WO2014098279A1 - Wireless power receiving apparatus capable of improving efficiency and power delivery using modulation of effective load resistance of receiving end - Google Patents

Wireless power receiving apparatus capable of improving efficiency and power delivery using modulation of effective load resistance of receiving end Download PDF

Info

Publication number
WO2014098279A1
WO2014098279A1 PCT/KR2012/011077 KR2012011077W WO2014098279A1 WO 2014098279 A1 WO2014098279 A1 WO 2014098279A1 KR 2012011077 W KR2012011077 W KR 2012011077W WO 2014098279 A1 WO2014098279 A1 WO 2014098279A1
Authority
WO
WIPO (PCT)
Prior art keywords
load resistance
wireless power
power
modulation circuit
receiver
Prior art date
Application number
PCT/KR2012/011077
Other languages
French (fr)
Korean (ko)
Inventor
홍성철
안덕주
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN201280078160.7A priority Critical patent/CN104937810B/en
Publication of WO2014098279A1 publication Critical patent/WO2014098279A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a wireless power transmission system, and more particularly to a wireless power receiving apparatus for improving the transmission power by using the effective load resistance modulation of the receiving end.
  • the wireless power transmission system is mainly composed of a transmitter DC power supply, a transmitter resonant inverter, a transmission resonator, a reception resonator, a rectifier circuit unit, and a power converter.
  • a transmitter DC power supply a transmitter resonant inverter
  • a transmission resonator a transmission resonator
  • a reception resonator a rectifier circuit unit
  • a power converter mainly composed of a power supply, a transmitter resonant inverter, a transmission resonator, a reception resonator, a rectifier circuit unit, and a power converter.
  • the problem is that it is difficult to change the load resistance at will.
  • the load resistance is determined by the power requirements of the devices that actually consume power, not the design variables of the system. Impedance conversion circuitry can convert the effective load resistance seen by the receiving resonator and improve performance.
  • the existing impedance conversion circuits could not change the impedance conversion ratio freely and had a fixed conversion ratio.
  • the power-conversion circuitry behind the existing receivers only had the ability to limit power when more power was received than required. Therefore, when the received power was less than the required power, it was not possible to supply enough of the desired power to the actual load resistor.
  • the purpose of the present patent is not to control the power, but to improve the resonator efficiency with the help of a power conversion circuit. Even though the proposed receiver receives the same power at the same distance, its efficiency increases because it operates in amplified its own equivalent resistance (reflected resistance). Higher efficiency is obtained when adding the proposed load resistance modulator than without.
  • the problem to be solved by the present invention is that the conventional impedance conversion circuits used in the conventional wireless power transmission system can not change the impedance conversion ratio at will and have a fixed conversion ratio, so that a specific distance or a specific loading between the transmitter and the receiver Performance can be optimized under current conditions, but wireless power transfer improves transfer power by using effective load resistance modulation at the receiver to resolve the problem of performance deterioration and system instability when distance or loading current changes. To provide a system.
  • Wireless power receiver for solving the above problems is a receiver for receiving power from a power transmitter; A rectifying circuit unit rectifying and outputting a current output from the receiving unit; And a control signal including a duty ratio, and adjusts the flow of current applied from the rectifying circuit part according to the received control signal to vary the magnitude of the effective load resistance, thereby improving efficiency. It includes a; load resistance modulator for increasing the size of the resistance.
  • the overall system efficiency and output power can be increased by changing the effective load resistance in the direction in which the loaded-Q of the receiver increases to increase the reflected resistance projected by the transmitter.
  • the equivalent resistance can be increased. It has the advantage of maintaining power.
  • 1 is an exemplary diagram showing a correlation between a series receiving resonator and an equivalent resistance.
  • FIG. 2 is an exemplary diagram showing a correlation between a parallel receiving resonator and an equivalent resistance.
  • FIG. 3 is a block diagram showing a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 4 is an exemplary diagram illustrating an example of the rectification circuit diagram illustrated in FIG. 3.
  • FIG. 5 is an exemplary diagram illustrating a first modulation circuit (boost type modulation circuit) which is a first embodiment of a load resistance modulator of the present invention.
  • FIG. 6 is an exemplary diagram illustrating a second modulation circuit (boost type modulation circuit) which is a second embodiment of the load resistance modulator of the present invention.
  • FIG. 7 is an exemplary view showing a third modulation circuit (SEPIC type modulation circuit) which is a third embodiment of the load resistance modulator of the present invention.
  • SEPIC type modulation circuit SEPIC type modulation circuit
  • FIG. 8 is an exemplary view illustrating a fourth modulation circuit (buck type modulation circuit) as a fourth embodiment of the load resistance modulator of the present invention.
  • FIG. 9 is an exemplary diagram illustrating a fifth modulation circuit (a flyback modulation circuit receiving a pulsating DC voltage input), which is a fifth embodiment of the load resistance modulator of the present invention.
  • FIG. 10 is an exemplary diagram illustrating a sixth modulation circuit (buck-boost-cascade) as a sixth embodiment of a load resistance modulator of the present invention.
  • 11 is an exemplary diagram illustrating an example of equivalent conversion of the receiver in series or parallel in order to increase the equivalent resistance through load resistance modulation when the receiver of the present invention is mixed in a series resonance structure and a parallel resonance structure. .
  • FIG. 12 is a flowchart illustrating a method of driving the wireless power receiver shown in FIG. 3.
  • FIG. 13 is a flowchart illustrating a method of driving the wireless power transmission system shown in FIG. 3.
  • Figure 14 (a) is a graph comparing the transmission power according to the change in the distance between the wireless power transmission apparatus and the wireless power receiver between the present invention and the conventional invention
  • Figure 14 (b) is a view of the present invention and the conventional invention It is a graph comparing the transmission power according to the distance change between the transmitter and the receiver. (Load-modulated: Inventive, Rectifier-only)
  • Figure 15 (a) is a graph comparing the efficiency of the transmission power according to the distance at 21.6W output in the present invention and the conventional invention
  • Figure 15 (b) is the transmission power at 10.9W output in the present invention and the conventional invention
  • This is a graph comparing the efficiency of (Load-modulated: the present invention, Rectifier-only: conventional invention).
  • Embodiments according to the concept of the present invention may be variously modified and may have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
  • the size of the equivalent resistance in the wireless power transmission apparatus can be represented by Equation 1 described below.
  • k is the coupling coefficient between the transmitting coil in the transmitter and the receiving resonator in the receiver
  • L1 is the inductance of the transmitting coil
  • the loaded-Q of the receiving resonator is Q RX
  • the resonance frequency of the resonators and the inverter switching frequency are w0.
  • the coupling effect between the transmission coil and the receiver is represented by one equivalent resistance (R reflected ) to the transmission coil.
  • R reflected Equivalent resistance (R reflected ) is referred to as reflected resistance because the effect of the receiver is projected onto the transmission coil.
  • the equivalent resistance R reflected is connected in series with the parasitic resistance R TXparasitic of the transmitting coil L1. Therefore, increasing the equivalent resistance (R reflected ) is a condition of high efficiency and high output.
  • the equivalent resistance is dependent on Q RX with reference to Equation 1, and Q RX is again determined by the load resistance of the receiving resonator.
  • the effective load resistance and the equivalent resistance of the receiving resonator are varied through the load resistance modulation circuit to increase the efficiency of the transmission power and the transmission power.
  • FIG. 3 is a block diagram showing a wireless power transmission system according to an embodiment of the present invention.
  • 4 is an exemplary diagram illustrating an example of the rectification circuit diagram illustrated in FIG. 3.
  • the wireless power transmission system 300 of the present invention includes a wireless power transmission device 100 and a wireless power reception device 200.
  • the wireless power transmitter 100 transmits power.
  • the wireless power transmission apparatus 100 includes a DC power supply and a transmission resonator, and performs a function of transmitting power generated from the DC power supply to the outside through the inductor L1 in the rosin resonance part.
  • the wireless power receiver 200 adjusts the size of the equivalent resistance to improve wireless power transmission efficiency.
  • the wireless power receiver 200 includes a receiver 120, a rectifier circuit 130, and a load resistance modulator 140.
  • the receiver 120 receives power from the wireless power transmitter.
  • the rectifier circuit 130 rectifies and outputs the current output from the receiver 120.
  • the load resistance modulator 140 receives a control signal including a duty ratio and adjusts the flow of current applied from the rectifier circuit 130 according to the received control signal CNT. By varying the magnitude of the load resistor, the magnitude of the equivalent resistor in the power transmitter is adjusted to improve the efficiency.
  • the control signal CNT controls the driving of the load resistance modulator 140. More specifically, the control signal CNT is a control signal CNT that is a pulse signal having a fixed or variable duty ratio. It periodically turns on / off the switching element in the modulator 140.
  • the receiver 120 may be configured such that the inductor L and the capacitor C have a series or parallel connection structure or a mixture of series and parallel. A more detailed description will be given with reference to FIG. 10 described below.
  • the rectifier circuit 130 includes a first rectifier 131, a second rectifier 132, and a rectifier circuit output filter 133, and the current rectified from the receiver 120. Is applied to the load resistance modulator 140.
  • the first rectifier 131 has two diodes D connected in series through a first node n1
  • the second rectifier 132 has two diodes D connected through a second node n2.
  • the first rectifier 131 and the second rectifier 132 are connected in parallel.
  • the rectifier circuit 130 is connected in parallel with the rectifier circuit output filter (C).
  • the alternating current applied by the receiving unit 120 is output as a direct current through the output filter C of the rectifying circuit unit 130 via a diode which is a rectifying element of the first rectifying unit 131.
  • the load resistance modulator 140 adjusts the flow of the current applied from the rectifier circuit 130 to change the size of the load resistor R L. More specifically, the flow of the current applied from the rectifier circuit 130 is adjusted to increase or decrease the magnitude of the effective load resistance.
  • FIG. 5 is an exemplary diagram illustrating a first modulation circuit (boost type modulation circuit) which is a first embodiment of a load resistance modulator of the present invention.
  • the load resistance modulator 140 is variable according to the connection structure of the inductor L and the capacitor C in the receiver 120, and in the case of the series connection structure, A first modulation circuit 210, a second modulation circuit 220, or a third modulation circuit 230, and in the case of a parallel connection structure, the fourth modulation circuit 240, the fifth modulation circuit 250, Or a sixth modulation circuit 260.
  • the first modulation circuit 210 may be a boost type circuit including an inductor 211, a first switching element 212, a second switching element 213, and a capacitor 214.
  • one end of the inductor 211 is connected to the rectifier and the other end is connected to the third node N3.
  • the drain terminal of the first switching element 212 is connected to the third node N3 and the source terminal is connected to the fourth node N4.
  • One end of the second switching element 213 is connected to the third node N3 and the other end thereof is connected to the fifth node N5.
  • the control signal CNT which is a pulse signal, is applied to the gate terminal of the first switching element 212.
  • the duty ratio of the control signal CNT may have a fixed value or may vary according to the output voltage of the load resistor.
  • the first switching element 212 and the second switching element 213 are alternately turned on.
  • the current flowing in the inductor 211 becomes larger (current buildup).
  • the current flowing through the inductor is built up through the first switching element 212 and the rectifier circuit 130.
  • the voltage applied to the third node N3 increases, and the second switching element 213 is turned on at the moment when the first switching element 212 becomes higher than or equal to the threshold voltage of the second switching element 213. Accordingly, the current flowing through the inductor 211 is applied to the load resistor RL.
  • the first modulation circuit 210 adjusts the current flow according to the duty ratio of the control signal CNT, which is a pulse signal, thereby making the input resistance smaller than the conventional load resistance, thereby making it equivalent in the wireless power transmitter 100. Can increase resistance. This increases the transmission efficiency and the amount of power of the wireless power.
  • FIG. 6 is an exemplary view showing a second modulation circuit (boost type modulation circuit) which is a second embodiment of the load resistance modulator of the present invention.
  • boost type modulation circuit boost type modulation circuit
  • the second modulation circuit 220 is a circuit diagram illustrating an example of a boost type circuit that receives a pulsating DC current.
  • the second modulation circuit 220 includes a first switching element 221, a second switching element 222, and a capacitor 223.
  • the drain terminal of the first switching element 221 is connected to the third node N3, the gate terminal is connected to the controller 170, and the source terminal is connected to the fourth node N4.
  • One end of the second switching element 222 is connected to the third node N3 and the other end thereof to the fifth node N5.
  • the capacitor 223 is connected in parallel with the second switching element 222.
  • the second modulation circuit 222 is a circuit in which the rectifier circuit output C filter of the power receiver and the inductor of the load resistance modulator of the power receiver are removed from the first modulation circuit 210.
  • the amplitude of the resonance current gradually increases in the receiver.
  • the turn-on period of the first switching element 221 is long (that is, the on duty period is long)
  • a current buildup occurs in the receiver 120. Therefore, the effective load resistance seen by the receiver 120 becomes small and the equivalent resistance becomes large.
  • FIG. 7 is an exemplary view showing a third modulation circuit (SEPIC type modulation circuit) which is a third embodiment of the load resistance modulator of the present invention.
  • SEPIC type modulation circuit SEPIC type modulation circuit
  • the third modulation circuit 230 is a circuit illustrating an example of a SEPIC type conversion circuit that receives a pulsating DC current, and more specifically, the first switching device 231 and the second switching device. 234, a first capacitor 232, a second capacitor 235, and an inductor 233.
  • the first switching device has a drain terminal connected to the third node N3, a gate terminal connected to the controller, and a source terminal connected to the fourth node N4.
  • the second switching element 234 is a diode, one end of which is connected to the sixth node N6 and the other end of which is connected to the sixth node N6.
  • One end of the second capacitor 235 is connected to the seventh node N7 and the other end thereof is connected to the eighth node N8.
  • the inductor connected to the sixth node N6 is in a current buildup state to supply the current I LS to the fifth node N5.
  • the voltage according to the amount of current I CS + I SL applied to the fifth node N5 is greater than the threshold voltage of the second switching device 234.
  • the second switching element 234 is turned on so that the current applied to the fifth node N5 is increased.
  • the size of the load resistor R L shown in the receiver 120 may be larger or smaller by adjusting the effective load resistance in the load resistance modulator 140. This principle can reduce or increase the equivalent resistance.
  • FIG. 8 is an exemplary view illustrating a fourth modulation circuit (buck type modulation circuit) as a fourth embodiment of the load resistance modulator of the present invention.
  • the fourth modulation circuit 240 is a circuit diagram illustrating an example of a buck type conversion circuit for increasing an input resistance.
  • the first switching element 241, the second switching element 242, the inductor 243 and the capacitor 244 are included.
  • the first switching element 241 has a drain terminal connected to the rectifier circuit 130, a gate terminal connected to the controller 170, and a drain terminal connected to the third node N3.
  • the second switching element 242 may be a diode, one end of which is connected to the third node N3 and the other end of which is connected to the fourth node N4.
  • One end of the inductor 243 is connected to the third node N3 and the other end thereof is connected to the fifth node N5.
  • One end of the capacitor 244 is connected to the third node N3 so as to be connected in parallel with the inductor, and the other end thereof is connected to the sixth node N6.
  • the effective load resistance is fixed. If the first switching element 241 is turned off, the flow of current decreases and the effective load resistance becomes large, whereby a larger equivalent resistance is seen in the wireless power transmission apparatus.
  • FIG. 9 is an exemplary diagram illustrating a fifth modulation circuit (a flyback modulation circuit receiving a pulsating DC voltage input), which is a fifth embodiment of the load resistance modulator of the present invention.
  • the fifth modulation circuit 250 is a circuit diagram illustrating an example of a flyback modulation circuit receiving a pulsating DC voltage input.
  • the fifth modulation circuit 250 includes a flyback transformer 253, a first switching element 254, in which the directions of the coils wound in the first inductor 251 and the second inductor 252 are reversed.
  • the second switching element 255 and the capacitor 256 is included.
  • the coils wound in the first inductor 251 and the coils wound in the second inductor 252 are formed in a reverse direction, thereby applying current using the counter electromotive force. do.
  • the first switching device 254 has a source terminal connected to the other end of the first inductor 251, a control signal applied to the gate terminal, and a drain terminal connected to the fourth node N4.
  • One end of the second inductor 252 is connected to one end of the diode, and the other end thereof is connected to one end of the capacitor 256.
  • the capacitor 256 is connected in parallel with the diode.
  • the turn-off period of the first switching element 254 becomes longer as the off duty ratio of the control signal, which is a pulse signal applied to the fifth modulation circuit 250, increases, the first inductor 251 to the second inductor 252.
  • the flow of current applied to decreases and the resonance voltage applied to the receiver 120 increases.
  • the effective load resistance is increased.
  • the receiver 120 induces the equivalent resistance in the wireless power transmitter to increase.
  • the increased equivalent resistance increases the efficiency and power of the power delivery, resulting in an increase in the amount and efficiency of the power transmitted to the wireless power receiver.
  • FIG. 10 is an exemplary diagram illustrating a sixth modulation circuit (buck-boost-cascade) as a sixth embodiment of a load resistance modulator of the present invention.
  • the sixth modulation circuit 260 is a circuit diagram illustrating an example of a buck-boost-cascade type circuit that receives a pulsating DC voltage input.
  • the sixth modulation circuit 260 may include a first switching element 261, a second switching element 262, an inductor 263, a third switching element 264, a fourth switching element 265, and Capacitor C is included.
  • a source terminal is connected to the rectifier circuit unit 130, a control signal CNT is applied to the gate terminal, and a drain terminal is connected to the third node N3.
  • One end of the inductor 263 is connected to the third node N3 and the other end is connected to the fifth node N5.
  • One end of the second switching element 262 is connected to the third node N3, and the other end thereof is connected to the fourth node N4.
  • a source terminal is connected to the fifth node N5
  • a gate terminal is connected to the controller 170
  • a drain terminal is connected to the sixth node N6.
  • One end of the capacitor 267 is connected to the seventh node N7, and the other end thereof is connected to the eighth node N8.
  • the first and third switching elements 261 and 264 simultaneously receive the control signal CNT, which is the same pulse signal, to perform the turn on / turn off operation.
  • the effective load resistance seen by the receiver 120 becomes large, so that the equivalent resistance in the transmitter becomes large. Therefore, the amount of power output from the wireless power transmission apparatus 100 and the efficiency of power transmission can be increased.
  • FIG. 11 is an exemplary diagram illustrating an example of equivalent conversion of a receiver in series or parallel in order to increase an equivalent resistance through load resistance modulation when the receiver of the present invention is mixed in a series resonance structure and a parallel resonance structure. .
  • the power receiver includes both series resonance and parallel resonance structures by C2A and C2B.
  • the power receiver includes both series resonance and parallel resonance structures by C2A and C2B.
  • the receiver is converted into a parallel resonance structure, in which the load resistance value is scaled by changing inversely. (In other words ).
  • FIG. 12 is a flowchart illustrating a method of driving the wireless power receiver shown in FIG. 3.
  • the method S10 of driving the wireless power receiver includes a receiving step S11, a rectifying step S12, and a variable load resistance step S13.
  • the receiving unit receives power from the wireless power transmitter 100.
  • the rectifying step S12 is a step in which the rectifying circuit rectifies the generated current by the received power.
  • the load resistance modulator 140 receives a control signal including a duty ratio, and adjusts the flow of the current according to the control signal CNT, thereby enabling effective load resistance. By varying the size of, to adjust the size of the equivalent resistance to improve the efficiency.
  • the duty ratio may be a fixed or variable duty ratio, and the rectifying step S12 may include generating a pulsating DC current.
  • FIG. 13 is a flowchart illustrating a method of driving the wireless power transmission system shown in FIG. 3.
  • a method S100 of driving a wireless power transmission system includes a transmission step S110, a reception step S120, a rectification step S130, and a load resistance variable step S140.
  • the transmitting step (S110) is a step in which the wireless power transmission apparatus 100 transmits power.
  • the receiving step (S120) is a step in which the wireless power receiving apparatus 200 receives the transmitted power.
  • the wireless power receiver 200 rectifies the current generated by the received power.
  • the wireless power receiver 200 receives a control signal CNT including a duty ratio, and adjusts the flow of current according to the control signal CNT.
  • a control signal CNT including a duty ratio By varying the size of the load resistance, thereby adjusting the size of the equivalent resistance to improve the efficiency of the transmission power.
  • Figure 14 (a) is a graph comparing the transmission power according to the change of the distance between the transmitter and the receiver between the present invention and the conventional invention
  • Figure 14 (b) is the distance between the transmitter and receiver between the present invention and the conventional invention This is a graph comparing the transmission power according to the change.
  • Figure 15 (a) is a graph comparing the efficiency of the transmission power according to the distance at 21.6W output in the present invention and the conventional invention
  • Figure 15 (b) is the transmission power at 10.9W output in the present invention and the conventional invention This is a graph comparing the efficiency of.
  • the present invention can adjust the magnitude (resistance value) of the equivalent resistance by receiving the receiver output voltage as a feedback. It can also supply constant power even over long distances.
  • the conventional invention fails to supply power when the output power to the power converter before the power converter falls far below the power required by the actual load resistance.
  • the equivalent resistance can be increased, so that the output power of the transmitter required even a longer distance is increased. I can keep it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Disclosed are a wireless power receiving apparatus capable of improving power delivery using a modulation of an effective load resistance of a receiving end, and a wireless power delivery system using said apparatus. A receiving unit of the wireless power receiving apparatus receives power from a wireless power transmitter. A rectifying circuit unit rectifies the current outputted from the receiving unit and outputs the rectified current. A load resistance modulation unit receives a control signal including a duty ratio, controls the flow of the current applied from the rectifying circuit unit according to the received control signal so as to vary the size of the effective load resistance, and increases the size of the equivalent resistance so as to improve efficiency.

