WO2014101558A1 - 一种控制多机器人服务量的处理方法及系统 - Google Patents

一种控制多机器人服务量的处理方法及系统 Download PDF

Info

Publication number
WO2014101558A1
WO2014101558A1 PCT/CN2013/085863 CN2013085863W WO2014101558A1 WO 2014101558 A1 WO2014101558 A1 WO 2014101558A1 CN 2013085863 W CN2013085863 W CN 2013085863W WO 2014101558 A1 WO2014101558 A1 WO 2014101558A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
robot
weight
total
controlling
Prior art date
Application number
PCT/CN2013/085863
Other languages
English (en)
French (fr)
Inventor
朱定局
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2014101558A1 publication Critical patent/WO2014101558A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group

Definitions

  • the present invention relates to the field of robot control, and in particular, to a processing method and system for controlling multi-robot service volume.
  • the existing robot scheduling scheme mainly considers the load balancing of multi-robot resources.
  • the multi-robot resource scheduling method aiming at load balancing cannot meet the purpose of maximizing service volume.
  • an object of the present invention is to provide a processing method and system for controlling multi-robot service volume, which aims to solve the problem that the existing robot resource scheduling method cannot satisfy the maximum service amount.
  • a processing method for controlling a multi-robot service volume comprising the steps of:
  • U1, U2, ..., Un are the service quantities completed by the robot for the service targets A1, A2, ..., An, respectively.
  • weights of each service target include importance weights for indicating service target importance and urgency weights for indicating service target urgency, the important
  • the sum of sexual and urgency weights is 1.
  • the processing method for controlling a multi-robot service amount wherein one of the following combinations is included in a weight of each service target:
  • the importance weight is 0.1 and the urgency weight is 0.9;
  • the importance weight is 0.2 and the urgency weight is 0.8;
  • the importance weight is 0.3 and the urgency weight is 0.7;
  • the importance weight is 0.4 and the urgency weight is 0.6;
  • the importance weight is 0.5 and the urgency weight is 0.5;
  • the importance weight is 0.6 and the urgency weight is 0.4;
  • the importance weight is 0.7 and the urgency weight is 0.3;
  • the importance weight is 0.8 and the urgency weight is 0.2;
  • the importance weight is 0.9 and the urgency weight is 0.1.
  • the processing method for controlling a multi-robot service amount wherein in the step B, a robot weight value is given to a robot serving the corresponding service target according to the weight of the service target.
  • step B specifically includes:
  • a processing system for controlling the amount of multi-robot service including:
  • a storage module configured to pre-store a calculation standard of a total service volume corresponding to different scheduling schemes of multiple robots in a database
  • a total service amount calculation module configured to receive a quantity of service objects input by the user for controlling the multi-robot execution service, and a service quantity required for each service target, and obtain a calculation standard of each scheduling solution in the database, according to the The calculation standard calculates the total amount of service under each scheduling scheme;
  • the control execution module is configured to compare the total service volume under each scheduling scheme, and the scheduling scheme that selects the largest total service volume is marked as the optimal scheduling scheme, and controls the multi-robot to perform the service according to the optimal scheduling scheme.
  • the processing system for controlling a multi-robot service volume includes:
  • An information receiving unit configured to receive a quantity of service objects input by the user for controlling the multi-robot to perform the service, and a service quantity required to be completed for each service target;
  • a calculation standard retrieval unit configured to retrieve a calculation standard of each scheduling solution from a database
  • the total service amount calculation unit is configured to input the service target quantity and the service quantity required to be completed for each service target into different scheduling schemes, and calculate total service quantity according to different scheduling schemes.
  • the total service volume under different scheduling schemes can be calculated, and then the total service volume under different scheduling schemes is compared, according to the maximum total amount.
