WO2014103014A1 - Relay device and relay method - Google Patents

Relay device and relay method Download PDF

Info

Publication number
WO2014103014A1
WO2014103014A1 PCT/JP2012/084071 JP2012084071W WO2014103014A1 WO 2014103014 A1 WO2014103014 A1 WO 2014103014A1 JP 2012084071 W JP2012084071 W JP 2012084071W WO 2014103014 A1 WO2014103014 A1 WO 2014103014A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
relay device
time
communication delay
delay time
Prior art date
Application number
PCT/JP2012/084071
Other languages
French (fr)
Japanese (ja)
Inventor
義則 望月
小泉 稔
江端 智一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/084071 priority Critical patent/WO2014103014A1/en
Publication of WO2014103014A1 publication Critical patent/WO2014103014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations

Definitions

  • the present invention relates to a relay device that relays data from a transmission source terminal to a transmission destination terminal, and more particularly to a relay device that guarantees a communication delay time from the transmission source terminal to the transmission destination terminal.
  • an IP (Internet Protocol) network is a best-effort communication method that does not guarantee communication quality such as bandwidth and communication delay time (hereinafter referred to as QoS (Quality Service)).
  • QoS Quality Service
  • demands for IP network services that guarantee QoS have increased, and development of services that guarantee QoS has been active. Examples of this service include real-time communication such as voice call by telephone and video distribution, real-time communication for robot remote control, and the like.
  • QoS Quality of IP
  • a relay apparatus configuring a network gives priority to data to be transferred and preferentially transfers data with high priority.
  • an existing relay device such as an IP router sets the priority of data that requires real-time performance (data that guarantees QoS) higher than the priority of data that does not require real-time performance. Transfer with priority. Transfer control based on priority in such a relay device is called priority transfer control.
  • processing concentrates only on data that requires real-time processing, and processing may not be performed on data that does not require real-time processing.
  • processing concentrates only on data that requires real-time processing, and processing may not be performed on data that does not require real-time processing.
  • congestion occurs due to reasons such as narrow bandwidth
  • the relay device uses priority transfer control, there is a possibility that the retransmission time due to congestion will affect the receiving terminal as delay fluctuations. is there.
  • Patent Document 1 JP-A No. 2002-118585
  • Patent Document 2 JP-A No. 2007-13654
  • Patent Document 1 states that “input packets are classified into a plurality of classes, a plurality of classes are classified into a priority group and a non-priority group, and packets of each class are stored in queues independent of each other, A first band that satisfies the required delay time is preferentially assigned to the queue that holds the packets of the group, the remaining band is set as the second band, and the non-priority group uses a specific period of frequency for each class. And a part of the second band is dynamically allocated to the queue of the non-priority group with a weight according to the frequency of use in the most recent specific period ”(see summary).
  • Japanese Patent Laid-Open No. 2004-228688 discloses a configuration in which delay information is inserted into a packet transferred between packet switches in an IP network, and QoS control is performed using the delay information. Specifically, a flow identification unit 601 of a packet switch. The delay information is extracted from the received packet and passed to the transmission control unit 605. The transmission control unit 605 changes the bandwidth setting of the queue based on the delay information and calculates the internal correction time using the delay calculation unit 607. The processing unit 606 updates the delay information using the internal correction time and transmits the packet ”(see summary).
  • an object of the present invention is to provide a relay device that reliably guarantees a communication delay time of data from a transmission source to a transmission destination.
  • a relay device that relays data from a transmission source terminal to a transmission destination terminal, the transfer destination of data transmitted by the transmission source terminal, and transmission by the transmission source terminal Required communication delay time to be ensured until received data is received by the destination terminal, and expected communication expected to be required before the data transmitted by the relay device is received by the destination terminal
  • Data transmitted by the transmission source terminal includes time information indicating a transmission time, and included in the received data when the data transmitted by the transmission source terminal is received.
  • Source communication required from the time when the data is transmitted by the source terminal to the time when the data is received by the relay device Calculate the extended time, and based on the requirement communication delay time, the expected communication delay time, and the calculated source communication delay time, the received data is received by the destination terminal within the requirement communication delay time. Then, the data is transferred.
  • Example 1 of this invention It is a flowchart of the data transfer process of Example 1 of this invention. It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of the modification of Example 1 of this invention. It is explanatory drawing of the data communication method of the modification of Example 1.
  • FIG. It is explanatory drawing of a structure of the relay system of Example 2 of this invention. It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of Example 2 of this invention. It is explanatory drawing of a structure of the relay apparatus of Example 3 of this invention. It is explanatory drawing of the data processing time table of Example 3 of this invention. It is explanatory drawing of the data management table of Example 3 of this invention.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is an explanatory diagram of a configuration of the relay system according to the first embodiment of this invention.
  • the relay system includes terminal A100A to terminal E100E (hereinafter collectively referred to as terminal 100), relay device A110A to relay device G110G (hereinafter collectively referred to as relay device 110), and management server 120.
  • the network connecting terminal A100A to terminal E100E is configured by relay device A110A to relay device G110G, and terminal A100A transmits and receives data via the network.
  • the network is, for example, an Ethernet or a wireless network.
  • the relay system is, for example, an information network system or an FA (Factory Automation) network system.
  • the relay device 110 configuring the network is, for example, a gateway, a switch, or a router.
  • the relay device A110A is connected to the terminal A100A and connected to the relay device C110C via the communication path A130.
  • Relay device B110B is connected to terminal B100B and connected to relay device C110C via communication path B132.
  • the relay device C110C is connected to the relay device D110D via the communication path C134, and is connected to the relay device E110E via the communication path D136.
  • the relay device D110D is connected to the relay device F110F via the communication path E138, and the relay device E110E is connected to the relay device G110G via the communication path F140.
  • Relay device F110F is connected to management server 120 and terminal D100D, and relay device G110G is connected to terminal E100E.
  • a communication delay time is generated according to the bandwidth and data amount of the communication path.
  • the communication time of the communication channel A130 is 3 ms
  • the communication time of the communication channel B132 is 2 ms
  • the communication time of the communication channel C134 is 2 ms
  • the communication time of the communication channel D136 is 6 ms
  • the communication time of the communication channel E138 Is 1 ms
  • the communication time of the communication path F140 is 1 ms.
  • the management server 120 is a computer that monitors the communication delay time of each communication path and manages the relay device 110.
  • the management server 120 does not necessarily need to be connected to the relay device F110F, and may be connected to any relay device 110.
  • FIG. 2 is an explanatory diagram of the configuration of the terminal 100 according to the first embodiment of this invention.
  • the terminal 100 includes a hardware module 200, an OS 202, a terminal application 204, a measurement application 206, and a storage device 208.
  • the hardware module 200 is hardware necessary for operating the terminal 100, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, an external input / output unit, a display unit, and the like.
  • the CPU loads various programs stored in the nonvolatile memory into the volatile memory and executes the various programs loaded into the volatile memory.
  • the external communication interface is an interface for communicating data with another relay apparatus 110 or the terminal 100.
  • the external input / output unit is an interface for collecting data from an external device such as a sensor.
  • the OS 202 is basic software that comprehensively controls the operation of the terminal 100, and is executed by a CPU (not shown).
  • the terminal application 204 is an application that operates on the terminal 100. For example, in the case of an FA network system, the terminal application 204 generates data such as a voltage value or power amount based on power data collected via the external input / output unit. .
  • the measurement application 206 is an application that measures a communication delay time with the terminal 100 or the relay device 110 existing in the same system. Note that when the communication delay time is measured with high accuracy, the function of the measurement application 206 may be implemented as hardware.
  • the terminal 100 or the relay device 110 transmits the measurement request data including the transmission time every predetermined time to the other adjacent terminal 100 or the relay device 110.
  • the terminal 100 or the relay device 110 transmits measurement response data including the transmission time to the transmission source of the measurement request data.
  • the measurement response data includes information that can be associated with the measurement request data or the transmission time of the measurement request data.
  • the terminal 100 or the relay device 110 divides the time obtained by subtracting the transmission time of the measurement request data corresponding to the measurement response data from the reception time of the measurement response data by 2 to thereby reduce the communication delay. Calculate time.
  • the terminal 100 or the relay device 110 synchronizes time with another terminal 100 or the relay device 110
  • the terminal 100 or the relay device 110 transmits the measurement request data including the transmission time to the other terminal 100 or the relay device 110 every predetermined time.
  • the other terminal 100 or the relay device 110 calculates the communication delay time by subtracting the transmission time from the reception time of the measurement request data. Even if the terminal 100 or the relay device 110 synchronizes the time with the other terminal 100 or the relay device 110, the terminal 100 or the relay device 110 calculates the communication delay time using the above-described measurement request data and measurement response data. Also good.
  • the storage device 208 stores data necessary for the operation of the terminal 100. Specifically, the storage device 208 stores a measurement information storage table 210 and a data type table 212. In the measurement information storage table 210, a communication delay time measured by the measurement application 206 is registered. Details of the measurement information storage table 210 will be described with reference to FIG. In the data type table 212, the type of data transmitted and received by the terminal 100 and the type of data corresponding to the type are registered. Details of the data type table 212 will be described with reference to FIG.
  • the storage device 208 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
  • FIG. 3 is an explanatory diagram of a configuration of the relay device 110 according to the first embodiment of this invention.
  • the relay device 110 includes a hardware module 220, an OS 222, a routing application 224, a measurement application 206, and a storage device 226.
  • the hardware module 220 is hardware necessary for operating the relay device 110, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, a display unit, and the like.
  • the CPU, volatile memory, nonvolatile memory, external communication interface, display unit, and the like are the same as those of the hardware module 200 of the terminal 100 shown in FIG.
  • the OS 222 is basic software that comprehensively controls the operation of the relay apparatus 110, and is executed by a CPU (not shown).
  • the routing application 224 is an application that refers to the routing table 228 and transfers data received through the external communication interface included in the hardware module 220 to the terminal 100 or another relay device 110.
  • the measurement application 206 is the same as the measurement application 206 of the terminal 100 shown in FIG.
  • the storage device 226 stores data necessary for the operation of the relay device 110. Specifically, the storage device 226 stores a measurement information storage table 210 and a routing table 228.
  • the measurement information storage table 210 is the same as the measurement information storage table 210 of the terminal 100 shown in FIG.
  • routing table 2228 a transfer destination address, a communication delay time to be guaranteed, and an expected delay time from the relay apparatus 110 to the transmission destination are registered for each data type. Details of the routing table 228 will be described with reference to FIG.
  • the storage device 226 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
  • FIG. 4 is an explanatory diagram of the configuration of the management server 120 according to the first embodiment of this invention.
  • the management server 120 includes a hardware module 240, an OS 242, a routing table generation application 244, and a storage device 250.
  • the hardware module 240 is hardware necessary for operating the management server 120, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, a display unit, and the like.
  • the CPU, volatile memory, nonvolatile memory, external communication interface, display unit, and the like are the same as those of the hardware module 200 of the terminal 100 shown in FIG.
  • the OS 242 is basic software that comprehensively controls the operation of the management server 120, and is executed by a CPU (not shown).
  • the routing table generation application 244 is an application that generates the routing table 228 of each relay device 110 and distributes the generated routing table 228 to each relay device 110.
  • the routing table generation application 244 includes a communication state collection unit 246, a routing table generation unit 247, and a routing table distribution unit 248.
  • the communication state collection unit 246 collects the measurement information storage table 210 from each terminal 100 and the relay device 110, and generates a measurement information management table 254 based on the collected information.
  • the routing table generation unit 247 refers to the measurement information management table 254 and the data management table 256, generates the routing management table 252 and generates the routing table 228 of each relay device 110.
  • the routing table distribution unit 248 distributes the routing table 228 generated by the routing table generation unit 247 to each relay device 110.
  • the storage device 250 stores a routing management table 252, a measurement information management table 254, and a data management table 256.
  • the routing management table 252 a communication path from the transmission source terminal 100 to the transmission destination terminal 100 is registered for each data type. Details of the routing management table 252 will be described with reference to FIG.
  • the measurement information management table 254 is a table in which the measurement information storage table 210 collected from the terminal 100 or the relay device 110 is collected. Details of the measurement information management table 254 will be described with reference to FIG.
  • the data management table 256 is a table for managing data communicated in the relay system. Details of the data management table 256 will be described with reference to FIG.
  • the storage device 250 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
  • FIG. 5 is an explanatory diagram of a format of data communicated in the system according to the first embodiment of the present invention.
  • the data communicated in the system includes a packet header 1000, a transmission time 1002, a data type ID 1004, and data 1006.
  • the packet header 1000 In the packet header 1000, the address of the data transmission destination terminal 100, the address of the data transmission source terminal 100, and the like are registered, and the packet header 1000 corresponds to an Ethernet header or an IP header.
  • the transmission time 1002 In the transmission time 1002, a time at which data is transmitted from the terminal 100 as a transmission source is registered.
  • the data type ID 1004 an identifier for uniquely identifying the data type is registered.
  • Examples of the data type include the state of the terminal 100, a power value, a measurement request, or a measurement response.
  • the data 1006 stores actual data such as the state of the terminal 100 or the power value.
  • FIG. 6 is an explanatory diagram of the measurement information storage table 210 according to the first embodiment of this invention.
  • the measurement information storage table 210 is stored in the storage device 208 of the terminal 100 and the storage device 226 of the relay device 110. In the measurement information storage table 210, a communication delay time with the other terminal 100 or another relay device 110 acquired by the measurement application 206 of the terminal 100 or the relay device 110 is registered.
  • the measurement information storage table 210 includes an address 300, a communication delay time 302, and a communication success rate 304.
  • the address 300 the address (for example, IP address) of the terminal 100 or the relay device 110 that is the transmission destination of the measurement request data is registered.
  • the communication delay time 302 the communication delay time of the communication path between the terminal 100 or the relay device 110 identified by the address registered in the address 300 is registered.
  • the communication success rate 304 the ratio of the number of received measurement response data to the number of transmitted measurement request data is registered.
  • the measurement information storage table 210 only needs to include at least the address 300 and the communication delay time 302 and may not include the communication success rate 304.
  • the type of communication path for example, optical network, wireless communication, etc.
  • the device identified by the address registered in the address 300 may be registered.
  • FIG. 7 is an explanatory diagram of the data type table 212 according to the first embodiment of this invention.
  • the data type table 212 is stored in the storage device 208 of the terminal 100, and includes a data type ID 310 and a data type 312.
  • the data type ID 310 a unique identifier of the type of data communicated via the communication path of the relay system is registered.
  • the name of the data type corresponding to the data type identified by the data type identifier registered in the data type ID 310 is registered.
  • a terminal state and a current value are registered.
  • FIG. 8 is an explanatory diagram of the routing table 228 according to the first embodiment of this invention.
  • the routing table 228 is stored in the storage device 226 of the relay device 110.
  • the routing table 228 is a table used when data received via the external communication interface included in the hardware module 220 is transferred, and includes a data type ID 320, a priority 322, a transfer destination address 324, a required communication delay time. 326 and a delay time 328 after this relay apparatus.
  • the data type ID 320 is the same as the data type ID 310 shown in FIG.
  • a priority corresponding to the type of data identified by the identifier registered in the data type ID 320 is registered. For example, when the relay apparatus 110 receives different types of data, the data with the higher priority is transferred with priority.
  • the transfer destination address 324 an address (for example, an IP address) of the terminal 100 or the relay device 110 that is the transfer destination is registered.
  • the requirement communication delay time 326 includes a communication delay to be guaranteed from the time when the data of the type identified by the identifier registered in the data type ID 320 is transmitted by the transmission source terminal 100 to the reception of the transmission destination terminal 100. Time is registered. In the delay time 328 after this relay apparatus, data of the type identified by the identifier registered in the data type ID 320 is received by the terminal 100 that is the transmission destination after being transmitted by the relay apparatus 110 that stores the routing table 228. The communication delay time (expected communication delay time) required until the registration is registered.
  • FIG. 9 is an explanatory diagram of the routing management table 252 according to the first embodiment of this invention.
  • the routing management table 252 is stored in the storage device 250 of the management server 120.
  • the routing management table 252 is a table for managing a communication path from the transmission source terminal 100 to the transmission destination terminal 100 for each data type.
  • the data type ID 330, the transmission source address 332, the transmission destination address 334, and the communication Path 336 is included.
  • the data type ID 330 is the same as the data type ID 310 shown in FIG.
  • Registered in the transmission source address 332 is the address (for example, IP address) of the terminal 100 that is the transmission source of the type of data identified by the identifier registered in the data type ID 330.
  • Registered in the transmission destination address 334 is the address (for example, IP address) of the terminal 100 that is the transmission destination of the type of data identified by the identifier registered in the data type ID 330.
  • the communication path 336 a communication path through which data of the type identified by the identifier registered in the data type ID 330 is transmitted from the transmission source terminal 100 to the transmission destination terminal 100 is registered.
  • the routing management table 252 may include a time zone in which data of the type identified by the identifier registered in the data type ID 330 is communicated.
  • FIG. 10 is an explanatory diagram of the measurement information management table 254 according to the first embodiment of this invention.
  • the measurement information management table 254 is stored in the storage device 250 of the management server 120.
  • the measurement information management table 254 is a table in which the measurement information storage tables 210 of the terminal 100 and the relay device 110 are collected, and includes a measurement data transfer source address 340, a measurement data transfer destination address 342, and a communication delay time 344.
  • the address (for example, IP address) of the terminal 100 or the relay device 110 that has transmitted the measurement request data is registered.
  • the address (for example, IP address) of the terminal 100 or the relay device 110 that has received the measurement request data is registered.
  • the communication delay time 344 data transmitted by the terminal 100 or the relay device 110 registered in the measurement data transfer source address 340 is received by the terminal 100 or the relay device 110 registered in the measurement data transfer destination address 342. Communication delay time until is registered.
  • FIG. 11 is an explanatory diagram of the data management table 256 according to the first embodiment of this invention.
  • the data management table 256 is a table for managing data stored in the storage device 250 of the management server 120 and communicated in the relay system.
  • the data management table 256 includes a data type ID 350, a data type 352, a priority 354, a transmission source address 356, a transmission destination address 358, and a requirement communication delay time 360.
  • the data type ID 350 is the same as the data type ID 310 shown in FIG.
  • the data type 352 is the same as the data type 312 shown in FIG.
  • the priority 354 is the same as the priority 322 of the routing table 228 shown in FIG.
  • the transmission source address 356 is the same as the transmission source address 332 of the routing management table 252 shown in FIG.
  • the transmission destination address 358 is the same as the transmission destination address 334 shown in FIG.
  • the requirement communication delay time 360 is the same as the requirement communication delay time 326 shown in FIG.
  • FIG. 12 is a flowchart of processing at the time of system startup by the management server 120 according to the first embodiment of this invention.
  • Processing at the time of system startup by the management server 120 is executed by a CPU (not shown) included in the hardware module 240 of the management server 120.
  • the management server 120 waits for processing until a predetermined time (X seconds) elapses after the relay system is activated (440).
  • the process of step 440 is executed to secure time for the terminal 100 and the relay apparatus 110 existing in the relay system to generate the measurement information storage table 210 by communicating the measurement request data and the measurement response data.
  • the management server 120 transmits a measurement information storage table request to the terminal 100 and the relay device 110 in order to acquire the measurement information storage table 210 generated by the terminal 100 and the relay device 110 (442).
  • the measurement information storage table request may be transmitted by broadcast communication with a response. If the address information of the terminal 100 and the relay device 110 existing in the relay system is set in the management server 120 before the relay system is activated, the measurement information storage table request is unicasted using the address information. It may be transmitted by communication.
  • the management server 120 When the management server 120 acquires the measurement information storage table 210 from all the terminals 100 and the relay devices 110 existing in the relay system, the management server 120 generates the measurement information management table 254 based on the acquired measurement information storage table 210 (444). ).
  • the management server 120 registers the address of the transmission source terminal 100 or relay device 110 of the acquired measurement information storage table 210 in the measurement data transfer source address 340 of the measurement information management table 254, and acquires the acquired measurement information.
  • the address registered in the address 300 of the storage table 210 is registered in the measurement data transfer destination address 342 of the measurement information management table 254, and the communication delay time registered in the communication delay time 302 of the acquired measurement information storage table 210 is Registration is made in the communication delay time 344 of the measurement information management table 254.
  • the management server 120 can reach the transmission destination terminal 100 from the transmission source terminal 100 with reference to the measurement information management table 254 and the preset data management table 256 generated by the processing of Step 444.
  • the communication paths a communication path satisfying the required communication delay time is specified, and the routing management table 252 is generated (446).
  • the management server 120 adds records to the routing management table 252 by the number of records registered in the data management table 256. Then, the management server 120 registers the identifier registered in the data type ID 350 of the data management table 256 in the data type ID 330 of the added record, and the transmission source address 356 of the data management table 256 in the transmission source address 332 of the added record. The registered address is registered, and the address registered in the transmission destination address 358 of the data management table 256 is registered in the transmission destination address 334 of the added record.
  • the management server 120 specifies a communication path constituted by communication paths that can reach the transmission destination terminal 100 from the transmission source terminal 100.
  • the management server 120 refers to the data management table 256 and calculates the communication delay time of each identified communication path by summing the communication delay times of the communication paths constituting each identified communication path. Then, the management server 120 determines one communication path out of the communication paths whose communication delay time of the calculated communication path is smaller than the communication delay time registered in the requirement communication delay time 360 of the data management table 256 as the routing management table 252. Are registered in the communication path 336 of the added record. Thereby, the management server 120 can specify a communication path that satisfies the required communication delay time for each data type.
  • the management server 120 displays the communication path on the display unit included in the hardware module 240. You may display.
  • the management server 120 generates a routing table 228 for each relay device 110 existing on the communication path registered in the communication path 336 of the routing management table 252 generated in the process of step 446, and generates the generated routing table 228. Is transmitted to the relay apparatus 110 existing on the communication path (448).
  • the management server 120 selects a record to be processed among the records registered in the routing management table 252. Then, the management server 120 identifies the relay device 110 existing on the communication path registered in the communication path 336 of the record to be processed in the routing management table 252, and from the identified relay device 110 to the processing target relay device 110. Select.
  • the management server 120 adds a new record to the routing table 228 corresponding to the relay device 110 to be processed. Then, the management server 120 registers the identifier registered in the data type ID 330 of the record to be processed in the routing management table 252 in the data type ID 320 of the added record.
  • the management server 120 also records that the identifier registered in the data type ID 350 matches the identifier registered in the data type ID 320 of the record to be processed in the routing management table 252 among the records registered in the data management table 256.
  • the priority registered in the priority 354 and the requirement communication delay time registered in the requirement communication delay time 360 are acquired.
  • the management server 120 registers the acquired priority in the priority 322 of the added record in the routing table 228 corresponding to the processing target relay device 110 and acquires the required communication delay in the required communication delay time 326 of the record. Register time.
  • the management server 120 refers to the communication path registered in the communication path 336 of the record to be processed in the routing management table 252 and identifies the address of the transfer destination relay apparatus 110 of the relay apparatus 110 to be processed. Then, the management server 120 registers the address of the identified forwarding destination relay device 110 in the forwarding destination address 324 of the added record in the processing target routing management table 252.
  • the management server 120 refers to the communication path registered in the communication path 336 of the record to be processed in the routing management table 252 and the measurement information management table 254, and then transmits the processing target relay device 110 to the destination terminal. Communication delay time up to 100 is calculated. Then, the management server 120 registers the calculated communication delay time in the delay time 328 after this relay device of the record added to the routing table 228 corresponding to the processing target relay device 110.
  • the management server 120 selects an unprocessed record in the routing management table 252 as a record to be processed, and executes the above-described process.
  • the routing tables 228 of all the relay devices 110 existing on the communication path are generated.
  • the management server 120 sends a mode transition request to the terminal 100 and the relay device 110 that exist in the relay system. (450), the terminal 100 and the relay apparatus 110 existing in the relay system are shifted to the normal mode, and the terminal 100 is shifted to the normal mode.
  • FIG. 13 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to the first embodiment of this invention.
  • the system activation process by the terminal 100 and the relay device 110 is executed by a CPU (not shown) included in the hardware module 200 of the terminal 100 and a CPU (not shown) included in the hardware module 220 of the relay device 110.
  • processing at the time of system startup by the relay device 110 will be described as an example, but the same processing can also be applied to the terminal 100.
  • the relay device 110 determines whether received data exists (400).
  • the relay apparatus 110 determines whether the received data is measurement request data (402).
  • the relay apparatus 110 transmits measurement response data to the terminal 100 or the relay apparatus 110 that is the transmission source of the measurement request data (404). Return to the process.
  • the relay apparatus 110 determines whether the received data is measurement response data (406).
  • the relay device 110 subtracts the time obtained by subtracting the transmission time of the measurement request data corresponding to the measurement response data from the reception time of the measurement response data.
  • the communication delay time is calculated by dividing by (4), the measurement information storage table 210 is updated (408), and the process returns to step 400. Note that the transmission time of the measurement request data is included in the measurement response data data 1006 (see FIG. 4).
  • the relay device 110 adds a new record to the measurement information storage table 210, registers the address of the terminal 100 or the relay device 110 that has transmitted the measurement response data to the address 300 of the added record, and adds it.
  • the calculated communication delay time is registered in the communication delay time 302 of the record. If a record already exists, the communication delay time registered in the communication delay time 302 of the record is compared with the calculated communication delay time, and the larger one is registered. Further, the relay device 110 calculates the ratio of the number of received measurement response data to the number of transmitted measurement request data, and sets the calculated ratio as the communication success rate 304 of the added record in the measurement information storage table 210. sign up.
  • the relay apparatus 110 determines whether the received data is a measurement information storage table request (410).
  • the relay apparatus 110 transmits the measurement information storage table 210 to the management server 120 (412), and returns to the process of step 400.
