WO2014103218A1 - Electricity storage apparatus charge/discharge system - Google Patents

Electricity storage apparatus charge/discharge system Download PDF

Info

Publication number
WO2014103218A1
WO2014103218A1 PCT/JP2013/007307 JP2013007307W WO2014103218A1 WO 2014103218 A1 WO2014103218 A1 WO 2014103218A1 JP 2013007307 W JP2013007307 W JP 2013007307W WO 2014103218 A1 WO2014103218 A1 WO 2014103218A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
charging
storage device
discharge
power storage
Prior art date
Application number
PCT/JP2013/007307
Other languages
French (fr)
Japanese (ja)
Inventor
美香 桐本
阿部 裕司
徹 石川
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014103218A1 publication Critical patent/WO2014103218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device charging / discharging system.
  • Patent Document 1 discloses that charge / discharge is controlled within a low deterioration voltage range set based on a battery deterioration rate of a lithium ion secondary battery.
  • Patent Document 2 collects data on the relationship between the operation and deterioration of the lead storage battery, evaluates the relationship between the operation and deterioration, and obtains a plurality of operation conditions such as charging intervals and the sensitivity regarding a decrease in battery capacity, respectively. It is stated that life estimation is performed using Taguchi method.
  • Patent Document 3 describes charging in a constant current region in which the magnitude of the charging current is constant and charging in the constant voltage region in which the magnitude of the charging voltage is constant when charging the secondary battery.
  • the degree of capacity degradation differs even with the same charge / discharge target SOC, depending on the specifications and internal structure of the apparatus.
  • the relationship between the charge / discharge current rate indicating the magnitude of the charge / discharge current value and the capacity deterioration degree differ depending on the specification of the power storage device and the internal structure.
  • a power storage device charging / discharging system includes a power storage device that can be charged or discharged, a charge / discharge target SOC that is a target when charging or discharging the power storage device, and a charge / discharge current that flows when charging or discharging the power storage device And a control device that performs charge / discharge control of the power storage device based on the rate and the capacity deterioration degree that occurs when the power storage device is charged or discharged.
  • the charge / discharge target SOC and the charge / discharge current rate can be appropriately set according to the specifications and internal structure of the power storage device so as to reduce the capacity deterioration degree of the power storage device.
  • FIG. 1 It is a figure which shows the structure of the electric power transmission and distribution network containing the electrical storage apparatus charging / discharging system of embodiment of this invention.
  • the electrical storage apparatus charging / discharging system of embodiment of this invention it is a figure which shows the relationship between charging / discharging target SOC, charging / discharging electric current rate, and capacity degradation degree.
  • the electrical storage apparatus charging / discharging system of embodiment of this invention it is a figure which shows an example of the relevant data which shows the relationship between charging / discharging target SOC, charging / discharging electric current rate, and capacity degradation degree. It is a figure which shows the relationship of use temperature about the related data of FIG.
  • the values of the capacity of the power storage device, the charge / discharge target SOC, the charge / discharge current rate, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the power storage device charge / discharge system.
  • FIG. 1 is a diagram showing a configuration of the power transmission / distribution network 10.
  • This power transmission / distribution network 10 is a power storage device of an independent power generation company having a system power source 12 such as a thermal power plant of a power company, a factory 14 that is a consumer of power, a power generation facility such as a solar cell, and a power storage device.
  • the charge / discharge system 16 and the system controller 13 are connected.
  • the power storage device charging / discharging system 16 is a network that supplies power to the factory 14 together with the system power supply 12.
  • the factory 14 becomes a load of the power transmission / distribution network 10.
  • the system control device 13 is a device managed by an electric power company or the like.
  • the system control device 13 detects load fluctuations in the power transmission / distribution network 10 (that is, fluctuations in demand for power), and gives instructions for maintaining a balance between supply and demand of the power transmission / distribution network 10 as a whole. To at least one of the systems 16.
  • system frequency the frequency of electricity transmitted and distributed in the power transmission and distribution network 10 (hereinafter also referred to as “system frequency”) varies. If the difference between the system frequency and the reference frequency exceeds a certain range, there is a possibility that a malfunction of some devices and generators on the consumer side will occur.
  • the system control device 13 can instruct the system power supply 12 via the communication network to adjust the power generation output according to the load fluctuation. Specifically, the power generation output is instructed to increase when the power demand exceeds the power supply, and the power generation output is instructed to decrease when the power demand falls below the power supply.
  • the system control device 13 can instruct the power storage device charging / discharging system 16 via the communication network to release or absorb power to the power transmission / distribution network 10 in accordance with load fluctuations. Specifically, when the power demand exceeds the power supply, the power transmission / distribution network 10 is instructed to release power. When the power demand falls below the power supply, the power transmission / distribution network 10 is instructed to absorb power.
  • the change of the power generation output by the former system power supply 12 takes several minutes to 10 minutes. Since the adjustment of power supply by the latter power storage device charging / discharging system 16 can be instantaneously performed, it is particularly effective for instantaneous load fluctuations.
  • the factory 14 is supplied with power even if the power supply / demand balance by the system power supply 12 such as an electric power company is disrupted.
  • the ancillary service for stabilizing the system frequency can be received by adjusting the power of the system controller 13.
  • the power storage device charging / discharging system 16 sets the fluctuation widths of the central SOC and the SOC for the charge / discharge target SOC for the power storage device to a predetermined value so as not to disturb the power supply / demand balance of the power transmission / distribution network 10. It is required to perform charge / discharge control within the range.
  • the power storage device charging / discharging system 16 includes a power storage device 18, a control device 20 that performs charge / discharge control thereof, and a storage device 22 connected to the control device 20.
  • the power storage device 18 includes a storage battery unit unit in which a plurality of storage battery units 24 are connected in parallel, and a parallel number changing unit 26 that can change the parallel number of the plurality of storage battery units 24.
  • a lithium ion assembled battery which is a rechargeable secondary battery, is used.
  • another secondary battery or a high capacity capacitor can be used.
  • the secondary battery a nickel-metal hydride battery, a lead storage battery, or the like can be used.
  • the parallel number changing unit 26 collects one terminal of each of the plurality of storage battery units 24 as one terminal, and interconnects a desired number of the other terminals into one terminal so that the power storage device 18 is desired.
  • the number of storage battery units 24 is connected in parallel.
  • the parallel number changing unit 26 includes a plurality of switches. For example, in the case where 16 storage battery units 24 are provided, assuming that N of the 16 batteries are connected in parallel by the parallel number changing unit 26, the N storage battery units 24 connected in parallel to each other include the power storage device 18. It becomes. In this case, N can be arbitrarily set from 1 to 16.
  • the charge / discharge current value of each storage battery unit 24 can be taken as I, and the power storage device 18 can take out or accept the charge / discharge current value of N ⁇ I.
  • the control device 20 exchanges information with the power storage device 18 and also exchanges information with the storage device 22, and the power storage device 18 is based on the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration level of the power storage device 18.
  • Charge / discharge control can be configured by hardware or a combination of hardware and software.
  • the control device 20 includes a charge / discharge request acquisition unit 28 that acquires a charge / discharge amount necessary for stabilizing the system frequency calculated by the system control device 13 as a charge / discharge request, and a power storage device corresponding to the acquired charge / discharge request.
  • the charge / discharge target SOC setting unit 30 that sets the charge / discharge target SOC in a direction to reduce the capacity deterioration degree of 18, and similarly, charge / discharge in a direction to reduce the capacity deterioration degree of the power storage device 18 in response to the charge / discharge request.
  • a charge / discharge current rate setting unit 32 that sets the current rate and a parallel number setting unit 34 that sets the parallel number of the storage battery units 24 instructed to the parallel number changing unit 26 are included. All or part of the functions may be executed by executing a program on a program execution device (for example, a microcomputer that can be mounted on the control device 20).
  • the storage device 22 is used, for example, as a memory for storing a program and data used in the control device 20, and in this case, in particular, the association that relates the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree of the power storage device 18 A case where the data 36 is stored will be described.
  • the rectangular frame 19 shown at the left end schematically shows the state of charge of the power storage device 18, and the nine waveform diagrams shown on the right side are when the power storage device 18 is charged and discharged. It is a figure for demonstrating a capacity degradation degree.
  • the rectangular frame 19 at the left end in FIG. 2 indicates the state of charge of the power storage device 18, and is 1.0 Ah when fully charged.
  • This numerical value is an example for explanation, and other numerical values may be used.
  • the power storage device 18 is repeatedly charged and discharged, so that the ampere hour (Ah), which is a current-time product at the time of full charge, decreases.
  • 1.0 Ah when fully charged is a value in an initial state in which the power storage device 18 is manufactured.
  • the region 37 is a region having a width of 0.05 Ah around the center of 0.1 Ah.
  • the charge / discharge target SOC is defined as an index of charge / discharge with respect to the initial full charge state of the power storage device 18.
  • the charge / discharge target SOC is a value indicating how much ampere hour the charge / discharge is performed with respect to 1.0 Ah which is the initial full charge state of the power storage device 18.
  • it means charging / discharging with a width of 0.05 Ah to 0.15 Ah.
  • the waveform chart arranged on the right side of the rectangular frame 19 shows how much the capacity of the power storage device 18 is deteriorated when charging / discharging from 0 cycle to 300 cycles is performed within each charge / discharge target SOC range. It is a schematic diagram which changes and shows the magnitude
  • the charge / discharge current rate is used as the charge / discharge current value.
  • the charge / discharge current value is 0.5A
  • the charge / discharge current rate is 0.5C
  • the charge / discharge current value is 1.5A
  • the charge / discharge current rate is 1.5C.
  • FIG. 2 shows three waveform diagrams when the charge / discharge current rate is 0.5 C, 1.0 C, and 1.5 C.
  • the three waveform diagrams arranged on the right side of the region 37 show that when the charge / discharge target SOC is within the range of 10% ⁇ 5%, the charge / discharge current rate is set to 0.5C, 1.0C, 1.5C, and 0 cycles. It shows how much the width of charging / discharging narrows when charging / discharging from 300 to 300 cycles.
  • the ampere hour that can be fully charged is gradually reduced.
  • the number of cycles 300 cycles is shown.
  • a thick AC waveform line indicates a change in ampere hour that can be brought to a fully charged state when the charge / discharge current rate is 1.5 C, and an envelope outline thereof is indicated by two broken lines.
  • B / A ( ⁇ 100%) is the capacity retention rate of the power storage device 18 when charging and discharging are repeated.
  • ⁇ 1- (B / A) ⁇ ( ⁇ 100%) is the capacity deterioration degree of the power storage device 18 when charging and discharging are repeated.
  • a relational expression of capacity maintenance rate + capacity deterioration rate 1 holds between the capacity maintenance rate and the capacity deterioration rate of the power storage device 18. That is, since the capacity maintenance ratio and the capacity deterioration degree are in a dual relationship, setting the charge / discharge target SOC so as to reduce the capacity deterioration degree sets the charge / discharge target SOC so that the capacity maintenance ratio increases. Can be replaced.
  • Performing charge / discharge control based on the capacity degradation degree is essentially the same as performing charge / discharge control based on the capacity maintenance rate by reversing the increase / decrease direction, so for convenience of explanation, either one is used. Take an example and explain.
  • the difference in the charge / discharge target SOC is indicated by the density of the oblique lines, and the difference in the charge / discharge current rate is indicated by the thickness of the AC waveform line.
  • the capacity deterioration degree of the power storage device 18 varies depending on the charge / discharge target SOC and also varies depending on the charge / discharge current rate.
  • the charge / discharge target SOC when compared with the same charge / discharge current rate, is in the range of 40% ⁇ 5%, compared with the other charge / discharge target SOC ranges. There is little capacity deterioration.
  • the capacity deterioration degree when compared with the same charge / discharge target SOC, the capacity deterioration degree is smaller as the charge / discharge current rate is smaller.
  • the related data 36 stored in the storage device 22 is the association of the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree of the power storage device 18.
  • FIG. 3 is a diagram showing the related data 36.
  • the related data 36 is obtained by performing an experimental measurement or the like on the power storage device 18 in advance.
  • the related data 36 is composed of two maps. One of the maps has the charge / discharge current rate as a parameter, the charge / discharge target SOC on the horizontal axis, and the capacity maintenance ratio B / A on the vertical axis.
  • Another map is obtained by changing the way of view, with the charge / discharge target SOC as a parameter, the horizontal axis indicates the charge / discharge current rate, and the vertical axis indicates the capacity maintenance ratio B / A.
  • the capacity maintenance rate instead of the capacity maintenance rate, the capacity deterioration degree may be taken on the vertical axis.
  • the optimum ranges 40 and 42 are ranges in which the capacity retention rate is stably high.
  • the related data 36 has been described as a map. However, if one or two of the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree are used as search keys, the rest can be read out as described above. It may be other than the map shown. For example, it may be a look-up table format, a mathematical expression, or the like that can read out the capacity deterioration degree using the charge / discharge target SOC and the charge / discharge current rate as search keys. Alternatively, it may be a ROM format in which a capacity deterioration degree is input and a combination of a charge / discharge target SOC and a charge / discharge current rate that is the capacity deterioration degree is output.
  • the use temperature of the power storage device 18 is not taken into account for the related data 36 indicating the relationship among the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree.
  • the related data 36 may be prepared for each use temperature of the power storage device 18.
  • FIG. 4 is a diagram showing each related data when the operating temperature of the power storage device 18 is 25 ° C., the temperature is 10 ° C. on the low temperature side, and 60 ° C. on the high temperature side.
  • the parameters of the related data at each temperature, the contents of the horizontal axis, and the vertical axis are the same as in FIG.
  • FIG. 4 shows two related maps when various characteristics of the power storage device 18 are temperature-dependent.
  • the value of the highest capacity maintenance ratio is lower than the highest capacity maintenance ratio at 25 ° C. in both cases where the temperature is lower than 25 ° C. and when the temperature is higher. It becomes. Further, when the temperature is lower than 25 ° C. and when the temperature is higher than 25 ° C., the dependency of the capacity maintenance rate on the charge / discharge current rate is moderate as compared to the case of 25 ° C.
  • the capacity maintenance rate or the capacity deterioration degree was obtained based on the initial fully charged state in which the power storage device 18 was manufactured.
  • a capacity maintenance rate or a capacity reduction rate based on a fully charged state that has already been reduced due to the usage history may be used.
  • the related data 36 is arranged for each usage history of the power storage device 18.
  • FIG. 5 is a diagram illustrating an example of each related data when the usage history of the power storage device 18 is 100 cycles, 300 cycles, and 1000 cycles.
  • the related data parameters, the horizontal axis, and the vertical axis in each usage history are the same as those in FIG.
  • the characteristic line indicating the capacity retention rate is translated in a direction to decrease the capacity retention rate.
  • the power storage device 18 is described as having the related data 36 shown in FIG. If the plurality of power storage devices 18 have the same specifications and the same structure, the related data 36 is substantially the same except for variations in manufacturing. In the case of the power storage devices 18 having different specifications and structures, the related data is different.
  • FIG. 6 is a diagram illustrating an example of related data 35 of power storage devices having different specifications and structures. The parameters, the vertical axis, and the horizontal axis of the related data 35 are the same as the related data 36 in FIG.
  • the optimum ranges 44 and 46 are ranges in which the capacity retention rate is stably high. Compared with FIG. 3, it can be seen that there is an optimum range 44 in the higher value of the charge / discharge target SOC. As described above, the charge / discharge target SOC and the charge / discharge current rate that can reduce the capacity deterioration degree differ depending on the specifications and structure of the power storage device.
  • FIG. 7 shows that in the power storage device charge / discharge system 16, the capacity deterioration degree of the power storage device 18 is reduced while satisfying the charge / discharge amount necessary for stabilizing the system frequency calculated by the system control device 13 as a charge / discharge request.
  • FIG. 7 shows that in the power storage device charge / discharge system 16, the capacity deterioration degree of the power storage device 18 is reduced while satisfying the charge / discharge amount necessary for stabilizing the system frequency calculated by the system control device 13 as a charge / discharge request.
  • FIG. 7 shows that it is an example of a flowchart showing a procedure for setting the charge / discharge target SOC and setting the charge / discharge current rate.
  • Each procedure in FIG. 7 corresponds to each processing procedure of charge / discharge control in the control device 20.
  • each component of the power storage device charging / discharging system 16 is set. Then, the center SOC of the charge / discharge target SOC is set (S10).
  • the charge / discharge target SOC including the central SOC may be set from the overall system settings of the power transmission / distribution network 10, but the power storage device charge / discharge system 16 is economically separated from the system power supply 12 and the factory 14. When it is a power generation company, the setting is performed based on the maximum profit of the power storage device charging / discharging system 16.
  • center SOC of the charge / discharge target SOC is set under a policy of setting the capacity deterioration degree of the power storage device 18 to be equal to or less than a preset value.
  • center SOC of charge / discharge target SOC is set to an appropriate value in a range between about 40% and about 60%.
  • center SOC of charge / discharge target SOC is set to an appropriate value in a range between about 65% and about 80%.
  • the center SOC of charge / discharge target SOC is set to a different value depending on the specification, structure, etc. of power storage device 18.
  • an example is given of cases where the characteristics of the power storage device 18 are temperature-dependent and there is a usage history. The description will be continued assuming that the power storage device 18 has the characteristics of the related data 36.
  • the central SOC of the charge / discharge target SOC may not necessarily be set to a value that causes the capacity deterioration degree to be equal to or less than a preset value depending on the usage state of the power storage device 18 or the like.
  • the charge / discharge target SOC of the power storage device charging / discharging system 16 is set in the early morning when the night power feeding is completed.
  • the center SOC is set to a value close to the fully charged state of power storage device 18.
  • the power storage device charging / discharging system 16 is a system in which charging is performed by power generation of a solar battery
  • the center SOC of the charging / discharging target SOC is set according to the sunshine situation.
  • the related data 36 of the power storage device 18 is referred to (S12). Since the related data 36 is stored in the storage device 22 for each use temperature and use history, the use temperature and use history of the power storage device 18 can be designated and read from the storage device 22.
  • the related data 36 is read, under the center SOC of the set charge / discharge target SOC, the charge / discharge current rate and the parallel number are set in a direction in which the capacity deterioration degree of the power storage device 18 is not more than a preset value. Done. In FIG.
  • the system control device 13 calculates the amount of charge / discharge at which the factory 14 can stably supply power by looking at the power balance that can be supplied by the system power supply 12 and the demand balance of the factory 14 that is a load.
  • the system control device 13 gives a discharge request to the charge / discharge request acquisition unit 28 so as to discharge 100 kW.
  • the system control device 13 gives a charge request to the charge / discharge request acquisition unit 28 so as to charge 100 kW.
  • the charge / discharge amount calculated by the system control device 13 is acquired as a charge / discharge request by the charge / discharge request acquisition unit 28 of the control device 20 (S16).
  • the charge / discharge request When the charge / discharge request is acquired, it is determined whether or not the condition S is sufficient to satisfy the request (S18). If the determination is positive, the charge / discharge control under the condition S is maintained, and the setting is completed. If the determination is negative, in order to achieve both a charge / discharge request and a reduction in the degree of deterioration of the power storage device 18, the process proceeds to S20 and subsequent steps.
  • the center SOC SOC (S) is not changed, and the charge / discharge current rate setting unit 32 determines whether the charge / discharge request can be satisfied by changing the charge / discharge current rate. (S20).
  • SOC (S) 40%
  • the capacity deterioration degree of the power storage device 18 is small regardless of whether the charge / discharge current rate is 0.5C, 1.0C, or 1.5C.
  • the capacity deterioration degree of the power storage device 18 is suppressed as compared to when the center SOC is 10% and the center SOC is 80%. Can do.
  • the capacity deterioration degree is a value larger than DG (S). For example, it is only necessary to set a predetermined capacity deterioration degree equal to or less than the maximum value DG (max).
  • charging / discharging target SOC SOC (S)
  • capacity degradation level DG (1)
  • charging / discharging current rate CR (1)
  • the charge / discharge control is performed.
  • CR (1) is selected and set so that DG (1) is equal to or less than DG (max) (S22).
  • the capacity deterioration degree is DG (max) or less.
  • CR (1) can be set to a value satisfying the charge / discharge request in a range of 1.5C or less.
  • the change setting of the charge / discharge current rate is executed by the function of the charge / discharge current rate setting unit 32 of the control device 20.
  • charge / discharge target SOC SOC (S)
  • capacity deterioration degree DG (1)
  • charge / discharge current rate CR (1)
  • parallel number N (1) are set.
  • the charge / discharge control is performed.
  • CR (1) is selected and set so that DG (1) is equal to or less than DG (max), and N (1) is equal to or less than N (max) which is the maximum value of the parallel number. (S26).
  • the change setting of the parallel number is executed by the function of the parallel number setting unit 34 of the control device 20.
  • the charge / discharge target SOC setting unit 30 of the control device 20 determines whether the charge / discharge current rate is CR (S) and the charge / discharge target SOC can be satisfied by changing the charge / discharge target SOC. (S28).
  • the capacity deterioration degree of the power storage device 18 exceeds DG (max) at the charge / discharge current rate that satisfies the charge / discharge request.
  • the charge / discharge target SOC at which the capacity deterioration degree is equal to or less than a preset value is around 50%, so the SOC (S) is changed to 50% and the capacity deterioration degree is set to DG. It is determined whether it is possible to make (max) or less.
  • charge / discharge target SOC SOC (1)
  • capacity deterioration level DG (1)
  • charge / discharge current rate CR (S)
  • parallel number N (1) It is set and charge / discharge control is performed under the conditions.
  • SOC (1) and CR (S) are set so that DG (1) has a value equal to or less than DG (max), and N (1) is N (max) which is the maximum value of the parallel number.
  • S30 The change setting of the charge / discharge target SOC is executed by the function of the charge / discharge target SOC setting unit 30 of the control device 20.
  • the order of the determination procedure of S20 and the determination procedure of S28 may be interchanged. That is, if the determination in S18 is negative, the determination in S28 may be performed. If the determination in S28 is negative, the determination in S20 may be performed, and then the determination in S24 may be performed.
  • the system control device 13 calculates the charge / discharge amount to be stably supplied to the factory 14 which is a load, and the power storage device charge / discharge system 16 stores the charge / discharge amount while satisfying the charge / discharge request.
  • the charge / discharge target SOC is set, the charge / discharge current rate is set, etc. so as to reduce the capacity deterioration degree of the device 18, and the charge / discharge control of the power storage device 18 is executed.
  • the charge / discharge control of the power storage device 18 under the ancillary service has been described as an example in which the charge / discharge target SOC needs to be within a predetermined range in the charge / discharge control of the power storage device 18. That is, the power storage device charging / discharging system 16 connected to the power transmission / distribution network 10 together with the system power supply 12 of an electric power company or the like keeps the charge / discharge target SOC within a predetermined range so as not to disturb the power supply / demand balance of the network. Is required.
  • FIG. 8 is a diagram showing a configuration of the vehicle drive control system 50 including the power storage device charging / discharging system 48.
  • the vehicle drive control system 50 includes an engine 54, a rotating electrical machine 56, and a power storage device charge / discharge system 48 mounted on the vehicle 52.
  • the rotating electrical machine 56 is a power device mounted on the vehicle 52 and corresponds to the factory 14 which is a load in FIG.
  • the power storage device charging / discharging system 48 has substantially the same configuration as the power storage device charging / discharging system 16 of FIG. That is, it includes a power storage device 58 mounted on the vehicle 52, a control device 60 that performs charge / discharge control thereof, and a storage device 62.
  • Control device 60 includes a charge / discharge request acquisition unit 64, a charge / discharge target SOC setting unit 66, and a charge / discharge current rate setting unit 68
  • storage device 62 has a charge / discharge target SOC and a charge / discharge current of power storage device 58.
  • the related data 70 for associating the rate and the capacity deterioration degree is stored.
  • the control device 60 performs the same procedure as described in FIG. 7 except that the parallel number of the power storage devices 58 is not changed, and reduces the charge / discharge request from the vehicle and the capacity deterioration degree of the power storage device 58.
  • the charge / discharge target SOC and the charge / discharge current rate are set to appropriate values so that
  • the SOC decreases. Conversely, when regeneration or charging from a generator is performed, the SOC increases. Since this change is always generated in combination in the vehicle, the input / output current rate may be limited in accordance with the current SOC. Further, the time change of the SOC is predicted from the value of the input / output current rate, the current rate that can be input / output at each prediction time is calculated, and information such as the amount of current that can be output before a certain time is sent to the vehicle. You may be notified.
  • An example is shown.
  • the amount of power required in the factory 14 serving as a load is estimated in advance from the past power consumption, calculated in advance, stored in the storage device 22 (not shown), and power that can be supplied by the system power supply 12 From the demand power of the factory 14 that is a load based on the calculated value, the demand supply in the power transmission / distribution network 10 may be stabilized. You may control a current rate so that the peak of the electric power which the factory 14 uses may be equalized. Also in the case of the present embodiment, the central SOC and the charge / discharge current rate can be set so as to reduce the capacity deterioration degree of the power storage device 18 by the procedure shown in FIG.
  • FIG. 9 is a diagram showing a configuration of the control device 20 for estimating the capacity deterioration degree and reducing the capacity deterioration degree.
  • the control device 20 uses the capacity deterioration degree estimation unit 80 and a pattern for changing the charge / discharge current rate according to the SOC as a current rate pattern.
  • a current rate pattern setting unit 82 that sets a current rate pattern so as to reduce current, and a variation for evaluating how a variation in a current rate pattern parameter affects a capacity deterioration degree when setting a current rate pattern
  • An influence evaluation unit 84 is included.
  • FIG. 10 is a diagram illustrating a method for charging the power storage device 18.
  • FIG. 10A is a diagram in which the horizontal axis indicates SOC, and the vertical axis indicates the voltage value between terminals of the power storage device 18.
  • the horizontal axis in FIG. 10B is the same SOC as in FIG. Current value.
  • constant current charging is performed in which the magnitude of the charging current is a constant value I CC at the initial stage of charging control for the power storage device 18.
  • This period is a constant current charging period and corresponds to charging with the charging current rate described with reference to FIG.
  • V CV which is a predetermined CV voltage value
  • the inter-terminal voltage is maintained at a constant value and charging is continued.
  • This period is a constant voltage charging period.
  • the charging current value gradually decreases, and when the charging end current value IE is reached, the charging control is terminated.
  • the capacity deterioration degree is obtained based on the contents described in FIGS. 3 to 6 if the magnitude of the charging current rate and the SOC are known. Can do. Therefore, if the capacity deterioration degree in the constant voltage charging period can be obtained, the capacity deterioration degree in all sections of the charging control in FIG. 10 can be estimated.
  • the capacity deterioration degree when the charge / discharge current rate described in FIGS. 3 to 6 is constant is defined as the first deterioration degree, and the capacity deterioration degree due to charging under a constant voltage after the SOC at which constant voltage charging starts is indicated. The second deterioration degree is assumed.
  • the SOC at the start of constant voltage charging is SOC CV
  • the SOC CV knows the open circuit voltage Voc of the power storage device 18 at the time of starting constant voltage charging
  • the SOC CV is the open circuit voltage value Voc of the power storage device 18. It can be obtained based on the Voc-SOC relationship indicating the relationship between the state of charge SOC.
  • the open circuit voltage Voc of the power storage device 18 when starting constant voltage charging can be obtained based on the voltage drop due to the CV voltage V CV and the internal resistance value R of the power storage device 18 when starting constant voltage charging.
  • V CV which is a CV voltage value
  • V CV can be set as an empirical value if the specifications of the power storage device 18 are determined.
  • V CV is set as a voltage value in the range of about 4.1 V to about 4.4 V.
  • FIG. 11 is a diagram illustrating a relationship between the internal resistance value R of the power storage device 18 and the number of cycles in which the power storage device 18 is charged and discharged.
  • the internal resistance value R of the power storage device 18 that has been repeatedly charged and discharged can be obtained.
  • FIG. 12 is a diagram illustrating an example of the Voc-SOC relationship of the power storage device 18.
  • the horizontal axis is SOC and the vertical axis is Voc.
  • FIG. 12 can be experimentally obtained as a general characteristic of a lithium ion battery.
  • the SOC CV can be obtained as the SOC corresponding to the open circuit voltage Voc when starting constant voltage charging.
  • FIG. 13 is a diagram simulating the result of experimentally determining the relationship between the SOC CV and the second deterioration degree for a lithium ion battery.
  • the horizontal axis is SOC CV and the vertical axis is the second deterioration degree.
  • the smaller the SOC CV when starting constant voltage charging the greater the capacity deterioration degree.
  • the capacity deterioration degree is almost constant.
  • FIG. 14A is a diagram showing how the charging current value is changed as the charging progresses when full charge control is performed on the power storage device 18, and the horizontal axis indicates the SOC and the vertical axis indicates The charging current value is shown by the charging current rate.
  • charging is performed at a constant current value during the constant current charging period.
  • the charging current rate is set to a large value around 50%, the increase in the capacity deterioration degree is small, so the charging current rate is set to be larger than that in other SOC regions.
  • the capacity deterioration degree increases at the same charging current rate as the region where the SOC is around 50%, so the charging current rate is reduced.
  • the charging current rate is changed according to the SOC so that the capacity maintenance rate is improved. For example, if the SOC at which constant voltage charging starts is 80%, the SOC is charged at 1.0 C when the SOC is 0% to 40%, and is charged at 1.5 C when the SOC is 40% to 60%. When the SOC is between 60% and 80%, the battery is charged at 0.5C. When the SOC is between 80% and 100%, charging is performed under a constant value of V CV as a constant voltage charging period.
  • FIG. 14 (b) is a diagram in which the horizontal axis coincides with the SOC of FIG. 14 (a), and the vertical axis represents the first and second deterioration levels.
  • the second degree of deterioration the data of FIG. 13 was used for SOC 80% to 100%, which is a constant voltage charging period. In this case, the capacity deterioration degree over the entire SOC section is estimated as follows.
  • the battery is charged at 1.0 C when the SOC is 0% to 40%, the first deterioration degree for 1.0 C is integrated between SOC 0% and 40% using FIG. And Since the SOC is charged at 1.5C when the SOC is 40% to 60%, the first deterioration degree for 1.5C is integrated between the SOC 40% and 60% using FIG. Let D2. Since the SOC is charged at 0.5C when the SOC is 60% to 80%, the first deterioration degree for 0.5C is integrated between the SOC 60% and 80% using FIG. Let D3. When the SOC is between 80% and 100%, the SOC at which constant voltage charging is started is 80%. Therefore, the second deterioration degree at the time of SOC 80% is obtained from FIG. 13, and this is set as D4. In FIG. 14B, the magnitudes of the integrated values D1, D2, and D3 of the first deterioration degree are indicated by hatching.
  • the charging current rate is changed in accordance with the SOC.
  • the current rate pattern which is a charging current rate pattern, varies slightly due to disturbance due to estimation error of capacity degradation degree, sensor accuracy, and the like. Even so, it is desirable that the capacity deterioration rate does not change much.
  • a variation influence degree that is a change in the capacity deterioration degree with respect to a change in a parameter constituting the current rate pattern is evaluated, and a plurality of current rate patterns are evaluated. An example of determining a current rate pattern that minimizes the influence of variation from among the pattern candidates will be described. This process is executed by the functions of the current rate pattern setting unit 82 and the variation influence degree evaluation unit 84 of the control device 20.
  • FIG. 15 is a diagram showing a change in the first deterioration degree when the SOC that is a parameter of the current rate pattern is changed.
  • 15 (a), (b), and (c) are each composed of two figures, an upper stage and a lower stage. Each lower figure corresponds to (a) in FIG. This corresponds to (b) of FIG. 15A, 15B and 15C, the current rate pattern of the same SOC as the current rate pattern of FIG. 14 is indicated by a solid line 86, and the SOC is + 5% from the current rate pattern of the solid line 86.
  • the fluctuating current rate pattern is indicated by a one-dot chain line 87, and the current rate pattern in which the SOC is fluctuated by ⁇ 5% from the current rate pattern indicated by the solid line 86 is indicated by a broken line 88.
  • the current rate pattern of the solid line 86 is charged at 1.0 C when the SOC is 0% to 40%, charged at 1.5 C when the SOC is 40% to 60%, and the SOC is 60% to 80%.
  • % Is a pattern of charging at 0.5C.
  • the current rate pattern of the alternate long and short dash line 87 is charged at 1.0C when the SOC is between 0% and 45%, charged at 1.5C when the SOC is between 45% and 65%, and the SOC is between 65% and 80%. In the pattern, charging is performed at 0.5C.
  • the current rate pattern of the broken line 88 indicates that the SOC is charged at 1.0 C when the SOC is 0% to 35%, is charged at 1.5 C when the SOC is 35% to 55%, and the SOC is 55% to 80%.
  • % Is a pattern of charging at 0.5C.
  • the SOC is shifted by ⁇ 5% as a parameter constituting the current rate pattern with respect to the current rate pattern described in FIG.
  • the variation influence degree which is a change in the capacity deterioration degree with respect to the fluctuation, is determined by which of the first deterioration degrees D1, D2, and D3 described in FIG. 14 in the upper diagrams of FIGS. 15 (a), (b), and (c). It can be evaluated by how it changes.
  • the second degree of degradation D4 changes when the SOC changes, but does not change in this example.
  • FIG. 15A is the same as FIG. 14, and D1 0 , D2 0 , and D3 0 correspond to D1, D2, and D3 in FIG.
  • FIG. 16 is a diagram showing a change in the first deterioration degree when the charging current rate that is a parameter of the current rate pattern is changed.
  • 16 (a), (b), and (c) are each composed of two diagrams, an upper stage and a lower stage. Each lower figure corresponds to (a) in FIG. This corresponds to (b) of FIG.
  • a current rate pattern having the same charging current rate as the current rate pattern of FIG. 14 is indicated by a solid line 86, and charging is performed from the current rate pattern of the solid line 86.
  • a current rate pattern in which the current rate is changed by +0.1 C is indicated by a one-dot chain line 89, and a current rate pattern in which the charging current rate is changed by ⁇ 0.1 C from the current rate pattern of the solid line 86 is indicated by a broken line 90.
  • the current rate pattern of the solid line 86 is charged at 1.0 C when the SOC is 0% to 40%, charged at 1.5 C when the SOC is 40% to 60%, and the SOC is 60% to 80%.
  • % Is a pattern of charging at 0.5C.
  • the current rate pattern of the alternate long and short dash line 89 is charged at 1.1 C when the SOC is 0% to 40%, charged at 1.6 C when the SOC is 40% to 60%, and the SOC is 60% to 80%. In the pattern, the battery is charged at 0.6C.
  • the current rate pattern of the broken line 90 indicates that the SOC is charged at 0.9C when the SOC is 0% to 40%, is charged at 1.4C when the SOC is 40% to 60%, and the SOC is 60% to 80%.
  • % Is a pattern of charging at 0.4C.
  • the charging current rate is shifted by ⁇ 0.1 C as a parameter constituting the current rate pattern.
  • the variation influence degree which is a change in the capacity deterioration degree with respect to the fluctuation, is the first deterioration degree D1, D2, D3 described in FIG. 14 in the upper diagrams of FIGS. 16 (a), (b), and (c). It can be evaluated by how it changes. 16A, 16B, and 16C, the charging current rates are 0.4C, 0.5C, 0.6C, 0.9C, 1.0C, 1.1C, 1 .4C, 1.5C. The relationship between the first deterioration level and the SOC at 1.6C is shown. Note that the second deterioration degree D4 changes as the SOC changes, but does not change in this example.
  • FIG. 16A is the same as FIG. 14, and E1 0 , E2 0 and E3 0 correspond to D1, D2 and D3 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electricity storage apparatus charge/discharge system (16) is provided with: an electricity storage apparatus (18) configured from a plurality of storage battery units (24); a control apparatus (20); and a storage apparatus (22) that stores correlation data (36) that correlates a charge/discharge target SOC, charge/discharge current rate, and capacity deterioration degree of the electricity storage apparatus (18) to each other. The control apparatus (20) includes: a charge/discharge request acquiring unit (28) that acquires a charge/discharge request; a charge/discharge target SOC setting unit (30) that sets the charge/discharge target SOC to reduce the capacity deterioration degree of the electricity storage apparatus (18) corresponding to the acquired charge/discharge request; a charge/discharge current rate setting unit (32) that sets the charge/discharge current rate; and a parallel number setting unit (34) that sets the parallel number of the storage battery units (24).

