WO2014099258A1 - System and method for positioning equipment for well logging - Google Patents

System and method for positioning equipment for well logging Download PDF

Info

Publication number
WO2014099258A1
WO2014099258A1 PCT/US2013/071407 US2013071407W WO2014099258A1 WO 2014099258 A1 WO2014099258 A1 WO 2014099258A1 US 2013071407 W US2013071407 W US 2013071407W WO 2014099258 A1 WO2014099258 A1 WO 2014099258A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
equipment
winch
unit
tension
Prior art date
Application number
PCT/US2013/071407
Other languages
French (fr)
Inventor
Joseph Varkey
Barry Lee Schuler
Jeffrey Joseph Kamps
Original Assignee
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development Limited
Schlumberger Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development Limited, Schlumberger Technology Corporation filed Critical Schlumberger Canada Limited
Publication of WO2014099258A1 publication Critical patent/WO2014099258A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/22Handling reeled pipe or rod units, e.g. flexible drilling pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterized by means for land transport with their own drive, e.g. skid mounting or wheel mounting

Definitions

  • aspects generally relate to a lightweight portable well logging unit made up of assorted pieces of cable conveyance equipment and a system and a method for using the lightweight portable well logging unit. Further, aspects relate to a system and a method for selecting, placing and for using various pieces of modular equipment.
  • Well logging also referred to as wireline or borehole logging, is the practice of creating a detailed record, i.e. a well log of various geologic
  • the well log may be based on visual samples brought to the surface or on physical measurements made by instruments lowered into the well.
  • Well logging can be undertaken during drilling, completing, producing and abandoning the well or at any other time.
  • the well log provides information for various geotechnical studies involving oil, gas, groundwater and minerals.
  • the United States onshore oilfield service industry includes two distinct markets: shallow wells with depths up to 8,000 feet and intermediate wells with depths up to 25,000 feet. These markets are traditionally serviced by the same size of wireline logging units. However, using a single size of wireline logging unit for various well depths presents operational problems. For instance, full sized wireline logging units are not well suited for the shallow well market. Thus, shallow well operations are often performed at break even costs or at a loss.
  • the desired well logging unit limits equipment size and weight to help control associated operational costs.
  • the desired well logging unit does not require supplemental pieces of well logging equipment placed on extra vehicles. Accordingly, the limitation of extraneous pieces of well logging equipment may, in turn, limit the exposure of operational personnel to possible safety hazards.
  • FIG. 1 illustrates a view of a well logging unit with a drum unit, a linear traction winch, a dancer and an auxiliary power supply.
  • FIG. 2A illustrates a front view of the drum unit.
  • FIG. 2B illustrates a side view of the drum unit.
  • FIG. 2C illustrates a front view of the drum unit in an extended position showing the hydraulically powered plug and play shaft drive.
  • FIG. 2D illustrates a side view of the drum unit in an extended position showing the plug and play shaft drive.
  • FIG. 3A illustrates a side view of the linear traction winch.
  • FIG. 3B illustrates a front view of the track mounted gripper block.
  • FIG. 4A illustrates a front view of a cable dancer unit and associated gearing in both the front and side orientations.
  • FIG. 4B illustrates a side view of a cable dancer unit and associated gearing in both the front and side orientations.
  • FIG. 5 illustrates a side view of an auxiliary power supply with regenerative circuit.
  • FIG. 6A illustrates a side view of a standard platform with assorted pieces of equipment in place over rear axle for transport.
  • FIG. 6B illustrates a front view of a standard platform with the equipment in place over rear axle for transport.
  • FIG. 7 illustrates a front view of a track mounting on a truck bed with the equipment positioned for transport.
  • FIG. 8 illustrates a front view of a track mounting on a truck bed with the equipment positioned for operations.
  • FIG. 9 illustrates a side view of a modular platform that can be placed on a variety of truck chassis.
  • FIG. 10A and FIG. 10B illustrate a side view of the side and a side view of the rear of the logging truck configured for operations.
  • FIG. 11 illustrates a side view of an alternative set up where the control cabin is mounted on a separate vehicle that is connected to the equipment for operation.
  • a transport truck 10 carries a modular platform 20 to house a control cabin 210.
  • the modular platform 20 also houses several separate pieces of equipment capable of being configured to meet individual job requirements.
  • the pieces of equipment may include a lightweight drum unit 30, a cable or wireline 40, referred to hereafter as the cable 40 and a linear traction winch 50.
  • the cable 40 may be encapsulated in a carbon fiber polymer jacket.
  • the carbon fiber polymer jacket has a cable sealing capability that simplifies and reduces the amount of pressure control equipment needed to be transported and handled at the well logging site.
  • the equipment may also include a dancer unit
  • the linear traction winch 50 pulls the cable 40 from the drum unit 30 through the winch 50 and into the dancer unit 60.
  • the upper driven sheave 70 and the lower driven sheave 80 contract and expand in the vertical direction to control the tension in the cable 40 as the cable 40 descends into the well or borehole.
  • the equipment may be positioned to accommodate storage and transportation on the platform 20.
  • the control cabin 210 is designed to accommodate three persons and has a control console for the winchman, a work area for the logging engineer and a client workspace.
  • the control cabin 210 may be air conditioned and has an acquisition system which is mounted under the control console to conserve space in the control cabin 210.
  • a pump driven water fin radiator system similar to that used in the automotive industry, removes heat from the acquisition system.
  • the control cabin 210 is slightly elevated above the platform 20 to allow a large viewing window and to provide an unobstructed view of a winch deck 350 and a rig 360.
  • the drum unit 30 has a detachable spool 100 with defined end caps 250 that prevent the cable 40 illustrated in FIG. 1 from slipping off the edge of the drum unit 30 while the pieces of equipment are in operation.