  • step 410 If it is determined in step 410 that the received data is not a measurement information storage table request, the relay apparatus 110 determines whether the received data is the routing table 228 (414).
  • the relay apparatus 110 stores the received routing table 228 in the storage device 226 (416), and returns to the process of step 400.
  • the relay apparatus 110 determines whether the received data is a mode transition request (418).
  • the relay apparatus 110 transitions to the normal mode (420). Details of processing when the terminal 100 and the relay apparatus 110 operate in the normal mode will be described in detail with reference to FIG.
  • the relay apparatus 110 executes a packet process corresponding to the received data, and returns to the process of step 400 (422).
  • the relay apparatus 110 determines whether or not a predetermined time (Y seconds) has elapsed since the measurement request data was transmitted (430).
  • step 430 If it is determined in step 430 that the predetermined time (Y seconds) has elapsed since the transmission of the measurement request data, the relay apparatus 110 transmits the measurement request data to the terminal 100 and the relay apparatus 110 existing in the relay system. (432), and the process returns to step 400.
  • the predetermined time Y seconds
  • the terminal 100 and the relay device 110 measure the communication delay time between the other terminal 100 and the relay device 110 before shifting to the normal mode for actually transferring data.
  • the routing table 228 is set in the relay device 110.
  • FIG. 14 is a flowchart of processing during normal mode operation by the management server 120 according to the first embodiment of this invention.
  • Processing in the normal mode operation by the management server 120 is executed by a CPU (not shown) included in the hardware module 240 of the management server 120.
  • the management server 120 sends a measurement information storage table request to the terminal 100 and the relay device 110 in order to update the routing table 228 of each relay device 110 generated by the process at system startup based on the latest communication delay time. Transmit (600). Since the transmission process of the measurement information storage table is the same as the process of step 442 shown in FIG. 12, detailed description thereof is omitted.
  • the management server 120 acquires the measurement information storage table 210 from the terminal 100 and the relay device 110, the management server 120 updates the measurement information management table 254 based on the acquired measurement information storage table 210 (602).
  • the management server 120 registers the address of the terminal 100 or the relay device 110 of the transmission source of the measurement information storage table 210 acquired in the measurement data transfer source address 340 of the measurement information management table 254, and the measurement data
  • the record is registered in the communication delay time 302 of the measurement information storage table 210 acquired in the communication delay time 344 of the record. Registered communication delay time.
  • the management server 120 adds a record to the measurement information management table 254, and acquires the acquired measurement information storage table 210 in the measurement data transfer source address 340 of the added record.
  • the address of the terminal 100 or the relay device 110 that is the source of the transmission is registered, the address registered in the address 300 of the acquired measurement information storage table 210 is registered in the measurement data transfer destination address 342 of the added record, and the added record
  • the communication delay time registered in the communication delay time 302 of the acquired measurement information storage table 210 is registered in the communication delay time 344.
  • the management server 120 can reach the transmission destination terminal 100 from the transmission source terminal 100 with reference to the measurement information management table 254 and the preset data management table 256 updated in the process of Step 602.
  • the communication paths a communication path satisfying the required communication delay time is specified for each data type, and the routing management table 252 is updated (604).
  • the management server 120 sets the communication path 336 of the routing management table 252 corresponding to the data type.
  • the routing management table 252 is updated by updating the communication path specified this time.
  • the management server 120 determines whether or not there is a relay device 110 that needs to be changed in the routing table 228 (606).
  • the management server 120 determines that the relay device 110 existing on the communication path registered in the communication path 336 It is determined that the routing table 228 needs to be changed.
  • step 606 If it is determined in step 606 that there is a relay device 110 that needs to be changed in the routing table 228, the management server 120 generates the routing table 228 of the relay device 110, and the generated routing table 228 is The data is transmitted to the relay apparatus 110 (608), and the process returns to step 600.
  • the generation process of the routing table 228 of the process of step 608 is performed by the routing of the relay apparatus 110 existing on the communication path registered in the communication path 336 of the record whose communication path 336 has been updated by the process of step 604 of the routing management table 252. Except for generating the table 228, the process is the same as the process of generating the routing table 228 in the process of step 448, and a specific description thereof will be omitted.
  • the management server 120 records the routing table 228 of the relay apparatus 110 that no longer exists on the communication path due to the update of the communication path 336 of the routing management table 252 in the process of step 604. Is deleted. Specifically, the management server 120 acquires the identifier registered in the data type ID 330 of the record updated in the process of step 604 of the routing management table 252, and the communication path 336 in the process of step 604 of the routing management table 252. An instruction to delete a record that matches the identifier acquired by the data type ID 320 among the records in the routing table 228 is transmitted to the relay apparatus 110 existing on the communication path registered in the communication path 336 before the update.
  • step 606 if it is determined in step 606 that there is no relay device 110 that needs to be changed in the routing table 228, the management server 120 returns to the process in step 600.
  • the management server 120 transmits a measurement information storage table request to the terminal 100 and the relay device 110. However, if the measurement information storage table request is frequently transmitted, the measurement information storage table 210 is frequently transmitted to the management server 120, which may cause a load on the network. Therefore, if it is determined in step 606 that there is no relay device 110 that needs to be changed in the routing table 228, and after the processing in step 608 is executed, the management server 120 waits for processing for a predetermined time. Accordingly, it is desirable to transmit the measurement information storage table request at a predetermined cycle.
  • FIG. 15 is a flowchart of processing during normal mode operation by the terminal 100 and the relay device 110 according to the first embodiment of this invention.
  • Processing in the normal mode operation by the terminal 100 and the relay device 110 is executed by a CPU (not shown) included in the hardware module 200 of the terminal 100 and a CPU (not shown) included in the hardware module 220 of the relay device 110.
  • processing in the normal mode operation by the relay device 110 will be described as an example, but the same processing can be applied to the terminal 100.
  • the relay apparatus 110 determines whether the received data is transfer data (612).
  • the transfer data is data transmitted from the terminal 100 that is the transmission source, and is data that should be transferred to any one of the terminals 100 or the relay device 110 when the relay device 110 receives the data.
  • step 612 If it is determined in step 612 that the received data is transfer data, the relay apparatus 110 executes data transfer processing for transferring the transfer data (614), and returns to step 610. Details of the data transfer process will be described with reference to FIGS. 16 and 17.
  • step 612 determines whether the received data is transfer data. If it is determined in step 612 that the received data is not transfer data, the relay device 110 executes the process in step 616.
  • 16 and 17 are flowcharts of the data transfer process according to the first embodiment of the present invention.
  • transfer data to be processed transfer data (hereinafter referred to as transfer data to be processed) in the process of step 612 shown in FIG. 15, among the records registered in the routing table 228, A record corresponding to the data type of the transfer data to be processed is referenced (700).
  • the relay device 110 subtracts the transmission time included in the transfer data from the time when the transfer data to be processed is received, so that the transmission source communication taken until the transfer data to be processed reaches the relay device. Calculate the delay time. Then, the relay device 110 communicates the communication delay time registered in the requirement communication delay time 326 of the record in the routing table 228 referred to in the processing of Step 700, and the communication delay registered in the delay time 328 of the record after the relay device. Based on the time (expected delay time) and the calculated source communication delay time, a processable time until the transfer data is transferred by the relay device 110 is calculated (702).
  • the required communication delay time is 50 ms and the expected delay time is 30 ms. Further, if the transmission source communication delay time of the transfer data is 10 ms, the processable time of the transfer data is 10 ms.
  • the relay apparatus 110 has a transfer queue including at least one stage (element) which is a storage area for storing data. For the data stored in the stage of the transfer queue, processing corresponding to the data is executed in a predetermined order. If the data stored in the stage of the transfer queue is transfer data, the transfer data is transferred. In this embodiment, the processing is executed in the order in which data is stored in the stages of the transfer queue.
  • the processing order of the stages is not limited to this, and the transfer queue may be described as a transfer buffer. In the following description, transfer control using a transfer queue will be described as an example.
  • the relay device 110 sets the first stage of the transfer queue as the search stage when the processable time is calculated in the process of step 702 (704). That is, in the process of step 704, the stage processed first among the stages included in the transfer queue is set as the search stage. Next, the relay apparatus 110 determines whether or not the processable time is 0 or more in order to determine whether or not the transfer data to be processed can be transferred within the processable time (706).
  • step 706 If it is determined in step 706 that the processable time is less than 0, the transfer data to be processed cannot be transferred to the destination terminal 100 within the required communication delay time. Is discarded (708), and the process is terminated. Note that when the transfer data to be processed is discarded, the relay device 110 notifies at least one of the transmission source terminal 100 and the management server 120, and the transmission source terminal notified that the transfer data has been discarded. 100 or the like may display the fact on a display unit or the like included in the hardware module 200 and notify the user to that effect.
  • the relay apparatus 110 determines whether other transfer data is stored in the current search stage (710).
  • step 710 If it is determined in step 710 that no other transfer data is stored in the current search stage, the relay apparatus 110 sets the transfer data to be processed in the current search stage (712), and ends the process. To do.
  • the relay device 110 is stored in the current search stage and the processable time of the transfer data to be processed.
  • the transferable data processing time is compared (714). Then, the relay apparatus 110 determines whether the processable time of the transfer data to be processed is longer than the processable time of the transfer data stored in the current search stage (716).
  • the relay apparatus 110 adds 1 to the current search stage.
  • the transfer queue of the added stage is set as a new search stage (718).
  • the relay device 110 sets the next search stage in the processing order of the current search stage among the stages included in the transfer queue as a new search stage.
  • the relay apparatus 110 calculates a new processable time by calculating Expression 1 (720), and returns to the process of Step 706. That is, in the process of step 720, the management server 120 calculates a new processable time by subtracting the time required until the data stored in the new search stage is processed from the current processable time. To do.
  • New processing time processing time-(number of search stages-1) x processing time for 1-stage transfer queue (Equation 1)
  • step 716 if it is determined in step 716 that the processable time of the transfer data to be processed is not longer than the processable time of the transfer data stored in the current search stage, the relay apparatus 110 returns to FIG. Then, it is determined whether or not the processable time of the transfer data to be processed is shorter than the processable time of the transfer data stored in the current search stage (722).
  • step 722 If it is determined in step 722 that the processable time of the transfer data to be processed is shorter than the processable time of the transfer data stored in the current search stage, the relay device 110 determines that each stage after the search stage It is determined whether the data stored in can be moved to a stage obtained by adding 1 to the number of stages (724).
  • the process in step 724 It is determined that the data cannot be moved.
  • step 724 If it is determined in step 724 that the data stored in each stage after the search stage can be moved to the stage obtained by adding 1 to the number of stages, the relay apparatus 110 adds 1 to the number of stages.
  • the transfer data to be processed is set in the current search stage (728), and the process ends. As a result, the transfer data to be processed is transferred with priority over the data stored in the stages after the search stage.
  • step 724 if it is determined in step 724 that the data stored in each stage after the search stage cannot be moved to the stage obtained by adding 1 to the number of stages, the relay apparatus 110 performs processing when the relay apparatus 110 moves to the stage added by 1. Data whose possible time is longer than the required communication delay time, that is, data that cannot be moved to the stage added by 1, is discarded (730).
  • the relay apparatus 110 moves to the stage obtained by adding 1 to the number of stages stored in each stage after the retrieval stage (732), sets the transfer data to be processed in the current retrieval stage (734), and performs processing. Exit.
  • step 722 If it is determined in step 722 that the processable time of the transfer data to be processed is not shorter than the processable time of the transfer data stored in the current search stage, that is, the processable transfer data can be processed.
  • the relay apparatus 110 determines the priority of the transfer data to be processed and the transfer data stored in the current search stage. The priority is compared (736).
  • the relay device 110 obtains the priority registered in the priority 322 of the record registered in the routing table 228 whose identifier registered in the data type ID 320 matches the identifier of the data type of the transfer data. By doing so, the priority of the transfer data can be known.
  • the relay device 110 refers to the priority comparison result of the two transfer data in the process of Step 736, and the priority of the transfer data stored in the current search stage is the priority of the transfer data to be processed. It is determined whether it is higher than the degree (738).
  • the relay apparatus 110 sets the transfer data to be processed as the current transfer data.
  • the transfer data stored in the current search stage is discarded in order to transfer the data prior to the transfer data stored in the search stage (740). Then, the relay apparatus 110 sets transfer data to be processed in the current search stage (742), and ends the process.
  • step 738 if it is determined in step 738 that the priority of the transfer data to be processed is equal to or lower than the priority of the transfer data stored in the current search stage, the relay device 110 is stored in the current search stage.
  • the transfer data to be processed is discarded (744) and the processing is terminated in order to transfer the transfer data having priority over the transfer data to be processed.
  • the relay apparatus 110 discards the data that cannot be moved.
  • the priority of the transfer data to be processed is higher than the priority of the data that cannot be moved.
  • the data that cannot be moved may be discarded, and the transfer data to be processed may be discarded if the priority of the transfer data to be processed is equal to or lower than the priority of the data that cannot be moved.
  • the relay apparatus 110 discards the data with the lower priority without moving the transfer data stored in the stages after the search stage to the stage obtained by adding 1 to the number of stages.
  • the processing of steps 724 to 734 may be executed instead of the processing of steps 740 to 744.
  • the relay apparatus 110 moves to the stage obtained by adding 1 to the number of stages stored in the search stage.
  • the transfer data to be processed can be stored in the search stage.
  • the relay apparatus 110 subtracts the expected communication delay time and the source communication delay time from the requirement communication delay time corresponding to the data type of the received transfer data in the process of Step 702.
  • the processing time is calculated.
  • the relay device 110 determines that the data received within the processable time cannot be transferred to the transfer destination, and the relay apparatus 110 receives the process in step 708. Discard the data. If it is determined in step 706 that the processable time is 0 or more, the relay apparatus 110 proceeds to the process in step 714 to transfer the data received within the processable time to the transfer destination. Note that the relay device 110 may determine whether or not the received data can be transferred within the processable time by determining whether or not the processable time is equal to or greater than a predetermined value in the process of step 706. Good.
  • the relay device 110 transfers the data whose required communication delay time cannot be guaranteed, and receives the data so as not to put a load on the network. It is possible to discard the data and guarantee the required communication delay time of the data already stored in the transfer queue.
  • the processable time of the received data is stored in the current search stage set in the process of step 704. If it is longer than the processable time, the process in step 718 sets the next search stage in the transfer order of the current search stage as a new search stage, and the process in step 720 newly starts from the current processable time. A time obtained by subtracting the processing time until reaching the set search stage is calculated as a new processable time, and the process returns to step 706 to determine whether or not the received data can be transferred within the new processable time. To do.
  • the relay apparatus 110 performs the process of step 724 in the current search stage. If it is determined that the data stored in the stage where the data to be transferred thereafter is stored can be moved to the next stage, the data is moved to the next stage in step 726. At the same time, the received data is stored in the current search stage in the process of step 728. As a result, the relay apparatus 110 can guarantee the requirement communication delay time of the received data while guaranteeing the requirement communication delay time for the data already stored in the transfer queue.
  • the terminal 100 and the relay device 110 measure the communication delay time using the measurement request data and the measurement response data without synchronizing the time with the other terminals 100 or the relay device 110, the communication is performed. It is difficult to accurately measure the delay time. Therefore, in the present modification, the terminal 100 and the relay device 110 are equipped with time synchronization modules (for example, GPS modules) as the hardware modules 200 and 220, and the terminal 100 and the relay device 110 included in the relay system are installed. After the time synchronization, the measurement request data is transmitted to the other terminal 100 and the relay device 110.
  • time synchronization modules for example, GPS modules
  • FIG. 18 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to a modification of the first embodiment of the present invention.
  • the process same as the process shown in FIG. 13 among the processes shown in FIG. 18 is provided with the same code
  • step 400 When the relay system is activated, the terminal 100 and the relay device 110 synchronize the time with the other terminal 100 and the relay device 110 using the time synchronization module (500), and proceed to the process of step 400.
  • the processing after step 400 is the same as the processing shown in FIG.
  • a data communication method of the terminal 100 and the relay apparatus 110 for preventing the data communication between the terminals 100 and the communication for updating the routing table 228 from being mixed will be described with reference to FIG.
  • FIG. 19 is an explanatory diagram of a data communication method according to a modification of the first embodiment.
  • the terminal 100 and the relay apparatus 110 whose times are synchronized divide the communication cycle of data communication into a periodic frame 1100 that is a constant cycle.
  • the periodic frame 1100 is further divided into a data transfer period 1110 for data communication between the terminals 100 and a measurement period 1112 for communication for updating the routing table 228.
  • FIG. 20 the relay system according to the second embodiment will be described with reference to FIGS. 20 and 21.
  • FIG. 20 the relay system according to the second embodiment will be described with reference to FIGS. 20 and 21.
  • the relay system according to the second embodiment does not include the management server 120, and each relay apparatus 110 collects communication delay times and generates a routing table 228.
  • FIG. 20 is an explanatory diagram of the configuration of the relay system according to the second embodiment of the present invention. Of the configuration of the relay system shown in FIG. 20, the same configuration as the configuration of the relay system shown in FIG.
  • the relay system according to the present embodiment is different from the relay system according to the first embodiment in that the management server 120 is not provided, and the remaining configuration is the same as that of the relay system according to the first embodiment.
  • FIG. 21 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to the second embodiment of the present invention.
  • the management server 120 manages the timing of collecting the measurement information storage table 210 of each terminal 100 and the relay device 110 and the timing of switching each terminal 100 and the relay device 110 to the normal mode.
  • these timings are managed based on the timing when each terminal 100 and the relay device 110 are activated.
  • the time of each terminal 100 and the relay apparatus 110 may be synchronized and does not need to be synchronized.
  • the terminal 100 In order to generate the routing table 228, it is necessary to specify a communication path from the transmission source terminal 100 to the transmission destination terminal 100.
  • the terminal 100 In the configuration of the terminal 100 and the relay device 110 according to the first embodiment, the terminal 100 It is difficult for the relay apparatus 110 to specify the communication path. For this reason, the terminal 100 and the relay apparatus 110 hold the data management table 256, the measurement information management table 254, and the routing management table 252. It is assumed that the data management table 256 is set in each terminal 100 and the relay device 110.
  • the terminal 100 and the relay device 110 determine whether or not a predetermined time (A seconds) has elapsed since starting up (900).
  • step 900 If it is determined in step 900 that the predetermined time (A seconds) has not elapsed since the terminal 100 and the relay device 110 are activated, the terminal 100 and the relay device 110 transmit and receive measurement request data and measurement response data. Thus, the communication delay time is measured (902). Then, the terminal 100 and the relay device 110 update the measurement information management table 254 based on the communication delay time in the process of step 902 (904), and return to the process of step 900. Note that the specific process of step 904 is the same as the process of step 444 shown in FIG.
  • step 900 if it is determined in step 900 that a predetermined time (A seconds) has elapsed since the terminal 100 and the relay device 110 are activated, the terminal 100 and the relay device 110 are activated for a predetermined time ( It is determined whether or not (B seconds) has elapsed (906). Note that the predetermined time (B seconds) in the process of step 906 is set to be longer than the predetermined time (A seconds) in the process of step 900.
  • step 906 If it is determined in step 906 that the predetermined time (B seconds) has not elapsed since the terminal 100 and the relay device 110 are activated, the own measurement information storage table 210 is transferred to the other terminals 100 and the relay device 110. The measurement information storage table 210 transmitted by the other terminal 100 and the relay device 110 is received (908).
  • the terminal 100 and the relay device 110 update the measurement information management table 254 based on the measurement information storage table 210 updated in the process of step 904 and the measurement information storage table 210 received in the process of step 908,
  • the routing management table 252 is updated based on the updated measurement information management table 254, the routing table 228 is updated based on the routing management table 252 (910), and the process returns to step 906.
  • the specific processing of step 910 is the same as the processing of steps 444 to 448 shown in FIG. 12 of the first embodiment.
  • step 906 if it is determined in the processing of step 906 that a predetermined time (B seconds) has elapsed since the terminal 100 and the relay apparatus 110 are activated, the terminal 100 shifts itself to the normal mode.
  • the relay device 110 updates its own routing table 228, and in the first embodiment, the management server 120 updates the routing table 228 of each relay device 110, so that the processing load of the relay device 110 of this embodiment is increased. Is higher than Example 1. However, in the present embodiment, each relay apparatus 110 updates the routing table 228, so that it is not necessary for the management server 120 to distribute the routing table 228 to each relay apparatus 110 as in the first embodiment. For this reason, the network load of a present Example is reduced from Example 1. FIG.
  • the processable time is calculated in consideration of the processing time required for each relay apparatus 110 to execute a predetermined process on the transfer data.
  • the description of the present embodiment describes differences from the first embodiment, it can also be applied to the second embodiment.
  • FIG. 22 is an explanatory diagram of a configuration of the relay device 110 according to the third embodiment of this invention.
  • the same configurations as those of the relay device 110 illustrated in FIG. 3 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the relay device 110 includes a data processing application 1202 in addition to the configuration of the relay device 110 according to the first embodiment.
  • the storage device 226 includes data A processing time table 1204 is stored.
  • the data processing application 1202 is an application that executes predetermined processing (encryption processing, encapsulation processing, etc.) corresponding to the data type of the received transfer data on the received transfer data.
  • the data processing time table 1204 is a table for managing the processing time required for the relay device 110 to execute processing on the transfer data for each data type. Details of the data processing time table 1204 will be described with reference to FIG.
  • the configuration of the data management table 256 is also different from the configuration of the data management table 256 of the first embodiment. Details of the data management table 256 of this embodiment will be described with reference to FIG.
  • FIG. 23 is an explanatory diagram of the data processing time table 1204 according to the third embodiment of this invention.
  • the data processing time table 1204 includes a data type ID 1205 and a data processing time 1206.
  • the data type ID 1205 an identifier for uniquely identifying the data type is registered.
  • the processing time for the transfer data is registered.
  • FIG. 24 is an explanatory diagram of the data management table 256 according to the third embodiment of this invention.
  • the data management table 256 includes a processing time 1208 of each relay device in addition to a data type ID 350, a data type 352, a priority 354, a transmission source address 356, a transmission destination address 358, and a requirement communication delay time 360.
  • the processing time of the processing executed by each relay device 110 on the transfer data is registered based on the data processing time table 1204 collected from each relay device 110.
  • FIG. 25 is a flowchart of processing at the time of system startup by the management server 120 according to the third embodiment of the present invention. 25, the same processes as those shown in FIG. 12 of the first embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the management server 120 transmits a data processing time table request to each relay device 110 after generating the measurement information management table in the process of step 444 (1306).
  • the transmission method of the data processing time table request may be transmitted by broadcast communication with a response.
  • the data processing time table request is transmitted by unicast communication using the address information. May be.
  • the management server 120 acquires the data processing time table 1204 from all the relay apparatuses 110 existing in the relay system, the management server 120 updates the data management table 256 based on the acquired data processing time table 1204 (1308). Proceed to processing.
  • the management server 120 matches the identifier registered in the data type ID 1205 of the acquired data processing time table 1204 among the records registered in the data management table 256. Select a record. Then, the management server 120 acquires the data management table acquired at the processing time 1208 of the relay device corresponding to the transmission source relay device 110 of the acquired data processing time table 1204 out of the processing time 1208 of the relay device of the selected record. The processing time registered in 256 data processing time 1206 is registered. As a result, the data management table 256 is updated.
  • step 448 the management server 120 will be described with respect to the process of generating the routing table 228.
  • the management server 120 refers to the measurement information management table 254 to calculate a communication delay time from the relay apparatus 110 that holds the generated routing table 228 to the destination terminal 100, and calculates the calculated communication delay. The time is registered in the delay time 328 after the present relay device in the routing table 228.
  • the management server 120 refers to not only the communication delay time but also the data management table 256 and exists in the communication path from the relay apparatus 110 that holds the generated routing table 228 to the destination terminal 100.
  • the total value of the data processing time of the relay device 110 is calculated. Then, a value obtained by adding the communication delay time from the relay apparatus 110 holding the generated routing table 228 to the destination terminal 100 and the total value of the data processing time is used as the delay time 328 after the present relay apparatus in the routing table 228. sign up.
  • the management server 120 When the processing time of each relay device 110 is registered in advance in the data management table 256, the management server 120 does not need to transmit a data processing time table request.
  • FIG. 26 is a flowchart of processing at the time of system startup by the relay apparatus 110 according to the third embodiment of the present invention.
  • the process same as the process shown in FIG. 13 of Example 1 among the processes shown in FIG. 26 is provided with the same code
  • the relay apparatus 110 determines whether the received data is a data processing time table request (1302).
  • step 1302 If it is determined in step 1302 that the received data is not a data processing time table request, the process proceeds to step 414.
  • step 1302 if it is determined in step 1302 that the received data is a data processing time table request, the relay apparatus 110 transmits the data processing time table 1204 to the management server 120 (1304), and the processing in step 400 is performed. Return.
  • FIG. 27 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to a modification of the third embodiment of the present invention.
  • the terminal 100 and the relay device 110 include a routing management table 252, a measurement information management table 254, and a data management table 256 in addition to the configuration illustrated in FIG.
  • the routing management table 252 and the measurement information management table 254 are the same as those in FIGS. 9 and 10 of the first embodiment, and the data management table 256 is the same as that in FIG. 24 of the third embodiment.
  • step 908 the terminal 100 and the relay device 110 transmit / receive the measurement information storage table 210, update the measurement information management table 254, and update the routing management table 252 based on the updated measurement information management table 254. Thereafter, the own data processing time table 1204 is transmitted to the other terminal 100 and the relay device 110, the data processing time table 1204 is received from the other terminal 100 and the relay device 110, and the data management table 256 is updated (1400). .
  • the update process of the data management table 256 is the same as the process of step 13308 in the third embodiment, and thus the description thereof is omitted.
  • step 910 update the routing table 228 based on the updated routing management table 252 and the updated data management table 256 (910), Return to processing.
  • the update process of the routing table 228 is the same as the process of step 448 shown in FIG.
  • the value registered in the delay time 328 after the present relay device in the routing table 228 includes the communication delay time from the relay device 110 that holds the routing table 228 to the destination terminal 100, and the routing table 228.
  • the total value of the data processing time of the relay apparatus 110 existing in the communication path from the relay apparatus 110 to be held to the destination terminal 100 is registered. For this reason, data transfer satisfying the required communication delay time can be performed in consideration of the data processing time in the relay apparatus 110.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as a CI card, an SD card, and a DVD.

