WO2014101122A1 - Static random storage unit having radiation reinforcement design - Google Patents

Static random storage unit having radiation reinforcement design Download PDF

Info

Publication number
WO2014101122A1
WO2014101122A1 PCT/CN2012/087868 CN2012087868W WO2014101122A1 WO 2014101122 A1 WO2014101122 A1 WO 2014101122A1 CN 2012087868 W CN2012087868 W CN 2012087868W WO 2014101122 A1 WO2014101122 A1 WO 2014101122A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
input
logic unit
terminal
transistor
Prior art date
Application number
PCT/CN2012/087868
Other languages
French (fr)
Chinese (zh)
Inventor
吴利华
于芳
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2012/087868 priority Critical patent/WO2014101122A1/en
Publication of WO2014101122A1 publication Critical patent/WO2014101122A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • G11C11/4125Cells incorporating circuit means for protecting against loss of information

Definitions

  • a semiconductor memory is divided into dynamic random access memory (: a DRAM), a nonvolatile memory and static random access memory (SRAIVf) s SRAM ⁇ species can be simple and low power.
  • the consumption method achieves fast operation speed, and compared with DRAM, S:RAM does not need to periodically refresh the stored information, so design and manufacture are relatively easy, so S:RAM is widely used in the field of data storage.
  • S:RAM in space, aerospace and other applications, a large number of static random access memory data in the SRAM is lost, thereby destroying the normal operation of the SRAM, and as the size of the integrated feature circuit is continuously reduced, the radiation effect is on the static random storage unit. The impact is aggravated to meet the special needs of space, aerospace and other applications, and the design of the SAR is becoming more and more important.
  • the conventional static random access memory 7 is 6 tube single 7 , as shown in FIG. 1 , the 6 tube unit includes: first and second driving NMOS transistors 310 , 320 , first and second load PMOS transistors 315 , 325
  • the first driving transistor 310 and the first load PMOS transistor 3 ⁇ 5 constitute a first inverter 3i
  • the second driving NMOS transistor 320 and the second load PMOS transistor 325 constitute a second inverter 32
  • the first inverter output The two inverter inputs are connected, and the second inverter output is connected to the first inverter input, thereby forming a cross-coupled latch connected to the iE power supply ffi (VCC) and the power ground ( Between GND); two access NMOS transistors 340, 341 whose drains are respectively connected to the first inverter output 312 and the second inverter output 322, the sources of which are opposite to the bit line 30 - and the bit line respectively 302 is connected, and its drain is connected to word line
  • the traditional 6-tube unit is affected by the Ding radiation effect in the radiation environment, especially when the climbing event occurs, if the latch's storage node transiently flips, it may cause the latch data. Flipping, resulting in data errors
  • FIG. 2 is a static random access memory unit of a radiation-enhanced design of a DICE structure, comprising: four PMOS transistors, different inverters for inputting a tube, an inverter 41, a second inverter 42, The third inverter 43, the fourth inverter 44, the first inverter includes a driving N. MOS transistor 410 and a load PMOS transistor 415, and the second inverter includes a driving N.
  • 2, 413, 414, and 415 are respectively connected to the PMOS transistor and the NMOS transistor input of the corresponding inverter, thereby forming a set of latches including four storage nodes;
  • the transistors 440, 441, 442, 443 have drains connected to the first inverter output 412, the second inverter output 4, 3, the third inverter output 414, and the second inverter output 41 5 Connected, its source is opposite to bit line 401, bit line anti-402, bit line 40], bit line anti-40 2 connections, the gates of which are connected to the word line 430 compared with the conventional 6-tube unit, which adds a set of (2) redundant latch points to form a 4-node redundant latch, thereby enhancing The stability of the memory cell, thus showing better anti-clamping performance, but its area is twice that of the traditional six-tube unit, which will greatly limit the size of the memory.
  • the main object of the present invention is to provide a static random storage unit with radiation reinforcement design, which can effectively reduce the area consumption caused by the radiant reinforcement design while improving the anti-irradiation performance of the static random storage unit.
  • the static random access memory unit includes a first access NM.OS transistor ⁇ 03. of the first connection, a first differential series i ⁇ ⁇ unit 1, a second chord series electric E switch logic unit 2 and a second Accessing the NMOS transistor 203, wherein: the first differential series voltage switching logic unit 1 and the second differential series voltage switching logic unit 2 form a cross-coupled latch, the latch being connected to the positive source voltage VCC and the power supply Between the ground GND; the terminal of the first access NMOS transistor 103 is connected to the word line 102, and the source or drain terminal is connected to the bit line ⁇ 0:1; the gate terminal of the second access NMOS transistor 203 Connected to the word line 102, the source or drain terminal is connected to the bit line counter 201.
  • the first differential series voltage switching logic unit 1 includes a first input FMOS transistor 104 and a second input PMOS transistor! 06.
  • the second output terminal outi of the first input PMOS transistor 04 is the first input terminal 1 ⁇ 210 of the first differential series voltage switching logic unit 1; the first: the shed of the input PMOS transistor 106 : the first end
  • the second input terminal m.l of the differential series voltage is connected to the logic unit.
  • the gate of the first load NMOS transistor 105 is connected to the second output terminal out II of the first differential series voltage logic logic block 7t, and the gate terminal of the second load NM.OS transistor 107 is terminated.
  • a first output terminal out 10 of a differential voltage-coupled voltage switch logic in the above solution, the second differential series voltage switch logic switch 2 includes a second input PMDS transistor 204 and a fourth input PMDS transistor 206.
  • the third load NMOS transistor 205 and the fourth load NMOS transistor 207 wherein: the source or drain terminal of the third input PMOS transistor 204 is connected to the source or drain terminal of the load NMOS transistor 205, and constitutes the first The first output out20 of the second differential series voltage switching logic unit 2; the source or drain terminal of the fourth 'input PMOS transistor 206 is connected to the source or drain terminal of the fourth load NMOS transistor 207 to form a second differential series voltage switch The second output oui21 of the logic cell 2; the gate terminal of the second input PMOS transistor 204 is the second quaternary series voltage switching logic unit 2 The first input ra20; the gate of the first valve input PMOS transistor 206 is the second input ⁇ 21 of the second differential series i logic unit 2.
  • the gate of the third load NMOS transistor 205 is connected to the second output out2 of the second differential series voltage switching logic unit 2, and the gate of the fourth load NMOS transistor 207 is connected to the second differential series voltage switch.
  • the first input end 10 of the first differential series J logic unit is connected to the first output oiit20 of the second differential series I logic unit 2, the first The second input terminal in11 of the differential series voltage switching logic singularity is connected to the second output out21 of the second differential series voltage switching logic unit 2, wherein the first differential branching voltage switching logic unit 1
  • An output terminal out1O is connected to the first input m20 of the second differential series electric ffi logic unit 2, and the second output terminal oiftll and the second difference of the first cover sub-series voltage switch logic unit 1
  • the second input m21 of the series electrical ffi switching logic unit 2 is connected, whereby the first differential series voltage switching logic unit i and the second differential series voltage switching logic unit 2 form a cross-coupled latch.
  • the drain or source end of the first access NMOS transistor 103 is connected to the first input terminal ui 0 of the first differential series voltage switch logic climbing element 1, the second access NMOS transistor The drain or source of 203 is coupled to the second input terminal mlJ of the first differential series voltage switching logic unit.
  • the word line 1.02 is perpendicular to the power supply ground.
  • the bit line 10 is parallel to the power supply ground.
  • the bit line reverse 201 power ground lines are parallel.
  • the static random storage Pan Pan designed by the radiation reinforcement of the present invention adopts two differential series 3 ⁇ 4 pressure switch logic units to form a latch structure, and the system has an additional 6-tube unit.
  • 2 redundant storage nodes that is, a total of 4 storage nodes outlO. oiitl l out20 oot2 , any one of which is subject to the other 2 Control of the storage node Therefore, when any one of the storage nodes is flipped in the lifting event, the probability of the other storage nodes being reversed is greatly reduced, and the anti-smashing performance of the static random storage Panyuan can be effectively improved.
  • the static random storage unit of the radiation-twisting design provided by the invention has an area reduced by 17% compared with the static random storage unit of the D CE structure, which can effectively reduce the radiation reinforcement. The area consumed by the design.
  • ⁇ 1 shows a circuit diagram of a conventional six-tube static random access memory
  • Figure 2 shows the circuit enclosure of a static random access memory unit based on a DICE structure.
  • Figure 3 shows a circuit diagram of a static random access memory cell designed in accordance with an embodiment of the present invention.
  • circle 3 shows a circuit diagram of a static random access memory unit of a sinusoidal design according to an embodiment of the present invention, the static random access memory unit including a first access NMOS transistor sequentially connected. a first differential series voltage switching logic unit, a first differential diode voltage switching logic unit 2 and a second access NMOS transistor 203, wherein:
  • the first differential series ffi logic unit 1 includes a first input PMOS transistor ! 04, a second input transistor 106, a ⁇ load NMOS transistor .105, a second load NMOS transistor 107; the source or drain terminal of the first input PMOS transistor 104 is connected to the source or drain terminal of the first load NMOS transistor 105 to form a first differential series ⁇ The first output terminal out1O; the source or drain terminal of the second input transistor 106 is connected to the source terminal or the drain terminal of the second load NMOS transistor 107 to constitute a second output of the differential differential series voltage logic unit
  • the output terminal of the first input PMOS transistor 104 is the first input terminal 10 of the first differential series voltage switching logic unit 1; the gate terminal of the second input PMOS transistor 106 is the first differential series voltage switching logic unit 1 The second input terminal rai1; the first load NMOS transistor].
  • the gate terminal of the .0, 5 is connected to the second terminal oiitl l of the differential series 3 ⁇ 4 voltage switch logic unit 1; the gate terminal of the second load NMOS transistor 107 Connected to the first differential series voltage.
  • the first output terminal out1() of the logic unit 1 is connected.
  • the source terminal or the drain terminal of the first input PMOS transistor 104 is connected to the source terminal or the drain terminal of the first load NMOS transistor 05 to constitute a first output terminal o «tl of the first differential series voltage switching logic unit 1 0, either the source of the first input PMOS transistor 104 is connected to the source or drain of the first load NMOS transistor 105, or the drain of the first input PMOS transistor 04 and the first load NMOS transistor.
  • the source or drain terminals of 105 are connected.
  • the source or drain of the second input PMOS transistor 106 is connected to the source or drain of the :::::: load NMOS transistor 07 to form the first differential series!!
  • the source terminal of the second input PMOS transistor 106 may be connected to the source terminal or the drain terminal of the second load NMOS transistor 07, or may be: Two input PMOS transistors! The drain terminal of .06 and the source of the second load NMOS transistor 10?, the second differential series voltage switching logic unit 2, comprising a third If-in PMOS transistor 204, - a fourth input PM: OS transistor 206, - The three-load NMOS transistor 205, ...
  • the source or drain terminal of the first input PMOS transistor 204 When the source or drain terminal of the first input PMOS transistor 204 is connected to the source or drain terminal of the third load NMOS transistor 205 to constitute the first output ouf20 of the second differential series voltage switching logic unit 2, it may be The source terminal of the third input PMOS transistor 204 is connected to the source terminal or the drain terminal of the third load NMOS transistor 205, and may also be the drain terminal of the third input PMOS transistor 204 and the source terminal or the drain terminal of the king load NMOS transistor 205. Connected.
  • the source or drain terminal of the fourth input PMOS transistor 206 when the source or drain terminal of the fourth input PMOS transistor 206 is connected to the source or drain terminal of the fourth load NMOS transistor 207 to constitute the second output out2 of the second differential series voltage switching logic unit 2,
  • the source terminal of the fourth input PMOS transistor 206 may be connected to the source or drain terminal of the valve load NM.OS transistor 207, or may be the drain terminal of the fourth input PMOS transistor 206 and the source of the fourth load NMOS transistor 207. End or drain connection
  • the first input terminal mlO of the first differential series voltage switching logic unit 1 is connected to the first output out20 of the second differential series voltage switching logic unit 2; the second input terminal of the first differential voltage voltage switching logic unit 1
  • the inll is connected to the second output out2 of the second differential series voltage switching logic element 2; the first output terminal out 0 of the first partial series voltage switching logic unit is 0 and the second differential series voltage switching logic is 7 ⁇ a first input of 2: in20 is connected; a second output terminal l1 of the first differential series 3 ⁇ 4 switching logic unit 1 is connected to a second input in21 of the second differential series voltage switching logic unit 2;
  • the voltage-critical logic unit: 1 and the second differential-connected switch logic unit 2 constitute a cross-coupled latch that is connected between the positive supply voltage and the power supply ground.
  • the first access NMOS transistor 103 has a drain terminal or a source terminal connected to the first input terminal mlO of the differential series voltage switching logic unit: 1, and its gate terminal word line is connected to the 02, and the source terminal or the drain terminal and the bit terminal are connected. Line ⁇ 0:1 connection.
  • the second access NMOS transistor 203 has a drain or source connected to the first differential series voltage
  • the second input of the off logic dimension is connected, the » terminal is connected to the word line 102, and the source or drain terminal is connected to the bit line inverse 201.
  • the word line 102 is perpendicular to the power ground
  • the bit line 101 is parallel to the power ground
  • the bit line is opposite 201 is parallel to the power ground.
  • the bit line 101 is at a high level
  • the bit line 201 is at a low level
  • the word line 102 is at a high level
  • the first access NMOS transistor 103 and the second access are The NMOS transistor 203 is hiccup
  • the high level on the bit line 01 and the low level on the bit line 201 are respectively connected to the first differential series voltage switch logic 1 (the input end mlO and the second)
  • the first input in.20 and the second input m2i of the second differential series voltage switching logic single 7G 2 will respectively obtain a low level and a high level
  • the second differential series voltage is connected to the first output out20 and the second output of the logic unit 2 Out21 will respectively obtain a high level and a low level, respectively, coupled with the high level and low level of the first input terminal 0 and the second input terminal iiil l of the first differential series voltage switching logic unit, respectively, statically random Storage unit completion "Gamma] operation;
  • a first differential electrical series E Jian off logic unit 1 and the second voltage differential serial latch logic unit Jian off structure 2 constitutes, hold write" data.
  • the bit line 01. is low level
  • the bit line inverse 20] is high level
  • the word line is 02 high level
  • the first access NMOS is The transistor 103 and the second access NMDS transistor 203 are both turned on, and the low level on the bit line 01 and the high level on the bit line reverse 201 are respectively connected to the first input of the first differential series voltage switch logic unit 1.
  • the first output oirtlO and the second output terminal ⁇ ⁇ of the first differential series ffi switch logic unit 1 respectively obtain a high level and a low level; according to the connection of the static random storage unit Relationship, the ...-input m20 and the second input m21 of the second differential series voltage switching logic unit 2 will respectively obtain a high level and a low level, respectively.
  • the second. differential series power 11 the first output of the logic unit 2 :20 and the first: output out2].
  • the input terminal mJ O and the second input terminal mJ l are coupled to a low level and a high level, and the static random access memory unit 71 completes writing a “0” operation; when the line 102 is at a low level, the first differential series electric ffi switch
  • the logic unit and the second differential nucleus voltage logic unit 2 constitute a latch structure that keeps the write "( ⁇ data.
  • the static random access memory latch data is " ⁇ " that is, the second output terminal outl1 of the differential series voltage switching logic unit 1 and the second output terminal otrt20 of the second differential series voltage switching logic unit 2 Is high level
  • the first ... - output terminal out 10 of the first differential series I switch logic unit and the second output oot2i of the second differential rate connected voltage switch logic unit 2 are low, considered to occur in a radiation environment
  • the 3 ⁇ 4 energy particle acts on the -output oirt20 of the second differential series voltage logic unit 2
  • the output oirt20 is flipped from the high 3 ⁇ 4 level to the low level 3 ⁇ 4 level due to the first differential series voltage switch
  • the high level on the first output terminal out1O of the logic unit ⁇ and the low level on the second output terminal otiil are flipped, which will act on the second differential series voltage switching logic unit 2 to restore the second differential series
  • the first output out20 of the voltage switch logic Pan 2 is high.
  • the static random access memory cell based on the 0.2 ⁇ process is subjected to HSPICE single-particle simulation test, and the single-event flip threshold is 160MeVcm 2 /mg, while the ICE-based radiation-twisted design is static random.
  • the particle flipping value is only 9MeV: cm 2 /mg.
  • the traditional six-tube static random storage unit has a flipping width of only 3MeV; cm 2 /mg. Therefore, the static random access memory 7G of the radiant reinforcement design provided by the invention can effectively reduce the area consumption caused by the radiation reinforcement design while improving the anti-shock performance of the static random storage unit.

Abstract

Disclosed is a static random storage unit having a radiation reinforcement design, comprising: a first access NMOS transistor, a first differential serial-voltage switch logic unit, a second differential serial-voltage switch logic unit, and a second access NMOS transistor all sequentially connected; the first differential serial-voltage switch logic unit and the second differential serial-voltage switch logic unit form a crosswise coupled latch; the latch is connected between a positive power supply voltage (VCC) and a power supply ground (GND); the gate terminal of the first access NMOS transistor is connected to a word line, and the source terminal or drain terminal is connected to a bit line; and the gate terminal of the second access NMOS transistor is connected to the word line, and the source terminal or drain terminal is inversely connected to the bit line. The present invention, while improving the irradiation-resistance performance of a static random storage unit, can effectively reduce the footprint caused by the radiation reinforcement design, thus reducing the footprint by 7% compared to a static random storage unit having a DICE radiation reinforcement design.

Description

一种辐射加 S设计的静态隨机存储单元  A static random storage unit designed by radiation plus S
系:!又水 按照数据存储方式, 半导体存储器分为动态随机存储器 (:DRAM)、 非易失性存储器和静态随机存储器 (SRAIVf)s SRAM 能够以 ······种简单而 .低功耗的方式实现快速的操作速度, 并 ., 与 DRAM 相比, S:RAM 不需耍周期性刷新存储的信息, 所以设计和制造.相对容易, 因而 S:RAM 在数据存储领域得到广泛应用。 但是在空间、 宇航等应用领域中, 大量 造成 SRAM中静态随机存储单元数据的丢失, 由此破坏 SRAM的正常 工作, 且随着集成特征电路尺寸的不断减小, 辐射效应对于静态随机存 储单元的影响随之加重 为满足空间、 宇航等应用领域的特殊需求, 对 静态随机存储单元的辎射加固设计变得尤为重要《 Department:! And water according to the data storage, a semiconductor memory is divided into dynamic random access memory (: a DRAM), a nonvolatile memory and static random access memory (SRAIVf) s SRAM ······ species can be simple and low power. The consumption method achieves fast operation speed, and compared with DRAM, S:RAM does not need to periodically refresh the stored information, so design and manufacture are relatively easy, so S:RAM is widely used in the field of data storage. However, in space, aerospace and other applications, a large number of static random access memory data in the SRAM is lost, thereby destroying the normal operation of the SRAM, and as the size of the integrated feature circuit is continuously reduced, the radiation effect is on the static random storage unit. The impact is aggravated to meet the special needs of space, aerospace and other applications, and the design of the SAR is becoming more and more important.
已知传统的静态随机存储单 7£为 6管单 7 , 如圏 1所示, 6管单元 包括: 第一、 第二驱动 NMOS晶体管 310、 320, 第一、 第二负载 PMOS 晶体管 315、 325 , 其中第一驱动 晶体管 310与第一负载 PMOS 晶体管 3ί5构成第一反相器 3i, 第二驱动 NMOS晶体管 320与第二负 载 PMOS晶体管 325构成第二反相器 32, 第一反相器输出 第二反相 器输入相连,, 第二反相器输出与第一反相器输入相连, 由此构成交叉耦 合的锁存器, 该锁存器连接在 iE电源电 ffi(VCC)和电源地 (GND) 之间; 两只存取 NMOS晶体管 340、 341, 其漏极分别与第一反相器输出 312、 第二反相器输出 322相连, 其源极分别与位线 30 -、 位线反 302连接, 其檝极均与字线 330连接。 对 6管攀元进行读 /写操作时, 字线 330转 换至高电压, 两对互补位线读出 /写入数据 It is known that the conventional static random access memory 7 is 6 tube single 7 , as shown in FIG. 1 , the 6 tube unit includes: first and second driving NMOS transistors 310 , 320 , first and second load PMOS transistors 315 , 325 The first driving transistor 310 and the first load PMOS transistor 3ί5 constitute a first inverter 3i, and the second driving NMOS transistor 320 and the second load PMOS transistor 325 constitute a second inverter 32, the first inverter output The two inverter inputs are connected, and the second inverter output is connected to the first inverter input, thereby forming a cross-coupled latch connected to the iE power supply ffi (VCC) and the power ground ( Between GND); two access NMOS transistors 340, 341 whose drains are respectively connected to the first inverter output 312 and the second inverter output 322, the sources of which are opposite to the bit line 30 - and the bit line respectively 302 is connected, and its drain is connected to word line 330. When reading/writing a 6-tube Panyuan, the word line is turned 330 Switch to high voltage, two pairs of complementary bit lines read/write data
传统结构的 6管单元在辐射环境下, 由丁辐射效应的影响, 尤其在 攀粒子事件发生时, 如果锁存器的任 ·· 存储节点发生瞬态翻转时, 都可 能会导致锁存器数据的翻转, 从而发生数据错误《  The traditional 6-tube unit is affected by the Ding radiation effect in the radiation environment, especially when the climbing event occurs, if the latch's storage node transiently flips, it may cause the latch data. Flipping, resulting in data errors
如图 2所示, 图 2是 DICE结构的辐射加固设计的静态随机存储单 元, 其包括: 4个 PMOS管、 管输入不同的反相器, 第 反相器 41、 第二反相器 42、 第三反相器 43、 第四反相器 44, 第一反相器包括 … 驱动 N.MOS管 410及一负载 PMOS管 415, 第二反相器包括 ··驱动 N .OS管 420及 · '负载 PMOS管 425, 第三反相器包括 '驱动 NMOS 管 430及 负载 PMOS管 435, 第四反相器包括 驱动 NMOS管 440 及一 '负载 PMOS管 445, 且这 4个反相的输出 412, 413、 414、 415按 图 2所示, 分别与相应的反相器的 PMOS管、 NMOS管输入相连接, 由 此构成了一组包含 4个存储节点的锁存器; 4只存取 NMOS晶体管 440、 441、 442 , 443 , 其漏极分别与第 '一反相器输出 412、 第二反相器输出 4】3相连、 第三反相器输出 414、 第閥反相器输出 41 5相连, 其源极分 别与位线 401、 位线反 402、 位线 40】、 位线反 402连接, 其栅极均与字 线 430连接 与传统的 6管单元相比, 其通过增加一组 (2个) 兀余的 锁存点, 构成了 4节点的冗余锁存, 进而增强了该存储单元的稳定性, 从而表现出较好的抗辎照性能, 但是其面积是传统六管单元的 2倍, 这 将大大制约存储器的规模。  As shown in FIG. 2, FIG. 2 is a static random access memory unit of a radiation-enhanced design of a DICE structure, comprising: four PMOS transistors, different inverters for inputting a tube, an inverter 41, a second inverter 42, The third inverter 43, the fourth inverter 44, the first inverter includes a driving N. MOS transistor 410 and a load PMOS transistor 415, and the second inverter includes a driving N. OS tube 420 and The load PMOS transistor 425, the third inverter includes a 'drive NMOS transistor 430 and a load PMOS transistor 435, and the fourth inverter includes a driving NMOS transistor 440 and a 'load PMOS transistor 445, and the four inverted outputs 412 As shown in FIG. 2, 413, 414, and 415 are respectively connected to the PMOS transistor and the NMOS transistor input of the corresponding inverter, thereby forming a set of latches including four storage nodes; The transistors 440, 441, 442, 443 have drains connected to the first inverter output 412, the second inverter output 4, 3, the third inverter output 414, and the second inverter output 41 5 Connected, its source is opposite to bit line 401, bit line anti-402, bit line 40], bit line anti-40 2 connections, the gates of which are connected to the word line 430 compared with the conventional 6-tube unit, which adds a set of (2) redundant latch points to form a 4-node redundant latch, thereby enhancing The stability of the memory cell, thus showing better anti-clamping performance, but its area is twice that of the traditional six-tube unit, which will greatly limit the size of the memory.
发明内容 Summary of the invention
一 ) 要解决的技术问题  a) technical problems to be solved
有骏于此, 本发明的主要目的在于提供一种辐射加固设计的静态随 机存储单元, 在提高静态随机存储单元抗辐照性能的同时, 有效减小辎 射加固设计带来的面积的消耗。  In view of this, the main object of the present invention is to provide a static random storage unit with radiation reinforcement design, which can effectively reduce the area consumption caused by the radiant reinforcement design while improving the anti-irradiation performance of the static random storage unit.
(二) 技术方案  (ii) Technical solutions
为达到上述 的, 本发明提供了一种辎射加固设计的静态随机存储 攀元,该静态随机存储单元包括侬次连接的第一存取 NM.OS晶体管 Ϊ03., 第一差分串联电 i 幵关 辑单元 1、 第二楚分串联电 E开关逻辑单元 2 和第二存取 NMOS晶体管 203, 其中: 该第一差分串联电压开关逻辑单 元 1与该第二差分串联电压幵关逻辑单元 2构成交叉耦合的锁存器, 锁存器连接于正¾源电压 VCC和电源地 GND之间;该第 · 存取 NMOS 晶体管 103的槺端与字线 102连接, 源端或漏端与位线】.0:1相连接; 该 第:二存取 NMOS晶体管 203的栅端与字线 102连接,源端或漏端与位线 反 201相连接。 In order to achieve the above, the present invention provides a static random storage design of a radiant reinforcement design. Panyang, the static random access memory unit includes a first access NM.OS transistor Ϊ03. of the first connection, a first differential series i 辑 单元 unit 1, a second chord series electric E switch logic unit 2 and a second Accessing the NMOS transistor 203, wherein: the first differential series voltage switching logic unit 1 and the second differential series voltage switching logic unit 2 form a cross-coupled latch, the latch being connected to the positive source voltage VCC and the power supply Between the ground GND; the terminal of the first access NMOS transistor 103 is connected to the word line 102, and the source or drain terminal is connected to the bit line 】0:1; the gate terminal of the second access NMOS transistor 203 Connected to the word line 102, the source or drain terminal is connected to the bit line counter 201.
上述方案中, 所述第 · 差分串联电压幵关逻辑单元 1包括第 ·· 输入 FMOS晶体管 104、 第二输入 PMOS晶体管!06、 第一负载 NMOS晶体 管 105和第二负载 NMOS晶体管 107, 其中: 第一输入 PMOS晶体管 104的源端或漏端与第一负载 NMOS晶体管 1.05的源端或漏端相连接, 构成第一差分串联电压开关逻辑单元 1 的第一输出端 oiitlO; 第二输入 PMOS晶体管】06的源端或漏端与第二负载 NMOS晶体管 107的源端或 漏端相连接, 构成第一差分串联电压幵关遝辑攀元 1 的第二输出端 outi 第 输入 PMOS晶体管 】04的栅端为第一差分串联电压开关逻 辑单元 1的第一输入端 ½10;第:输入 PMOS晶体管 106的棚 :端为第一 差分串联电压幵关逻辑单元〗的第二输入端 m .l。 In the above solution, the first differential series voltage switching logic unit 1 includes a first input FMOS transistor 104 and a second input PMOS transistor! 06. The first load NMOS transistor 105 and the second load NMOS transistor 107, wherein: the source or drain terminal of the first input PMOS transistor 104 is connected to the source or drain terminal of the first load NMOS transistor 1.05 to form a first difference. The first output terminal oiit10 of the series voltage switching logic unit 1; the source terminal or the drain terminal of the second input PMOS transistor 06 is connected to the source terminal or the drain terminal of the second load NMOS transistor 107 to constitute a first differential series voltage The second output terminal outi of the first input PMOS transistor 04 is the first input terminal 1⁄210 of the first differential series voltage switching logic unit 1; the first: the shed of the input PMOS transistor 106 : the first end The second input terminal m.l of the differential series voltage is connected to the logic unit.
上述方案中,所述第一负载 NMOS晶体管 105的栅端接第一差分串 联电压幵关逻辑单 7t〗的第二输出端 out II , 所述第二负载 NM.OS晶体 管 107的栅端接第一差分率联电压开关逻辑单 7£〗的第一输出端 out 10, 上述方案中, 所述一第二差分串联电压开关逻辑攀-元 2包括第 Ξ输 入 PMDS晶体管 204、第四输入 PMDS晶体管 206、第三负载 NMOS晶 体管 205和第四负载 NMOS晶体管 207,其中: 第三输入 PMOS ί纖体管 204的源端或漏端与第 负载 NMOS晶体管 205的源端或漏端相连接, 构成第二差分串联电压开关逻辑单元 2 的第一输出 out20; 第四'输入 PMOS晶体管 206的源端或漏端与第四负载 NMOS晶体管 207的源端或 漏端相连接, 构成第二差分串联电压开关逻辑舉元 2的第二输出 oui21 ; 第≡输入 PMOS晶体管 204的栅端为第二楚分串联电压开关逻辑单元 2 的第一输入 ra20;第閥输入 PM0S晶体管 206的栅端为第二差分串联电 i 幵关逻辑单元 2的第二输入 ίη21。 In the above solution, the gate of the first load NMOS transistor 105 is connected to the second output terminal out II of the first differential series voltage logic logic block 7t, and the gate terminal of the second load NM.OS transistor 107 is terminated. a first output terminal out 10 of a differential voltage-coupled voltage switch logic, in the above solution, the second differential series voltage switch logic switch 2 includes a second input PMDS transistor 204 and a fourth input PMDS transistor 206. The third load NMOS transistor 205 and the fourth load NMOS transistor 207, wherein: the source or drain terminal of the third input PMOS transistor 204 is connected to the source or drain terminal of the load NMOS transistor 205, and constitutes the first The first output out20 of the second differential series voltage switching logic unit 2; the source or drain terminal of the fourth 'input PMOS transistor 206 is connected to the source or drain terminal of the fourth load NMOS transistor 207 to form a second differential series voltage switch The second output oui21 of the logic cell 2; the gate terminal of the second input PMOS transistor 204 is the second quaternary series voltage switching logic unit 2 The first input ra20; the gate of the first valve input PMOS transistor 206 is the second input ίη21 of the second differential series i logic unit 2.
上述方案中,所述第三负载 NMOS晶体管 205的栅端接第二差分串 联电压开关逻辑单元 2的第二输出 out2 ! , 所述第四负载 NMOS晶体管 207的栅端接第二差分串联电压开关逻辑单冗 2的第 - ·输出 ο«ί20ο In the above solution, the gate of the third load NMOS transistor 205 is connected to the second output out2 of the second differential series voltage switching logic unit 2, and the gate of the fourth load NMOS transistor 207 is connected to the second differential series voltage switch. Logic single redundant 2's - output ο«ί20 ο
上述方案中, 所述第一差分串联电 J 幵关逻辑单元〖的第一输入端 in 10与所述第二差分串联电 I 幵关逻辑单元 2的第一输出 oiit20相连接, 所述第一差分串联电压开关逻辑单.7G〗的第二输入端 inll与所述第二差 分串联电压开关逻辑单元 2的第二输出 out21相连接, 所述第 ·· 差分举 联电压开关逻辑单元 1的第一输出端 outlO与所述第二差分串联电 ffi幵 关逻辑单元 2的第 -输入 m20相连接,所述第 -盖分串联电压开关逻辑 单 1的第二输出端 oiftll与所述第二差分串联电 ffi开关逻辑单元 2的 第二输入 m21相连接,由此所述第一差分串联电压开关逻辑单元 i与所 述第二差分串联电压开关逻辑单元 2构成交叉耦合的锁存器。  In the above solution, the first input end 10 of the first differential series J logic unit is connected to the first output oiit20 of the second differential series I logic unit 2, the first The second input terminal in11 of the differential series voltage switching logic singularity is connected to the second output out21 of the second differential series voltage switching logic unit 2, wherein the first differential branching voltage switching logic unit 1 An output terminal out1O is connected to the first input m20 of the second differential series electric ffi logic unit 2, and the second output terminal oiftll and the second difference of the first cover sub-series voltage switch logic unit 1 The second input m21 of the series electrical ffi switching logic unit 2 is connected, whereby the first differential series voltage switching logic unit i and the second differential series voltage switching logic unit 2 form a cross-coupled latch.
上述方案 ,所述第一存取 NM0S晶体管 103的漏端或源端与所述 第一差分串联电压开关逻辑攀元 1的第 -输入端 ui】0相连接,所述第二 存取 NMOS晶体管 203的漏端或源端与所述第一差分串联电压开关逻辑 单元〗的第二输入端 mlJ相连接。  In the above solution, the drain or source end of the first access NMOS transistor 103 is connected to the first input terminal ui 0 of the first differential series voltage switch logic climbing element 1, the second access NMOS transistor The drain or source of 203 is coupled to the second input terminal mlJ of the first differential series voltage switching logic unit.
上述方案中, 在该静态随机存储单元及在包含多个该静态随机存储 单 7t的阵列中, 所述字线 1.02与电源地线垂直。  In the above solution, in the static random access memory unit and the array including the plurality of static random access memory cells 7t, the word line 1.02 is perpendicular to the power supply ground.
上述方案中, 在该静态随机存储单 :/£及在包含多个该静态随机存储 单元的阵列中, 所述述位线 10】与电源地线平行。  In the above solution, in the static random access memory list: /£ and in an array including a plurality of the static random access memory cells, the bit line 10 is parallel to the power supply ground.
上述方案中, 在该静态随机存储单元及在包含多个该静态随机存储 单元的阵列中, 所述述位线反 201 电源地线平行。  In the above solution, in the static random access memory unit and the array including the plurality of static random access memory cells, the bit line reverse 201 power ground lines are parallel.
(H) 有益效果  (H) Benefits
从上述技术方案可以看出, 本发明提供的辐射加固设计的静态随机 存储攀元, 采用 2个差分串联 ¾压开关逻.辑单元构成锁存器结构, 统的 6管单元相比具有额外的 2个冗余存储节点, 即总共 4个存储节点 outlO. oiitl l out20 oot2 , 其中任何一个存储节点都受其他 2个 存储节点的控制 因此, 其中任意一个存储节点在舉粒子事件中发生 翻转时, 其他存储节点发生翻转的概率大大降低, 能有效提高该静态随 机存储攀元的抗辎照性能。 再者, 本发明提供的辐射加阖设计的静态随 机存储单元, 与 D CE结构的辎射加固设计的静态随机存储单元相比, 其面积也减小了 17%, 能有效减小辎射加固设计带来的面积的消耗。 It can be seen from the above technical solution that the static random storage Pan Pan designed by the radiation reinforcement of the present invention adopts two differential series 3⁄4 pressure switch logic units to form a latch structure, and the system has an additional 6-tube unit. 2 redundant storage nodes, that is, a total of 4 storage nodes outlO. oiitl l out20 oot2 , any one of which is subject to the other 2 Control of the storage node Therefore, when any one of the storage nodes is flipped in the lifting event, the probability of the other storage nodes being reversed is greatly reduced, and the anti-smashing performance of the static random storage Panyuan can be effectively improved. Furthermore, the static random storage unit of the radiation-twisting design provided by the invention has an area reduced by 17% compared with the static random storage unit of the D CE structure, which can effectively reduce the radiation reinforcement. The area consumed by the design.
通过附阁形象而详细地对上述发明内容进行描述, 以使本发明的特 点和优点变得更加淸晰,, 这些附图包括: The above summary of the present invention has been described in detail by the accompanying drawings in order to clarify the features and advantages of the invention.
闘 1示出的是传统的六管静态随机存储单允的电路图;  闘 1 shows a circuit diagram of a conventional six-tube static random access memory;
图 2示出的是基于 DICE结构的辎射加固设计的静态随机存储单元 的电路围!;  Figure 2 shows the circuit enclosure of a static random access memory unit based on a DICE structure.
图 3示出的是依照本发明实施例的辎射加固设计的静态随机存储单 元的电路闘。  Figure 3 shows a circuit diagram of a static random access memory cell designed in accordance with an embodiment of the present invention.
具体实施方式 为使本发明的目的、 技术方案和优点更加 I街楚明^ , 在下文中, 通 过参照附图, 本发明的一个实施例将被详细地描述。 但是, 本发明可以 以许多不同的形式加以实施, 并不应限定于这里给出的实例, 该实例的 提供是为了使本公开是彻底的和完整的, 并且向熟悉本领域的人员全面 地传达本发明的思想。 BEST MODE FOR CARRYING OUT THE INVENTION In order to make the objects, technical solutions and advantages of the present invention more hereinafter, an embodiment of the present invention will be described in detail by referring to the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the examples given herein, which are provided so that this disclosure will be thorough and complete and will be fully conveyed by those skilled in the art. The idea of the invention.
如图 3所示, 圈 3示出的是侬照本发明实施例的辎射'加園设计的静 态随机存储单元的电路图, 该静态随机存储单元包括依次连接的第一存 取 NMOS晶体管】03、 第一差分串联电压开关逻辑单元 .1、 第:差分串 联电压开关逻辑单元 2和第二存取 NMOS晶体管 203, 其中:  As shown in FIG. 3, circle 3 shows a circuit diagram of a static random access memory unit of a sinusoidal design according to an embodiment of the present invention, the static random access memory unit including a first access NMOS transistor sequentially connected. a first differential series voltage switching logic unit, a first differential diode voltage switching logic unit 2 and a second access NMOS transistor 203, wherein:
第一差分串联电 ffi幵关逻辑牟元 1, 其包括一第一输入 PMOS晶体 管 ! 04,―第二输入 晶体管 106, 一 ΊΜ―负载 NMOS晶体管 .105, 一第二负载 NMOS晶体管 107;第一输入 PMOS晶体管 104的源端或漏 端与第一负载 NM0S晶体管 105的源端或漏端相连接,构成第一差分串 联电 S幵关逻辑攀元 1的第― -输出端 outlO;第二输入 晶体管 106 的源端或漏端与第二负载 NMOS晶体管 107的源端或漏端相连接,构成 第 ·· 差分串联电压幵关逻辑单元〗的第二输出端 outl i ;第 输入 PM0S 晶体管 104 的栅端为第一差分串联电压幵关逻辑单元 1 的第一输入端 in 10; 第二输入 PMOS晶体管 106的栅端为第一差分串联电压开关逻 辑单元 1的第二输入端 rai l ;第一 ·负载 NMOS晶体管】.0,5的栅端接第… 差分串联 ¾压开关逻辑单元 1的第二输出端 oiitl l ; 第二负载 NMOS晶 体管 107 的栅端接第一差分串联电压.幵关逻辑单元 1- 的第一输出端 outl()。 The first differential series ffi logic unit 1 includes a first input PMOS transistor ! 04, a second input transistor 106, a ΊΜ load NMOS transistor .105, a second load NMOS transistor 107; the source or drain terminal of the first input PMOS transistor 104 is connected to the source or drain terminal of the first load NMOS transistor 105 to form a first differential series 幵The first output terminal out1O; the source or drain terminal of the second input transistor 106 is connected to the source terminal or the drain terminal of the second load NMOS transistor 107 to constitute a second output of the differential differential series voltage logic unit The output terminal of the first input PMOS transistor 104 is the first input terminal 10 of the first differential series voltage switching logic unit 1; the gate terminal of the second input PMOS transistor 106 is the first differential series voltage switching logic unit 1 The second input terminal rai1; the first load NMOS transistor]. The gate terminal of the .0, 5 is connected to the second terminal oiitl l of the differential series 3⁄4 voltage switch logic unit 1; the gate terminal of the second load NMOS transistor 107 Connected to the first differential series voltage. The first output terminal out1() of the logic unit 1 is connected.
在上述第一输入 PMOS晶体管 104的源端或漏端与第一负载 NMOS 晶体管】05的源端或漏端相连接, 构成第一差分串联电压幵关逻辑单元 1的第一输出端 o«tl 0时, 既可以是第一输入 PMOS晶体管 104的源端 与第一负载 NMOS晶体管 105的源端或漏端相连接,也可以是第一输入 PMOS晶体管〗04的漏端与第一负载 NMOS晶体管 105的源端或漏端相 连接。 同样, 在第二输入 PMOS 晶体管 106 的源端或漏端与第:::::负载 NMOS晶体管】07的源端或漏端相连接, 构成第一差分串联电!!开关逻 辑華-元 1的第二输出端 o«tll时, 既可以是第二输入 PMOS晶体管 106 的源端与第二负载 NMOS晶体管】07的源端或漏端相连接,也可以是第 :二输入 PMOS晶体管!.06的漏端与第二负载 NMOS晶体管 10?的源端 第二差分串联电压开关逻辑单元 2, 其包括一第三 If入 PMOS晶体 管 204, ― -第四输入 PM:OS晶体管 206, ―第三负载 NMOS晶体管 205 , ……-第四负载 NMOS晶体管 207;第 Ξ:输入 PMOS晶体管 204的源端或漏 端与第王负载 NMOS晶体管 205的源端或漏端相连接,构成第二 分串 联电压幵关逻辑单元 2的第一输出 oirt.20; 第四输入 PMOS晶体管 206 的源端或漏端与第閥负载 NMOS晶体管 207的源端或漏端相连接,构成 第二差分串联电 开关逻辑单元 2的第二输出 out21 ; 第 .≡输入 PMOS 晶体管 204的栅端为第二差分串联电压开关逻辑单元 2的第一输入 n20; 第四输入 PMOS晶体管 206的栅端为第二差分串联电压幵关逻辑单元 2 的第二输入 21 ; 第.三负载 NMOS晶体管 205的槺端接第二差分串联 电 1 幵关逻辑单元 2的第二输出 out2】; 第四负载 NMOS晶体管 207的 栅端接第二差分串联电压开关逻辑单 7t 2的第 - ·输出 oirt.20。 The source terminal or the drain terminal of the first input PMOS transistor 104 is connected to the source terminal or the drain terminal of the first load NMOS transistor 05 to constitute a first output terminal o «tl of the first differential series voltage switching logic unit 1 0, either the source of the first input PMOS transistor 104 is connected to the source or drain of the first load NMOS transistor 105, or the drain of the first input PMOS transistor 04 and the first load NMOS transistor. The source or drain terminals of 105 are connected. Similarly, the source or drain of the second input PMOS transistor 106 is connected to the source or drain of the ::::: load NMOS transistor 07 to form the first differential series!! When the second output terminal o«t11 of the switching logic hua-yuan 1 is connected, the source terminal of the second input PMOS transistor 106 may be connected to the source terminal or the drain terminal of the second load NMOS transistor 07, or may be: Two input PMOS transistors! The drain terminal of .06 and the source of the second load NMOS transistor 10?, the second differential series voltage switching logic unit 2, comprising a third If-in PMOS transistor 204, - a fourth input PM: OS transistor 206, - The three-load NMOS transistor 205, ... - the fourth load NMOS transistor 207; the second: the source or drain terminal of the input PMOS transistor 204 is connected to the source or drain terminal of the king load NMOS transistor 205 to form a second sub-series The first output oirt.20 of the voltage switching logic unit 2; the source or drain terminal of the fourth input PMOS transistor 206 is connected to the source or drain terminal of the valve load NMOS transistor 207 to form a second differential series electrical switching logic The second output out21 of unit 2; the first input PMOS The gate terminal of the transistor 204 is the first input n20 of the second differential series voltage switching logic unit 2 ; the gate terminal of the fourth input PMOS transistor 206 is the second input 21 of the second differential series voltage switching logic unit 2 ; The second terminal of the load NMOS transistor 205 is connected to the second output out2 of the second differential series circuit 1; the gate of the fourth load NMOS transistor 207 is connected to the second differential series voltage switch logic 7t 2 - Output oirt.20.
在上述第 输入 PMOS晶体管 204的源端或漏端与第.三负载 NMOS 晶体管 205的源端或漏端相连接, 构成第二差分串联电压开关逻辑单元 2的第一输出 ouf20时, 既可以是第三输入 PMOS晶体管 204的源端与 第三负载 NMOS晶体管 205 的源端或漏端相连接, 也可以是第三输入 PMOS晶体管 204的漏端与第王负载 NMOS晶体管 205的源端或漏端相 连接。 同样, 在第四输入 PMOS 晶体管 206 的源端或漏端与第四负载 NMOS晶体管 207的源端或漏端相连接, 构成第二差分串联电压开关逻 辑单元 2的第二输出 out2〗时, 既可以是第四输入 PMOS晶体管 206的 源端与第閥负载 NM.OS晶体管 207的源端或漏端相连接,也可以是第四 输入 PMOS晶体管 206的漏端与第四负载 NMOS晶体管 207的源端或 漏端相连接  When the source or drain terminal of the first input PMOS transistor 204 is connected to the source or drain terminal of the third load NMOS transistor 205 to constitute the first output ouf20 of the second differential series voltage switching logic unit 2, it may be The source terminal of the third input PMOS transistor 204 is connected to the source terminal or the drain terminal of the third load NMOS transistor 205, and may also be the drain terminal of the third input PMOS transistor 204 and the source terminal or the drain terminal of the king load NMOS transistor 205. Connected. Similarly, when the source or drain terminal of the fourth input PMOS transistor 206 is connected to the source or drain terminal of the fourth load NMOS transistor 207 to constitute the second output out2 of the second differential series voltage switching logic unit 2, The source terminal of the fourth input PMOS transistor 206 may be connected to the source or drain terminal of the valve load NM.OS transistor 207, or may be the drain terminal of the fourth input PMOS transistor 206 and the source of the fourth load NMOS transistor 207. End or drain connection
第一差分串联电压开关逻辑单元 1的第一输入端 mlO与第二差分串 联屯压开关逻辑单元 2的第一输出 out20相连接; 第一 ·差分串联电压幵 关逻辑单元 1的第二输入端 inll与第二差分串联电压幵关逻辑離元 2的 第二输出 out2〗相连接; 第一幾分串联电压开关逻辑单元〗 的第一输出 端 out】0与第二差分串联电压开关逻辑单 7έ 2的第一输入 :in20相连接; 第一差分串联¾ 开关逻辑单元 1的第二输出端 outl l与第二差分串联 电压开关逻辑单元 2的第二输入 in21相连接; 由此第一差分串联电压幵 关逻辑单元 :1与第二差分 联¾压开关逻.辑单元 2构成交叉耦合的锁存 器, 该锁存器连接在正电源电压和电源地之间  The first input terminal mlO of the first differential series voltage switching logic unit 1 is connected to the first output out20 of the second differential series voltage switching logic unit 2; the second input terminal of the first differential voltage voltage switching logic unit 1 The inll is connected to the second output out2 of the second differential series voltage switching logic element 2; the first output terminal out 0 of the first partial series voltage switching logic unit is 0 and the second differential series voltage switching logic is 7 έ a first input of 2: in20 is connected; a second output terminal l1 of the first differential series 3⁄4 switching logic unit 1 is connected to a second input in21 of the second differential series voltage switching logic unit 2; The voltage-critical logic unit: 1 and the second differential-connected switch logic unit 2 constitute a cross-coupled latch that is connected between the positive supply voltage and the power supply ground.
第一存取 NMOS晶体管 103, 其漏端或源端与第 差分串联电压开 关逻辑单元 :1的第一输入端 mlO相连接, 其栅端 字线】02连接, 其源 端或漏端与位线〗0:1连接。  The first access NMOS transistor 103 has a drain terminal or a source terminal connected to the first input terminal mlO of the differential series voltage switching logic unit: 1, and its gate terminal word line is connected to the 02, and the source terminal or the drain terminal and the bit terminal are connected. Line 〗 0:1 connection.
第二存取 NMOS品体管 203, 其漏端或源端与第一差分串联电压开 关逻辑维元〗 的第二输入端 相连接, 其 »端与字线 102连接, 其源 端或漏端与位线反 201连接。 The second access NMOS transistor 203 has a drain or source connected to the first differential series voltage The second input of the off logic dimension is connected, the » terminal is connected to the word line 102, and the source or drain terminal is connected to the bit line inverse 201.
在该静态随机存储攀 7t及在包含多个该静态随机存储单元的阵列 中, 所述字线 102与电源地线垂直, 所述述位线 101与电源地线平行, 所述述位线反 201与电源地线平行。  In the static random access memory 7t and in the array including the plurality of static random access cells, the word line 102 is perpendicular to the power ground, the bit line 101 is parallel to the power ground, and the bit line is opposite 201 is parallel to the power ground.
当对该静态随机存储单元进行写" 操作时,位线 101为高电平,位 线反 201 为低电平, 字线 102为高电平, 第一存取 NMOS晶体管 103 及第二存取 NMOS晶体管 203均打幵, 位线】01 上的高电平及位线反 201上的低电平将分别接入到第一差分串联电压开关逻辑舉元 1 的第… 输入端 mlO及第二输入端 inl l. .上, 第一差分串联电压幵关逻辑单元 1. 的第一输出端 outlO及第二输出端 mtll将分别得到低电平和高电平; 根据静态随机存储单元的连接关系, 第二差分串联电压开关逻辑单 7G 2 的第 输入 in.20及第二输入 m2i将分别得到低电平和高电平, 第二差 分串联电压幵关逻辑单元 2的第 -输出 out20及第二输出 out21 将分别 得到高电平和低电平, .分别与第一差分串联电压开关逻辑单元〗的第 一输入端 】0及第二输入端 iiil l上的高电平与低电平耦合, 静态随机 存储单元完成写" Γ操作; 当字线 102为低电平时,第一差分串联电 E幵 关逻辑单元 1及第二差分串联电压幵关逻辑单元 2构成锁存器结构, 保 持写入的" 数据。  When the static random access memory cell is "written", the bit line 101 is at a high level, the bit line 201 is at a low level, the word line 102 is at a high level, the first access NMOS transistor 103 and the second access are The NMOS transistor 203 is hiccup, and the high level on the bit line 01 and the low level on the bit line 201 are respectively connected to the first differential series voltage switch logic 1 (the input end mlO and the second) The first output terminal out1O and the second output terminal mt11 of the first differential series voltage switching logic unit 1. respectively obtain a low level and a high level; according to the connection relationship of the static random storage unit, The first input in.20 and the second input m2i of the second differential series voltage switching logic single 7G 2 will respectively obtain a low level and a high level, and the second differential series voltage is connected to the first output out20 and the second output of the logic unit 2 Out21 will respectively obtain a high level and a low level, respectively, coupled with the high level and low level of the first input terminal 0 and the second input terminal iiil l of the first differential series voltage switching logic unit, respectively, statically random Storage unit completion "Gamma] operation; When the word line 102 is low, a first differential electrical series E Jian off logic unit 1 and the second voltage differential serial latch logic unit Jian off structure 2 constitutes, hold write" data.
当对该静态随机存储单 7£进行写 "0"操作时,位线 01.为低电平,位 线反 20】 为高电平, 字线】02为高电平, 第一存取 NMOS晶体管 103 及第二存取 NMDS晶体管 203均打幵, 位线】01上的低电平及位线反 201上的高电平将分别接入到第 -差分串联电压开关逻辑单元 1 的第 输入端 in 10及第二输入端 in 11 上, 第 差分串联电 ffi开关逻辑单元 1 的第一输出 oirtlO及第二输出端 οιι Ι 将分别得到高电平和低电平; 根 据静态随机存储单元的连接关系, 第二差分串联电压开关逻辑单元 2的 第…-输入 m20及第二输入 m21将分别得到高 ¾平和低电平, 第二.差分 串联电 11:歼关逻辑单元 2的第一输出 oui:20及第:输出 out2】.将分别得 到低电平和高电平, 且分别与第一差分串联电压幵关逻辑单元 1的第…- 输入端 mJ O及第二输入端 mJ l上的低电平与高电平耦合, 静态随机存 储单 71完成写" 0"操作; 当宇线 102为低电平时,第一差分串联电 ffi开关 逻辑单元〗及第二差分寧联电压幵关逻辑单元 2构成锁存器结构, 保持 写入的 "(Γ数据。 When the "0" operation is performed on the static random memory memory 7 £, the bit line 01. is low level, the bit line inverse 20] is high level, the word line is 02 high level, and the first access NMOS is The transistor 103 and the second access NMDS transistor 203 are both turned on, and the low level on the bit line 01 and the high level on the bit line reverse 201 are respectively connected to the first input of the first differential series voltage switch logic unit 1. On the terminal in 10 and the second input terminal in 11, the first output oirtlO and the second output terminal οιι 第 of the first differential series ffi switch logic unit 1 respectively obtain a high level and a low level; according to the connection of the static random storage unit Relationship, the ...-input m20 and the second input m21 of the second differential series voltage switching logic unit 2 will respectively obtain a high level and a low level, respectively. The second. differential series power 11: the first output of the logic unit 2 :20 and the first: output out2]. will get low level and high level respectively, and respectively with the first differential series voltage switching logic unit 1 ...- The input terminal mJ O and the second input terminal mJ l are coupled to a low level and a high level, and the static random access memory unit 71 completes writing a “0” operation; when the line 102 is at a low level, the first differential series electric ffi switch The logic unit and the second differential nucleus voltage logic unit 2 constitute a latch structure that keeps the write "(Γ data.
若该静态随机存储单元锁存数据为 "Γ时,即第·····差分串联电压幵关 逻辑单元 1的第二输出端 outl l及第二差分串联电压开关逻辑单元 2的 第 输出 otrt20为高电平, 第一差分串联电 I 开关逻辑单元〗 的第…-输 出端 out 10及第二差分率联电压开关逻辑单元 2的第二输出 oot2i为低 电平, 考虑在辐射环境中发生单粒子事件时, 假设 ¾能粒子作用在第二 差分串联电压幵关逻辑单元 2的第 · -输出 oirt20上, 第 · 输出 oirt20由 高¾平翻转为低 ¾平, 由于第一差分串联电压开关逻辑单元 ί的第一输 出端 outlO上的高电平及第二输出端 otiil 上的低电平均来发生翻转, 其将作用于第二差分串联电压幵关逻辑单元 2上, 恢复第二差分串联电 压开关逻辑攀元 2的第 输出 out20为高电平。  If the static random access memory latch data is "Γ", that is, the second output terminal outl1 of the differential series voltage switching logic unit 1 and the second output terminal otrt20 of the second differential series voltage switching logic unit 2 Is high level, the first ... - output terminal out 10 of the first differential series I switch logic unit and the second output oot2i of the second differential rate connected voltage switch logic unit 2 are low, considered to occur in a radiation environment In the single event event, it is assumed that the 3⁄4 energy particle acts on the -output oirt20 of the second differential series voltage logic unit 2, and the output oirt20 is flipped from the high 3⁄4 level to the low level 3⁄4 level due to the first differential series voltage switch The high level on the first output terminal out1O of the logic unit ί and the low level on the second output terminal otiil are flipped, which will act on the second differential series voltage switching logic unit 2 to restore the second differential series The first output out20 of the voltage switch logic Pan 2 is high.
基于 0.2μο 工艺实现的该辐射加固设计的静态随机存储单元, 对其 进行 HSPICE 单粒子仿真测试, 可得其单粒子翻转阈值为 160MeVcm2/mg, 而基于 ICE结构的辐射加闘设计的静态随机存储单 元華.粒子翻转阐值仅为 9MeV:cm2/mg, 传统的六管静态随机存储单元攀 粒子翻转阔值仅为 3MeV;cm2/mg。 因此, 本发明提供的辎射加固设计的 静态随机存储单 7G , 在提高静态随机存储单元抗辎照性能的同时, 也有 效减小了辐射加固设计带来的面积的消耗。 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 The static random access memory cell based on the 0.2μο process is subjected to HSPICE single-particle simulation test, and the single-event flip threshold is 160MeVcm 2 /mg, while the ICE-based radiation-twisted design is static random. The storage unit Hua. The particle flipping value is only 9MeV: cm 2 /mg. The traditional six-tube static random storage unit has a flipping width of only 3MeV; cm 2 /mg. Therefore, the static random access memory 7G of the radiant reinforcement design provided by the invention can effectively reduce the area consumption caused by the radiation reinforcement design while improving the anti-shock performance of the static random storage unit. It is to be understood that the foregoing description is only illustrative of the embodiments of the invention, and is not intended to Equivalent substitutions, improvements, etc., are intended to be included within the scope of the present invention.

Claims

权利要求 Rights request
1、 一种辎射加固设计的静态随机存储单元, 其特征在于, 该静态 随机存储单元包括依次连接的第一存取' NMOS晶体管(1030、第一差分 串联电压开关逻辑单 7ά (1)、 第二差分串联电 I 开关逻辑单元 (2) 和 第二存取 NMOS晶体管 ( 203 ), 其中; A static random access memory unit with a radiation-reinforced design, characterized in that the static random access memory unit comprises a first access 'NMOS transistor (1030, first differential series voltage switch logic single 7 ά (1), a second differential series I switch logic unit (2) and a second access NMOS transistor (203), wherein
该第一差分串联电 1 开关逻辑单元 ( 1 ) 与该第二差分串联电胆开 关逻辑单 7& (2) 构成交叉耦合的锁存器, 该锁存器连接于 iE电源电压 VCC和电源地 GND之间;  The first differential series electric 1 switching logic unit (1) and the second differential series electric bipolar switch logic unit 7&(2) form a cross-coupled latch connected to the iE power supply voltage VCC and the power supply ground GND Between
该第一存取 NMQS晶体管(103) 的栅端与字线 (102.)连接, 源端 或漏端与位线 (101) 相连接;  The gate of the first access NMQS transistor (103) is connected to the word line (102.), and the source or drain terminal is connected to the bit line (101);
该第二存取 NMQS晶体管(203) 的栅端与字线 (102)连接, 源端 或漏端与位线反 ('201) 相连接。  The gate of the second access NMQS transistor (203) is connected to the word line (102), and the source or drain terminal is connected to the bit line ('201).
2、 根据权利要求 1 所述的辎射加固设计的静态隨机存储单.元, 其 特征在于,所述第 差分串联电 Ηΐ:开关逻辑攀元(〗)包括第 -输入 PMDS 晶体管 ( :)、 第二输入 PMDS晶体管 (.嶋、 第一负载 NMOS晶体 管 (105) 和第二负载 NMOS ir体管 (107), 其中:  2. The static random access memory cell of the radiant reinforcement design according to claim 1, wherein the differential differential series: the switching logic Pan (?) comprises a first input PMDS transistor (:) a second input PMDS transistor (.嶋, a first load NMOS transistor (105) and a second load NMOS ir body transistor (107), wherein:
第…-输入 PM.OS晶体管(104) 的源端或漏端与第 - ·负载 NMDS晶 体管 U05) 的源端或漏端相连接, 构成第一差分串联电压幵关逻辑单 7·£的第一输出端 (oiitlO);  The ...- input PM.OS transistor (104) source or drain terminal is connected to the source or drain of the - - load NMDS transistor U05) to form the first differential series voltage logic logic. An output (oiitlO);
第二输入 PMOS晶体管(106) 的源端或漏端与第二负载 NMOS晶 体管 (10?) 的源端或漏端相连接, 构成第一差分串联电压幵关逻辑单 元的第二输出端 (outll);  The source or drain terminal of the second input PMOS transistor (106) is connected to the source or drain terminal of the second load NMOS transistor (10?) to form a second output terminal of the first differential series voltage switching logic unit (outll );
第一输入 PMOS晶体管 (104) 的栅端为第一差分串联电E开关逻 辑单元的第一输入端 (mlO);  The gate terminal of the first input PMOS transistor (104) is the first input terminal (mlO) of the first differential series E-switch logic unit;
第二输入 PMOS晶体管 (106) 的栅端为第一 ·差分串联电压开关逻 辑单元的第二输入端 (ml  The gate of the second input PMOS transistor (106) is the second input of the first differential differential voltage switching logic unit (ml)
3、 根据权利要求 2 所述的辎射加固设计的静态随机存储单元, 其 特征在于, 所述第一负载 NMOS晶体管 (105) 的栅端接第 '差分串联 电. ffi幵关逻辑单元的第二输出端 (outli:), 所述第二负载 NMOS晶体管 (107)的栅端接第一差分串联电 ffi开关逻辑单元的第一输出端(οιιϋΟ3. The static random access memory cell of the radiant reinforcement design according to claim 2, wherein the gate of the first load NMOS transistor (105) is terminated by a 'differential series connection The second output end (outli:) of the ffi logic unit, the gate of the second load NMOS transistor (107) is connected to the first output of the first differential series electric ffi switch logic unit (οιιϋΟ
4、 根据权利耍求 1 所述的辐射加 设计的静态随机存储单元, 其 特征在于, 所述一第二差分串联电压幵关逻辑单元 (2) 包括第三输入 PMOS晶体管(204)、 第四输入 PMOS晶体管 (206), 第 负载 NMOS 晶体管 (205) 和第四负载 NMOS晶体管 (207), 其中: 4. The radiant-plus-static static random access memory unit of claim 1, wherein the second differential series voltage-off logic unit (2) comprises a third input PMOS transistor (204), a fourth An input PMOS transistor (206), a first load NMOS transistor (205) and a fourth load NMOS transistor (207), wherein:
第三输入 PMOS晶体管(204) 的源端或漏端与第 .≡负载 NMOS晶 体管 (205) 的源端或漏端相连接, 构成第二差分串联电压开关逻辑单 元的第一输出 (out20); The source or drain terminal of the third input PMOS transistor (204) is coupled to the source or drain terminal of the ≡ load NMOS transistor (205) to form a first output (out20) of the second differential series voltage switching logic unit ;
第四输入 PMOS晶体管('206) 的源端或漏端与第四负载 NMDS晶 体管 (207) 的源端或漏端相连接, 构成第 分串联电 I 开关逻辑单 元的第二输出 (out21);  The source or drain terminal of the fourth input PMOS transistor ('206) is connected to the source or drain terminal of the fourth load NMDS transistor (207) to form a second output (out21) of the first series-connected I-switch logic unit;
第三输入 PMOS晶体管 (204) 的栅端为第二差分串联电压开关逻 辑攀元的第一输入 (m20:);  The gate terminal of the third input PMOS transistor (204) is the first input of the second differential series voltage switch logic Pan (m20:);
第閥输入 PMOS晶体管 (206) 的栅端为第.:::::差分串联电压幵关逻 辑華-元的第二输入 (m21:)。  The gate of the first valve input PMOS transistor (206) is the .::::: differential series voltage, which is the second input of the logic-element (m21:).
5、 根据权利要求 4 所述的辎射加固设计的静态随机存储攀元, 其 特征在于, 所述第三负载 NMOS晶体管 (205) 的栅端接第:二差分串联 电压开关逻辑舉元的第二输出 (out21), 所述第四负载 NMOS 晶体管 5. The static random access climbing device of the radiant reinforcement design according to claim 4, wherein the gate of the third load NMOS transistor (205) is terminated by a second differential series voltage switch logic Two outputs (out21), the fourth load NMOS transistor
(207) 的栅端接第: 分串联电压开关逻辑单 7έ的第一输出 (0^20)。 Gate termination of (207): The first output of the series voltage switch logic 7 έ (0^20).
6、 根据权利要求 2或 4所述的辎射加固设计的静态随机存储牟-元 , 其特征在于, 所述第一差分串联电压开关逻辑单元的第一输入端(m】0) 所述第二差分串联电 !1幵关逻辑单元的第一输出 (o 20)相连接, 所 述第 ·· 差分串联电压开关逻辑单元的第二输入端 (mil ) 与所述第二差 分串联¾压开关逻辑攀 7t的第二输出 ( out21)相连接, 所述第 差分串 联电压开关逻辑单元的第一输出端(outlO)与所述第二差分串联电胆开 关逻辑单元的第 输入 (iii20) 相连接, 所述第 ·差分串联电压幵关逻 辑单无的第二输出端(outl 1:)与所述第二差分串联电压开关逻辑单 7¾的 第二输入 (in2:〖)相连接, 由此所述第一莲分串联电压开关逻辑单元( 1) 与所述第二.輕分串联电压开关逻辑单元 (2) 构成交叉耦合的锁存器。 The static random access memory-element of the radiant reinforcement design according to claim 2 or 4, wherein the first input terminal (m) 0 of the first differential series voltage switching logic unit is The first output (o 20) of the second differential logic unit is connected to the second input terminal (mil) of the differential differential series switching logic unit and the second differential series 3⁄4 voltage switch a second output (out21) of the logic ramp 7t is connected, the first output terminal (out10) of the differential differential series switching logic unit is connected to the first input (iii20) of the second differential series bipolar switch logic unit The second output terminal (outl 1:) of the first differential series voltage switching logic single is connected to the second input (in2: 〖) of the second differential series voltage switching logic block 73⁄4, thereby The first lotus series voltage switch logic unit (1) And the second. light-separated series voltage switching logic unit (2) constitutes a latch that is cross-coupled.
7、 根据权利要求 6 所述的辎射加國设计的静态随机存储单元, 其 特征在于, 所述第 -存取 NMOS晶体管 (103 ) 的漏端或源端与所述第 一 ¾分串联电压幵关逻辑单元的第一输入端 (ώ!0) 相连接, 所述第二 存取 NMOS晶体管 (203 ) 的漏端或源端与所述第 ······差分串联电压开关 逻辑单元的第二输入端 (mi l ) 相连接。  7. The static random access memory cell designed according to claim 6, wherein a drain terminal or a source terminal of the first access NMOS transistor (103) is connected to the first 3⁄4 minute series voltage. The first input terminal (ώ!0) of the logic transistor is connected, and the drain terminal or the source terminal of the second access NMOS transistor (203) and the differential terminal voltage switching logic unit The second input (mi l ) is connected.
8、 根据权利要求 :1 所述的辎射加固设计的静态随机存储单元, 其 阵列中, 所述字线 (102) 与电源地线垂直  8. The static random access memory unit of the radiant reinforcement design according to claim 1, wherein the word line (102) is perpendicular to the power ground line in the array.
9、 根据权利要求 :1 所述的辐射加固设计的静态随机存储单元, 其 特征在于, 在该静态随机存储单元及在包含多个该静态随机存储单元的 阵列中, 所述述位线 Π 01 ) 与电源地线平行。  The static random access memory unit of the radiation reinforcement design according to claim 1, wherein in the static random access memory unit and the array including the plurality of static random access memory units, the bit line Π 01 ) Parallel to the power ground.
.1 0 , 根据权利要求〗所述的辎射加固设计的静态随机存储单元, 其 阵列中, 所述述位线反 (2ου 与电源地线平行。  .1 0. The static random access memory unit of the radiation reinforcement design according to claim, wherein in the array, the bit line is reversed (2ου is parallel to the power ground.
PCT/CN2012/087868 2012-12-28 2012-12-28 Static random storage unit having radiation reinforcement design WO2014101122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087868 WO2014101122A1 (en) 2012-12-28 2012-12-28 Static random storage unit having radiation reinforcement design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087868 WO2014101122A1 (en) 2012-12-28 2012-12-28 Static random storage unit having radiation reinforcement design

Publications (1)

Publication Number Publication Date
WO2014101122A1 true WO2014101122A1 (en) 2014-07-03

Family

ID=51019747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087868 WO2014101122A1 (en) 2012-12-28 2012-12-28 Static random storage unit having radiation reinforcement design

Country Status (1)

Country Link
WO (1) WO2014101122A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552034A (en) * 2009-02-27 2009-10-07 北京时代民芯科技有限公司 An anti-SEU storage cell circuit in an anti-radiation hardening FPGA chip
CN102122950A (en) * 2011-01-10 2011-07-13 深圳市国微电子股份有限公司 High-speed low-power consumption latch device capable of resisting SEU (single event upset)
CN102592659A (en) * 2012-02-17 2012-07-18 安徽大学 Sub-threshold storage circuit with high density and high robustness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552034A (en) * 2009-02-27 2009-10-07 北京时代民芯科技有限公司 An anti-SEU storage cell circuit in an anti-radiation hardening FPGA chip
CN102122950A (en) * 2011-01-10 2011-07-13 深圳市国微电子股份有限公司 High-speed low-power consumption latch device capable of resisting SEU (single event upset)
CN102592659A (en) * 2012-02-17 2012-07-18 安徽大学 Sub-threshold storage circuit with high density and high robustness

Similar Documents

Publication Publication Date Title
TWI485705B (en) Memory cells having a row-based read and/or write support circuitry
Kulkarni et al. Process variation tolerant SRAM array for ultra low voltage applications
Yang et al. Single bit-line 7T SRAM cell for near-threshold voltage operation with enhanced performance and energy in 14 nm FinFET technology
CN101506899B (en) NBTI-resistant memory cells with NAND gates
TWI719536B (en) Latch circuit, integrated circuit, and method of forming latch circuit
TWI688950B (en) Random-access memory and associated circuit, method and device
WO2011017843A1 (en) Sub-threshold memory cell circuit with high density and high robustness
JP2008103028A (en) Semiconductor memory device
Pal et al. Reliable write assist low power SRAM cell for wireless sensor network applications
CN101625891B (en) Sub-threshold storing unit circuit with high density and high robustness
JP6936438B2 (en) Semiconductor storage device
CN103137190A (en) Array-interleave static random access memory (SRAM) structure capable of achieving subthreshold working
CN101840728B (en) Dual-end static random access memory (SRMA) unit
TWI723150B (en) Storage bitcell
WO2014101122A1 (en) Static random storage unit having radiation reinforcement design
CN104464793A (en) Serial double-end replica bitline circuit
CN103093809A (en) Static random access memory unit resisting single event upset
Gavaskar et al. Low-power SRAM cell and array structure in aerospace applications: single-event upset impact analysis
Najafi et al. A low-leakage 6T SRAM cell for in-memory computing with high stability
CN109658962B (en) Single-particle multi-node upset resistant near-threshold SRAM (static random Access memory) storage unit
CN110867201B (en) Memory cell and multi-port static random access memory
Shah et al. A soft error robust 32kb SRAM macro featuring access transistor-less 8T cell in 65-nm
Liu et al. High-performance and highly-stable soft error resistant 12T SRAM cell for space applications
Leochico et al. Data retention voltage analysis of various low-power SRAM topologies
Teman et al. Sub-threshold and near-threshold SRAM design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891177

Country of ref document: EP

Kind code of ref document: A1