficult to form a ghost pattern when patterning a substrate to be processed (flat panel substrate or semiconductor substrate) using the phase shift mask, and good pattern accuracy can be ensured.
 位相シフト層13の透過率及び反射率は、成膜時のガス条件によって任意に調整することができる。上述した混合ガス条件によれば、i線に関して1%以上20%以下の透過率、及び40%以下の反射率を得ることができる。透過率は0.5%以上であってもよい。 The transmittance and reflectance of the phase shift layer 13 can be arbitrarily adjusted according to the gas conditions during film formation. According to the mixed gas conditions described above, a transmittance of 1% to 20% and a reflectance of 40% or less can be obtained with respect to i-line. The transmittance may be 0.5% or more.
 位相シフト層13の厚みは、上述した光学特性が得られる範囲で適宜設定することができる。言い換えれば、位相シフト層13の厚みを最適化することにより、上述した光学的特性を得ることができる。例えば、上記ガス条件によって上記光学的特性を得ることができる位相シフト層13の膜厚は、例えば、100nm以上130nm以下である。この範囲においては更に、位相シフト層13の膜厚は、110nm以上125nm以下の範囲とすることができる。 The thickness of the phase shift layer 13 can be appropriately set within the range in which the above-described optical characteristics can be obtained. In other words, the optical characteristics described above can be obtained by optimizing the thickness of the phase shift layer 13. For example, the film thickness of the phase shift layer 13 that can obtain the optical characteristics depending on the gas conditions is, for example, 100 nm or more and 130 nm or less. In this range, the thickness of the phase shift layer 13 can be in the range of 110 nm to 125 nm.
 例を挙げると、スパッタ成膜時の混合ガスの流量比をAr:N:CO=71:21.5:120とし、膜厚を114nmとした場合、i線における透過率を3.10%、i線における位相差を180°、g線における透過率を7.95%、位相差を150°とすることができる。 For example, when the flow rate ratio of the mixed gas during sputtering film formation is Ar: N 2 : CO 2 = 71: 21.5: 120 and the film thickness is 114 nm, the transmittance for i-line is 3.10. %, The phase difference at the i-line can be 180 °, the transmittance at the g-line can be 7.95%, and the phase difference can be 150 °.
 図2,図3は、位相シフト層13の成膜時の成膜条件と、各波長成分の位相差及びi線の透過率との関係を示す実験結果を示している。本例では、窒化性ガスとしてN、酸化性ガスとしてCO、不活性ガスとしてArを用いた。成膜圧力は、0.4Paとした。 2 and 3 show experimental results showing the relationship between the film formation conditions during the film formation of the phase shift layer 13, the phase difference of each wavelength component, and the i-line transmittance. In this example, N 2 was used as the nitriding gas, CO 2 was used as the oxidizing gas, and Ar was used as the inert gas. The film forming pressure was 0.4 Pa.
 実験例2に示すように、9.2%以上10.4%以下の酸化性ガスを含む混合ガスの条件においては、i線における透過率を3.10%、i線における位相差を180°、g線における透過率を7.95%とすることができる。また、i線に対して180°±10°の位相差を付与できる厚みに位相シフト層を形成することで、i線とh線とg線との間の透過率の差を5%以下に抑えることができる。さらに、i線の透過率を1%以上10%以下の範囲に設定することができる。 As shown in Experimental Example 2, under conditions of a mixed gas containing an oxidizing gas of 9.2% or more and 10.4% or less, the transmittance for i-line is 3.10% and the phase difference for i-line is 180 °. , The transmittance in g-line can be 7.95%. Further, by forming the phase shift layer with a thickness that can give a phase difference of 180 ° ± 10 ° to the i-line, the difference in transmittance between the i-line, the h-line, and the g-line is reduced to 5% or less. Can be suppressed. Furthermore, the transmittance of i-line can be set in the range of 1% to 10%.
 これに対して、酸化性ガスが9.2%以上10.4%以下の範囲にない条件である実験例1においては、膜の酸化度が小さく、膜厚を大きくしてもi線とg線との間の透過率の差を必要な範囲内に設定することができなかった。実験例3および4では、透過率は低いものの、i線とg線の透過率差異が小さくすることができた。 On the other hand, in Experimental Example 1 where the oxidizing gas is not in the range of 9.2% or more and 10.4% or less, the degree of oxidation of the film is small, and even if the film thickness is increased, i-line and g The difference in transmittance from the line could not be set within the required range. In Experimental Examples 3 and 4, although the transmittance was low, the transmittance difference between the i-line and the g-line could be reduced.
 続いて、図1(h)に示すように、位相シフト層13の上にフォトレジスト層14が形成される。フォトレジスト層14は、ポジ型でもよいしネガ型でもよい。フォトレジスト層14としては、液状レジストが用いられる。 Subsequently, as shown in FIG. 1 (h), a photoresist layer 14 is formed on the phase shift layer 13. The photoresist layer 14 may be a positive type or a negative type. As the photoresist layer 14, a liquid resist is used.