Description

蓄電装置充放電システムPower storage device charge / discharge system
 本発明は、蓄電装置充放電システムに関する。 The present invention relates to a power storage device charging / discharging system.
 蓄電装置の充放電制御について、特許文献1には、リチウムイオン二次電池の電池劣化率に基づいて設定された低劣化電圧範囲内で充放電を制御することが開示される。また、特許文献2には、鉛蓄電池の運用と劣化の関係についてデータを収集し、運用と劣化の関係を評価し、例えば充電間隔等の複数の運用条件と電池容量低下に関する感度をそれぞれ求め、タグチメソッドを用いて寿命推定を行うことが述べられている。 Regarding charge / discharge control of a power storage device, Patent Document 1 discloses that charge / discharge is controlled within a low deterioration voltage range set based on a battery deterioration rate of a lithium ion secondary battery. Patent Document 2 collects data on the relationship between the operation and deterioration of the lead storage battery, evaluates the relationship between the operation and deterioration, and obtains a plurality of operation conditions such as charging intervals and the sensitivity regarding a decrease in battery capacity, respectively. It is stated that life estimation is performed using Taguchi method.
 また、特許文献3には、二次電池を充電するに際し、充電電流の大きさを一定にする定電流領域と充電電圧の大きさを一定にする定電圧領域による充電について述べられている。 Patent Document 3 describes charging in a constant current region in which the magnitude of the charging current is constant and charging in the constant voltage region in which the magnitude of the charging voltage is constant when charging the secondary battery.
特開2009-70777号公報JP 2009-70777 A 特開2010-159661号公報JP 2010-159661 A 特開平5-111184号公報Japanese Patent Laid-Open No. 5-111184
 蓄電装置について、その充放電に伴って生じる容量の低下度を示す容量劣化度と、充放電の中心となる目標SOC(State Of Charge)である充放電SOCとの関係を調べてみると、蓄電装置の仕様や内部構造によって、同じ充放電目標SOCでも容量劣化度が異なることが分かった。また、蓄電装置の仕様や内部構造の相違によって、充放電電流値の大きさを示す充放電電流レートと容量劣化度の関係も異なることが分かった。 Regarding the power storage device, when examining the relationship between the capacity degradation degree indicating the degree of capacity reduction caused by the charge / discharge and the charge / discharge SOC that is the target SOC (State Of Charge) as the center of charge / discharge, It has been found that the degree of capacity degradation differs even with the same charge / discharge target SOC, depending on the specifications and internal structure of the apparatus. In addition, it was found that the relationship between the charge / discharge current rate indicating the magnitude of the charge / discharge current value and the capacity deterioration degree differ depending on the specification of the power storage device and the internal structure.
 したがって、蓄電装置の容量劣化度を低減するように、蓄電装置の仕様や内部構造に応じて充放電目標SOCと充放電電流レートを適切に設定することが望まれる。 Therefore, it is desirable to appropriately set the charge / discharge target SOC and the charge / discharge current rate according to the specifications and internal structure of the power storage device so as to reduce the capacity deterioration degree of the power storage device.
 本発明に係る蓄電装置充放電システムは、充電または放電可能な蓄電装置と、蓄電装置を充電または放電する際の目標となる充放電目標SOC、蓄電装置を充電または放電する際に流す充放電電流レート、蓄電装置を充電または放電する際に生じる容量劣化度に基づいて、蓄電装置の充放電制御を行う制御装置と、を備える。 A power storage device charging / discharging system according to the present invention includes a power storage device that can be charged or discharged, a charge / discharge target SOC that is a target when charging or discharging the power storage device, and a charge / discharge current that flows when charging or discharging the power storage device And a control device that performs charge / discharge control of the power storage device based on the rate and the capacity deterioration degree that occurs when the power storage device is charged or discharged.
 本発明によれば、蓄電装置の容量劣化度を低減するように、蓄電装置の仕様や内部構造に応じて充放電目標SOCと充放電電流レートを適切に設定することができる。 According to the present invention, the charge / discharge target SOC and the charge / discharge current rate can be appropriately set according to the specifications and internal structure of the power storage device so as to reduce the capacity deterioration degree of the power storage device.
本発明の実施の形態の蓄電装置充放電システムを含む電力送配電ネットワークの構成を示す図である。It is a figure which shows the structure of the electric power transmission and distribution network containing the electrical storage apparatus charging / discharging system of embodiment of this invention. 本発明の実施の形態の蓄電装置充放電システムにおいて、充放電目標SOCと充放電電流レートと容量劣化度の関係を示す図である。In the electrical storage apparatus charging / discharging system of embodiment of this invention, it is a figure which shows the relationship between charging / discharging target SOC, charging / discharging electric current rate, and capacity degradation degree. 本発明の実施の形態の蓄電装置充放電システムにおいて、充放電目標SOCと充放電電流レートと容量劣化度の関係を示す関連データの一例を示す図である。In the electrical storage apparatus charging / discharging system of embodiment of this invention, it is a figure which shows an example of the relevant data which shows the relationship between charging / discharging target SOC, charging / discharging electric current rate, and capacity degradation degree. 図3の関連データについて使用温度の関係を示す図である。It is a figure which shows the relationship of use temperature about the related data of FIG. 図3の関連データについて充放電履歴の関係を示す図である。It is a figure which shows the relationship of charging / discharging log | history about the related data of FIG. 図3とは別の関連データの例を示す図である。It is a figure which shows the example of the related data different from FIG. 本発明の実施の形態の蓄電装置充放電システムにおいて、算出した必要充放電量に応じた充放電目標SOCの設定と充放電電流レートの設定の手順を示すフローチャートである。In the power storage device charging / discharging system according to the embodiment of the present invention, it is a flowchart showing a procedure for setting a charging / discharging target SOC and setting a charging / discharging current rate according to a calculated required charging / discharging amount. 本発明の実施の形態の蓄電装置充放電システムを含む車両駆動制御システムの構成を示す図である。It is a figure which shows the structure of the vehicle drive control system containing the electrical storage apparatus charging / discharging system of embodiment of this invention. 本発明の実施の形態の蓄電装置充放電システムにおいて、容量劣化度の推定等を行う制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus which estimates a capacity degradation degree etc. in the electrical storage apparatus charging / discharging system of embodiment of this invention. 蓄電装置の充電を定電流充電期間と定電圧充電期間に分けて行うことを示す図である。It is a figure which shows performing charge of an electrical storage apparatus in a constant current charge period and a constant voltage charge period. 本発明の実施の形態の蓄電装置充放電システムにおいて、蓄電装置の内部抵抗値の変化を示す図である。It is a figure which shows the change of the internal resistance value of an electrical storage apparatus in the electrical storage apparatus charging / discharging system of embodiment of this invention. 本発明の実施の形態の蓄電装置充放電システムにおいて、蓄電装置のSOCとVocの関係を示す図である。It is a figure which shows the relationship between SOC of an electrical storage apparatus, and Voc in the electrical storage apparatus charging / discharging system of embodiment of this invention. 本発明の実施の形態の蓄電装置充放電システムにおいて、定電圧充電期間における容量劣化度である第2劣化度の変化を示す図である。In the electrical storage apparatus charging / discharging system of embodiment of this invention, it is a figure which shows the change of the 2nd degradation degree which is a capacity degradation degree in a constant voltage charge period. 本発明の実施の形態の蓄電装置充放電システムにおいて、充電の全区間に渡って行われる容量劣化度の推定を示す図である。It is a figure which shows the estimation of the capacity deterioration degree performed over the whole area of charge in the electrical storage apparatus charging / discharging system of embodiment of this invention. 本発明の実施の形態の蓄電装置充放電システムにおいて、充電電流パターンのパラメータであるSOCを変更したときの第1劣化度の変化を示す図である。In the electrical storage apparatus charging / discharging system of embodiment of this invention, it is a figure which shows the change of a 1st deterioration degree when SOC which is a parameter of a charging current pattern is changed. 本発明の実施の形態の蓄電装置充放電システムにおいて、充電電流パターンのパラメータである充電電流レートを変更したときの第1劣化度の変化を示す図である。In the electrical storage apparatus charging / discharging system of embodiment of this invention, it is a figure which shows the change of a 1st deterioration degree when the charging current rate which is a parameter of a charging current pattern is changed.
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、充放電目標SOCを所定の範囲内に収める蓄電装置の充放電制御として、アンシラリサービスの下にある蓄電装置充放電システムと、蓄電装置を搭載する車両の駆動制御システムを述べるが、これらは説明のための例示であって、これ以外の充放電量制御システムについても本発明が適用できる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, as the charge / discharge control of the power storage device that keeps the charge / discharge target SOC within a predetermined range, the power storage device charge / discharge system under the ancillary service and the drive control system of the vehicle equipped with the power storage device will be described. These are illustrative examples, and the present invention can be applied to other charge / discharge amount control systems.
 以下で説明する蓄電装置の容量、充放電目標SOC、充放電電流レート等の値は、説明のための一例であって、蓄電装置充放電システムの仕様等に応じ、適宜変更することができる。 The values of the capacity of the power storage device, the charge / discharge target SOC, the charge / discharge current rate, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the power storage device charge / discharge system.
 以下では、全ての図面において同一または対応する要素には同一の符号を付し、重複する説明を省略する。 In the following, the same or corresponding elements are denoted by the same reference symbols in all drawings, and redundant description is omitted.
 図1は、電力送配電ネットワーク10の構成を示す図である。この電力送配電ネットワーク10は、電力会社の火力発電所等の系統電源12と、電力の需要家である工場14と、太陽電池等の発電設備と蓄電装置とを有する独立発電事業者の蓄電装置充放電システム16と、系統制御装置13が接続される。蓄電装置充放電システム16が系統電源12と共に工場14に給電するネットワークである。工場14は、電力送配電ネットワーク10の負荷となる。 FIG. 1 is a diagram showing a configuration of the power transmission / distribution network 10. This power transmission / distribution network 10 is a power storage device of an independent power generation company having a system power source 12 such as a thermal power plant of a power company, a factory 14 that is a consumer of power, a power generation facility such as a solar cell, and a power storage device. The charge / discharge system 16 and the system controller 13 are connected. The power storage device charging / discharging system 16 is a network that supplies power to the factory 14 together with the system power supply 12. The factory 14 becomes a load of the power transmission / distribution network 10.
 系統制御装置13は電力会社等により管理される装置である。系統制御装置13は電力送配電ネットワーク10の負荷変動(即ち、電力の需要変動)を検知し、電力送配電ネットワーク10全体の需給バランスを維持するための指示を、系統電源12および蓄電装置充放電システム16の少なくとも一方に与える。需給バランスが崩れると電力送配電ネットワーク10にて送配電される電気の周波数(以下、「系統周波数」とも言う)が変動する。系統周波数と基準周波数との差が一定の幅を超えると、需要者側の一部の機器や発電機の不具合が発生する可能性がある。 The system control device 13 is a device managed by an electric power company or the like. The system control device 13 detects load fluctuations in the power transmission / distribution network 10 (that is, fluctuations in demand for power), and gives instructions for maintaining a balance between supply and demand of the power transmission / distribution network 10 as a whole. To at least one of the systems 16. When the supply and demand balance is lost, the frequency of electricity transmitted and distributed in the power transmission and distribution network 10 (hereinafter also referred to as “system frequency”) varies. If the difference between the system frequency and the reference frequency exceeds a certain range, there is a possibility that a malfunction of some devices and generators on the consumer side will occur.
 系統制御装置13は負荷変動に応じて発電出力を調整するよう系統電源12に通信ネットワークを介して指示することができる。具体的には電力需要が電力供給を上回ると発電出力を増加させるよう指示し、電力需要が電力供給を下回ると発電出力を減少させるよう指示する。 The system control device 13 can instruct the system power supply 12 via the communication network to adjust the power generation output according to the load fluctuation. Specifically, the power generation output is instructed to increase when the power demand exceeds the power supply, and the power generation output is instructed to decrease when the power demand falls below the power supply.
 また、系統制御装置13は負荷変動に応じて電力送配電ネットワーク10に対して電力を放出または吸収するよう蓄電装置充放電システム16に通信ネットワークを介して指示することができる。具体的には電力需要が電力供給を上回ると電力送配電ネットワーク10に電力を放出するよう指示し、電力需要が電力供給を下回ると電力送配電ネットワーク10から電力を吸収するよう指示する。 Also, the system control device 13 can instruct the power storage device charging / discharging system 16 via the communication network to release or absorb power to the power transmission / distribution network 10 in accordance with load fluctuations. Specifically, when the power demand exceeds the power supply, the power transmission / distribution network 10 is instructed to release power. When the power demand falls below the power supply, the power transmission / distribution network 10 is instructed to absorb power.
 前者の系統電源12による発電出力の変更には数分から10分程度かかる。後者の蓄電装置充放電システム16による電力供給の調整は瞬時に可能であるため、瞬時の負荷変動に対して特に有効である。 The change of the power generation output by the former system power supply 12 takes several minutes to 10 minutes. Since the adjustment of power supply by the latter power storage device charging / discharging system 16 can be instantaneously performed, it is particularly effective for instantaneous load fluctuations.
 このように、電力送配電ネットワーク10に蓄電装置充放電システム16が接続されることによって、工場14は、電力を供給される際、電力会社等の系統電源12による電力の需給バランスが崩れても、系統制御装置13の電力調整によって系統周波数の安定を図るアンシラリサービスを受けることができる。アンシラリサービスの下では、蓄電装置充放電システム16は、電力送配電ネットワーク10の電力の需給バランスを崩さないように、蓄電装置に対する充放電目標SOCについてその中心SOCとSOCの振れ幅を所定の範囲にする充放電制御を行うように求められる。 As described above, when the power storage device charging / discharging system 16 is connected to the power transmission / distribution network 10, the factory 14 is supplied with power even if the power supply / demand balance by the system power supply 12 such as an electric power company is disrupted. The ancillary service for stabilizing the system frequency can be received by adjusting the power of the system controller 13. Under the ancillary service, the power storage device charging / discharging system 16 sets the fluctuation widths of the central SOC and the SOC for the charge / discharge target SOC for the power storage device to a predetermined value so as not to disturb the power supply / demand balance of the power transmission / distribution network 10. It is required to perform charge / discharge control within the range.
 蓄電装置充放電システム16は、蓄電装置18と、その充放電制御を行う制御装置20と、制御装置20に接続される記憶装置22を備える。 The power storage device charging / discharging system 16 includes a power storage device 18, a control device 20 that performs charge / discharge control thereof, and a storage device 22 connected to the control device 20.
 蓄電装置18は、複数の蓄電池ユニット24を並列に接続した蓄電池ユニット部と、複数の蓄電池ユニット24の並列数を変更できる並列数変更部26を含む。 The power storage device 18 includes a storage battery unit unit in which a plurality of storage battery units 24 are connected in parallel, and a parallel number changing unit 26 that can change the parallel number of the plurality of storage battery units 24.
 蓄電池ユニット24としては、充放電が可能な二次電池であるリチウムイオン組電池が用いられる。リチウムイオン組電池に代えて、他の二次電池、高容量キャパシタを用いることができる。二次電池としては、ニッケル水素組電池、鉛蓄電池等を用いることができる。 As the storage battery unit 24, a lithium ion assembled battery, which is a rechargeable secondary battery, is used. Instead of the lithium ion assembled battery, another secondary battery or a high capacity capacitor can be used. As the secondary battery, a nickel-metal hydride battery, a lead storage battery, or the like can be used.
 並列数変更部26は、複数の蓄電池ユニット24の各一方端子をそれぞれ1つの端子としてまとめ、各他方端子のうちの所望数を相互接続して1つの端子とすることで、蓄電装置18を所望の数の蓄電池ユニット24を並列接続したものとする。かかる並列数変更部26としては、複数のスイッチで構成される。例えば、16個の蓄電池ユニット24が設けられる場合、並列数変更部26によって、16個の中のN個が並列接続されるとすると、互いに並列接続されたN個の蓄電池ユニット24が蓄電装置18となる。Nは、今の場合、1から16の中で任意に設定できる。並列数変更部26を用いることで、各蓄電池ユニット24の充放電電流値をIとして、蓄電装置18としては、N×Iの充放電電流値を取り出し、または受け入れることができる。 The parallel number changing unit 26 collects one terminal of each of the plurality of storage battery units 24 as one terminal, and interconnects a desired number of the other terminals into one terminal so that the power storage device 18 is desired. The number of storage battery units 24 is connected in parallel. The parallel number changing unit 26 includes a plurality of switches. For example, in the case where 16 storage battery units 24 are provided, assuming that N of the 16 batteries are connected in parallel by the parallel number changing unit 26, the N storage battery units 24 connected in parallel to each other include the power storage device 18. It becomes. In this case, N can be arbitrarily set from 1 to 16. By using the parallel number changing unit 26, the charge / discharge current value of each storage battery unit 24 can be taken as I, and the power storage device 18 can take out or accept the charge / discharge current value of N × I.
 制御装置20は、蓄電装置18と情報のやりとりを行い、また記憶装置22と情報のやりとりを行い、蓄電装置18の充放電目標SOC、充放電電流レート及び容量劣化度に基づいて、蓄電装置18の充放電制御を行う。かかる制御装置20としては、ハードウェア、あるいは、ハードウェアとソフトウェアの組合せによって構成することができる。制御装置20は、系統制御装置13が算出した系統周波数を安定させるために必要な充放電量を充放電要求として取得する充放電要求取得部28と、取得した充放電要求に対応して蓄電装置18の容量劣化度を低減する方向に充放電目標SOCを設定する充放電目標SOC設定部30と、同様に、充放電要求に対応して蓄電装置18の容量劣化度を低減する方向に充放電電流レートを設定する充放電電流レート設定部32と、並列数変更部26に指示する蓄電池ユニット24の並列数を設定する並列数設定部34を含む。かかる機能の全部または一部は、プログラム実行装置(例えば制御装置20に搭載可能なマイクロコンピュータ)上でプログラムを実行することによって、その機能を実行するようにしてもよい。
 記憶装置22は、例えば、制御装置20で用いられるプログラム、データを格納するメモリとして使用されるが、ここでは特に、蓄電装置18の充放電目標SOC、充放電電流レート及び容量劣化度を関連付ける関連データ36を記憶する場合について述べる。