  • the drum unit 30 may be constructed from a bonded metal composite material construction derived from technology commonly available in the aerospace industry.
  • the drum unit 30 is high strength and low weight and can hold up to 30,000 feet of the cable 40.
  • the drum unit 30 has a footprint that fits into available space on the platform 20.
  • FIG. 2B illustrates the removal of the detachable spool 100.
  • the detachable spool 100 has a plug and play hydraulically powered shaft 260 with bearings 120 that are mounted on a quick release mounting structure 130 illustrated in FIG. 2C.
  • the hydraulically powered shaft 260 rests on bearings 120 in a quick release mounting structure 130 illustrated in FIG. 2D that allows the spool 100 to be replaced in the field.
  • FIG. 2C illustrates a hydraulically powered shaft 260 lifting the spool 100 in the vertical direction away from the bearings 120.
  • the hydraulically powered shaft 260 mounts on the side of the drum unit 30 to allow the drum unit 30 to have a plug and play design instead of being driven by a heavy chain and sprocket assembly.
  • Standard pillow block mounts 270 are used to secure the drum unit 30 to the winch frame 50 to allow the drum unit 30 to be replaced in the event that the cable 40 requires replacement.
  • activation of the linear traction winch 50 pulls the cable 40 from the drum unit 30.
  • the spool 100 rotates in the direction of movement of the cable 40.
  • the linear traction winch 50 can at least pull or hold the cable 40 under the tension range generally associated with a shallow well market.
  • the drum unit 30 can hold a high tensile load at its core because of its bonded metal composite material construction.
  • FIG. 2D also illustrates the bearings 120 that are mounted on the quick release mounting structure 130. Similar to FIG. 2C, the hydraulically powered shaft 260 can rest on bearings 120 in the quick release mounting structure 130 that allows the spool 100 to be replaced in the field.
  • FIG. 3A an illustration of the linear traction winch 50 is shown.
  • the winch 50 departs from traditional logging cable deployment.
  • the winch 50 is designed to pull as much as 20,000 pounds in a footprint no larger than three feet by three feet. Further, the design and operation of the winch 50 is similar to winches used to convey transoceanic cables or oilfield coiled tubing.
  • the winch 50 is configured horizontally and has a gripping mechanism in line with the center of the drum unit 30. This configuration either simplifies or may eliminate the spooling mechanism otherwise required to store the cable 40 on the drum unit 30.
  • the winch 50 is mounted on a small super structure 280 designed to absorb the tensile load. This feature eliminates reinforcement of the winch deck 350 which is common on known wireline units.
  • the cable 40 enters the winch 50 and is held against slippage by a series of conformal gripping blocks composed of an upper gripping block 150 and a lower gripping block 160. As shown in FIG. 3B, both the upper gripping block 150 and the lower gripping block 160 squeeze against the cable 40 to hold the cable 40 in place via an adjustable skate mechanism.
  • winch 50 During operation, tension of the cable 40 is relieved on the output side of the winch 50 before the cable 40 is routed to the drum unit 30. Upon activation of the winch 50, the endless high strength belts of the winch 50 rotate to allow the upper gripping block 150 and the lower gripping block 160 to either deploy or retract the cable 40. Further, the winch 50 can be operated individually or in conjunction with the dancer unit 60. In the event that the winch 50 becomes disabled and has to be removed from the system, the other components, namely the drum unit 30 and the dancer unit 60, depending on the cable tension, have the capacity to assume winch system master status and to deploy or to recover the cable 40 from a well.
  • Each of the components of the winch 50 has a specific role.
  • the drive system of each component is designed for a specific use to simplify associated hydraulic circuitry.
  • Known winch systems often require stoppage of the winch to change drive speed.
  • the winch 50 is designed for a smaller overall range of operation and does not require stoppage to change drive speed.
  • the winch 50 incorporates an automatic type of hydraulic drive system allowing it to be more efficient.
  • the winch 50 replaces a
  • the winch 50 may use a direct drive hydraulic motor that does not require a gearbox. With a direct drive hydraulic motor, the response of the winch 50 operating in a tension limiting mode is greatly enhanced. The elimination of the gearbox allows the winch 50 to respond faster to changes in tension and direction without tension spikes.
  • the pump 330 of the winch 50 can operate at a higher and more stable displacement without affecting how the motor 140 receives minimal flow for slow winch speeds.
  • PID proportional, integral and derivative
  • the control cabin 210 also has an electronic control module 310 that has engine data stored on a controller area network bus (“CANbus") 320.
  • the CANbus 320 is a specialized internal communications network standard designed for microcontrollers and devices to communicate with each other inside a vehicle without a host computer. Module output data can be captured in a file and stored for performance monitoring of the well logging unit. Performance monitoring can lead to predictive failure of components which can be replaced before lost time occurs on a job.
  • the engine data can also be used to analyze failure in lost time incident to the unit.
  • an Ethernet gateway can be used to pull unit data from the CANbus and send the unit data in real time as needed.
  • hydraulic shocks 180 are positioned above a base 190.
  • the hydraulic shocks 180 compress and expand in the vertical direction to maintain a steady tension in the cable 40 and to absorb shock that may result from a sudden increase in tension in the cable 40 that may occur during operations.
  • the dancer unit 60 is a device used in wire and cable manufacturing to control tension on the wire or cable.
  • the dancer unit 60 can operate in at least the range of tensions typically seen in the shallow and intermediate well market.
  • the dancer unit 60 is small and has low power requirements. Further, the dancer unit 60 can be operated individually or in tandem with the linear traction winch 50. Also, the dancer unit 60 may be removed from the system entirely.
  • the winch 50 outputs the cable 40 to the dancer unit 60.
  • the dancer unit 60 may be a variable capstan that rotates at variable speeds in the horizontal plane for winding in ropes and cables etc.
  • the dancer unit 60 inputs the cable 40 to relax the tension in the cable 40 to a much lower, i.e. non zero, value.
  • the dancer unit 60 then outputs the cable 40 at a relaxed tension into the borehole.
  • the dancer unit 60 employs an upper driven sheave 70 and a lower driven sheave 80.
  • the cable 40 travels from the winch 50 into either the upper driven sheave 70 or the lower driven sheave 80, depending on the configuration.
  • Both the upper driven sheave 70 and the lower driven sheave 80 may be adjusted in the vertical direction via compression or expansion of hydraulic shocks 180 illustrated in FIG. 4A to maintain sheave block distance at steady tension and to absorb shock of sudden tension increases. By moving closer together during sudden increases in tension, the upper driven sheave 70 and the lower driven sheave 80 give the winch 50 times to react to mitigate the risk of breakage of the cable 40.
  • the dancer unit 60 is mounted in a vertical orientation above a base 190 illustrated in FIG. 4A.
  • the speed at which the dancer unit 60 responds to tension increases in the cable 40 depends largely on the speed, depth and quantity of the cable 40 on the drum unit 30. At higher speeds and shallow depths, a shutdown circuit may not react fast enough for the winch 50 to safely shutdown before either a downhole tool is pulled loose from the cable 40 or the cable 40 itself is severed.
  • the dancer unit 60 also deploys an additional amount of the cable 40 as tension in the cable 40 increases to prevent breakage of the cable 40 resulting from the increase in tension. This feature allows faster operating speeds near the surface while maintaining a high level of safety.
  • An encoder device to measure cable footage deployed or rewound is incorporated into the downhole output sheave.
  • the downhole output sheave may be either the upper driven sheave 70 or the lower driven sheave 80
  • the dancer unit 60 is designed to cover an optimal range of cable tensions anticipated for depths of the wells where the dancer unit 60 is used rather than the absolute maximum expected tension. As a result, the dancer unit 60 can have a more compact and lightweight design.
  • a small 150 horsepower auxiliary power supply 90 provides the hydraulic power and the electrical power requirements of the system.
  • the auxiliary power supply 90 is powered by diesel 200.
  • a regenerative hydraulic circuit 290 is used to achieve the low power requirement and to eliminate the need for a large hydraulic power plant.
  • the auxiliary power supply 90 is used to drive a pump driven generator which is used to supply operating power to the control cabin 210.
  • the auxiliary power supply 90 runs continuously during operations to power the various pieces of equipment. Thus, the equipment can function without receiving power from the engine of the transport truck 10. This ability saves fuel and reduces associated maintenance costs and emissions to the environment.
  • the size of the transport truck 10 used to convey the equipment to the well site can be minimized due to the light weight and small footprint of the equipment.
  • the standard platform 20 on which the pieces of equipment are mounted can be installed on a variety of conventional,
  • the platform 20 includes a bolt on winch deck that has a large belly pan 340.
  • the large belly pan 340 has a track system 300.
  • the track system 300 may be hydraulically operated. Individual pieces of equipment are then mounted onto the track system 300.
  • the track system 300 moves to position the equipment to optimally distribute weight over the axle of the transport truck 10 during transport.
  • the bolt on winch deck 350 of the platform 20 can attach to a variety of different types of chassis of the transport truck 10.
  • the well logging unit is not dependent on a particular chassis and can be selected by availability within the relevant geographical market.
  • FIG. 7 illustrates a top view of the track mounted equipment on the standard platform 20 with the equipment positioned for transport.
  • the inset tracks 300 on the standard platform 20 allow the equipment to be moved around the truck bed as needed for optimal weight distribution. Accordingly, the spool 100, the dancer unit 60, the linear traction winch 50 and the auxiliary power unit 90 are positioned as needed for optimal weight distribution.
  • the control cabin 210 is positioned for optimal weight distribution of the equipment.
  • FIG. 8 illustrates a top view of the track mounted equipment on the standard platform 20 with equipment positioned for operations.
  • the inset tracks 300 on the standard platform 20 allow the equipment to be moved around the truck bed as needed for operations with the auxiliary power unit 90 removed from the truck and placed on the ground.
  • the auxiliary power unit 90 can also be removed from the insert tracks 300 and loaded onto the ground during
  • FIG. 9 illustrates a side view of the modular platform 20 holding various pieces of equipment.
  • the modular platform 20 is detachable from the transport truck 10 and can be placed on a variety of transport truck chassis.
  • FIG. 10A illustrates a side view of the new generation logging truck 10 configured to have the auxiliary power unit 90 loaded onto the ground for operations.
  • the auxiliary power unit 90 can provide the necessary power for the cable 40 to be deployed into the well or borehole.
  • FIG. 10B illustrates a rear view of the new generation logging truck 10.
  • the various pieces of equipment are arranged linearly to allow the cable 40 to be deployed into and retracted from the borehole. Further, the auxiliary power unit 90 is placed on the ground to provide power for the cable 40.
  • FIG. 11 illustrates a side view showing an electronic control module 310 that has engine data stored on a controller area network bus ("CANbus") 320.
  • the electronic control module 310 is used to operate the well logging unit and may be mounted in a separate vehicle such as a commercial van 240 via a connection 230 to the control cabin 210. Mounting the electronic control module 310 in a separate vehicle reduces various requirements for the control cabin 210. Also, mounting the electronic control module 310 in a separate vehicle creates space on the platform 20 that may now be used for storing tools.
  • CANbus controller area network bus
  • Equipment necessary for a job may be selected and/or loaded for taking to the job site.
  • the portable well logging unit is based on a standard platform that can be mounted onto a variety of commercially available truck chassis.
  • the well logging unit has a smaller footprint than known well logging units.
  • the well logging unit has equipment that relieves tensile energy as needed to service the range of tension often associated with deep wells.
  • a method for positioning equipment on a platform for placement on a vehicle comprising: placing a track system on the platform to move the equipment, mounting the equipment on the track system wherein the equipment enables deployment of the cable and moving the equipment on the track system to a position to descend a cable through a borehole.