 次に、図1(j)(k)に示すように、フォトレジスト層14を露光及び現像することで、位相シフト層13の上にレジストパターン14P1が形成される。レジストパターン14P1は、位相シフト層13のエッチングマスクとして機能し、位相シフト層13のエッチングパターンに応じて適宜形状が定められる。 Next, as shown in FIGS. 1J and 1K, the photoresist layer 14 is exposed and developed to form a resist pattern 14P1 on the phase shift layer 13. The resist pattern 14 </ b> P <b> 1 functions as an etching mask for the phase shift layer 13, and the shape is appropriately determined according to the etching pattern for the phase shift layer 13.
 続いて、図1(m)に示すように、位相シフト層13が所定のパターン形状にエッチングされる。これにより、透明基板10上に所定形状にパターニングされた位相シフト層13P1が形成される。 Subsequently, as shown in FIG. 1 (m), the phase shift layer 13 is etched into a predetermined pattern shape. Thereby, the phase shift layer 13P1 patterned in a predetermined shape is formed on the transparent substrate 10.
 位相シフト層13のエッチング工程は、ウェットエッチング法又はドライエッチング法が適用可能であり、特に基板10が大型である場合、ウェットエッチング法を採用することによって面内均一性の高いエッチング処理が実現可能となる。 A wet etching method or a dry etching method can be applied to the etching process of the phase shift layer 13, and when the substrate 10 is large, an etching process with high in-plane uniformity can be realized by adopting the wet etching method. It becomes.
 位相シフト層13のエッチング液は、適宜選択可能であり、本実施形態では、硝酸第2セリウムアンモニウムと過塩素酸の水溶液を用いることができる。このエッチング液は、ガラス基板との選択比が高いため、位相シフト層13のパターニング時に基板10を保護することができる。 The etching solution for the phase shift layer 13 can be appropriately selected. In this embodiment, an aqueous solution of ceric ammonium nitrate and perchloric acid can be used. Since this etching solution has a high selectivity with respect to the glass substrate, the substrate 10 can be protected when the phase shift layer 13 is patterned.
 位相シフト層13P1のパターニング後、図1(n)に示すように、レジストパターン14P1は除去される。レジストパターン14P1の除去には、例えば、水酸化ナトリウム水溶液を用いることができる。 After the patterning of the phase shift layer 13P1, the resist pattern 14P1 is removed as shown in FIG. For example, a sodium hydroxide aqueous solution can be used to remove the resist pattern 14P1.
 以上のようにして、本実施形態に係る位相シフトマスク1が製造される。本実施形態の位相シフトマスク1によれば、遮光層パターン11P1の周囲に、上述した構成の位相シフト層13P1が形成されている。これにより、g線(436nm)、h線(405nm)、i線(365nm)を含む複合波長の光を用いた被露光基板に対する露光パターンの形成時において、i線とh線とg線との間の透過率の差を5%以下に抑えて、位相シフト効果に基づくパターン精度の向上を図ることができ、微細かつ高精度なパターン形成が可能となる。特に本実施形態によれば、上記波長範囲において異なる波長の光(g線、h線及びi線)を複合化させた露光技術を用いることで、より顕著となる。 As described above, the phase shift mask 1 according to this embodiment is manufactured. According to the phase shift mask 1 of the present embodiment, the phase shift layer 13P1 having the above-described configuration is formed around the light shielding layer pattern 11P1. As a result, when forming an exposure pattern on the substrate to be exposed using light of a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm), the i-line, h-line, and g-line The difference in transmittance between them can be suppressed to 5% or less, and the pattern accuracy based on the phase shift effect can be improved, so that a fine and highly accurate pattern can be formed. In particular, according to the present embodiment, it becomes more prominent by using an exposure technique in which light (g-line, h-line, and i-line) having different wavelengths in the above wavelength range is combined.
 以下、本実施形態に係る位相シフトマスク1を用いたフラットパネルディスプレイの製造方法について説明する。 Hereinafter, a method for manufacturing a flat panel display using the phase shift mask 1 according to the present embodiment will be described.
 まず、絶縁層及び配線層が形成されたガラス基板の表面に、フォトレジスト層を形成する。フォトレジスト層の形成には、例えばスピンコータが用いられる。フォトレジスト層は加熱(ベーキング)処理を施された後、位相シフトマスク1を用いた露光処理が施される。露光工程では、フォトレジスト層に近接して位相シフトマスク1が配置される。そして、位相シフトマスク1を介して300nm以上500nm以下のg線(436nm)、h線(405nm)、i線(365nm)を含む複合波長をガラス基板の表面に照射する。本実施形態では、上記複合波長の光に、g線、h線及びi線の複合光が用いられる。これにより、位相シフトマスク1のマスクパターンに対応した露光パターンがフォトレジスト層に転写される。 First, a photoresist layer is formed on the surface of the glass substrate on which the insulating layer and the wiring layer are formed. For example, a spin coater is used to form the photoresist layer. The photoresist layer is subjected to a heating (baking) process and then subjected to an exposure process using the phase shift mask 1. In the exposure process, the phase shift mask 1 is disposed in the vicinity of the photoresist layer. The surface of the glass substrate is irradiated with a composite wavelength including g-line (436 nm), h-line (405 nm), and i-line (365 nm) of 300 nm to 500 nm through the phase shift mask 1. In the present embodiment, composite light of g-line, h-line, and i-line is used as the light of the composite wavelength. Thereby, the exposure pattern corresponding to the mask pattern of the phase shift mask 1 is transferred to the photoresist layer.