The control device 20 exchanges information with the power storage device 18 and also exchanges information with the storage device 22, and the power storage device 18 is based on the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration level of the power storage device 18. Charge / discharge control. The control device 20 can be configured by hardware or a combination of hardware and software. The control device 20 includes a charge / discharge request acquisition unit 28 that acquires a charge / discharge amount necessary for stabilizing the system frequency calculated by the system control device 13 as a charge / discharge request, and a power storage device corresponding to the acquired charge / discharge request. Similarly, the charge / discharge target SOC setting unit 30 that sets the charge / discharge target SOC in a direction to reduce the capacity deterioration degree of 18, and similarly, charge / discharge in a direction to reduce the capacity deterioration degree of the power storage device 18 in response to the charge / discharge request. A charge / discharge current rate setting unit 32 that sets the current rate and a parallel number setting unit 34 that sets the parallel number of the storage battery units 24 instructed to the parallel number changing unit 26 are included. All or part of the functions may be executed by executing a program on a program execution device (for example, a microcomputer that can be mounted on the control device 20).
The storage device 22 is used, for example, as a memory for storing a program and data used in the control device 20, and in this case, in particular, the association that relates the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree of the power storage device 18 A case where the data 36 is stored will be described.
 関連データ36の内容を述べる前に、蓄電装置18の充放電目標SOC、充放電電流レート及び容量劣化度について図2を用いて説明する。図2において、左端に示される矩形枠19は、蓄電装置18の充電状態を模式的に示すもので、その右側に示される9つの波形図は、蓄電装置18において充放電が行われたときの容量劣化度を説明するための図である。 Before describing the contents of the related data 36, the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree of the power storage device 18 will be described with reference to FIG. In FIG. 2, the rectangular frame 19 shown at the left end schematically shows the state of charge of the power storage device 18, and the nine waveform diagrams shown on the right side are when the power storage device 18 is charged and discharged. It is a figure for demonstrating a capacity degradation degree.
 図2の左端の矩形枠19は、蓄電装置18の充電状態を示すもので、満充電のときが1.0Ahとしてある。この数値は説明のための例示であって、これ以外の数値であってもよい。蓄電装置18は、充放電を繰り返すことで、満充電のときの電流時間積であるアンペアアワー(Ah)が低下する。ここで、満充電のときが1.0Ahというのは、蓄電装置18が製造された初期状態の値である。 The rectangular frame 19 at the left end in FIG. 2 indicates the state of charge of the power storage device 18, and is 1.0 Ah when fully charged. This numerical value is an example for explanation, and other numerical values may be used. The power storage device 18 is repeatedly charged and discharged, so that the ampere hour (Ah), which is a current-time product at the time of full charge, decreases. Here, 1.0 Ah when fully charged is a value in an initial state in which the power storage device 18 is manufactured.
 矩形枠19に、3つのアンペアアワーの領域37,38,39が示されている。アンペアアワーの値の小さい方から、0.1Ahを中心とする領域37、0.4Ahを中心とする領域38、0.7Ahを中心とする領域39である。これらの領域が充放電目標SOCである。 In the rectangular frame 19, three ampere- hour areas 37, 38, and 39 are shown. From the smaller ampere hour value, a region 37 centered at 0.1 Ah, a region 38 centered at 0.4 Ah, and a region 39 centered at 0.7 Ah. These regions are the charge / discharge target SOC.
 領域37は、0.1Ahを中心として、その前後に0.05Ahの幅を有する領域である。ここで、0.1Ahを、蓄電装置18の初期の満充電状態である1.0Ahを基準とすると10%の充電状態であるので、ここではこれを、充放電目標SOCの中心SOC=10%と呼ぶことにする。このように充放電目標SOCを、蓄電装置18の初期の満充電状態に対する充放電の指標として定義する。図2の例では、充放電目標SOCとは、蓄電装置18の初期の満充電状態である1.0Ahに対し、どれだけのアンペアアワーの幅で充放電するかを示す値である。 The region 37 is a region having a width of 0.05 Ah around the center of 0.1 Ah. Here, since 0.1 Ah is 10% of the charge state when 1.0 Ah, which is the initial full charge state of the power storage device 18, is used as a reference, this is the center SOC of the charge / discharge target SOC = 10%. I will call it. Thus, the charge / discharge target SOC is defined as an index of charge / discharge with respect to the initial full charge state of the power storage device 18. In the example of FIG. 2, the charge / discharge target SOC is a value indicating how much ampere hour the charge / discharge is performed with respect to 1.0 Ah which is the initial full charge state of the power storage device 18.
 このような定義を用いると、領域37の充放電目標SOCは、中心SOC=10%で、領域37の範囲はその前後±5%の幅で、5%から15%の値を有する。図2の例では、0.05Ahから0.15Ahの幅で充放電することを意味する。 Using such a definition, the charge / discharge target SOC of the region 37 is the center SOC = 10%, and the range of the region 37 has a value of 5% to 15% with a width of ± 5% before and after that. In the example of FIG. 2, it means charging / discharging with a width of 0.05 Ah to 0.15 Ah.
 同様に、領域38の充放電目標SOCは、中心SOC=40%で、領域38の範囲はその前後±5%の幅で、35%から45%の値を有する。図2の例では、0.35Ahから0.45Ahの幅で充放電することを意味する。同様に、領域39の充放電目標SOCは、中心SOC=70%で、領域39の範囲はその前後±5%の幅で、65%から75%の値を有する。図2の例では、0.65Ahから0.75Ahの幅で充放電することを意味する。 Similarly, the charge / discharge target SOC of the region 38 is the center SOC = 40%, and the range of the region 38 has a value of 35% to 45% with a width of ± 5% before and after that. In the example of FIG. 2, it means charging / discharging with a width of 0.35 Ah to 0.45 Ah. Similarly, the charge / discharge target SOC of the region 39 is center SOC = 70%, and the range of the region 39 is ± 5% before and after that, and has a value of 65% to 75%. In the example of FIG. 2, it means charging / discharging with a width of 0.65 Ah to 0.75 Ah.
 矩形枠19の右側に並べてある波形図は、それぞれの充放電目標SOC範囲内で0サイクルから300サイクルの充放電を実施したときに、蓄電装置18の容量がどの程度劣化するかを、充放電電流値の大きさを変えて示す模式図である。充放電電流値の大きさとして、充放電電流レートが用いられる。充放電電流レートは、蓄電装置18の初期の満充電状態を示すアンペアアワーを1時間で除した値を1.0Cとしたものである。図2の例では、蓄電装置18の初期の満充電状態を示すアンペアアワー=1.0Ahであるので、充放電電流レート1.0C=1.0Aである。充放電電流値が0.5Aであると、充放電電流レート=0.5Cで、充放電電流値が1.5Aであると、充放電電流レート=1.5Cである。 The waveform chart arranged on the right side of the rectangular frame 19 shows how much the capacity of the power storage device 18 is deteriorated when charging / discharging from 0 cycle to 300 cycles is performed within each charge / discharge target SOC range. It is a schematic diagram which changes and shows the magnitude | size of an electric current value. The charge / discharge current rate is used as the charge / discharge current value. The charge / discharge current rate is a value obtained by dividing the ampere hour indicating the initial full charge state of the power storage device 18 by 1 hour, and is 1.0 C. In the example of FIG. 2, since the ampere hour indicating the initial full charge state of the power storage device 18 is 1.0 Ah, the charge / discharge current rate is 1.0 C = 1.0 A. When the charge / discharge current value is 0.5A, the charge / discharge current rate is 0.5C, and when the charge / discharge current value is 1.5A, the charge / discharge current rate is 1.5C.
 図2では、充放電電流レートが0.5C,1.0C,1.5Cの場合の3つの波形図が示されている。領域37の右側に並べてある3つの波形図は、充放電目標SOC=10%±5%の範囲内のときに、充放電電流レートを0.5C,1.0C,1.5Cとして、0サイクルから300サイクルまで充放電したときに、充放電の幅がどの程度狭まるかを示したものである。 FIG. 2 shows three waveform diagrams when the charge / discharge current rate is 0.5 C, 1.0 C, and 1.5 C. The three waveform diagrams arranged on the right side of the region 37 show that when the charge / discharge target SOC is within the range of 10% ± 5%, the charge / discharge current rate is set to 0.5C, 1.0C, 1.5C, and 0 cycles. It shows how much the width of charging / discharging narrows when charging / discharging from 300 to 300 cycles.
 充放電目標SOC=10%±5%は、図2において、0.1Ah±0.05Ahで、0.05Ahから0.15Ahの範囲である。そして、充放電電流レート=0.5Cとは、0.5Aである。したがって、充放電目標SOC=0.1Ahから充放電目標SOC=0.15Ahまで充電するには、(0.05Ah/0.5A)=0.1hかかる。同様に、充放電目標SOC=0.15Ahから充放電目標SOC=0.05Ahまで放電するには、{(0.15Ah-0.05Ah)/0.5A}=0.2hかかる。充放電電流レート=1.0Cにすれば、これらの充放電に要する時間は1/2で済む。同様に、充放電電流レート=1.5Cにすれば、これらの充放電に要する時間は1/3で済む。 The charge / discharge target SOC = 10% ± 5% is 0.1 Ah ± 0.05 Ah in FIG. 2 and is in the range of 0.05 Ah to 0.15 Ah. The charge / discharge current rate = 0.5C is 0.5A. Therefore, it takes (0.05 Ah / 0.5 A) = 0.1 h to charge from the charge / discharge target SOC = 0.1 Ah to the charge / discharge target SOC = 0.15 Ah. Similarly, it takes {(0.15 Ah−0.05 Ah) /0.5 A} = 0.2 h to discharge from the charge / discharge target SOC = 0.15 Ah to the charge / discharge target SOC = 0.05 Ah. If the charge / discharge current rate is set to 1.0 C, the time required for the charge / discharge can be halved. Similarly, if the charge / discharge current rate is 1.5 C, the time required for these charge / discharges can be reduced to 1/3.
 蓄電装置18は充放電を繰り返すと、満充電状態にできるアンペアアワーが次第に少なくなる。領域37の右側の3つの波形図の一番右端の波形図で述べると、波形図の左端が充放電開始のとき、すなわち充放電サイクル数=0サイクルのときで、波形図の右端が充放電サイクル数=300サイクルのときを示す。太い交流波形線は、充放電電流レート=1.5Cのときの満充電状態にできるアンペアアワーの変化を示すもので、その包絡輪郭線が2つの破線で示されている。 When the power storage device 18 is repeatedly charged and discharged, the ampere hour that can be fully charged is gradually reduced. In the rightmost waveform diagram of the three waveform diagrams on the right side of the region 37, the left end of the waveform diagram is when charging / discharging starts, that is, the number of charging / discharging cycles = 0, and the right end of the waveform diagram is charging / discharging. The number of cycles = 300 cycles is shown. A thick AC waveform line indicates a change in ampere hour that can be brought to a fully charged state when the charge / discharge current rate is 1.5 C, and an envelope outline thereof is indicated by two broken lines.
 充放電サイクル数=0サイクルのときの2つの破線の間の間隔=Aが、蓄電装置18の初期の満充電状態にできるアンペアアワーで、1.0Ahである。充放電サイクル数=300サイクルのときの2つの破線の間の間隔=Bは、充放電を300サイクル繰り返したときの蓄電装置18を満充電状態にできるアンペアアワーである。このように、蓄電装置18は、充放電を繰り返すと満充電状態にできるアンペアアワーが次第に少なくなる。B/A(×100%)は、充放電を繰り返したときの蓄電装置18の容量維持率である。{1-(B/A)}(×100%)が、充放電を繰り返したときの蓄電装置18の容量劣化度である。 When the number of charge / discharge cycles = 0, the interval between two broken lines = A is 1.0 Ah, which is the ampere hour at which the power storage device 18 can be fully charged. The interval between the two broken lines when the number of charge / discharge cycles = 300 cycles = B is an ampere hour that allows the power storage device 18 to be fully charged when charge / discharge is repeated 300 cycles. In this way, the power storage device 18 gradually decreases in ampere hours that can be fully charged when charging and discharging are repeated. B / A (× 100%) is the capacity retention rate of the power storage device 18 when charging and discharging are repeated. {1- (B / A)} (× 100%) is the capacity deterioration degree of the power storage device 18 when charging and discharging are repeated.
 定義より明らかなように、蓄電装置18の容量維持率と容量劣化度の間には容量維持率+容量劣化度=1の関係式が成立する。つまり容量維持率と容量劣化度は、双対の関係にあるため、容量劣化度を低減するように充放電目標SOCを設定することは、容量維持率が増加するように充放電目標SOCを設定することに置き換えることができる。容量劣化度に基づき充放電制御を行うことは、増減方向を反対にすることで、容量維持率に基づき充放電制御を行うことと本質的に同じであるので、説明の便宜上、どちらか一方を例に取り説明を行う。 As is clear from the definition, a relational expression of capacity maintenance rate + capacity deterioration rate = 1 holds between the capacity maintenance rate and the capacity deterioration rate of the power storage device 18. That is, since the capacity maintenance ratio and the capacity deterioration degree are in a dual relationship, setting the charge / discharge target SOC so as to reduce the capacity deterioration degree sets the charge / discharge target SOC so that the capacity maintenance ratio increases. Can be replaced. Performing charge / discharge control based on the capacity degradation degree is essentially the same as performing charge / discharge control based on the capacity maintenance rate by reversing the increase / decrease direction, so for convenience of explanation, either one is used. Take an example and explain.
 図2の右側の9つの波形図では、充放電目標SOCの違いを斜線の密度で示し、充放電電流レートの違いを交流波形線の太さで示した。 In the nine waveform diagrams on the right side of FIG. 2, the difference in the charge / discharge target SOC is indicated by the density of the oblique lines, and the difference in the charge / discharge current rate is indicated by the thickness of the AC waveform line.
 図2の例では、蓄電装置18の容量劣化度は、充放電目標SOCによっても異なり、充放電電流レートによっても異なる。図2の蓄電装置18の場合は、同じ充放電電流レートで比べると、充放電目標SOC=40%±5%の範囲での場合が、他の充放電目標SOCの範囲での場合よりも、容量劣化度が少ない。また、図2の例では、同じ充放電目標SOCで比べると、充放電電流レートが小さいほど容量劣化度が少ない。 In the example of FIG. 2, the capacity deterioration degree of the power storage device 18 varies depending on the charge / discharge target SOC and also varies depending on the charge / discharge current rate. In the case of the power storage device 18 of FIG. 2, when compared with the same charge / discharge current rate, the charge / discharge target SOC is in the range of 40% ± 5%, compared with the other charge / discharge target SOC ranges. There is little capacity deterioration. Further, in the example of FIG. 2, when compared with the same charge / discharge target SOC, the capacity deterioration degree is smaller as the charge / discharge current rate is smaller.
 このような蓄電装置18の充放電目標SOC、充放電電流レート及び容量劣化度を関連付けたものが、記憶装置22に記憶される関連データ36である。図3は、関連データ36を示す図である。関連データ36は、蓄電装置18について予め実験測定等を行うことで得られる。この例では、関連データ36は、2つのマップから構成される。マップの1つは、充放電電流レートをパラメータとして、横軸に充放電目標SOCを取り、縦軸に容量維持率B/Aを取ったものである。もう1つのマップは、見方を変えて、充放電目標SOCをパラメータとして、横軸に充放電電流レートを取り、縦軸に容量維持率B/Aを取ったものである。これらのマップにおいて、容量維持率に代えて、容量劣化度を縦軸に取ってもよい。 The related data 36 stored in the storage device 22 is the association of the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree of the power storage device 18. FIG. 3 is a diagram showing the related data 36. The related data 36 is obtained by performing an experimental measurement or the like on the power storage device 18 in advance. In this example, the related data 36 is composed of two maps. One of the maps has the charge / discharge current rate as a parameter, the charge / discharge target SOC on the horizontal axis, and the capacity maintenance ratio B / A on the vertical axis. Another map is obtained by changing the way of view, with the charge / discharge target SOC as a parameter, the horizontal axis indicates the charge / discharge current rate, and the vertical axis indicates the capacity maintenance ratio B / A. In these maps, instead of the capacity maintenance rate, the capacity deterioration degree may be taken on the vertical axis.
 図3の例において、最適範囲40,42は、容量維持率が安定して高い値を取る範囲である。容量維持率がこの最適範囲40,42となるように、充放電目標SOCと充放電電流レートを設定することで、蓄電装置18の容量劣化度を低減できる。 In the example of FIG. 3, the optimum ranges 40 and 42 are ranges in which the capacity retention rate is stably high. By setting the charge / discharge target SOC and the charge / discharge current rate so that the capacity maintenance ratio is in the optimum ranges 40 and 42, the capacity deterioration degree of the power storage device 18 can be reduced.
 上記では、関連データ36をマップとして説明したが、充放電目標SOC、充放電電流レート、容量劣化度の中の1つまたは2つを検索キーとして、残りを読み出せる様式であれば、上記に示すマップ以外のものであってもよい。例えば、充放電目標SOC、充放電電流レートの2つを検索キーとして容量劣化度を読み出せるルックアップテーブル様式、数式等であってもよい。あるいは、容量劣化度を入力して、その容量劣化度となる充放電目標SOCと充放電電流レートの組み合わせを出力するROM様式であってもよい。 In the above description, the related data 36 has been described as a map. However, if one or two of the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree are used as search keys, the rest can be read out as described above. It may be other than the map shown. For example, it may be a look-up table format, a mathematical expression, or the like that can read out the capacity deterioration degree using the charge / discharge target SOC and the charge / discharge current rate as search keys. Alternatively, it may be a ROM format in which a capacity deterioration degree is input and a combination of a charge / discharge target SOC and a charge / discharge current rate that is the capacity deterioration degree is output.
 上記の例では、充放電目標SOC、充放電電流レート、容量劣化度の間の関係を示す関連データ36について、蓄電装置18の使用温度を加味していない。蓄電装置18の諸特性に温度依存性がある場合は、関連データ36を蓄電装置18の使用温度毎に用意してもよい。図4は、蓄電装置18の使用温度25℃を中心温度として、低温側として10℃、高温側として60℃としたときの各関連データを示す図である。各温度における関連データのパラメータ、横軸、縦軸の内容は図3と同じである。 In the above example, the use temperature of the power storage device 18 is not taken into account for the related data 36 indicating the relationship among the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree. When various characteristics of the power storage device 18 are temperature-dependent, the related data 36 may be prepared for each use temperature of the power storage device 18. FIG. 4 is a diagram showing each related data when the operating temperature of the power storage device 18 is 25 ° C., the temperature is 10 ° C. on the low temperature side, and 60 ° C. on the high temperature side. The parameters of the related data at each temperature, the contents of the horizontal axis, and the vertical axis are the same as in FIG.
 図4に蓄電装置18の諸特性に温度依存性がある場合の2つの関連マップを示す。図4の例では、25℃よりも低温側となる場合、高温側となる場合のいずれも、最も高い容量維持率の値は、25℃のときの最も高い容量維持率よりも低い容量維持率となる。また、25℃よりも低温側となる場合、高温側となる場合のいずれも、25℃のときに比べて、容量維持率の充放電電流レートの依存性が緩やかになる。 FIG. 4 shows two related maps when various characteristics of the power storage device 18 are temperature-dependent. In the example of FIG. 4, the value of the highest capacity maintenance ratio is lower than the highest capacity maintenance ratio at 25 ° C. in both cases where the temperature is lower than 25 ° C. and when the temperature is higher. It becomes. Further, when the temperature is lower than 25 ° C. and when the temperature is higher than 25 ° C., the dependency of the capacity maintenance rate on the charge / discharge current rate is moderate as compared to the case of 25 ° C.