Description

수신단의 유효 로드저항 변조를 이용하여 효율과 전달전력을 향상시키는 무선전력수신 장치Wireless power receiver that improves efficiency and transmission power by using effective load resistance modulation of receiver
본 발명은 무선 전력 전송 시스템에 관한 것으로, 보다 상세하게는 수신단의 유효 로드저항 변조를 이용하여 전달전력을 향상시키는 무선전력수신 장치에 관한 것이다.The present invention relates to a wireless power transmission system, and more particularly to a wireless power receiving apparatus for improving the transmission power by using the effective load resistance modulation of the receiving end.
무선전력 전송 시스템은 크게 송신기 DC 파워 서플라이, 송신기 공진형 인버터, 송신공진기, 수신공진기, 정류 회로부, 전력변환기로 구성된다. 낮은 커플링과 작은 공진기의 제약 하에서도 높은 효율을 내기 위해서는 수신기의 로드 저항 값이 그에 맞게 최적화 되어야 한다.The wireless power transmission system is mainly composed of a transmitter DC power supply, a transmitter resonant inverter, a transmission resonator, a reception resonator, a rectifier circuit unit, and a power converter. To achieve high efficiency even under the constraints of low coupling and small resonators, the load resistance of the receiver must be optimized accordingly.
효율 뿐 아니라 수신기에서 요구하는 전력량 이상을 전달할 능력도 필요하다. 특히 송신기와 수신기 간 거리가 멀어지게 되면 수신기에 충분한 전력을 공급할 수 없게 된다. 거리뿐 아니라 로드 저항값도 전력전달량에 영향을 미친다. 결과적으로 수신기에 원하는 전력을 높은 효율로 전달하기 위해서는 로드 저항값을 적절하게 선택하여야 한다.In addition to efficiency, it also requires the ability to deliver more power than the receiver requires. In particular, when the distance between the transmitter and the receiver increases, the receiver cannot be supplied with sufficient power. In addition to distance, load resistance also affects power delivery. As a result, the load resistance must be properly selected to deliver the desired power to the receiver with high efficiency.
문제는 로드 저항값을 마음대로 바꾸기는 어렵다는 점이다. 로드 저항은 전력을 실제 소모하는 장치의 전력요구량에 의해 결정되는 것이지 시스템의 디자인 변수가 아니다. 임피던스 변환 회로를 이용하면 수신 공진기에서 바라보는 유효 로드 저항값을 변환할 수 있고 성능을 개선시킬 수 있다. The problem is that it is difficult to change the load resistance at will. The load resistance is determined by the power requirements of the devices that actually consume power, not the design variables of the system. Impedance conversion circuitry can convert the effective load resistance seen by the receiving resonator and improve performance.
하지만 기존의 임피던스 변환 회로들은 임피던스 변환 비율을 마음대로 바꿀 수 없었고 고정된 변환비율을 가지고 있었다. However, the existing impedance conversion circuits could not change the impedance conversion ratio freely and had a fixed conversion ratio.
이것은 특정 거리, 혹은 특정 로딩 전류 상태(loading current condition) 하에서는 성능 최적화가 가능하지만, 거리가 변화하거나 로딩 전류(loading current)가 변화할 때는 다시 성능이 떨어지고 시스템이 불안정해 진다는 단점이 있었다. This is possible to optimize the performance under a certain distance or under a certain loading current condition, but the disadvantage is that the performance decreases and the system becomes unstable again when the distance changes or the loading current changes.
기존의 수신기 뒷부분의 전력변환 회로에는 요구되는 전력보다 더 많은 전력이 수신되었을 때 전력을 제한하는 기능만 있었다. 따라서 수신된 전력이 요구되는 전력보다 적을 때는 실제 로드 저항에 원하는 전력량을 충분히 공급할 수 없었다. The power-conversion circuitry behind the existing receivers only had the ability to limit power when more power was received than required. Therefore, when the received power was less than the required power, it was not possible to supply enough of the desired power to the actual load resistor.
또한, 종래 발명인 미국 공개 특허 특허 US2010/0277003 A1인 Adaptive impedance tuning in wireless power transmission에서는 DC-DC converter를 이용하여 수신기 저항을 바꾸는 목적이 효율 증가가 아니라 power control을 목적 위함이었다. 해당 특허에는 출력 파워를 높이거나 낮추기 위하여 다양한 control 방법 및 출력/입력파워 sensing 방법이 claim 되어 있다. 하지만 그것들의 목적은 전력전달 제어이지 효율 증가가 아니었다. 해당 특허에는 해당 방법을 사용해서 전달되는 전력이 증가한다고 해서 효율도 반드시 증가하는 것은 아니라고 설명되어 있다. In addition, in the conventional invention disclosed in US Patent Publication No. US 2010/0277003 A1, adaptive impedance tuning in wireless power transmission, the purpose of changing the receiver resistance using a DC-DC converter is not to increase efficiency but to control power. The patent claims various control methods and output / input power sensing methods to increase or decrease the output power. But their purpose was power transfer control, not increased efficiency. The patent states that increasing the power delivered using the method does not necessarily increase efficiency.
반면, 본 특허의 목표는 전력 제어가 아니라, 전력변환 회로의 도움을 받아 공진기 효율을 향상시키는 데 목적이 있다. 제안된 수신기는 동일한 전력을 동일한 거리에서 받아오더라도 자기 자신의 등가 저항(reflected resistance)를 증폭시킨 상태에서 동작하기 때문에 효율이 높아진다. 제안된 로드 저항 변조부를 추가하지 않았을 때 보다 추가했을 때 더 높은 효율을 얻게 된다.On the other hand, the purpose of the present patent is not to control the power, but to improve the resonator efficiency with the help of a power conversion circuit. Even though the proposed receiver receives the same power at the same distance, its efficiency increases because it operates in amplified its own equivalent resistance (reflected resistance). Higher efficiency is obtained when adding the proposed load resistance modulator than without.
본 발명이 해결하고자 하는 과제는 종래의 무선 전력 전송 시스템 내에 사용되던 기존의 임피던스 변환 회로들은 임피던스 변환 비율을 마음대로 바꿀 수 없었고 고정된 변환비율을 가지고 있어, 송신기와 수신기 사이의 특정 거리, 혹은 특정 로딩 전류 상태 하에서는 성능 최적화가 가능하지만, 거리가 변화하거나 로딩 전류가 변화할 때는 다시 성능이 떨어지고 시스템이 불안정해 진는 문제점을 해결할 수 있는 수신단의 유효 로드 저항 변조를 이용하여 전달전력을 향상시키는 무선전력전송 시스템을 제공하는 것이다.The problem to be solved by the present invention is that the conventional impedance conversion circuits used in the conventional wireless power transmission system can not change the impedance conversion ratio at will and have a fixed conversion ratio, so that a specific distance or a specific loading between the transmitter and the receiver Performance can be optimized under current conditions, but wireless power transfer improves transfer power by using effective load resistance modulation at the receiver to resolve the problem of performance deterioration and system instability when distance or loading current changes. To provide a system.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 무선전력수신 장치는 전력 송신기로부터 전력을 수신하는 수신부; 상기 수신부로부터 출력된 전류를 정류하여 출력하는 정류 회로부; 및 듀티 비(duty ratio)를 포함하는 제어신호를 수신하고, 상기 수신된 제어신호에 따라 상기 정류 회로부로부터 인가되는 전류의 흐름을 조절하여 유효 로드 저항의 크기를 가변시켜, 효율을 향상시키기 위해 등가 저항의 크기를 증가시키는 로드 저항 변조부;를 포함한다.Wireless power receiver according to an embodiment of the present invention for solving the above problems is a receiver for receiving power from a power transmitter; A rectifying circuit unit rectifying and outputting a current output from the receiving unit; And a control signal including a duty ratio, and adjusts the flow of current applied from the rectifying circuit part according to the received control signal to vary the magnitude of the effective load resistance, thereby improving efficiency. It includes a; load resistance modulator for increasing the size of the resistance.
본 발명에 따르면 수신기의 loaded-Q 가 증가하는 방향으로 유효 로드저항을 변화시켜 송신기로 투영되어 보이는 등가 저항(reflected resistance)을 증가시킴으로써 전체 시스템 효율과 출력전력을 높일 수 있다는 이점이 있다.According to the present invention, there is an advantage that the overall system efficiency and output power can be increased by changing the effective load resistance in the direction in which the loaded-Q of the receiver increases to increase the reflected resistance projected by the transmitter.
또한, 무선전력송신 장치와 무선전력수신 장치 사이의 거리가 멀어져서 출력전력이 실제 로드저항에서 요구하는 전력량 이하로 떨어졌을 때, 등가 저항(reflected resistance)를 높일 수 있어 보다 먼 거리에서 동일한 효율과 출력전력을 유지할 수 있다는 이점이 있다.In addition, when the distance between the wireless power transmitter and the wireless power receiver increases so that the output power falls below the amount of power required by the actual load resistance, the equivalent resistance can be increased. It has the advantage of maintaining power.
도 1은 직렬 수신 공진기와 등가 저항과의 상관관계를 나타낸 예시도이다.1 is an exemplary diagram showing a correlation between a series receiving resonator and an equivalent resistance.
도 2는 병렬 수신 공진기와 등가 저항과의 상관관계를 나타낸 예시도이다.2 is an exemplary diagram showing a correlation between a parallel receiving resonator and an equivalent resistance.
도 3은 본 발명의 실시 예에 따른 무선전력전송 시스템을 나타낸 블럭도이다.3 is a block diagram showing a wireless power transmission system according to an embodiment of the present invention.
도 4는 도 3에 도시된 정류 회로도의 일 예를 나타낸 예시도이다.4 is an exemplary diagram illustrating an example of the rectification circuit diagram illustrated in FIG. 3.
도 5는 본 발명의 로드 저항 변조부의 제1 실시 예인 제1 변조 회로(boost 타입 변조회로)를 나타낸 예시도이다.FIG. 5 is an exemplary diagram illustrating a first modulation circuit (boost type modulation circuit) which is a first embodiment of a load resistance modulator of the present invention.
도 6는 본 발명의 로드 저항 변조부의 제2 실시 예인 제2 변조 회로(boost 타입 변조회로)를 나타낸 예시도이다.6 is an exemplary diagram illustrating a second modulation circuit (boost type modulation circuit) which is a second embodiment of the load resistance modulator of the present invention.
도 7은 본 발명의 로드 저항 변조부의 제3 실시 예인 제3 변조 회로(SEPIC 타입 변조회로)를 나타낸 예시도이다.7 is an exemplary view showing a third modulation circuit (SEPIC type modulation circuit) which is a third embodiment of the load resistance modulator of the present invention.
도 8은 본 발명의 로드 저항 변조부의 제4 실시 예인 제4 변조 회로(buck 타입 변조회로)를 나타낸 예시도이다.8 is an exemplary view illustrating a fourth modulation circuit (buck type modulation circuit) as a fourth embodiment of the load resistance modulator of the present invention.
도 9은 본 발명의 로드 저항 변조부의 제5 실시 예인 제5 변조 회로(Pulsating DC 전압 입력을 받는 플라이백(flyback) 변조 회로)를 나타낸 예시도이다.FIG. 9 is an exemplary diagram illustrating a fifth modulation circuit (a flyback modulation circuit receiving a pulsating DC voltage input), which is a fifth embodiment of the load resistance modulator of the present invention.
도 10는 본 발명의 로드 저항 변조부의 제6 실시 예인 제6 변조 회로(buck-boost-cascade)를 나타낸 예시도이다.FIG. 10 is an exemplary diagram illustrating a sixth modulation circuit (buck-boost-cascade) as a sixth embodiment of a load resistance modulator of the present invention.
도 11은 본 발명의 수신부가 직렬공진 구조와 병렬공진 구조로 혼합되어 있을 때, 로드저항 변조를 통해 등가 저항을 증가시키기 위하여, 수신부를 직렬 혹은 병렬로 등가적으로 변환하는 예를 나타낸 예시도이다.11 is an exemplary diagram illustrating an example of equivalent conversion of the receiver in series or parallel in order to increase the equivalent resistance through load resistance modulation when the receiver of the present invention is mixed in a series resonance structure and a parallel resonance structure. .
도 12는 도 3에 도시된 무선전력수신 장치의 구동방법을 설명하기 위한 흐름도이다.FIG. 12 is a flowchart illustrating a method of driving the wireless power receiver shown in FIG. 3.
도 13은 도 3에 도시된 무선전력전송 시스템의 구동방법을 설명하기 위한 흐름도이다.FIG. 13 is a flowchart illustrating a method of driving the wireless power transmission system shown in FIG. 3.
도 14의 (a)는 본 발명과 종래발명과의 무선전력송신 장치와 무선전력수신 장치 사이의 거리 변화에 따른 전달전력를 비교한 그래프이며, 도 14의 (b)는 본 발명과 종래발명과의 송신기와 수신기 사이의 거리 변화에 따른 전달전력을 비교한 그래프이다.(Load-modulated:본 발명, Rectifier-only: 종래발명)Figure 14 (a) is a graph comparing the transmission power according to the change in the distance between the wireless power transmission apparatus and the wireless power receiver between the present invention and the conventional invention, Figure 14 (b) is a view of the present invention and the conventional invention It is a graph comparing the transmission power according to the distance change between the transmitter and the receiver. (Load-modulated: Inventive, Rectifier-only)
도 15의 (a)는 본 발명과 종래발명에서 21.6W 출력시의 거리에 따른 전달전력의 효율성을 비교한 그래프이며, 도 15의 (b)는 본 발명과 종래발명에서 10.9W 출력 시 전달전력의 효율성을 비교한 그래프이다.(Load-modulated:본 발명, Rectifier-only: 종래발명)Figure 15 (a) is a graph comparing the efficiency of the transmission power according to the distance at 21.6W output in the present invention and the conventional invention, Figure 15 (b) is the transmission power at 10.9W output in the present invention and the conventional invention This is a graph comparing the efficiency of (Load-modulated: the present invention, Rectifier-only: conventional invention).
이하, 본 발명의 바람직한 실시 예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Hereinafter, a detailed description of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, detailed descriptions of well-known functions or configurations will be omitted when it is deemed that they may unnecessarily obscure the subject matter of the present invention.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments according to the concept of the present invention may be variously modified and may have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between. Other expressions describing the relationship between components, such as "between" and "immediately between," or "neighboring to," and "directly neighboring to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is described, and that one or more other features or numbers are present. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하도록 한다.Hereinafter, with reference to the accompanying drawings to describe the present invention in more detail.
먼저, 본 발명을 설명함에 앞서, 무선전력송신 장치 내의 등가 저항의 크기는 아래에 기재된 수학식 1과 같이 나타낼 수 있다. First, prior to explaining the present invention, the size of the equivalent resistance in the wireless power transmission apparatus can be represented by Equation 1 described below.
[수학식 1][Equation 1]
Figure PCTKR2012011077-appb-I000001
Figure PCTKR2012011077-appb-I000001
여기서, k는 송신기 내의 송신코일과 수신기 내의 수신 공진기 사이의 커플링 계수, L1은 송신코일의 인덕턴스, 수신공진기의 loaded-Q 를 QRX, 공진기들의 공진주파수 및 인버터 스위칭 주파수를 w0 라고 할 때, 송신코일과 수신기 사이의 커플링 영향은 송신코일에게는 하나의 등가 저항(Rreflected)으로 나타난다. Here, k is the coupling coefficient between the transmitting coil in the transmitter and the receiving resonator in the receiver, L1 is the inductance of the transmitting coil, the loaded-Q of the receiving resonator is Q RX , the resonance frequency of the resonators and the inverter switching frequency are w0. The coupling effect between the transmission coil and the receiver is represented by one equivalent resistance (R reflected ) to the transmission coil.
등가 저항(Rreflected)은 수신기의 영향이 송신코일로 투영되어 보이기 때문에 reflected resistance라 한다. Equivalent resistance (R reflected ) is referred to as reflected resistance because the effect of the receiver is projected onto the transmission coil.
도 1 및 도 2에 도시된 바와 같이, 등가 저항(Rreflected)은 송신 코일(L1)의 기생저항(RTXparasitic)과 직렬로 연결된다. 따라서 등가 저항(Rreflected)을 크게 하는 것이 고효율과 고출력의 조건이다. As shown in FIGS. 1 and 2, the equivalent resistance R reflected is connected in series with the parasitic resistance R TXparasitic of the transmitting coil L1. Therefore, increasing the equivalent resistance (R reflected ) is a condition of high efficiency and high output.
등가 저항(reflected resistance)은, 수학식 1을 참조, QRX에 의존하고, QRX는 다시 수신 공진기의 로드 저항에 의해 결정된다. The equivalent resistance is dependent on Q RX with reference to Equation 1, and Q RX is again determined by the load resistance of the receiving resonator.
직렬 공진 수신기에서는, 도 1을 참조, 로드 저항(RL)이 작을수록 loaded-Q와 등가 저항이 커지고, 병렬공진 수신기에서는, 도 2을 참조, 로드 저항(RL)이 커질수록 loaded-Q와 등가 저항(Rreflected)이 커진다.In the series resonant receiver, see FIG. 1, the smaller the load resistance R L , the larger the equivalent resistance to loaded-Q, and in the parallel resonance receiver, see FIG. 2, the larger the load resistance R L , the larger the loaded-Q The equivalent resistance R reflected becomes large.
이에 본 발명에서는 로드 저항 변조 회로를 통해 수신 공진기의 유효 로드 저항 크기 및 등가 저항의 크기를 가변하여 전달전력의 효율과 전송전력을 증가시키는데 있다.Therefore, in the present invention, the effective load resistance and the equivalent resistance of the receiving resonator are varied through the load resistance modulation circuit to increase the efficiency of the transmission power and the transmission power.
도 3은 본 발명의 실시 예에 따른 무선전력전송 시스템을 나타낸 블럭도이다. 도 4는 도 3에 도시된 정류 회로도의 일 예를 나타낸 예시도이다.3 is a block diagram showing a wireless power transmission system according to an embodiment of the present invention. 4 is an exemplary diagram illustrating an example of the rectification circuit diagram illustrated in FIG. 3.
도 3에 도시된 바와 같이, 본 발명의 무선전력전송 시스템(300)은 무선전력 송신 장치(100) 및 무선전력수신 장치(200)를 포함한다.As shown in FIG. 3, the wireless power transmission system 300 of the present invention includes a wireless power transmission device 100 and a wireless power reception device 200.
상기 무선전력송신 장치(100)는 전력을 전달한다. 상기 무선전력송신 장치(100)는 DC 파워 공급기 및 송신 공진부를 구비하며, 상기 DC 파워 공급기로부터 생성된 전력을 송진 공진부 내의 인덕터(L1)를 통해 외부로 전송하는 기능을 수행한다.The wireless power transmitter 100 transmits power. The wireless power transmission apparatus 100 includes a DC power supply and a transmission resonator, and performs a function of transmitting power generated from the DC power supply to the outside through the inductor L1 in the rosin resonance part.
상기 무선전력수신 장치(200)는 무선전력전달 효율을 향상시키기 위해 등가 저항의 크기를 조절한다.The wireless power receiver 200 adjusts the size of the equivalent resistance to improve wireless power transmission efficiency.
보다 구체적으로, 상기 무선전력수신 장치(200)는, 수신부(120), 정류 회로부(130) 및 로드 저항 변조부(140)를 포함한다.In more detail, the wireless power receiver 200 includes a receiver 120, a rectifier circuit 130, and a load resistance modulator 140.
상기 수신부(120)는 상기 무선전력송신 장치로부터 전력을 수신한다.The receiver 120 receives power from the wireless power transmitter.
상기 정류 회로부(130)는 상기 수신부(120)로부터 출력된 전류를 정류하여 출력한다.The rectifier circuit 130 rectifies and outputs the current output from the receiver 120.
상기 로드 저항 변조부(140)는 듀티 비(duty ratio)를 포함하는 제어신호를 수신하고, 상기 수신된 제어신호(CNT) 에 따라 상기 정류 회로부(130)로부터 인가되는 전류의 흐름을 조절하여 유효 로드 저항의 크기를 가변시켜, 상기 효율을 향상시키기 위해 상기 전력 송신기 내의 등가 저항의 크기를 조절한다.The load resistance modulator 140 receives a control signal including a duty ratio and adjusts the flow of current applied from the rectifier circuit 130 according to the received control signal CNT. By varying the magnitude of the load resistor, the magnitude of the equivalent resistor in the power transmitter is adjusted to improve the efficiency.
상기 제어신호(CNT)는 상기 로드 저항 변조부(140)의 구동을 제어하며, 보다 구체적으로는, 고정 또는 가변 듀티 비(duty ratio)를 갖는 펄스 신호인 제어신호(CNT)로서, 상기 로드 저항 변조부(140) 내의 스위칭 소자를 주기적으로 ON/OFF 시켜준다.The control signal CNT controls the driving of the load resistance modulator 140. More specifically, the control signal CNT is a control signal CNT that is a pulse signal having a fixed or variable duty ratio. It periodically turns on / off the switching element in the modulator 140.
상기 수신부(120)는 인덕터(L)와 커패시터(C)가 직렬 또는 병렬 연결 구조 또는 직렬과 병렬이 혼용된 형태로 구성될 수 있다. 보다 구체적인 설명은 이하에 기재된 도 10을 참조하여 설명한다.The receiver 120 may be configured such that the inductor L and the capacitor C have a series or parallel connection structure or a mixture of series and parallel. A more detailed description will be given with reference to FIG. 10 described below.
다음으로, 도 4를 참조하면, 상기 정류 회로부(130)는 제1 정류부(131), 제2 정류부(132) 및 정류 회로부 출력 필터(133)를 구비하며, 상기 수신부(120)로부터 정류된 전류를 인가받아 상기 로드 저항 변조부(140)로 인가한다. Next, referring to FIG. 4, the rectifier circuit 130 includes a first rectifier 131, a second rectifier 132, and a rectifier circuit output filter 133, and the current rectified from the receiver 120. Is applied to the load resistance modulator 140.
상기 제1 정류부(131)는 두 개의 다이오드(D)가 제1 노드(n1)를 통해 직렬연결되며, 상기 제2 정류부(132)는 두 개의 다이오드(D)가 제2 노드(n2)를 통해 직렬연결되며, 상기 제1 정류부(131)와 상기 제2 정류부(132)는 병렬연결된다. 또한, 상기 정류 회로부(130)는 상기 정류 회로부 출력 필터(C)와 병렬연결된다.The first rectifier 131 has two diodes D connected in series through a first node n1, and the second rectifier 132 has two diodes D connected through a second node n2. The first rectifier 131 and the second rectifier 132 are connected in parallel. In addition, the rectifier circuit 130 is connected in parallel with the rectifier circuit output filter (C).
상기 수신부(120)에서 인가된 교류 전류는 상기 제1 정류부(131)의 정류소자인 다이오드를 거쳐 정류 회로부(130)의 출력 필터(C)를 통해 직류 전류로 출력된다.The alternating current applied by the receiving unit 120 is output as a direct current through the output filter C of the rectifying circuit unit 130 via a diode which is a rectifying element of the first rectifying unit 131.
상기 로드 저항 변조부(140)는 상기 정류 회로부(130)로부터 인가되는 전류의 흐름 을 조절하여 로드 저항(RL)의 크기를 가변시키는 기능을 수행한다. 보다 구체적으로, 상기 유효 로드 저항의 크기가 증가 또는 감소되도록 상기 정류 회로부(130)로부터 인가되는 전류의 흐름을 조절한다.The load resistance modulator 140 adjusts the flow of the current applied from the rectifier circuit 130 to change the size of the load resistor R L. More specifically, the flow of the current applied from the rectifier circuit 130 is adjusted to increase or decrease the magnitude of the effective load resistance.
도 5는 본 발명의 로드 저항 변조부의 제1 실시 예인 제1 변조 회로(boost 타입 변조회로)를 나타낸 예시도이다.FIG. 5 is an exemplary diagram illustrating a first modulation circuit (boost type modulation circuit) which is a first embodiment of a load resistance modulator of the present invention.
도 5에 도시된 바와 같이, 보다 구체적으로, 상기 로드 저항 변조부(140)는 상기 수신부(120) 내의 인덕터(L)와 커패시터(C)의 연결구조에 따라 가변되며, 직렬 연결 구조일 경우, 제1 변조 회로(210), 제 2 변조 회로(220), 또는 제3 변조 회로(230)를 포함하며, 병렬 연결구조일 경우, 제4 변조 회로(240), 제5 변조 회로(250), 또는 제6 변조 회로(260)를 포함한다.As shown in FIG. 5, more specifically, the load resistance modulator 140 is variable according to the connection structure of the inductor L and the capacitor C in the receiver 120, and in the case of the series connection structure, A first modulation circuit 210, a second modulation circuit 220, or a third modulation circuit 230, and in the case of a parallel connection structure, the fourth modulation circuit 240, the fifth modulation circuit 250, Or a sixth modulation circuit 260.
상기 제1 변조 회로(210)는 인덕터(211), 제1 스위칭 소자(212), 제2 스위칭 소자(213) 및 커패시터(214)를 포함하는 boost 타입 회로일 수 있다.The first modulation circuit 210 may be a boost type circuit including an inductor 211, a first switching element 212, a second switching element 213, and a capacitor 214.
보다 구체적으로, 상기 인덕터(211)는 일단이 상기 정류부와 연결되며, 타단이 제3 노드(N3)와 연결된다. 상기 제1 스위칭 소자(212)의 드레인 단은 제3 노드(N3)와 연결되고, 소스 단은 제4 노드(N4)와 연결된다. 상기 제2 스위칭 소자(213)는 일단이 제3 노드(N3)와 연결되고 타단이 제5 노드(N5)와 연결된다.More specifically, one end of the inductor 211 is connected to the rectifier and the other end is connected to the third node N3. The drain terminal of the first switching element 212 is connected to the third node N3 and the source terminal is connected to the fourth node N4. One end of the second switching element 213 is connected to the third node N3 and the other end thereof is connected to the fifth node N5.
펄스 신호인 제어신호(CNT)가 제1 스위칭 소자(212)의 게이트 단에 인가된다. 상기 제어 신호(CNT)의 듀티 비(duty ratio)는 고정된 값을 가질 수도 있고 로드 저항의 출력전압에 따라 가변할 수도 있다.The control signal CNT, which is a pulse signal, is applied to the gate terminal of the first switching element 212. The duty ratio of the control signal CNT may have a fixed value or may vary according to the output voltage of the load resistor.
제 1 스위칭 소자(212)와 제 2 스위칭 소자 (213)는 번갈아 가면서 턴온 된다.The first switching element 212 and the second switching element 213 are alternately turned on.
제 1 스위칭 소자(212)가 턴온 될 때 인덕터(211)에 흐르는 전류는 점점 커지게 (전류 buildup) 된다. 상기 인덕터에 흐르는 전류는 제 1 스위칭 소자(212)와 정류회로부(130)를 거쳐 빌드업(buildup) 된다.When the first switching element 212 is turned on, the current flowing in the inductor 211 becomes larger (current buildup). The current flowing through the inductor is built up through the first switching element 212 and the rectifier circuit 130.
제 1 스위칭 소자(212)가 턴오프 되면, 제3 노드(N3) 에 걸리는 전압이 증가하며 이것이 제 2 스위칭 소자(213)의 문턱 전압 이상이 되는 순간 제2 스위칭 소자(213)가 턴온된다. 이에 따라 인덕터(211)에 흐르던 전류는 로드 저항(RL)으로 인가된다.When the first switching element 212 is turned off, the voltage applied to the third node N3 increases, and the second switching element 213 is turned on at the moment when the first switching element 212 becomes higher than or equal to the threshold voltage of the second switching element 213. Accordingly, the current flowing through the inductor 211 is applied to the load resistor RL.
전체 스위칭 주기 중, 제 1 스위칭 소자(212)가 턴 온 되어 있는 비율 즉 duty ratio 가 커질수록 전류 빌드업(buildup)이 많이 되고 변조기(210)로의 입력저항은 작아지며, 제1 변조 회로(210)로의 입력저항이 유효 로드 저항이기 때문에, 등가 저항(reflected resistance)이 커지게 된다.During the entire switching period, as the ratio of the first switching element 212 turned on, that is, the duty ratio increases, the current buildup increases, the input resistance to the modulator 210 decreases, and the first modulation circuit 210. Since the input resistance to) is the effective load resistance, the equivalent resistance becomes large.
따라서, 상기 제1 변조 회로(210)는 펄스 신호인 제어신호(CNT)의 듀티 비에 따라 전류 흐름을 조절함으로써, 기존의 로드 저항보다 입력저항을 작아지게 하여 무선전력송신 장치(100) 내의 등가 저항을 증가시킬 수 있다. 이에 따라 무선전력의 전달 효율과 전력량을 증가시킨다.Accordingly, the first modulation circuit 210 adjusts the current flow according to the duty ratio of the control signal CNT, which is a pulse signal, thereby making the input resistance smaller than the conventional load resistance, thereby making it equivalent in the wireless power transmitter 100. Can increase resistance. This increases the transmission efficiency and the amount of power of the wireless power.
도 6은 본 발명의 로드 저항 변조부의 제2 실시 예인 제2 변조 회로(boost 타입 변조회로)를 나타낸 예시도이다.6 is an exemplary view showing a second modulation circuit (boost type modulation circuit) which is a second embodiment of the load resistance modulator of the present invention.
도 6에 도시된 바와 같이, 상기 제2 변조 회로(220)는 pulsating DC 전류를 입력받는 boost 타입 회로의 일 예를 나타낸 회로도이다. As illustrated in FIG. 6, the second modulation circuit 220 is a circuit diagram illustrating an example of a boost type circuit that receives a pulsating DC current.
보다 구체적으로 상기 제2 변조 회로(220)는 제1 스위칭 소자(221), 제2 스위칭 소자(222) 및 커패시터(223)를 포함한다.More specifically, the second modulation circuit 220 includes a first switching element 221, a second switching element 222, and a capacitor 223.
상기 제1 스위칭 소자(221)의 드레인 단은 제3 노드(N3)와 연결, 게이트 단은 제어부(170)와 연결되며, 소스 단은 제4 노드(N4)와 연결된다.The drain terminal of the first switching element 221 is connected to the third node N3, the gate terminal is connected to the controller 170, and the source terminal is connected to the fourth node N4.
상기 제2 스위칭 소자(222)는 일단이 제3 노드(N3)와 타단이 제5 노드(N5)와 연결된다. 상기 커패시터(223)는 제2 스위칭 소자(222)와 병렬 연결된다.One end of the second switching element 222 is connected to the third node N3 and the other end thereof to the fifth node N5. The capacitor 223 is connected in parallel with the second switching element 222.
상기 제2 변조 회로(222)는 제1 변조 회로(210)에서 전력 수신기의 정류 회로부 출력 C 필터와 로드 저항 변조부의 인덕터가 제거된 회로이다. The second modulation circuit 222 is a circuit in which the rectifier circuit output C filter of the power receiver and the inductor of the load resistance modulator of the power receiver are removed from the first modulation circuit 210.
따라서, 제1 스위칭 소자(221)가 턴온되면 수신부에서 공진전류의 진폭이 서서히 증가한다. 이때 제1 스위칭 소자(221)의 턴온 구간이 길면(즉, on duty 구간이 길면) 수신부(120) 내에서 전류 빌드업(buildup)이 일어나게 된다. 따라서, 수신부(120)에서 보이는 유효 로드 저항은 작아지고 등가 저항은 커지게 된다.Therefore, when the first switching device 221 is turned on, the amplitude of the resonance current gradually increases in the receiver. At this time, when the turn-on period of the first switching element 221 is long (that is, the on duty period is long), a current buildup occurs in the receiver 120. Therefore, the effective load resistance seen by the receiver 120 becomes small and the equivalent resistance becomes large.
도 7은 본 발명의 로드 저항 변조부의 제3 실시 예인 제3 변조 회로(SEPIC 타입 변조회로)를 나타낸 예시도이다.7 is an exemplary view showing a third modulation circuit (SEPIC type modulation circuit) which is a third embodiment of the load resistance modulator of the present invention.
도 7에 도시된 바와 같이, 상기 제3 변조 회로(230)는 pulsating DC 전류를 입력받는 SEPIC 타입 변환 회로의 일 예를 나타낸 회로이며, 보다 구체적으로 제1 스위칭 소자(231), 제2 스위칭 소자(234), 제1 커패시터(232), 제2 커패시터(235) 및 인덕터(233)를 포함한다.As shown in FIG. 7, the third modulation circuit 230 is a circuit illustrating an example of a SEPIC type conversion circuit that receives a pulsating DC current, and more specifically, the first switching device 231 and the second switching device. 234, a first capacitor 232, a second capacitor 235, and an inductor 233.
상기 제1 스위칭 소자는 드레인 단이 제3 노드(N3)와 연결, 게이트 단이 제어부와 연결, 소스 단이 제4 노드(N4)와 연결된다.The first switching device has a drain terminal connected to the third node N3, a gate terminal connected to the controller, and a source terminal connected to the fourth node N4.
상기 제1 커패시터(232)는 일단이 제3 노드(N3)와 연결, 타단이 제5 노드(N5)와 연결되며, 상기 인덕터(233)는 일단이 제5 노드(N5)와 연결, 타단이 제6 노드(N6)와 연결되며, 상기 제2 스위칭 소자(234)는 다이오드이며, 일단이 제6 노드(N6)와 연결, 타단이 제7 노드(N7)와 연결된다. 상기 제2 커패시터(235)는 일단이 제7 노드(N7)와 연결, 타단이 제8 노드(N8)와 연결된다.One end of the first capacitor 232 is connected to the third node N3 and the other end is connected to the fifth node N5, and the inductor 233 is connected to the fifth node N5 and the other end thereof. The second switching element 234 is a diode, one end of which is connected to the sixth node N6 and the other end of which is connected to the sixth node N6. One end of the second capacitor 235 is connected to the seventh node N7 and the other end thereof is connected to the eighth node N8.
여기서, 제1 스위칭 소자(231)가 제어신호(CNT)를 수신받아 활성되면, 제3 노드(N3)와 수신부(120)에 인가된 전류의 흐름은 증가된다. 이때, 제6 노드(N6)와 연결된 인덕터는 전류 빌드업(buildup) 상태가 되어 제5 노드(N5)로 전류(ILS)를 공급하게 된다.Here, when the first switching element 231 receives the control signal CNT and is activated, the flow of current applied to the third node N3 and the receiver 120 is increased. At this time, the inductor connected to the sixth node N6 is in a current buildup state to supply the current I LS to the fifth node N5.
이후 제1 스위칭 소자(231)가 턴오프되면, 제5 노드(N5)에 인가되는 전류(ICS+ ISL)량에 따른 전압이 제2 스위칭 소자(234)의 문턱 전압보다 커지게 된다. 이후, 제2 스위칭 소자(234)가 턴온되어 제5 노드(N5)에 인가된 전류는 증가된다.Thereafter, when the first switching device 231 is turned off, the voltage according to the amount of current I CS + I SL applied to the fifth node N5 is greater than the threshold voltage of the second switching device 234. Thereafter, the second switching element 234 is turned on so that the current applied to the fifth node N5 is increased.
따라서, 수신부(120)에 보여지는 로드 저항(RL)의 크기는 로드 저항 변조부(140)에서 유효 로드 저항을 조절함으로써, 크거나 작아질 수 있다. 이러한 원리로 등가 저항을 감소 또는 증가시킬 수 있다.Therefore, the size of the load resistor R L shown in the receiver 120 may be larger or smaller by adjusting the effective load resistance in the load resistance modulator 140. This principle can reduce or increase the equivalent resistance.
도 8은 본 발명의 로드 저항 변조부의 제4 실시 예인 제4 변조 회로(buck 타입 변조회로)를 나타낸 예시도이다.8 is an exemplary view illustrating a fourth modulation circuit (buck type modulation circuit) as a fourth embodiment of the load resistance modulator of the present invention.
도 8에 도시된 바와 같이, 상기 제4 변조 회로(240)는 입력저항을 증가시키는 buck 타입 변환 회로 중 일 예를 나타낸 회로도이다. As shown in FIG. 8, the fourth modulation circuit 240 is a circuit diagram illustrating an example of a buck type conversion circuit for increasing an input resistance.
보다 구체적으로, 제1 스위칭 소자(241), 제2 스위칭 소자(242), 인덕터(243) 및 커패시터(244)를 포함한다.More specifically, the first switching element 241, the second switching element 242, the inductor 243 and the capacitor 244 are included.
상기 제1 스위칭 소자(241)는 드레인 단이 정류 회로부(130)와 연결되며, 게이트 단이 제어부(170)와 연결되며, 드레인 단이 제3 노드(N3)와 연결된다. 상기 제2 스위칭 소자(242)는 다이오드일 수 있으며, 일단이 제3 노드(N3)와 연결, 타단이 제4 노드(N4)와 연결된다. 상기 인덕터(243)는 일단이 제3 노드(N3)와 연결, 타단이 제5 노드(N5)와 연결된다. 상기 커패시터(244)는 상기 인덕터와 병렬연결되도록 일단이 제3 노드(N3)와 연결되며, 타단이 제6 노드(N6)와 연결된다.The first switching element 241 has a drain terminal connected to the rectifier circuit 130, a gate terminal connected to the controller 170, and a drain terminal connected to the third node N3. The second switching element 242 may be a diode, one end of which is connected to the third node N3 and the other end of which is connected to the fourth node N4. One end of the inductor 243 is connected to the third node N3 and the other end thereof is connected to the fifth node N5. One end of the capacitor 244 is connected to the third node N3 so as to be connected in parallel with the inductor, and the other end thereof is connected to the sixth node N6.
제1 스위칭 소자(241)가 펄스 신호인 제어신호를 수신받아 턴온되면, 유효 로드 저항은 고정된다. 만약, 제1 스위칭 소자(241)가 턴 오프되면, 전류의 흐름이 적어져 유효 로드 저항은 커지게 되며, 그에 따라 무선전력송신 장치 내에는 더욱 큰 등가 저항이 보이게 된다.When the first switching device 241 receives a control signal which is a pulse signal and turns on, the effective load resistance is fixed. If the first switching element 241 is turned off, the flow of current decreases and the effective load resistance becomes large, whereby a larger equivalent resistance is seen in the wireless power transmission apparatus.
높아진 등가 저항은 효율과 전력을 증가시키며, 결과적으로 무선전력수신 장치로 송신하는 전력량과 전력전달의 효율이 증가하게 된다.Higher equivalent resistance increases efficiency and power, and consequently increases the amount of power and efficiency of power transmission to the wireless power receiver.
도 9은 본 발명의 로드 저항 변조부의 제5 실시 예인 제5 변조 회로(Pulsating DC 전압 입력을 받는 플라이백(flyback) 변조 회로)를 나타낸 예시도이다.FIG. 9 is an exemplary diagram illustrating a fifth modulation circuit (a flyback modulation circuit receiving a pulsating DC voltage input), which is a fifth embodiment of the load resistance modulator of the present invention.
도 9에 도시된 바와 같이, 제5 변조 회로(250)는 Pulsating DC 전압 입력을 받는 플라이백(flyback) 변조 회로 중 일 예를 나타낸 회로도이다. As illustrated in FIG. 9, the fifth modulation circuit 250 is a circuit diagram illustrating an example of a flyback modulation circuit receiving a pulsating DC voltage input.
보다 구체적으로, 제5 변조 회로(250)는 제1 인덕터(251)와 제2 인덕터(252) 내에 권선된 코일의 방향이 역방향을 갖는 플라이백트랜스포머(253), 제1 스위칭 소자(254), 제2 스위칭 소자(255) 및 커패시터(256)를 포함한다.More specifically, the fifth modulation circuit 250 includes a flyback transformer 253, a first switching element 254, in which the directions of the coils wound in the first inductor 251 and the second inductor 252 are reversed. The second switching element 255 and the capacitor 256 is included.
참고로, 상기 플라이백트랜스포머(253)는 상기 제1 인덕터(251) 내에 권선된 코일과 제2 인덕터(252) 내에 권선된 코일의 방향이 역방향으로 형성되어, 그에 따른 역기전력을 이용하여 전류를 인가한다.For reference, in the flyback transformer 253, the coils wound in the first inductor 251 and the coils wound in the second inductor 252 are formed in a reverse direction, thereby applying current using the counter electromotive force. do.
제1 인덕터(251)는 일단이 제3 노드(N3)와 연결되며, 타단이 제1 스위칭 소자(254)의 소스 단과 연결된다. 상기 제1 스위칭 소자(254)는 소스 단이 상기 제1 인덕터(251)의 타단과 연결되며, 게이트 단에 제어신호가 인가되고, 드레인 단이 제4 노드(N4)와 연결된다.One end of the first inductor 251 is connected to the third node N3, and the other end thereof is connected to the source terminal of the first switching element 254. The first switching device 254 has a source terminal connected to the other end of the first inductor 251, a control signal applied to the gate terminal, and a drain terminal connected to the fourth node N4.
상기 제2 인덕터(252)는 일단이 상기 다이오드의 일단과 연결되며, 타단이 상기 커패시터(256)의 일단과 연결된다. 상기 커패시터(256)는 상기 다이오드와 병렬 연결된다.One end of the second inductor 252 is connected to one end of the diode, and the other end thereof is connected to one end of the capacitor 256. The capacitor 256 is connected in parallel with the diode.
상기 제5 변조 회로(250)에 인가되는 펄스 신호인 제어신호의 off duty 비가 커질 수록, 제1 스위칭 소자(254)의 턴오프 구간이 길어지면, 제1 인덕터(251)에서 제2 인덕터(252)로 인가되는 전류의 흐름은 감소하며 수신부(120)에 걸리는 공진 전압은 증가하게 된다. 따라서 유효 로드 저항이 증가된다. As the turn-off period of the first switching element 254 becomes longer as the off duty ratio of the control signal, which is a pulse signal applied to the fifth modulation circuit 250, increases, the first inductor 251 to the second inductor 252. The flow of current applied to) decreases and the resonance voltage applied to the receiver 120 increases. Thus, the effective load resistance is increased.
그에 따라 수신부(120)는 무선전력송신 장치 내에 등가 저항이 높아지도록 유도하게 된다. 높아진 등가 저항는 전력전달의 효율과 전력량을 증가시키며, 결과적으로 무선전력수신 장치로 송신하는 전력량과 효율이 증가하게 된다.Accordingly, the receiver 120 induces the equivalent resistance in the wireless power transmitter to increase. The increased equivalent resistance increases the efficiency and power of the power delivery, resulting in an increase in the amount and efficiency of the power transmitted to the wireless power receiver.
도 10는 본 발명의 로드 저항 변조부의 제6 실시 예인 제6 변조 회로(buck-boost-cascade)를 나타낸 예시도이다.FIG. 10 is an exemplary diagram illustrating a sixth modulation circuit (buck-boost-cascade) as a sixth embodiment of a load resistance modulator of the present invention.
상기 제6 변조 회로(260)는 Pulsating DC 전압 입력을 받는 buck-boost-cascade 타입 회로의 일 예를 나타낸 회로도이다.The sixth modulation circuit 260 is a circuit diagram illustrating an example of a buck-boost-cascade type circuit that receives a pulsating DC voltage input.
보다 구제척으로, 제6 변조 회로(260)는 제1 스위칭 소자(261), 제2 스위칭 소자(262), 인덕터(263), 제3 스위칭 소자(264), 제4 스위칭 소자(265) 및 커패시터(C)를 포함한다.More specifically, the sixth modulation circuit 260 may include a first switching element 261, a second switching element 262, an inductor 263, a third switching element 264, a fourth switching element 265, and Capacitor C is included.
제1 스위칭 소자(261)는 소스 단이 정류 회로부(130)와 연결되며, 게이트 단에 제어신호(CNT)가 인가되고, 드레인 단이 제3 노드(N3)와 연결된다. In the first switching element 261, a source terminal is connected to the rectifier circuit unit 130, a control signal CNT is applied to the gate terminal, and a drain terminal is connected to the third node N3.
인덕터(263)는 일단이 제3 노드(N3)와 연결되며, 타단이 제5 노드(N5)와 연결된다. 제2 스위칭 소자(262)는 일단이 제3 노드(N3)와 연결되며, 타단이 제4 노드(N4)와 연결된다. 제3 스위칭 소자는 소스 단이 제5 노드(N5)와 연결되며, 게이트 단이 제어부(170)와 연결되며, 드레인 단이 제6 노드(N6)와 연결된다. 커패시터(267)는 일단이 제7 노드(N7)와 연결되며, 타단이 제8 노드(N8)와 연결된다.One end of the inductor 263 is connected to the third node N3 and the other end is connected to the fifth node N5. One end of the second switching element 262 is connected to the third node N3, and the other end thereof is connected to the fourth node N4. In the third switching device, a source terminal is connected to the fifth node N5, a gate terminal is connected to the controller 170, and a drain terminal is connected to the sixth node N6. One end of the capacitor 267 is connected to the seventh node N7, and the other end thereof is connected to the eighth node N8.
여기서, 제1 및 제3 스위칭 소자(261, 264)는 동일한 펄스 신호인 제어신호(CNT)를 동시에 수신하여 턴온/턴오프 동작을 수행하게 된다.Here, the first and third switching elements 261 and 264 simultaneously receive the control signal CNT, which is the same pulse signal, to perform the turn on / turn off operation.
따라서, 제1 및 제3 스위칭 소자(261,264)가 턴온 될 경우, 인덕터에 전류 빌드업이 발생한다. 빌드업 시간이 짧아지면(즉, on duty 구간이 짧으면) 수신부(120)에서 공진 전압 빌드업이 많이 일어나게 된다. Therefore, when the first and third switching elements 261 and 264 are turned on, current buildup occurs in the inductor. When the buildup time is short (that is, when the on duty period is short), the resonance voltage buildup occurs a lot in the receiver 120.
따라서 수신부(120)에서 보이는 유효 로드 저항은 커지고 그에 따라 송신기 내의 등가 저항은 커지게 된다. 따라서, 무선전력송신 장치(100)로부터 출력되는 전력량과 전력전달의 효율을 증가시킬 수 있다.Therefore, the effective load resistance seen by the receiver 120 becomes large, so that the equivalent resistance in the transmitter becomes large. Therefore, the amount of power output from the wireless power transmission apparatus 100 and the efficiency of power transmission can be increased.
도 11은 본 발명의 수신부가 직렬공진 구조와 병렬공진 구조로 혼합되어 있을 때, 로드 저항 변조를 통해 등가 저항을 증가시키기 위하여, 수신기를 직렬 혹은 병렬로 등가적으로 변환하는 예를 나타낸 예시도이다. 11 is an exemplary diagram illustrating an example of equivalent conversion of a receiver in series or parallel in order to increase an equivalent resistance through load resistance modulation when the receiver of the present invention is mixed in a series resonance structure and a parallel resonance structure. .
보다 구체적으로, 도 11의 (a)를 참조하면, 전력 수신기는 C2A와 C2B에 의해 직렬공진과 병렬공진 구조를 모두 포함하고 있다.More specifically, referring to FIG. 11A, the power receiver includes both series resonance and parallel resonance structures by C2A and C2B.
만약
Figure PCTKR2012011077-appb-I000002
이면, C2B 의 영향은 무시되고 회로는 직렬 공진이 된다. 이 때는 로드저항 변조부에서 전류흐름을 제어하여 유효 로드 저항을 작게 하면 loaded-Q와 등가저항 (reflected resistance) 를 높일 수 있다.
if
Figure PCTKR2012011077-appb-I000002
If so, the effect of C2B is ignored and the circuit is in series resonance. In this case, if the effective load resistance is reduced by controlling the current flow in the load resistance modulator, loaded-Q and equivalent resistance (reflected resistance) can be increased.
만약
Figure PCTKR2012011077-appb-I000003
라면, 직렬공진 구조로 변환되는데, 로드 저항의 값이 역수로 변하면서 스케일링 된다. (즉
Figure PCTKR2012011077-appb-I000004
). 따라서 로드 저항 RL이 커질수록 변환된 로드 저항은 작아지고 loaded-Q는 커진다. 따라서 로드 저항 변조부에서 전류흐름을 제어하여 유효 로드 저항을 크게 하면 등가 저항(reflected resistance)을 높일 수 있다.
if
Figure PCTKR2012011077-appb-I000003
If it is, it is converted into a series resonance structure, in which the value of the load resistance is scaled by changing to the inverse. (In other words
Figure PCTKR2012011077-appb-I000004
). Therefore, the larger the load resistance R L , the smaller the converted load resistance and the larger the loaded-Q. Therefore, by increasing the effective load resistance by controlling the current flow in the load resistance modulator can increase the equivalent resistance (reflected resistance).
도 11의 (b) 또한, 전력 수신기는 C2A와 C2B에 의해 직렬공진과 병렬공진 구조를 모두 포함하고 있다. 11 (b), the power receiver includes both series resonance and parallel resonance structures by C2A and C2B.
만약
Figure PCTKR2012011077-appb-I000005
이면, C2B의 영향은 무시되고 회로는 병렬 공진이 된다. 이 때는 로드저항 변조부에서 전류흐름을 제어하여 유효 로드 저항을 크게 하면 loaded-Q와 등가저항 (reflected resistance)를 높일 수 있다.
if
Figure PCTKR2012011077-appb-I000005
If so, the effect of C2B is ignored and the circuit is in parallel resonance. In this case, if the effective load resistance is increased by controlling the current flow in the load resistance modulator, loaded-Q and equivalent resistance (reflected resistance) can be increased.
만약
Figure PCTKR2012011077-appb-I000006
라면, 수신부는 병렬공진 구조로 변환되는데, 로드 저항 값이 역수로 변하면서 스케일링 된다. (즉
Figure PCTKR2012011077-appb-I000007
).
if
Figure PCTKR2012011077-appb-I000006
If so, the receiver is converted into a parallel resonance structure, in which the load resistance value is scaled by changing inversely. (In other words
Figure PCTKR2012011077-appb-I000007
).
따라서 로드 저항이 작아질수록 변환된 로드 저항은 커지고 loaded-Q는 커진다. 따라서 로드 저항 변조부에서 전류의 흐름을 조절하여 유효 로드 저항을 작게 하면 등가 저항(reflected resistance)을 높일 수 있다.Therefore, the smaller the load resistance, the larger the converted load resistance and the larger the loaded-Q. Therefore, if the effective load resistance is reduced by adjusting the flow of current in the load resistance modulator, the equivalent resistance can be increased.
도 12는 도 3에 도시된 무선전력 수신기의 구동 방법을 설명하기 위한 흐름도이다.FIG. 12 is a flowchart illustrating a method of driving the wireless power receiver shown in FIG. 3.
도 12에 도시된 바와 같이, 무선전력수신 장치의 구동 방법(S10)은 수신 단계(S11), 정류 단계(S12) 및 로드 저항 가변 단계(S13)를 포함한다.As shown in FIG. 12, the method S10 of driving the wireless power receiver includes a receiving step S11, a rectifying step S12, and a variable load resistance step S13.
상기 수신 단계(S11)는 수신부가 무선전력송신 장치(100)로부터 전력을 수신하는 단계이다.In the receiving step S11, the receiving unit receives power from the wireless power transmitter 100.
상기 정류 단계(S12)는 정류 회로부가 상기 수신된 전력으로 생성된 전류를 정류하는 단계이다.The rectifying step S12 is a step in which the rectifying circuit rectifies the generated current by the received power.
상기 로드 저항 가변 단계(S13)는 로드 저항 변조부(140)가 듀티 비(duti ratio)를 포함하는 제어신호를 수신하고, 상기 제어신호(CNT)에 따라 상기 전류의 흐름을 조절하여 유효 로드 저항의 크기를 가변시켜, 효율을 향상시키기 위해 등가 저항의 크기를 조절하는 단계이다.In the load resistance variable step S13, the load resistance modulator 140 receives a control signal including a duty ratio, and adjusts the flow of the current according to the control signal CNT, thereby enabling effective load resistance. By varying the size of, to adjust the size of the equivalent resistance to improve the efficiency.
상기 듀티 비는 고정 또는 가변 듀티 비일 수 있으며, 상기 정류 단계(S12)는 Pulsating DC 전류를 생성하는 단계를 포함할 수 있다.The duty ratio may be a fixed or variable duty ratio, and the rectifying step S12 may include generating a pulsating DC current.
도 13은 도 3에 도시된 무선전력 전송 시스템의 구동 방법을 설명하기 위한 흐름도이다.FIG. 13 is a flowchart illustrating a method of driving the wireless power transmission system shown in FIG. 3.
도 13에 도시된 바와 같이, 무선전력 전송 시스템의 구동 방법(S100)은 전송 단계(S110), 수신 단계(S120), 정류 단계(S130), 로드 저항 가변 단계(S140)를 포함한다.As shown in FIG. 13, a method S100 of driving a wireless power transmission system includes a transmission step S110, a reception step S120, a rectification step S130, and a load resistance variable step S140.
상기 전송 단계(S110)는 무선전력송신 장치(100)가 전력을 전송하는 단계이다.The transmitting step (S110) is a step in which the wireless power transmission apparatus 100 transmits power.
상기 수신 단계(S120)는 무선전력수신 장치(200)가 상기 전송된 전력을 수신하는 단계이다.The receiving step (S120) is a step in which the wireless power receiving apparatus 200 receives the transmitted power.
상기 정류 단계(S130)는 무선전력수신 장치(200)가 상기 수신된 전력으로 생성된 전류를 정류하는 단계이다.In the rectifying step S130, the wireless power receiver 200 rectifies the current generated by the received power.
상기 로드 저항 가변 단계(S140)는 무선전력수신 장치(200)가 듀티 비(duti ratio)를 포함하는 제어신호(CNT)를 수신하고, 상기 제어신호(CNT)에 따라 전류의 흐름을 조절하여 유효 로드 저항의 크기를 가변시켜, 그에 따른 등가 저항의 크기를 조절하여 전달전력의 효율을 향상시키는 단계이다.In the variable load resistance step S140, the wireless power receiver 200 receives a control signal CNT including a duty ratio, and adjusts the flow of current according to the control signal CNT. By varying the size of the load resistance, thereby adjusting the size of the equivalent resistance to improve the efficiency of the transmission power.
도 14의 (a)는 본 발명과 종래발명과의 송신기와 수신기 사이의 거리 변화에 따른 전송전력를 비교한 그래프이며, 도 14의 (b)는 본 발명과 종래발명과의 송신기와 수신기 사이의 거리 변화에 따른 전송전력을 비교한 그래프이다.Figure 14 (a) is a graph comparing the transmission power according to the change of the distance between the transmitter and the receiver between the present invention and the conventional invention, Figure 14 (b) is the distance between the transmitter and receiver between the present invention and the conventional invention This is a graph comparing the transmission power according to the change.
도 14의 (a) 및 (b)에 도시된 바와 같이, 종래 발명은 거리가 멀어질 수록 전송전력 및 시스템의 효율성이 작아짐을 알 수 있다. 이에 반해, 본 발명은 로드 저항 변조부를 통해 거리에 상관없이 일정한 전송전력 및 효율성을 가짐을 알 수 있다.As shown in (a) and (b) of FIG. 14, it can be seen that in the conventional invention, the greater the distance, the smaller the transmission power and the efficiency of the system. On the contrary, it can be seen that the present invention has a constant transmission power and efficiency regardless of the distance through the load resistance modulator.
도 15의 (a)는 본 발명과 종래발명에서 21.6W 출력시의 거리에 따른 전달전력의 효율성을 비교한 그래프이며, 도 15의 (b)는 본 발명과 종래발명에서 10.9W 출력 시 전달전력의 효율성을 비교한 그래프이다.Figure 15 (a) is a graph comparing the efficiency of the transmission power according to the distance at 21.6W output in the present invention and the conventional invention, Figure 15 (b) is the transmission power at 10.9W output in the present invention and the conventional invention This is a graph comparing the efficiency of.
따라서, 본 발명은 수신기 출력전압을 피드백으로 받아서 등가 저항(reflected resistance)의 크기(저항값)을 조절할 수 있다. 또한, 이것은 거리가 멀어지더라도 일정한 전력을 공급할 수 있다. 이에 반해, 종래 발명은 거리가 멀어져서 전력변환기 앞까지의 출력전력이 실제 로드 저항에서 요구하는 전력량 이하로 떨어졌을 경우 전력공급을 하지 못하였다.Accordingly, the present invention can adjust the magnitude (resistance value) of the equivalent resistance by receiving the receiver output voltage as a feedback. It can also supply constant power even over long distances. On the contrary, the conventional invention fails to supply power when the output power to the power converter before the power converter falls far below the power required by the actual load resistance.
하지만 본 발명에서는 거리가 멀어져서 전력변환기 앞까지의 출력전력이 실제 로드 저항에서 요구하는 전력량 이하로 떨어졌을 때, 등가 저항(reflected resistance)을 높일 수 있기 때문에 보다 먼 거리까지도 요구되는 송신기의 출력전력을 유지할 수 있다.However, in the present invention, when the output power before the power converter falls far below the power required by the actual load resistance, the equivalent resistance can be increased, so that the output power of the transmitter required even a longer distance is increased. I can keep it.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재된 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the appended claims.
[부호의 설명][Description of the code]
100: 무선전력송신 장치100: wireless power transmission device
120: 수신부120: receiver
130: 정류 회로부130: rectifier circuit
140: 로드 저항 변조부140: load resistance modulator
200: 무선전력수신 장치200: wireless power receiver
210: 제1 변조 회로210: first modulation circuit
220: 제2 변조 회로220: second modulation circuit
230: 제3 변조 회로230: third modulation circuit
240: 제5 변조 회로240: fifth modulation circuit
250: 제6 변조 회로250: sixth modulation circuit
260: 제7 변조 회로260: seventh modulation circuit
300: 무선전력전송 시스템300: wireless power transmission system

Claims (12)

  1. 전력 송신기로부터 전력을 수신하는 수신부;Receiving unit for receiving power from the power transmitter;
    상기 수신부로부터 출력된 전류를 정류하여 출력하는 정류 회로부; 및A rectifying circuit unit rectifying and outputting a current output from the receiving unit; And
    듀티 비(duty ratio)를 포함하는 제어신호를 수신하고, 상기 수신된 제어신호에 따라 상기 정류 회로부로부터 인가되는 전류의 흐름을 조절하여 유효 로드 저항의 크기를 가변시켜, 효율을 향상시키기 위해 등가 저항의 크기를 증가시키는 로드 저항 변조부;를 포함하는 무선전력수신 장치.Receives a control signal including a duty ratio, and adjusts the flow of current applied from the rectifying circuit portion in accordance with the received control signal to vary the size of the effective load resistance, equivalent resistance to improve efficiency And a load resistance modulator for increasing the size of the wireless power receiver.
  2. 제1항에 있어서,The method of claim 1,
    상기 듀티 비는,The duty ratio is,
    고정 또는 가변 듀티 비(duty ratio)인 것을 특징으로 하는 무선전력수신 장치.Wireless power receiving device, characterized in that the fixed or variable duty ratio (duty ratio).
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 수신부는,The receiving unit,
    인덕터와 커패시터가 직렬로 연결되는 것을 특징으로 하는 무선전력수신 장치.Wireless power receiver characterized in that the inductor and the capacitor are connected in series.
  4. 제3항에 있어서,The method of claim 3,
    상기 로드 저항 변조부는,The load resistance modulator,
    상기 유효 로드 저항의 크기가 감소되도록 상기 정류 회로부로부터 인가되는 전류의 흐름을 조절하는 것을 특징으로 하는 무선전력수신 장치.And controlling the flow of current applied from the rectifier circuit to reduce the magnitude of the effective load resistance.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 로드 저항 변조부는,The load resistance modulator,
    Boost 또는 boost-buck 타입 변조회로인 것을 특징으로 하는 무선전력수신 장치.Wireless power receiver characterized in that the boost or boost-buck type modulation circuit.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 로드 저항 변조부는,The load resistance modulator,
    SEPIC 타입 변조회로인 것을 특징으로 하는 무선전력수신 장치. Wireless power receiving device, characterized in that the SEPIC type modulation circuit.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 수신부는,The receiving unit,
    인덕터와 커패시터가 병렬로 연결되는 것을 특징으로 하는 무선전력수신 장치.Wireless power receiver characterized in that the inductor and the capacitor are connected in parallel.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 로드 저항 변조부는,The load resistance modulator,
    상기 유효 로드 저항의 크기가 증가되도록 상기 정류 회로부로부터 인가되는 전류의 흐름을 조절하는 것을 특징으로 하는 무선전력수신 장치.And controlling the flow of current applied from the rectifier circuit to increase the effective load resistance.
  9. 제8항에 있어서,The method of claim 8,
    상기 로드 저항 변조부는,The load resistance modulator,
    buck 타입 또는 buck-boost 변조 회로인 것을 특징으로 하는 무선전력수신 장치.Wireless power receiving device, characterized in that the buck type or buck-boost modulation circuit.
  10. 제8항에 있어서,The method of claim 8,
    상기 로드 저항 변조부는,The load resistance modulator,
    Buck-boost-cascade 타입 변조회로인 것을 특징으로 하는 무선전력수신 장치.Wireless power receiving device, characterized in that the Buck-boost-cascade type modulation circuit.
  11. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 수신부는,The receiving unit,
    인덕터와 2개의 커패시터를 구비하며, 상기 2개의 커패시터 각각은 인덕터와 직렬-병렬 구조 또는 병렬-직렬 구조로 연결되는 것을 특징으로 하는 무선전력수신 장치.And an inductor and two capacitors, each of the two capacitors being connected to the inductor in a series-parallel structure or in a parallel-serial structure.
  12. 제11항에 있어서,The method of claim 11,
    상기 로드 저항 변조부는,The load resistance modulator,
    상기 무선전력수신 장치의 loaded-Q를 높이도록 유효 로드 저항을 변조하는 변조 회로인 것을 특징으로 하는 무선전력수신 장치.And a modulation circuit for modulating an effective load resistance to increase the loaded-Q of the wireless power receiver.
PCT/KR2012/011077 2012-12-18 2012-12-18 Wireless power receiving apparatus capable of improving efficiency and power delivery using modulation of effective load resistance of receiving end WO2014098279A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280078160.7A CN104937810B (en) 2012-12-18 2012-12-18 Efficiency and the wireless power reception device of power transmission can be improved by modulating the pay(useful) load resistance of receiving terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120148249A KR101390954B1 (en) 2012-12-18 2012-12-18 Wireless power receiving apparatus with automatic load resistance modulation for efficiency and power improvement
KR10-2012-0148249 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014098279A1 true WO2014098279A1 (en) 2014-06-26

Family

ID=50659052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011077 WO2014098279A1 (en) 2012-12-18 2012-12-18 Wireless power receiving apparatus capable of improving efficiency and power delivery using modulation of effective load resistance of receiving end

Country Status (3)

Country Link
KR (1) KR101390954B1 (en)
CN (1) CN104937810B (en)
WO (1) WO2014098279A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391190B1 (en) 2015-03-13 2022-04-28 삼성전자주식회사 Method for generating a load of wireless power receiving unit in wireless charge system and the wireless power receiving unit
KR101847256B1 (en) * 2016-01-11 2018-05-28 한국전자통신연구원 Wireless power receiver, system having the same and method for controlling automatically load resistance transformation ratio
DE102016210018A1 (en) * 2016-06-07 2017-12-07 Robert Bosch Gmbh Transmission system for contactless transmission of energy
KR102622053B1 (en) 2016-07-18 2024-01-08 삼성전자주식회사 Electronic Apparatus, Display Apparatus, and Driving Method Thereof
KR102154240B1 (en) 2017-07-06 2020-09-09 한국전자통신연구원 An wireless power transmission system including receiving coil having predetermined pitch
KR102154223B1 (en) * 2017-07-27 2020-09-09 한국전자통신연구원 Wireless power receiving device capable of controlling effective load resistance and effective load resistance control method
US10693326B2 (en) 2017-07-27 2020-06-23 Electronics And Telecommunications Research Institute Wireless power receiving apparatus controlling effective load resistance, and effective load resistance control method
CN115514194B (en) * 2022-11-24 2023-02-28 成都市易冲半导体有限公司 Load resistance value determining method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344243A (en) * 1992-06-05 1993-12-24 Murata Mfg Co Ltd Telephone line power utilization circuit
KR20090046439A (en) * 2007-11-06 2009-05-11 한국전기연구원 Apparatus and method for contactless power supply for medium voltage power line
US20090174263A1 (en) * 2008-01-07 2009-07-09 Access Business Group International Llc Inductive power supply with duty cycle control
US20100277003A1 (en) * 2009-03-20 2010-11-04 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
JP2012100522A (en) * 2010-10-07 2012-05-24 Semiconductor Energy Lab Co Ltd Dc-dc converter, semiconductor device, and power generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20095973A0 (en) * 2009-09-22 2009-09-22 Powerkiss Oy Inductive power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344243A (en) * 1992-06-05 1993-12-24 Murata Mfg Co Ltd Telephone line power utilization circuit
KR20090046439A (en) * 2007-11-06 2009-05-11 한국전기연구원 Apparatus and method for contactless power supply for medium voltage power line
US20090174263A1 (en) * 2008-01-07 2009-07-09 Access Business Group International Llc Inductive power supply with duty cycle control
US20100277003A1 (en) * 2009-03-20 2010-11-04 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
JP2012100522A (en) * 2010-10-07 2012-05-24 Semiconductor Energy Lab Co Ltd Dc-dc converter, semiconductor device, and power generator

Also Published As

Publication number Publication date
CN104937810B (en) 2018-03-30
KR101390954B1 (en) 2014-04-29
CN104937810A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014098279A1 (en) Wireless power receiving apparatus capable of improving efficiency and power delivery using modulation of effective load resistance of receiving end
WO2015037949A1 (en) Charging control device, charging control method and wireless power receiving device equipped with same
WO2013162336A1 (en) Wireless power receiving apparatus and power control method therefor
WO2015064815A1 (en) Hybrid wireless power transmission system and method therefor
WO2018004130A1 (en) Shape of wireless power transmission coil and coil configuration method
WO2012111969A2 (en) Apparatus and method for high efficiency variable power transmission
WO2014112784A1 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2016052865A1 (en) Wireless power transfer system
WO2011013906A2 (en) Dimming device for a lighting apparatus
WO2014092339A1 (en) Wirless power receiver and method of controlling the same
WO2017065526A1 (en) Wireless power transfer system and driving method therefor
WO2018208057A1 (en) Conductive noise suppression device, power conversion device, and motor device
WO2016021881A1 (en) Magnetic resonance wireless power transmission device capable of adjusting resonance frequency
WO2015105334A1 (en) Wireless power transfer device and wireless power transfer system
EP3031127A1 (en) Apparatus and method for wireless power reception
WO2020171663A1 (en) Wireless power transmission device and electronic device having same
WO2018008841A1 (en) Wireless power control method and apparatus for wireless charging
WO2013151290A1 (en) Electric power supplying device, of a wireless electric power transmission apparatus and method for supplying electric power
WO2021215696A1 (en) Electronic device for carrying out overvoltage protection operation and control method therefor
WO2018203597A1 (en) Power conversion apparatus and method, and electronic apparatus using same apparatus
WO2016104940A1 (en) Device for driving light emitting element
WO2015020463A1 (en) Power supply device
WO2015026119A1 (en) Device for receiving wireless power
WO2015026096A1 (en) Power supply device
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890491

Country of ref document: EP

Kind code of ref document: A1