 本実施形態によれば、位相シフトマスク1は、i線とh線とg線との間の透過率の差を5%以下に抑えるとともに、300nm以上500nm以下の波長領域のいずれかの光に対して180°の位相差をもたせることが可能な位相シフト層13P1を有する。したがって、上記製造方法によれば、上記波長領域の光を用いることで位相シフト効果に基づくパターン精度の向上を図ることができ、さらに焦点深度を深くすることができるため、微細かつ高精度なパターン形成が可能となる。これにより、高画質のフラットパネルディスプレイを製造することができる。 According to this embodiment, the phase shift mask 1 suppresses the difference in transmittance between the i-line, the h-line, and the g-line to 5% or less, and applies any light in a wavelength region of 300 nm to 500 nm. On the other hand, the phase shift layer 13P1 capable of giving a phase difference of 180 ° is provided. Therefore, according to the manufacturing method, since the pattern accuracy based on the phase shift effect can be improved by using the light in the wavelength region, and the depth of focus can be increased, a fine and highly accurate pattern can be obtained. Formation is possible. Thereby, a high-quality flat panel display can be manufactured.
 本発明者らの実験によれば、当該位相シフト層を有しないマスクを用いて露光した場合、目標とする線幅(2μm)に対して30%以上のパターン幅のずれが生じていたが、本実施形態の位相シフトマスク1を用いて露光した場合、7%程度のずれに抑えられることが確認された。 According to the experiments by the present inventors, when exposure was performed using a mask that does not have the phase shift layer, a pattern width deviation of 30% or more with respect to the target line width (2 μm) occurred. When exposure was performed using the phase shift mask 1 of the present embodiment, it was confirmed that the deviation was suppressed to about 7%.
<第2の実施形態>
 図4は、本発明の第2の実施形態に係る位相シフトマスクの製造方法を説明する工程図である。なお、図4において、図1と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。
<Second Embodiment>
FIG. 4 is a process diagram for explaining a method of manufacturing a phase shift mask according to the second embodiment of the present invention. In FIG. 4, portions corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の位相シフトマスク2(図4(J))は、周辺部に位置合わせ用のアライメントマークを有し、このアライメントマークが遮光層11P2で形成されている。以下、位相シフトマスク2の製造方法について説明する。 The phase shift mask 2 (FIG. 4 (J)) of the present embodiment has an alignment mark for alignment at the periphery, and this alignment mark is formed by the light shielding layer 11P2. Hereinafter, a method for manufacturing the phase shift mask 2 will be described.
 まず、透明基板10上に遮光層11が形成される(図4(A))。次に、遮光層11の上にフォトレジスト層12が形成される(図4(B))。フォトレジスト層12は、ポジ型でもよいしネガ型でもよい。続いて、フォトレジスト層12を露光及び現像することで、遮光層11の上にレジストパターン12P2が形成される(図4(C))。 First, the light shielding layer 11 is formed on the transparent substrate 10 (FIG. 4A). Next, a photoresist layer 12 is formed on the light shielding layer 11 (FIG. 4B). The photoresist layer 12 may be a positive type or a negative type. Subsequently, by exposing and developing the photoresist layer 12, a resist pattern 12P2 is formed on the light shielding layer 11 (FIG. 4C).
 レジストパターン12P2は、遮光層11のエッチングマスクとして機能し、遮光層11のエッチングパターンに応じて適宜形状が定められる。図4(C)では、基板10の周縁の所定範囲内にわたって遮光層を残存させるべく、レジストパターン12P2を形成した例を示す。 The resist pattern 12P2 functions as an etching mask for the light shielding layer 11, and the shape is appropriately determined according to the etching pattern of the light shielding layer 11. FIG. 4C shows an example in which a resist pattern 12P2 is formed so as to leave the light shielding layer over a predetermined range on the periphery of the substrate 10.
 続いて、遮光層11が所定のパターン形状にエッチングされる。これにより、透明基板10上に所定形状にパターニングされた遮光層11P2が形成される(図4(D))。遮光層11P2のパターニング後、レジストパターン12P2は除去される(図4(E))。レジストパターン12P2の除去には、例えば、水酸化ナトリウム水溶液を用いることができる。 Subsequently, the light shielding layer 11 is etched into a predetermined pattern shape. Thereby, the light shielding layer 11P2 patterned in a predetermined shape is formed on the transparent substrate 10 (FIG. 4D). After the patterning of the light shielding layer 11P2, the resist pattern 12P2 is removed (FIG. 4E). For example, an aqueous sodium hydroxide solution can be used to remove the resist pattern 12P2.
 次に、位相シフト層13が形成される。位相シフト層13は、透明基板10の上に遮光層11P2を被覆するように形成される(図4(F))。位相シフト層13は、酸化窒化クロム系材料からなり、DCスパッタリング法で成膜される。この場合、プロセスガスとして、窒化性ガス及び酸化性ガスの混合ガス、又は、不活性ガス、窒化性ガス及び酸化性ガスの混合ガスを用いることができる。位相シフト層13は、上述の第1の実施形態と同様な成膜条件で形成される。 Next, the phase shift layer 13 is formed. The phase shift layer 13 is formed on the transparent substrate 10 so as to cover the light shielding layer 11P2 (FIG. 4F). The phase shift layer 13 is made of a chromium oxynitride material and is formed by a DC sputtering method. In this case, a mixed gas of a nitriding gas and an oxidizing gas, or a mixed gas of an inert gas, a nitriding gas, and an oxidizing gas can be used as the process gas. The phase shift layer 13 is formed under the same film formation conditions as in the first embodiment described above.
 続いて、位相シフト層13の上にフォトレジスト層14が形成される(図4(G))。
 次に、フォトレジスト層14を露光及び現像することで、位相シフト層13の上にレジストパターン14P2が形成される(図4(H))。レジストパターン14P2は、位相シフト層13のエッチングマスクとして機能し、位相シフト層13のエッチングパターンに応じて適宜形状が定められる。
Subsequently, a photoresist layer 14 is formed on the phase shift layer 13 (FIG. 4G).
Next, by exposing and developing the photoresist layer 14, a resist pattern 14P2 is formed on the phase shift layer 13 (FIG. 4H). The resist pattern 14P2 functions as an etching mask for the phase shift layer 13, and the shape is appropriately determined according to the etching pattern for the phase shift layer 13.
 続いて、位相シフト層13が所定のパターン形状にエッチングされる。これにより、透明基板10上に所定形状にパターニングされた位相シフト層13P2が形成される(図4(I))。位相シフト層13P2のパターニング後、レジストパターン14P2は除去される(図4(J))。レジストパターン14P2の除去には、例えば、水酸化ナトリウム水溶液を用いることができる。 Subsequently, the phase shift layer 13 is etched into a predetermined pattern shape. Thereby, the phase shift layer 13P2 patterned in a predetermined shape is formed on the transparent substrate 10 (FIG. 4I). After the patterning of the phase shift layer 13P2, the resist pattern 14P2 is removed (FIG. 4J). For example, a sodium hydroxide aqueous solution can be used to remove the resist pattern 14P2.
 以上のようにして、本実施形態に係る位相シフトマスク2が製造される。本実施形態の位相シフトマスク2によれば、アライメントマークが遮光層11P2で形成されているので、アライメントマークを光学的に認識し易くなり、高精度な位置合わせが可能となる。
 本実施形態は、上述の第1の実施形態と組み合わせて実施することができる。
As described above, the phase shift mask 2 according to this embodiment is manufactured. According to the phase shift mask 2 of the present embodiment, since the alignment mark is formed of the light shielding layer 11P2, the alignment mark can be easily recognized optically, and high-accuracy alignment is possible.
This embodiment can be implemented in combination with the first embodiment described above.
 また、位相シフト層13は、ハーフトーン層(半透過層)として機能させることができる。この場合、位相シフト層13を透過した光と透過しない光とで露光量に差をもたせることが可能となる。 Further, the phase shift layer 13 can function as a halftone layer (semi-transmissive layer). In this case, it is possible to make a difference in exposure amount between light transmitted through the phase shift layer 13 and light not transmitted.
 以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。 As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.
 例えば以上の第1の実施形態では、遮光層のパターニング後に位相シフト層の成膜及びパターニングを行うようにしたが、これに限られず、位相シフト層の成膜及びパターニングの後、遮光層の成膜及びパターニングを行ってもよい。すなわち、遮光層と位相シフト層との積層順を変更することが可能である。この場合、遮光層と位相シフト層との間にNi、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とする不図示のエッチングストッパー層が設けられることが好ましい。 For example, in the first embodiment described above, the phase shift layer is formed and patterned after the light shielding layer is patterned. However, the present invention is not limited to this. After the phase shift layer is formed and patterned, the light shielding layer is formed. Films and patterning may be performed. That is, it is possible to change the stacking order of the light shielding layer and the phase shift layer. In this case, the etching (not shown) whose main component is at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W, and Hf is provided between the light shielding layer and the phase shift layer. A stopper layer is preferably provided.
 また、以上の実施形態では、遮光層11を基板10の全面に成膜した後、必要部位をエッチングすることで遮光層11P1を形成したが、これに代えて、遮光層11P1の形成領域が開口するレジストパターンを形成した後、遮光層11を形成してもよい。遮光層11の形成後、上記レジストパターンを除去することにより、必要領域に遮光層11P1を形成することが可能となる(リフトオフ法)。 In the above embodiment, after the light shielding layer 11 is formed on the entire surface of the substrate 10, the light shielding layer 11P1 is formed by etching a necessary portion. Instead, the formation region of the light shielding layer 11P1 is opened. After the resist pattern to be formed is formed, the light shielding layer 11 may be formed. After the formation of the light shielding layer 11, the light shielding layer 11P1 can be formed in a necessary region by removing the resist pattern (lift-off method).
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。 The embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the invention.
 1、2…位相シフトマスク 10…透明基板 11、11P1…遮光層 12P1、14P1…レジストパターン 13P1…位相シフト層 1, 2 ... Phase shift mask 10 ... Transparent substrate 11, 11P1 ... Light shielding layer 12P1, 14P1 ... Resist pattern 13P1 ... Phase shift layer

Claims (3)

  1.  透明基板上にパターニングされたCrを主成分とする遮光層を形成する工程と;
     不活性ガスと窒化性ガスと酸化性ガスとを含む混合ガスの雰囲気下、クロム系材料のターゲットをスパッタすることで、i線に対して略180°の位相差をもたせるとともに、前記混合ガスにおける前記酸化性ガスを10.4%以下としてg線の透過率と前記i線の透過率との差を5%以下とすることが可能なCrを主成分とする位相シフト層を形成してパターニングする工程と、を有することを特徴とする位相シフトマスクの製造方法。
    Forming a light-shielding layer mainly composed of Cr patterned on a transparent substrate;
    Sputtering a chromium-based material target in an atmosphere of a mixed gas containing an inert gas, a nitriding gas, and an oxidizing gas gives a phase difference of about 180 ° with respect to the i-line. Patterning is performed by forming a phase shift layer containing Cr as a main component, wherein the oxidizing gas is 10.4% or less, and the difference between the g-line transmittance and the i-line transmittance is 5% or less. And a step of manufacturing the phase shift mask.
  2.  透明基板上に形成されたCrを主成分とする遮光層と;
     i線に対して略180°の位相差をもたせるとともに、g線の透過率と前記i線の透過率との差を5%以下とすることが可能なCrを主成分とする位相シフト層とを有することを特徴とする位相シフトマスク。
    A light-shielding layer mainly composed of Cr formed on a transparent substrate;
    a phase shift layer containing Cr as a main component and having a phase difference of about 180 ° with respect to the i-line and a difference between the g-line transmittance and the i-line transmittance being 5% or less; A phase shift mask characterized by comprising:
  3.  前記透明基板の表面に前記遮光層が形成され、
     該遮光層上に前記位相シフト層が形成されるか、または、前記透明基板の表面に前記位相シフト層が形成され、
     該位相シフト層上にNi、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層が形成され、
     該エッチングストッパー層上に前記遮光層が形成される
    ことを特徴とする請求項2記載の位相シフトマスク。
    The light shielding layer is formed on the surface of the transparent substrate,
    The phase shift layer is formed on the light shielding layer, or the phase shift layer is formed on the surface of the transparent substrate,
    An etching stopper layer mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf is formed on the phase shift layer,
    The phase shift mask according to claim 2, wherein the light shielding layer is formed on the etching stopper layer.
PCT/JP2013/084059 2012-12-27 2013-12-19 Phase shift mask and method for producing same WO2014103867A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380054682.8A CN104737072B (en) 2012-12-27 2013-12-19 Phase shift mask and method for manufacturing the same
KR1020157015967A KR102168151B1 (en) 2012-12-27 2013-12-19 Phase Shift Mask and Method For Producing Same
JP2014554374A JP5982013B2 (en) 2012-12-27 2013-12-19 Phase shift mask and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285845 2012-12-27
JP2012-285845 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103867A1 true WO2014103867A1 (en) 2014-07-03

Family

ID=51020954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084059 WO2014103867A1 (en) 2012-12-27 2013-12-19 Phase shift mask and method for producing same

Country Status (5)

Country Link
JP (1) JP5982013B2 (en)
KR (1) KR102168151B1 (en)
CN (1) CN104737072B (en)
TW (1) TWI592738B (en)
WO (1) WO2014103867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116269A (en) * 2017-01-18 2018-07-26 Hoya株式会社 Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP2019204137A (en) * 2019-09-10 2019-11-28 Hoya株式会社 Method for designing and method for manufacturing photomask, and method for manufacturing display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767735B2 (en) * 2015-06-30 2020-10-14 Hoya株式会社 Photomasks, photomask design methods, photomask blanks, and display device manufacturing methods
JP6259508B1 (en) * 2016-12-28 2018-01-10 株式会社エスケーエレクトロニクス Halftone mask, photomask blank, and method of manufacturing halftone mask
KR20210099922A (en) 2020-02-05 2021-08-13 정현서 Smart glass using biohealth technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140635A (en) * 1992-11-21 1995-06-02 Ulvac Seibaku Kk Phase shift mask and its production and exposure method using the phase shift mask
JP2012230379A (en) * 2011-04-22 2012-11-22 S&S Tech Corp Blank mask and photomask

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674647A (en) * 1992-11-21 1997-10-07 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
JPH0798493A (en) * 1993-09-28 1995-04-11 Toppan Printing Co Ltd Phase shift mask and its production
JP2591469B2 (en) * 1994-04-22 1997-03-19 日本電気株式会社 Method for manufacturing phase shift mask
KR100800301B1 (en) * 2005-07-05 2008-02-01 주식회사 에스앤에스텍 Manufacturing method of blankmask and photomask for gray-tone
KR100886802B1 (en) * 2006-03-30 2009-03-04 주식회사 에스앤에스텍 Blankmask and Transmittance Modulation Slit Mask using the same, and Manufacturing Method thereof
JP5588633B2 (en) * 2009-06-30 2014-09-10 アルバック成膜株式会社 Phase shift mask manufacturing method, flat panel display manufacturing method, and phase shift mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140635A (en) * 1992-11-21 1995-06-02 Ulvac Seibaku Kk Phase shift mask and its production and exposure method using the phase shift mask
JP2012230379A (en) * 2011-04-22 2012-11-22 S&S Tech Corp Blank mask and photomask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116269A (en) * 2017-01-18 2018-07-26 Hoya株式会社 Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP7176843B2 (en) 2017-01-18 2022-11-22 Hoya株式会社 Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP2019204137A (en) * 2019-09-10 2019-11-28 Hoya株式会社 Method for designing and method for manufacturing photomask, and method for manufacturing display device

Also Published As

Publication number Publication date
KR20150102004A (en) 2015-09-04
CN104737072B (en) 2020-01-07
TW201435476A (en) 2014-09-16
JP5982013B2 (en) 2016-08-31
KR102168151B1 (en) 2020-10-20
JPWO2014103867A1 (en) 2017-01-12
CN104737072A (en) 2015-06-24
TWI592738B (en) 2017-07-21

Similar Documents

Publication Publication Date Title
JP5588633B2 (en) Phase shift mask manufacturing method, flat panel display manufacturing method, and phase shift mask
US9952497B2 (en) Mask blank and method of manufacturing phase shift mask
TWI519888B (en) Phase shift mask substrate and its manufacturing method, with phase shift mask
US9075320B2 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
US10571797B2 (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US9372393B2 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
KR101760337B1 (en) Phase shift mask production method and phase shift mask
JP5982013B2 (en) Phase shift mask and manufacturing method thereof
JP6430666B2 (en) Mask blank, phase shift mask, phase shift mask manufacturing method, and semiconductor device manufacturing method
JP6544964B2 (en) Mask blank, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
KR20170113083A (en) Manufacturing method for phase shift mask blank, phase shift mask and display device
US9726972B2 (en) Mask blank, transfer mask, and method for manufacturing transfer mask
TW201635008A (en) Mask blanks, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
KR20180075399A (en) Photomask blank, and preparation method thereof
JP6233873B2 (en) Method for manufacturing phase shift mask
CN107229181B (en) Phase shift mask blank, phase shift mask, and method for manufacturing display device
JP6154132B2 (en) Phase shift mask manufacturing method, phase shift mask
KR20190122694A (en) Method of manufacturing mask blanks, transfer masks and semiconductor devices
JP5219201B2 (en) Photomask, photomask blank, photomask manufacturing method, and pattern transfer method
TW202234143A (en) Phase shift mask blank, method for manufacturing phase shift mask blank, and phase shift mask
JP6207006B2 (en) Method for manufacturing phase shift mask
JP2002023341A (en) Phase shift type photomask blank and phase shift type photomask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157015967

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867882

Country of ref document: EP

Kind code of ref document: A1