Abstract

An objective of the present invention is to provide a relay device whereby communication delay time of data from a transmission source to a transmission destination is reliably ensured. The relay device: retains a transfer destination, a requirement communication delay time which should be maintained until data which is transmitted by a transmission source terminal is received by the transmission destination terminal, and a predicted communication delay time which is predicted to be required until data which is transmitted by the relay device is received by the transmission destination terminal; computes a transmission source communication delay time from transmission of the received data by the transmission source terminal to reception thereof by the relay device; and transfers the data on the basis of the requirement communication delay time, the predicted communication delay time, and the computed transmission source communication delay time, such that the data which is received is received by the transmission destination terminal within the requirement communication delay time.

Description

中継装置、及び中継方法Relay device and relay method
 本発明は、送信元端末から送信先端末までデータを中継する中継装置に関し、特に、送信元端末から送信先端末までの通信遅延時間を保証する中継装置に関する。 The present invention relates to a relay device that relays data from a transmission source terminal to a transmission destination terminal, and more particularly to a relay device that guarantees a communication delay time from the transmission source terminal to the transmission destination terminal.
 一般的に、IP(Internet Protocol)ネットワークは、例えば帯域幅及び通信遅延時間等の通信品質(以下、QoS(Quality of Service)という)を保証しないベストエフォート型の通信方法である。しかし、近年、QoSを保証するIPネットワークサービスの要求が大きくなり、QoSを保証するサービスの開発が盛んである。このサービスのとしては、例えば、電話による音声通話及び動画配信等の実時間通信、並びにロボット遠隔操作等のための実時間通信等がある。QoSを保証するサービスでは、データが欠落した場合、又は通信遅延時間が想定した通信遅延時間より遅れた場合には、1パケットであっても、サービス品質に大きな影響を与える。 Generally, an IP (Internet Protocol) network is a best-effort communication method that does not guarantee communication quality such as bandwidth and communication delay time (hereinafter referred to as QoS (Quality Service)). However, in recent years, demands for IP network services that guarantee QoS have increased, and development of services that guarantee QoS has been active. Examples of this service include real-time communication such as voice call by telephone and video distribution, real-time communication for robot remote control, and the like. In a service that guarantees QoS, even when there is data loss or when the communication delay time is later than the assumed communication delay time, even one packet has a great influence on the service quality.
 このような問題点を解決するため、ネットワークを構成する中継装置が、転送するデータに優先度を付与し、優先度の高いデータから優先的に転送することが一般的に知られている。すなわち、既存のIPルータ等の中継装置は、リアルタイム性が要求されるデータ(QoSを保証するデータ)の優先度をリアルタイム性が要求されないデータの優先度より高く設定し、優先度の高いデータから優先して転送する。このような中継装置における優先度に基づく転送制御を優先転送制御という。 In order to solve such a problem, it is generally known that a relay apparatus configuring a network gives priority to data to be transferred and preferentially transfers data with high priority. In other words, an existing relay device such as an IP router sets the priority of data that requires real-time performance (data that guarantees QoS) higher than the priority of data that does not require real-time performance. Transfer with priority. Transfer control based on priority in such a relay device is called priority transfer control.
 しかしながら、優先転送制御を利用する中継装置では、リアルタイム性が要求されるデータのみに処理が集中してしまい、リアルタイム性が要求されないデータに処理が実行されない可能性がある。また、帯域幅が狭い等の理由による輻輳が発生するようなネットワークでは、優先転送制御を利用する中継装置であっても、輻輳による再送時間が遅延揺らぎとして、受信端末に影響を与える可能性がある。 However, in a relay device that uses priority transfer control, processing concentrates only on data that requires real-time processing, and processing may not be performed on data that does not require real-time processing. In addition, in a network where congestion occurs due to reasons such as narrow bandwidth, even if the relay device uses priority transfer control, there is a possibility that the retransmission time due to congestion will affect the receiving terminal as delay fluctuations. is there.
 上記した問題点を解決する技術として、特開2002-118585号公報(特許文献1)、及び特開2007-13654号公報(特許文献2)がある。 As techniques for solving the above-mentioned problems, there are JP-A No. 2002-118585 (Patent Document 1) and JP-A No. 2007-13654 (Patent Document 2).
 特許文献1には、「入力されるパケットを複数のクラスに区分するとともに複数のクラスを優先グループと非優先グループとに分類し、それぞれのクラスのパケットを互いに独立した待ち行列に蓄積し、優先グループのパケットを保持する待ち行列には要求遅延時間を満足する第1の帯域を優先的に割り当て、残りの帯域を第2の帯域に定め、非優先グループについては特定期間の使用頻度をクラス毎に検出し、非優先グループの待ち行列には、直近の特定期間の使用頻度に応じた重みで第2の帯域の一部分を動的に割り当てる。」と記載されている(要約参照)。 Patent Document 1 states that “input packets are classified into a plurality of classes, a plurality of classes are classified into a priority group and a non-priority group, and packets of each class are stored in queues independent of each other, A first band that satisfies the required delay time is preferentially assigned to the queue that holds the packets of the group, the remaining band is set as the second band, and the non-priority group uses a specific period of frequency for each class. And a part of the second band is dynamically allocated to the queue of the non-priority group with a weight according to the frequency of use in the most recent specific period ”(see summary).
 特許文献2には、「IPネットワーク内のパケットスイッチ間で転送するパケットに遅延情報を挿入し、遅延情報を用いてQoS制御を行うよう構成する。具体的には、パケットスイッチのフロー識別部601が受信パケットから遅延情報を取り出して送信制御部605に渡し、送信制御部605が遅延情報に基づいてキューの帯域設定を変更するとともに遅延演算部607を用いて内部補正時間を算出し、遅延情報処理部606が内部補正時間を用いて遅延情報を更新してパケットを送信する。」と記載されている(要約参照)。 Japanese Patent Laid-Open No. 2004-228688 discloses a configuration in which delay information is inserted into a packet transferred between packet switches in an IP network, and QoS control is performed using the delay information. Specifically, a flow identification unit 601 of a packet switch. The delay information is extracted from the received packet and passed to the transmission control unit 605. The transmission control unit 605 changes the bandwidth setting of the queue based on the delay information and calculates the internal correction time using the delay calculation unit 607. The processing unit 606 updates the delay information using the internal correction time and transmits the packet ”(see summary).
特開2002-118585号公報JP 2002-118585 A 特開2007-13654号公報JP 2007-13654 A
 特許文献1及び特許文献2に記載された技術では、データを送信した送信元端末からデータを受信した中継装置までの遅延時間しか考慮していない。図1に示すような中継システムのネットワーク構成において、データAが通信路A、通信路C、及び通信路Eの順に要件通信遅延時間(10ms)で転送され、データBが通信路B、通信路D、及び通信路Fの順に要件通信遅延時間(10ms)で転送される場合において、図1に示す中継装置C110Cが通信路A及び通信路Bを介してデータA及びデータBを受信したとする。この場合、特許文献1及び特許文献2に記載された技術では、データAは端末A100Aによって送信されてから中継装置C110Cによって受信されるまで3msかかり、データBは端末B100Bによって送信されてから中継装置D110Cによって受信されるまで2msかかっているため、データAが優先的に転送される。しかしながら、データAは中継装置C110以降3msで端末D100に到達し、データBは中継装置C110以降7msで端末E100Eに到着するため、本来、データBが優先的に転送されるべきである。 In the techniques described in Patent Document 1 and Patent Document 2, only the delay time from the transmission source terminal that transmitted the data to the relay device that received the data is considered. In the network configuration of the relay system as shown in FIG. 1, data A is transferred in the order of communication channel A, communication channel C, and communication channel E in the required communication delay time (10 ms), and data B is communication channel B, communication channel. Suppose that the relay device C110C shown in FIG. 1 receives data A and data B via the communication path A and the communication path B in the case of transfer with the required communication delay time (10 ms) in the order of D and the communication path F. . In this case, in the techniques described in Patent Document 1 and Patent Document 2, it takes 3 ms from the time when data A is transmitted by the terminal A100A to the time when it is received by the relay device C110C, and the time when the data B is transmitted by the terminal B100B. Since it takes 2 ms until it is received by D110C, data A is preferentially transferred. However, since data A arrives at terminal D100 in 3 ms after relay device C110 and data B arrives at terminal E100E in 7 ms after relay device C110, data B should be transferred with priority.
 上記したように、特許文献1及び特許文献2に記載された技術では、優先的に転送されるべきデータが優先して転送されないため、確実にデータの通信遅延時間となる要件通信遅延時間を保証することができない。 As described above, in the techniques described in Patent Document 1 and Patent Document 2, since the data to be preferentially transferred is not preferentially transferred, the requirement communication delay time that ensures the data communication delay time is guaranteed. Can not do it.
 そこで、本発明は、送信元から送信先までのデータの通信遅延時間を確実に保証する中継装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a relay device that reliably guarantees a communication delay time of data from a transmission source to a transmission destination.
 上記課題を解決するために、本発明では、送信元端末から送信先端末までデータを中継する中継装置であって、前記送信元端末によって送信されたデータの転送先と、前記送信元端末によって送信されたデータが前記送信先端末によって受信されるまで担保すべき要件通信遅延時間と、当該中継装置によって送信されたデータが前記送信先端末によって受信されるまでに必要であると予想される予想通信遅延時間と、を保持し、前記送信元端末によって送信されたデータは、送信された時刻を示す時刻情報を含み、前記送信元端末によって送信されたデータを受信した場合、前記受信したデータに含まれる時刻情報に基づいて、当該データが前記送信元端末によって送信されてから当該中継装置によって受信されるまでに要した送信元通信遅延時間を算出し、前記要件通信遅延時間、前記予想通信遅延時間、及び前記算出した送信元通信遅延時間に基づいて、前記要件通信遅延時間内に前記受信したデータが前記送信先端末によって受信されるように、前記データを転送する。 In order to solve the above-described problem, in the present invention, a relay device that relays data from a transmission source terminal to a transmission destination terminal, the transfer destination of data transmitted by the transmission source terminal, and transmission by the transmission source terminal Required communication delay time to be ensured until received data is received by the destination terminal, and expected communication expected to be required before the data transmitted by the relay device is received by the destination terminal Data transmitted by the transmission source terminal includes time information indicating a transmission time, and included in the received data when the data transmitted by the transmission source terminal is received. Source communication required from the time when the data is transmitted by the source terminal to the time when the data is received by the relay device Calculate the extended time, and based on the requirement communication delay time, the expected communication delay time, and the calculated source communication delay time, the received data is received by the destination terminal within the requirement communication delay time. Then, the data is transferred.
 本発明によれば、送信元から送信先までのデータの通信時間を確実に保証する中継装置を提供できる。 According to the present invention, it is possible to provide a relay device that reliably guarantees the data communication time from the transmission source to the transmission destination.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例1の中継システムの構成の説明図である。It is explanatory drawing of a structure of the relay system of Example 1 of this invention. 本発明の実施例1の端末の構成の説明図である。It is explanatory drawing of a structure of the terminal of Example 1 of this invention. 本発明の実施例1の中継装置の構成の説明図である。It is explanatory drawing of a structure of the relay apparatus of Example 1 of this invention. 本発明の実施例1の管理サーバの構成の説明図である。It is explanatory drawing of a structure of the management server of Example 1 of this invention. 本発明の実施例1のシステム内で通信されるデータのフォーマットの説明図である。It is explanatory drawing of the format of the data communicated in the system of Example 1 of this invention. 本発明の実施例1の計測情報格納テーブルの説明図である。It is explanatory drawing of the measurement information storage table of Example 1 of this invention. 本発明の実施例1のデータ種別テーブルの説明図である。It is explanatory drawing of the data classification table of Example 1 of this invention. 本発明の実施例1のルーティングテーブルの説明図である。It is explanatory drawing of the routing table of Example 1 of this invention. 本発明の実施例1のルーティング管理テーブルの説明図である。It is explanatory drawing of the routing management table of Example 1 of this invention. 本発明の実施例1の計測情報管理テーブルの説明図である。It is explanatory drawing of the measurement information management table of Example 1 of this invention. 本発明の実施例1のデータ管理テーブルの説明図である。It is explanatory drawing of the data management table of Example 1 of this invention. 本発明の実施例1の管理サーバによるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the management server of Example 1 of this invention. 本発明の実施例1の端末及び中継装置によるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of Example 1 of this invention. 本発明の実施例1の管理サーバによる通常モード動作時の処理のフローチャートである。It is a flowchart of the process at the time of normal mode operation | movement by the management server of Example 1 of this invention. 本発明の実施例1の端末及び中継装置による通常モード動作時の処理のフローチャートである。It is a flowchart of the process at the time of normal mode operation | movement by the terminal and relay apparatus of Example 1 of this invention. 本発明の実施例1のデータ転送処理のフローチャートである。It is a flowchart of the data transfer process of Example 1 of this invention. 本発明の実施例1のデータ転送処理のフローチャートである。It is a flowchart of the data transfer process of Example 1 of this invention. 本発明の実施例1の変形例の端末及び中継装置によるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of the modification of Example 1 of this invention. 実施例1の変形例のデータ通信方法の説明図である。It is explanatory drawing of the data communication method of the modification of Example 1. FIG. 本発明の実施例2の中継システムの構成の説明図である。It is explanatory drawing of a structure of the relay system of Example 2 of this invention. 本発明の実施例2の端末及び中継装置によるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of Example 2 of this invention. 本発明の実施例3の中継装置の構成の説明図である。It is explanatory drawing of a structure of the relay apparatus of Example 3 of this invention. 本発明の実施例3のデータ処理時間テーブルの説明図である。It is explanatory drawing of the data processing time table of Example 3 of this invention. 本発明の実施例3のデータ管理テーブルの説明図である。It is explanatory drawing of the data management table of Example 3 of this invention. 本発明の実施例3の管理サーバによるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the management server of Example 3 of this invention. 本発明の実施例3の中継装置によるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the relay apparatus of Example 3 of this invention. 本発明の実施例3の変形例の端末及び中継装置によるシステム起動時の処理のフローチャートである。It is a flowchart of the process at the time of system starting by the terminal and relay apparatus of the modification of Example 3 of this invention.
 以下、図面を参照しつつ、本発明を実施するための形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。また、各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略されている。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. Moreover, in each drawing, the same code | symbol is attached | subjected to the same element and the duplication description is abbreviate | omitted as needed for clarification of description.
 以下において、本発明の実施例1を図1~図19を参照して説明する。 Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS.
 図1は、本発明の実施例1の中継システムの構成の説明図である。 FIG. 1 is an explanatory diagram of a configuration of the relay system according to the first embodiment of this invention.
 中継システムは、端末A100A~端末E100E(以下、総称して端末100という)、中継装置A110A~中継装置G110G(以下、総称して中継装置110という)、及び管理サーバ120を有する。 The relay system includes terminal A100A to terminal E100E (hereinafter collectively referred to as terminal 100), relay device A110A to relay device G110G (hereinafter collectively referred to as relay device 110), and management server 120.
 端末A100A~端末E100Eを接続するネットワークは、中継装置A110A~中継装置G110Gによって構成され、端末A100Aは、ネットワークを介してデータを送受信する。ネットワークは、例えば、イーサネット又は無線ネットワーク等である。また、本中継システムは、例えば、情報ネットワークシステム又はFA(Factory Automation)ネットワークシステム等である。なお、ネットワークを構成する中継装置110は、例えば、ゲートウェイ、スイッチ、又はルータ等である。 The network connecting terminal A100A to terminal E100E is configured by relay device A110A to relay device G110G, and terminal A100A transmits and receives data via the network. The network is, for example, an Ethernet or a wireless network. The relay system is, for example, an information network system or an FA (Factory Automation) network system. Note that the relay device 110 configuring the network is, for example, a gateway, a switch, or a router.
 図1に示すネットワークについて説明する。 The network shown in FIG. 1 will be described.
 中継装置A110Aは、端末A100Aに接続され、通信路A130を介して中継装置C110Cに接続される。また、中継装置B110Bは、端末B100Bに接続され、通信路B132を介して中継装置C110Cに接続される。中継装置C110Cは、通信路C134を介して中継装置D110Dに接続され、通信路D136を介して中継装置E110Eに接続される。中継装置D110Dは、通信路E138を介して中継装置F110Fに接続され、中継装置E110Eは、通信路F140を介して中継装置G110Gに接続される。中継装置F110Fは管理サーバ120及び端末D100Dに接続され、中継装置G110Gは端末E100Eに接続される。 The relay device A110A is connected to the terminal A100A and connected to the relay device C110C via the communication path A130. Relay device B110B is connected to terminal B100B and connected to relay device C110C via communication path B132. The relay device C110C is connected to the relay device D110D via the communication path C134, and is connected to the relay device E110E via the communication path D136. The relay device D110D is connected to the relay device F110F via the communication path E138, and the relay device E110E is connected to the relay device G110G via the communication path F140. Relay device F110F is connected to management server 120 and terminal D100D, and relay device G110G is connected to terminal E100E.
 ある中継装置からある中継装置への通信路を介したデータの送信には、通信路の帯域幅及びデータ量に応じて、通信遅延時間が発生する。通信路A130の通信時間は3msであり、通信路B132の通信時間は2msであり、通信路C134の通信時間は2msであり、通信路D136の通信時間は6msであり、通信路E138の通信時間は1msであり、通信路F140の通信時間は1msである。 In transmission of data from a certain relay device to a certain relay device via a communication path, a communication delay time is generated according to the bandwidth and data amount of the communication path. The communication time of the communication channel A130 is 3 ms, the communication time of the communication channel B132 is 2 ms, the communication time of the communication channel C134 is 2 ms, the communication time of the communication channel D136 is 6 ms, and the communication time of the communication channel E138. Is 1 ms, and the communication time of the communication path F140 is 1 ms.
 管理サーバ120は、各通信路の通信遅延時間等を監視し、また、中継装置110を管理する計算機である。管理サーバ120は、中継装置F110Fに必ずしも接続されている必要はなく、いずれかの中継装置110に接続されていればよい。 The management server 120 is a computer that monitors the communication delay time of each communication path and manages the relay device 110. The management server 120 does not necessarily need to be connected to the relay device F110F, and may be connected to any relay device 110.
 図2は、本発明の実施例1の端末100の構成の説明図である。 FIG. 2 is an explanatory diagram of the configuration of the terminal 100 according to the first embodiment of this invention.
 端末100は、ハードウェアモジュール200、OS202、端末アプリケーション204、計測アプリケーション206、及び記憶装置208を含む。 The terminal 100 includes a hardware module 200, an OS 202, a terminal application 204, a measurement application 206, and a storage device 208.
 ハードウェアモジュール200は、端末100を動作させるために必要なハードウェアであり、CPU、揮発性メモリ、不揮発性メモリ、外部通信インタフェース、外部入出力部、及び表示部等を含む。CPUは、不揮発性メモリに記憶された各種プログラムを揮発性メモリにロードし、揮発性メモリにロードした各種プログラムを実行する。外部通信インタフェースは、他の中継装置110又は端末100とデータを通信するためのインタフェースである。外部入出力部は、センサ等の外部装置からデータを収集するためのインタフェースである。 The hardware module 200 is hardware necessary for operating the terminal 100, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, an external input / output unit, a display unit, and the like. The CPU loads various programs stored in the nonvolatile memory into the volatile memory and executes the various programs loaded into the volatile memory. The external communication interface is an interface for communicating data with another relay apparatus 110 or the terminal 100. The external input / output unit is an interface for collecting data from an external device such as a sensor.
 OS202は、端末100の動作を統括的に制御する基本ソフトウェアであり、図示しないCPUによって実行される。 The OS 202 is basic software that comprehensively controls the operation of the terminal 100, and is executed by a CPU (not shown).
 端末アプリケーション204は、端末100上で動作するアプリケーションであり、例えば、FAネットワークシステムである場合、外部入出力部を介して収集された電力データに基づいて電圧値又は電力量等のデータを生成する。 The terminal application 204 is an application that operates on the terminal 100. For example, in the case of an FA network system, the terminal application 204 generates data such as a voltage value or power amount based on power data collected via the external input / output unit. .
 計測アプリケーション206は、同じシステム内に存在する端末100又は中継装置110との間の通信遅延時間を計測するアプリケーションである。なお、通信遅延時間を高精度に計測する場合には、計測アプリケーション206の機能がハードウェアとして実装されてもよい。 The measurement application 206 is an application that measures a communication delay time with the terminal 100 or the relay device 110 existing in the same system. Note that when the communication delay time is measured with high accuracy, the function of the measurement application 206 may be implemented as hardware.
 通信遅延時間の計測方法の例について説明する。 An example of a method for measuring communication delay time will be described.
 まず、端末100又は中継装置110が他の端末100又は中継装置110と時刻を同期しない場合について説明する。この場合、端末100又は中継装置110は、所定時間毎に送信時刻を含む計測要求データを隣接する他の端末100又は中継装置110に送信する。他の端末100又は中継装置110は、計測要求データを受信した場合、送信時刻を含む計測応答データを計測要求データの送信元に送信する。なお、計測応答データは、計測要求データと関連付けることが可能な情報、又は計測要求データの送信時刻を含む。端末100又は中継装置110は、計測応答データを受信した場合、計測応答データの受信時刻から当該計測応答データに対応する計測要求データの送信時刻を減算した時間を2で除算することによって、通信遅延時間を算出する。 First, a case where the terminal 100 or the relay device 110 does not synchronize time with another terminal 100 or the relay device 110 will be described. In this case, the terminal 100 or the relay device 110 transmits the measurement request data including the transmission time every predetermined time to the other adjacent terminal 100 or the relay device 110. When the other terminal 100 or the relay device 110 receives the measurement request data, the terminal 100 or the relay device 110 transmits measurement response data including the transmission time to the transmission source of the measurement request data. The measurement response data includes information that can be associated with the measurement request data or the transmission time of the measurement request data. When receiving the measurement response data, the terminal 100 or the relay device 110 divides the time obtained by subtracting the transmission time of the measurement request data corresponding to the measurement response data from the reception time of the measurement response data by 2 to thereby reduce the communication delay. Calculate time.
 次に、端末100又は中継装置110が他の端末100又は中継装置110と時刻を同期する場合について説明する。この場合、端末100又は中継装置110は、所定時間毎に送信時刻を含む計測要求データを他の端末100又は中継装置110に送信する。他の端末100又は中継装置110は、計測要求データの受信時刻から送信時刻を減算することによって、通信遅延時間を算出する。なお、端末100又は中継装置110は、他の端末100又は中継装置110と時刻を同期する場合であっても、上記した計測要求データと計測応答データとを利用して通信遅延時間を算出してもよい。 Next, a case where the terminal 100 or the relay device 110 synchronizes time with another terminal 100 or the relay device 110 will be described. In this case, the terminal 100 or the relay device 110 transmits the measurement request data including the transmission time to the other terminal 100 or the relay device 110 every predetermined time. The other terminal 100 or the relay device 110 calculates the communication delay time by subtracting the transmission time from the reception time of the measurement request data. Even if the terminal 100 or the relay device 110 synchronizes the time with the other terminal 100 or the relay device 110, the terminal 100 or the relay device 110 calculates the communication delay time using the above-described measurement request data and measurement response data. Also good.
 なお、計測要求データ、及び計測応答データ等のシステム内で通信されるデータのフォーマットについては、図5で詳細を説明する。 The format of data communicated in the system such as measurement request data and measurement response data will be described in detail with reference to FIG.
 記憶装置208は、端末100の動作に必要なデータを記憶する。具体的には、記憶装置208は、計測情報格納テーブル210及びデータ種別テーブル212を記憶する。計測情報格納テーブル210には、計測アプリケーション206によって計測された通信遅延時間が登録される。計測情報格納テーブル210については図6で詳細を説明する。データ種別テーブル212には、端末100が送受信するデータの種別と当該種別に対応するデータの種類とが登録される。データ種別テーブル212については図7で詳細を説明する。 The storage device 208 stores data necessary for the operation of the terminal 100. Specifically, the storage device 208 stores a measurement information storage table 210 and a data type table 212. In the measurement information storage table 210, a communication delay time measured by the measurement application 206 is registered. Details of the measurement information storage table 210 will be described with reference to FIG. In the data type table 212, the type of data transmitted and received by the terminal 100 and the type of data corresponding to the type are registered. Details of the data type table 212 will be described with reference to FIG.
 なお、記憶装置208は、例えば、半導体メモリ又は磁気記憶媒体等の不揮発性メモリである。 Note that the storage device 208 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
 図3は、本発明の実施例1の中継装置110の構成の説明図である。 FIG. 3 is an explanatory diagram of a configuration of the relay device 110 according to the first embodiment of this invention.
 中継装置110は、ハードウェアモジュール220、OS222、ルーティングアプリケーション224、計測アプリケーション206、及び記憶装置226を含む。 The relay device 110 includes a hardware module 220, an OS 222, a routing application 224, a measurement application 206, and a storage device 226.
 ハードウェアモジュール220は、中継装置110を動作させるために必要なハードウェアであり、CPU、揮発性メモリ、不揮発性メモリ、外部通信インタフェース、及び表示部等を含む。なお、CPU、揮発性メモリ、不揮発性メモリ、外部通信インタフェース、及び表示部等は、図2に示す端末100のハードウェアモジュール200と同じであるので、説明を省略する。 The hardware module 220 is hardware necessary for operating the relay device 110, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, a display unit, and the like. The CPU, volatile memory, nonvolatile memory, external communication interface, display unit, and the like are the same as those of the hardware module 200 of the terminal 100 shown in FIG.
 OS222は、中継装置110の動作を統括的に制御する基本ソフトウェアであり、図示しないCPUによって実行される。 The OS 222 is basic software that comprehensively controls the operation of the relay apparatus 110, and is executed by a CPU (not shown).
 ルーティングアプリケーション224は、ルーティングテーブル228を参照し、ハードウェアモジュール220に含まれる外部通信インタフェースを介して受信したデータを、端末100又は他の中継装置110に転送するアプリケーションである。 The routing application 224 is an application that refers to the routing table 228 and transfers data received through the external communication interface included in the hardware module 220 to the terminal 100 or another relay device 110.
 計測アプリケーション206は、図2に示す端末100の計測アプリケーション206と同じであるので、説明を省略する。 The measurement application 206 is the same as the measurement application 206 of the terminal 100 shown in FIG.
 記憶装置226は、中継装置110の動作に必要なデータを記憶する。具体的には、記憶装置226は、計測情報格納テーブル210及びルーティングテーブル228を記憶する。計測情報格納テーブル210は、図2に示す端末100の計測情報格納テーブル210と同じであるので、説明を省略する。 The storage device 226 stores data necessary for the operation of the relay device 110. Specifically, the storage device 226 stores a measurement information storage table 210 and a routing table 228. The measurement information storage table 210 is the same as the measurement information storage table 210 of the terminal 100 shown in FIG.
 ルーティングテーブル228には、データ種別毎に、転送先のアドレス、保証すべき通信遅延時間、及び当該中継装置110から送信先までの予想遅延時間が登録される。なお、ルーティングテーブル228については図8で詳細を説明する。 In the routing table 228, a transfer destination address, a communication delay time to be guaranteed, and an expected delay time from the relay apparatus 110 to the transmission destination are registered for each data type. Details of the routing table 228 will be described with reference to FIG.
 なお、記憶装置226は、例えば、半導体メモリ又は磁気記憶媒体等の不揮発性メモリである。 Note that the storage device 226 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
 図4は、本発明の実施例1の管理サーバ120の構成の説明図である。 FIG. 4 is an explanatory diagram of the configuration of the management server 120 according to the first embodiment of this invention.
 管理サーバ120は、ハードウェアモジュール240、OS242、ルーティングテーブル生成アプリケーション244、及び記憶装置250を含む。 The management server 120 includes a hardware module 240, an OS 242, a routing table generation application 244, and a storage device 250.
 ハードウェアモジュール240は、管理サーバ120を動作させるために必要なハードウェアであり、CPU、揮発性メモリ、不揮発性メモリ、外部通信インタフェース、及び表示部等を含む。なお、CPU、揮発性メモリ、不揮発性メモリ、外部通信インタフェース、及び表示部等は、図2に示す端末100のハードウェアモジュール200と同じであるので、説明を省略する。 The hardware module 240 is hardware necessary for operating the management server 120, and includes a CPU, a volatile memory, a nonvolatile memory, an external communication interface, a display unit, and the like. The CPU, volatile memory, nonvolatile memory, external communication interface, display unit, and the like are the same as those of the hardware module 200 of the terminal 100 shown in FIG.
 OS242は、管理サーバ120の動作を統括的に制御する基本ソフトウェアであり、図示しないCPUによって実行される。 The OS 242 is basic software that comprehensively controls the operation of the management server 120, and is executed by a CPU (not shown).
 ルーティングテーブル生成アプリケーション244は、各中継装置110のルーティングテーブル228を生成し、生成したルーティングテーブル228を各中継装置110に配布するアプリケーションである。ルーティングテーブル生成アプリケーション244は、通信状態収集部246、ルーティングテーブル生成部247、及びルーティングテーブル配布部248を含む。 The routing table generation application 244 is an application that generates the routing table 228 of each relay device 110 and distributes the generated routing table 228 to each relay device 110. The routing table generation application 244 includes a communication state collection unit 246, a routing table generation unit 247, and a routing table distribution unit 248.
 通信状態収集部246は、各端末100、及び中継装置110から計測情報格納テーブル210を収集し、収集した情報に基づいて計測情報管理テーブル254を生成する。ルーティングテーブル生成部247は、計測情報管理テーブル254及びデータ管理テーブル256を参照し、ルーティング管理テーブル252を生成し、各中継装置110のルーティングテーブル228を生成する。ルーティングテーブル配布部248は、ルーティングテーブル生成部247によって生成されたルーティングテーブル228を各中継装置110に配布する。 The communication state collection unit 246 collects the measurement information storage table 210 from each terminal 100 and the relay device 110, and generates a measurement information management table 254 based on the collected information. The routing table generation unit 247 refers to the measurement information management table 254 and the data management table 256, generates the routing management table 252 and generates the routing table 228 of each relay device 110. The routing table distribution unit 248 distributes the routing table 228 generated by the routing table generation unit 247 to each relay device 110.