  • the scheduling scheme of the service volume executes the service, so that the multi-robot can serve as many service targets as possible and complete as many tasks as possible.
  • the invention has high control efficiency, low cost, remarkable economic benefit, and strong practicability.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for controlling multi-robot service volume according to the present invention.
  • FIG. 2 is a specific flow chart for calculating the total service amount in the method shown in FIG. 1.
  • FIG. 3 is a structural block diagram of a preferred embodiment of a processing system for controlling multi-robot service volume according to the present invention.
  • FIG. 4 is a structural block diagram of a total service amount calculation module in the system shown in FIG.
  • the present invention provides a processing method and system for controlling the amount of multi-robot service.
  • the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flowchart of a preferred embodiment of a method for controlling multi-robot service volume according to the present invention. As shown in the figure, the method includes the following steps:
  • S102 Receive a user input quantity for controlling a multi-robot performing a service, and a service quantity required to complete each service target, and obtain a calculation standard of each scheduling solution in the database, and calculate each scheduling according to the calculation standard. Total service volume under the programme;
  • the calculation standard indicates the product of the number of service targets served by the robot and the amount of service completed for the service target.
  • the amount of service completed, so that the calculation standard can reflect the difference in the amount of service that the robot performs for different service targets, and the service amount of each different service target is added to obtain the final total service amount.
  • the scheduling scheme applicable to this calculation standard is that each service target is of the same level, that is, the level (also called weight or priority) of each service target is the same, and the robot is controlled to allocate the service amount evenly. Service targets are served in a sequential or other predetermined order, enabling each robot to complete the assigned amount of service.
  • the above calculation standard considers that the weight of the service target is the same, but the actual situation is that the weight of each service target has It may be different, so different weights of different service targets need to be expressed.
  • the weights, U1, U2, ..., Un are the service quantities completed by the robot for the service targets A1, A2, ..., An respectively.
  • the scheduling scheme applicable to the above calculation standard is: each service target has a weight, After the amount of service allocated for each robot, the robot completes the corresponding amount of service according to the weight of the service target.
  • the weight of the above service target only includes the priority of the service target, that is, the importance of the service target.
  • the service target also has different urgency, that is, some high priority service targets are not particularly urgent, and some A service target with a low priority requires fast completion, so it can give an urgency to the weight of the service target, that is, the weight of the service target includes importance weight and urgency weight, each service target
  • the importance weight and the urgency weight are added to one, so that the robot can serve the service target according to the importance of each service target and the urgency according to the importance of each service target, that is, the efficiency is improved, and the order of execution is maintained. User needs are consistent.
  • importance weight is 0.1, urgency weight is 0.9; importance weight is 0.2, urgency weight is 0.8; importance weight is 0.3, urgent Sex weight is 0.7; importance weight is 0.4, urgency weight is 0.6; importance weight is 0.5, urgency weight is 0.5; importance weight is 0.6, urgency weight is 0.4; importance The weight is 0.7, the urgency weight is 0.3, the importance weight is 0.8, the urgency weight is 0.2, the importance weight is 0.9, and the urgency weight is 0.1. Specifically, the corresponding choice can be made according to the actual situation.
  • each robot can be given a corresponding weight for the role of each robot in the service process or the importance of the service target, which can improve the overall efficiency of the multi-robot service.
  • step S102 can be refined into the following steps:
  • S201 Receive a quantity of service targets input by a user for controlling a multi-robot to perform a service, and a service quantity required to be completed for each service target;
  • the grid method is used to represent the moving environment, that is, the environment is represented as the grid Ni.
  • the environment is represented as the grid Ni.
  • each grid In each grid, only one robot is allowed to freely dock and all adjacent The center points of the grid are connected.
  • each grid needs to be assigned an attribute array D.
  • the length of the attribute array is n (the number of robots), and each element in the attribute array D(i) Used to store the motion priority of the robot Ai.
  • the D(j) value in the attribute array of Ni is equal to the motion of the robot Aj.
  • the D(j) value in the attribute array of Ni Priority, if the current motion path of Aj does not pass through the grid Ni, the D(j) value in the attribute array of Ni is equal to the set minimum value.
  • each robot is provided with sensors for acquiring information such as roads, obstacles, and road signs.
  • the sensor includes a visual sensor, a force sensor, and the like to acquire external information, and sends the acquired information to the server.
  • the planning module in the server decomposes the task into an intermediate description by geometric coordinates. a sequence of points, each adjacent two intermediate points are linearly reachable, and the planning result is sent to the control execution module in the server.
  • the control execution module After the control execution module receives the planning result, the control robot controls the current and voltage of each joint of the robot according to the planning result. Quantity, and the current and voltage amount are updated every 1ms.
  • the present invention further provides a processing system for controlling the amount of multi-robot service, as shown in FIG. 3, including:
  • the storage module 100 is configured to store, in a database, a calculation standard of a total service volume corresponding to different scheduling schemes of multiple robots in a database;
  • the total service amount calculation module 200 is configured to receive a quantity of service targets input by the user for controlling the multi-robot execution service and a service quantity required for each service target, and obtain a calculation standard of each scheduling solution in the database, according to the Calculating the standard to calculate the total amount of service under each scheduling scheme;
  • the control execution module 300 is configured to compare the size of the total service volume under each scheduling scheme, and select a scheduling scheme with the largest total service volume as the optimal scheduling scheme, and control the multi-robot to perform the service according to the optimal scheduling scheme.
  • the total service amount calculation module 200 includes:
  • the information receiving unit 210 is configured to receive a quantity of service objects input by the user for controlling the multi-robot to perform the service, and a service quantity required to be completed for each service target;
  • the calculation standard retrieval unit 220 is configured to retrieve a calculation standard of each scheduling solution from the database
  • the total service amount calculation unit 230 is configured to input the service target quantity and the service quantity required to be completed for each service target into different scheduling schemes, and calculate total service quantity according to different scheduling schemes.
  • the present invention calculates the calculation standard of different scheduling schemes in the database, and after receiving the number of service targets input by the user and the service volume required for each service target, the total calculation under different scheduling schemes can be calculated.
  • the amount of service and then compares the total amount of services under different scheduling schemes, and performs services according to the scheduling scheme of the largest total service volume, thereby enabling the multi-robot to serve as many service targets as possible and accomplishing as many tasks as possible, the present invention
  • the control efficiency is high, the cost is low, the economic benefit is remarkable, and the utility model has strong practicability.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control By Computers (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

公开了一种控制多机器人服务量的处理方法及系统,其中,方法包括步骤:(S101)预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;(S102)接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;(S103)比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务,从而达到控制效率高、成本低、经济效益显著的目的。

Description

一种控制多机器人服务量的处理方法及系统
技术领域
本发明涉及机器人控制领域,尤其涉及一种控制多机器人服务量的处理方法及系统。
背景技术
无论是车水马龙的十字街头,还是繁杂纷忙的全国列车、飞机运输,都需要合理的调度机制,以保证整个体系安全、无碰、井然有序的运作,这一情形和多机器人的调度规划与协调有着极其相似的地方:它们都需要合理的安排每个机器人的运动路线、运动时间、停止等待的时刻、场所、以及等待时间的长短等等。
现有的机器人调度方案主要考虑多机器人资源的负载均衡,但在多机器人实际应用中,有时需要通过多机器人资源的调度获得最大的服务量,使得已有的多机器人资源能够服务于尽量多的用户和完成尽量多的任务。而以追求负载均衡为目的的多机器人资源调度方法无法满足服务量最大化的目的。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种控制多机器人服务量的处理方法及系统,旨在解决现有机器人资源调度方法无法满足服务量最大化的问题。
本发明的技术方案如下:
一种控制多机器人服务量的处理方法,其中,包括步骤:
A、预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
B、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
C、比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
所述控制多机器人服务量的处理方法,其中,所述步骤A中的总服务量的计算标准为:S1=A1*U1+A2*U2+…+ An*Un,其中,所述S1为总服务量,A1、A2、…、An为服务目标,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量。
所述控制多机器人服务量的处理方法,其中,所述计算标准为:S2= A1*K1*U1+ A2*K2*U2+…+ An*Kn*Un,其中,所述S2为总服务量,A1、A2、…、An为服务目标,K1、K2、…、Kn分别为服务目标A1、A2、…、An对应的权值,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量。
所述控制多机器人服务量的处理方法,其中,每一服务目标的权值包括用于表示服务目标重要性的重要性权值和用于表示服务目标紧迫性的紧迫性权值,所述重要性权值和紧迫性权值相加为1。
所述控制多机器人服务量的处理方法,其中,在每一服务目标的权值中包括以下组合中的一种:
重要性权值为0.1,紧迫性权值为0.9;
重要性权值为0.2,紧迫性权值为0.8;
重要性权值为0.3,紧迫性权值为0.7;
重要性权值为0.4,紧迫性权值为0.6;
重要性权值为0.5,紧迫性权值为0.5;
重要性权值为0.6,紧迫性权值为0.4;
重要性权值为0.7,紧迫性权值为0.3;
重要性权值为0.8,紧迫性权值为0.2;
重要性权值为0.9,紧迫性权值为0.1。
所述控制多机器人服务量的处理方法,其中,所述步骤B中,按照所述服务目标的权值赋予为相应服务目标服务的机器人一个机器人权值。
所述控制多机器人服务量的处理方法,其中,所述步骤B具体包括:
B1、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
B2、从数据库中调取每一调度方案的计算标准;
B3、将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量。
一种控制多机器人服务量的处理系统,其中,包括:
存储模块,用于预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
总服务量计算模块,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
控制执行模块,用于比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
所述控制多机器人服务量的处理系统,其中,所述总服务量计算模块包括:
信息接收单元,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
计算标准调取单元,用于从数据库中调取每一调度方案的计算标准;
总服务量计算单元,用于将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量。
接收到用户输入的服务目标数量以及各服务目标所需完成的服务量后,即可计算在不同调度方案下的总服务量,进而比较不同调度方案下的总服务量的大小,按照最大的总服务量的调度方案执行服务,从而达到使多机器人能够服务于尽量多的服务目标以及完成尽量多的任务,本发明控制效率高、成本低、经济效益显著,具有较强的实用性。
附图说明
图1为本发明控制多机器人服务量的处理方法较佳实施例的流程图。
图2为图1所示方法中计算总服务量的具体流程图。
图3为本发明控制多机器人服务量的处理系统较佳实施例的结构框图。
图4为图3所示系统中总服务量计算模块的结构框图。
具体实施方式
本发明提供一种控制多机器人服务量的处理方法及系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明控制多机器人服务量的处理方法较佳实施例的流程图,如图所示,其包括步骤:
S101、预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
S102、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
S103、比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
在步骤S101中,首先将多机器人不同调度方案对应的总服务量的计算标准存储在服务器的数据库中,本发明中的计算标准包括:总服务量=服务目标数量*为服务目标完成的服务量。该计算标准表示机器人所服务的服务目标数量与为服务目标完成的服务量的乘积,而实际上,由于机器人为每一服务目标所完成的服务量有可能不同,所以,本发明中还可对上述计算标准进行细化,即将每一服务目标所完成的服务量相加得到总服务量,其计算标准为:S1=A1*U1+A2*U2+…+ An*Un,其中,所述S1为该计算标准的总服务量,A1、A2、…、An为服务目标,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量,这样,计算标准能够体现出机器人为不同服务目标所完成的服务量的差异,将各个不同服务目标的服务量相加得到最后的总服务量。这种计算标准适用的调度方案是:每一服务目标都是相同级别的,即每一服务目标的级别(也可称权值或优先级)都是相同的,并且控制机器人平均分配服务量,按照先后或者其他预定的的顺序来为服务目标进行服务,使各个机器人能够完成分配完的服务量。
除上述计算标准外,本发明还可设置下述的计算标准:总服务量=服务目标数量*服务目标的权值*为服务目标完成的服务量,即为服务目标设置一个权值或级别,这样能够根据服务目标的权值来计算一个能够表示服务价值的总服务量,上述计算标准考虑的是服务目标的权值都是一样的,但实际情况是,每一服务目标的权值都有可能不一样,所以需要将不同服务目标的不同的权值表现出来,进一步,所述计算标准可以细化为:S2= A1*K1*U1+ A2*K2*U2+…+ An*Kn*Un,其中,所述S2为该计算标准的总服务量,A1、A2、…、An为服务目标,K1、K2、…、Kn分别为服务目标A1、A2、…、An对应的权值,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量,上述的计算标准适用的调度方案是:每一服务目标都有一个权值,为每一机器人分配的服务量后,机器人按照服务目标的权值为服务目标完成相应的服务量。
在上述服务目标的权值仅包含了服务目标的优先级即重要性,而在实际应用中,服务目标还具有不同的紧迫性,即一些优先级高的服务目标并不是特别紧急,而某些优先级低的服务目标则要求快速完成,所以可以为服务目标的权值中赋予紧迫性的含义,即在所述服务目标的权值包括重要性权值和紧迫性权值,每一服务目标的重要性权值和紧迫性权值相加为1,这样机器人调度时能够根据各个服务目标的重要性以及紧迫性的对服务目标进行服务,即提高了效率,又能保持执行的顺序保持与用户的需求一致。
在每一服务目标的权值中可以有以下组合:重要性权值为0.1,紧迫性权值为0.9;重要性权值为0.2,紧迫性权值为0.8;重要性权值为0.3,紧迫性权值为0.7;重要性权值为0.4,紧迫性权值为0.6;重要性权值为0.5,紧迫性权值为0.5;重要性权值为0.6,紧迫性权值为0.4;重要性权值为0.7,紧迫性权值为0.3;重要性权值为0.8,紧迫性权值为0.2;重要性权值为0.9,紧迫性权值为0.1。具体可以根据实际情况作出相应的选择。
此外,还可以对各个机器人在服务过程中的角色或者所服务目标的重要性为每一机器人赋予相应的权值,这样能够提高多机器人服务的总体效率。
进一步,如图2所示,所述步骤S102可以细化为以下步骤:
S201、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
S202、从数据库中调出每一调度方案的计算标准;
S203、将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量。
以机器人搬运服务目标为例,下面说明如何调度机器人:采用栅格法表示搬运的环境,即将环境表示为栅格Ni,在每个栅格中,只允许一个机器人自由停靠,并把所有相邻栅格的中心点连接起来,为了实现多机器人的协调运动,需要给每个栅格赋予一个属性数组D,属性数组的长度为n(机器人数量),属性数组中的每个元素D(i)用来存放机器人Ai的运动优先级,对于每个栅格Ni和每个机器人Aj,若Aj的当前运动路径通过该栅格Ni,则Ni的属性数组中D(j)值等于机器人Aj的运动优先级,若Aj的当前运动路径不通过该栅格Ni,则Ni的属性数组中D(j)值等于设定的最小值。
在本发明的多机器人中,每一机器人上设有传感器,用于获取道路、障碍物及路标等信息。传感器包括视觉传感器、力传感器等,以获取外界的信息,并将获取到的信息发送至服务器中,当接收到用户的任务后,服务器中的规划模块会将任务分解成以几何坐标描述的中间点序列,每相邻两个中间点直线可达,并向服务器中的控制执行模块发送规划结果,控制执行模块接收到规划结果后,控制机器人按照所述规划结果控制机器人各关节的电流、电压量,并且每1ms更新一次电流、电压量。
基于上述方法,本发明还提供一种控制多机器人服务量的处理系统,如图3所示,包括:
存储模块100,用于预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
总服务量计算模块200,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
控制执行模块300,用于比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
进一步,如图4所示,所述总服务量计算模块200包括:
信息接收单元210,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
计算标准调取单元220,用于从数据库中调取每一调度方案的计算标准;
总服务量计算单元230,用于将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量
综上所述,本发明通过将不同调度方案的计算标准存储在数据库中,接收到用户输入的服务目标数量以及各服务目标所需完成的服务量后,即可计算在不同调度方案下的总服务量,进而比较不同调度方案下的总服务量的大小,按照最大的总服务量的调度方案执行服务,从而达到使多机器人能够服务于尽量多的服务目标以及完成尽量多的任务,本发明控制效率高、成本低、经济效益显著,具有较强的实用性。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

  1. 一种控制多机器人服务量的处理方法,其特征在于,包括步骤:
    A、预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
    B、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
    C、比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
  2. 根据权利要求1所述控制多机器人服务量的处理方法,其特征在于,所述步骤A中的总服务量的计算标准为:S1=A1*U1+A2*U2+…+ An*Un,其中,所述S1为总服务量,A1、A2、…、An为服务目标,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量。
  3. 根据权利要求1所述控制多机器人服务量的处理方法,其特征在于,所述计算标准为:S2= A1*K1*U1+ A2*K2*U2+…+ An*Kn*Un,其中,所述S2为总服务量,A1、A2、…、An为服务目标,K1、K2、…、Kn分别为服务目标A1、A2、…、An对应的权值,U1、U2、…、Un分别为机器人为服务目标A1、A2、…、An所完成的服务量。
  4. 根据权利要求3所述控制多机器人服务量的处理方法,其特征在于,每一服务目标的权值包括用于表示服务目标重要性的重要性权值和用于表示服务目标紧迫性的紧迫性权值,所述重要性权值和紧迫性权值相加为1。
  5. 根据权利要求4所述控制多机器人服务量的处理方法,其特征在于,在每一服务目标的权值中包括以下组合中的一种:
    重要性权值为0.1,紧迫性权值为0.9;
    重要性权值为0.2,紧迫性权值为0.8;
    重要性权值为0.3,紧迫性权值为0.7;
    重要性权值为0.4,紧迫性权值为0.6;
    重要性权值为0.5,紧迫性权值为0.5;
    重要性权值为0.6,紧迫性权值为0.4;
    重要性权值为0.7,紧迫性权值为0.3;
    重要性权值为0.8,紧迫性权值为0.2;
    重要性权值为0.9,紧迫性权值为0.1。
  6. 根据权利要求4所述控制多机器人服务量的处理方法,其特征在于,所述步骤B中,按照所述服务目标的权值赋予为相应服务目标服务的机器人一个机器人权值。
  7. 根据权利要求1所述控制多机器人服务量的处理方法,其特征在于,所述步骤B具体包括:
    B1、接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
    B2、从数据库中调取每一调度方案的计算标准;
    B3、将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量。
  8. 一种控制多机器人服务量的处理系统,其特征在于,包括:
    存储模块,用于预先在数据库中存储多机器人不同调度方案对应的总服务量的计算标准;
    总服务量计算模块,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量,并获取数据库中每一调度方案的计算标准,按照所述计算标准计算每一调度方案下的总服务量;
    控制执行模块,用于比较每一调度方案下的总服务量的大小,筛选出总服务量最大的调度方案标记为最佳调度方案,控制多机器人按照所述最佳调度方案执行服务。
  9. 根据权利要求8所述控制多机器人服务量的处理系统,其特征在于,所述总服务量计算模块包括:
    信息接收单元,用于接收用户输入的用于控制多机器人执行服务的服务目标数量以及每一服务目标所需完成的服务量;
    计算标准调取单元,用于从数据库中调取每一调度方案的计算标准;
    总服务量计算单元,用于将所述服务目标数量以及每一服务目标所需完成的服务量输入到不同调度方案中,计算按照不同调度方案的总服务量。
PCT/CN2013/085863 2012-12-27 2013-10-24 一种控制多机器人服务量的处理方法及系统 WO2014101558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210577774.1A CN103076777B (zh) 2012-12-27 2012-12-27 一种控制多机器人服务量的处理方法及系统
CN201210577774.1 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014101558A1 true WO2014101558A1 (zh) 2014-07-03

Family

ID=48153344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085863 WO2014101558A1 (zh) 2012-12-27 2013-10-24 一种控制多机器人服务量的处理方法及系统

Country Status (2)

Country Link
CN (1) CN103076777B (zh)
WO (1) WO2014101558A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076777B (zh) * 2012-12-27 2016-09-14 深圳先进技术研究院 一种控制多机器人服务量的处理方法及系统
CN106625660A (zh) * 2016-12-02 2017-05-10 南宁学院 一种工业机器人行进路径分配方法
CN106647763B (zh) * 2017-01-06 2019-10-11 深圳优地科技有限公司 一种机器人调度方法、装置和服务器
CN114019912B (zh) * 2021-10-15 2024-02-27 上海电机学院 一种群体机器人运动规划控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118624A (zh) * 2006-07-31 2008-02-06 埃森哲全球服务有限公司 工作分配模型
CN101303589A (zh) * 2008-06-20 2008-11-12 中南大学 基于有限状态自动机的多艾真体动态多目标协作跟踪方法
CN101551661A (zh) * 2009-05-12 2009-10-07 广东工业大学 一种面向多机器人系统的控制方法
US20100161127A1 (en) * 2008-12-18 2010-06-24 Gm Global Technology Operations, Inc. Multiple priority operational space impedance control
CN101807159A (zh) * 2010-03-18 2010-08-18 西北工业大学 一种自适应任务调度方法
CN102033536A (zh) * 2010-12-22 2011-04-27 大连理工大学 一种多机器人系统的调度组织协作系统及方法
CN103076777A (zh) * 2012-12-27 2013-05-01 深圳先进技术研究院 一种控制多机器人服务量的处理方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056371A1 (en) * 2007-10-31 2009-05-07 International Business Machines Corporation Method, system and computer program for distributing a plurality of jobs to a plurality of computers
KR100991767B1 (ko) * 2007-12-24 2010-11-03 한국전자통신연구원 다중 로봇을 원격제어하기 위한 휴대 인터넷의 상향 링크자원 할당 시스템 및 그 방법
CN101973031B (zh) * 2010-08-24 2013-07-24 中国科学院深圳先进技术研究院 云机器人系统及实现方法
CN102196039B (zh) * 2011-04-13 2013-10-02 中国科学院深圳先进技术研究院 基于云计算的多机器人系统及其实现方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118624A (zh) * 2006-07-31 2008-02-06 埃森哲全球服务有限公司 工作分配模型
CN101303589A (zh) * 2008-06-20 2008-11-12 中南大学 基于有限状态自动机的多艾真体动态多目标协作跟踪方法
US20100161127A1 (en) * 2008-12-18 2010-06-24 Gm Global Technology Operations, Inc. Multiple priority operational space impedance control
CN101551661A (zh) * 2009-05-12 2009-10-07 广东工业大学 一种面向多机器人系统的控制方法
CN101807159A (zh) * 2010-03-18 2010-08-18 西北工业大学 一种自适应任务调度方法
CN102033536A (zh) * 2010-12-22 2011-04-27 大连理工大学 一种多机器人系统的调度组织协作系统及方法
CN103076777A (zh) * 2012-12-27 2013-05-01 深圳先进技术研究院 一种控制多机器人服务量的处理方法及系统

Also Published As

Publication number Publication date
CN103076777A (zh) 2013-05-01
CN103076777B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2014101558A1 (zh) 一种控制多机器人服务量的处理方法及系统
WO2014131185A1 (zh) 车辆养护提醒方法、装置
CN106453551B (zh) 一种办公室内物品递送机器人任务规划与执行装置及方法
US11163999B2 (en) Augmented reality-based capture, processing and transfer of occupational knowledge
CA2820432A1 (en) A method of ordering based on estimated time of arrival
NZ597079A (en) Restoring power to loads in a controlled way based on load importance groups
WO2018192216A1 (zh) 图形化编程软件的连线自动避障优化方法
CN108596385B (zh) 车辆的排队方法及装置、可读介质、物流系统
WO2014101559A1 (zh) 一种调度多机器人的控制方法及系统
EP4155679A3 (en) Positioning method and apparatus based on lane line and feature point
CN111177528A (zh) 航班信息的展示方法及系统
EP3546279A3 (en) Charger management method, server and chargers
US11100258B2 (en) Repair plan drafting support system, method, and program
US20150112485A1 (en) Remote operation receiving system, remote operating system and program thereof
WO2013089379A1 (en) System and method for providing navigation information based on an operating mode
US20170348853A1 (en) Dynamic laser touch-sensing with multiple robot dynamic user frame
WO2020181189A3 (en) Methods and systems for managing application configurations
Jia Stochastic single machine scheduling with an exponentially distributed due date
WO2018026067A1 (ko) 마이크로그리드에서의 전기소비자 중 수요자원 모집을 지원하는 장치와 방법
CN112541610B (zh) 机器人的控制方法、装置、电子设备及存储介质
JP2013129510A (ja) 運送管理システム、運送管理方法及び運送管理プログラム
CN111582629A (zh) 资源调度方法、装置、设备和存储介质
Jeon et al. The simulator for performance analysis of multiple robots for hospital delivery
JP2011215934A (ja) 作業管理システム、作業管理方法及び作業管理プログラム
Xie et al. A hybrid method of heuristic algorithm and constraint programming for no-wait integrated scheduling problem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869351

Country of ref document: EP

Kind code of ref document: A1