 上記では、容量維持率あるいは容量劣化度を、蓄電装置18が製造された初期の満充電状態を基準として求めた。既に使用履歴がある蓄電装置18については、その使用履歴によって既に低下している満充電状態を基準とした容量維持率あるいは容量低下率を用いてもよい。この場合、関連データ36を、蓄電装置18の使用履歴毎に揃える。図5は、蓄電装置18の使用履歴が100サイクル、300サイクル、1000サイクルのときの各関連データの例を示す図である。各使用履歴における関連データのパラメータ、横軸、縦軸の内容は図3と同じである。 In the above, the capacity maintenance rate or the capacity deterioration degree was obtained based on the initial fully charged state in which the power storage device 18 was manufactured. For the power storage device 18 that already has a usage history, a capacity maintenance rate or a capacity reduction rate based on a fully charged state that has already been reduced due to the usage history may be used. In this case, the related data 36 is arranged for each usage history of the power storage device 18. FIG. 5 is a diagram illustrating an example of each related data when the usage history of the power storage device 18 is 100 cycles, 300 cycles, and 1000 cycles. The related data parameters, the horizontal axis, and the vertical axis in each usage history are the same as those in FIG.
 図5の例では、使用履歴である充放電サイクル数が増加するに従い、容量維持率を示す特性線は、容量維持率を低下する方向に平行移動している。 In the example of FIG. 5, as the number of charge / discharge cycles as the use history increases, the characteristic line indicating the capacity retention rate is translated in a direction to decrease the capacity retention rate.
 上記では、蓄電装置18が、図3で示される関連データ36を有する物として説明した。複数の蓄電装置18について、同じ仕様、同じ構造であれば、製造時のばらつき等を除けば、ほぼ同じ関連データ36となる。仕様や構造が異なる蓄電装置18の場合は、関連データが異なる。図6は、仕様、構造が異なる蓄電装置の関連データ35の一例を示す図である。関連データ35のパラメータ、縦軸、横軸の内容は図3の関連データ36と同じである。図6において、最適範囲44,46は、容量維持率が安定して高い値を取る範囲である。図3と比較すると、充放電目標SOCの高い値の方に最適範囲44があることが分かる。このように、蓄電装置の仕様、構造によって、容量劣化度を低減することができる充放電目標SOC、充放電電流レートが異なる。 In the above description, the power storage device 18 is described as having the related data 36 shown in FIG. If the plurality of power storage devices 18 have the same specifications and the same structure, the related data 36 is substantially the same except for variations in manufacturing. In the case of the power storage devices 18 having different specifications and structures, the related data is different. FIG. 6 is a diagram illustrating an example of related data 35 of power storage devices having different specifications and structures. The parameters, the vertical axis, and the horizontal axis of the related data 35 are the same as the related data 36 in FIG. In FIG. 6, the optimum ranges 44 and 46 are ranges in which the capacity retention rate is stably high. Compared with FIG. 3, it can be seen that there is an optimum range 44 in the higher value of the charge / discharge target SOC. As described above, the charge / discharge target SOC and the charge / discharge current rate that can reduce the capacity deterioration degree differ depending on the specifications and structure of the power storage device.
 上記構成の作用、特に制御装置20の各機能、記憶装置22に格納される関連データ36の内容について、図7を用いてさらに詳細に説明する。図7は、蓄電装置充放電システム16において、系統制御装置13で算出された系統周波数を安定させるために必要な充放電量を充放電要求として満たしながら、蓄電装置18の容量劣化度を低減するように、充放電目標SOCの設定と充放電電流レートの設定を行う手順を示すフローチャートの一例である。図7の各手順は、制御装置20における充放電制御の各処理手順にそれぞれ対応する。 The operation of the above configuration, in particular, the functions of the control device 20 and the contents of the related data 36 stored in the storage device 22 will be described in more detail with reference to FIG. FIG. 7 shows that in the power storage device charge / discharge system 16, the capacity deterioration degree of the power storage device 18 is reduced while satisfying the charge / discharge amount necessary for stabilizing the system frequency calculated by the system control device 13 as a charge / discharge request. Thus, it is an example of a flowchart showing a procedure for setting the charge / discharge target SOC and setting the charge / discharge current rate. Each procedure in FIG. 7 corresponds to each processing procedure of charge / discharge control in the control device 20.
 まず、蓄電装置充放電システム16の各構成要素の初期条件が設定される。そして、充放電目標SOCの中心SOCの設定が行われる(S10)。中心SOCを含む充放電目標SOCは、電力送配電ネットワーク10の全体のシステム設定から設定されることもあるが、蓄電装置充放電システム16が系統電源12や工場14とは経済的に分離した独立発電事業者であるときは、蓄電装置充放電システム16の最大利益等に基づいて設定が行われる。 First, initial conditions of each component of the power storage device charging / discharging system 16 are set. Then, the center SOC of the charge / discharge target SOC is set (S10). The charge / discharge target SOC including the central SOC may be set from the overall system settings of the power transmission / distribution network 10, but the power storage device charge / discharge system 16 is economically separated from the system power supply 12 and the factory 14. When it is a power generation company, the setting is performed based on the maximum profit of the power storage device charging / discharging system 16.
 一例として、充放電目標SOCの中心SOCが蓄電装置18の容量劣化度を予め設定された値以下にする方針の下で設定されるものとする。蓄電装置18の特性が関連データ36で示される場合には、充放電目標SOCの中心SOCは、約40%から約60%の間の範囲の適当な値に設定されることになる。また、蓄電装置18の特性が関連データ35で示される場合には、充放電目標SOCの中心SOCは、約65%から約80%の間の範囲の適当な値に設定されることになる。このように、蓄電装置18の容量劣化度を考慮すると、充放電目標SOCの中心SOCは、蓄電装置18の仕様、構造等によって異なる値に設定されることになる。以下では、蓄電装置18の諸特性に温度依存性がある場合、使用履歴がある場合の一例を挙げる。また、蓄電装置18が関連データ36の特性を有するものとして説明を続ける。 As an example, it is assumed that the center SOC of the charge / discharge target SOC is set under a policy of setting the capacity deterioration degree of the power storage device 18 to be equal to or less than a preset value. When the characteristics of power storage device 18 are indicated by related data 36, center SOC of charge / discharge target SOC is set to an appropriate value in a range between about 40% and about 60%. When the characteristics of power storage device 18 are indicated by related data 35, center SOC of charge / discharge target SOC is set to an appropriate value in a range between about 65% and about 80%. Thus, when the degree of capacity deterioration of power storage device 18 is taken into consideration, the center SOC of charge / discharge target SOC is set to a different value depending on the specification, structure, etc. of power storage device 18. In the following, an example is given of cases where the characteristics of the power storage device 18 are temperature-dependent and there is a usage history. The description will be continued assuming that the power storage device 18 has the characteristics of the related data 36.
 なお、充放電目標SOCの中心SOCは、蓄電装置18の使用状況等で、必ずしも容量劣化度を予め設定された値以下とする値に設定されないこともある。例えば、蓄電装置充放電システム16が系統電源12からの夜間給電を受けて充電を行い、工場14に対し昼間放電を行うシステムであるときには、夜間給電が完了した早朝の時点では充放電目標SOCの中心SOCは蓄電装置18の満充電状態に近い値に設定されていることになる。また、蓄電装置充放電システム16が太陽電池の発電によって充電が行われるシステムであるときには、日照状況に応じて充放電目標SOCの中心SOCの設定が行われる。 Note that the central SOC of the charge / discharge target SOC may not necessarily be set to a value that causes the capacity deterioration degree to be equal to or less than a preset value depending on the usage state of the power storage device 18 or the like. For example, when the power storage device charging / discharging system 16 is charged by receiving power from the system power supply 12 at night and discharging to the factory 14 in the daytime, the charge / discharge target SOC of the power storage device charging / discharging system 16 is set in the early morning when the night power feeding is completed. The center SOC is set to a value close to the fully charged state of power storage device 18. Further, when the power storage device charging / discharging system 16 is a system in which charging is performed by power generation of a solar battery, the center SOC of the charging / discharging target SOC is set according to the sunshine situation.
 充放電目標SOCの中心SOCの設定が行われると、次に、蓄電装置18の関連データ36の参照が行われる(S12)。関連データ36は、使用温度、使用履歴毎に記憶装置22に格納されているので、蓄電装置18の使用温度、使用履歴を指定して、記憶装置22から読み出すことができる。関連データ36が読み出されると、設定された充放電目標SOCの中心SOCの下で、蓄電装置18の容量劣化度が予め設定された値以下になる方向に充放電電流レート、並列数の設定が行われる。図7では、条件S設定(S14)として、充放電目標SOC=SOC(S)、容量劣化度=DG(S)、充放電電流レート=CR(S)、並列数=N(S)と設定されることが示されている。 When the center SOC of the charge / discharge target SOC is set, next, the related data 36 of the power storage device 18 is referred to (S12). Since the related data 36 is stored in the storage device 22 for each use temperature and use history, the use temperature and use history of the power storage device 18 can be designated and read from the storage device 22. When the related data 36 is read, under the center SOC of the set charge / discharge target SOC, the charge / discharge current rate and the parallel number are set in a direction in which the capacity deterioration degree of the power storage device 18 is not more than a preset value. Done. In FIG. 7, as the condition S setting (S14), the charge / discharge target SOC = SOC (S), the capacity deterioration degree = DG (S), the charge / discharge current rate = CR (S), and the parallel number = N (S) are set. Has been shown to be.
 図3の関連データ36を参照して条件Sの設定の一例を説明する。制御装置20の充放電目標SOC設定部30において、充放電目標SOCの中心SOCが40%に設定された場合(S10)、中心SOC=SOC(S)=40%である。容量劣化度の目標最大値を、例えば容量劣化度=DG(S)=0.1とする。DG(S)=0.1とは、容量維持率B/A=0.9のことである。中心SOC40%時の容量劣化度がDG(S)=0.1となるよう充放電電流レート設定部32で充放電電流レートを設定する。ここでは、充放電電流レート=CR(S)=0.5Cに設定されるとする。並列数は、蓄電装置18の標準並列接続数に設定される。標準並列接続数を12個とすると、並列数=N(S)=12である。 An example of setting the condition S will be described with reference to the related data 36 in FIG. When the center SOC of the charge / discharge target SOC is set to 40% in the charge / discharge target SOC setting unit 30 of the control device 20 (S10), the center SOC = SOC (S) = 40%. The target maximum value of the capacity deterioration degree is set to, for example, capacity deterioration degree = DG (S) = 0.1. DG (S) = 0.1 means that the capacity retention ratio B / A = 0.9. The charge / discharge current rate setting unit 32 sets the charge / discharge current rate so that the capacity deterioration degree when the center SOC is 40% is DG (S) = 0.1. Here, it is assumed that the charge / discharge current rate = CR (S) = 0.5C. The parallel number is set to the standard parallel connection number of the power storage device 18. If the standard parallel connection number is 12, the parallel number = N (S) = 12.
 このように条件Sの設定が行われると、その条件Sの下で蓄電装置18の充放電制御が実行される。系統制御装置13は、系統電源12が供給できる電力と、負荷である工場14の需要バランスを見て、工場14が安定した電力の供給が出来る充放電量を算出する。
工場14の需要よりも系統電源12が供給できる電力が100kw少ない場合、系統制御装置13は、100kw分放電するよう、充放電要求取得部28へ放電要求を与える。工場14の需要よりも系統電源12が供給できる電力が100kw多い場合、系統制御装置13は、100kw分充電するよう、充放電要求取得部28へ充電要求を与える。系統制御装置13で算出された充放電量は、制御装置20の充放電要求取得部28にて、充放電要求として取得される(S16)。
When the condition S is set as described above, charge / discharge control of the power storage device 18 is executed under the condition S. The system control device 13 calculates the amount of charge / discharge at which the factory 14 can stably supply power by looking at the power balance that can be supplied by the system power supply 12 and the demand balance of the factory 14 that is a load.
When the power that can be supplied by the system power supply 12 is 100 kW less than the demand of the factory 14, the system control device 13 gives a discharge request to the charge / discharge request acquisition unit 28 so as to discharge 100 kW. When the power that can be supplied by the system power supply 12 is 100 kW higher than the demand of the factory 14, the system control device 13 gives a charge request to the charge / discharge request acquisition unit 28 so as to charge 100 kW. The charge / discharge amount calculated by the system control device 13 is acquired as a charge / discharge request by the charge / discharge request acquisition unit 28 of the control device 20 (S16).
 充放電要求が取得されると、その要求を満たすために条件Sで十分か否かの判断が行われる(S18)。判断が肯定であれば、条件Sの下での充放電制御が維持され、設定を終了する。判断が否定であれば、充放電要求と蓄電装置18の劣化度の低減との両立を図るために、S20以下の手順に進む。 When the charge / discharge request is acquired, it is determined whether or not the condition S is sufficient to satisfy the request (S18). If the determination is positive, the charge / discharge control under the condition S is maintained, and the setting is completed. If the determination is negative, in order to achieve both a charge / discharge request and a reduction in the degree of deterioration of the power storage device 18, the process proceeds to S20 and subsequent steps.
 S18が否定された場合、まず、中心SOC=SOC(S)は変更せず、充放電電流レート設定部32により、充放電電流レートを変更することで充放電要求を満たすことが可能か判断する(S20)。図3の例では、SOC(S)=40%であれば、充放電電流レートが0.5C、1.0C、1.5Cのいずれの場合でも、蓄電装置18の容量劣化度が小さい。例えば、充放電電流レートを1.5Cに設定した場合、SOC(S)=40%であれば、中心SOCが10%、中心SOC80%のときに比べ、蓄電装置18の容量劣化度を抑えることができる。この場合、容量劣化度は、DG(S)より大きな値となるが、例えば予め定めた容量劣化度の最大値DG(max)以下を許容範囲とすればよい。 When S18 is negative, first, the center SOC = SOC (S) is not changed, and the charge / discharge current rate setting unit 32 determines whether the charge / discharge request can be satisfied by changing the charge / discharge current rate. (S20). In the example of FIG. 3, when SOC (S) = 40%, the capacity deterioration degree of the power storage device 18 is small regardless of whether the charge / discharge current rate is 0.5C, 1.0C, or 1.5C. For example, when the charge / discharge current rate is set to 1.5 C, if SOC (S) = 40%, the capacity deterioration degree of the power storage device 18 is suppressed as compared to when the center SOC is 10% and the center SOC is 80%. Can do. In this case, the capacity deterioration degree is a value larger than DG (S). For example, it is only necessary to set a predetermined capacity deterioration degree equal to or less than the maximum value DG (max).
 したがって、充放電電流レート=CR(S)=0.5Cから3倍の充放電電流レート=1.5Cに変更することで充放電要求を満たすことができ、さらに充放電電流レートを3倍にしたことで大きくなる容量劣化度がDG(max)以下であれば、中心SOC=SOC(S)と設定でき、S20の判断が肯定される。 Therefore, the charge / discharge current rate can be satisfied by changing the charge / discharge current rate = CR (S) = 0.5C to three times the charge / discharge current rate = 1.5C, and the charge / discharge current rate is tripled. If the capacity deterioration degree which becomes large by this is DG (max) or less, the center SOC = SOC (S) can be set, and the determination in S20 is affirmed.
 そこで、条件1として、充放電目標SOC=SOC(S)、容量劣化度=DG(1)、充放電電流レート=CR(1)、並列数=N(S)と設定され、その条件の下で充放電制御が行われる。この例では、CR(1)は、DG(1)が、DG(max)以下の値となるように選択して設定される(S22)。 Therefore, as condition 1, charging / discharging target SOC = SOC (S), capacity degradation level = DG (1), charging / discharging current rate = CR (1), and the number of parallels = N (S) are set. The charge / discharge control is performed. In this example, CR (1) is selected and set so that DG (1) is equal to or less than DG (max) (S22).
 上記の例で、蓄電装置18の特性が、充放電目標SOCの中心SOC=40%のときに充放電電流レートが1.5C以下であれば容量劣化度がDG(max)以下である場合には、CR(1)は、1.5C以下の範囲で充放電要求を満たす値に設定することができる。かかる充放電電流レートの変更設定は、制御装置20の充放電電流レート設定部32の機能によって実行される。 In the above example, when the characteristics of the power storage device 18 is the center SOC of the charge / discharge target SOC = 40% and the charge / discharge current rate is 1.5 C or less, the capacity deterioration degree is DG (max) or less. CR (1) can be set to a value satisfying the charge / discharge request in a range of 1.5C or less. The change setting of the charge / discharge current rate is executed by the function of the charge / discharge current rate setting unit 32 of the control device 20.
 S20の判断が否定された場合、制御装置20の並列数設定部34により並列数をN(S)から変更して充放電要求を満たすことが可能であるか判断が行われる(S24)。例えば、上記の例で、充放電電流レートが1.5Cでは容量劣化度をDG(max)以下とできるが、1.5Cでは充放電要求を満たせず、充放電電流レートが1.8Cであれば充放電要求を満たせる場合であるとすると、並列数をN(S)=12から、12×(1.8C/1.5C)=14.4以上のN(1)=15とする。このように並列数を設定することで、充放電電流レートをCR(1)=1.5Cに維持でき、蓄電装置18の容量劣化度をDG(max)以下に維持できるので、S24の判断が肯定される。 If the determination in S20 is negative, the parallel number setting unit 34 of the control device 20 determines whether it is possible to satisfy the charge / discharge request by changing the parallel number from N (S) (S24). For example, in the above example, when the charge / discharge current rate is 1.5C, the capacity deterioration degree can be DG (max) or less, but at 1.5C, the charge / discharge request cannot be satisfied and the charge / discharge current rate is 1.8C. If the charge / discharge request can be satisfied, the parallel number is changed from N (S) = 12 to N (1) = 15 of 12 × (1.8C / 1.5C) = 14.4 or more. By setting the parallel number in this way, the charge / discharge current rate can be maintained at CR (1) = 1.5C, and the capacity deterioration degree of the power storage device 18 can be maintained at DG (max) or less. Affirmed.
 そこで、条件2として、充放電目標SOC=SOC(S)、容量劣化度=DG(1)、充放電電流レート=CR(1)、並列数=N(1)と設定され、その条件の下で充放電制御が行われる。ここで、CR(1)は、DG(1)が、DG(max)以下の値となるように選択して設定され、N(1)は、並列数の最大値であるN(max)以下となるように選択される(S26)。かかる並列数の変更設定は、制御装置20の並列数設定部34の機能によって実行される。 Therefore, as condition 2, charge / discharge target SOC = SOC (S), capacity deterioration degree = DG (1), charge / discharge current rate = CR (1), and parallel number = N (1) are set. The charge / discharge control is performed. Here, CR (1) is selected and set so that DG (1) is equal to or less than DG (max), and N (1) is equal to or less than N (max) which is the maximum value of the parallel number. (S26). The change setting of the parallel number is executed by the function of the parallel number setting unit 34 of the control device 20.
 S24の判断が否定された場合、制御装置20の充放電目標SOC設定部30により充放電電流レートをCR(S)で、充放電目標SOCを変更して充放電要求を満たすことが可能か判断される(S28)。この場合の例としては、充放電要求を満たす充放電電流レートでは蓄電装置18の容量劣化度がDG(max)を超えてしまう場合が挙げられる。
この場合、図3の例では、容量劣化度が予め設定された値以下となる充放電目標SOCは50%前後であるので、SOC(S)を50%に変更して、容量劣化度をDG(max)以下にすることが可能か判断する。
When the determination in S24 is negative, the charge / discharge target SOC setting unit 30 of the control device 20 determines whether the charge / discharge current rate is CR (S) and the charge / discharge target SOC can be satisfied by changing the charge / discharge target SOC. (S28). As an example of this case, there is a case where the capacity deterioration degree of the power storage device 18 exceeds DG (max) at the charge / discharge current rate that satisfies the charge / discharge request.
In this case, in the example of FIG. 3, the charge / discharge target SOC at which the capacity deterioration degree is equal to or less than a preset value is around 50%, so the SOC (S) is changed to 50% and the capacity deterioration degree is set to DG. It is determined whether it is possible to make (max) or less.
 S28の判断が肯定された場合、条件3として、充放電目標SOC=SOC(1)、容量劣化度=DG(1)、充放電電流レート=CR(S)、並列数=N(1)と設定され、その条件の下で充放電制御が行われる。ここで、SOC(1)、CR(S)は、DG(1)が、DG(max)以下の値となるように設定され、N(1)は、並列数の最大値であるN(max)以下となるように選択される(S30)。かかる充放電目標SOCの変更設定は、制御装置20の充放電目標SOC設定部30の機能によって実行される。 When the determination of S28 is affirmed, as condition 3, charge / discharge target SOC = SOC (1), capacity deterioration level = DG (1), charge / discharge current rate = CR (S), parallel number = N (1) It is set and charge / discharge control is performed under the conditions. Here, SOC (1) and CR (S) are set so that DG (1) has a value equal to or less than DG (max), and N (1) is N (max) which is the maximum value of the parallel number. ) Is selected to be as follows (S30). The change setting of the charge / discharge target SOC is executed by the function of the charge / discharge target SOC setting unit 30 of the control device 20.
 S20の判断手順と、S28の判断手順の順序は入れ替えても構わない。すなわち、S18の判断が否定された場合S28の判断を行い、S28の判断が否定された場合次にS20の判断し、次いでS24の判断を行うものとしてもよい。 The order of the determination procedure of S20 and the determination procedure of S28 may be interchanged. That is, if the determination in S18 is negative, the determination in S28 may be performed. If the determination in S28 is negative, the determination in S20 may be performed, and then the determination in S24 may be performed.
 S28の判断が否定された場合、充放電要求を満たすには蓄電装置18の容量劣化度がDG(max)を超えることになる。その場合には、蓄電装置18の容量劣化に伴うコストアップと、充放電要求を満たして工場14に給電することの利益とを勘案して適当な条件設定を行うことになる(S32)。 When the determination in S28 is negative, the capacity deterioration degree of the power storage device 18 exceeds DG (max) to satisfy the charge / discharge request. In that case, appropriate conditions are set in consideration of the cost increase accompanying the capacity deterioration of the power storage device 18 and the benefit of supplying power to the factory 14 by satisfying the charge / discharge request (S32).
 以上のように、系統制御装置13は負荷である工場14へ安定に供給するための充放電量を算出し、蓄電装置充放電システム16では、その充放電量を充放電要求として満たしながら、蓄電装置18の容量劣化度を低減するように、充放電目標SOCの設定と充放電電流レートの設定等が行われて、蓄電装置18の充放電制御が実行される。 As described above, the system control device 13 calculates the charge / discharge amount to be stably supplied to the factory 14 which is a load, and the power storage device charge / discharge system 16 stores the charge / discharge amount while satisfying the charge / discharge request. The charge / discharge target SOC is set, the charge / discharge current rate is set, etc. so as to reduce the capacity deterioration degree of the device 18, and the charge / discharge control of the power storage device 18 is executed.
 上記では、蓄電装置18の充放電制御において、充放電目標SOCを所定の範囲に収めることが必要な例として、アンシラリサービスの下にある蓄電装置18の充放電制御を述べた。すなわち、電力会社等の系統電源12と共に電力送配電ネットワーク10に接続される蓄電装置充放電システム16は、当該ネットワークの電力の需給バランスを崩さないように、充放電目標SOCを所定の範囲に収めることが求められる。 In the above description, the charge / discharge control of the power storage device 18 under the ancillary service has been described as an example in which the charge / discharge target SOC needs to be within a predetermined range in the charge / discharge control of the power storage device 18. That is, the power storage device charging / discharging system 16 connected to the power transmission / distribution network 10 together with the system power supply 12 of an electric power company or the like keeps the charge / discharge target SOC within a predetermined range so as not to disturb the power supply / demand balance of the network. Is required.
 その他の例としては、車両に搭載される蓄電装置の充放電制御が挙げられる。そこでは、蓄電装置が過充電や過放電にならないように、また、繰り返し充放電による容量劣化度を抑制するように、蓄電装置のSOCが所定の範囲となるように充放電制御が行われる。
図8は、蓄電装置充放電システム48を含む車両駆動制御システム50の構成を示す図である。車両駆動制御システム50は、車両52に搭載されるエンジン54と回転電機56と蓄電装置充放電システム48を備える。回転電機56は車両52に搭載される電力機器で、図1における負荷である工場14に相当する。
Other examples include charge / discharge control of a power storage device mounted on a vehicle. In this case, charge / discharge control is performed so that the SOC of the power storage device falls within a predetermined range so that the power storage device does not become overcharged or overdischarged, and suppresses the degree of capacity deterioration due to repeated charge / discharge.
FIG. 8 is a diagram showing a configuration of the vehicle drive control system 50 including the power storage device charging / discharging system 48. The vehicle drive control system 50 includes an engine 54, a rotating electrical machine 56, and a power storage device charge / discharge system 48 mounted on the vehicle 52. The rotating electrical machine 56 is a power device mounted on the vehicle 52 and corresponds to the factory 14 which is a load in FIG.
 蓄電装置充放電システム48は、図1の蓄電装置充放電システム16とほぼ同じ構成である。すなわち、車両52に搭載される蓄電装置58と、その充放電制御を行う制御装置60と、記憶装置62を備える。制御装置60は、充放電要求取得部64と、充放電目標SOC設定部66と、充放電電流レート設定部68を含み、記憶装置62には、蓄電装置58の充放電目標SOC、充放電電流レート、容量劣化度を関連付ける関連データ70が格納される。 The power storage device charging / discharging system 48 has substantially the same configuration as the power storage device charging / discharging system 16 of FIG. That is, it includes a power storage device 58 mounted on the vehicle 52, a control device 60 that performs charge / discharge control thereof, and a storage device 62. Control device 60 includes a charge / discharge request acquisition unit 64, a charge / discharge target SOC setting unit 66, and a charge / discharge current rate setting unit 68, and storage device 62 has a charge / discharge target SOC and a charge / discharge current of power storage device 58. The related data 70 for associating the rate and the capacity deterioration degree is stored.
 制御装置60は、蓄電装置58の並列数の変更が行われないことを除けば、図7で説明したと同様の手順で、車両からの充放電要求と蓄電装置58の容量劣化度の低減とを両立させるように、充放電目標SOCと充放電電流レートを適切な値に設定する。 The control device 60 performs the same procedure as described in FIG. 7 except that the parallel number of the power storage devices 58 is not changed, and reduces the charge / discharge request from the vehicle and the capacity deterioration degree of the power storage device 58. The charge / discharge target SOC and the charge / discharge current rate are set to appropriate values so that
 また、動力源として電池の電荷が使用されるとSOCが低下していく。逆に回生や発電機からの充電が行われるとSOCが増加する。車両ではこの変化が常時組み合わされて発生しているため、現在のSOCに合わせて、入出力される電流レートを制限してもよい。
さらに、入出力される電流レートの値からSOCの時間変化等を予測し、各予測時刻において入出力可能な電流レートを演算し、一定時間後までに出力可能な電流量などの情報として車両へ通知してもよい。
Further, when the battery charge is used as a power source, the SOC decreases. Conversely, when regeneration or charging from a generator is performed, the SOC increases. Since this change is always generated in combination in the vehicle, the input / output current rate may be limited in accordance with the current SOC.
Further, the time change of the SOC is predicted from the value of the input / output current rate, the current rate that can be input / output at each prediction time is calculated, and information such as the amount of current that can be output before a certain time is sent to the vehicle. You may be notified.
 別の実施例として、予め算出しておいた負荷の需要電力量を基に電力送配電ネットワーク10の電力の需給バランスを確保して電力送配電ネットワーク10内の需要供給の安定を図るデマンドレスポンスの一例を示す。 As another embodiment, a demand response for ensuring the supply and demand balance of the power transmission / distribution network 10 based on the demand power amount of the load calculated in advance to stabilize the demand supply in the power transmission / distribution network 10. An example is shown.
 負荷となる工場14で必要とされる電力量を過去の使用電力量から推定して予め算出しておき、算出値を記憶装置22に記憶し(図示せず)、系統電源12が供給できる電力と、該算出値を基にした負荷である工場14の需要電力とから、電力送配電ネットワーク10内の需要供給の安定を図るようにしてもよい。工場14が使用する電力のピークを平準化するように電流レートを制御してもよい。本実施例の場合も、図7記載の手順で、蓄電装置18の容量劣化度を低減するように、中心SOCおよび充放電電流レートを設定することが出来る。 The amount of power required in the factory 14 serving as a load is estimated in advance from the past power consumption, calculated in advance, stored in the storage device 22 (not shown), and power that can be supplied by the system power supply 12 From the demand power of the factory 14 that is a load based on the calculated value, the demand supply in the power transmission / distribution network 10 may be stabilized. You may control a current rate so that the peak of the electric power which the factory 14 uses may be equalized. Also in the case of the present embodiment, the central SOC and the charge / discharge current rate can be set so as to reduce the capacity deterioration degree of the power storage device 18 by the procedure shown in FIG.
 以上のように、上記構成によれば、蓄電装置の充放電目標SOCと充放電電流レートの2つの変数、場合によって・BR>ヘ蓄電装置を構成する蓄電池ユニットの並列接続の数を適切に選択することで、充放電要求と、蓄電装置の容量劣化度の低減とを両立させて、適切な充放電制御を行うことができる。 As described above, according to the above configuration, two variables of the charge / discharge target SOC of the power storage device and the charge / discharge current rate are appropriately selected. By doing so, it is possible to perform appropriate charge / discharge control while satisfying both the charge / discharge request and the reduction in the capacity deterioration degree of the power storage device.
 以下では、蓄電装置18を充放電する際の容量劣化度の推定の方法と、容量劣化度を低減する方法について説明する。以下では、蓄電装置18の充電について詳細に説明するが、放電についても電流の流れ方が逆になるだけで、同様に適用が可能である。 Hereinafter, a method for estimating the capacity deterioration degree when charging and discharging the power storage device 18 and a method for reducing the capacity deterioration degree will be described. Hereinafter, charging of the power storage device 18 will be described in detail, but the discharge can be similarly applied only by reversing the current flow.
 図9は、容量劣化度の推定と容量劣化度の低減のための制御装置20の構成を示す図である。制御装置20は、図1で説明した充放電要求取得部28等の他に、容量劣化度推定部80と、SOCに応じて充放電電流レートを変更するパターンを電流レートパターンとして、容量劣化度を低減するように電流レートパターンを設定する電流レートパターン設定部82と、電流レートパターンの設定の際に、電流レートパターンのパラメータのばらつきが容量劣化度にどのように影響するかを評価するばらつき影響度評価部84を含んで構成される。 FIG. 9 is a diagram showing a configuration of the control device 20 for estimating the capacity deterioration degree and reducing the capacity deterioration degree. In addition to the charge / discharge request acquisition unit 28 and the like described in FIG. 1, the control device 20 uses the capacity deterioration degree estimation unit 80 and a pattern for changing the charge / discharge current rate according to the SOC as a current rate pattern. A current rate pattern setting unit 82 that sets a current rate pattern so as to reduce current, and a variation for evaluating how a variation in a current rate pattern parameter affects a capacity deterioration degree when setting a current rate pattern An influence evaluation unit 84 is included.
 蓄電装置18の充放電の全区間に渡って容量劣化度を推定する一例として、蓄電装置18の充電処理の全区間について説明する。図10は、蓄電装置18の充電方法を示す図である。図10(a)は、横軸にSOCを取り、縦軸に蓄電装置18の端子間電圧値を取った図で、(b)の横軸は(a)と同じSOCで、縦軸は充電電流値である。 As an example of estimating the capacity deterioration degree over the entire charging / discharging section of the power storage device 18, the entire section of the charging process of the power storage device 18 will be described. FIG. 10 is a diagram illustrating a method for charging the power storage device 18. FIG. 10A is a diagram in which the horizontal axis indicates SOC, and the vertical axis indicates the voltage value between terminals of the power storage device 18. The horizontal axis in FIG. 10B is the same SOC as in FIG. Current value.
 図10に示されるように、蓄電装置18に対する充電制御の初期は充電電流の大きさを一定値ICCとする定電流充電が行われる。この期間が定電流充電期間で、図2等で説明した充電電流レートを一定値とした充電に相当する。これによって端子間電圧値が次第に上昇して予め定めたCV電圧値であるVCVとなると、端子間電圧を一定値に維持してさらに充電を続ける。この期間が定電圧充電期間である。これによって充電電流値が次第に小さくなり、予め定めた充電終了電流値IEとなると、充電制御を終了する。 As shown in FIG. 10, constant current charging is performed in which the magnitude of the charging current is a constant value I CC at the initial stage of charging control for the power storage device 18. This period is a constant current charging period and corresponds to charging with the charging current rate described with reference to FIG. As a result, when the inter-terminal voltage value gradually rises to V CV which is a predetermined CV voltage value, the inter-terminal voltage is maintained at a constant value and charging is continued. This period is a constant voltage charging period. As a result, the charging current value gradually decreases, and when the charging end current value IE is reached, the charging control is terminated.
 定電流充電期間においては、充電は一定の充電電流レートで行われるので、その容量劣化度は、充電電流レートの大きさとSOCが分かれば、図3から図6で説明した内容に基づいて求めることができる。そこで、定電圧充電期間における容量劣化度を求めることができれば、図10の充電制御の全区間についての容量劣化度を推定できることになる。以下では、図3から図6で説明した充放電電流レートが一定のときの容量劣化度を第1劣化度とし、定電圧充電が開始するSOC以降の一定電圧の下の充電による容量劣化度を第2劣化度とする。 Since charging is performed at a constant charging current rate in the constant current charging period, the capacity deterioration degree is obtained based on the contents described in FIGS. 3 to 6 if the magnitude of the charging current rate and the SOC are known. Can do. Therefore, if the capacity deterioration degree in the constant voltage charging period can be obtained, the capacity deterioration degree in all sections of the charging control in FIG. 10 can be estimated. In the following, the capacity deterioration degree when the charge / discharge current rate described in FIGS. 3 to 6 is constant is defined as the first deterioration degree, and the capacity deterioration degree due to charging under a constant voltage after the SOC at which constant voltage charging starts is indicated. The second deterioration degree is assumed.
 定電圧充電期間における第2劣化度を実験的に調べると、定電圧充電を開始するときのSOCが小さいほど、容量劣化度が大きくなる傾向にあることが分かった。ここで、定電圧充電を開始するときのSOCをSOCCVとすると、SOCCVは、定電圧充電を開始するときの蓄電装置18の開放電圧Vocが分かれば、蓄電装置18の開放電圧値Vocと充電状態値SOCとの間の関係を示すVoc-SOC関係に基づいて求めることができる。
定電圧充電を開始するときの蓄電装置18の開放電圧Vocは、CV電圧VCVと、定電圧充電を開始するときの蓄電装置18の内部抵抗値Rによる電圧降下に基づいて求めることができる。すなわち、SOCCVに対応する開放電圧Voc=VCV-ICC×Rで求められる。なお、CV電圧値であるVCVは、蓄電装置18の仕様が定まれば、経験的な値として設定することができる。例えば、蓄電装置18がリチウムイオン単電池の場合、VCVは、約4.1Vから約4.4Vの範囲の電圧値として設定される。
When the second deterioration degree in the constant voltage charging period was experimentally examined, it was found that the capacity deterioration degree tends to increase as the SOC when starting the constant voltage charging is smaller. Here, assuming that the SOC at the start of constant voltage charging is SOC CV , if the SOC CV knows the open circuit voltage Voc of the power storage device 18 at the time of starting constant voltage charging, the SOC CV is the open circuit voltage value Voc of the power storage device 18. It can be obtained based on the Voc-SOC relationship indicating the relationship between the state of charge SOC.
The open circuit voltage Voc of the power storage device 18 when starting constant voltage charging can be obtained based on the voltage drop due to the CV voltage V CV and the internal resistance value R of the power storage device 18 when starting constant voltage charging. That is, the open circuit voltage Voc = V CV −I CC × R corresponding to SOC CV is obtained. Note that V CV , which is a CV voltage value, can be set as an empirical value if the specifications of the power storage device 18 are determined. For example, when the power storage device 18 is a lithium ion cell, V CV is set as a voltage value in the range of about 4.1 V to about 4.4 V.
 図11は、蓄電装置18の内部抵抗値Rと、蓄電装置18が充放電したサイクル数との関係を示す図である。サイクル数=0のときのR0は、蓄電装置18の初期の内部抵抗値で、蓄電装置18の仕様が定まれば、実験的に求めることができる。図11を用いることで、充放電を繰り返した蓄電装置18についても、その内部抵抗値Rを求めることができる。これにより、定電圧充電を開始するときの開放電圧Voc=VCV-ICC×Rを算出することができる。 FIG. 11 is a diagram illustrating a relationship between the internal resistance value R of the power storage device 18 and the number of cycles in which the power storage device 18 is charged and discharged. R 0 when the number of cycles = 0 is an initial internal resistance value of the power storage device 18 and can be obtained experimentally if the specifications of the power storage device 18 are determined. By using FIG. 11, the internal resistance value R of the power storage device 18 that has been repeatedly charged and discharged can be obtained. As a result, the open circuit voltage Voc = V CV −I CC × R when starting constant voltage charging can be calculated.
 図12は、蓄電装置18のVoc-SOC関係の一例を示す図である。Voc-SOC関係は、横軸がSOCで縦軸がVocである。図12は、リチウムイオン電池の一般的な特性として、実験的に求めることができる。図12を用いて、定電圧充電を開始するときの開放電圧Vocに対応するSOCとして、SOCCVを求めることができる。 FIG. 12 is a diagram illustrating an example of the Voc-SOC relationship of the power storage device 18. In the Voc-SOC relationship, the horizontal axis is SOC and the vertical axis is Voc. FIG. 12 can be experimentally obtained as a general characteristic of a lithium ion battery. Using FIG. 12, the SOC CV can be obtained as the SOC corresponding to the open circuit voltage Voc when starting constant voltage charging.
 図13は、リチウムイオン電池について、SOCCVと第2劣化度との関係を実験的に求めた結果を模擬した図である。横軸はSOCCV、縦軸は第2劣化度である。図13に示されるように、定電圧充電を開始するときのSOCCVが小さいほど、容量劣化度が大きくなる。この例ではSOCCVが70%以上のときは、ほぼ一定の容量劣化度となる。 FIG. 13 is a diagram simulating the result of experimentally determining the relationship between the SOC CV and the second deterioration degree for a lithium ion battery. The horizontal axis is SOC CV and the vertical axis is the second deterioration degree. As shown in FIG. 13, the smaller the SOC CV when starting constant voltage charging, the greater the capacity deterioration degree. In this example, when the SOC CV is 70% or more, the capacity deterioration degree is almost constant.
 図3から図6で説明した内容と、図13のデータを用いることで、蓄電装置18の充放電制御の全区間についての容量劣化度を推定することができる。ここでは、図14を用いて、蓄電装置18の充電制御処理の全区間に渡る容量劣化度の推定処理について述べる。
この処理は、制御装置20の容量劣化度推定部80の機能によって実行することができる。
By using the contents described in FIGS. 3 to 6 and the data in FIG. 13, it is possible to estimate the capacity deterioration degree for all the sections of the charge / discharge control of the power storage device 18. Here, the capacity deterioration degree estimation process over the entire section of the charging control process of the power storage device 18 will be described with reference to FIG.
This process can be executed by the function of the capacity deterioration degree estimating unit 80 of the control device 20.
 図14(a)は、蓄電装置18について満充電制御を行うときに、充電が進行するにつれて充電電流値をどのように変化させたかを示す図で、横軸にSOCを取り、縦軸には充電電流レートで充電電流値を示した。図10では、定電流充電期間中は定電流値で充電するものとしたが、図3の充放電目標SOCと充放電電流レートと容量劣化度の関係を示す関連データの一例からは、SOCが50%前後では充電電流レートを大きく設定しても、容量劣化度の増加は少ないので、他のSOC領域よりも大きな充電電流レートに設定している。SOCが50%前後の領域を除く領域では、SOCが50%前後の領域と同じ充電電流レートでは容量劣化度が増加することになるので、充電電流レートを小さくする。このように、容量維持率が向上するようにSOCに応じて充電電流レートを変更している。
例えば、定電圧充電が開始するSOCが80%であるとすると、SOCが0%から40%の間は1.0Cで充電し、SOCが40%から60%の間は1.5Cで充電し、SOCが60%から80%の間は0.5Cで充電する。SOCが80%から100%の間は、定電圧充電期間として、VCVの一定値の下で充電する。
FIG. 14A is a diagram showing how the charging current value is changed as the charging progresses when full charge control is performed on the power storage device 18, and the horizontal axis indicates the SOC and the vertical axis indicates The charging current value is shown by the charging current rate. In FIG. 10, charging is performed at a constant current value during the constant current charging period. However, from one example of related data indicating the relationship between the charge / discharge target SOC, the charge / discharge current rate, and the capacity deterioration degree in FIG. Even if the charging current rate is set to a large value around 50%, the increase in the capacity deterioration degree is small, so the charging current rate is set to be larger than that in other SOC regions. In a region excluding the region where the SOC is around 50%, the capacity deterioration degree increases at the same charging current rate as the region where the SOC is around 50%, so the charging current rate is reduced. Thus, the charging current rate is changed according to the SOC so that the capacity maintenance rate is improved.
For example, if the SOC at which constant voltage charging starts is 80%, the SOC is charged at 1.0 C when the SOC is 0% to 40%, and is charged at 1.5 C when the SOC is 40% to 60%. When the SOC is between 60% and 80%, the battery is charged at 0.5C. When the SOC is between 80% and 100%, charging is performed under a constant value of V CV as a constant voltage charging period.
 図14(b)は、横軸を図14(a)のSOCと一致させ、縦軸に第1劣化度と第2劣化度を取って示した図である。第1劣化度は、定電流充電期間であるSOCが0%から80%について、図3(a)の縦軸の容量維持率を容量劣化度=(1-容量維持率)で書き替え、これを第1劣化度とした。第2劣化度は、定電圧充電期間であるSOC80%から100%について図13のデータを用いた。この場合のSOCの全区間に渡る容量劣化度は、以下のようにして推定される。 FIG. 14 (b) is a diagram in which the horizontal axis coincides with the SOC of FIG. 14 (a), and the vertical axis represents the first and second deterioration levels. As for the first deterioration degree, when the SOC, which is the constant current charging period, is 0% to 80%, the capacity maintenance ratio on the vertical axis in FIG. 3A is rewritten with capacity deterioration degree = (1−capacity maintenance ratio). Was defined as the first deterioration degree. As the second degree of deterioration, the data of FIG. 13 was used for SOC 80% to 100%, which is a constant voltage charging period. In this case, the capacity deterioration degree over the entire SOC section is estimated as follows.
 SOCが0%から40%の間は1.0Cで充電するので、図14(b)を用いて、1.0Cについての第1劣化度をSOC0%から40%の間で積算しこれをD1とする。SOCが40%から60%の間は1.5Cで充電するので、図14(b)を用いて、1.5Cについての第1劣化度をSOC40%から60%の間で積算し、これをD2とする。SOCが60%から80%の間は0.5Cで充電するので、図14(b)を用いて、0.5Cについての第1劣化度をSOC60%から80%の間で積算し、これをD3とする。SOCが80%から100%の間は、定電圧充電が開始されるSOCが80%であるので、図13からSOC80%の時点の第2劣化度を求め、これをD4とする。なお、図14(b)において、第1劣化度の積算した値D1,D2,D3の大きさを斜線で示した。 Since the battery is charged at 1.0 C when the SOC is 0% to 40%, the first deterioration degree for 1.0 C is integrated between SOC 0% and 40% using FIG. And Since the SOC is charged at 1.5C when the SOC is 40% to 60%, the first deterioration degree for 1.5C is integrated between the SOC 40% and 60% using FIG. Let D2. Since the SOC is charged at 0.5C when the SOC is 60% to 80%, the first deterioration degree for 0.5C is integrated between the SOC 60% and 80% using FIG. Let D3. When the SOC is between 80% and 100%, the SOC at which constant voltage charging is started is 80%. Therefore, the second deterioration degree at the time of SOC 80% is obtained from FIG. 13, and this is set as D4. In FIG. 14B, the magnitudes of the integrated values D1, D2, and D3 of the first deterioration degree are indicated by hatching.
 SOC全区間に渡る容量劣化度は、この例では、全区間の容量劣化度推定値=D1+D2+D3+D4と算出できる。 In this example, the capacity deterioration degree over the entire SOC section can be calculated as the capacity deterioration degree estimated value of all sections = D1 + D2 + D3 + D4.
 図14では、SOCに応じて充電電流レートを変更したが、充電電流レートのパターンである電流レートパターンは、容量劣化度の推定誤差、センサ精度等による外乱によりそのパターンを構成するパラメータが多少変動しても、容量劣化率があまり変化しないことが望ましい。以下では、図15、図16を用いて、複数の電流レートパターンの候補について、電流レートパターンを構成するパラメータの変動に対する容量劣化度の変化であるばらつき影響度を評価して、複数の電流レートパターンの候補の中からばらつき影響度が最小となる電流レートパターンを決定する場合の一例について説明する。この処理は、制御装置20の電流レートパターン設定部82と、ばらつき影響度評価部84の機能によって実行される。 In FIG. 14, the charging current rate is changed in accordance with the SOC. However, the current rate pattern, which is a charging current rate pattern, varies slightly due to disturbance due to estimation error of capacity degradation degree, sensor accuracy, and the like. Even so, it is desirable that the capacity deterioration rate does not change much. Hereinafter, with reference to FIG. 15 and FIG. 16, for a plurality of current rate pattern candidates, a variation influence degree that is a change in the capacity deterioration degree with respect to a change in a parameter constituting the current rate pattern is evaluated, and a plurality of current rate patterns are evaluated. An example of determining a current rate pattern that minimizes the influence of variation from among the pattern candidates will be described. This process is executed by the functions of the current rate pattern setting unit 82 and the variation influence degree evaluation unit 84 of the control device 20.
 図15は、電流レートパターンのパラメータであるSOCを変動させたときの第1劣化度の変動を示す図である。図15(a),(b),(c)はそれぞれ上段と下段の2つの図で構成されているが、それぞれの下段の図は、図14の(a)に対応し、上段の図は、図14の(b)に対応する。図15(a),(b),(c)の下段の図には、図14の電流レートパターンと同じSOCの電流レートパターンを実線86で示し、実線86の電流レートパターンからSOCを+5%変動させた電流レートパターンを一点鎖線87で示し、実線86の電流レートパターンからSOCを-5%変動させた電流レートパターンを破線88で示した。 FIG. 15 is a diagram showing a change in the first deterioration degree when the SOC that is a parameter of the current rate pattern is changed. 15 (a), (b), and (c) are each composed of two figures, an upper stage and a lower stage. Each lower figure corresponds to (a) in FIG. This corresponds to (b) of FIG. 15A, 15B and 15C, the current rate pattern of the same SOC as the current rate pattern of FIG. 14 is indicated by a solid line 86, and the SOC is + 5% from the current rate pattern of the solid line 86. The fluctuating current rate pattern is indicated by a one-dot chain line 87, and the current rate pattern in which the SOC is fluctuated by −5% from the current rate pattern indicated by the solid line 86 is indicated by a broken line 88.
 すなわち、実線86の電流レートパターンは、SOCが0%から40%の間は1.0Cで充電し、SOCが40%から60%の間は1.5Cで充電し、SOCが60%から80%の間は0.5Cで充電するパターンである。一点鎖線87の電流レートパターンは、SOCが0%から45%の間は1.0Cで充電し、SOCが45%から65%の間は1.5Cで充電し、SOCが65%から80%の間は0.5Cで充電するパターンである。また、破線88の電流レートパターンは、SOCが0%から35%の間は1.0Cで充電し、SOCが35%から55%の間は1.5Cで充電し、SOCが55%から80%の間は0.5Cで充電するパターンである。 That is, the current rate pattern of the solid line 86 is charged at 1.0 C when the SOC is 0% to 40%, charged at 1.5 C when the SOC is 40% to 60%, and the SOC is 60% to 80%. % Is a pattern of charging at 0.5C. The current rate pattern of the alternate long and short dash line 87 is charged at 1.0C when the SOC is between 0% and 45%, charged at 1.5C when the SOC is between 45% and 65%, and the SOC is between 65% and 80%. In the pattern, charging is performed at 0.5C. Further, the current rate pattern of the broken line 88 indicates that the SOC is charged at 1.0 C when the SOC is 0% to 35%, is charged at 1.5 C when the SOC is 35% to 55%, and the SOC is 55% to 80%. % Is a pattern of charging at 0.5C.
 図15の例では、図14で説明した電流レートパターンについて、電流レートパターンを構成するパラメータとしてSOCを±5%ずらしている。その変動に対する容量劣化度の変化であるばらつき影響度は、図15(a),(b),(c)の上段の図において、図14で説明した第1劣化度D1,D2,D3がどのように変化するかによって評価できる。第2劣化度D4は、SOCが変われば変化するが、この例では変化しないものとしている。 In the example of FIG. 15, the SOC is shifted by ± 5% as a parameter constituting the current rate pattern with respect to the current rate pattern described in FIG. The variation influence degree, which is a change in the capacity deterioration degree with respect to the fluctuation, is determined by which of the first deterioration degrees D1, D2, and D3 described in FIG. 14 in the upper diagrams of FIGS. 15 (a), (b), and (c). It can be evaluated by how it changes. The second degree of degradation D4 changes when the SOC changes, but does not change in this example.
 図15(a)には、SOCの変動=0%に対する第1劣化度をD10,D20,D30として、それぞれを斜線で示した。図15(a)は図14と同じで、D10,D20,D30は、図14のD1,D2,D3に対応する。図15(b)には、SOCの変動=+5%に対する第1劣化度をD1+,D2+,D3+として、それぞれを斜線で示した。図15(c)には、SOCの変動=-5%に対する第1劣化度をD1-,D2-,D3-として、それぞれを斜線で示した。 In FIG. 15A, the first deterioration degree with respect to SOC variation = 0% is set as D1 0 , D2 0 , D3 0 , and each is indicated by hatching. FIG. 15A is the same as FIG. 14, and D1 0 , D2 0 , and D3 0 correspond to D1, D2, and D3 in FIG. In FIG. 15B, the first deterioration degree with respect to the SOC variation = + 5% is set as D1 + , D2 + , D3 + , and each is shown by hatching. In FIG. 15C, the first deterioration degree with respect to SOC variation = −5% is indicated by D1 , D2 , and D3 , and each is indicated by hatching.
 図16は、電流レートパターンのパラメータである充電電流レートを変動させたときの第1劣化度の変動を示す図である。図16(a),(b),(c)はそれぞれ上段と下段の2つの図で構成されているが、それぞれの下段の図は、図14の(a)に対応し、上段の図は、図14の(b)に対応する。図16(a),(b),(c)の下段の図には、図14の電流レートパターンと同じ充電電流レートを有する電流レートパターンを実線86で示し、実線86の電流レートパターンから充電電流レートを+0.1C変動させた電流レートパターンを一点鎖線89で示し、実線86の電流レートパターンから充電電流レートを-0.1C変動させた電流レートパターンを破線90で示した。 FIG. 16 is a diagram showing a change in the first deterioration degree when the charging current rate that is a parameter of the current rate pattern is changed. 16 (a), (b), and (c) are each composed of two diagrams, an upper stage and a lower stage. Each lower figure corresponds to (a) in FIG. This corresponds to (b) of FIG. In the lower part of FIGS. 16A, 16B, and 16C, a current rate pattern having the same charging current rate as the current rate pattern of FIG. 14 is indicated by a solid line 86, and charging is performed from the current rate pattern of the solid line 86. A current rate pattern in which the current rate is changed by +0.1 C is indicated by a one-dot chain line 89, and a current rate pattern in which the charging current rate is changed by −0.1 C from the current rate pattern of the solid line 86 is indicated by a broken line 90.
 すなわち、実線86の電流レートパターンは、SOCが0%から40%の間は1.0Cで充電し、SOCが40%から60%の間は1.5Cで充電し、SOCが60%から80%の間は0.5Cで充電するパターンである。一点鎖線89の電流レートパターンは、SOCが0%から40%の間は1.1Cで充電し、SOCが40%から60%の間は1.6Cで充電し、SOCが60%から80%の間は0.6Cで充電するパターンである。また、破線90の電流レートパターンは、SOCが0%から40%の間は0.9Cで充電し、SOCが40%から60%の間は1.4Cで充電し、SOCが60%から80%の間は0.4Cで充電するパターンである。 That is, the current rate pattern of the solid line 86 is charged at 1.0 C when the SOC is 0% to 40%, charged at 1.5 C when the SOC is 40% to 60%, and the SOC is 60% to 80%. % Is a pattern of charging at 0.5C. The current rate pattern of the alternate long and short dash line 89 is charged at 1.1 C when the SOC is 0% to 40%, charged at 1.6 C when the SOC is 40% to 60%, and the SOC is 60% to 80%. In the pattern, the battery is charged at 0.6C. Further, the current rate pattern of the broken line 90 indicates that the SOC is charged at 0.9C when the SOC is 0% to 40%, is charged at 1.4C when the SOC is 40% to 60%, and the SOC is 60% to 80%. % Is a pattern of charging at 0.4C.
 図16の例では、図14で説明した電流レートパターンについて、電流レートパターンを構成するパラメータとして充電電流レートを±0.1Cずらしている。その変動に対する容量劣化度の変化であるばらつき影響度は、図16(a),(b),(c)の上段の図において、図14で説明した第1劣化度D1,D2,D3がどのように変化するかによって評価できる。図16(a),(b),(c)の上段の図には、充電電流レートが、0.4C,0.5C,0.6C,0.9C,1.0C,1.1C,1.4C,1.5C.1.6Cのときの第1劣化度とSOCの関係を示した。なお、第2劣化度D4は、SOCが変われば変化するが、この例では変化しないものとしている。 In the example of FIG. 16, with respect to the current rate pattern described in FIG. 14, the charging current rate is shifted by ± 0.1 C as a parameter constituting the current rate pattern. The variation influence degree, which is a change in the capacity deterioration degree with respect to the fluctuation, is the first deterioration degree D1, D2, D3 described in FIG. 14 in the upper diagrams of FIGS. 16 (a), (b), and (c). It can be evaluated by how it changes. 16A, 16B, and 16C, the charging current rates are 0.4C, 0.5C, 0.6C, 0.9C, 1.0C, 1.1C, 1 .4C, 1.5C. The relationship between the first deterioration level and the SOC at 1.6C is shown. Note that the second deterioration degree D4 changes as the SOC changes, but does not change in this example.
 図16(a)には、充電電流レートの変動=0%に対する第1劣化度をE10,E20,E30として、それぞれを斜線で示した。図16(a)は図14と同じで、E10,E20,E30は、図14のD1,D2,D3に対応する。図16(b)には、充電電流レートの変動=+0.1Cに対する第1劣化度をE1+,E2+,E3+として、それぞれを斜線で示した。図16(c)には、充電電流レートの変動=-0.1Cに対する第1劣化度をE1-,E2-,E3-として、それぞれを斜線で示した。 In FIG. 16A, the first deterioration degree with respect to the fluctuation of the charging current rate = 0% is defined as E1 0 , E2 0 , E3 0 , and each is indicated by hatching. FIG. 16A is the same as FIG. 14, and E1 0 , E2 0 and E3 0 correspond to D1, D2 and D3 in FIG. In FIG. 16B, the first deterioration degree with respect to the fluctuation of the charging current rate = + 0.1 C is defined as E1 + , E2 + , E3 + , and each is shown by hatching. In FIG. 16 (c), the first deterioration degree with respect to the fluctuation of the charging current rate = −0.1 C is set as E1 , E2 , E3 , and each is shown by hatching.
 このようにして、図14で説明した電流レートパターンについて、SOC、充電電流レートの変動についての第1劣化度への影響度を評価することができる。同様にして、図13で説明したものと異なる電流レートパターンについて、SOC、充電電流レートの変動についての第1劣化度への影響度を評価することができる。そこで、複数の電流レートパターンを候補として準備し、それぞれについて、SOC、充電電流レートの変動についての第1劣化度への影響度であるばらつき影響度を評価して比較することで、ばらつき影響度が最小の電流レートパターンを決定することができる。そこで、ばらつき影響度が最小となる電流レートパターンの候補を電流レートパターンに設定すれば、容量変化率の推定誤差、センサ精度等による外乱によるパラメータの変動に堅牢な充放電制御が可能となる。 In this way, with respect to the current rate pattern described with reference to FIG. 14, it is possible to evaluate the degree of influence on the first deterioration degree due to fluctuations in the SOC and the charging current rate. Similarly, with respect to a current rate pattern different from that described with reference to FIG. 13, it is possible to evaluate the degree of influence on the first deterioration level due to changes in the SOC and the charging current rate. Therefore, by preparing a plurality of current rate patterns as candidates and evaluating and comparing the variation influence degree that is the degree of influence on the first deterioration degree with respect to the variation of the SOC and the charging current rate, the variation influence degree is obtained. The minimum current rate pattern can be determined. Therefore, if a current rate pattern candidate that minimizes the influence of variation is set as a current rate pattern, charge / discharge control that is robust against parameter fluctuation due to disturbance due to an estimation error of the capacity change rate, sensor accuracy, and the like can be achieved.
 10 電力送配電ネットワーク、12 系統電源、13 系統制御装置、14 工場、16,48 蓄電装置充放電システム、18,58 蓄電装置、19 矩形枠、20,60 制御装置、22,62 記憶装置、24 蓄電池ユニット、26 並列数変更部、28,64 充放電要求取得部、30,66 充放電目標SOC設定部、32,68 充放電電流レート設定部、34 並列数設定部、35,36,70 関連データ、37,38,39 領域、40,42,44,46 最適範囲、50 車両駆動制御システム、52
 車両、54 エンジン、56 回転電機、80 容量劣化度推定部、82 電流レートパターン設定部、84 ばらつき影響度評価部、86 実線、87,89 一点鎖線、88,90 破線。
DESCRIPTION OF SYMBOLS 10 Power transmission / distribution network, 12 system power supply, 13 system control apparatus, 14 factory, 16,48 Power storage device charging / discharging system, 18, 58 Power storage apparatus, 19 Rectangular frame, 20,60 Control apparatus, 22,62 Storage device, 24 Storage battery unit, 26 parallel number changing unit, 28, 64 charge / discharge request obtaining unit, 30, 66 charge / discharge target SOC setting unit, 32, 68 charge / discharge current rate setting unit, 34 parallel number setting unit, 35, 36, 70 Data, 37, 38, 39 area, 40, 42, 44, 46 Optimal range, 50 Vehicle drive control system, 52
Vehicle, 54 engine, 56 Rotating electric machine, 80 Capacity deterioration level estimation unit, 82 Current rate pattern setting unit, 84 Variation effect level evaluation unit, 86 Solid line, 87, 89 Dash-dot line, 88, 90 Dashed line.

Claims (14)

  1.  充電または放電可能な蓄電装置と、
     前記蓄電装置を充電または放電する際の目標となる充放電目標SOC、前記蓄電装置を充電または放電する際に流す充放電電流レート、前記蓄電装置を充電または放電する際に生じる容量劣化度に基づいて、前記蓄電装置の充放電制御を行う制御装置と、
     を備える、蓄電装置充放電システム。
    A power storage device that can be charged or discharged; and
    Based on a charge / discharge target SOC that is a target when charging or discharging the power storage device, a charge / discharge current rate that flows when charging or discharging the power storage device, and a capacity deterioration degree that occurs when charging or discharging the power storage device A control device for performing charge / discharge control of the power storage device,
    A power storage device charging / discharging system.
  2.  請求項1に記載の蓄電装置充放電システムにおいて、
     前記蓄電装置の前記充放電目標SOC、前記充放電電流レート及び前記容量劣化度を関連付ける関連データを記憶する記憶装置を備え、
     前記制御装置は、
     前記蓄電装置から放電および前記蓄電装置に充電すべき充放電量を充放電要求として取得する充放電要求取得部と、
     前記充放電要求取得部により取得した前記充放電要求に対し、前記関連データを参照して、前記容量劣化度を低減する方向に前記充放電目標SOCを設定する充放電目標SOC設定部と、
     前記関連データを参照して、前記容量劣化度を低減する方向に前記充放電電流レートを設定する充放電電流レート設定部と、
     を備え、
     前記充放電目標SOCと前記充放電電流レートの少なくとも1つを設定する、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 1,
    A storage device for storing relevant data relating the charge / discharge target SOC of the power storage device, the charge / discharge current rate, and the capacity deterioration degree;
    The control device includes:
    A charge / discharge request acquisition unit for acquiring, as a charge / discharge request, a charge / discharge amount to be discharged from the power storage device and charged to the power storage device;
    A charge / discharge target SOC setting unit that sets the charge / discharge target SOC in a direction to reduce the capacity deterioration degree with reference to the related data with respect to the charge / discharge request acquired by the charge / discharge request acquisition unit;
    With reference to the related data, a charge / discharge current rate setting unit that sets the charge / discharge current rate in a direction to reduce the capacity deterioration degree;
    With
    A power storage device charge / discharge system that sets at least one of the charge / discharge target SOC and the charge / discharge current rate.
  3.  請求項2に記載の蓄電装置充放電システムにおいて、
     前記記憶装置に記憶された前記関連データは、前記蓄電装置をある電流レートごと、かつ、あるSOC領域ごとに、ある回数ごと充電または放電した際に得られたデータである、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 2,
    The related data stored in the storage device is data obtained when the power storage device is charged or discharged every certain current rate and every SOC region at a certain number of times. .
  4.  請求項3に記載の蓄電装置充放電システムにおいて、前記関連データは、前記蓄電装置をある温度ごとに充電または放電した際に得られたデータである、蓄電装置充放電システム。 4. The power storage device charge / discharge system according to claim 3, wherein the related data is data obtained when the power storage device is charged or discharged at a certain temperature.
  5.  請求項2から4のいずれか1に記載の蓄電装置充放電システムにおいて、
     前記蓄電装置は、複数の蓄電池ユニットを並列に接続して構成され、並列数を変更できる並列数変更部を備え、
     前記制御装置は、
     前記充放電要求取得手段から得られた充放電要求に応じた充放電電流値に対し、前記充放電電流レート設定手段により前記容量劣化度を低減する方向に設定した前記充放電電流レートでは充放電要求を満たせない場合に、前記並列数変更手段によって前記充放電電流レートと前記充放電電流値を共に満たす前記並列数に変更する、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of any one of Claim 2 to 4,
    The power storage device is configured by connecting a plurality of storage battery units in parallel, and includes a parallel number changing unit capable of changing the parallel number,
    The control device includes:
    Charge / discharge at the charge / discharge current rate set in the direction of reducing the capacity degradation degree by the charge / discharge current rate setting means with respect to the charge / discharge current value according to the charge / discharge request obtained from the charge / discharge request acquisition means. The power storage device charging / discharging system in which the parallel number changing unit changes the charge / discharge current rate and the charge / discharge current value to the parallel number when both of the requirements cannot be satisfied.
  6.  請求項1から5のいずれか1に記載の蓄電装置充放電システムにおいて、 前記蓄電装置は負荷と電力源と共に電力送配電ネットワークに接続され、前記充放電要求部が取得する前記充放電要求は、当該ネットワークの電力の需給バランスを瞬時瞬時において確保して当該ネットワークの系統周波数の安定を図るための必要充放電量である、蓄電装置充放電システム。 The power storage device charge / discharge system according to any one of claims 1 to 5, wherein the power storage device is connected to a power transmission and distribution network together with a load and a power source, and the charge / discharge request acquired by the charge / discharge request unit is: A power storage device charging / discharging system, which is a necessary charging / discharging amount for instantaneously instantaneously securing a power supply / demand balance of the network and stabilizing the system frequency of the network.
  7.  請求項1から5のいずれか1に記載の蓄電装置充放電システムにおいて、
     前記蓄電装置は車両に搭載され、前記蓄電装置は、前記車両に搭載される電力機器に放電可能であり、
     前記制御装置は、前記蓄電装置から前記電力機器に対する充放電制御を行う、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of any one of Claim 1 to 5,
    The power storage device is mounted on a vehicle, and the power storage device can be discharged to a power device mounted on the vehicle.
    The said control apparatus is a electrical storage apparatus charging / discharging system which performs charging / discharging control with respect to the said electric power apparatus from the said electrical storage apparatus.
  8.  請求項1から5のいずれか1に記載の蓄電装置充放電システムにおいて、
     前記蓄電装置は負荷と電力源と共に電力送配電ネットワークに接続され、前記充放電要求部が取得する前記充放電要求は、予め算出しておいた負荷の需要電力量を基に、当該ネットワークの電力の需給バランスを確保して電力送配電ネットワーク内の需要供給の安定を図るための必要充放電量である、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of any one of Claim 1 to 5,
    The power storage device is connected to a power transmission / distribution network together with a load and a power source, and the charge / discharge request acquired by the charge / discharge request unit is based on the power demand of the load calculated in advance. Power storage device charging / discharging system, which is a necessary charge / discharge amount for securing the supply and demand balance of the power supply and stabilizing the supply and demand in the power transmission and distribution network.
  9.  請求項1から5のいずれか1に記載の蓄電装置充放電システムにおいて、
     前記充放電電流レート設定部は、
     前記蓄電装置を充電または放電して変化するSOCに応じて、前記充放電電流レートを変更する、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of any one of Claim 1 to 5,
    The charge / discharge current rate setting unit includes:
    A power storage device charging / discharging system that changes the charge / discharge current rate according to an SOC that changes by charging or discharging the power storage device.
  10.  請求項9に記載の蓄電装置充放電システムにおいて、
     前記充放電電流レートに応じて容量劣化度を推定し、前記推定された各容量劣化度に基づいて、前記蓄電装置を充電または放電の全区間に渡る容量劣化度を推定する容量劣化度推定部を備える、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 9,
    A capacity deterioration degree estimation unit that estimates a capacity deterioration degree according to the charge / discharge current rate, and estimates a capacity deterioration degree over all sections of charging or discharging of the power storage device based on the estimated capacity deterioration degrees. A power storage device charging / discharging system.
  11.  請求項10に記載の蓄電装置充放電システムにおいて、
     前記充放電電流レートを変更するSOC区間ごとに前記充放電電流レートを変更するパターンを電流レートパターンとして、複数の電流レートパターンの候補について、電流レートパターンを構成するパラメータの変動に対する容量劣化度の変化であるばらつき影響度を評価するばらつき影響度評価部と、
     ばらつき影響度が最小となる電流レートパターンの候補を電流レートパターンに設定する電流レートパターン設定部と、を備える、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 10,
    The pattern of changing the charge / discharge current rate for each SOC interval for changing the charge / discharge current rate is defined as a current rate pattern, and the capacity deterioration degree with respect to a change in parameters constituting the current rate pattern is determined for a plurality of current rate pattern candidates. A variation impact evaluation unit that evaluates the variation impact that is a change;
    A power storage device charging / discharging system comprising: a current rate pattern setting unit that sets a current rate pattern candidate that minimizes the degree of variation influence as a current rate pattern.
  12.  請求項11に記載の蓄電装置充放電システムにおいて、
     ばらつき影響度評価部は、
     充放電電流レートまたはSOC区間について、ばらつき影響度を評価する、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 11,
    The variation impact evaluation unit
    A power storage device charging / discharging system for evaluating a variation influence degree with respect to a charging / discharging current rate or an SOC interval.
  13.  請求項10に記載の蓄電装置充放電システムにおいて、
     前記制御装置は、
     前記全区間を、蓄電装置に対する充電を一定電流値の下で行う定電流充電期間と、定電流充電によって蓄電装置の端子間電圧値が予め定めたCV電圧値に達した後は端子間電圧を一定値に維持してさらに充電を行う定電圧充電期間とに分けて実行し、
     定電流充電期間において生じる第1容量劣化度、及び定電圧充電期間において生じる第2容量劣化度をそれぞれ推定する容量劣化度推定部を含む、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 10,
    The control device includes:
    A constant current charging period in which charging of the power storage device is performed under a constant current value over the entire section, and after the voltage value between the terminals of the power storage device reaches a predetermined CV voltage value due to constant current charging, the terminal voltage is It is divided into a constant voltage charging period in which charging is further performed while maintaining a constant value,
    A power storage device charging / discharging system including a capacity deterioration degree estimation unit that estimates a first capacity deterioration degree that occurs during a constant current charging period and a second capacity deterioration degree that occurs during a constant voltage charging period.
  14.  請求項13に記載の蓄電装置充放電システムにおいて、
     前記定電圧充電期間における充電について、前記定電圧充電期間が開始するときのSOCである定電圧充電開始SOCと前記第2容量劣化度との間の関係を関連付ける関連データを記憶する記憶装置を備え、
     前記制御装置は、
     前記CV電圧値と前記蓄電装置の内部抵抗値とに基づいて前記CV電圧値に対応する定電圧充電開始SOCを推定する定電圧充電開始SOC推定部と、
     関連データを参照して、前記推定された定電圧充電開始SOCに対応する第2容量劣化度を取得する、蓄電装置充放電システム。
    In the electrical storage apparatus charging / discharging system of Claim 13,
    For charging in the constant voltage charging period, a storage device is provided that stores related data associating a relationship between a constant voltage charging start SOC, which is an SOC when the constant voltage charging period starts, and the second capacity deterioration degree. ,
    The control device includes:
    A constant voltage charge start SOC estimation unit that estimates a constant voltage charge start SOC corresponding to the CV voltage value based on the CV voltage value and an internal resistance value of the power storage device;
    A power storage device charging / discharging system that obtains a second capacity deterioration level corresponding to the estimated constant voltage charging start SOC with reference to related data.
PCT/JP2013/007307 2012-12-27 2013-12-12 Electricity storage apparatus charge/discharge system WO2014103218A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-284458 2012-12-27
JP2012284458 2012-12-27
JP2013-072797 2013-03-29
JP2013072797A JP2016034170A (en) 2012-12-27 2013-03-29 Power storage device charge/discharge system

Publications (1)

Publication Number Publication Date
WO2014103218A1 true WO2014103218A1 (en) 2014-07-03

Family

ID=51020342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007307 WO2014103218A1 (en) 2012-12-27 2013-12-12 Electricity storage apparatus charge/discharge system

Country Status (2)

Country Link
JP (1) JP2016034170A (en)
WO (1) WO2014103218A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033399A1 (en) * 2015-08-21 2017-03-02 パナソニックIpマネジメント株式会社 Management device, charging and discharging control device, electricity storage system, and charging and discharging control method
US20170373509A1 (en) * 2015-01-15 2017-12-28 Siemens Aktiengesellschaft Virtual Power Plant
CN110233486A (en) * 2018-12-17 2019-09-13 万克能源科技有限公司 Energy storage based on active predicting SOC assists fuzzy PID control method
CN112946506A (en) * 2019-12-11 2021-06-11 珠海冠宇电池股份有限公司 Method for rapidly testing cycle life of lithium ion battery
CN113659222A (en) * 2017-04-25 2021-11-16 株式会社东芝 Secondary battery system, charging method, and vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824616B2 (en) * 2016-03-23 2021-02-03 株式会社協和エクシオ Portable backup power supply
JP2021082426A (en) * 2019-11-15 2021-05-27 トヨタ自動車株式会社 Method and system for charging battery
JP6798051B2 (en) * 2020-01-30 2020-12-09 株式会社東芝 Charging pattern creation device, charge control device, charging pattern creation method, program, and power storage system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236132A (en) * 1991-01-10 1992-08-25 Toshiba Corp Method for controlling operation of loadleveling device
JP2009070777A (en) * 2007-09-18 2009-04-02 Mitsubishi Heavy Ind Ltd Electric power storage system
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
JP2011220900A (en) * 2010-04-12 2011-11-04 Honda Motor Co Ltd Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
JP2012065378A (en) * 2010-09-14 2012-03-29 Nichicon Corp Charge control unit
JP2012075243A (en) * 2010-09-28 2012-04-12 Toshiba Corp Battery management system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236132A (en) * 1991-01-10 1992-08-25 Toshiba Corp Method for controlling operation of loadleveling device
JP2009070777A (en) * 2007-09-18 2009-04-02 Mitsubishi Heavy Ind Ltd Electric power storage system
JP2011220900A (en) * 2010-04-12 2011-11-04 Honda Motor Co Ltd Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
JP2012065378A (en) * 2010-09-14 2012-03-29 Nichicon Corp Charge control unit
JP2012075243A (en) * 2010-09-28 2012-04-12 Toshiba Corp Battery management system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373509A1 (en) * 2015-01-15 2017-12-28 Siemens Aktiengesellschaft Virtual Power Plant
US10566803B2 (en) * 2015-01-15 2020-02-18 Siemens Aktiengesellschaft Virtual power plant
WO2017033399A1 (en) * 2015-08-21 2017-03-02 パナソニックIpマネジメント株式会社 Management device, charging and discharging control device, electricity storage system, and charging and discharging control method
JPWO2017033399A1 (en) * 2015-08-21 2018-06-07 パナソニックIpマネジメント株式会社 Management device, charge / discharge control device, power storage system, and charge / discharge control method
US10355509B2 (en) 2015-08-21 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method
CN113659222A (en) * 2017-04-25 2021-11-16 株式会社东芝 Secondary battery system, charging method, and vehicle
US11901521B2 (en) 2017-04-25 2024-02-13 Kabushiki Kaisha Toshiba Secondary battery system, charging method, and vehicle for charging with three different currents
CN113659222B (en) * 2017-04-25 2024-05-10 株式会社东芝 Secondary battery system, charging method, and vehicle
CN110233486A (en) * 2018-12-17 2019-09-13 万克能源科技有限公司 Energy storage based on active predicting SOC assists fuzzy PID control method
CN112946506A (en) * 2019-12-11 2021-06-11 珠海冠宇电池股份有限公司 Method for rapidly testing cycle life of lithium ion battery

Also Published As

Publication number Publication date
JP2016034170A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2014103218A1 (en) Electricity storage apparatus charge/discharge system
JP6471766B2 (en) Battery control system
JP7057882B2 (en) Estimator, power storage device, estimation method
KR101245788B1 (en) Method and device for controlling the operating point of a battery
JP6029745B2 (en) Secondary battery charge state estimation device and secondary battery charge state estimation method
JP5248764B2 (en) Storage element abnormality detection device, storage element abnormality detection method, and abnormality detection program thereof
JP5782803B2 (en) Battery charging device and battery charging method
WO2017038387A1 (en) Battery management device, battery system, and hybrid vehicle control system
US20150070024A1 (en) Battery pack, apparatus including battery pack, and method of managing battery pack
US20140239908A1 (en) Stationary electrical storage system and control method
WO2013094057A1 (en) Battery control device and battery system
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US11143710B2 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
EP3168954B1 (en) Battery control device
US20140327407A1 (en) Method and system for managing the electric charges of battery cells
CN111301219B (en) Method, system, equipment and readable storage medium for controlling battery of electric vehicle
JP2012253976A (en) Charge/discharge controller, and charge/discharge control method and program
JP2018050373A (en) Battery system
JP2015195653A (en) Battery system, charging/discharging control program, and charging/discharging control method
JP2015137952A (en) Residual capacity estimation device for power storage device
JPWO2020085011A1 (en) Battery control device
AU2022275472A1 (en) Secondary battery management system, secondary battery management method and secondary battery management program for said secondary battery management system, and secondary battery system
JP7169917B2 (en) SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD
JP7111642B2 (en) battery controller
JP2013176271A (en) Determination device for determining memory effect of battery and discharge control device of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP