WO2014098753A1 - A claw for a milking machine - Google Patents
A claw for a milking machine Download PDFInfo
- Publication number
- WO2014098753A1 WO2014098753A1 PCT/SE2013/051559 SE2013051559W WO2014098753A1 WO 2014098753 A1 WO2014098753 A1 WO 2014098753A1 SE 2013051559 W SE2013051559 W SE 2013051559W WO 2014098753 A1 WO2014098753 A1 WO 2014098753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- claw
- height
- peripheral position
- milk
- connection plane
- Prior art date
Links
- 210000000078 claw Anatomy 0.000 title claims abstract description 91
- 239000008267 milk Substances 0.000 claims abstract description 54
- 210000004080 milk Anatomy 0.000 claims abstract description 54
- 235000013336 milk Nutrition 0.000 claims abstract description 54
- 230000002093 peripheral effect Effects 0.000 claims abstract description 44
- 210000002445 nipple Anatomy 0.000 claims description 35
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000012780 transparent material Substances 0.000 claims description 6
- 229920001971 elastomer Polymers 0.000 claims description 4
- 239000005060 rubber Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 description 23
- 238000005406 washing Methods 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 3
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01J—MANUFACTURE OF DAIRY PRODUCTS
- A01J5/00—Milking machines or devices
- A01J5/04—Milking machines or devices with pneumatic manipulation of teats
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01J—MANUFACTURE OF DAIRY PRODUCTS
- A01J5/00—Milking machines or devices
- A01J5/04—Milking machines or devices with pneumatic manipulation of teats
- A01J5/041—Milk claw
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01J—MANUFACTURE OF DAIRY PRODUCTS
- A01J5/00—Milking machines or devices
- A01J5/04—Milking machines or devices with pneumatic manipulation of teats
- A01J5/044—Milk lines or coupling devices for milk conduits
Definitions
- the present invention refers generally to a claw, or a teatcup claw, included in a milking member of a milking machine. More specifically, the present invention refers to a so called top flow claw, where an outlet nipple, which is connected to the long milk conduit for the discharge of milk from the claw, is mounted on the top of the claw. In particular, the present invention refers to a claw according to the preamble of claim 1 . Such a claw is disclosed in US-6,058,880.
- the claw disclosed in US-6,058,880 collects milk from the teatcups via the short milk conduits.
- the collected milk is continuously transported from the claw to a suitable milk storage via the long milk conduit.
- the known claw is a top flow claw having a suction tube connecting the inner space of the claw with the outlet nipple for the discharge of the milk through the long milk conduit from the claw. This means that the milk to be transported has to be lifted from the bottom region of the inner space of the claw to the outlet nipple.
- Such top flow claws are also disclosed in US-6,006,695 and US-5,076,21 1.
- a problem to be considered is the ergonomic design of the claw.
- a claw having a large height or thickness may be difficult to grip and hold during the attachment of the teatcups to the teats of the animal to be milked. It is important that the operator may grip the claw and hold it firmly in a convenient manner during said attachment.
- the object of the present invention is to provide a claw having improved properties with respect to.
- the claw initially defined, which is characterised in that the connection plane is inclined with respect to the centre axis so that the enclosure has a first height at a first peripheral position and a second height at a second position diametrically opposite to the first peripheral position, and that the first height is greater than the second height.
- the connection plane By inclining or sloping the connection plane so that the height of the enclosure, and thus the claw, is reduced at the second peripheral position, i.e. on one side of the claw, the total volume of the inner space and the height of the inner space may be reduced.
- Such an asymmetrical design of the claw enables the provision of a shorter suction tube, and thus a reduction of the energy required for transporting the milk, and especially for lifting the milk through the suction tube to the outlet nipple.
- the reduced height of the claw is positive from an ergonomic point of view due to the fact that the claw is easier to grip and hold for the operator during the attachment of the teatcups to the teats of the animal.
- the operator he or she may choose to grip and hold the claw at the thinnest side, the thickest side or therebetween.
- the visibility of the milk flow may be maintained through the thicker side of the claw, which advantageously may comprise a transparent zone.
- the milk and the milk flow may be observed clearly and properly through a transparent zone at this position.
- a small volume of the inner space may also be advantageous with respect to the quality of the milk.
- a small volume means less air contact, and less oxidation of important substances in the milk, i.e. an improved FFA-value.
- the upper part comprises an upper wall, through which a plurality of inlet members configured for receiving a respective short milk conduit extend, and a side wall connected to the upper wall.
- the side wall has varying wall height along the periphery and a first wall height at the first peripheral position and a second wall height at the second peripheral position, wherein the first wall height is larger than the second wall height.
- the varying height or thickness of the claw may be achieved through such a varying wall height of the side wall.
- the upper wall may then extend along a cone being rotary symmetric around the centre axis.
- the asymmetry of the claw is comprised by the side wall of the upper part.
- the upper part is at least partly made of a transparent material to enable observation of the milk flow in the inner space during the milking operation.
- the upper part has a transparent zone extending at least inside the first peripheral position.
- the transparent zone extends over both the upper wall and the side wall.
- the upper part as a whole may be manufactured in a transparent material, preferably a transparent plastic material.
- the claw comprises an outlet nipple configured for being connected to a long milk conduit for the discharge of milk from inner space, and wherein the outlet nipple extends outwardly from the upper part towards the first peripheral position.
- the outlet nipple is thus located above the thicker side of the enclosure.
- the claw comprises a peripheral ring extending along the periphery at the connection plane.
- the peripheral ring may be made of a rubber material, such as natural rubber, synthetic rubber, silicon rubber etc. A rubber material facilitates for the operator to grip and to hold firmly the claw during the attachment of the teatcups to the teats.
- the peripheral ring may comprises at least one outwardly extending wing positioned between the first peripheral position and the second peripheral position. Such a wing also contributes to improve the gripping and holding of the claw during the attachment of the teatcups.
- the peripheral ring may comprise two such outwardly extending wings positioned diametrically opposite to each other.
- the upper part has at least one grip-facilitating pattern on an outer surface of the upper part, which pattern is located radially inside said wing.
- the upper part may have two grip- facilitating patterns on the outer surface of the upper part, which patterns are located radially inside a respective wing of the peripheral ring.
- the grip-facilitating pattern may be located on the upper wall and each comprise an number of ribs projecting from the outer surface of the upper wall of the upper part. The grip-facilitating pattern or patterns also improves the gripping and holding of the claw during the attachment of the teatcups to the teats of the animal.
- the lower part comprises a central depression extending inwardly.
- the depression may thus be concave seen form outside the claw and as such contribute to a better grip and holding of the claw. From the inner space the depression may be convex and hence contribute to a better milk flow from the inner space into a suction tube connecting the inner space to the outlet nipple for conveying the milk from the inner space to the outlet nipple.
- the lower part is detachably connected to the upper part along the connection plane by means of a bayonet coupling. The claw may thus be demounted by a convenient short rotation of the lower part in relation to the upper part.
- the bayonet coupling may comprise at least two pins extending from one of the upper part and the lower part, and at least two grooves provided in the other of the upper part and the lower part and each configured to receive a respective one of the pins.
- the lower part is bowl-shaped.
- the lower part may be manufactured of sheet metal or plastics.
- Fig 1 shows schematically a sectional view through a claw according to a first embodiment of the invention.
- Fig 2 shows schematically a sectional view through a claw according to a second embodiment of the invention.
- Fig 3 shows schematically a side view of a milking member comprising a claw according to the present invention.
- Fig 4 shows schematically a perspective view of a suction tube of the claw in Fig 1 .
- Fig 5 shows schematically a sectional view of the suction tube in Fig 4.
- Fig 6 shows schematically a perspective view of a suction tube of the claw in Fig 2.
- Fig 7 shows schematically a sectional view of an upper part of the claw in Figs 1 and 2.
- Fig 8 shows schematically a sectional view along the line VIII- VII I in Fig 7.
- Fig 9 shows schematically a sectional view of the claw according to the first embodiment with a valve body in an intermediate position.
- Fig 10 shows schematically a view similar to the one in Fig 9 with the valve body in an open position.
- Fig 1 1 shows schematically a view similar to the one in Fig 9 with the valve body in a closed position.
- Fig 12 shows schematically a sectional view of the claw in Fig 9 in a washing position.
- Figs 1 to 4 discloses a claw C, or a teatcup claw C, of a milking member for a milking machine.
- the claw C comprises an enclosure having an upper part 1 and a lower part 2.
- the enclosure encloses an inner space 3 for receiving milk and conveying a milk flow during a milking operation.
- the lower part 2 comprises a bottom surface 4 facing the inner space 3.
- a centre axis x extends through the enclosure and through the upper part 1 and the lower part 2.
- the upper part 1 comprises an upper end 5 having an annular shape and defining an upper end point 5', or an upper end plane.
- the upper part 1 also comprises an upper end portion 6 extending from the upper end 5.
- the upper part 1 comprises a lower annular end 7 extending along a periphery of the claw C in or at a connection plane p.
- the lower part 2 is detachably connected to the upper part 1 along the connection plane p.
- the claw C comprises a plurality of inlet members 8 configured for receiving a respective short milk conduit 9 of a respective teatcup 10 of the milking member, see Fig 3.
- Each teatcup 10 is configured to be attached to a respective teat of an animal to be milked during a milking operation.
- the milking member also comprises four short pulse conduits 1 1 , one for each teatcup 10.
- the claw C disclosed comprises four inlet members 8 which each extends through the upper part 1 to permit feeding of milk to the inner space 3 from the respective teatcup 10 and the respective teat.
- the claw C also comprises an outlet nipple 12 configured for being connected to a long milk conduit 13 for the discharge of milk from the inner space 3 to a milk receiving member 15 of a milking machine.
- the outlet nipple 12 extends outwardly with respect to the centre axis x from the upper part 1 of the enclosure.
- milk is sucked through the teatcups 10, the short milk conduits 9 into the inner space 3 of the claw C by means of the application of a milking vacuum generated by a vacuum pump (not disclosed). From the inner space 3, the milk is then sucked through the long milk conduit 13 to the milk receiving member 15 by means of the vacuum pump.
- a shut-off valve 14 may be provided on the long milk conduit 13 permitting automatic shut-off of the milk vacuum between the milking operations.
- the upper part 1 comprises an upper wall 16, through which the inlet members 8 extend, and a side wall 17 connected to the upper wall 16.
- the side wall 17 thus adjoins the upper wall 16 at an outer corner extending around the enclosure.
- the upper wall 16 adjoins the upper end portion 6 at an inner corner extending around the enclosure.
- An air inlet 18 extends into the inner space 3 from the surroundings, and in the embodiments disclosed through the upper part 1 .
- the upper wall 16 extends along a cone k, which is rotary symmetric around the centre axis x, see Fig 2.
- the side wall 17 has a varying wall height along the periphery of the claw C. More specifically, the side wall 17 has a first wall height that a first peripheral position and a second wall height at a second peripheral position p 2 . The first wall height is larger than the second wall height.
- the first peripheral position p ⁇ ⁇ is diametrically opposite to the second peripheral position p 2 .
- connection plane p is inclined with respect to the centre axis x so that the enclosure have a first height at the first peripheral position p- ⁇ and a second height at the second peripheral position p 2 , i.e. that the first height is greater than the second height.
- the connection plane p thus forms an angle a of inclination to a plane perpendicular to the centre axis x, or horizontal plane.
- the angle a may be 4-8°, for instance 6° or approximately 6°. In the embodiments disclosed, this varying height of the claw C is thus achieved by varying the wall height of the side wall 17.
- the varying height also could be achieved by a non-rotary symmetric configuration of the upper wall 16 so that at least a part of the varying height of the claw C is achieved by the upper wall 16.
- the lower part 2 is rotary symmetric with respect to an axis x' of rotation, which axis x' is perpendicular to the connection plane p see Fig 2, and thus forms an angle of indication to the centre axis x, being equal to the angle a.
- the claw C also comprises a suction tube 20 which is provided in the inner space 3 and which connects the inner space 3 to the outlet nipple 12 for conveying the milk from the inner space 3 to the outlet nipple 12.
- the suction tube 20 comprises a lower tube section 20a, an intermediate tube section 20b and an upper tube section 20c, see Figs 4-6.
- the upper tube section 20c extends from an upper end of the suction tube 20 to the intermediate tube section 20b, and the intermediate tube section 20b extends from the upper tube section 20c to the lower tube section 20a.
- the lower tube section 20a is positioned above and in the proximity of the bottom surface 4 of the lower part 2.
- the suction tube 20 comprises at least one support leg 21 extending from the lower tube section 20a and abutting the bottom surface 4.
- the suction tube 20 may comprises more than one support legs 21 , such as two or three as in the following description of the embodiments.
- each support leg 21 has an end point.
- the end points of the support legs 21 are located in a common lower plane p' which is inclined to the centre axis x, and which is parallel with the connection plane p.
- the upper end of the suction tube 20 defines an upper plane which also is inclined to the common lower plane p'.
- the suction tube 20 is a separate part which may be attached by friction to the upper part 1 .
- the upper tube section of 20c of the suction tube 20 is tapering from the upper end to the intermediate tube section 20b to form an internal space which is a concavely shaped as can be seen in Figs 1 ,2 and 4-6.
- the upper tube section 20c has a convexly shaped outer surface.
- the intermediate tube section 20b is cylindrical, or substantially cylindrical.
- the lower tube section 20a comprises a thickened torus-shaped ring with a radius r, when seen in a cross sectional plane including the centre axis x.
- the suction tube 20 has an inner radius R at the lower tube section 20a.
- the relation r/R lies in the range 0,3 to 0,7, for instance 0,45, see Figs 5 and 6.
- the suction tube 20 is shown in two variants one first variant for the first embodiments shown in Figs 1 , 4 and 5, and a second variant for the second embodiment shown in Figs 2 and 6.
- the gap between the lower tube section 20a and the bottom surface 4 has a varying height with a first height at a first position along the lower tube section 20a, and a second height at a second position along the lower tube section 20a.
- the second position is diametrically opposite to the first position.
- the first height is greater than the second height.
- the first position is located on the same radial line as the first peripheral position with respect to the centre axis x.
- the second position is located at the same radial line as the second peripheral position with respect to the centre axis x.
- at least one of the support legs 21 has a length that is different from the length of at least one of the other support legs 21.
- the lower tube section 20a defines an annular end line from which the support legs 21 extend.
- the annular end line defines an end plane p e , see Fig 6, which is inclined in relation to the centre axis x.
- all support legs 21 have the same length.
- the upper part 1 is at least partly made of a transparent material to enable observation of the milk flow in the inner space 3 during the milking operation.
- the whole upper part 1 may be made of the same transparent material. It is important that there is a transparent zone extending inside the first peripheral position where the side wall 17 has the largest height.
- the lower part 2 may be made of a plastic, transparent or non-transparent material as illustrated in Fig 1.
- the lower part 2 may also be made of a metallic material as illustrated in Fig 2.
- the lower part 2 is bowl-shaped. Thus, the lower part 2 forms a part space of the inner space 3.
- the part space tapers from the connection plane p, as can be seen in Figs 1 and 2.
- the lower part 2 comprises a central depression 25 extending inwardly into the inner space 3 towards the interior of the suction tube 20.
- the lower part 2 tapers to the central depression 25.
- the lower part 2 is rotary symmetric with respect to the axis x' of rotation.
- the central depression 25 is also rotary symmetric with respect to the axis x' of rotation.
- the lower part 2 is detachably connected to the upper part 1 along the connection plane p by means of a bayonet coupling as can be seen in Figs 1 , 2 and 7.
- the bayonet coupling comprises at least two pins 26 extending from one of the upper part 1 and the lower part 2, in the present case from the upper part 1 .
- the bayonet coupling also comprises at least two grooves 27 which in the present case thus is provided in the lower part 2, and configured to receive a respective one of the pins 26.
- the lower part 2 may be easily detached from the upper part 1 , and attached to the upper part 1.
- Such a bayonet coupling will also contribute to compress an annular gasket 28, see Fig 1 , provided between the upper part 1 and the lower part 2 at the connection plane p, to seal the inner space 3 from the environment.
- the claw C also comprises a peripheral ring 29, which extends along the periphery of the claw C at the connection plane p, see Fig 2 and 8.
- the peripheral ring 29 is made of an elastic material, for instance a rubber material, such as natural rubber or silicon rubber.
- the peripheral ring 29 comprises at least one, in the present case two, outwardly extending wings 30 positioned between the first peripheral position and the second peripheral position.
- the upper part 1 has at least one, in the present case, two grip-facilitating patterns 31 provided on the outer surface of the upper part 1 , see Figs 3 and 8.
- the patterns 31 are located radially inside a respective one of the wings 30.
- Each pattern 31 comprises three ribs on different distance from the centre axis x. The ribs extend in parallel with each other and the periphery of the enclosure.
- the claw C also comprises a closing valve 33, which comprises a valve body 34 provided at the upper tube section 20c of the suction tube 20.
- the valve body 34 is movable to a closed position, see Fig 1 1 , in which the passage from the inner space 3 to the outlet nipple 12 is closed, and to an open position, see Fig 10, in which the passage from the inner space 3 to the outlet nipple 12 is open.
- the closing valve 33 also comprises a membrane 35 which is connected to the valve body 34 and attached to the upper end portion 6 of the upper part 1 .
- the membrane 35 has a rest state, in which the membrane 35 holds the valve body 34 in an intermediate position between the open position and the closed position, see Fig 9.
- the membrane 35 In the rest state, there is no pressure difference over the valve body 34, i.e. the pressure on one side of the valve body 34, i.e. in the inner space 3, is equal to the pressure on the other side of the valve body 34, i.e. inside the outlet nipple 12. Moreover, in the rest state the membrane 35 may be in its most relaxed state with a minimum of internal tensions or stresses.
- the membrane 35 is configured for automatically moving the valve body 34 to the open position, to the closed position or to the intermediate position, see Fig 9, between the open position and the closed position.
- the closing valve 33 and the membrane 35 is configured in such a way that the valve body 34 may be moved, or moved very quickly, from the intermediate position to the closed position or to the open position.
- the configuration of the membrane 35 to take the intermediate position when the membrane 35 is in its rest position thus provides for a closing valve 33 having a quick response.
- the closing valve 33 comprises a physical stop member defining the open position.
- the physical stop member comprises at least three projections 36 projecting into the internal space of the upper tube section 20c of the suction tube 20.
- the closing valve 33 also comprises a valve seat 37 defining the closed position. The valve body 34 thus rests against the valve seat 37 in the closed position.
- a leakage channel 38 is provided for permitting a leakage flow from the inner space 3 to the outlet nipple 12 when the valve body 34 is in the closed position.
- the leakage channel 38 is formed by a recess in the valve seat 37 as can be seen in Figs 1 and 1 1.
- the closing valve 33 comprises a button member 39 connected to the valve body 34 via a rod 40.
- the button member 39 permits manual moving of the valve body 34, in particular towards the open position.
- the button member 39 projects upwardly from the upper part 1 .
- the claw C also comprises a housing 43, see Figs 7 and 8, which is attached to the enclosure and encloses the button member 39.
- the housing 43 comprises a cover 44 located outside the button member 39 to permit the manual moving of the valve body 34 by manual pressing of the cover 44.
- the cover 44 is in the embodiment disclosed a part of an insert member 45 attached to an upper end portion of the housing 43 by means of a bayonet coupling 46.
- the insert member 45 comprises a base portion 47 to which the cover 44 is attached.
- the base portion 47 is made of a first material and the cover 44 is made of another, second material.
- the second material is resilient, or more resilient that the first material, thereby permitting the cover 44 to be elastically deformed.
- the housing 43 comprises two separate channels, a first channel 51 and a second channel 52, see Fig 7.
- Each channel 51 , 52 has an inlet pipe 54, see Fig 7, and two outlet pipes 56, see Fig 8, for distributing a pulsating vacuum to the teatcups 10.
- the inlet pipes 54 and the outlet pipes 56 extend in parallel with each other, and with the outlet nipple 12.
- the two outlet pipes 56 of the first channel 51 extend in opposite directions, as well as the two outlet pipes 56 of the second channel 52.
- the membrane 35 is configured to move the valve body 34 to and hold the valve body 34 in the open position against the physical stop member 36, when there is a milk flow through all of the inlet members 8, i.e. during milking of the animal.
- the membrane 35 is also configured to hold the valve body 34 in the open position when there is no milk flow, i.e. when all the short milk conduits 9 are closed, since the pressure in the outlet nipple 12 will be lower than in the inner space 3.
- the teatcups 10 will be closed when all teatcups 10 are hanging downwardly, thereby bending the short milk conduits 9 to close and prevent air from entering the inner space 3 of the claw C.
- the membrane 35 is configured to move the valve body 34 to and to hold the valve body 34 in the closed position against the valve seat 37, when the milk flow through one of the inlet members 8 is interrupted.
- the membrane 35 is configured to move immediately, or substantially immediately, the valve body 34 to the closed position in order to prevent air from entering the inner space 3 of the claw C.
- the short milk conduit 9 When the teatcup 10 has fallen down completely the short milk conduit 9 will be closed. Thanks to the leak flow through the leakage channel 38, vacuum or a low pressure is created in the inner space 3, permitting the membrane 35 to move the valve body 34 once again to the open position, thereby permitting milking through the three teatcups 10 remaining on the respective teats. This procedure will be repeated at least also in case a second teatcup 10 falls off the teat, and possibly also in case a third teatcup 10 falls off the teat. With reference to Fig 9, the membrane 35 is configured to hold the valve body 34 in the intermediate position, between the closed position and the open position, during the application of the teatcups 10 to the respective teats of the animal.
- the teatcups 10 When the operator holds the claw C in un upright position, as illustrated in Fig 5, before the teatcups 10 are attached to the teats, the teatcups 10 will all hang down and the short milk conduits 9 will be closed.
- the membrane 35 When the operator lifts the first teatcup 10, the membrane 35 will move the valve body 34 from the open position shown in Fig 12 to the intermediate position shown in Fig 9.
- the membrane 35 When the first teatcup 10 is attached the membrane 35 will move the valve body back to the open position shown in Fig 10. This procedure is repeated until all four teatcups 10 have been attached to the respective teats.
- the membrane 35 is thus configured to move the valve body 34 first to the intermediate position when a first teatcup 10 is lifted so that air may be sucked into the inner space 3 of the claw. Thanks to the leakage channel 38, the pressure difference over the valve body 34 will be reduced or removed when the valve body 34 is in the closed position, permitting the membrane 35 to move the valve body 34 to the intermediate position. From this intermediate position, the membrane 35 will then move the valve body 34 to the open position when said first teatcup 10 has been attached since the pressure in the inner space 3 will be reduced and become lower than the pressure in the outlet nipple 12. Consequently, the valve body 34 will, as explained above, respond quickly, i.e. open quickly when the first teatcup 10 is attached since the valve body 34 is starting from the intermediate position and thus moved only a short distance from the intermediate position to the open position.
- Fig 12 shows the claw C in a up-side down position, suitable for washing of the claw C and the teatcups 10 of the milking member.
- the membrane 35 is configured to hold the valve body 34 in the open position during the washing operation.
- the milking vacuum is shut-off, for instance automatically by means of the shut-off valve 14, which means that the membrane 35 will move the valve body 34 to the intermediate position.
- the teatcups 10 and the claw C are positioned in the up-side down washing position, whereby the teatcups 10 are placed on suitable washing nozzles (not disclosed).
- the shut-off valve 14 is opened and the vacuum is applied causing the membrane 35 to move the valve body 34 to the open position so that washing liquid may be sucked and conveyed through the milking member.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Animal Husbandry (AREA)
- Environmental Sciences (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/649,621 US10111400B2 (en) | 2012-12-19 | 2013-12-18 | Claw for a milking machine |
PL13824420T PL2934102T3 (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
CN201380066559.8A CN104869813B (en) | 2012-12-19 | 2013-12-18 | Clawpiece for milking machine |
RU2015129495A RU2656253C2 (en) | 2012-12-19 | 2013-12-18 | Collector for milking machine |
CA2895296A CA2895296C (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
NZ709565A NZ709565A (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
AU2013364471A AU2013364471B2 (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
BR112015014530A BR112015014530B1 (en) | 2012-12-19 | 2013-12-18 | a grapple for a milking machine |
ES13824420T ES2696698T3 (en) | 2012-12-19 | 2013-12-18 | Manifold for milking machine |
JP2015549318A JP6367225B2 (en) | 2012-12-19 | 2013-12-18 | Claw for milking machine |
EP13824420.7A EP2934102B1 (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261739122P | 2012-12-19 | 2012-12-19 | |
SE1251457 | 2012-12-19 | ||
US61/739,122 | 2012-12-19 | ||
SE1251457-6 | 2012-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014098753A1 true WO2014098753A1 (en) | 2014-06-26 |
Family
ID=50978887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2013/051559 WO2014098753A1 (en) | 2012-12-19 | 2013-12-18 | A claw for a milking machine |
Country Status (12)
Country | Link |
---|---|
US (1) | US10111400B2 (en) |
EP (1) | EP2934102B1 (en) |
JP (1) | JP6367225B2 (en) |
CN (1) | CN104869813B (en) |
AU (1) | AU2013364471B2 (en) |
BR (1) | BR112015014530B1 (en) |
CA (1) | CA2895296C (en) |
ES (1) | ES2696698T3 (en) |
NZ (1) | NZ709565A (en) |
PL (1) | PL2934102T3 (en) |
RU (1) | RU2656253C2 (en) |
WO (1) | WO2014098753A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE6604310U (en) * | 1968-04-17 | 1970-01-02 | Utina Elektrowerk Gmbh | MILKING UNITS FOR MILKING MACHINES |
SU1523139A1 (en) * | 1988-02-22 | 1989-11-23 | Иркутский сельскохозяйственный институт | Collector of milking apparatus |
SU1639537A1 (en) * | 1989-03-01 | 1991-04-07 | Иркутский Научно-Исследовательский Институт Сельского Хозяйства | Collector of milking apparatus |
US5076211A (en) | 1988-05-04 | 1991-12-31 | Alfa-Laval Agriculture International Ab | Teat cup claw |
US6006695A (en) | 1996-02-05 | 1999-12-28 | Alfa Laval Agri Ab | Claw for a milking machine |
US6058880A (en) | 1996-02-05 | 2000-05-09 | Alfa Laval Agri Ab | Claw for a milking machine |
RU2457675C2 (en) * | 2010-04-14 | 2012-08-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Рязанский государственный агротехнологический университет имени П.А. Костычева" | Milking machine |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2735399A (en) * | 1956-02-21 | J j j henrard | ||
US1363739A (en) * | 1915-10-29 | 1920-12-28 | Mjolkningsmaskinen Manus Ab | Milking-machine |
US1477978A (en) * | 1923-04-20 | 1923-12-18 | Sabroe Axel | Milking machine |
US2683437A (en) * | 1950-11-01 | 1954-07-13 | Babson Bros Co | Milking system |
US2783737A (en) * | 1951-02-01 | 1957-03-05 | Babson Bros Co | Milk receiving assembly for a carry away milking system |
US2706965A (en) * | 1951-04-06 | 1955-04-26 | Babson Bros Co | Receptacle for milking apparatus |
US2777420A (en) * | 1951-02-16 | 1957-01-15 | Schilling Electric Company | Milking apparatus |
US2775225A (en) * | 1954-12-15 | 1956-12-25 | Nat Cooperatives Inc | Milking machine claw assembly |
GB776020A (en) | 1955-01-06 | 1957-05-29 | Alfa Laval Co Ltd | Improvements in or relating to mechanical milking equipment |
US2869512A (en) * | 1955-06-24 | 1959-01-20 | Babson Bros Co | Milker |
US2896574A (en) | 1956-05-15 | 1959-07-28 | Larsen Johannes Peter | Milking claw for a milking machine |
GB855778A (en) * | 1957-05-10 | 1960-12-07 | Separator Ab | Improvements in or relating to milking machines |
US3029787A (en) * | 1959-05-07 | 1962-04-17 | Ideal Mfg Co | Claw assembly for milking machines |
US3014455A (en) | 1959-10-22 | 1961-12-26 | Olander Karl Erik | Claw pieces for milking machines |
US3172391A (en) * | 1962-09-28 | 1965-03-09 | Laval Separator Co De | High speed milking system |
US3139856A (en) * | 1962-12-06 | 1964-07-07 | Perfection Mfg Corp | Milking apparatus |
US3150637A (en) * | 1963-01-29 | 1964-09-29 | Kenneth E Fosnes | Milking machine milker |
DK119141B (en) | 1969-01-23 | 1970-11-16 | Christensen & Co As S A | Milking machine manifold. |
US3726252A (en) * | 1971-01-11 | 1973-04-10 | Babson Bros Co | Automatic milker |
US3741161A (en) * | 1971-06-03 | 1973-06-26 | Z Zhuk | Milking apparatus for milking lactiferous animals |
FR2419012A1 (en) * | 1978-03-08 | 1979-10-05 | Happel Fritz | MECHANICAL PROCESSING PROCESS AND DEVICE |
NZ194639A (en) * | 1979-09-11 | 1983-05-31 | Nat Res Dev | Clawpiece with four one-way inlet valves closure members act under gravity |
US4287853A (en) * | 1980-03-24 | 1981-09-08 | Duncan Lloyd P | Milking device |
US4434744A (en) * | 1982-04-19 | 1984-03-06 | Ahi Operations Limited | Methods of and/or apparatus for milking animals |
US4671209A (en) * | 1985-08-26 | 1987-06-09 | Whittlestone Walter G | Teat cup claw |
CH673775A5 (en) * | 1987-07-10 | 1990-04-12 | Jacques Verlier | |
US4907535A (en) * | 1988-06-01 | 1990-03-13 | Orion Machinery Co. Ltd. | Milk-claw for milking machines |
US5291853A (en) * | 1993-04-08 | 1994-03-08 | Dec International, Inc. | Top unloaded milking claw |
SE511150C2 (en) * | 1996-02-05 | 1999-08-09 | Alfa Laval Agri Ab | claw |
US6439157B1 (en) * | 1997-05-12 | 2002-08-27 | Delaval Holding Ab | Device arranged to permit an air flow from an environment to an inner space |
USD418951S (en) | 1998-05-19 | 2000-01-11 | Alfa Laval Agri Ab | Asymmetric teat cup claw |
SE514185C2 (en) * | 1999-03-19 | 2001-01-22 | Alfa Laval Agri Ab | Valve |
US6401655B1 (en) * | 2000-04-13 | 2002-06-11 | Delaval Inc. | Milking claw with concave window |
CN2580753Y (en) * | 2002-09-20 | 2003-10-22 | 李明永 | Milking utensil |
US7021239B2 (en) * | 2004-04-20 | 2006-04-04 | Bou-Matic Technologies Corp. | Milking claw top |
US6981468B1 (en) * | 2004-04-20 | 2006-01-03 | Bou-Matic Technologies Corp. | Milking claw bottom |
DE102005017094A1 (en) * | 2005-04-13 | 2006-10-19 | Werner Happel | Milk collecting device used on e.g. cows, has pipe arranged inside milk collection area, in which pipe has longitudinal axis set in milking position and running parallel to space occupied by animal being milked |
US20070272160A1 (en) * | 2006-05-10 | 2007-11-29 | Michael Berentzen | Modified milk-collecting component |
DE102006022624B4 (en) | 2006-05-12 | 2010-10-21 | Gea Westfaliasurge Gmbh | Milk collecting piece, especially for goats and sheep |
AU2007293810B2 (en) * | 2006-09-05 | 2013-09-19 | Maasland N.V. | A milking implement |
CN101258837A (en) * | 2008-04-23 | 2008-09-10 | 哈尔滨爱特科畜牧机械有限公司 | Vortex type milk collector |
EP2179644B1 (en) | 2008-10-21 | 2011-06-29 | Interpuls S.P.A. | Manifold device for milking plants |
WO2011068609A2 (en) * | 2009-12-02 | 2011-06-09 | Avon Polymer Products Limited | Mouthpiece-vented teat cup inflation |
RU97592U1 (en) * | 2010-04-21 | 2010-09-20 | Станислав Владимирович Дорофеев | COLLECTOR OF THE MILKING MACHINE |
US8662013B2 (en) * | 2012-08-01 | 2014-03-04 | Milkline S.R.L. | Gripping device for a milking unit |
US9439391B2 (en) * | 2012-12-07 | 2016-09-13 | Lauren Agrisystems, Ltd. | Dairy milking devices and methods |
ES2647875T3 (en) * | 2012-12-19 | 2017-12-27 | Delaval Holding Ab | A mouth for a milking machine |
US20140209030A1 (en) * | 2013-01-28 | 2014-07-31 | Stanley A. Brown | High Capacity Milking Claw |
-
2013
- 2013-12-18 WO PCT/SE2013/051559 patent/WO2014098753A1/en active Application Filing
- 2013-12-18 JP JP2015549318A patent/JP6367225B2/en active Active
- 2013-12-18 ES ES13824420T patent/ES2696698T3/en active Active
- 2013-12-18 BR BR112015014530A patent/BR112015014530B1/en active IP Right Grant
- 2013-12-18 AU AU2013364471A patent/AU2013364471B2/en active Active
- 2013-12-18 RU RU2015129495A patent/RU2656253C2/en active
- 2013-12-18 CN CN201380066559.8A patent/CN104869813B/en active Active
- 2013-12-18 PL PL13824420T patent/PL2934102T3/en unknown
- 2013-12-18 CA CA2895296A patent/CA2895296C/en active Active
- 2013-12-18 EP EP13824420.7A patent/EP2934102B1/en active Active
- 2013-12-18 US US14/649,621 patent/US10111400B2/en active Active
- 2013-12-18 NZ NZ709565A patent/NZ709565A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE6604310U (en) * | 1968-04-17 | 1970-01-02 | Utina Elektrowerk Gmbh | MILKING UNITS FOR MILKING MACHINES |
SU1523139A1 (en) * | 1988-02-22 | 1989-11-23 | Иркутский сельскохозяйственный институт | Collector of milking apparatus |
US5076211A (en) | 1988-05-04 | 1991-12-31 | Alfa-Laval Agriculture International Ab | Teat cup claw |
SU1639537A1 (en) * | 1989-03-01 | 1991-04-07 | Иркутский Научно-Исследовательский Институт Сельского Хозяйства | Collector of milking apparatus |
US6006695A (en) | 1996-02-05 | 1999-12-28 | Alfa Laval Agri Ab | Claw for a milking machine |
US6058880A (en) | 1996-02-05 | 2000-05-09 | Alfa Laval Agri Ab | Claw for a milking machine |
RU2457675C2 (en) * | 2010-04-14 | 2012-08-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Рязанский государственный агротехнологический университет имени П.А. Костычева" | Milking machine |
Also Published As
Publication number | Publication date |
---|---|
BR112015014530B1 (en) | 2020-05-19 |
JP6367225B2 (en) | 2018-08-01 |
CN104869813B (en) | 2018-04-17 |
PL2934102T3 (en) | 2019-01-31 |
AU2013364471B2 (en) | 2017-02-16 |
EP2934102A1 (en) | 2015-10-28 |
NZ709565A (en) | 2017-10-27 |
CA2895296A1 (en) | 2014-06-26 |
CN104869813A (en) | 2015-08-26 |
US20150313173A1 (en) | 2015-11-05 |
EP2934102B1 (en) | 2018-10-24 |
BR112015014530A2 (en) | 2017-09-26 |
ES2696698T3 (en) | 2019-01-17 |
US10111400B2 (en) | 2018-10-30 |
CA2895296C (en) | 2021-02-23 |
RU2015129495A (en) | 2017-01-26 |
JP2016501035A (en) | 2016-01-18 |
RU2656253C2 (en) | 2018-06-04 |
AU2013364471A1 (en) | 2015-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102085749B1 (en) | Breast pump | |
EP2934100B1 (en) | A milk conduit and a milking member | |
WO2015150807A1 (en) | A clawbowl for a milking cluster | |
EP2934099B1 (en) | A claw for a milking machine | |
EP2934102B1 (en) | A claw for a milking machine | |
EP2934101B1 (en) | A claw for a milking machine | |
US2887986A (en) | Vacuum milking machines | |
KR101546376B1 (en) | The Milker | |
TR201816522T4 (en) | A claw for a milking machine. | |
KR101724047B1 (en) | The Milker | |
RU61505U1 (en) | LOW VACUUM MILKING MACHINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13824420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015549318 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14649621 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2895296 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013824420 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015129495 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013364471 Country of ref document: AU Date of ref document: 20131218 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015014530 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015014530 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150618 |