 記憶装置250は、ルーティング管理テーブル252、計測情報管理テーブル254、及びデータ管理テーブル256を記憶する。ルーティング管理テーブル252には、データ種別毎に送信元の端末100から送信先の端末100までの通信経路が登録される。ルーティング管理テーブル252については、図9で詳細を説明する。計測情報管理テーブル254は、端末100又は中継装置110から収集した計測情報格納テーブル210を纏めたテーブルである。計測情報管理テーブル254については、図10で詳細を説明する。データ管理テーブル256は、中継システムにおいて通信されるデータを管理するためのテーブルである。データ管理テーブル256については、図11で詳細を説明する。 The storage device 250 stores a routing management table 252, a measurement information management table 254, and a data management table 256. In the routing management table 252, a communication path from the transmission source terminal 100 to the transmission destination terminal 100 is registered for each data type. Details of the routing management table 252 will be described with reference to FIG. The measurement information management table 254 is a table in which the measurement information storage table 210 collected from the terminal 100 or the relay device 110 is collected. Details of the measurement information management table 254 will be described with reference to FIG. The data management table 256 is a table for managing data communicated in the relay system. Details of the data management table 256 will be described with reference to FIG.
 なお、記憶装置250は、例えば、半導体メモリ又は磁気記憶媒体等の不揮発性メモリである。 Note that the storage device 250 is, for example, a nonvolatile memory such as a semiconductor memory or a magnetic storage medium.
 図5は、本発明の実施例1のシステム内で通信されるデータのフォーマットの説明図である。 FIG. 5 is an explanatory diagram of a format of data communicated in the system according to the first embodiment of the present invention.
 システム内で通信されるデータは、パケットヘッダ1000、送信時刻1002、データ種別ID1004、及びデータ1006を含む。 The data communicated in the system includes a packet header 1000, a transmission time 1002, a data type ID 1004, and data 1006.
 パケットヘッダ1000には、データの送信先の端末100のアドレス、及びデータの送信元の端末100のアドレス等が登録され、パケットヘッダ1000はイーサネットヘッダ又はIPヘッダに相当する。送信時刻1002には、データが送信元の端末100から送信された時刻が登録される。 In the packet header 1000, the address of the data transmission destination terminal 100, the address of the data transmission source terminal 100, and the like are registered, and the packet header 1000 corresponds to an Ethernet header or an IP header. In the transmission time 1002, a time at which data is transmitted from the terminal 100 as a transmission source is registered.
 データ種別ID1004には、データの種別を一意に識別するための識別子が登録される。データの種別の例としては端末100の状態、電力値、計測要求、又は計測応答等がある。データ1006には、例えば、端末100の状態又は電力値等の実際のデータが格納される。 In the data type ID 1004, an identifier for uniquely identifying the data type is registered. Examples of the data type include the state of the terminal 100, a power value, a measurement request, or a measurement response. The data 1006 stores actual data such as the state of the terminal 100 or the power value.
 図6は、本発明の実施例1の計測情報格納テーブル210の説明図である。 FIG. 6 is an explanatory diagram of the measurement information storage table 210 according to the first embodiment of this invention.
 計測情報格納テーブル210は、端末100の記憶装置208及び中継装置110の記憶装置226に記憶される。計測情報格納テーブル210には、端末100又は中継装置110の計測アプリケーション206が取得した他の端末100又は他の中継装置110との間の通信遅延時間が登録される。 The measurement information storage table 210 is stored in the storage device 208 of the terminal 100 and the storage device 226 of the relay device 110. In the measurement information storage table 210, a communication delay time with the other terminal 100 or another relay device 110 acquired by the measurement application 206 of the terminal 100 or the relay device 110 is registered.
 計測情報格納テーブル210は、アドレス300、通信遅延時間302、及び通信成功率304を含む。 The measurement information storage table 210 includes an address 300, a communication delay time 302, and a communication success rate 304.
 アドレス300には、計測要求データの送信先の端末100又は中継装置110のアドレス(例えば、IPアドレス)が登録される。通信遅延時間302には、アドレス300に登録されたアドレスによって識別される端末100又は中継装置110との間の通信路の通信遅延時間が登録される。通信成功率304には、受信済みの計測応答データの数の送信済みの計測要求データの数に対する割合が登録される。 In the address 300, the address (for example, IP address) of the terminal 100 or the relay device 110 that is the transmission destination of the measurement request data is registered. In the communication delay time 302, the communication delay time of the communication path between the terminal 100 or the relay device 110 identified by the address registered in the address 300 is registered. In the communication success rate 304, the ratio of the number of received measurement response data to the number of transmitted measurement request data is registered.
 なお、計測情報格納テーブル210は、アドレス300及び通信遅延時間302を少なくとも含めばよく、通信成功率304を含まなくてもよい。また、計測情報格納テーブル210は、アドレス300に登録されたアドレスによって識別される装置との通信路の種別(例えば、光ネットワーク、及び無線通信等)が登録されてもよい。 Note that the measurement information storage table 210 only needs to include at least the address 300 and the communication delay time 302 and may not include the communication success rate 304. In the measurement information storage table 210, the type of communication path (for example, optical network, wireless communication, etc.) with the device identified by the address registered in the address 300 may be registered.
 図7は、本発明の実施例1のデータ種別テーブル212の説明図である。 FIG. 7 is an explanatory diagram of the data type table 212 according to the first embodiment of this invention.
 データ種別テーブル212は、端末100の記憶装置208に記憶され、データ種別ID310及びデータ種類312を含む。 The data type table 212 is stored in the storage device 208 of the terminal 100, and includes a data type ID 310 and a data type 312.
 データ種別ID310には、中継システムの通信路を介して通信されるデータの種別の一意な識別子が登録される。データ種類312には、データ種別ID310に登録されたデータ種別の識別子によって識別されるデータ種別に対応するデータ種別の名称が登録される。データ種類312には、例えば、端末状態及び電流値等が登録される。 In the data type ID 310, a unique identifier of the type of data communicated via the communication path of the relay system is registered. In the data type 312, the name of the data type corresponding to the data type identified by the data type identifier registered in the data type ID 310 is registered. In the data type 312, for example, a terminal state and a current value are registered.
 図8は、本発明の実施例1のルーティングテーブル228の説明図である。 FIG. 8 is an explanatory diagram of the routing table 228 according to the first embodiment of this invention.
 ルーティングテーブル228は、中継装置110の記憶装置226に記憶される。ルーティングテーブル228は、ハードウェアモジュール220に含まれる外部通信インタフェースを介して受信したデータを転送する場合に利用されるテーブルであり、データ種別ID320、優先度322、転送先アドレス324、要件通信遅延時間326、及び本中継装置以降の遅延時間328を含む。 The routing table 228 is stored in the storage device 226 of the relay device 110. The routing table 228 is a table used when data received via the external communication interface included in the hardware module 220 is transferred, and includes a data type ID 320, a priority 322, a transfer destination address 324, a required communication delay time. 326 and a delay time 328 after this relay apparatus.
 データ種別ID320は、図7に示すデータ種別ID310と同じなので説明を省略する。優先度322には、データ種別ID320に登録された識別子によって識別されるデータの種別に対応する優先度が登録される。例えば、中継装置110が異なる種別のデータを受信した場合、優先度の高い方のデータを優先して転送する。転送先アドレス324には、転送先となる端末100又は中継装置110のアドレス(例えば、IPアドレス)が登録される。 The data type ID 320 is the same as the data type ID 310 shown in FIG. In the priority 322, a priority corresponding to the type of data identified by the identifier registered in the data type ID 320 is registered. For example, when the relay apparatus 110 receives different types of data, the data with the higher priority is transferred with priority. In the transfer destination address 324, an address (for example, an IP address) of the terminal 100 or the relay device 110 that is the transfer destination is registered.
 要件通信遅延時間326には、データ種別ID320に登録された識別子によって識別される種別のデータが送信元の端末100によって送信されてから送信先の端末100によって受信されるまでの保証すべき通信遅延時間が登録される。本中継装置以降の遅延時間328には、データ種別ID320に登録された識別子によって識別される種別のデータが、ルーティングテーブル228を記憶する中継装置110によって送信されてから送信先となる端末100によって受信されるまでに必要な通信遅延時間(予想通信遅延時間)が登録される。 The requirement communication delay time 326 includes a communication delay to be guaranteed from the time when the data of the type identified by the identifier registered in the data type ID 320 is transmitted by the transmission source terminal 100 to the reception of the transmission destination terminal 100. Time is registered. In the delay time 328 after this relay apparatus, data of the type identified by the identifier registered in the data type ID 320 is received by the terminal 100 that is the transmission destination after being transmitted by the relay apparatus 110 that stores the routing table 228. The communication delay time (expected communication delay time) required until the registration is registered.
 図9は、本発明の実施例1のルーティング管理テーブル252の説明図である。 FIG. 9 is an explanatory diagram of the routing management table 252 according to the first embodiment of this invention.
 ルーティング管理テーブル252は、管理サーバ120の記憶装置250に記憶される。ルーティング管理テーブル252は、データの種別毎に、送信元の端末100から送信先の端末100までの通信経路を管理するテーブルであり、データ種別ID330、送信元アドレス332、送信先アドレス334、及び通信経路336を含む。 The routing management table 252 is stored in the storage device 250 of the management server 120. The routing management table 252 is a table for managing a communication path from the transmission source terminal 100 to the transmission destination terminal 100 for each data type. The data type ID 330, the transmission source address 332, the transmission destination address 334, and the communication Path 336 is included.
 データ種別ID330は、図7に示すデータ種別ID310と同じなので説明を省略する。送信元アドレス332には、データ種別ID330に登録された識別子によって識別される種別のデータの送信元となる端末100のアドレス(例えば、IPアドレス)が登録される。送信先アドレス334には、データ種別ID330に登録された識別子によって識別される種別のデータの送信先となる端末100のアドレス(例えば、IPアドレス)が登録される。 The data type ID 330 is the same as the data type ID 310 shown in FIG. Registered in the transmission source address 332 is the address (for example, IP address) of the terminal 100 that is the transmission source of the type of data identified by the identifier registered in the data type ID 330. Registered in the transmission destination address 334 is the address (for example, IP address) of the terminal 100 that is the transmission destination of the type of data identified by the identifier registered in the data type ID 330.
 通信経路336には、データ種別ID330に登録された識別子によって識別される種別のデータが、送信元の端末100から送信先の端末100に送信されるために経由する通信路が登録される。 In the communication path 336, a communication path through which data of the type identified by the identifier registered in the data type ID 330 is transmitted from the transmission source terminal 100 to the transmission destination terminal 100 is registered.
 なお、ルーティング管理テーブル252は、データ種別ID330に登録された識別子によって識別される種別のデータが通信される時間帯等を含んでもよい。 Note that the routing management table 252 may include a time zone in which data of the type identified by the identifier registered in the data type ID 330 is communicated.
 図10は、本発明の実施例1の計測情報管理テーブル254の説明図である。 FIG. 10 is an explanatory diagram of the measurement information management table 254 according to the first embodiment of this invention.
 計測情報管理テーブル254は、管理サーバ120の記憶装置250に記憶される。計測情報管理テーブル254は、端末100及び中継装置110の計測情報格納テーブル210を纏めたテーブルであり、計測データ転送元アドレス340、計測データ転送先アドレス342、及び通信遅延時間344を含む。 The measurement information management table 254 is stored in the storage device 250 of the management server 120. The measurement information management table 254 is a table in which the measurement information storage tables 210 of the terminal 100 and the relay device 110 are collected, and includes a measurement data transfer source address 340, a measurement data transfer destination address 342, and a communication delay time 344.
 計測データ転送元アドレス340には、計測要求データを送信した端末100又は中継装置110のアドレス(例えば、IPアドレス)が登録される。計測データ転送先アドレス342には、計測要求データを受信した端末100又は中継装置110のアドレス(例えば、IPアドレス)が登録される。通信遅延時間344には、計測データ転送元アドレス340に登録された端末100又は中継装置110によって送信されたデータが、計測データ転送先アドレス342に登録された端末100又は中継装置110によって受信されるまでの通信遅延時間が登録される。 In the measurement data transfer source address 340, the address (for example, IP address) of the terminal 100 or the relay device 110 that has transmitted the measurement request data is registered. In the measurement data transfer destination address 342, the address (for example, IP address) of the terminal 100 or the relay device 110 that has received the measurement request data is registered. During the communication delay time 344, data transmitted by the terminal 100 or the relay device 110 registered in the measurement data transfer source address 340 is received by the terminal 100 or the relay device 110 registered in the measurement data transfer destination address 342. Communication delay time until is registered.
 図11は、本発明の実施例1のデータ管理テーブル256の説明図である。 FIG. 11 is an explanatory diagram of the data management table 256 according to the first embodiment of this invention.
 データ管理テーブル256は、管理サーバ120の記憶装置250に記憶され、中継システム内で通信されるデータを管理するためのテーブルである。データ管理テーブル256は、データ種別ID350、データ種類352、優先度354、送信元アドレス356、送信先アドレス358、及び要件通信遅延時間360を含む。 The data management table 256 is a table for managing data stored in the storage device 250 of the management server 120 and communicated in the relay system. The data management table 256 includes a data type ID 350, a data type 352, a priority 354, a transmission source address 356, a transmission destination address 358, and a requirement communication delay time 360.
 データ種別ID350は、図7に示すデータ種別ID310と同じなので説明を省略する。データ種類352は、図7に示すデータ種類312と同じなので説明を省略する。優先度354は、図8に示すルーティングテーブル228の優先度322と同じなので説明を省略する。 The data type ID 350 is the same as the data type ID 310 shown in FIG. The data type 352 is the same as the data type 312 shown in FIG. The priority 354 is the same as the priority 322 of the routing table 228 shown in FIG.
 送信元アドレス356は、図9に示すルーティング管理テーブル252の送信元アドレス332と同じなので説明を省略する。送信先アドレス358は、図9に示す送信先アドレス334と同じなので説明を省略する。要件通信遅延時間360は、図8に示す要件通信遅延時間326と同じなので説明を省略する。 The transmission source address 356 is the same as the transmission source address 332 of the routing management table 252 shown in FIG. The transmission destination address 358 is the same as the transmission destination address 334 shown in FIG. The requirement communication delay time 360 is the same as the requirement communication delay time 326 shown in FIG.
 図12は、本発明の実施例1の管理サーバ120によるシステム起動時の処理のフローチャートである。 FIG. 12 is a flowchart of processing at the time of system startup by the management server 120 according to the first embodiment of this invention.
 管理サーバ120によるシステム起動時の処理は、管理サーバ120のハードウェアモジュール240に含まれる図示しないCPUによって実行される。 Processing at the time of system startup by the management server 120 is executed by a CPU (not shown) included in the hardware module 240 of the management server 120.
 まず、管理サーバ120は、中継システムが起動してから所定時間(X秒)経過するまで処理を待機する(440)。ステップ440の処理は、中継システムに存在する端末100及び中継装置110が、計測要求データ及び計測応答データを通信して計測情報格納テーブル210を生成する時間を確保するために実行される。 First, the management server 120 waits for processing until a predetermined time (X seconds) elapses after the relay system is activated (440). The process of step 440 is executed to secure time for the terminal 100 and the relay apparatus 110 existing in the relay system to generate the measurement information storage table 210 by communicating the measurement request data and the measurement response data.
 次に、管理サーバ120は、端末100及び中継装置110が生成した計測情報格納テーブル210を取得するため、端末100及び中継装置110に、計測情報格納テーブル要求を送信する(442)。なお、計測情報格納テーブル要求は、応答付きのブロードキャスト通信で送信されてもよい。また、中継システム内に存在する端末100及び中継装置110のアドレス情報が中継システムの起動前に管理サーバ120に設定されている場合、計測情報格納テーブル要求は、当該アドレス情報を利用してユニキャスト通信で送信されてもよい。 Next, the management server 120 transmits a measurement information storage table request to the terminal 100 and the relay device 110 in order to acquire the measurement information storage table 210 generated by the terminal 100 and the relay device 110 (442). The measurement information storage table request may be transmitted by broadcast communication with a response. If the address information of the terminal 100 and the relay device 110 existing in the relay system is set in the management server 120 before the relay system is activated, the measurement information storage table request is unicasted using the address information. It may be transmitted by communication.
 管理サーバ120は、中継システム内に存在する全ての端末100及び中継装置110から計測情報格納テーブル210を取得すると、取得した計測情報格納テーブル210に基づいて、計測情報管理テーブル254を生成する(444)。 When the management server 120 acquires the measurement information storage table 210 from all the terminals 100 and the relay devices 110 existing in the relay system, the management server 120 generates the measurement information management table 254 based on the acquired measurement information storage table 210 (444). ).
 具体的には、管理サーバ120は、取得した計測情報格納テーブル210の送信元の端末100又は中継装置110のアドレスを計測情報管理テーブル254の計測データ転送元アドレス340に登録し、取得した計測情報格納テーブル210のアドレス300に登録されたアドレスを、計測情報管理テーブル254の計測データ転送先アドレス342に登録し、取得した計測情報格納テーブル210の通信遅延時間302に登録された通信遅延時間を、計測情報管理テーブル254の通信遅延時間344に登録する。 Specifically, the management server 120 registers the address of the transmission source terminal 100 or relay device 110 of the acquired measurement information storage table 210 in the measurement data transfer source address 340 of the measurement information management table 254, and acquires the acquired measurement information. The address registered in the address 300 of the storage table 210 is registered in the measurement data transfer destination address 342 of the measurement information management table 254, and the communication delay time registered in the communication delay time 302 of the acquired measurement information storage table 210 is Registration is made in the communication delay time 344 of the measurement information management table 254.
 次に、管理サーバ120は、ステップ444の処理で生成された計測情報管理テーブル254及び予め設定されているデータ管理テーブル256を参照し、送信元の端末100から送信先の端末100まで到達可能な通信経路のうち、要件通信遅延時間を満たす通信経路を特定し、ルーティング管理テーブル252を生成する(446)。 Next, the management server 120 can reach the transmission destination terminal 100 from the transmission source terminal 100 with reference to the measurement information management table 254 and the preset data management table 256 generated by the processing of Step 444. Among the communication paths, a communication path satisfying the required communication delay time is specified, and the routing management table 252 is generated (446).
 具体的には、管理サーバ120は、データ管理テーブル256に登録されたレコードの数だけルーティング管理テーブル252にレコードを追加する。そして、管理サーバ120は、追加したレコードのデータ種別ID330にデータ管理テーブル256のデータ種別ID350に登録された識別子を登録し、追加したレコードの送信元アドレス332にデータ管理テーブル256の送信元アドレス356に登録されたアドレスを登録し、追加したレコードの送信先アドレス334にデータ管理テーブル256の送信先アドレス358に登録されたアドレスを登録する。 Specifically, the management server 120 adds records to the routing management table 252 by the number of records registered in the data management table 256. Then, the management server 120 registers the identifier registered in the data type ID 350 of the data management table 256 in the data type ID 330 of the added record, and the transmission source address 356 of the data management table 256 in the transmission source address 332 of the added record. The registered address is registered, and the address registered in the transmission destination address 358 of the data management table 256 is registered in the transmission destination address 334 of the added record.
 そして、管理サーバ120は、送信元の端末100から送信先の端末100に到達可能な通信路によって構成される通信経路を特定する。管理サーバ120は、データ管理テーブル256を参照し、特定した各通信経路を構成する通信路の通信遅延時間を合計することによって、特定した各通信経路の通信遅延時間を算出する。そして、管理サーバ120は、算出した通信経路の通信遅延時間が、データ管理テーブル256の要件通信遅延時間360に登録された通信遅延時間より小さい通信経路のうち一つの通信経路を、ルーティング管理テーブル252の追加したレコードの通信経路336に登録する。これによって、管理サーバ120は、データ種別毎に要件通信遅延時間を満たす通信経路を特定できる。 Then, the management server 120 specifies a communication path constituted by communication paths that can reach the transmission destination terminal 100 from the transmission source terminal 100. The management server 120 refers to the data management table 256 and calculates the communication delay time of each identified communication path by summing the communication delay times of the communication paths constituting each identified communication path. Then, the management server 120 determines one communication path out of the communication paths whose communication delay time of the calculated communication path is smaller than the communication delay time registered in the requirement communication delay time 360 of the data management table 256 as the routing management table 252. Are registered in the communication path 336 of the added record. Thereby, the management server 120 can specify a communication path that satisfies the required communication delay time for each data type.
 なお、通信遅延時間がデータ管理テーブル256の要件通信遅延時間360に登録された通信遅延時間より小さい通信経路が存在しない場合には、管理サーバ120は、ハードウェアモジュール240に含まれる表示部にその旨を表示してもよい。 When there is no communication path whose communication delay time is smaller than the communication delay time registered in the requirement communication delay time 360 of the data management table 256, the management server 120 displays the communication path on the display unit included in the hardware module 240. You may display.
 次に、管理サーバ120は、ステップ446の処理で生成したルーティング管理テーブル252の通信経路336に登録された通信経路上に存在する中継装置110毎にルーティングテーブル228を生成し、生成したルーティングテーブル228を当該通信経路上に存在する中継装置110に送信する(448)。 Next, the management server 120 generates a routing table 228 for each relay device 110 existing on the communication path registered in the communication path 336 of the routing management table 252 generated in the process of step 446, and generates the generated routing table 228. Is transmitted to the relay apparatus 110 existing on the communication path (448).
 ステップ448の処理のルーティングテーブル228の生成処理について具体的に説明する。 The generation process of the routing table 228 in the process of step 448 will be specifically described.
 まず、管理サーバ120は、ルーティング管理テーブル252に登録されたレコードのうち、処理対象のレコードを選択する。そして、管理サーバ120は、ルーティング管理テーブル252の処理対象となるレコードの通信経路336に登録された通信経路上に存在する中継装置110を特定し、特定した中継装置110から処理対象の中継装置110を選択する。 First, the management server 120 selects a record to be processed among the records registered in the routing management table 252. Then, the management server 120 identifies the relay device 110 existing on the communication path registered in the communication path 336 of the record to be processed in the routing management table 252, and from the identified relay device 110 to the processing target relay device 110. Select.
 次に、管理サーバ120は、処理対象の中継装置110に対応するルーティングテーブル228に新たなレコードを追加する。そして、管理サーバ120は、追加したレコードのデータ種別ID320に、ルーティング管理テーブル252の処理対象のレコードのデータ種別ID330に登録された識別子を登録する。 Next, the management server 120 adds a new record to the routing table 228 corresponding to the relay device 110 to be processed. Then, the management server 120 registers the identifier registered in the data type ID 330 of the record to be processed in the routing management table 252 in the data type ID 320 of the added record.
 また、管理サーバ120は、データ管理テーブル256に登録されたレコードのうち、データ種別ID350に登録された識別子がルーティング管理テーブル252の処理対象のレコードのデータ種別ID320に登録された識別子と一致するレコードの優先度354に登録された優先度、及び要件通信遅延時間360に登録された要件通信遅延時間を取得する。そして、管理サーバ120は、処理対象の中継装置110に対応するルーティングテーブル228の追加したレコードの優先度322に取得した優先度を登録し、当該レコードの要件通信遅延時間326に取得した要件通信遅延時間を登録する。 The management server 120 also records that the identifier registered in the data type ID 350 matches the identifier registered in the data type ID 320 of the record to be processed in the routing management table 252 among the records registered in the data management table 256. The priority registered in the priority 354 and the requirement communication delay time registered in the requirement communication delay time 360 are acquired. Then, the management server 120 registers the acquired priority in the priority 322 of the added record in the routing table 228 corresponding to the processing target relay device 110 and acquires the required communication delay in the required communication delay time 326 of the record. Register time.
 次に、管理サーバ120は、ルーティング管理テーブル252の処理対象のレコードの通信経路336に登録された通信経路を参照し、処理対象の中継装置110の転送先の中継装置110のアドレスを特定する。そして、管理サーバ120は、処理対象のルーティング管理テーブル252の追加したレコードの転送先アドレス324に、特定した転送先の中継装置110のアドレスを登録する。 Next, the management server 120 refers to the communication path registered in the communication path 336 of the record to be processed in the routing management table 252 and identifies the address of the transfer destination relay apparatus 110 of the relay apparatus 110 to be processed. Then, the management server 120 registers the address of the identified forwarding destination relay device 110 in the forwarding destination address 324 of the added record in the processing target routing management table 252.
 次に、管理サーバ120は、ルーティング管理テーブル252の処理対象のレコードの通信経路336に登録された通信経路、及び計測情報管理テーブル254を参照して、処理対象の中継装置110から送信先の端末100までの通信遅延時間を算出する。そして、管理サーバ120は、処理対象の中継装置110に対応するルーティングテーブル228の追加したレコードの本中継装置以降の遅延時間328に、算出した通信遅延時間を登録する。 Next, the management server 120 refers to the communication path registered in the communication path 336 of the record to be processed in the routing management table 252 and the measurement information management table 254, and then transmits the processing target relay device 110 to the destination terminal. Communication delay time up to 100 is calculated. Then, the management server 120 registers the calculated communication delay time in the delay time 328 after this relay device of the record added to the routing table 228 corresponding to the processing target relay device 110.
 ルーティング管理テーブル252の処理対象のレコードの通信経路336に登録された通信経路上に存在する全ての中継装置110に対して上記した処理が実行されると、通信経路上に存在する全ての中継装置110のルーティングテーブル228に、あるデータ種別に関する情報が登録される。 When the above-described processing is executed for all the relay devices 110 existing on the communication path registered in the communication path 336 of the record to be processed in the routing management table 252, all the relay devices existing on the communication path are executed. Information about a certain data type is registered in the routing table 228 of 110.
 管理サーバ120は、ルーティング管理テーブル252の未処理のレコードを処理対象のレコードとして選択し、上記した処理を実行する。 The management server 120 selects an unprocessed record in the routing management table 252 as a record to be processed, and executes the above-described process.
 以上によって、通信経路上に存在する全ての中継装置110のルーティングテーブル228が生成される。 As described above, the routing tables 228 of all the relay devices 110 existing on the communication path are generated.
 ステップ448の処理でルーティングテーブル228が生成され、生成されたルーティングテーブル228が各中継装置110に送信されると、管理サーバ120は、モード遷移要求を中継システム内に存在する端末100及び中継装置110に送信し(450)、中継システム内に存在する端末100及び中継装置110を通常モードに遷移させ、自身を通常モードに遷移する。 When the routing table 228 is generated in the process of step 448 and the generated routing table 228 is transmitted to each relay device 110, the management server 120 sends a mode transition request to the terminal 100 and the relay device 110 that exist in the relay system. (450), the terminal 100 and the relay apparatus 110 existing in the relay system are shifted to the normal mode, and the terminal 100 is shifted to the normal mode.
 なお、管理サーバ120が通常モードで動作する場合の処理については、図14で詳細を説明する。 Note that the processing when the management server 120 operates in the normal mode will be described in detail with reference to FIG.
 図13は、本発明の実施例1の端末100及び中継装置110によるシステム起動時の処理のフローチャートである。 FIG. 13 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to the first embodiment of this invention.
 端末100及び中継装置110によるシステム起動処理は、端末100のハードウェアモジュール200に含まれる図示しないCPU、及び中継装置110のハードウェアモジュール220に含まれる図示しないCPUによって実行される。 The system activation process by the terminal 100 and the relay device 110 is executed by a CPU (not shown) included in the hardware module 200 of the terminal 100 and a CPU (not shown) included in the hardware module 220 of the relay device 110.
 以下の説明では、中継装置110によるシステム起動時の処理を例について説明するが、同じ処理で端末100にも適用可能である。 In the following description, processing at the time of system startup by the relay device 110 will be described as an example, but the same processing can also be applied to the terminal 100.
 まず、中継装置110は、中継システムが起動すると、受信データが存在するか否かを判定する(400)。 First, when the relay system is activated, the relay device 110 determines whether received data exists (400).
 ステップ400の処理で受信データが存在すると判定された場合、中継装置110は、受信データが計測要求データであるか否かを判定する(402)。 When it is determined in step 400 that received data exists, the relay apparatus 110 determines whether the received data is measurement request data (402).
 ステップ402の処理で受信データが計測要求データであると判定された場合、中継装置110は、計測応答データを計測要求データの送信元の端末100又は中継装置110に送信し(404)、ステップ400の処理に戻る。 If it is determined in the process of step 402 that the received data is measurement request data, the relay apparatus 110 transmits measurement response data to the terminal 100 or the relay apparatus 110 that is the transmission source of the measurement request data (404). Return to the process.
 ステップ402の処理で受信データが計測要求データでないと判定された場合、中継装置110は、受信データが計測応答データであるか否かを判定する(406)。 When it is determined in the process of step 402 that the received data is not measurement request data, the relay apparatus 110 determines whether the received data is measurement response data (406).
 ステップ406の処理で受信データが計測応答データであると判定された場合、中継装置110は、計測応答データの受信時刻から当該計測応答データに対応する計測要求データの送信時刻を減算した時間を2で除算することによって通信遅延時間を算出し、計測情報格納テーブル210を更新し(408)、ステップ400の処理に戻る。なお、計測要求データの送信時刻は、計測応答データのデータ1006(図4参照)に含まれるものとする。 If it is determined in step 406 that the received data is measurement response data, the relay device 110 subtracts the time obtained by subtracting the transmission time of the measurement request data corresponding to the measurement response data from the reception time of the measurement response data. The communication delay time is calculated by dividing by (4), the measurement information storage table 210 is updated (408), and the process returns to step 400. Note that the transmission time of the measurement request data is included in the measurement response data data 1006 (see FIG. 4).
 具体的には、中継装置110は、計測情報格納テーブル210に新たなレコードを追加し、追加したレコードのアドレス300に計測応答データを送信した端末100又は中継装置110のアドレスを登録し、追加したレコードの通信遅延時間302に算出した通信遅延時間を登録する。なお、既にレコードが存在する場合、レコードの通信遅延時間302に登録してある通信遅延時間と算出した通信遅延時間を比較し、値の大きい方を登録する。また、中継装置110は、受信済みの計測応答データの数の送信済みの計測要求データの数に対する割合を算出し、計測情報格納テーブル210の追加したレコードの通信成功率304に、算出した割合を登録する。 Specifically, the relay device 110 adds a new record to the measurement information storage table 210, registers the address of the terminal 100 or the relay device 110 that has transmitted the measurement response data to the address 300 of the added record, and adds it. The calculated communication delay time is registered in the communication delay time 302 of the record. If a record already exists, the communication delay time registered in the communication delay time 302 of the record is compared with the calculated communication delay time, and the larger one is registered. Further, the relay device 110 calculates the ratio of the number of received measurement response data to the number of transmitted measurement request data, and sets the calculated ratio as the communication success rate 304 of the added record in the measurement information storage table 210. sign up.