Abstract

A system and method for positioning equipment on a track system where the equipment may descend a wireline or a cable into a borehole for well logging. The equipment may be a drum unit for storing, deploying and retracting the cable, a winch, a dancer unit and an auxiliary power supply. The equipment may be positioned with the track system for either operations or transport. The cable may be threaded through the equipment to descend into the borehole for well logging purposes.

Description

SYSTEM AND METHOD FOR POSITIONING EQUIPMENT FOR WELL
LOGGING
FIELD OF THE INVENTION
[0001] Aspects generally relate to a lightweight portable well logging unit made up of assorted pieces of cable conveyance equipment and a system and a method for using the lightweight portable well logging unit. Further, aspects relate to a system and a method for selecting, placing and for using various pieces of modular equipment.
BACKGROUND INFORMATION
[0002] Well logging, also referred to as wireline or borehole logging, is the practice of creating a detailed record, i.e. a well log of various geologic
formations upon penetration into a well or borehole. The well log may be based on visual samples brought to the surface or on physical measurements made by instruments lowered into the well. Well logging can be undertaken during drilling, completing, producing and abandoning the well or at any other time. The well log provides information for various geotechnical studies involving oil, gas, groundwater and minerals.
[0003] The United States onshore oilfield service industry includes two distinct markets: shallow wells with depths up to 8,000 feet and intermediate wells with depths up to 25,000 feet. These markets are traditionally serviced by the same size of wireline logging units. However, using a single size of wireline logging unit for various well depths presents operational problems. For instance, full sized wireline logging units are not well suited for the shallow well market. Thus, shallow well operations are often performed at break even costs or at a loss.
[0004] Many service companies have developed additional logging units designed for the shallow well market. Although shallow well operations may be conducted more efficiently, the addition of another small size well logging unit to the fleet has led to higher costs associated with maintenance, replacement parts, general operations and personnel. Further, the small size units only address shallow well markets. Additional research and development is required for units used in the intermediate depth well market.
[0005] The design of current wireline units occurred before the development of linear traction winches and advanced hydraulic systems. As a result, the winches used in current wireline logging units and drum type traction winches can only sustain limited loads. Typically, the load handling capability of a drum type winch can only be increased by increasing the size and thus the weight of the winch. More importantly, and unlike a linear traction winch, a drum type traction winch cannot dissipate its load as needed to service deeper wells. Also, higher load weights tax the cables intended to be deployed by the drum type winch.
[0006] Current wireline units cannot meet the demands of modern well logging. For example, the units have reached their maximum weight limits and thus cannot hold even heavier pieces of equipment needed to service deep wells. Further, the weight of the units often exceeds the overall axle weight rating of roads leading to well locations. Thus, the units cannot access remote well locations accessible only by those roads.
[0007] Configuring known wireline units to carry higher weights results in higher operational costs. Naturally, reducing the amount of equipment on each well logging unit may help control operational costs. However, fewer pieces of equipment per vehicle require additional vehicles to transport items to the well site. As a result, the additional vehicles also have associated procurement and maintenance costs and thus increase overall operational costs. Also, additional vehicles increase potential safety hazards associated with job completion.
[0008] Accordingly, a need exists for a well logging unit that can carry only the equipment necessary to service either a shallow well and/or an intermediate well market. The desired well logging unit limits equipment size and weight to help control associated operational costs. Further, the desired well logging unit does not require supplemental pieces of well logging equipment placed on extra vehicles. Accordingly, the limitation of extraneous pieces of well logging equipment may, in turn, limit the exposure of operational personnel to possible safety hazards.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 illustrates a view of a well logging unit with a drum unit, a linear traction winch, a dancer and an auxiliary power supply.
[0010] FIG. 2A illustrates a front view of the drum unit.
[0011] FIG. 2B illustrates a side view of the drum unit.
[0012] FIG. 2C illustrates a front view of the drum unit in an extended position showing the hydraulically powered plug and play shaft drive.
[0013] FIG. 2D illustrates a side view of the drum unit in an extended position showing the plug and play shaft drive.
[0014] FIG. 3A illustrates a side view of the linear traction winch.
[0015] FIG. 3B illustrates a front view of the track mounted gripper block.
[0016] FIG. 4A illustrates a front view of a cable dancer unit and associated gearing in both the front and side orientations.
[0017] FIG. 4B illustrates a side view of a cable dancer unit and associated gearing in both the front and side orientations.
[0018] FIG. 5 illustrates a side view of an auxiliary power supply with regenerative circuit.
[0019] FIG. 6A illustrates a side view of a standard platform with assorted pieces of equipment in place over rear axle for transport.
[0020] FIG. 6B illustrates a front view of a standard platform with the equipment in place over rear axle for transport.
[0021] FIG. 7 illustrates a front view of a track mounting on a truck bed with the equipment positioned for transport.
[0022] FIG. 8 illustrates a front view of a track mounting on a truck bed with the equipment positioned for operations. [0023] FIG. 9 illustrates a side view of a modular platform that can be placed on a variety of truck chassis.
[0024] FIG. 10A and FIG. 10B illustrate a side view of the side and a side view of the rear of the logging truck configured for operations.
[0025] FIG. 11 illustrates a side view of an alternative set up where the control cabin is mounted on a separate vehicle that is connected to the equipment for operation.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0026] In the following description, numerous details are set forth to provide an understanding of the present disclosure. However, it will be understood by those of ordinary skill in the art that the aspects may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
[0027] Referring to FIG. 1 , a transport truck 10 carries a modular platform 20 to house a control cabin 210. The modular platform 20 also houses several separate pieces of equipment capable of being configured to meet individual job requirements. The pieces of equipment may include a lightweight drum unit 30, a cable or wireline 40, referred to hereafter as the cable 40 and a linear traction winch 50. The cable 40 may be encapsulated in a carbon fiber polymer jacket.
The carbon fiber polymer jacket has a cable sealing capability that simplifies and reduces the amount of pressure control equipment needed to be transported and handled at the well logging site. The equipment may also include a dancer unit
60 that has an upper driven sheave 70, a lower driven sheave 80 and an auxiliary power unit 90. The equipment on the platform 20 may be physically rearranged for operation. During operations, the linear traction winch 50 pulls the cable 40 from the drum unit 30 through the winch 50 and into the dancer unit 60.
The upper driven sheave 70 and the lower driven sheave 80 contract and expand in the vertical direction to control the tension in the cable 40 as the cable 40 descends into the well or borehole. Upon job completion, the equipment may be positioned to accommodate storage and transportation on the platform 20. [0028] The control cabin 210 is designed to accommodate three persons and has a control console for the winchman, a work area for the logging engineer and a client workspace. The control cabin 210 may be air conditioned and has an acquisition system which is mounted under the control console to conserve space in the control cabin 210. A pump driven water fin radiator system, similar to that used in the automotive industry, removes heat from the acquisition system. Further, the control cabin 210 is slightly elevated above the platform 20 to allow a large viewing window and to provide an unobstructed view of a winch deck 350 and a rig 360.
[0029] Referring to FIG. 2A, an embodiment of the lightweight drum unit 30 is shown. The drum unit 30 has a detachable spool 100 with defined end caps 250 that prevent the cable 40 illustrated in FIG. 1 from slipping off the edge of the drum unit 30 while the pieces of equipment are in operation. The drum unit 30 may be constructed from a bonded metal composite material construction derived from technology commonly available in the aerospace industry. The drum unit 30 is high strength and low weight and can hold up to 30,000 feet of the cable 40. The drum unit 30 has a footprint that fits into available space on the platform 20.
[0030] FIG. 2B illustrates the removal of the detachable spool 100. The detachable spool 100 has a plug and play hydraulically powered shaft 260 with bearings 120 that are mounted on a quick release mounting structure 130 illustrated in FIG. 2C. The hydraulically powered shaft 260 rests on bearings 120 in a quick release mounting structure 130 illustrated in FIG. 2D that allows the spool 100 to be replaced in the field.
[0031] FIG. 2C illustrates a hydraulically powered shaft 260 lifting the spool 100 in the vertical direction away from the bearings 120. The hydraulically powered shaft 260 mounts on the side of the drum unit 30 to allow the drum unit 30 to have a plug and play design instead of being driven by a heavy chain and sprocket assembly. Standard pillow block mounts 270 are used to secure the drum unit 30 to the winch frame 50 to allow the drum unit 30 to be replaced in the event that the cable 40 requires replacement.
[0032] For operations, activation of the linear traction winch 50 pulls the cable 40 from the drum unit 30. Thus, the spool 100 rotates in the direction of movement of the cable 40. The linear traction winch 50 can at least pull or hold the cable 40 under the tension range generally associated with a shallow well market. Further, the drum unit 30 can hold a high tensile load at its core because of its bonded metal composite material construction.
[0033] FIG. 2D also illustrates the bearings 120 that are mounted on the quick release mounting structure 130. Similar to FIG. 2C, the hydraulically powered shaft 260 can rest on bearings 120 in the quick release mounting structure 130 that allows the spool 100 to be replaced in the field.
[0034] Referring to FIG. 3A, an illustration of the linear traction winch 50 is shown. The winch 50 departs from traditional logging cable deployment. The winch 50 is designed to pull as much as 20,000 pounds in a footprint no larger than three feet by three feet. Further, the design and operation of the winch 50 is similar to winches used to convey transoceanic cables or oilfield coiled tubing.
[0035] For operations, the winch 50 is configured horizontally and has a gripping mechanism in line with the center of the drum unit 30. This configuration either simplifies or may eliminate the spooling mechanism otherwise required to store the cable 40 on the drum unit 30. The winch 50 is mounted on a small super structure 280 designed to absorb the tensile load. This feature eliminates reinforcement of the winch deck 350 which is common on known wireline units. The cable 40 enters the winch 50 and is held against slippage by a series of conformal gripping blocks composed of an upper gripping block 150 and a lower gripping block 160. As shown in FIG. 3B, both the upper gripping block 150 and the lower gripping block 160 squeeze against the cable 40 to hold the cable 40 in place via an adjustable skate mechanism. [0036] During operation, tension of the cable 40 is relieved on the output side of the winch 50 before the cable 40 is routed to the drum unit 30. Upon activation of the winch 50, the endless high strength belts of the winch 50 rotate to allow the upper gripping block 150 and the lower gripping block 160 to either deploy or retract the cable 40. Further, the winch 50 can be operated individually or in conjunction with the dancer unit 60. In the event that the winch 50 becomes disabled and has to be removed from the system, the other components, namely the drum unit 30 and the dancer unit 60, depending on the cable tension, have the capacity to assume winch system master status and to deploy or to recover the cable 40 from a well.
[0037] Each of the components of the winch 50 has a specific role.
Accordingly, the drive system of each component is designed for a specific use to simplify associated hydraulic circuitry. Known winch systems often require stoppage of the winch to change drive speed. In contrast, the winch 50 is designed for a smaller overall range of operation and does not require stoppage to change drive speed. The winch 50 incorporates an automatic type of hydraulic drive system allowing it to be more efficient. The winch 50 replaces a
continuously variable hydraulic motor for the dual fixed displacement motor when used with a gearbox. Alternatively, the winch 50 may use a direct drive hydraulic motor that does not require a gearbox. With a direct drive hydraulic motor, the response of the winch 50 operating in a tension limiting mode is greatly enhanced. The elimination of the gearbox allows the winch 50 to respond faster to changes in tension and direction without tension spikes.
[0038] Further, by using flow control valves between the pump 330 of the winch 50 and the motor 140 of the winch 50, the pump 330 can operate at a higher and more stable displacement without affecting how the motor 140 receives minimal flow for slow winch speeds. With a tailored hydraulic system and the use of a proportional, integral and derivative ("PID") controlled
proportional valve, the response of the winch 50 can be optimized as needed for various operational conditions. [0039] The control cabin 210 also has an electronic control module 310 that has engine data stored on a controller area network bus ("CANbus") 320. The CANbus 320 is a specialized internal communications network standard designed for microcontrollers and devices to communicate with each other inside a vehicle without a host computer. Module output data can be captured in a file and stored for performance monitoring of the well logging unit. Performance monitoring can lead to predictive failure of components which can be replaced before lost time occurs on a job. The engine data can also be used to analyze failure in lost time incident to the unit. Also, an Ethernet gateway can be used to pull unit data from the CANbus and send the unit data in real time as needed.
[0040] Referring to FIG. 4A, hydraulic shocks 180 are positioned above a base 190. The hydraulic shocks 180 compress and expand in the vertical direction to maintain a steady tension in the cable 40 and to absorb shock that may result from a sudden increase in tension in the cable 40 that may occur during operations.
[0041] Referring to FIG. 4B, the dancer unit 60 is a device used in wire and cable manufacturing to control tension on the wire or cable. The dancer unit 60 can operate in at least the range of tensions typically seen in the shallow and intermediate well market. The dancer unit 60 is small and has low power requirements. Further, the dancer unit 60 can be operated individually or in tandem with the linear traction winch 50. Also, the dancer unit 60 may be removed from the system entirely.
[0042] In normal operating conditions, the winch 50 outputs the cable 40 to the dancer unit 60. In comparison to other types of oilfield equipment, the dancer unit 60 may be a variable capstan that rotates at variable speeds in the horizontal plane for winding in ropes and cables etc. The dancer unit 60 inputs the cable 40 to relax the tension in the cable 40 to a much lower, i.e. non zero, value. The dancer unit 60 then outputs the cable 40 at a relaxed tension into the borehole. [0043] The dancer unit 60 employs an upper driven sheave 70 and a lower driven sheave 80. The cable 40 travels from the winch 50 into either the upper driven sheave 70 or the lower driven sheave 80, depending on the configuration. Both the upper driven sheave 70 and the lower driven sheave 80 may be adjusted in the vertical direction via compression or expansion of hydraulic shocks 180 illustrated in FIG. 4A to maintain sheave block distance at steady tension and to absorb shock of sudden tension increases. By moving closer together during sudden increases in tension, the upper driven sheave 70 and the lower driven sheave 80 give the winch 50 times to react to mitigate the risk of breakage of the cable 40. The dancer unit 60 is mounted in a vertical orientation above a base 190 illustrated in FIG. 4A.
[0044] The speed at which the dancer unit 60 responds to tension increases in the cable 40 depends largely on the speed, depth and quantity of the cable 40 on the drum unit 30. At higher speeds and shallow depths, a shutdown circuit may not react fast enough for the winch 50 to safely shutdown before either a downhole tool is pulled loose from the cable 40 or the cable 40 itself is severed. The dancer unit 60 also deploys an additional amount of the cable 40 as tension in the cable 40 increases to prevent breakage of the cable 40 resulting from the increase in tension. This feature allows faster operating speeds near the surface while maintaining a high level of safety.
[0045] An encoder device to measure cable footage deployed or rewound is incorporated into the downhole output sheave. The downhole output sheave may be either the upper driven sheave 70 or the lower driven sheave 80
depending on configuration. The axle of the downhole output sheave
incorporates a strain device for measuring the cable tension.
[0046] The dancer unit 60 is designed to cover an optimal range of cable tensions anticipated for depths of the wells where the dancer unit 60 is used rather than the absolute maximum expected tension. As a result, the dancer unit 60 can have a more compact and lightweight design. [0047] Referring to FIG. 5, a small 150 horsepower auxiliary power supply 90 provides the hydraulic power and the electrical power requirements of the system. In an embodiment, the auxiliary power supply 90 is powered by diesel 200. A regenerative hydraulic circuit 290 is used to achieve the low power requirement and to eliminate the need for a large hydraulic power plant. Further, the auxiliary power supply 90 is used to drive a pump driven generator which is used to supply operating power to the control cabin 210. The auxiliary power supply 90 runs continuously during operations to power the various pieces of equipment. Thus, the equipment can function without receiving power from the engine of the transport truck 10. This ability saves fuel and reduces associated maintenance costs and emissions to the environment.
[0048] Referring to FIG. 6A, the size of the transport truck 10 used to convey the equipment to the well site can be minimized due to the light weight and small footprint of the equipment. Also, the standard platform 20 on which the pieces of equipment are mounted can be installed on a variety of conventional,
commercially available flatbed trucks with a sixteen feet by eight feet bed.
[0049] Referring to FIG. 6B, the platform 20 includes a bolt on winch deck that has a large belly pan 340. The large belly pan 340 has a track system 300. The track system 300 may be hydraulically operated. Individual pieces of equipment are then mounted onto the track system 300. The track system 300 moves to position the equipment to optimally distribute weight over the axle of the transport truck 10 during transport. The bolt on winch deck 350 of the platform 20 can attach to a variety of different types of chassis of the transport truck 10.
Accordingly, the well logging unit is not dependent on a particular chassis and can be selected by availability within the relevant geographical market.
[0050] FIG. 7 illustrates a top view of the track mounted equipment on the standard platform 20 with the equipment positioned for transport. The inset tracks 300 on the standard platform 20 allow the equipment to be moved around the truck bed as needed for optimal weight distribution. Accordingly, the spool 100, the dancer unit 60, the linear traction winch 50 and the auxiliary power unit 90 are positioned as needed for optimal weight distribution. The control cabin 210 is positioned for optimal weight distribution of the equipment.
[0051] FIG. 8 illustrates a top view of the track mounted equipment on the standard platform 20 with equipment positioned for operations. The inset tracks 300 on the standard platform 20 allow the equipment to be moved around the truck bed as needed for operations with the auxiliary power unit 90 removed from the truck and placed on the ground. The auxiliary power unit 90 can also be removed from the insert tracks 300 and loaded onto the ground during
operations.
[0052] FIG. 9 illustrates a side view of the modular platform 20 holding various pieces of equipment. The modular platform 20 is detachable from the transport truck 10 and can be placed on a variety of transport truck chassis.
[0053] During operations of the logging truck 10, the auxiliary power unit 90 is removed from the platform 20 of the logging truck 10 and positioned onto the ground. FIG. 10A illustrates a side view of the new generation logging truck 10 configured to have the auxiliary power unit 90 loaded onto the ground for operations. The auxiliary power unit 90 can provide the necessary power for the cable 40 to be deployed into the well or borehole.
[0054] FIG. 10B illustrates a rear view of the new generation logging truck 10. The various pieces of equipment are arranged linearly to allow the cable 40 to be deployed into and retracted from the borehole. Further, the auxiliary power unit 90 is placed on the ground to provide power for the cable 40.
[0055] FIG. 11 illustrates a side view showing an electronic control module 310 that has engine data stored on a controller area network bus ("CANbus") 320. The electronic control module 310 is used to operate the well logging unit and may be mounted in a separate vehicle such as a commercial van 240 via a connection 230 to the control cabin 210. Mounting the electronic control module 310 in a separate vehicle reduces various requirements for the control cabin 210. Also, mounting the electronic control module 310 in a separate vehicle creates space on the platform 20 that may now be used for storing tools.
[0056] Equipment necessary for a job may be selected and/or loaded for taking to the job site. Also, the portable well logging unit is based on a standard platform that can be mounted onto a variety of commercially available truck chassis. The well logging unit has a smaller footprint than known well logging units. Further, the well logging unit has equipment that relieves tensile energy as needed to service the range of tension often associated with deep wells.
[0057] In one embodiment a method for positioning equipment on a platform for placement on a vehicle is disclosed, comprising: placing a track system on the platform to move the equipment, mounting the equipment on the track system wherein the equipment enables deployment of the cable and moving the equipment on the track system to a position to descend a cable through a borehole.
[0058] Although exemplary systems and methods are described in language specific to structural features and/or methodological acts, the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed systems, methods and structures.

Claims

We claim:
1 . A method for positioning equipment on a platform for placement on a vehicle, comprising:
placing a track system on the platform to move the equipment;
mounting the equipment on the track system wherein the equipment enables deployment of the cable; and
moving the equipment on the track system to a position to descend a cable through a borehole.
2. The method of claim 1 , comprising:
securing a drum unit on a winch frame.
3. The method of claim 1 , comprising:
adhering a gripping block onto a winch to abut against the cable.
4. The method of claim 1 , comprising:
deploying the cable through a dancer unit to control a tension in the cable.
5. The method of claim 1 , comprising:
powering the track system with a hydraulic power supply.
6. The method of claim 1 , comprising:
controlling the equipment from an electronic control module.
7. A method for deploying a cable into a borehole, comprising:
situating equipment on the track system to deploy the cable into the borehole;
threading the cable through the equipment;
sending a signal from an electronic control module to control the equipment; and
descending the cable wherein the cable travels through the equipment into the borehole to obtain well logging data.
8. The method of claim 7, comprising:
reducing an increase in a tension in the cable through a compression of a shock absorber on a dancer unit.
9. The method of claim 7, comprising:
preventing slippage of the cable by mounting a gripping block on a winch to abut against the cable.
10. The method of claim 7, comprising:
deploying the cable from a dancer unit in response to an increase in tension in the cable.
11 . The method of claim 7, comprising:
maneuvering the cable through a driven sheave in a dancer unit.
12. The method of claim 7, comprising:
measuring footage of the cable.
13. The method of claim 7, comprising:
measuring tension in the cable on a driven sheave.
14. The method of claim 7, comprising:
monitoring equipment performance during cable deployment.
15. A system for positioning equipment on a track system mounted on a platform, comprising:
a drum unit;
a winch;
a dancer unit that deploys cable to control an increase in a tension in the cable;
a cable threaded through the drum unit, the winch, and the dancer unit to descend into a borehole; and
a power supply that provides power to the equipment.
16. The system of claim 15, wherein the cable being encapsulated by a carbon fiber polymer jacket.
17. The system of claim 15, wherein the drum unit maneuvers the cable.
18. The system of claim 15, wherein the winch rotates to pull the cable from the drum unit.
19. The system of claim 15, comprising:
a shock absorber on the dancer unit that compresses to reduce tension in the cable.
20. The system of claim 15, comprising:
an electronic control module that sends a signal to control the drum unit, the winch and the dancer unit.
PCT/US2013/071407 2012-12-18 2013-11-22 System and method for positioning equipment for well logging WO2014099258A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261738840P 2012-12-18 2012-12-18
US61/738,840 2012-12-18
US13/801,698 2013-03-13
US13/801,698 US20140166270A1 (en) 2012-12-18 2013-03-13 System and method for positioning equipment for well logging

Publications (1)

Publication Number Publication Date
WO2014099258A1 true WO2014099258A1 (en) 2014-06-26

Family

ID=48288864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/071407 WO2014099258A1 (en) 2012-12-18 2013-11-22 System and method for positioning equipment for well logging

Country Status (4)

Country Link
US (1) US20140166270A1 (en)
EP (1) EP2746529A3 (en)
CA (1) CA2813145A1 (en)
WO (1) WO2014099258A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912129B1 (en) * 2012-12-05 2018-03-06 Encore Wire Corporation Apparatus for transporting and dispensing wire or cable from a barrel pack
US10590729B2 (en) 2015-02-13 2020-03-17 Schlumberger Technology Corporation Sharable deployment bars with multiple passages and cables
US10465472B2 (en) 2015-02-13 2019-11-05 Schlumberger Technology Corporation Deployment valves operable under pressure
US10487611B2 (en) 2015-02-13 2019-11-26 Schlumberger Technology Corporation Deployment method for coiled tubing
WO2016130623A1 (en) * 2015-02-13 2016-08-18 Schlumberger Technology Corporation Powered sheave with wireline pushing capability
US10605036B2 (en) 2015-02-13 2020-03-31 Schlumberger Technology Corporation Deployment blow out preventer with interlock
DE102015009700A1 (en) * 2015-07-30 2017-02-02 Esw Gmbh Winch and rope drum
WO2017020122A1 (en) * 2015-07-31 2017-02-09 Jesse Urquhart Cable guide for drill line slip and cut operations on a drilling rig and related method for achieving a tensioned state of the drill line
WO2017070206A1 (en) * 2015-10-23 2017-04-27 National Oilwell Varco, L.P. Power swivel and lubrication system
US11486238B2 (en) 2020-12-15 2022-11-01 James R Wetzel Electric submersible pump (ESP) deployment method and tools to accomplish method for oil wells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765435A (en) * 1985-08-06 1988-08-23 Schlumberger Technology Corporation Mobile well-logging laboratory
US6148925A (en) * 1999-02-12 2000-11-21 Moore; Boyd B. Method of making a conductive downhole wire line system
US20090020294A1 (en) * 2007-07-18 2009-01-22 Joseph Varkey Well Access Line Positioning Assembly
US20090242194A1 (en) * 2008-03-25 2009-10-01 Joseph Varkey Reduced Nylon Hydrocarbon Application Cable
US20090260804A1 (en) * 2008-04-18 2009-10-22 Ravicharan Mydur Mobile Well Services Assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223870A (en) * 1979-04-26 1980-09-23 Lynn Bartholomew Bailer for top head drive rotary well drills
CA2355702C (en) * 1999-11-12 2004-08-31 Hydra Rig, Inc. Reel spool and stand assembly for coiled tubing injector system
NO312560B1 (en) * 2000-08-21 2002-05-27 Offshore & Marine As Intervention module for a well
US8733433B2 (en) * 2009-06-11 2014-05-27 Robert A. Coles Method and apparatus for performing continuous tubing operations
AU2010298356B2 (en) * 2009-09-22 2015-12-17 Schlumberger Technology B.V. Wireline cable for use with downhole tractor assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765435A (en) * 1985-08-06 1988-08-23 Schlumberger Technology Corporation Mobile well-logging laboratory
US6148925A (en) * 1999-02-12 2000-11-21 Moore; Boyd B. Method of making a conductive downhole wire line system
US20090020294A1 (en) * 2007-07-18 2009-01-22 Joseph Varkey Well Access Line Positioning Assembly
US20090242194A1 (en) * 2008-03-25 2009-10-01 Joseph Varkey Reduced Nylon Hydrocarbon Application Cable
US20090260804A1 (en) * 2008-04-18 2009-10-22 Ravicharan Mydur Mobile Well Services Assembly

Also Published As

Publication number Publication date
EP2746529A3 (en) 2015-12-16
US20140166270A1 (en) 2014-06-19
EP2746529A2 (en) 2014-06-25
CA2813145A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US20140166270A1 (en) System and method for positioning equipment for well logging
AU2011255632B2 (en) Apparatus and methods for providing tubing into a subsea well
US7717193B2 (en) AC powered service rig
US10081988B2 (en) Heave compensation winches
US8561693B2 (en) Mobile well services assembly
US7584809B1 (en) Mobile transport rig with four axels
US8678352B2 (en) Wireline intervention system
EP3155206B1 (en) Winches and hoisting systems with heave compensation
WO2011145947A1 (en) An apparatus and method for recuperation of hydraulic energy
US4119297A (en) Snubbing apparatus
US20160369580A1 (en) Apparatus and methods for downhole tool deployment for well drilling and other well operations
CN102373882A (en) Separated self-propelled coal mine underground drill rig
CN202431184U (en) Split self-propelled coal mine tunnel drill rig
CA2607466C (en) Ac powered service rig
US20230060029A1 (en) Systems and Method to Protect a Drilling Rig
CN201390521Y (en) Rubber belt automatic control hydraulic tensioning device
RU2087668C1 (en) Device for lowering and lifting of down-hole instruments
US20190360282A1 (en) Drilling Unit Comprising an Electric Heave-Compensation System
CN201095978Y (en) Well logging salvaging oil extraction vehicle
RU19087U1 (en) MOBILE UNIT FOR SWABING WELLS
Legaev LIFTING MECHANISMS USED FOR WELL SWABBING
KR101775044B1 (en) Hoisting Apparatus and drilling marine structure having the same
RU2387785C1 (en) Configuration of mobile drilling unit mbu 180
Briggs et al. 5. DIAMOND CORING SYSTEM PHASE IIB1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863930

Country of ref document: EP

Kind code of ref document: A1