 ステップ406の処理で受信データが計測応答データでないと判定された場合、中継装置110は、受信データが計測情報格納テーブル要求であるか否かを判定する(410)。 When it is determined in step 406 that the received data is not measurement response data, the relay apparatus 110 determines whether the received data is a measurement information storage table request (410).
 ステップ410の処理で受信データが計測情報格納テーブル要求であると判定された場合、中継装置110は、計測情報格納テーブル210を管理サーバ120に送信し(412)、ステップ400の処理に戻る。 When it is determined in the process of step 410 that the received data is a measurement information storage table request, the relay apparatus 110 transmits the measurement information storage table 210 to the management server 120 (412), and returns to the process of step 400.
 ステップ410の処理で受信データが計測情報格納テーブル要求でないと判定された場合、中継装置110は、受信データがルーティングテーブル228であるか否かを判定する(414)。 If it is determined in step 410 that the received data is not a measurement information storage table request, the relay apparatus 110 determines whether the received data is the routing table 228 (414).
 ステップ414の処理で受信データがルーティングテーブル22であると判定された場合、中継装置110は、受信したルーティングテーブル228を記憶装置226に格納し(416)、ステップ400の処理に戻る。 When it is determined in the process of step 414 that the received data is the routing table 22, the relay apparatus 110 stores the received routing table 228 in the storage device 226 (416), and returns to the process of step 400.
 ステップ414の処理で受信データがルーティングテーブル228でないと判定された場合、中継装置110は、受信データがモード遷移要求であるか否かを判定する(418)。 If it is determined in step 414 that the received data is not the routing table 228, the relay apparatus 110 determines whether the received data is a mode transition request (418).
 ステップ418の処理で受信データがモード遷移要求であると判定された場合、中継装置110は、通常モードに遷移する(420)。端末100及び中継装置110が通常モードで動作する場合の処理については、図15で詳細を説明する。 If it is determined in the process of step 418 that the received data is a mode transition request, the relay apparatus 110 transitions to the normal mode (420). Details of processing when the terminal 100 and the relay apparatus 110 operate in the normal mode will be described in detail with reference to FIG.
 ステップ418の処理で受信データがモード遷移要求でないと判定された場合、中継装置110は、受信データに対応するパケット処理を実行し、ステップ400の処理に戻る(422)。 When it is determined in the process of step 418 that the received data is not a mode transition request, the relay apparatus 110 executes a packet process corresponding to the received data, and returns to the process of step 400 (422).
 ステップ400の処理で受信データが存在しないと判定された場合、中継装置110は、計測要求データを送信してから所定時間(Y秒)が経過したか否かを判定する(430)。 If it is determined in step 400 that no received data exists, the relay apparatus 110 determines whether or not a predetermined time (Y seconds) has elapsed since the measurement request data was transmitted (430).
 ステップ430の処理で計測要求データを送信してから所定時間(Y秒)が経過したと判定された場合、中継装置110は計測要求データを中継システム内に存在する端末100及び中継装置110に送信し(432)、ステップ400の処理に戻る。 If it is determined in step 430 that the predetermined time (Y seconds) has elapsed since the transmission of the measurement request data, the relay apparatus 110 transmits the measurement request data to the terminal 100 and the relay apparatus 110 existing in the relay system. (432), and the process returns to step 400.
 ステップ430の処理で計測要求データを送信してから所定時間(Y秒)が経過していないと判定された場合、ステップ400の処理に戻る。 When it is determined that the predetermined time (Y seconds) has not elapsed since the transmission of the measurement request data in the process of step 430, the process returns to the process of step 400.
 図12及び図13に示す処理によって、端末100及び中継装置110は、実際にデータを転送する通常モードに遷移する前に、他の端末100及び中継装置110との間の通信遅延時間を計測することができ、中継装置110にルーティングテーブル228が設定される。 12 and 13, the terminal 100 and the relay device 110 measure the communication delay time between the other terminal 100 and the relay device 110 before shifting to the normal mode for actually transferring data. The routing table 228 is set in the relay device 110.
 図14は、本発明の実施例1の管理サーバ120による通常モード動作時の処理のフローチャートである。 FIG. 14 is a flowchart of processing during normal mode operation by the management server 120 according to the first embodiment of this invention.
 管理サーバ120による通常モード動作時の処理は、管理サーバ120のハードウェアモジュール240に含まれる図示しないCPUによって実行される。 Processing in the normal mode operation by the management server 120 is executed by a CPU (not shown) included in the hardware module 240 of the management server 120.
 管理サーバ120は、システム起動時の処理で生成された各中継装置110のルーティングテーブル228を最新の通信遅延時間に基づいて更新するために、端末100及び中継装置110に、計測情報格納テーブル要求を送信する(600)。この計測情報格納テーブルの送信処理は、図12に示すステップ442の処理と同じであるので、詳細な説明は省略する。 The management server 120 sends a measurement information storage table request to the terminal 100 and the relay device 110 in order to update the routing table 228 of each relay device 110 generated by the process at system startup based on the latest communication delay time. Transmit (600). Since the transmission process of the measurement information storage table is the same as the process of step 442 shown in FIG. 12, detailed description thereof is omitted.
 次に、管理サーバ120は、端末100及び中継装置110から計測情報格納テーブル210を取得すると、取得した計測情報格納テーブル210に基づいて、計測情報管理テーブル254を更新する(602)。 Next, when the management server 120 acquires the measurement information storage table 210 from the terminal 100 and the relay device 110, the management server 120 updates the measurement information management table 254 based on the acquired measurement information storage table 210 (602).
 具体的には、管理サーバ120は、計測情報管理テーブル254の計測データ転送元アドレス340に取得した計測情報格納テーブル210の送信元の端末100又は中継装置110のアドレスが登録され、かつ、計測データ転送先アドレス342に取得した計測情報格納テーブルのアドレス300に登録されたアドレスが登録されたレコードがある場合、当該レコードの通信遅延時間344に取得した計測情報格納テーブル210の通信遅延時間302に登録された通信遅延時間を登録する。また、管理サーバ120は、計測情報管理テーブル254に上記したレコードがない場合、計測情報管理テーブル254にレコードを追加し、追加したレコードの計測データ転送元アドレス340に、取得した計測情報格納テーブル210の送信元の端末100又は中継装置110のアドレスを登録し、追加したレコードの計測データ転送先アドレス342に、取得した計測情報格納テーブル210のアドレス300に登録されたアドレスを登録し、追加したレコードの通信遅延時間344に、取得した計測情報格納テーブル210の通信遅延時間302に登録された通信遅延時間を登録する。 Specifically, the management server 120 registers the address of the terminal 100 or the relay device 110 of the transmission source of the measurement information storage table 210 acquired in the measurement data transfer source address 340 of the measurement information management table 254, and the measurement data When there is a record in which the address registered in the measurement information storage table address 300 acquired in the transfer destination address 342 is registered, the record is registered in the communication delay time 302 of the measurement information storage table 210 acquired in the communication delay time 344 of the record. Registered communication delay time. Further, when the measurement information management table 254 does not have the above-described record, the management server 120 adds a record to the measurement information management table 254, and acquires the acquired measurement information storage table 210 in the measurement data transfer source address 340 of the added record. The address of the terminal 100 or the relay device 110 that is the source of the transmission is registered, the address registered in the address 300 of the acquired measurement information storage table 210 is registered in the measurement data transfer destination address 342 of the added record, and the added record The communication delay time registered in the communication delay time 302 of the acquired measurement information storage table 210 is registered in the communication delay time 344.
 次に、管理サーバ120は、ステップ602の処理で更新された計測情報管理テーブル254及び予め設定されているデータ管理テーブル256を参照し、送信元の端末100から送信先の端末100まで到達可能な通信経路のうち、要件通信遅延時間を満たす通信経路をデータ種別毎に特定し、ルーティング管理テーブル252を更新する(604)。 Next, the management server 120 can reach the transmission destination terminal 100 from the transmission source terminal 100 with reference to the measurement information management table 254 and the preset data management table 256 updated in the process of Step 602. Among the communication paths, a communication path satisfying the required communication delay time is specified for each data type, and the routing management table 252 is updated (604).
 具体的には、管理サーバ120は、今回特定した通信経路がルーティング管理テーブル252に登録された通信経路と異なるデータ種別がある場合には、当該データ種別に対応するルーティング管理テーブル252の通信経路336に今回特定した通信経路を更新することによって、ルーティング管理テーブル252を更新する。 Specifically, when the communication path specified this time has a data type different from the communication path registered in the routing management table 252, the management server 120 sets the communication path 336 of the routing management table 252 corresponding to the data type. The routing management table 252 is updated by updating the communication path specified this time.
 次に、管理サーバ120は、ルーティングテーブル228に変更が必要となる中継装置110が存在するか否かを判定する(606)。 Next, the management server 120 determines whether or not there is a relay device 110 that needs to be changed in the routing table 228 (606).
 具体的には、管理サーバ120は、ステップ604の処理でルーティング管理テーブル252の通信経路336が更新されている場合には、当該通信経路336に登録された通信経路上に存在する中継装置110のルーティングテーブル228に変更が必要となると判定する。 Specifically, when the communication path 336 of the routing management table 252 has been updated in the process of step 604, the management server 120 determines that the relay device 110 existing on the communication path registered in the communication path 336 It is determined that the routing table 228 needs to be changed.
 ステップ606の処理で、ルーティングテーブル228に変更が必要となる中継装置110が存在すると判定された場合、管理サーバ120は、当該中継装置110のルーティングテーブル228を生成し、生成したルーティングテーブル228を当該中継装置110に送信し(608)、ステップ600の処理に戻る。 If it is determined in step 606 that there is a relay device 110 that needs to be changed in the routing table 228, the management server 120 generates the routing table 228 of the relay device 110, and the generated routing table 228 is The data is transmitted to the relay apparatus 110 (608), and the process returns to step 600.
 ステップ608の処理のルーティングテーブル228の生成処理は、ルーティング管理テーブル252のステップ604の処理で通信経路336が更新されたレコードの通信経路336に登録された通信経路上に存在する中継装置110のルーティングテーブル228を生成する点以外は、ステップ448の処理のルーティングテーブル228の生成処理と同じであるので、具体的な説明を省略する。 The generation process of the routing table 228 of the process of step 608 is performed by the routing of the relay apparatus 110 existing on the communication path registered in the communication path 336 of the record whose communication path 336 has been updated by the process of step 604 of the routing management table 252. Except for generating the table 228, the process is the same as the process of generating the routing table 228 in the process of step 448, and a specific description thereof will be omitted.
 また、ステップ608の処理では、管理サーバ120は、ステップ604の処理でルーティング管理テーブル252の通信経路336が更新されたことによって、通信経路上に存在しなくなった中継装置110のルーティングテーブル228のレコードを削除する。具体的には、管理サーバ120は、ルーティング管理テーブル252のステップ604の処理で更新されたレコードのデータ種別ID330に登録された識別子を取得し、ルーティング管理テーブル252のステップ604の処理で通信経路336が更新される前の通信経路336に登録された通信経路上に存在する中継装置110に、ルーティングテーブル228のレコードのうちデータ種別ID320が取得した識別子と一致するレコードを削除する指令を送信する。 Also, in the process of step 608, the management server 120 records the routing table 228 of the relay apparatus 110 that no longer exists on the communication path due to the update of the communication path 336 of the routing management table 252 in the process of step 604. Is deleted. Specifically, the management server 120 acquires the identifier registered in the data type ID 330 of the record updated in the process of step 604 of the routing management table 252, and the communication path 336 in the process of step 604 of the routing management table 252. An instruction to delete a record that matches the identifier acquired by the data type ID 320 among the records in the routing table 228 is transmitted to the relay apparatus 110 existing on the communication path registered in the communication path 336 before the update.
 一方、ステップ606の処理で、ルーティングテーブル228に変更が必要となる中継装置110が存在しないと判定された場合、管理サーバ120はステップ600の処理に戻る。 On the other hand, if it is determined in step 606 that there is no relay device 110 that needs to be changed in the routing table 228, the management server 120 returns to the process in step 600.
 なお、図14に示す通常モード動作時の処理のフローチャートでは、ステップ606の処理でルーティングテーブル228に変更が必要となる中継装置110が存在しないと判定された場合、及びステップ608の処理の実行後、ステップ600の処理に戻り、管理サーバ120は、計測情報格納テーブル要求を端末100及び中継装置110に送信している。しかし、計測情報格納テーブル要求が頻繁に送信されると、計測情報格納テーブル210が頻繁に管理サーバ120に送信されることになるので、ネットワークに負荷がかかる可能性がある。このため、ステップ606の処理でルーティングテーブル228に変更が必要となる中継装置110が存在しないと判定された場合、及びステップ608の処理の実行した後、管理サーバ120は、所定時間処理を待機することによって、所定周期で計測情報格納テーブル要求を送信することが望ましい。 In the flowchart of the processing in the normal mode operation shown in FIG. 14, when it is determined in step 606 that there is no relay device 110 that needs to be changed in the routing table 228, and after the execution of step 608. Returning to the process of step 600, the management server 120 transmits a measurement information storage table request to the terminal 100 and the relay device 110. However, if the measurement information storage table request is frequently transmitted, the measurement information storage table 210 is frequently transmitted to the management server 120, which may cause a load on the network. Therefore, if it is determined in step 606 that there is no relay device 110 that needs to be changed in the routing table 228, and after the processing in step 608 is executed, the management server 120 waits for processing for a predetermined time. Accordingly, it is desirable to transmit the measurement information storage table request at a predetermined cycle.
 図15は、本発明の実施例1の端末100及び中継装置110による通常モード動作時の処理のフローチャートである。 FIG. 15 is a flowchart of processing during normal mode operation by the terminal 100 and the relay device 110 according to the first embodiment of this invention.
 端末100及び中継装置110による通常モード動作時の処理は、端末100のハードウェアモジュール200に含まれる図示しないCPU、及び中継装置110のハードウェアモジュール220に含まれる図示しないCPUによって実行される。 Processing in the normal mode operation by the terminal 100 and the relay device 110 is executed by a CPU (not shown) included in the hardware module 200 of the terminal 100 and a CPU (not shown) included in the hardware module 220 of the relay device 110.
 以下の説明では、中継装置110による通常モード動作時の処理を例について説明するが、同じ処理で端末100にも適用可能である。 In the following description, processing in the normal mode operation by the relay device 110 will be described as an example, but the same processing can be applied to the terminal 100.
 図15に示す通常モード動作時の処理のステップ612及び614以外の処理は、図13に示すシステム起動時の処理と同じであるので、説明を省略する。 Since the processes other than steps 612 and 614 in the normal mode operation shown in FIG. 15 are the same as the processes at the time of starting the system shown in FIG.
 ステップ610の処理で受信データが存在すると判定された場合、中継装置110は、受信データが転送データであるか否かを判定する(612)。転送データとは、送信元の端末100から送信されたデータであり、中継装置110が受信した場合にいずれかの端末100又は中継装置110に転送されるべきデータである。 When it is determined in step 610 that received data exists, the relay apparatus 110 determines whether the received data is transfer data (612). The transfer data is data transmitted from the terminal 100 that is the transmission source, and is data that should be transferred to any one of the terminals 100 or the relay device 110 when the relay device 110 receives the data.
 ステップ612の処理で受信データが転送データであると判定された場合、中継装置110は、転送データを転送するためのデータ転送処理を実行し(614)、ステップ610の処理に戻る。なお、データ転送処理は、図16及び図17で詳細を説明する。 If it is determined in step 612 that the received data is transfer data, the relay apparatus 110 executes data transfer processing for transferring the transfer data (614), and returns to step 610. Details of the data transfer process will be described with reference to FIGS. 16 and 17.
 一方、ステップ612の処理で受信データが転送データでないと判定された場合、中継装置110は、ステップ616の処理を実行する。 On the other hand, if it is determined in step 612 that the received data is not transfer data, the relay device 110 executes the process in step 616.
 図16及び図17は、本発明の実施例1のデータ転送処理のフローチャートである。 16 and 17 are flowcharts of the data transfer process according to the first embodiment of the present invention.
 まず、中継装置110は、図15に示すステップ612の処理で受信データが転送データ(以下、処理対象の転送データという)であると判定された場合、ルーティングテーブル228に登録されたレコードのうち、処理対象の転送データのデータ種別に対応するレコードを参照する(700)。 First, when the relay device 110 determines that the received data is transfer data (hereinafter referred to as transfer data to be processed) in the process of step 612 shown in FIG. 15, among the records registered in the routing table 228, A record corresponding to the data type of the transfer data to be processed is referenced (700).
 次に、中継装置110は、処理対象の転送データを受信した時刻から転送データに含まれる送信時刻を減算することによって、処理対象の転送データが当該中継装置に到達するまでにかかった送信元通信遅延時間を算出する。そして、中継装置110は、ステップ700の処理で参照するルーティングテーブル228のレコードの要件通信遅延時間326に登録された通信遅延時間、当該レコードの本中継装置以降の遅延時間328に登録された通信遅延時間(予想遅延時間)、及び、算出した送信元通信遅延時間に基づいて、当該中継装置110で転送データを転送するまでの処理可能時間を算出する(702)。 Next, the relay device 110 subtracts the transmission time included in the transfer data from the time when the transfer data to be processed is received, so that the transmission source communication taken until the transfer data to be processed reaches the relay device. Calculate the delay time. Then, the relay device 110 communicates the communication delay time registered in the requirement communication delay time 326 of the record in the routing table 228 referred to in the processing of Step 700, and the communication delay registered in the delay time 328 of the record after the relay device. Based on the time (expected delay time) and the calculated source communication delay time, a processable time until the transfer data is transferred by the relay device 110 is calculated (702).
 例えば、処理対象の転送データのデータ種別が「0x0001」である場合、図8に示すルーティングテーブル228を参照すると、要件通信遅延時間が50msであり、予想遅延時間が30msである。また、当該転送データの送信元通信遅延時間が10msであるとすると、当該転送データの処理可能時間は10msとなる。 For example, when the data type of the transfer data to be processed is “0x0001”, referring to the routing table 228 shown in FIG. 8, the required communication delay time is 50 ms and the expected delay time is 30 ms. Further, if the transmission source communication delay time of the transfer data is 10 ms, the processable time of the transfer data is 10 ms.
 ここで、一般的に、中継装置110は、データを格納する記憶領域である少なくとも一つの段(要素)を含む転送キューを有する。転送キューの段に格納されたデータは、所定の順番で当該データに対応する処理が実行される。転送キューの段に格納されたデータが転送データである場合には、当該転送データは転送される。本実施例では、転送キューの段にデータが格納された順番に処理が実行されるが、段の処理順序はこれに限定されないため、転送キューを転送バッファと記載する場合もある。以降の説明では、転送キューを利用する転送制御を例に説明する。 Here, in general, the relay apparatus 110 has a transfer queue including at least one stage (element) which is a storage area for storing data. For the data stored in the stage of the transfer queue, processing corresponding to the data is executed in a predetermined order. If the data stored in the stage of the transfer queue is transfer data, the transfer data is transferred. In this embodiment, the processing is executed in the order in which data is stored in the stages of the transfer queue. However, the processing order of the stages is not limited to this, and the transfer queue may be described as a transfer buffer. In the following description, transfer control using a transfer queue will be described as an example.
 中継装置110は、ステップ702の処理で処理可能時間が算出されると、転送キューの一段目を検索段に設定する(704)。すなわち、ステップ704の処理では、転送キューに含まれる段のうち最初に処理される段を検索段として設定する。次に、中継装置110は、処理可能時間内に処理対象の転送データを転送できるか否かを判定するために、処理可能時間が0以上であるか否かを判定する(706)。 The relay device 110 sets the first stage of the transfer queue as the search stage when the processable time is calculated in the process of step 702 (704). That is, in the process of step 704, the stage processed first among the stages included in the transfer queue is set as the search stage. Next, the relay apparatus 110 determines whether or not the processable time is 0 or more in order to determine whether or not the transfer data to be processed can be transferred within the processable time (706).
 ステップ706の処理で処理可能時間が0より小さいと判定された場合、要件通信遅延時間内に処理対象の転送データを送信先の端末100まで転送できないので、中継装置110は、処理対象の転送データを破棄し(708)、処理を終了する。なお、中継装置110は、処理対象の転送データを破棄した場合、送信元の端末100及び管理サーバ120の少なくとも一方にその旨を通知し、転送データを破棄した旨が通知された送信元の端末100等は、ハードウェアモジュール200に含まれる表示部等にその旨を表示して、その旨をユーザに通知してもよい。 If it is determined in step 706 that the processable time is less than 0, the transfer data to be processed cannot be transferred to the destination terminal 100 within the required communication delay time. Is discarded (708), and the process is terminated. Note that when the transfer data to be processed is discarded, the relay device 110 notifies at least one of the transmission source terminal 100 and the management server 120, and the transmission source terminal notified that the transfer data has been discarded. 100 or the like may display the fact on a display unit or the like included in the hardware module 200 and notify the user to that effect.
 一方、ステップ706の処理で処理可能時間が0以上であると判定された場合、中継装置110は、現在の検索段に他の転送データが格納されているか否かを判定する(710)。 On the other hand, if it is determined in the process of step 706 that the processable time is 0 or more, the relay apparatus 110 determines whether other transfer data is stored in the current search stage (710).
 ステップ710の処理で現在の検索段に他の転送データが格納されていないと判定された場合、中継装置110は、現在の検索段に処理対象の転送データを設定し(712)、処理を終了する。 If it is determined in step 710 that no other transfer data is stored in the current search stage, the relay apparatus 110 sets the transfer data to be processed in the current search stage (712), and ends the process. To do.
 一方、ステップ710の処理で現在の検索段に他の転送データが格納されていると判定された場合、中継装置110は、処理対象の転送データの処理可能時間と現在の検索段に格納されている転送データの処理可能時間とを比較する(714)。そして、中継装置110は、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より長いか否かを判定する(716)。 On the other hand, if it is determined in the process of step 710 that other transfer data is stored in the current search stage, the relay device 110 is stored in the current search stage and the processable time of the transfer data to be processed. The transferable data processing time is compared (714). Then, the relay apparatus 110 determines whether the processable time of the transfer data to be processed is longer than the processable time of the transfer data stored in the current search stage (716).
 ステップ716の処理で、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より長いと判定された場合、中継装置110は、現在の検索段に1加算した段の転送キューを新たな検索段に設定する(718)。すなわち、中継装置110は、転送キューに含まれる段のうち現在の検索段の処理順序が次の段を新たな検索段に設定する。そして、中継装置110は、式1を算出することによって新たな処理可能時間を算出し(720)、ステップ706の処理に戻る。すなわち、ステップ720の処理では、管理サーバ120は、現在の処理可能時間から新たな検索段に格納されたデータが処理されるまでに必要な時間を減算することによって、新たな処理可能時間を算出する。 When it is determined in step 716 that the processable time of the transfer data to be processed is longer than the processable time of the transfer data stored in the current search stage, the relay apparatus 110 adds 1 to the current search stage. The transfer queue of the added stage is set as a new search stage (718). In other words, the relay device 110 sets the next search stage in the processing order of the current search stage among the stages included in the transfer queue as a new search stage. Then, the relay apparatus 110 calculates a new processable time by calculating Expression 1 (720), and returns to the process of Step 706. That is, in the process of step 720, the management server 120 calculates a new processable time by subtracting the time required until the data stored in the new search stage is processed from the current processable time. To do.
 新たな処理可能時間=処理可能時間-(検索段数-1)×1段の転送キューの処理時間・・・(式1) New processing time = processing time-(number of search stages-1) x processing time for 1-stage transfer queue (Equation 1)
 一方、ステップ716の処理で、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より長くないと判定された場合、中継装置110は、図17に示す処理に進み、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より短いか否かを判定する(722)。 On the other hand, if it is determined in step 716 that the processable time of the transfer data to be processed is not longer than the processable time of the transfer data stored in the current search stage, the relay apparatus 110 returns to FIG. Then, it is determined whether or not the processable time of the transfer data to be processed is shorter than the processable time of the transfer data stored in the current search stage (722).
 ステップ722の処理で、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より短いと判定された場合、中継装置110は、検索段以降の各段に格納されたデータが各段数に1加算した段に移動可能であるか否かを判定する(724)。 If it is determined in step 722 that the processable time of the transfer data to be processed is shorter than the processable time of the transfer data stored in the current search stage, the relay device 110 determines that each stage after the search stage It is determined whether the data stored in can be moved to a stage obtained by adding 1 to the number of stages (724).
 例えば、n段目に格納された転送データがn+1段目に移動することによって、n+1段目に移動した転送データの処理可能時間が要件通信遅延時間より大きくなる場合には、ステップ724の処理で当該データを移動できないと判定される。 For example, when the transfer data stored in the nth stage moves to the (n + 1) th stage, and the processable time of the transfer data moved to the (n + 1) th stage becomes longer than the required communication delay time, the process in step 724 It is determined that the data cannot be moved.
 ステップ724の処理で、検索段以降の各段に格納されたデータが各段数に1加算した段に移動可能であると判定された場合、中継装置110は、これらのデータを段数に1加算した段に移動し(726)、現在の検索段に処理対象の転送データを設定し(728)、処理を終了する。これによって、処理対象の転送データは、検索段以降の段に格納されていたデータより優先して転送される。 If it is determined in step 724 that the data stored in each stage after the search stage can be moved to the stage obtained by adding 1 to the number of stages, the relay apparatus 110 adds 1 to the number of stages. The transfer data to be processed is set in the current search stage (728), and the process ends. As a result, the transfer data to be processed is transferred with priority over the data stored in the stages after the search stage.
 一方、ステップ724の処理で、検索段以降の各段に格納されたデータが各段数に1加算した段に移動可能でないと判定された場合、中継装置110は、1加算した段に移動すると処理可能時間が要件通信遅延時間より大きくなるデータ、つまり1加算した段に移動できないデータを破棄する(730)。 On the other hand, if it is determined in step 724 that the data stored in each stage after the search stage cannot be moved to the stage obtained by adding 1 to the number of stages, the relay apparatus 110 performs processing when the relay apparatus 110 moves to the stage added by 1. Data whose possible time is longer than the required communication delay time, that is, data that cannot be moved to the stage added by 1, is discarded (730).
 そして、中継装置110は、検索段以降の各段に格納されたデータを段数に1加算した段に移動し(732)、現在の検索段に処理対象の転送データを設定し(734)、処理を終了する。 Then, the relay apparatus 110 moves to the stage obtained by adding 1 to the number of stages stored in each stage after the retrieval stage (732), sets the transfer data to be processed in the current retrieval stage (734), and performs processing. Exit.
 ステップ722の処理で、処理対象の転送データの処理可能時間が現在の検索段に格納されている転送データの処理可能時間より短くないと判定された場合、すなわち、処理対象の転送データの処理可能時間と現在の検索段に格納されている転送データの処理可能時間とが同じである場合、中継装置110は、処理対象の転送データの優先度と現在の検索段に格納されている転送データの優先度とを比較する(736)。なお、中継装置110が、ルーティングテーブル228に登録されたレコードのうち、データ種別ID320に登録された識別子が転送データのデータ種別の識別子と一致するレコードの優先度322に登録された優先度を取得することによって、転送データの優先度を知ることができる。 If it is determined in step 722 that the processable time of the transfer data to be processed is not shorter than the processable time of the transfer data stored in the current search stage, that is, the processable transfer data can be processed. When the time and the processable time of the transfer data stored in the current search stage are the same, the relay apparatus 110 determines the priority of the transfer data to be processed and the transfer data stored in the current search stage. The priority is compared (736). The relay device 110 obtains the priority registered in the priority 322 of the record registered in the routing table 228 whose identifier registered in the data type ID 320 matches the identifier of the data type of the transfer data. By doing so, the priority of the transfer data can be known.
 次に、中継装置110は、ステップ736の処理での二つの転送データの優先度の比較結果を参照し、処理対象の転送データの優先度が現在の検索段に格納されている転送データの優先度より高いか否かを判定する(738)。 Next, the relay device 110 refers to the priority comparison result of the two transfer data in the process of Step 736, and the priority of the transfer data stored in the current search stage is the priority of the transfer data to be processed. It is determined whether it is higher than the degree (738).
 ステップ738の処理で、処理対象の転送データの優先度が現在の検索段に格納されている転送データの優先度より高いと判定された場合、中継装置110は、処理対象の転送データを現在の検索段に格納されている転送データより優先して転送すべく、現在の検索段に格納されている転送データを破棄する(740)。そして、中継装置110は、現在の検索段に処理対象の転送データを設定し(742)、処理を終了する。 If it is determined in step 738 that the priority of the transfer data to be processed is higher than the priority of the transfer data stored in the current search stage, the relay apparatus 110 sets the transfer data to be processed as the current transfer data. The transfer data stored in the current search stage is discarded in order to transfer the data prior to the transfer data stored in the search stage (740). Then, the relay apparatus 110 sets transfer data to be processed in the current search stage (742), and ends the process.
 一方、ステップ738の処理で、処理対象の転送データの優先度が現在の検索段に格納されている転送データの優先度以下と判定された場合、中継装置110は、現在の検索段に格納されている転送データを処理対象の転送データより優先して転送すべく、処理対象の転送データを破棄し(744)、処理を終了する。 On the other hand, if it is determined in step 738 that the priority of the transfer data to be processed is equal to or lower than the priority of the transfer data stored in the current search stage, the relay device 110 is stored in the current search stage. The transfer data to be processed is discarded (744) and the processing is terminated in order to transfer the transfer data having priority over the transfer data to be processed.
 なお、ステップ730の処理では、中継装置110は、移動できないデータを破棄しているが、ステップ736~744の処理のように、処理対象の転送データの優先度が移動できないデータの優先度より高い場合に移動できないデータを破棄し、処理対象の転送データの優先度が移動できないデータの優先度以下である場合に処理対象の転送データを破棄してもよい。 In the process of step 730, the relay apparatus 110 discards the data that cannot be moved. However, as in the processes of steps 736 to 744, the priority of the transfer data to be processed is higher than the priority of the data that cannot be moved. In this case, the data that cannot be moved may be discarded, and the transfer data to be processed may be discarded if the priority of the transfer data to be processed is equal to or lower than the priority of the data that cannot be moved.
 また、ステップ736~744の処理では、中継装置110は、検索段以降の段に格納されている転送データを各段数に1加算した段に移動させずに、優先度が低い方のデータを破棄しているが、ステップ740~744の処理の代わりに、ステップ724~734の処理を実行してもよい。これによって、中継装置110は、処理対象の転送データの優先度が検索段に格納されたデータの優先度より高い場合に、検索段以降に格納されたデータを各段数に1加算した段に移動し、検索段に処理対象の転送データを格納できる。 Further, in the processing of steps 736 to 744, the relay apparatus 110 discards the data with the lower priority without moving the transfer data stored in the stages after the search stage to the stage obtained by adding 1 to the number of stages. However, the processing of steps 724 to 734 may be executed instead of the processing of steps 740 to 744. As a result, when the priority of the transfer data to be processed is higher than the priority of the data stored in the search stage, the relay apparatus 110 moves to the stage obtained by adding 1 to the number of stages stored in the search stage. The transfer data to be processed can be stored in the search stage.
 以上によって、データ転送処理では、中継装置110は、ステップ702の処理で、受信した転送データのデータ種別に対応する要件通信遅延時間から予想通信遅延時間及び送信元通信遅延時間を減算することによって、処理可能時間を算出する。そして、中継装置110は、ステップ706の処理で処理可能時間が0より小さいと判定された場合、処理可能時間内に受信したデータを転送先に転送できないと判定し、ステップ708の処理で受信したデータを破棄する。また、中継装置110は、ステップ706の処理で処理可能時間が0以上であると判定された場合、処理可能時間内に受信したデータを転送先に転送すべくステップ714の処理に進む。なお、中継装置110は、ステップ706の処理で、処理可能時間が所定値以上であるか否かを判定することによって、処理可能時間内に受信したデータを転送できるか否かを判定してもよい。 As described above, in the data transfer process, the relay apparatus 110 subtracts the expected communication delay time and the source communication delay time from the requirement communication delay time corresponding to the data type of the received transfer data in the process of Step 702. The processing time is calculated. When it is determined in step 706 that the processable time is less than 0, the relay device 110 determines that the data received within the processable time cannot be transferred to the transfer destination, and the relay apparatus 110 receives the process in step 708. Discard the data. If it is determined in step 706 that the processable time is 0 or more, the relay apparatus 110 proceeds to the process in step 714 to transfer the data received within the processable time to the transfer destination. Note that the relay device 110 may determine whether or not the received data can be transferred within the processable time by determining whether or not the processable time is equal to or greater than a predetermined value in the process of step 706. Good.
 これによって、処理可能時間内に受信したデータを転送できないと判定された場合には、中継装置110は、要件通信遅延時間を保証できないデータを転送し、ネットワークに負荷をかけないように、受信したデータを破棄し、既に転送キューに格納されているデータの要件通信遅延時間を保証することができる。 As a result, when it is determined that the received data cannot be transferred within the processable time, the relay device 110 transfers the data whose required communication delay time cannot be guaranteed, and receives the data so as not to put a load on the network. It is possible to discard the data and guarantee the required communication delay time of the data already stored in the transfer queue.
 また、中継装置110は、処理可能時間内に受信したデータを転送できると判定された場合には、受信したデータの処理可能時間がステップ704の処理で設定された現在の検索段に格納された処理可能時間より長い場合には、ステップ718の処理で、現在の検索段の転送順序が一つ後の段を新たな検索段に設定し、ステップ720の処理で現在の処理可能時間から新たに設定された検索段に至るまでの処理時間を減算した時間を新たな処理可能時間として算出し、ステップ706の処理に戻り、新たな処理可能時間内に受信したデータを転送できるか否かを判定する。 If the relay device 110 determines that the received data can be transferred within the processable time, the processable time of the received data is stored in the current search stage set in the process of step 704. If it is longer than the processable time, the process in step 718 sets the next search stage in the transfer order of the current search stage as a new search stage, and the process in step 720 newly starts from the current processable time. A time obtained by subtracting the processing time until reaching the set search stage is calculated as a new processable time, and the process returns to step 706 to determine whether or not the received data can be transferred within the new processable time. To do.
 一方、中継装置110は、受信したデータの処理可能時間がステップ704の処理で設定された現在の検索段に格納された処理可能時間より短い場合には、ステップ724の処理で、現在の検索段以降に転送されるデータが格納された段に格納されたデータを転送順序が一つ後の段に移動できると判定された場合、ステップ726の処理で、当該データを一つ後の段に移動するとともに、ステップ728の処理で現在の検索段に受信したデータを格納する。これによって、中継装置110は、転送キューに既に格納されたデータについて要件通信遅延時間を保証しつつ、受信したデータの要件通信遅延時間も保証することができる。 On the other hand, when the processable time of the received data is shorter than the processable time stored in the current search stage set in the process of step 704, the relay apparatus 110 performs the process of step 724 in the current search stage. If it is determined that the data stored in the stage where the data to be transferred thereafter is stored can be moved to the next stage, the data is moved to the next stage in step 726. At the same time, the received data is stored in the current search stage in the process of step 728. As a result, the relay apparatus 110 can guarantee the requirement communication delay time of the received data while guaranteeing the requirement communication delay time for the data already stored in the transfer queue.
 次に、実施例1の変形例について図18及び図19を用いて説明する。 Next, a modification of the first embodiment will be described with reference to FIGS.
 実施例1では、端末100及び中継装置110は、他の端末100又は中継装置110と時刻を同期せずに計測要求データ及び計測応答データを利用して通信遅延時間を測定しているため、通信遅延時間を正確に測定することは困難である。そこで、本変形例では、端末100及び中継装置110は、時刻を同期するモジュール(例えば、GPSモジュール)をハードウェアモジュール200及び220として搭載しており、中継システムが有する端末100及び中継装置110が、時刻同期後、他の端末100及び中継装置110に計測要求データを送信する。 In the first embodiment, since the terminal 100 and the relay device 110 measure the communication delay time using the measurement request data and the measurement response data without synchronizing the time with the other terminals 100 or the relay device 110, the communication is performed. It is difficult to accurately measure the delay time. Therefore, in the present modification, the terminal 100 and the relay device 110 are equipped with time synchronization modules (for example, GPS modules) as the hardware modules 200 and 220, and the terminal 100 and the relay device 110 included in the relay system are installed. After the time synchronization, the measurement request data is transmitted to the other terminal 100 and the relay device 110.
 図18は、本発明の実施例1の変形例の端末100及び中継装置110によるシステム起動時の処理のフローチャートである。なお、図18に示す処理のうち図13に示す処理と同じ処理は、同じ符号を付与し、説明を省略する。 FIG. 18 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to a modification of the first embodiment of the present invention. In addition, the process same as the process shown in FIG. 13 among the processes shown in FIG. 18 is provided with the same code | symbol, and description is abbreviate | omitted.
 端末100及び中継装置110は、中継システムが起動すると、時刻を同期するモジュールを利用して、他の端末100及び中継装置110と時刻を同期し(500)、ステップ400の処理に進む。ステップ400の処理以降の処理は図13に示す処理と同じである。 When the relay system is activated, the terminal 100 and the relay device 110 synchronize the time with the other terminal 100 and the relay device 110 using the time synchronization module (500), and proceed to the process of step 400. The processing after step 400 is the same as the processing shown in FIG.
 これによって、中継システムに存在する端末100及び中継装置110の時刻が同期されるので、正確な通信遅延時間を測定できる。 Thereby, since the time of the terminal 100 and the relay device 110 existing in the relay system is synchronized, an accurate communication delay time can be measured.
 ここで、上記した中継システムでは、端末100間のデータ通信と、ルーティングテーブル228の更新のための通信とが混在するため、ルーティングテーブル228の更新のための通信が端末100間のデータ通信に影響を与える可能性がある。 Here, in the relay system described above, data communication between the terminals 100 and communication for updating the routing table 228 are mixed, so that the communication for updating the routing table 228 affects the data communication between the terminals 100. May give.
 端末100間のデータ通信とルーティングテーブル228の更新のための通信との混在を防止するための端末100及び中継装置110のデータ通信方法について、図19を用いて説明する。 A data communication method of the terminal 100 and the relay apparatus 110 for preventing the data communication between the terminals 100 and the communication for updating the routing table 228 from being mixed will be described with reference to FIG.
 図19は、実施例1の変形例のデータ通信方法の説明図である。 FIG. 19 is an explanatory diagram of a data communication method according to a modification of the first embodiment.
 時刻が同期されている端末100及び中継装置110は、データ通信の通信周期を一定周期である周期フレーム1100に分割する。そして、周期フレーム1100は、端末100間におけるデータ通信をするためのデータ転送期間1110とルーティングテーブル228の更新のための通信をする測定期間1112とに更に分割される。 The terminal 100 and the relay apparatus 110 whose times are synchronized divide the communication cycle of data communication into a periodic frame 1100 that is a constant cycle. The periodic frame 1100 is further divided into a data transfer period 1110 for data communication between the terminals 100 and a measurement period 1112 for communication for updating the routing table 228.
 これによって、端末100間のデータ通信とルーティングテーブル228の更新のための通信とが混在することを防止できる。 Thereby, it is possible to prevent data communication between the terminals 100 and communication for updating the routing table 228 from being mixed.
 以下、実施例2の中継システムについて、図20及び図21を用いて説明する。 Hereinafter, the relay system according to the second embodiment will be described with reference to FIGS. 20 and 21. FIG.
 実施例2の中継システムは、管理サーバ120を備えず、各中継装置110が通信遅延時間を収集し、ルーティングテーブル228を生成する。 The relay system according to the second embodiment does not include the management server 120, and each relay apparatus 110 collects communication delay times and generates a routing table 228.
 図20は、本発明の実施例2の中継システムの構成の説明図である。図20に示す中継システムの構成のうち実施例1の図1に示す中継システムの構成と同じ構成は、同じ符号を付与し、説明を省略する。 FIG. 20 is an explanatory diagram of the configuration of the relay system according to the second embodiment of the present invention. Of the configuration of the relay system shown in FIG. 20, the same configuration as the configuration of the relay system shown in FIG.
 本実施例の中継システムは、上記したように、管理サーバ120を備えない点で実施例1の中継システムと異なり、その余の構成は実施例1の中継システムと同じである。 As described above, the relay system according to the present embodiment is different from the relay system according to the first embodiment in that the management server 120 is not provided, and the remaining configuration is the same as that of the relay system according to the first embodiment.
 図21は、本発明の実施例2の端末100及び中継装置110によるシステム起動時の処理のフローチャートである。 FIG. 21 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to the second embodiment of the present invention.
 実施例1では、管理サーバ120が、各端末100及び中継装置110の計測情報格納テーブル210を収集するタイミング、並びに、各端末100及び中継装置110を通常モードに遷移させるタイミングを管理する。しかし、本実施例では、中継システムが管理サーバ120を備えないため、これらのタイミングは、各端末100及び中継装置110が起動したタイミングに基づいて管理される。なお、各端末100及び中継装置110の時刻は同期されてもよいし、同期されていなくてもよい。 In the first embodiment, the management server 120 manages the timing of collecting the measurement information storage table 210 of each terminal 100 and the relay device 110 and the timing of switching each terminal 100 and the relay device 110 to the normal mode. However, in this embodiment, since the relay system does not include the management server 120, these timings are managed based on the timing when each terminal 100 and the relay device 110 are activated. In addition, the time of each terminal 100 and the relay apparatus 110 may be synchronized and does not need to be synchronized.
 また、ルーティングテーブル228の生成には、送信元の端末100から送信先の端末100までの通信経路が特定される必要があるが、実施例1の端末100及び中継装置110の構成では、端末100及び中継装置110が通信経路を特定することは困難である。このため、端末100及び中継装置110は、データ管理テーブル256、計測情報管理テーブル254及びルーティング管理テーブル252を保持するものとする。データ管理テーブル256は、各端末100及び中継装置110に設定されているものとする。 In order to generate the routing table 228, it is necessary to specify a communication path from the transmission source terminal 100 to the transmission destination terminal 100. In the configuration of the terminal 100 and the relay device 110 according to the first embodiment, the terminal 100 It is difficult for the relay apparatus 110 to specify the communication path. For this reason, the terminal 100 and the relay apparatus 110 hold the data management table 256, the measurement information management table 254, and the routing management table 252. It is assumed that the data management table 256 is set in each terminal 100 and the relay device 110.
 まず、端末100及び中継装置110は、自身が起動してから所定時間(A秒)経過したか否かを判定する(900)。 First, the terminal 100 and the relay device 110 determine whether or not a predetermined time (A seconds) has elapsed since starting up (900).
 ステップ900の処理で、端末100及び中継装置110が起動してから所定時間(A秒)経過していないと判定された場合、端末100及び中継装置110は、計測要求データ及び計測応答データを送受信することによって、通信遅延時間を測定する(902)。そして、端末100及び中継装置110は、ステップ902の処理で通信遅延時間に基づいて、計測情報管理テーブル254を更新し(904)、ステップ900の処理に戻る。なお、ステップ904の処理の具体的な処理は、実施例1の図12に示すステップ444の処理と同じであるので、説明を省略する。 If it is determined in step 900 that the predetermined time (A seconds) has not elapsed since the terminal 100 and the relay device 110 are activated, the terminal 100 and the relay device 110 transmit and receive measurement request data and measurement response data. Thus, the communication delay time is measured (902). Then, the terminal 100 and the relay device 110 update the measurement information management table 254 based on the communication delay time in the process of step 902 (904), and return to the process of step 900. Note that the specific process of step 904 is the same as the process of step 444 shown in FIG.
 一方、ステップ900の処理で、端末100及び中継装置110が起動してから所定時間(A秒)経過したと判定された場合、端末100及び中継装置110は、自身が起動してから所定時間(B秒)経過したか否かを判定する(906)。なお、ステップ906の処理における所定時間(B秒)は、ステップ900の処理における所定時間(A秒)より長い時間に設定されるものとする。 On the other hand, if it is determined in step 900 that a predetermined time (A seconds) has elapsed since the terminal 100 and the relay device 110 are activated, the terminal 100 and the relay device 110 are activated for a predetermined time ( It is determined whether or not (B seconds) has elapsed (906). Note that the predetermined time (B seconds) in the process of step 906 is set to be longer than the predetermined time (A seconds) in the process of step 900.
 ステップ906の処理で、端末100及び中継装置110が起動してから所定時間(B秒)経過していないと判定された場合、自身の計測情報格納テーブル210を他の端末100及び中継装置110に送信し、他の端末100及び中継装置110によって送信された計測情報格納テーブル210を受信する(908)。 If it is determined in step 906 that the predetermined time (B seconds) has not elapsed since the terminal 100 and the relay device 110 are activated, the own measurement information storage table 210 is transferred to the other terminals 100 and the relay device 110. The measurement information storage table 210 transmitted by the other terminal 100 and the relay device 110 is received (908).
 そして、端末100及び中継装置110は、ステップ904の処理で更新された計測情報格納テーブル210、及びステップ908の処理で受信した計測情報格納テーブル210に基づいて、計測情報管理テーブル254を更新し、更新された計測情報管理テーブル254に基づいてルーティング管理テーブル252を更新し、ルーティング管理テーブル252に基づいてルーティングテーブル228を更新し(910)、ステップ906の処理に戻る。なお、ステップ910の処理の具体的な処理は、実施例1の図12に示すステップ444~448の処理と同じである。 Then, the terminal 100 and the relay device 110 update the measurement information management table 254 based on the measurement information storage table 210 updated in the process of step 904 and the measurement information storage table 210 received in the process of step 908, The routing management table 252 is updated based on the updated measurement information management table 254, the routing table 228 is updated based on the routing management table 252 (910), and the process returns to step 906. Note that the specific processing of step 910 is the same as the processing of steps 444 to 448 shown in FIG. 12 of the first embodiment.
 一方、ステップ906の処理で、端末100及び中継装置110が起動してから所定時間(B秒)経過したと判定された場合、自身を通常モードに遷移する。 On the other hand, if it is determined in the processing of step 906 that a predetermined time (B seconds) has elapsed since the terminal 100 and the relay apparatus 110 are activated, the terminal 100 shifts itself to the normal mode.
 端末100及び中継装置110による通常モード時の処理は、図15~図17に示す処理と同じであるので、説明を省略する。 Since the processing in the normal mode by the terminal 100 and the relay device 110 is the same as the processing shown in FIGS. 15 to 17, description thereof will be omitted.
 本実施例では、中継装置110が自身のルーティングテーブル228を更新し、実施例1では、管理サーバ120が各中継装置110のルーティングテーブル228を更新するため、本実施例の中継装置110の処理負荷は実施例1より高くなる。しかし、本実施例では、各中継装置110がルーティングテーブル228を更新するので、実施例1のように、管理サーバ120がルーティングテーブル228を各中継装置110に配布するよう必要はない。このため、本実施例のネットワーク負荷は実施例1より軽減される。 In the present embodiment, the relay device 110 updates its own routing table 228, and in the first embodiment, the management server 120 updates the routing table 228 of each relay device 110, so that the processing load of the relay device 110 of this embodiment is increased. Is higher than Example 1. However, in the present embodiment, each relay apparatus 110 updates the routing table 228, so that it is not necessary for the management server 120 to distribute the routing table 228 to each relay apparatus 110 as in the first embodiment. For this reason, the network load of a present Example is reduced from Example 1. FIG.
 以下、実施例3の中継システムについて、図22~図26を用いて説明する。 Hereinafter, the relay system according to the third embodiment will be described with reference to FIGS.
 本実施例では、各中継装置110が転送データに対して所定の処理を実行するためにかかる処理時間も考慮して、処理可能時間が算出される。なお、本実施例の説明は、実施例1との差分について説明するが、実施例2にも適用可能である。 In this embodiment, the processable time is calculated in consideration of the processing time required for each relay apparatus 110 to execute a predetermined process on the transfer data. In addition, although the description of the present embodiment describes differences from the first embodiment, it can also be applied to the second embodiment.
 図22は、本発明の実施例3の中継装置110の構成の説明図である。図22に示す中継装置110の構成のうち、実施例1の図3に示す中継装置110と同じ構成は同じ符号を付与し、説明を省略する。 FIG. 22 is an explanatory diagram of a configuration of the relay device 110 according to the third embodiment of this invention. Among the configurations of the relay device 110 illustrated in FIG. 22, the same configurations as those of the relay device 110 illustrated in FIG. 3 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本実施例の中継装置110は、実施例1の中継装置110の構成に加えて、データ処理アプリケーション1202を有し、記憶装置226には、計測情報格納テーブル210及びルーティングテーブル228の他に、データ処理時間テーブル1204が記憶される。 The relay device 110 according to the present embodiment includes a data processing application 1202 in addition to the configuration of the relay device 110 according to the first embodiment. In addition to the measurement information storage table 210 and the routing table 228, the storage device 226 includes data A processing time table 1204 is stored.
 データ処理アプリケーション1202は、受信した転送データのデータ種別に対応する所定の処理(暗号化処理及びカプセル化処理等)を受信した転送データに対して実行するアプリケーションである。 The data processing application 1202 is an application that executes predetermined processing (encryption processing, encapsulation processing, etc.) corresponding to the data type of the received transfer data on the received transfer data.
 データ処理時間テーブル1204は、当該中継装置110が転送データに処理を実行するのにかかった処理時間をデータ種別毎に管理するためのテーブルである。データ処理時間テーブル1204については、図23で詳細を説明する。 The data processing time table 1204 is a table for managing the processing time required for the relay device 110 to execute processing on the transfer data for each data type. Details of the data processing time table 1204 will be described with reference to FIG.
 また、本実施例では、管理サーバ120が各中継装置110の処理時間を管理するため、データ管理テーブル256の構成も、実施例1のデータ管理テーブル256の構成と異なる。本実施例のデータ管理テーブル256については、図24で詳細を説明する。 In this embodiment, since the management server 120 manages the processing time of each relay apparatus 110, the configuration of the data management table 256 is also different from the configuration of the data management table 256 of the first embodiment. Details of the data management table 256 of this embodiment will be described with reference to FIG.
 図23は、本発明の実施例3のデータ処理時間テーブル1204の説明図である。 FIG. 23 is an explanatory diagram of the data processing time table 1204 according to the third embodiment of this invention.
 データ処理時間テーブル1204は、データ種別ID1205及びデータ処理時間1206を含む。 The data processing time table 1204 includes a data type ID 1205 and a data processing time 1206.
 データ種別ID1205には、データの種別を一意に識別するための識別子が登録される。データ処理時間1206には、転送データに対する処理時間が登録される。 In the data type ID 1205, an identifier for uniquely identifying the data type is registered. In the data processing time 1206, the processing time for the transfer data is registered.
 図24は、本発明の実施例3のデータ管理テーブル256の説明図である。 FIG. 24 is an explanatory diagram of the data management table 256 according to the third embodiment of this invention.
 データ管理テーブル256は、データ種別ID350、データ種類352、優先度354、送信元アドレス356、送信先アドレス358、及び要件通信遅延時間360の他、各中継装置の処理時間1208を含む。 The data management table 256 includes a processing time 1208 of each relay device in addition to a data type ID 350, a data type 352, a priority 354, a transmission source address 356, a transmission destination address 358, and a requirement communication delay time 360.
 各中継装置の処理時間1208には、各中継装置110から収集されたデータ処理時間テーブル1204に基づいて、各中継装置110が転送データに実行した処理の処理時間が登録される。 In the processing time 1208 of each relay device, the processing time of the processing executed by each relay device 110 on the transfer data is registered based on the data processing time table 1204 collected from each relay device 110.
 図25は、本発明の実施例3の管理サーバ120によるシステム起動時の処理のフローチャートである。なお、図25に示す処理のうち実施例1の図12に示す処理と同じ処理は、同じ符号を付与し、説明を省略する。 FIG. 25 is a flowchart of processing at the time of system startup by the management server 120 according to the third embodiment of the present invention. 25, the same processes as those shown in FIG. 12 of the first embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
 管理サーバ120は、ステップ444の処理で計測情報管理テーブルの生成後、データ処理時間テーブル要求を各中継装置110に送信する(1306)。 The management server 120 transmits a data processing time table request to each relay device 110 after generating the measurement information management table in the process of step 444 (1306).
 なお、データ処理時間テーブル要求の送信方法は、応答付きのブロードキャスト通信で送信されてもよい。また、中継システム内に存在する中継装置110のアドレス情報が中継システムの起動前に管理サーバ120に設定されている場合、データ処理時間テーブル要求は、当該アドレス情報を利用してユニキャスト通信で送信されてもよい。 In addition, the transmission method of the data processing time table request may be transmitted by broadcast communication with a response. Further, when the address information of the relay device 110 existing in the relay system is set in the management server 120 before the relay system is activated, the data processing time table request is transmitted by unicast communication using the address information. May be.
 管理サーバ120は、中継システム内に存在する全ての中継装置110からデータ処理時間テーブル1204を取得すると、取得したデータ処理時間テーブル1204に基づいてデータ管理テーブル256を更新し(1308)、ステップ446の処理に進む。 When the management server 120 acquires the data processing time table 1204 from all the relay apparatuses 110 existing in the relay system, the management server 120 updates the data management table 256 based on the acquired data processing time table 1204 (1308). Proceed to processing.
 具体的には、管理サーバ120は、データ管理テーブル256に登録されたレコードのうち、データ種別ID350に登録された識別子が取得したデータ処理時間テーブル1204のデータ種別ID1205に登録された識別子と一致するレコードを選択する。そして、管理サーバ120は、選択したレコードの中継装置の処理時間1208のうち、取得したデータ処理時間テーブル1204の送信元の中継装置110に対応する中継装置の処理時間1208に、取得したデータ管理テーブル256のデータ処理時間1206に登録された処理時間を登録する。これによって、データ管理テーブル256が更新される。 Specifically, the management server 120 matches the identifier registered in the data type ID 1205 of the acquired data processing time table 1204 among the records registered in the data management table 256. Select a record. Then, the management server 120 acquires the data management table acquired at the processing time 1208 of the relay device corresponding to the transmission source relay device 110 of the acquired data processing time table 1204 out of the processing time 1208 of the relay device of the selected record. The processing time registered in 256 data processing time 1206 is registered. As a result, the data management table 256 is updated.
 次に、ステップ448の処理で、管理サーバ120は、ルーティングテーブル228を生成する処理について説明する。 Next, in the process of step 448, the management server 120 will be described with respect to the process of generating the routing table 228.
 実施例1では、管理サーバ120が、計測情報管理テーブル254を参照して、生成するルーティングテーブル228を保持する中継装置110から送信先の端末100までの通信遅延時間を算出し、算出した通信遅延時間をルーティングテーブル228の本中継装置以降の遅延時間328に登録する。本実施例では、管理サーバ120は、通信遅延時間だけではなく、データ管理テーブル256を参照して、生成するルーティングテーブル228を保持する中継装置110から送信先の端末100までの通信経路に存在する中継装置110のデータ処理時間の合計値を算出する。そして、生成するルーティングテーブル228を保持する中継装置110から送信先の端末100までの通信遅延時間とデータ処理時間の合計値とを加算した値をルーティングテーブル228の本中継装置以降の遅延時間328に登録する。 In the first embodiment, the management server 120 refers to the measurement information management table 254 to calculate a communication delay time from the relay apparatus 110 that holds the generated routing table 228 to the destination terminal 100, and calculates the calculated communication delay. The time is registered in the delay time 328 after the present relay device in the routing table 228. In this embodiment, the management server 120 refers to not only the communication delay time but also the data management table 256 and exists in the communication path from the relay apparatus 110 that holds the generated routing table 228 to the destination terminal 100. The total value of the data processing time of the relay device 110 is calculated. Then, a value obtained by adding the communication delay time from the relay apparatus 110 holding the generated routing table 228 to the destination terminal 100 and the total value of the data processing time is used as the delay time 328 after the present relay apparatus in the routing table 228. sign up.
 なお、データ管理テーブル256に各中継装置110の処理時間が予め登録されている場合には、管理サーバ120はデータ処理時間テーブル要求を送信しなくてもよい。 When the processing time of each relay device 110 is registered in advance in the data management table 256, the management server 120 does not need to transmit a data processing time table request.
 図26は、本発明の実施例3の中継装置110によるシステム起動時の処理のフローチャートである。なお、図26に示す処理のうち実施例1の図13に示す処理と同じ処理は、同じ符号を付与し、説明を省略する。 FIG. 26 is a flowchart of processing at the time of system startup by the relay apparatus 110 according to the third embodiment of the present invention. In addition, the process same as the process shown in FIG. 13 of Example 1 among the processes shown in FIG. 26 is provided with the same code | symbol, and description is abbreviate | omitted.
 ステップ410の処理で、受信データが計測情報格納テーブル要求でないと判定された場合、中継装置110は、受信データがデータ処理時間テーブル要求であるか否かを判定する(1302)。 When it is determined in the process of step 410 that the received data is not a measurement information storage table request, the relay apparatus 110 determines whether the received data is a data processing time table request (1302).
 ステップ1302の処理で、受信データがデータ処理時間テーブル要求でないと判定された場合、ステップ414の処理に進む。 If it is determined in step 1302 that the received data is not a data processing time table request, the process proceeds to step 414.
 一方、ステップ1302の処理で、受信データがデータ処理時間テーブル要求であると判定された場合、中継装置110は、データ処理時間テーブル1204を管理サーバ120に送信し(1304)、ステップ400の処理に戻る。 On the other hand, if it is determined in step 1302 that the received data is a data processing time table request, the relay apparatus 110 transmits the data processing time table 1204 to the management server 120 (1304), and the processing in step 400 is performed. Return.
 次に、実施例3を実施例2に適用した場合について実施例3の変形例として図27を用いて説明する。 Next, a case where the third embodiment is applied to the second embodiment will be described as a modification of the third embodiment with reference to FIG.
 図27は、本発明の実施例3の変形例の端末100及び中継装置110によるシステム起動時の処理のフローチャートである。 FIG. 27 is a flowchart of processing at the time of system startup by the terminal 100 and the relay device 110 according to a modification of the third embodiment of the present invention.
 本変形例の端末100及び中継装置110は、実施例3の図22に示す構成の他に、ルーティング管理テーブル252、計測情報管理テーブル254、及びデータ管理テーブル256を有する。なお、ルーティング管理テーブル252、及び計測情報管理テーブル254は実施例1の図9及び図10と同じであり、データ管理テーブル256は実施例3の図24と同じである。 The terminal 100 and the relay device 110 according to the present modification include a routing management table 252, a measurement information management table 254, and a data management table 256 in addition to the configuration illustrated in FIG. The routing management table 252 and the measurement information management table 254 are the same as those in FIGS. 9 and 10 of the first embodiment, and the data management table 256 is the same as that in FIG. 24 of the third embodiment.
 ステップ908の処理で、端末100及び中継装置110は、計測情報格納テーブル210を送受信し、計測情報管理テーブル254を更新し、更新された計測情報管理テーブル254に基づいてルーティング管理テーブル252を更新した後、自身のデータ処理時間テーブル1204を他の端末100及び中継装置110に送信し、他の端末100及び中継装置110からデータ処理時間テーブル1204を受信し、データ管理テーブル256を更新する(1400)。データ管理テーブル256の更新処理は、実施例3のステップ13308の処理と同じであるので説明を省略する。 In step 908, the terminal 100 and the relay device 110 transmit / receive the measurement information storage table 210, update the measurement information management table 254, and update the routing management table 252 based on the updated measurement information management table 254. Thereafter, the own data processing time table 1204 is transmitted to the other terminal 100 and the relay device 110, the data processing time table 1204 is received from the other terminal 100 and the relay device 110, and the data management table 256 is updated (1400). . The update process of the data management table 256 is the same as the process of step 13308 in the third embodiment, and thus the description thereof is omitted.
 次に、端末100及び中継装置110は、ステップ910の処理に進み、更新されたルーティング管理テーブル252及び更新されたデータ管理テーブル256に基づいて、ルーティングテーブル228を更新し(910)、ステップ906の処理に戻る。なお、ルーティングテーブル228の更新処理は、実施例3の図25に示すステップ448の処理と同じであるので、説明を省略する。 Next, the terminal 100 and the relay device 110 proceed to the process of step 910, update the routing table 228 based on the updated routing management table 252 and the updated data management table 256 (910), Return to processing. Note that the update process of the routing table 228 is the same as the process of step 448 shown in FIG.
 以上によって、ルーティングテーブル228の本中継装置以降の遅延時間328には登録された値には、ルーティングテーブル228を保持する中継装置110から送信先の端末100までの通信遅延時間、及びルーティングテーブル228を保持する中継装置110から送信先の端末100までの通信経路に存在する中継装置110のデータ処理時間の合計値が登録される。このため、中継装置110におけるデータ処理時間を考慮して、要件通信遅延時間を満たすデータ転送が可能となる。 As described above, the value registered in the delay time 328 after the present relay device in the routing table 228 includes the communication delay time from the relay device 110 that holds the routing table 228 to the destination terminal 100, and the routing table 228. The total value of the data processing time of the relay apparatus 110 existing in the communication path from the relay apparatus 110 to be held to the destination terminal 100 is registered. For this reason, data transfer satisfying the required communication delay time can be performed in consideration of the data processing time in the relay apparatus 110.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、CIカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as a CI card, an SD card, and a DVD.

Claims (15)

  1.  送信元端末から送信先端末までデータを中継する中継装置であって、
     前記送信元端末によって送信されたデータの転送先と、前記送信元端末によって送信されたデータが前記送信先端末によって受信されるまで担保すべき要件通信遅延時間と、当該中継装置によって送信されたデータが前記送信先端末によって受信されるまでに必要であると予想される予想通信遅延時間と、を保持し、
     前記送信元端末によって送信されたデータは、送信された時刻を示す時刻情報を含み、
     前記送信元端末によって送信されたデータを受信した場合、前記受信したデータに含まれる時刻情報に基づいて、当該データが前記送信元端末によって送信されてから当該中継装置によって受信されるまでに要した送信元通信遅延時間を算出し、
     前記要件通信遅延時間、前記予想通信遅延時間、及び前記算出した送信元通信遅延時間に基づいて、前記要件通信遅延時間内に前記受信したデータが前記送信先端末によって受信されるように、前記データを転送することを特徴とする中継装置。
    A relay device that relays data from a source terminal to a destination terminal,
    Transfer destination of data transmitted by the source terminal, requirement communication delay time to be ensured until the data transmitted by the source terminal is received by the destination terminal, and data transmitted by the relay device Holds an expected communication delay time that is expected to be required before it is received by the destination terminal,
    The data transmitted by the transmission source terminal includes time information indicating the time of transmission,
    When the data transmitted by the transmission source terminal is received, it is necessary from the time when the data is transmitted by the transmission source terminal until it is received by the relay device based on the time information included in the received data. Calculate the source communication delay time,
    Based on the requirement communication delay time, the expected communication delay time, and the calculated source communication delay time, the data is received by the destination terminal within the requirement communication delay time. A relay apparatus characterized by transferring
  2.  請求項1に記載の中継装置であって、
     前記要件通信遅延時間から、前記予想通信遅延時間及び前記算出した送信元通信遅延時間を減算することによって、当該中継装置が前記データを受信してから転送するまでの時間である処理可能時間を算出し、
     前記算出した処理可能時間内に前記受信したデータを転送できるか否かを判定し、
     前記算出した処理可能時間内に前記受信したデータを転送できないと判定された場合、前記受信したデータを破棄し、
     前記算出した処理可能時間内に前記受信したデータを転送できると判定された場合、前記算出した処理時間内に前記受信したデータを転送することを特徴とする中継装置。
    The relay device according to claim 1,
    By subtracting the expected communication delay time and the calculated source communication delay time from the requirement communication delay time, a processable time that is a time from when the relay device receives the data to when it is transferred is calculated. And
    Determining whether the received data can be transferred within the calculated processable time;
    If it is determined that the received data cannot be transferred within the calculated processable time, the received data is discarded,
    The relay apparatus, wherein when it is determined that the received data can be transferred within the calculated processable time, the received data is transferred within the calculated processing time.
  3.  請求項2に記載の中継装置であって、
     前記受信したデータを格納する記憶領域である要素を含む転送バッファを有し、
     前記転送バッファの要素に格納されたデータは所定の転送順序で転送され、
     前記転送バッファの要素のうち最初に転送されるデータが格納される要素を検索要素に設定し、
     前記算出した処理可能時間内に前記受信したデータを転送できると判定された場合、前記検索要素に格納されたデータの処理可能時間と、前記受信したデータの処理可能時間とを比較し、
     前記受信したデータの処理可能時間が前記検索要素に格納されたデータの処理可能時間より短い場合には、前記検索要素に格納されたデータ以降に転送されるデータが格納された要素に格納されたデータを前記転送順序が一つ後の要素に移動できるか否かを判定し、
     前記検索要素に格納されたデータ以降に転送されるデータが格納された要素に格納されたデータを前記転送順序が一つ後の要素に移動できると判定された場合、当該データを前記転送順序が一つ後の要素に移動するとともに、前記検索要素に前記受信したデータを格納することによって、前記処理可能時間内に前記受信したデータを転送し、
     前記受信したデータの処理可能時間が前記検索要素に格納されたデータの処理可能時間より長い場合には、前記検索要素の前記転送順序が一つ後の要素を新たな検索要素に設定するとともに、現在の処理可能時間から新たに設定された検索要素に至るまでの処理時間を減算した時間を新たな処理可能時間として算出し、
     前記算出された新たな処理可能時間内に前記受信したデータを転送できるか否かを判定する処理を再度実行することを特徴とする中継装置。
    The relay device according to claim 2,
    A transfer buffer including an element which is a storage area for storing the received data;
    The data stored in the transfer buffer elements is transferred in a predetermined transfer order;
    The element storing the data to be transferred first among the elements of the transfer buffer is set as a search element,
    If it is determined that the received data can be transferred within the calculated processing time, the processing time of the data stored in the search element is compared with the processing time of the received data,
    When the processable time of the received data is shorter than the processable time of the data stored in the search element, the data transferred after the data stored in the search element is stored in the stored element Determining whether the data can be moved to the next element in the transfer order;
    When it is determined that the data stored in the element storing the data transferred after the data stored in the search element can be moved to the next element in the transfer order, the data is transferred in the transfer order. Transfer the received data within the processable time by moving to the next element and storing the received data in the search element,
    When the processable time of the received data is longer than the processable time of the data stored in the search element, the transfer element of the search element is set to the next search element as a new search element, Calculate the new processing time by subtracting the processing time from the current processing time to the newly set search element,
    A relay apparatus that executes again the process of determining whether or not the received data can be transferred within the calculated new processable time.
  4.  請求項1に記載の中継装置であって、
     自身と他の中継装置との間の通信遅延時間を計測し、
     前記計測した通信遅延時間を保持し、
     前記他の中継装置によって計測された通信遅延時間を取得し、
     前記計測した通信遅延時間及び前記取得した通信遅延時間に基づいて、前記予想通信遅延時間を算出し、
     前記算出した予想通信遅延時間を保持することを特徴とする中継装置。
    The relay device according to claim 1,
    Measure the communication delay time between itself and other relay devices,
    Hold the measured communication delay time,
    Obtaining a communication delay time measured by the other relay device;
    Based on the measured communication delay time and the acquired communication delay time, to calculate the expected communication delay time,
    A relay apparatus that holds the calculated expected communication delay time.
  5.  請求項4に記載の中継装置であって、
     前記受信したデータに対応する処理を実行し、
     前記処理の実行に要したデータ処理時間を保持し、
     前記他の中継装置によって計測された通信遅延時間、及び前記他の中継装置が保持するデータ処理時間を取得し、
     前記計測した通信遅延時間、前記取得した通信遅延時間、前記計測したデータ処理時間、及び前記取得したデータ処理時間に基づいて、前記予想通信遅延時間を算出することを特徴とする中継装置。
    The relay device according to claim 4,
    Execute processing corresponding to the received data;
    Holds the data processing time required to execute the process,
    Obtaining a communication delay time measured by the other relay device and a data processing time held by the other relay device;
    The relay apparatus, wherein the expected communication delay time is calculated based on the measured communication delay time, the acquired communication delay time, the measured data processing time, and the acquired data processing time.
  6.  請求項1に記載の中継装置であって、
     前記中継装置は、前記中継装置を管理する管理計算機に接続され、
     自身と他の中継装置との間で通信遅延時間を計測し、
     前記計測した通信遅延時間を前記管理計算機に送信し、
     前記管理計算機によって、前記通信遅延時間に基づいて前記予想通信遅延時間が算出され、前記算出された予想通信遅延時間が前記中継装置に送信され、
     前記管理計算機によって送信された予想通信遅延時間を保持することを特徴とする中継装置。
    The relay device according to claim 1,
    The relay device is connected to a management computer that manages the relay device,
    Measure the communication delay time between itself and other relay devices,
    Send the measured communication delay time to the management computer,
    The management computer calculates the expected communication delay time based on the communication delay time, and transmits the calculated expected communication delay time to the relay device.
    A relay apparatus that holds an expected communication delay time transmitted by the management computer.
  7.  請求項6に記載の中継装置であって、
     前記受信したデータに対応する処理を実行し、
     前記処理の実行に要したデータ処理時間を前記管理計算機に送信し、
     前記管理計算機によって、前記通信遅延時間及び前記データ処理時間に基づいて前記予想通信遅延時間が算出されることを特徴とする中継装置。
    The relay device according to claim 6,
    Execute processing corresponding to the received data;
    Sending the data processing time required for the execution of the processing to the management computer;
    The relay apparatus according to claim 1, wherein the management computer calculates the expected communication delay time based on the communication delay time and the data processing time.
  8.  請求項1に記載の中継装置であって、
     他の中継装置と時刻情報を同期することを特徴とする中継装置。
    The relay device according to claim 1,
    A relay device that synchronizes time information with another relay device.
  9.  中継装置が受信したデータを中継する中継方法であって、
     前記中継装置は、送信元端末によって送信されたデータの転送先と、前記送信元端末によって送信されたデータが送信先端末によって受信されるまで担保すべき要件通信遅延時間と、当該中継装置によって送信されたデータが前記送信先端末によって受信されるまでに必要であると予想される予想通信遅延時間と、を保持し、
     前記送信元端末によって送信されたデータは、送信された時刻を示す時刻情報を含み、
     前記方法は、
     前記中継装置が、前記送信元端末によって送信されたデータを受信した場合、前記受信したデータに含まれる時刻情報に基づいて、当該データが前記送信元端末によって送信されてから当該中継装置によって受信されるまでに要した送信元通信遅延時間を算出し、
     前記中継装置が、前記要件通信遅延時間、前記予想通信遅延時間、及び前記算出した送信元通信遅延時間に基づいて、前記要件通信遅延時間内に前記受信したデータが前記送信先端末によって受信されるように、前記データを転送することを特徴とする中継方法。
    A relay method for relaying data received by a relay device,
    The relay device includes a transfer destination of data transmitted by the transmission source terminal, a requirement communication delay time to be ensured until the data transmitted by the transmission source terminal is received by the transmission destination terminal, and transmission by the relay device. An expected communication delay time that is expected to be necessary before the received data is received by the destination terminal,
    The data transmitted by the transmission source terminal includes time information indicating the time of transmission,
    The method
    When the relay device receives data transmitted by the transmission source terminal, the data is received by the relay device after being transmitted by the transmission source terminal based on time information included in the received data. Calculate the source communication delay time required until
    Based on the requirement communication delay time, the expected communication delay time, and the calculated source communication delay time, the relay apparatus receives the received data within the requirement communication delay time by the destination terminal. Thus, the relay method characterized by transferring the data.
  10.  請求項9に記載の中継方法であって、
     前記中継装置が、前記要件通信遅延時間から、前記予想通信遅延時間及び前記算出した送信元通信遅延時間を減算することによって、当該中継装置が前記データを受信してから転送するまでの時間である処理可能時間を算出し、
     前記中継装置が、前記算出した処理可能時間内に前記受信したデータを転送できるか否かを判定し、
     前記中継装置が、前記算出した処理可能時間内に前記受信したデータを転送できないと判定された場合、前記受信したデータを破棄し、
     前記中継装置が、前記算出した処理可能時間内に前記受信したデータを転送できると判定された場合、前記算出した処理時間内に前記受信したデータを転送することを特徴とする中継方法。
    The relay method according to claim 9,
    It is a time from when the relay device receives the data to transfer it by subtracting the expected communication delay time and the calculated source communication delay time from the requirement communication delay time. Calculate the processing time,
    Determining whether the relay device can transfer the received data within the calculated processable time;
    If it is determined that the relay device cannot transfer the received data within the calculated processable time, the received data is discarded,
    When it is determined that the relay device can transfer the received data within the calculated processable time, the relay method transfers the received data within the calculated processing time.
  11.  請求項10に記載の中継方法であって、
     前記中継装置は、
     前記受信したデータを格納する記憶領域である要素を含む転送バッファを有し、
     前記転送バッファの要素に格納されたデータは所定の転送順序で転送され、
     前記方法は、
     前記中継装置が、前記転送バッファの要素のうち最初に転送されるデータが格納される要素を検索要素に設定し、
     前記中継装置が、前記算出した処理可能時間内に前記受信したデータを転送できると判定された場合、前記検索要素に格納されたデータの処理可能時間と、前記受信したデータの処理可能時間とを比較し、
     前記中継装置が、前記受信したデータの処理可能時間が前記検索要素に格納されたデータの処理可能時間より短い場合には、前記検索要素に格納されたデータ以降に転送されるデータが格納された要素に格納されたデータを前記転送順序が一つ後の要素に移動できるか否かを判定し、
     前記中継装置が、前記検索要素に格納されたデータ以降に転送されるデータが格納された要素に格納されたデータを前記転送順序が一つ後の要素に移動できると判定された場合、当該データを前記転送順序が一つ後の要素に移動するとともに、前記検索要素に前記受信したデータを格納することによって、前記処理可能時間内に前記受信したデータを転送し、
     前記中継装置が、前記受信したデータの処理可能時間が前記検索要素に格納されたデータの処理可能時間より長い場合には、前記検索要素の前記転送順序が一つ後の要素を新たな検索要素に設定するとともに、現在の処理可能時間から新たに設定された検索要素に至るまでの処理時間を減算した時間を新たな処理可能時間として算出し、
     前記中継装置が、前記算出された新たな処理可能時間内に前記受信したデータを転送できるか否かを判定する処理を再度実行することを特徴とする中継方法。
    The relay method according to claim 10, wherein
    The relay device is
    A transfer buffer including an element which is a storage area for storing the received data;
    The data stored in the transfer buffer elements is transferred in a predetermined transfer order;
    The method
    The relay device sets, as a search element, an element in which data to be transferred first among elements of the transfer buffer is stored,
    When it is determined that the relay device can transfer the received data within the calculated processing time, the processing time of the data stored in the search element and the processing time of the received data are determined. Compare and
    In the case where the processing time of the received data is shorter than the processing time of the data stored in the search element, the relay device stores data to be transferred after the data stored in the search element. Determining whether the data stored in the element can be moved to the next element in the transfer order;
    When it is determined that the relay apparatus can move the data stored in the element storing the data transferred after the data stored in the search element to the element whose transfer order is one after, Transfer the received data within the processable time by storing the received data in the search element and moving the transfer order to the next element
    When the relay device has a processable time of the received data longer than a processable time of the data stored in the search element, the element whose transfer order of the search element is the next is changed to a new search element. And the time obtained by subtracting the processing time from the current processing time to the newly set search element is calculated as the new processing time,
    The relay method, wherein the relay apparatus executes again the process of determining whether or not the received data can be transferred within the calculated new processable time.
  12.  請求項9に記載の中継方法であって、
     前記中継装置が、自身と他の中継装置との間の通信遅延時間を計測し、
     前記中継装置が、前記計測した通信遅延時間を保持し、
     前記中継装置が、前記他の中継装置によって計測された通信遅延時間を取得し、
     前記中継装置が、前記計測した通信遅延時間及び前記取得した通信遅延時間に基づいて、前記予想通信遅延時間を算出し、
     前記中継装置が、前記算出した予想通信遅延時間を保持することを特徴とする中継方法。
    The relay method according to claim 9,
    The relay device measures a communication delay time between itself and another relay device,
    The relay device holds the measured communication delay time,
    The relay device acquires a communication delay time measured by the other relay device,
    The relay device calculates the expected communication delay time based on the measured communication delay time and the acquired communication delay time,
    The relay method, wherein the relay device holds the calculated expected communication delay time.
  13.  請求項12に記載の中継方法であって、
     前記中継装置が、前記受信したデータに対応する処理を実行し、
     前前記中継装置が、記処理の実行に要したデータ処理時間を保持し、
     前記中継装置が、前記他の中継装置によって計測された通信遅延時間、及び前記他の中継装置が保持するデータ処理時間を取得し、
     前記中継装置が、前記計測した通信遅延時間、前記取得した通信遅延時間、前記計測したデータ処理時間、及び前記取得したデータ処理時間に基づいて、前記予想通信遅延時間を算出することを特徴とする中継方法。
    The relay method according to claim 12, comprising:
    The relay device executes processing corresponding to the received data;
    The previous relay device holds the data processing time required to execute the processing,
    The relay device acquires a communication delay time measured by the other relay device, and a data processing time held by the other relay device,
    The relay device calculates the expected communication delay time based on the measured communication delay time, the acquired communication delay time, the measured data processing time, and the acquired data processing time. Relay method.
  14.  請求項9に記載の中継方法であって、
     前記中継装置は、前記中継装置を管理する管理計算機に接続され、
     前記中継装置が、自身と他の中継装置との間で通信遅延時間を計測し、
     前記中継装置が、前記計測した通信遅延時間を前記管理計算機に送信し、
     前記管理計算機が、前記通信遅延時間に基づいて前記予想通信遅延時間を算出し、前記算出された予想通信遅延時間を前記中継装置に送信し、
     前記中継装置が、前記管理計算機によって送信された予想通信遅延時間を保持することを特徴とする中継方法。
    The relay method according to claim 9,
    The relay device is connected to a management computer that manages the relay device,
    The relay device measures a communication delay time between itself and another relay device,
    The relay device transmits the measured communication delay time to the management computer,
    The management computer calculates the expected communication delay time based on the communication delay time, and transmits the calculated expected communication delay time to the relay device;
    The relay method, wherein the relay device holds an expected communication delay time transmitted by the management computer.
  15.  請求項9に記載の中継方法であって、
     前記中継装置が、他の中継装置と時刻情報を同期することを特徴とする中継方法。
    The relay method according to claim 9,
    A relay method, wherein the relay device synchronizes time information with other relay devices.
PCT/JP2012/084071 2012-12-28 2012-12-28 Relay device and relay method WO2014103014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084071 WO2014103014A1 (en) 2012-12-28 2012-12-28 Relay device and relay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084071 WO2014103014A1 (en) 2012-12-28 2012-12-28 Relay device and relay method

Publications (1)

Publication Number Publication Date
WO2014103014A1 true WO2014103014A1 (en) 2014-07-03

Family

ID=51020165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084071 WO2014103014A1 (en) 2012-12-28 2012-12-28 Relay device and relay method

Country Status (1)

Country Link
WO (1) WO2014103014A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050815A (en) * 2015-09-04 2017-03-09 Kddi株式会社 Relay device, communication system and relay method
JP2018133612A (en) * 2017-02-13 2018-08-23 日本電信電話株式会社 Communication device and communication method
CN112867094A (en) * 2020-12-31 2021-05-28 深圳市泰和安科技有限公司 Wireless fire alarm system with ad hoc network function and implementation method
US11240164B2 (en) 2016-07-12 2022-02-01 Huawei Technologies Co., Ltd. Method for obtaining path information of data packet and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832623A (en) * 1994-07-19 1996-02-02 Toshiba Corp Device and method for transmitting data of netowrk system
JPH0855055A (en) * 1994-06-10 1996-02-27 Matsushita Electric Ind Co Ltd Disk controller
JP2000165440A (en) * 1998-11-24 2000-06-16 Fujitsu Ltd Priority transfer controller
JP2003078555A (en) * 2001-09-04 2003-03-14 Nec Corp Adaptive network load distribution system and packet switching device
JP2004120230A (en) * 2002-09-25 2004-04-15 Nec Corp Quality of service control method and system in data communication
JP2006287476A (en) * 2005-03-31 2006-10-19 Advanced Telecommunication Research Institute International Wireless device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855055A (en) * 1994-06-10 1996-02-27 Matsushita Electric Ind Co Ltd Disk controller
JPH0832623A (en) * 1994-07-19 1996-02-02 Toshiba Corp Device and method for transmitting data of netowrk system
JP2000165440A (en) * 1998-11-24 2000-06-16 Fujitsu Ltd Priority transfer controller
JP2003078555A (en) * 2001-09-04 2003-03-14 Nec Corp Adaptive network load distribution system and packet switching device
JP2004120230A (en) * 2002-09-25 2004-04-15 Nec Corp Quality of service control method and system in data communication
JP2006287476A (en) * 2005-03-31 2006-10-19 Advanced Telecommunication Research Institute International Wireless device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETSUHIRO NOMURA ET AL.: "Communication Control of Real-time Packets", IPSJ SIG NOTES, vol. 2005, no. 79, 3 August 2005 (2005-08-03), pages 79 - 84 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050815A (en) * 2015-09-04 2017-03-09 Kddi株式会社 Relay device, communication system and relay method
US11240164B2 (en) 2016-07-12 2022-02-01 Huawei Technologies Co., Ltd. Method for obtaining path information of data packet and device
JP2018133612A (en) * 2017-02-13 2018-08-23 日本電信電話株式会社 Communication device and communication method
CN112867094A (en) * 2020-12-31 2021-05-28 深圳市泰和安科技有限公司 Wireless fire alarm system with ad hoc network function and implementation method

Similar Documents

Publication Publication Date Title
TWI801812B (en) Device and method of handling routing paths for streams in a time-sensitive networking network
US8730868B2 (en) Network node, time synchronization method and network system
US9391903B2 (en) Methods and apparatuses for distributed packet flow control
JP2018534873A (en) Method for obtaining target transmission path and network node
US20120221678A1 (en) Computer-readable recording medium storing transmission control program, communication device and transmission control method
US8687637B2 (en) Communication control method and relay device
US10560383B2 (en) Network latency scheduling
JP2017532913A (en) System, apparatus and method for low jitter communication over a packet switched network
JPWO2005067227A1 (en) Load balancing method, node and control program
JPWO2005067227A6 (en) Load balancing method, node and control program
US20130272318A1 (en) Communication link bandwidth fragmentation avoidance
JP2010062729A (en) Time synchronization method and relay apparatus
US11956161B2 (en) Technique for determining a packet delay budget
US20120039339A1 (en) Communication apparatus, relay apparatus, and communication control method
CN103155488A (en) Delay measurement system and delay measurement method, as well as delay measurement device and delay measurement program
CN110546926B (en) Reducing packet delay variation of time sensitive packets
WO2014103014A1 (en) Relay device and relay method
JP2015522982A (en) Method and apparatus for relaying time trigger messages and event trigger messages
US20220255873A1 (en) Data transmission method and apparatus
CN111817985A (en) Service processing method and device
JP5673057B2 (en) Congestion control program, information processing apparatus, and congestion control method
US20170019337A1 (en) Communication system, communication method and control apparatus
JP5635928B2 (en) Network system and communication device
US9112927B2 (en) Network system and communication device
CN114760249B (en) SDN network-based data processing method, device and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP