WO2014098230A1 - Film formation method, conductive film, and insulation film - Google Patents

Film formation method, conductive film, and insulation film Download PDF

Info

Publication number
WO2014098230A1
WO2014098230A1 PCT/JP2013/084292 JP2013084292W WO2014098230A1 WO 2014098230 A1 WO2014098230 A1 WO 2014098230A1 JP 2013084292 W JP2013084292 W JP 2013084292W WO 2014098230 A1 WO2014098230 A1 WO 2014098230A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
forming method
film forming
conductive carbon
Prior art date
Application number
PCT/JP2013/084292
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 松木
基実 松島
富明 大竹
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014553226A priority Critical patent/JPWO2014098230A1/en
Publication of WO2014098230A1 publication Critical patent/WO2014098230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a transparent conductive film, for example.
  • a transparent conductive film substrate in which a transparent conductive film (for example, a transparent conductive film made of indium tin oxide (ITO) or the like) is provided on a transparent substrate is known.
  • This type of substrate is used for a display panel, for example.
  • a display panel for example.
  • it is used for a liquid crystal display.
  • plasma displays Used for organic EL displays.
  • organic EL displays Used for organic EL displays.
  • it is used for a touch panel.
  • solar cell In addition, it is used in various fields.
  • the transparent conductive film is formed in a desired pattern.
  • a chemical etching means (a photolithography means using a photoresist or an etchant) is generally employed.
  • the chemical etching method is a photoresist film forming process (applying a photoresist paint on the ITO film formed on the entire surface of the substrate) ⁇ photoresist film patterning process (exposure development forms the photoresist film into a predetermined pattern) ) ⁇ ITO film etching process (etching the ITO film using a predetermined pattern of photoresist film as a mask) ⁇ Photoresist film removing process is required. Therefore, the chemical etching method is cumbersome.
  • the chemical etching method has a problem of a decrease in etching accuracy due to swelling of the photoresist film in the solution.
  • the chemical etching method has problems in the handling of the etching solution and the waste solution treatment.
  • a laser ablation method has been proposed as a method for solving the above problems.
  • unnecessary portions are removed by directly irradiating a conductive film with a laser.
  • This method does not require a photoresist and enables highly accurate patterning.
  • the laser ablation method In the laser ablation method, applicable substrates are limited.
  • the laser ablation method has a high process cost. In the laser ablation method, the processing speed is slow. Therefore, the laser ablation method is not a method suitable for a mass production process.
  • Chemical etching techniques that do not require a photolithography process include “use of iron (III) chloride or iron (III) chloride hexahydrate as an etching component in a composition for etching an oxide surface”, “iron chloride” (III) or iron (III) chloride hexahydrate, in display technology (TFT), in photovoltaics, semiconductor technology, high performance electronics, mineralogy or glass industry, in OLED lighting, in the manufacture of OLED displays, and Use as an etching component in a composition in paste form for the manufacture of photodiodes and for the construction of ITO glass for flat panel screen applications (plasma displays) "" Composition for etching oxide layers " A) salt as an etching component Iron (III) or iron (III) chloride hexahydrate, b) solvent, c) optionally homogeneously dissolved organic thickener, d) optionally at least one inorganic acid and / or organic
  • etching medium for etching a transparent conductive layer of an oxide comprising phosphoric acid or a salt thereof or a phosphoric acid adduct or a mixture of phosphoric acid and a phosphate and / or a phosphoric acid adduct
  • Etching medium containing at least one etchant A method for etching a transparent conductive layer of oxide, characterized in that the etching medium is applied to a substrate to be etched by a printing process” It has been proposed (Japanese Patent Publication No. 2009-503825).
  • a transparent conductive film made of carbon nanotubes is known in addition to the transparent conductive film made of ITO.
  • the carbon nanotube is a tube-shaped material having a diameter of 1 ⁇ m or less.
  • An ideal carbon nanotube has a structure in which a carbon hexagonal mesh surface is parallel to the tube axis to form a tube.
  • the tubes may be multiplexed.
  • Carbon nanotubes exhibit metallic or semiconducting properties depending on how the hexagonal network made of carbon is connected and the thickness of the tube. For this reason, carbon nanotubes are expected as functional materials. However, depending on the configuration and manufacturing method of the carbon nanotube, the thickness and direction are random.
  • the substrate is washed with a solvent that does not dissolve the binder.
  • a pattern is formed in which only the portion where the binder exists (to which the binder has been applied) remains.
  • a photoresist material can also be used instead of the binder. That is, a photoresist-containing paint is applied to the carbon nanotube film. Thereby, the photoresist is impregnated in the network of carbon nanotubes. Thereafter, a predetermined pattern is formed using photolithography.
  • the method of patterning after forming the carbon nanotube film on the entire surface of the substrate is complicated.
  • a pre-patterned carbon nanotube film is directly applied and formed on a substrate by an application method such as screen printing, inkjet, or gravure printing.
  • an application method such as screen printing, inkjet, or gravure printing.
  • the patterned carbon nanotube film is formed by a coating method such as screen printing, it is necessary that the physical properties of the carbon nanotube-containing coating are adjusted to the physical properties suitable for the coating method.
  • the carbon nanotube dispersion generally contains a dispersant such as a surfactant. Relatively low viscosity.
  • the conductive film removing agent is applied to at least a part of the base material with a conductive film having a conductive film containing a whisker-like conductor, a fibrous conductor (for example, carbon nanotube) or a particulate conductor on the base material.
  • a conductive film removal method including a process, a process of heat treatment at 80 ° C. or higher, and a process of removing the conductive film by cleaning with a liquid.
  • the conductive film in the portion where the conductive film remover is applied is decomposed, dissolved or solubilized, and has an overcoat layer. It is said that the overcoat layer and the conductive film are decomposed, dissolved or solubilized.
  • the carbon nanotube is exposed on the side surface (vertical wall surface) of the pattern formed by the technique using the conductive film remover of Patent Document 5. This is because even if an overcoat layer is provided on the upper surface of the carbon nanotube layer, the carbon nanotube layer and the overcoat layer are removed by the conductive film removing agent. That is, there is a carbon nanotube surface that is not covered with the overcoat layer. For this reason, a decrease in durability (for example, dropping of carbon nanotubes, change in physical properties due to moisture, etc.) can be considered.
  • Patent Document 5 requires a heating step of heating the conductive film remover applied in a predetermined pattern to 80 ° C. or higher. Therefore, workability is poor. Furthermore, the substrate is required to have a heat resistance of 80 ° C. or higher. This reduces the degree of freedom in substrate selection.
  • the present invention aims to solve the above problems.
  • the problem to be solved by the present invention is to provide a conductive (or insulating) film having high resolution and excellent durability by a simple method.
  • An overcoat layer was provided on a conductive film (for example, a conductive film formed by applying conductive carbon nanotubes).
  • a mask for shielding (shielding) ultraviolet rays was provided on the overcoat layer.
  • Ultraviolet rays were irradiated through the mask in a predetermined pattern.
  • ultraviolet rays were irradiated in an atmosphere containing oxygen.
  • the pattern thus formed had high pattern accuracy.
  • the durability of the conductive film (insulating film) was excellent.
  • pattern formation was simple.
  • the conductive film having a predetermined pattern is an insulating film having a predetermined pattern when viewed from the opposite standpoint.
  • the present invention has been achieved based on the above findings.
  • the present invention A method of forming a film with a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative, and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity, A step in which a conductive carbon layer is provided on one side of the substrate; A step in which a conductive carbon layer is provided on the other side of the substrate; A step of providing an overcoat layer on the conductive carbon layer provided on the one surface side; A step of providing an overcoat layer on the conductive carbon layer provided on the other side; A step of providing a mask having a predetermined pattern on the overcoat layer provided on the one surface side; A step of providing a mask having a predetermined pattern on the overcoat layer provided on the other surface side; And a step of irradiating the conductive carbon layer with ultraviolet rays corresponding to the opening of the mask in an atmosphere containing oxygen.
  • the present invention A method of forming a film with a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative, and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity, A step in which a conductive carbon layer is provided on one side of the substrate; A step in which a conductive carbon layer is provided on the other side of the substrate; A step of providing an overcoat layer on the conductive carbon layer provided on the one surface side; A step of providing an overcoat layer on the conductive carbon layer provided on the other side; A step of providing a mask having a predetermined pattern on the overcoat layer provided on the one surface side; A step of providing a mask having a predetermined pattern on the overcoat layer provided on the other surface side; A step of irradiating the conductive carbon layer with ultraviolet rays corresponding to the opening of the mask in an atmosphere containing oxygen; And a step of removing the mask after the ultraviolet irradiation.
  • the present invention is the film forming method, wherein the overcoat layer is preferably composed of a composition containing at least one selected from the group of hydrolyzable hydrolyzable organosilanes.
  • a film forming method is proposed.
  • the present invention proposes the film forming method, wherein the overcoat layer preferably has a thickness of 1 nm to 1 ⁇ m.
  • the present invention proposes the film forming method, wherein the mask is preferably made of a resin that does not transmit ultraviolet rays, and is provided as a resin layer by a printing unit.
  • the present invention proposes the film forming method, wherein the mask is preferably provided in close contact with the overcoat layer.
  • the present invention proposes the film forming method, wherein the ultraviolet ray is an ultraviolet ray having a wavelength in the range of 10 to 400 nm.
  • the present invention proposes the film forming method, wherein the ultraviolet ray is preferably an ultraviolet ray having a wavelength in the range of 150 to 180 nm.
  • the present invention proposes the above film forming method, wherein the cumulative amount of irradiated ultraviolet light is preferably 50 to 500,000 mJ / cm 2 .
  • the present invention proposes the above-described film forming method, wherein the ultraviolet light irradiation accumulated light amount is preferably 500 to 30000 mJ / cm 2 .
  • the present invention proposes the film forming method, wherein the atmosphere containing oxygen preferably has an oxygen pressure of 101 to 21273 Pa.
  • the present invention proposes the film forming method, wherein the atmosphere containing oxygen preferably has an oxygen pressure of 1013 to 10130 Pa.
  • the present invention proposes the film forming method, wherein the conductive carbon layer is preferably composed of graphene.
  • the present invention proposes the film forming method, wherein the conductive carbon layer is preferably composed of carbon nanotubes.
  • the present invention proposes the above film forming method, wherein the conductive carbon layer is preferably composed of acid-treated single-walled carbon nanotubes.
  • the present invention proposes a conductive film formed by the film forming method.
  • the present invention proposes an insulating film formed by the film forming method.
  • a conductive (or insulating) film with high resolution can be easily obtained.
  • the first aspect of the present invention is a film forming method.
  • the method is, for example, a method of forming a conductive film having a predetermined pattern. Alternatively, it is a method of forming an insulating film having a predetermined pattern.
  • the method is a method of forming a transparent conductive film having a predetermined pattern. Alternatively, a transparent insulating film having a predetermined pattern is formed.
  • the method is a film formation method of a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity.
  • the above-described method is an insulating film forming method, particularly if the portion modified to be insulating is taken up.
  • the above method is a method for forming a conductive film, particularly if the conductive part is taken up.
  • the method includes the step of providing a conductive carbon layer.
  • the conductive carbon layer is provided on both surfaces (front surface and back surface) of the substrate. There are cases where they are provided simultaneously on both sides, and cases where they are provided on the other side after being provided on one side. Either may be adopted.
  • a conductive carbon for example, conductive graphene (conductive carbon nanotube)
  • a base material for example, a substrate. By this coating, a conductive carbon layer is provided.
  • a method other than coating may be used.
  • CVD chemical vapor deposition method
  • PVD physical vapor deposition method
  • the method includes a step of providing an overcoat layer on the conductive carbon layer.
  • an overcoat paint is applied on the conductive carbon layer.
  • This coating forms an overcoat layer.
  • An overcoat layer is provided on the conductive carbon layer provided on the front surface side (one surface side).
  • An overcoat layer is provided on the conductive carbon layer provided on the back side (the other side).
  • the overcoat layer may be provided simultaneously, or may be provided on the other side after being provided on the one side. Either may be adopted.
  • the conductive carbon layer and the overcoat layer may be simultaneously provided by a simultaneous multilayer coating method.
  • the method includes the step of providing a mask on the overcoat layer.
  • the mask is described in the case of a resin layer made of a material that does not transmit ultraviolet rays.
  • the resin layer is provided on an overcoat layer provided on the front surface side (one surface side).
  • the resin layer is provided on an overcoat layer provided on the back surface side (other surface side).
  • the resin layer may be provided on both sides simultaneously, or may be provided on the other side after being provided on one side. Either may be adopted.
  • the conductive overcoat layer and the resin layer may be provided simultaneously by a simultaneous multilayer coating method. Alternatively, they may be provided separately.
  • the overcoat layer and the resin layer are preferably in close contact with each other.
  • Adhesion means that a special force is required for peeling. That is, [bonding strength (peel strength) between the overcoat layer and the resin layer]> 0. It means that ultraviolet rays do not enter the boundary between the overcoat layer and the resin layer. It means that oxygen (active oxygen) does not enter the boundary between the overcoat layer and the resin layer. In this sense, a particularly large adhesive strength (peel strength) is not necessary.
  • the resin layer has a predetermined pattern. The resin layer is provided at a location corresponding to a location (pattern) where the conductive carbon layer maintains conductivity. The resin layer is not provided at a location corresponding to a location (pattern) where the conductive carbon layer loses conductivity and becomes insulating.
  • the resin layer having the predetermined pattern functions as a mask for forming a conductive film (insulating film) having a predetermined pattern.
  • Various resins can be used as the resin that does not transmit ultraviolet rays.
  • a resist material, a photocurable resin, a thermosetting resin, a thermoplastic resin, and the like can be given.
  • the resin layer having the predetermined pattern is formed by printing means such as screen printing. Alternatively, it is formed using a photolithography technique. Of course, it is not limited to this.
  • the method includes a step of irradiating with ultraviolet rays in an oxygen-containing atmosphere after the resin layer having the predetermined pattern is provided.
  • the conductive carbon in the lower position where the resin layer exists is not irradiated with ultraviolet rays.
  • the conductive carbon in the lower position where the resin layer does not exist is irradiated with ultraviolet rays.
  • Ultraviolet rays are irradiated to the portions that should be insulated.
  • the ultraviolet non-irradiated region is a region where electrical conductivity should be ensured.
  • the ultraviolet irradiation region is a region where conductivity should be lost.
  • ultraviolet irradiation is performed. Adhesion between the overcoat layer and the mask was improved by using the resin layer (resin mask).
  • the overcoat layer is preferably composed of a composition containing at least one selected from the group of hydrolyzable organosilane hydrolysates.
  • the ultraviolet rays are preferably ultraviolet rays having a wavelength in the range of 10 to 400 nm. More preferred is ultraviolet light having a wavelength in the range of 150 to 260 nm. Particularly preferred is ultraviolet light having a wavelength in the range of 150 to 180 nm.
  • the atmosphere containing oxygen preferably has an oxygen pressure (oxygen partial pressure in the case of a mixed gas) of 101 to 21273 Pa. More preferably, the oxygen pressure is 507-20260 Pa. Particularly preferably, the oxygen pressure is 1013 to 10130 Pa.
  • the conductive carbon layer is made of graphene, for example.
  • the conductive carbon layer (graphene layer) is composed of, for example, carbon nanotubes.
  • the conductive carbon layer (carbon nanotube layer) is composed of single-walled carbon nanotubes, for example.
  • the conductive carbon layer (carbon nanotube layer) is composed of, for example, single-walled carbon nanotubes subjected to acid treatment.
  • the carbon nanotube is preferably a carbon nanotube of G (intensity at a Raman peak common to graphite substances appearing near 1590 cm ⁇ 1 ) / D (intensity at a Raman peak due to defects appearing near 1350 cm ⁇ 1 ) ⁇ 10 .
  • the upper limit value of G / D is about 150, for example.
  • the second aspect of the present invention is a conductive film.
  • the film is a conductive film formed by the film forming method.
  • the third aspect of the present invention is an insulating film.
  • the film is an insulating film formed by the film forming method.
  • FIG. 1 is a schematic cross-sectional view showing the layer structure before ultraviolet irradiation
  • FIG. 2 is a schematic cross-sectional view showing the layer structure after ultraviolet irradiation
  • FIG. 3 is a plan view of a resin layer (mask) provided on the overcoat layer. is there.
  • the transparent conductive carbon layer 1 is a transparent conductive carbon layer.
  • the transparent conductive carbon layer 1 is made of graphene, for example.
  • the transparent conductive carbon layer 1 was made of carbon nanotubes, for example.
  • the transparent conductive carbon layer 1 was composed of, for example, single-walled carbon nanotubes.
  • the transparent conductive carbon layer 1 is composed of, for example, single-walled carbon nanotubes that have been subjected to acid treatment.
  • Examples of the carbon nanotubes (CNT) constituting the transparent conductive carbon layer 1 include single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
  • Single-walled carbon nanotubes are preferred.
  • single-walled carbon nanotubes having a G / D of 10 or more (for example, 20 to 60) are preferable.
  • CNTs having a diameter of 0.3 to 100 nm are preferable.
  • CNT having a diameter of 0.3 to 2 nm is preferable.
  • CNTs having a length of 0.1 to 100 ⁇ m are preferred.
  • CNTs having a length of 0.1 to 5 ⁇ m are preferable.
  • the CNTs in the transparent conductive carbon layer 1 are intertwined with each other, for example.
  • the single-walled carbon nanotube may be a single-walled carbon nanotube obtained by any manufacturing method.
  • single-walled carbon nanotubes obtained by production methods such as arc discharge, chemical vapor deposition, and laser evaporation can be used. From the viewpoint of crystallinity, single-walled carbon nanotubes obtained by an arc discharge method are preferred. This is easily available.
  • the single-walled carbon nanotube is preferably a single-walled carbon nanotube subjected to acid treatment.
  • the acid treatment is performed by immersing single-walled carbon nanotubes in an acidic liquid.
  • a technique called spraying may be employed instead of immersion.
  • Various kinds of acidic liquids are used. For example, an inorganic acid or an organic acid is used. However, inorganic acids are preferred.
  • nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or a mixture thereof can be used.
  • acid treatment using nitric acid or a mixed acid of nitric acid and sulfuric acid is preferable.
  • amorphous carbon was decomposed when single-walled carbon nanotubes and carbon fine particles were physically bonded through amorphous carbon. Both separated.
  • the fine particles of the metal catalyst used in the production of the single-walled carbon nanotube were decomposed.
  • a functional group is attached by the acid treatment.
  • the conductivity was improved by the acid treatment.
  • the single-walled carbon nanotube is preferably a single-walled carbon nanotube in which impurities are removed by filtration and purity is improved.
  • the conductive layer (carbon nanotube layer) 1 preferably contains fullerene in addition to the CNT.
  • the conductive layer 1 preferably contains the above-mentioned CNT and fullerene.
  • fullerene includes “fullerene analog”. This is because heat resistance is improved by including fullerene. It is because it was excellent also in electroconductivity.
  • the fullerene may be any fullerene. For example, C60, C70, C76, C78, C82, C84, C90, C96 etc. are mentioned. Of course, a mixture of plural kinds of fullerenes may be used. From the viewpoint of dispersion performance, C60 is particularly preferable. Furthermore, C60 is easy to obtain.
  • fullerene may contain metal atoms.
  • the fullerene analog include those having a functional group (for example, a functional group such as OH group, epoxy group, ester group, amide group, sulfonyl group, ether group).
  • Examples also include phenyl-C61-propyl acid alkyl ester and phenyl-C61-butyric acid alkyl ester.
  • Examples thereof include hydrogenated fullerene.
  • fullerene having an OH group (hydroxyl group) (fullerene hydroxide) is preferable.
  • the number of OH groups is preferably 5 to 30 per molecule of fullerene. In particular, 8 to 15 are preferable.
  • the amount of fullerene is preferably 10 to 1000 parts by mass (particularly 20 parts by mass or more and 100 parts by mass or less) with respect to 100 parts by mass of CNT.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 may contain a binder resin. However, from the viewpoint of conductivity, it is preferable not to include a binder resin. For example, when entangled CNTs are used, there is no need for a binder resin. The CNTs that are intertwined are in direct contact with each other. Since no insulator is interposed between them, the conductivity is good. If the surface of the conductive film is observed with a scanning electron microscope, it can be confirmed / determined whether the structure is intertwined with CNTs.
  • Reference numeral 2 denotes a base material (substrate).
  • the transparent conductive carbon layer 1 is provided on both front and back (upper and lower) surfaces of a base material (substrate) 2.
  • the transparent conductive carbon layer 1 is configured by applying a CNT dispersion liquid (a dispersion liquid in which CNT having the above characteristics and fullerene added as necessary are dispersed) on a substrate (substrate) 2.
  • the coating method include die coating, knife coating, spray coating, spin coating, slit coating, micro gravure, flexo and the like. Of course, it is not limited to this.
  • the carbon nanotube dispersion liquid is applied to the entire surface of the substrate 2.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 is preferably formed uniformly in order to uniformly promote insulation during ultraviolet irradiation.
  • Various materials are appropriately used as the constituent material of the substrate 2.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • MS polycarbonate
  • PC polycarbonate
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • PET polyethylene terephthalate
  • a resin such as polyethylene naphthalate (PEN) is used.
  • PEN polyethylene naphthalate
  • an inorganic glass material or a ceramic material can be used.
  • an overcoat layer (protective layer) 3 is provided on the transparent conductive carbon layer 1.
  • the transparent conductive carbon layer 1 is provided on both the front and back surfaces of the substrate 2. Therefore, the overcoat layer (protective layer) 3 is also provided on the front surface side and the back surface side of the substrate 2.
  • the overcoat layer 3 is composed of an organic polymer material, an inorganic polymer material, or an organic-inorganic hybrid resin. Examples of organic polymer materials include thermoplastic resins, thermosetting resins, cellulose resins, and photocurable resins. It is appropriately selected from the viewpoints of visible light transmittance, substrate heat resistance, glass transition point, film curing degree, and the like.
  • thermoplastic resin examples include polymethyl methacrylate, polystyrene, polyethylene terephthalate, polycarbonate, polylactic acid, and ABS resin.
  • thermosetting resin examples include phenol resin, melamine resin, alkyd resin, polyimide, epoxy resin, fluorine resin, and urethane resin.
  • cellulose resin examples include acetyl cellulose and triacetyl cellulose.
  • photocurable resin examples include various oligomers, monomers, resins containing a photopolymerization initiator, and the like.
  • inorganic material examples include silica sol, alumina sol, zirconia sol, titania sol and the like.
  • Examples thereof include a polymer obtained by hydrolyzing and dehydrating and condensing water or an acid catalyst to the inorganic material.
  • Examples of the organic-inorganic hybrid resin include those in which a part of the inorganic material is modified (for example, substituted or added) with an organic functional group, and resins mainly composed of various coupling agents such as a silane coupling agent. Etc. If the overcoat layer 3 is too thick, the contact resistance of the conductive film increases. On the contrary, if the overcoat layer 3 is too thin, it is difficult to obtain an effect as a protective film. Accordingly, the thickness of the overcoat layer 3 is preferably 1 nm to 1 ⁇ m. In particular, 10 nm or more is preferable. 200 nm or less is preferable. Furthermore, 150 nm or less is preferable.
  • the overcoat layer 3 provided on the transparent conductive carbon layer (carbon nanotube layer) 1 is particularly preferably composed of a composition containing, for example, a hydrolyzate of hydrolyzable organosilane.
  • a composition containing for example, a hydrolyzate of hydrolyzable organosilane.
  • it consists of a composition containing a tetrafunctional hydrolyzable organosilane.
  • it comprises a composition containing a hydrolyzate of a tetrafunctional hydrolyzable organosilane and a hydrolyzable organosilane having an epoxy group and an alkoxy group.
  • the content of the hydrolyzable organosilane hydrolyzate having an epoxy group and an alkoxy group is preferably 1 to 10% by weight based on the total solid content of the resin.
  • the epoxy group of the cohydrolyzate is a hydroxyl group contained in the substrate when the composition is applied and cured. And oxygen sites such as carbonyl groups. For this reason, the adhesion between the overcoat layer (protective film) and the transparent conductive carbon layer (carbon nanotube layer) 1 is improved. It consists of a composition containing silica-based metal oxide fine particles. In some cases, the composition further comprises a hydrolyzate of hydrolyzable organosilane having a fluorine-substituted alkyl group.
  • the hydrolyzate of the hydrolyzable organosilane is preferably a product obtained by reacting at a water ratio of 1.0 to 3.0 with respect to the alkoxy group contained in the hydrolyzable organosilane.
  • the hydrolyzate of the hydrolyzable organosilane is preferably a compound having a polystyrene equivalent weight average molecular weight of 1000 to 2000.
  • the tetrafunctional hydrolyzable organosilane is a compound represented by, for example, SiX 4 .
  • X is a hydrolyzable group.
  • R 1 is preferably a monovalent hydrocarbon group.
  • it is a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • the tetrafunctional hydrolyzable organosilane used in the present embodiment include tetramethoxysilane and tetraethoxysilane.
  • the hydrolyzable organosilane having an epoxy group and an alkoxy group is, for example, a compound represented by R 2 Si (OR 3 ) 3 or R 2 R 4 Si (OR 3 ) 2 .
  • R 2 is a group selected from an epoxy group, a glycidoxy group, and substituted products thereof.
  • R 3 is a monovalent hydrocarbon group as in R 1 .
  • R 4 is a group selected from hydrogen, an alkyl group, a fluoroalkyl group, an aryl group, an alkenyl group, a methacryloxy group, an epoxy group, a glycidoxy group, an amino group, and substituents thereof.
  • Examples of the hydrolyzable organosilane having an epoxy group and an alkoxy group used in this embodiment include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycidoxypropyltrisilane. Examples thereof include ethoxysilane and ⁇ -glycidoxypropyldimethoxymethylsilane.
  • silica-based metal oxide fine particles hollow silica fine particles are preferably used.
  • the hollow silica fine particles are those in which cavities are formed inside the outer shell of the silica-based metal oxide.
  • the outer shell is preferably a porous one having pores. It may be one in which the pores are closed and the cavity is sealed. As long as it contributes to lowering the refractive index of the formed film, it is not necessarily limited to the hollow silica described above.
  • an overcoat layer having such a composition In the case of an overcoat layer having such a composition, the light reflectance was lowered and the light transmittance was increased. High physical protection against friction. Protection was high against environmental changes such as heat and humidity.
  • an overcoat layer 3 When such an overcoat layer 3 was provided, it was confirmed that the transparent conductive carbon layer (carbon nanotube layer) 1 was modified from conductive to insulating by ultraviolet irradiation in a short time. In the present invention, such an overcoat layer is provided on the transparent conductive carbon layer (carbon nanotube layer) 1 prior to the ultraviolet irradiation step.
  • the overcoat layer 3 is provided by applying a paint containing the above composition.
  • a paint containing the above composition As the application method, the method described in the application of the CNT dispersion liquid is employed. The coating is performed on the conductive layer (carbon nanotube layer). Moreover, it is applied to the entire surface. It is preferable that the overcoat layer 3 is also formed uniformly in order to make the insulation at the time of ultraviolet irradiation progress uniformly.
  • a resin layer (mask) 4 having a predetermined pattern was provided on the overcoat layer 3.
  • the overcoat layer (protective layer) 3 is provided on the front surface side and the back surface side of the base material (substrate) 2. Therefore, the resin layer 4 having a predetermined pattern is also provided on the front surface side and the back surface side of the base material (substrate) 2.
  • the pattern of the resin layer 4 provided on the front surface side and the pattern of the resin layer 4 provided on the back surface side may be the same or different.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 below the position where the resin layer 4 exists (on the substrate 2 side) is not irradiated with ultraviolet rays.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 below the position where the resin layer 4 does not exist (substrate 2 side) is irradiated with ultraviolet rays.
  • the resin layer 4 functions as a mask.
  • the resin constituting the resin layer 4 is a resin that does not transmit ultraviolet light having a wavelength used for insulation.
  • a resist material for example, novolak resin, melamine resin, etc.
  • a photocurable resin for example, acryloyl group-modified resin, etc.
  • a thermosetting resin for example, epoxy resin, etc.
  • a thermoplastic resin for example, acrylic resin, etc. Aromatic resin.
  • the resin layer 4 does not only have a function of shielding ultraviolet irradiation from above.
  • the resin layer 4 has high adhesion to the overcoat layer 3 to prevent leakage of ultraviolet rays (around) to a portion where conductivity is desired to be maintained, or leakage of active oxygen such as ozone generated from oxygen (entrance). To prevent. Thereby, highly accurate patterning was obtained.
  • the formation method of the resin layer 4 is not specifically limited. For example, printing means such as screen printing, offset printing, ink jet printing, and gravure printing can be used. If the printing means is employed, a resin can be provided on the overcoat layer 3 at a predetermined pattern corresponding portion.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 was irradiated with ultraviolet rays.
  • This ultraviolet ray preferably has a wavelength of 10 to 260 nm. More preferably, the wavelength is 150 to 260 nm. Particularly preferably, the wavelength is 150 to 180 nm. More preferred is ultraviolet light having a wavelength of 160 to 175 nm. For example, when ultraviolet rays having a long wavelength exceeding 260 nm are irradiated, the ultraviolet rays irradiated from one surface may pass through the substrate and insulate the conductive carbon layer on the opposite surface side.
  • the irradiated ultraviolet rays have a wavelength of 180 nm or less.
  • the irradiated ultraviolet light wavelength: 185 nm, 254 nm
  • the carbon nanotubes were easily denatured from conductive to insulating at the irradiated site.
  • the substrate 2 is made of a resin, a phenomenon called discoloration may be observed in the substrate 2 in some cases.
  • the irradiated ultraviolet light has a wavelength of 180 nm or less, and further 175 nm or less.
  • ultraviolet rays (wavelength: 172 nm) from a xenon excimer lamp were particularly preferable.
  • the ultraviolet irradiation time having the above characteristics is, for example, about 10 seconds to 1 hour. Preferably it is 1 minute or more. Preferably it is 40 minutes or less.
  • the cumulative amount of UV irradiation was, for example, about 50 to 500,000 mJ / cm 2 . Preferably, it was 100 to 100,000 mJ / cm 2 . More preferably, it was 500 to 30,000 mJ / cm 2 .
  • the preferable integrated light amount varies somewhat depending on the thickness of the carbon nanotube layer. It varied greatly depending on the presence or absence of the overcoat layer.
  • the carbon nanotubes were modified from conductive to insulating in a short time. It also varied depending on the type and thickness of the overcoat layer.
  • the overcoat layer was a composition containing a hydrolyzate of hydrolyzable organosilane, the irradiation time was significantly shortened.
  • the thickness of the overcoat layer 3 was preferably 10 nm to 200 nm. More preferably, it was 50 nm to 150 nm.
  • 1a is an ultraviolet irradiation location.
  • the ultraviolet irradiation part 1a is denatured to be insulating.
  • Reference numeral 1b denotes a portion not irradiated with ultraviolet rays. The portion 1b not irradiated with ultraviolet rays remains conductive.
  • oxygen or active oxygen
  • the atmosphere containing oxygen preferably had an oxygen pressure of 101 to 21273 Pa. More preferably, the oxygen pressure was 507-20260 Pa. Particularly preferably, the oxygen pressure was 1013 to 10130 Pa.
  • the transparent conductive carbon layer (carbon nanotube layer) 1 becomes a conductive (or insulating) film having a predetermined pattern by ultraviolet irradiation.
  • the present invention and the conventional pattern forming method are greatly different. That is, the overcoat layer (coating layer) 3 remains as it is.
  • the conductive layer (insulating layer) remains covered with the overcoat layer 3. Not exposed.
  • the protective effect of the conductive layer (insulating layer) is high. That is, the durability is high. For example, the conductive layer (insulating layer) is hardly chipped (dropped off). It is difficult for moisture (humidity) to enter the conductive layer (insulating layer).
  • the resin layer 4 was removed as necessary.
  • the removal method is not particularly limited. For example, a method of peeling using an adhesive sheet or roll, a method of rubbing using a brush or the like, and a method of dissolving (or peeling) using a chemical solution that dissolves or swells are appropriately used.
  • Example 1 The single wall carbon nanotubes (commercially available) synthesized by arc discharge were subjected to acid treatment, water washing, centrifugation and filtration. A surfactant (sodium dodecylbenzenesulfonate: SDBS) 0.2 wt% aqueous solution was added to the purified carbon nanotubes. The carbon nanotube-containing aqueous solution was subjected to a dispersion treatment using an ultrasonic device. Centrifugation was then performed. Thus, a carbon nanotube dispersion liquid (CNT: 3200 ppm) was obtained.
  • SDBS sodium dodecylbenzenesulfonate
  • the carbon nanotube dispersion was applied to both the front and back (upper and lower) surfaces of the substrate 2.
  • the substrate 2 is a PET film (MKZ-T4A: manufactured by Higashiyama Film).
  • the application method is die coating.
  • the coating thickness is 0.05 ⁇ m (thickness after drying).
  • ion exchange water cleaning was performed. Thereby, the surfactant contained in the coating film (carbon nanotube layer) was removed. This was followed by drying (1.5 minutes; 120 ° C.).
  • the carbon nanotube layer (transparent conductive carbon layer) 1 was provided on both the front and back (upper and lower) surfaces of the PET film 2.
  • the overcoat layer 3 was provided on the front and back (upper and lower) both sides of the PET film 2.
  • One overcoat layer 3 is provided on one carbon nanotube layer (transparent conductive carbon layer) 1, and the other overcoat layer 3 is provided on another carbon nanotube layer (transparent conductive carbon layer) 1. It was.
  • As the structure of each overcoat layer 1.5 wt% Aerocera (hydrolyzable organosilane-containing composition: manufactured by Panasonic Corporation) was used.
  • the application method is die coating.
  • the coating thickness is 0.1 ⁇ m (thickness after drying).
  • the resin layer (mask) 4 was provided on the front and back (upper and lower) both sides of the PET film 2.
  • One resin layer 4 was provided on one overcoat layer 3, and the other resin layer 4 was provided on the other overcoat layer 3.
  • the mask (resin layer) 4 having a predetermined pattern was formed by screen printing. That is, a thermosetting resin (X-100 CL1: manufactured by Taiyo Ink Manufacturing Co., Ltd.) was printed at a predetermined location. The coating thickness was 50 ⁇ m. Then, the hardening process was performed for 30 minutes at 100 degreeC in oven. A portion where the resin layer 4 is not provided is an opening 5. Ultraviolet rays were applied to the carbon nanotube layer (transparent conductive carbon layer) 1 from the opening 5.
  • the opening 5 has a square shape with a line width of 100 ⁇ m and a side length of 5 mm.
  • ultraviolet light (wavelength: 172 nm) from a xenon excimer lamp was irradiated on both surfaces from above the resin layer (mask) 4 having a predetermined pattern.
  • the atmosphere during ultraviolet irradiation was 94% nitrogen and 6% oxygen.
  • the pressure by the mixed gas is 1.013 ⁇ 10 5 Pa.
  • the integrated light quantity of irradiated ultraviolet rays was 10,560 mJ / cm 2 .
  • the resin layer 4 was peeled off and removed using an adhesive sheet.
  • the pattern shape ( ⁇ shape) of the opening 5 of the mask 4 and the pattern shape ( ⁇ shape) of the carbon nanotube conductive layer were compared. The agreement between the two was extremely high. That is, the transparent conductive film was formed with high accuracy.
  • Example 1 In Example 1, it carried out similarly except having set it as nitrogen atmosphere (oxygen partial pressure 0Pa: no oxygen).
  • the ultraviolet irradiation site was not modified from conductive to insulating in Comparative Example 1.
  • Example 2 In Example 1, it carried out similarly except that the overcoat layer 3 was not provided.
  • the ultraviolet irradiation site was not modified from conductive to insulating even in Comparative Example 2.
  • Transparent conductive carbon layer carbon nanotube layer
  • UV irradiation location insulation modified location
  • UV-irradiated area transparent conductive area
  • Substrate base material
  • Overcoat layer hydrolyzable organosilane-containing composition layer
  • Resin layer mask
  • opening ultraviolet ray transmission part

Abstract

The purpose of the present invention is to provide a film having a pattern with a high resolution. The present invention is provided with: a step in which a conductive carbon layer is provided to one surface side of a base material; a step in which a conductive carbon layer is provided to another surface side of the base material; a step in which an overcoat layer is provided upon the conductive carbon layer provided to the one surface side; a step in which an overcoat layer is provided upon the conductive carbon layer provided to the other surface side; a step in which a mask having a prescribed pattern is provided upon the overcoat layer provided to the one surface side; a step in which a mask having a prescribed pattern is provided upon the overcoat layer provided to the other surface side; and a step in which, under an atmosphere provided with oxygen, the conductive carbon layers are irradiated with ultraviolet radiation in accordance with openings in the masks.

Description

膜形成方法、導電膜、及び絶縁膜Film forming method, conductive film, and insulating film
 本発明は、例えば透明導電膜に関する。 The present invention relates to a transparent conductive film, for example.
 透明導電膜(例えば、インジウム錫酸化物(ITO)等からなる透明導電膜)が透明基板上に設けられた透明導電膜基板が知られている。この種の基板は、例えば表示パネルに用いられる。例えば、液晶ディスプレイに用いられる。プラズマディスプレイに用いられる。有機ELディスプレイに用いられる。或いは、タッチパネルに用いられる。又は、太陽電池に用いられる。その他にも各種の分野で用いられる。 A transparent conductive film substrate in which a transparent conductive film (for example, a transparent conductive film made of indium tin oxide (ITO) or the like) is provided on a transparent substrate is known. This type of substrate is used for a display panel, for example. For example, it is used for a liquid crystal display. Used for plasma displays. Used for organic EL displays. Or it is used for a touch panel. Or it is used for a solar cell. In addition, it is used in various fields.
 透明導電膜は所望のパターンに形成されている。このパターン形成方法として、一般的には、ケミカルエッチング手段(フォトレジストやエッチング液が用いられたフォトリソグラフィ手段)が採用されている。 The transparent conductive film is formed in a desired pattern. As this pattern forming method, a chemical etching means (a photolithography means using a photoresist or an etchant) is generally employed.
 前記ケミカルエッチングの手法は、フォトレジスト膜成膜工程(基板の全面に成膜したITO膜上にフォトレジスト塗料を塗布)→フォトレジスト膜パターニング工程(露光現像によって、フォトレジスト膜を所定パターンに成形)→ITO膜エッチング工程(所定パターンのフォトレジスト膜をマスクとして、ITO膜をエッチング)→フォトレジスト膜除去工程と言った多くの工程を必要とする。従って、前記ケミカルエッチングの手法は煩瑣である。前記ケミカルエッチングの手法は、溶液中でのフォトレジスト膜の膨潤に起因して、エッチング精度低下の問題が有る。前記ケミカルエッチングの手法は、エッチング液の取扱性や、廃液処理に問題が有る。 The chemical etching method is a photoresist film forming process (applying a photoresist paint on the ITO film formed on the entire surface of the substrate) → photoresist film patterning process (exposure development forms the photoresist film into a predetermined pattern) ) → ITO film etching process (etching the ITO film using a predetermined pattern of photoresist film as a mask) → Photoresist film removing process is required. Therefore, the chemical etching method is cumbersome. The chemical etching method has a problem of a decrease in etching accuracy due to swelling of the photoresist film in the solution. The chemical etching method has problems in the handling of the etching solution and the waste solution treatment.
 前記課題を解決する方法として、レーザーアブレーション法が提案されている。この方法は、レーザーを、直接、導電膜に照射することによって、不要部分を除去する方法である。この方法は、フォトレジストを必要とせず、精度の高いパターニングが可能になる。 A laser ablation method has been proposed as a method for solving the above problems. In this method, unnecessary portions are removed by directly irradiating a conductive film with a laser. This method does not require a photoresist and enables highly accurate patterning.
 しかしながら、前記レーザーアブレーション法では、適用可能な基材が限定される。前記レーザーアブレーション法は、プロセスコストが高い。前記レーザーアブレーション法では、処理速度が遅い。従って、前記レーザーアブレーション法は、量産プロセスに適した方法では無い。 However, in the laser ablation method, applicable substrates are limited. The laser ablation method has a high process cost. In the laser ablation method, the processing speed is slow. Therefore, the laser ablation method is not a method suitable for a mass production process.
 フォトリソグラフィ工程が不要なケミカルエッチング技術として、「塩化鉄(III)または塩化鉄(III)六水和物の、酸化物表面のエッチングのための組成物における、エッチング成分としての使用」「塩化鉄(III)または塩化鉄(III)六水和物の、ディスプレイ技術(TFT)における、太陽光発電、半導体技術、高性能エレクトロニクス、鉱物学またはガラス工業における、OLED照明、OLEDディスプレイの製造における、およびフォトダイオードの製造のため、およびフラットパネルスクリーン用途(プラズマディスプレイ)のためのITOガラスの構築のための、ペースト形態の組成物における、エッチング成分としての使用」「酸化物層のエッチングのための組成物であって、a)エッチング成分として塩化鉄(III)または塩化鉄(III)六水和物、b)溶媒、c)随意的に、均質に溶解した有機増粘剤、d)随意的に、少なくとも1種の無機酸および/または有機酸、および随意的にe)添加剤、例えば消泡剤、チキソトロープ剤、流れ制御剤、脱気剤、接着促進剤、を含み、ペースト形態であり印刷可能である、前記組成物」が提案(特表2008-547232号公報)されている。 Chemical etching techniques that do not require a photolithography process include “use of iron (III) chloride or iron (III) chloride hexahydrate as an etching component in a composition for etching an oxide surface”, “iron chloride” (III) or iron (III) chloride hexahydrate, in display technology (TFT), in photovoltaics, semiconductor technology, high performance electronics, mineralogy or glass industry, in OLED lighting, in the manufacture of OLED displays, and Use as an etching component in a composition in paste form for the manufacture of photodiodes and for the construction of ITO glass for flat panel screen applications (plasma displays) "" Composition for etching oxide layers " A) salt as an etching component Iron (III) or iron (III) chloride hexahydrate, b) solvent, c) optionally homogeneously dissolved organic thickener, d) optionally at least one inorganic acid and / or organic The composition ", which is in paste form and printable, comprising an acid and optionally e) additives such as antifoaming agents, thixotropic agents, flow control agents, degassing agents, adhesion promoters ( JP-T-2008-547232).
 「酸化物の透明な導電層をエッチングするためのエッチング媒体であって、リン酸、もしくはその塩またはリン酸付加物またはリン酸と、リン酸塩および/またはリン酸付加物との混合物からなる少なくとも1種のエッチャントを含むエッチング媒体」「酸化物の透明な導電層をエッチングするための方法であって、前記エッチング媒体を、印刷工程によってエッチングする基板に適用することを特徴とする方法」が提案(特表2009-503825号公報)されている。 “An etching medium for etching a transparent conductive layer of an oxide, comprising phosphoric acid or a salt thereof or a phosphoric acid adduct or a mixture of phosphoric acid and a phosphate and / or a phosphoric acid adduct “Etching medium containing at least one etchant” “A method for etching a transparent conductive layer of oxide, characterized in that the etching medium is applied to a substrate to be etched by a printing process” It has been proposed (Japanese Patent Publication No. 2009-503825).
 しかし、特表2008-547232号公報や特表2009-503825号公報の技術は、エッチングが面内において均一に進行し難い。この為、ムラが発生する。 However, the techniques disclosed in Japanese Patent Publication No. 2008-547232 and Japanese Patent Publication No. 2009-503825 do not allow etching to progress uniformly in the plane. For this reason, unevenness occurs.
 ところで、透明導電膜は、ITO製の透明導電膜の他にも、カーボンナノチューブ製の透明導電膜が知られている。カーボンナノチューブは、直径が1μm以下の太さのチューブ状材料である。理想的なカーボンナノチューブは、炭素6角網目の面がチューブの軸に平行になって管を形成した構造である。前記管が多重になることもある。カーボンナノチューブは、炭素で出来た6角網目の繋がり方や、チューブの太さにより、金属的あるいは半導体的な性質を示す。このことから、カーボンナノチューブは機能材料として期待されている。但し、カーボンナノチューブの構成や製造法によっては、太さも方向もランダムである。この為、利用に際して、合成後に回収して精製し、利用する形態に合わせた処理が必要な場合も有る。この種のカーボンナノチューブのパターニングの手法として、次の手法が提案(特表2006-513557号公報、特表2007-529884号公報(国際公開2005/086982号パンフレット))されている。例えば、基板表面にカーボンナノチューブ分散液を塗布する。これにより、カーボンナノチューブ被膜が形成される。このカーボンナノチューブ被膜にバインダ溶液を所定パターンで塗布する。塗布後、溶媒が乾燥除去される。これにより、バインダがカーボンナノチューブ被膜中に残り、カーボンナノチューブのネットワークが強化される。この後、バインダを溶解しない溶媒で、基板が、洗浄される。これにより、バインダが存在する(バインダが塗布された)部分のみが残存したパターンが形成される。バインダの代わりにフォトレジスト材料を用いることも出来る。すなわち、カーボンナノチューブ被膜にフォトレジスト含有塗料を塗布する。これにより、カーボンナノチューブのネットワーク内にフォトレジストが含浸する。この後、フォトリソグラフィを用いて所定パターンに形成する。しかしながら、基板表面全体にカーボンナノチューブ被膜を形成してからパターニングを行う手法は、工程が煩雑である。 Incidentally, as the transparent conductive film, a transparent conductive film made of carbon nanotubes is known in addition to the transparent conductive film made of ITO. The carbon nanotube is a tube-shaped material having a diameter of 1 μm or less. An ideal carbon nanotube has a structure in which a carbon hexagonal mesh surface is parallel to the tube axis to form a tube. The tubes may be multiplexed. Carbon nanotubes exhibit metallic or semiconducting properties depending on how the hexagonal network made of carbon is connected and the thickness of the tube. For this reason, carbon nanotubes are expected as functional materials. However, depending on the configuration and manufacturing method of the carbon nanotube, the thickness and direction are random. For this reason, in use, there are cases where it is necessary to recover after the synthesis and purify it, and to treat it according to the form to be used. The following methods have been proposed as a patterning method for this type of carbon nanotube (Japanese Patent Publication No. 2006-513557, Japanese Patent Publication No. 2007-529884 (Pamphlet of International Publication No. 2005/086982)). For example, a carbon nanotube dispersion is applied to the substrate surface. Thereby, a carbon nanotube film is formed. A binder solution is applied to the carbon nanotube film in a predetermined pattern. After application, the solvent is removed by drying. Thereby, the binder remains in the carbon nanotube film, and the network of carbon nanotubes is strengthened. Thereafter, the substrate is washed with a solvent that does not dissolve the binder. As a result, a pattern is formed in which only the portion where the binder exists (to which the binder has been applied) remains. A photoresist material can also be used instead of the binder. That is, a photoresist-containing paint is applied to the carbon nanotube film. Thereby, the photoresist is impregnated in the network of carbon nanotubes. Thereafter, a predetermined pattern is formed using photolithography. However, the method of patterning after forming the carbon nanotube film on the entire surface of the substrate is complicated.
 予めパターン化されたカーボンナノチューブ被膜が、スクリーン印刷、インクジェット、グラビア印刷などの塗布方法によって、直接、基板上に塗布・形成される方法も挙げられる。パターン化されたカーボンナノチューブ被膜をスクリーン印刷などの塗布方法で形成する場合、カーボンナノチューブ含有塗料の物性が塗布方法に合った物性に調整されている必要が有る。カーボンナノチューブ分散液は、一般的には、界面活性剤等の分散剤を含む。比較的、低粘度である。塗布方法に合ったインク物性のものとする為には、粘度や表面張力の調整の為の材料がカーボンナノチューブ分散液に添加されることが必要となる。この場合、カーボンナノチューブの分散性が悪化する恐れが有る。 There is also a method in which a pre-patterned carbon nanotube film is directly applied and formed on a substrate by an application method such as screen printing, inkjet, or gravure printing. When the patterned carbon nanotube film is formed by a coating method such as screen printing, it is necessary that the physical properties of the carbon nanotube-containing coating are adjusted to the physical properties suitable for the coating method. The carbon nanotube dispersion generally contains a dispersant such as a surfactant. Relatively low viscosity. In order to obtain ink physical properties suitable for the coating method, it is necessary to add a material for adjusting the viscosity and surface tension to the carbon nanotube dispersion. In this case, the dispersibility of the carbon nanotubes may be deteriorated.
 特表2006-513557号公報や特表2007-529884号公報で提案の技術に代わるものとして、次の技術が提案(国際公開2010/113744号パンフレット)されている。すなわち、沸点が80℃以上の酸(例えば、硫酸またはスルホン酸化合物)または沸点が80℃以上の塩基もしくは外部エネルギーにより酸または塩基を発生させる化合物、溶媒、樹脂(例えば、第1級~第4級アミノ基のいずれかを構造の一部に含むカチオン性樹脂)およびレベリング剤を含む導電膜除去剤が提案されている。基材上にウィスカー状導電体、繊維状導電体(例えば、カーボンナノチューブ)または粒子状導電体を含む導電膜を有する導電膜付き基材の少なくとも一部に、前記の導電膜除去剤を塗布する工程、80℃以上で加熱処理する工程および液体を用いた洗浄によって導電膜を除去する工程を有する導電膜除去方法が提案されている。この導電膜除去方法であって、導電膜上にオーバーコート層を有する導電膜付き基材からオーバーコート層と導電膜とを除去する導電膜除去方法が提案されている。前記導電膜除去剤を塗布後に80~200℃に加熱処理することにより、導電膜除去剤が塗布された部分の導電膜は、分解、溶解または可溶化され、又、オーバーコート層を有する場合は、オーバーコート層と導電膜とが分解、溶解または可溶化されると謳われている。 The following technology has been proposed (international publication 2010/113744 pamphlet) as an alternative to the technology proposed in JP-T-2006-513557 and JP-T-2007-529884. That is, an acid having a boiling point of 80 ° C. or higher (for example, sulfuric acid or a sulfonic acid compound), a base having a boiling point of 80 ° C. or higher, or a compound, solvent, resin (for example, primary to fourth that generates an acid or a base by external energy) Cationic resins containing any of the primary amino groups as part of the structure) and conductive film removing agents containing leveling agents have been proposed. The conductive film removing agent is applied to at least a part of the base material with a conductive film having a conductive film containing a whisker-like conductor, a fibrous conductor (for example, carbon nanotube) or a particulate conductor on the base material. There has been proposed a conductive film removal method including a process, a process of heat treatment at 80 ° C. or higher, and a process of removing the conductive film by cleaning with a liquid. There has been proposed a conductive film removal method for removing the overcoat layer and the conductive film from a conductive film-containing substrate having an overcoat layer on the conductive film. When the conductive film remover is applied and then heated to 80 to 200 ° C., the conductive film in the portion where the conductive film remover is applied is decomposed, dissolved or solubilized, and has an overcoat layer. It is said that the overcoat layer and the conductive film are decomposed, dissolved or solubilized.
特表2008-547232号公報Special table 2008-547232 gazette 特表2009-503825号公報Special table 2009-503825 gazette 特表2006-513557号公報Special table 2006-513557 gazette 特表2007-529884号公報(国際公開2005/086982号パンフレット)JP-T 2007-529884 (International Publication No. 2005/086982 Pamphlet) 国際公開2010/113744号パンフレットInternational Publication 2010/113744 Pamphlet
 特許文献5の導電膜除去剤を用いた手法で形成されたパターンは、その側面(垂直壁面)にあっては、カーボンナノチューブが露出している。なぜならば、カーボンナノチューブ層上面にオーバーコート層が設けられていたとしても、導電膜除去剤によって、カーボンナノチューブ層およびオーバーコート層が除去されているからである。すなわち、オーバーコート層で覆われていないカーボンナノチューブ面が存在する。この為、耐久性低下(例えば、カーボンナノチューブの脱落、水分による物性変化など)が考えられる。 The carbon nanotube is exposed on the side surface (vertical wall surface) of the pattern formed by the technique using the conductive film remover of Patent Document 5. This is because even if an overcoat layer is provided on the upper surface of the carbon nanotube layer, the carbon nanotube layer and the overcoat layer are removed by the conductive film removing agent. That is, there is a carbon nanotube surface that is not covered with the overcoat layer. For this reason, a decrease in durability (for example, dropping of carbon nanotubes, change in physical properties due to moisture, etc.) can be considered.
 更に、表面に凹凸が出来ると言った問題も考えられる。 Furthermore, there may be a problem that the surface is uneven.
 特許文献5の技術は、所定パターンに塗布された導電膜除去剤を80℃以上に加熱する加熱工程を必須としている。従って、作業性が悪い。更には、基板は80℃以上の耐熱性を持つことが要求される。このことは、基板選択の自由度が低下する。 The technique of Patent Document 5 requires a heating step of heating the conductive film remover applied in a predetermined pattern to 80 ° C. or higher. Therefore, workability is poor. Furthermore, the substrate is required to have a heat resistance of 80 ° C. or higher. This reduces the degree of freedom in substrate selection.
 本発明は上記問題点の解決を目的とする。特に、本発明が解決しようとする課題は、解像度が高く、かつ、耐久性に優れた導電性(或いは、絶縁性)の膜を簡便な方法で提供することである。 The present invention aims to solve the above problems. In particular, the problem to be solved by the present invention is to provide a conductive (or insulating) film having high resolution and excellent durability by a simple method.
 前記問題点についての検討が、鋭意、推し進められて行った。 】 The above problems were studied with eagerness.
 その結果、次のことが判って来た。導電性膜(例えば、導電性カーボンナノチューブを塗布することで構成された導電性膜)上にオーバーコート層が設けられた。このオーバーコート層上に紫外線を遮蔽(遮光)するマスクが設けられた。前記マスクを介して、所定のパターンで、紫外線が照射された。特に、酸素を有する雰囲気中で、紫外線が照射された。このようにして形成されたパターンは、パターン精度が高かった。導電膜(絶縁膜)の耐久性は優れていた。しかも、パターン形成は簡単であった。ここで、所定パターンの導電膜は、逆の立場から眺めると、所定パターンの絶縁膜である。 As a result, the following has been found. An overcoat layer was provided on a conductive film (for example, a conductive film formed by applying conductive carbon nanotubes). A mask for shielding (shielding) ultraviolet rays was provided on the overcoat layer. Ultraviolet rays were irradiated through the mask in a predetermined pattern. In particular, ultraviolet rays were irradiated in an atmosphere containing oxygen. The pattern thus formed had high pattern accuracy. The durability of the conductive film (insulating film) was excellent. Moreover, pattern formation was simple. Here, the conductive film having a predetermined pattern is an insulating film having a predetermined pattern when viewed from the opposite standpoint.
 上記知見を基にして本発明が達成された。 The present invention has been achieved based on the above findings.
 本発明は、
 紫外線照射領域の導電性カーボン層が絶縁性に変性し、紫外線未照射領域の導電性カーボン層が導電性を保持している所定パターンの膜形成方法であって、
 導電性カーボン層が基材の一面側に設けられる工程と、
 導電性カーボン層が基材の他面側に設けられる工程と、
 前記一面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
 前記他面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
 前記一面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
 前記他面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
 酸素を有する雰囲気下において、前記マスクの開口部に対応して、紫外線が前記導電性カーボン層に照射される工程
とを具備することを特徴とする膜形成方法を提案する。
 本発明は、
 紫外線照射領域の導電性カーボン層が絶縁性に変性し、紫外線未照射領域の導電性カーボン層が導電性を保持している所定パターンの膜形成方法であって、
 導電性カーボン層が基材の一面側に設けられる工程と、
 導電性カーボン層が基材の他面側に設けられる工程と、
 前記一面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
 前記他面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
 前記一面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
 前記他面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
 酸素を有する雰囲気下において、前記マスクの開口部に対応して、紫外線が前記導電性カーボン層に照射される工程と、
 前記紫外線照射後、前記マスクが除去される工程
とを具備することを特徴とする膜形成方法を提案する。
The present invention
A method of forming a film with a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative, and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity,
A step in which a conductive carbon layer is provided on one side of the substrate;
A step in which a conductive carbon layer is provided on the other side of the substrate;
A step of providing an overcoat layer on the conductive carbon layer provided on the one surface side;
A step of providing an overcoat layer on the conductive carbon layer provided on the other side;
A step of providing a mask having a predetermined pattern on the overcoat layer provided on the one surface side;
A step of providing a mask having a predetermined pattern on the overcoat layer provided on the other surface side;
And a step of irradiating the conductive carbon layer with ultraviolet rays corresponding to the opening of the mask in an atmosphere containing oxygen.
The present invention
A method of forming a film with a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative, and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity,
A step in which a conductive carbon layer is provided on one side of the substrate;
A step in which a conductive carbon layer is provided on the other side of the substrate;
A step of providing an overcoat layer on the conductive carbon layer provided on the one surface side;
A step of providing an overcoat layer on the conductive carbon layer provided on the other side;
A step of providing a mask having a predetermined pattern on the overcoat layer provided on the one surface side;
A step of providing a mask having a predetermined pattern on the overcoat layer provided on the other surface side;
A step of irradiating the conductive carbon layer with ultraviolet rays corresponding to the opening of the mask in an atmosphere containing oxygen;
And a step of removing the mask after the ultraviolet irradiation.
 本発明は、前記膜形成方法であって、前記オーバーコート層は、好ましくは、加水分解性オルガノシランの加水分解物の群の中から選ばれる少なくとも一つを含有する組成物で構成されてなる膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記オーバーコート層は、好ましくは、厚さが1nm~1μmである膜形成方法を提案する。
The present invention is the film forming method, wherein the overcoat layer is preferably composed of a composition containing at least one selected from the group of hydrolyzable hydrolyzable organosilanes. A film forming method is proposed.
The present invention proposes the film forming method, wherein the overcoat layer preferably has a thickness of 1 nm to 1 μm.
 本発明は、前記膜形成方法であって、前記マスクは、好ましくは、紫外線を透過しない素材の樹脂が用いられ、印刷手段で樹脂層として設けられる膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記マスクは、好ましくは、前記オーバーコート層に密着して設けられる膜形成方法を提案する。
The present invention proposes the film forming method, wherein the mask is preferably made of a resin that does not transmit ultraviolet rays, and is provided as a resin layer by a printing unit.
The present invention proposes the film forming method, wherein the mask is preferably provided in close contact with the overcoat layer.
 本発明は、前記膜形成方法であって、前記紫外線は、好ましくは、10~400nmの範囲に波長を有する紫外線である膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記紫外線は、好ましくは、150~180nmの範囲に波長を有する紫外線である膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記紫外線の照射積算光量は、好ましくは、50~500000mJ/cmである膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記紫外線の照射積算光量は、好ましくは、500~30000mJ/cmである膜形成方法を提案する。
The present invention proposes the film forming method, wherein the ultraviolet ray is an ultraviolet ray having a wavelength in the range of 10 to 400 nm.
The present invention proposes the film forming method, wherein the ultraviolet ray is preferably an ultraviolet ray having a wavelength in the range of 150 to 180 nm.
The present invention proposes the above film forming method, wherein the cumulative amount of irradiated ultraviolet light is preferably 50 to 500,000 mJ / cm 2 .
The present invention proposes the above-described film forming method, wherein the ultraviolet light irradiation accumulated light amount is preferably 500 to 30000 mJ / cm 2 .
 本発明は、前記膜形成方法であって、前記酸素を有する雰囲気は、好ましくは、酸素圧が101~21273Paである膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記酸素を有する雰囲気は、好ましくは、酸素圧が1013~10130Paである膜形成方法を提案する。
The present invention proposes the film forming method, wherein the atmosphere containing oxygen preferably has an oxygen pressure of 101 to 21273 Pa.
The present invention proposes the film forming method, wherein the atmosphere containing oxygen preferably has an oxygen pressure of 1013 to 10130 Pa.
 本発明は、前記膜形成方法であって、前記導電性カーボン層が、好ましくは、グラフェンで構成されてなる膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記導電性カーボン層が、好ましくは、カーボンナノチューブで構成されてなる膜形成方法を提案する。
 本発明は、前記膜形成方法であって、前記導電性カーボン層が、好ましくは、酸処理を受けた単層カーボンナノチューブで構成されてなる膜形成方法を提案する。
The present invention proposes the film forming method, wherein the conductive carbon layer is preferably composed of graphene.
The present invention proposes the film forming method, wherein the conductive carbon layer is preferably composed of carbon nanotubes.
The present invention proposes the above film forming method, wherein the conductive carbon layer is preferably composed of acid-treated single-walled carbon nanotubes.
 本発明は、前記膜形成方法によって形成されてなる導電膜を提案する。 The present invention proposes a conductive film formed by the film forming method.
 本発明は、前記膜形成方法によって形成されてなる絶縁膜を提案する。 The present invention proposes an insulating film formed by the film forming method.
 解像度が高い導電性(又は、絶縁性)の膜が簡単に得られる。 A conductive (or insulating) film with high resolution can be easily obtained.
紫外線照射前における層構成を示す概略断面図Schematic sectional view showing the layer structure before UV irradiation 紫外線照射後における層構成を示す概略断面図Schematic sectional view showing the layer structure after UV irradiation 樹脂層(マスク)の平面図Plan view of resin layer (mask)
 第1の本発明は膜形成方法である。前記方法は、例えば所定パターンの導電膜を形成する方法である。或いは、所定パターンの絶縁膜を形成する方法である。前記方法は、所定パターンの透明導電膜を形成する方法である。或いは、所定パターンの透明絶縁膜を形成する方法である。前記方法は、紫外線照射領域の導電性カーボン層が絶縁性に変性し、紫外線未照射領域の導電性カーボン層が導電性を保持している所定パターンの膜形成方法である。絶縁性に変性した個所を、特に、取り上げたならば、前記方法は絶縁膜形成方法である。導電性の個所を、特に、取り上げたならば、前記方法は導電膜形成方法である。前記方法は、導電性カーボン層が設けられる工程を具備する。前記導電性カーボン層は、基材の両面(表面と裏面)に設けられる。両面に同時に設けられる場合と、一面側に設けられた後、他面側に設けられる場合とが有る。どちらが採用されても良い。基材(例えば、基板)上に、例えば導電性カーボン(例えば、導電性グラフェン(導電性カーボンナノチューブ))含有(例えば、分散)塗料が塗布される。この塗布によって、導電性カーボン層が設けられる。塗布以外の方法が用いられても良い。例えば、CVD(化学的気相成長方法)やPVD(物理的気相成長方法)を用いることも出来る。但し、塗布方法の採用が好ましい。前記方法は、前記導電性カーボン層の上にオーバーコート層が設けられる工程を具備する。例えば、オーバーコート塗料が前記導電性カーボン層上に塗布される。この塗布により、オーバーコート層が構成される。表面側(一面側)に設けられた導電性カーボン層の上にオーバーコート層が設けられる。裏面側(他面側)に設けられた導電性カーボン層の上にオーバーコート層が設けられる。前記オーバーコート層も、同時に設けられる場合と、一面側に設けられた後、他面側に設けられる場合とが有る。どちらが採用されても良い。前記導電性カーボン層と前記オーバーコート層とは、同時重層塗布方法によって、同時に設けられても良い。或いは、別々に設けられても良い。前記方法は、マスクが前記オーバーコート層の上に設けられる工程を具備する。ここで、マスクは紫外線を透過しない素材の樹脂層の場合で説明される。しかし、マスクはこれに限定されない。前記樹脂層は、表面側(一面側)に設けられたオーバーコート層の上に設けられる。前記樹脂層は、裏面側(他面側)に設けられたオーバーコート層の上に設けられる。前記樹脂層は、両面に同時に設けられる場合と、一面側に設けられた後、他面側に設けられる場合とが有る。どちらが採用されても良い。前記導オーバーコート層と前記樹脂層とは、同時重層塗布方法によって、同時に設けられても良い。或いは、別々に設けられても良い。前記オーバーコート層と前記樹脂層とは、好ましくは、密着している。密着とは剥離に格別な力を要することを意味する。すなわち、[前記オーバーコート層と前記樹脂層との接着強度(剥離強度)]>0を意味する。紫外線が、前記オーバーコート層と前記樹脂層との境界に、回り込むことが無いことを意味する。酸素(活性酸素)が、前記オーバーコート層と前記樹脂層との境界に、侵入しないことを意味する。この意味では格別に大きな接着強度(剥離強度)は必要でない。前記樹脂層は所定のパターンを持つ。前記導電性カーボン層が導電性を維持する個所(パターン)に対応した個所に、前記樹脂層が設けられる。前記導電性カーボン層が導電性を喪失して絶縁性のものとなる個所(パターン)に対応した個所には、前記樹脂層は設けられない。すなわち、前記所定パターンの樹脂層は、所定パターンの導電膜(絶縁膜)を形成する為のマスクの機能を奏する。紫外線を透過しない樹脂としては各種のものが挙げられる。例えば、レジスト材料、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂などが挙げられる。勿論、これに限られない。前記所定パターンの樹脂層は、例えばスクリーン印刷などの印刷手段で形成される。或いは、フォトリソグラフィ技術を用いて形成される。勿論、これに限られない。前記方法は、前記所定パターンの樹脂層が設けられた後、酸素を有する雰囲気下において、紫外線が照射される工程を具備する。この照射工程においては、前記樹脂層が存在する個所の下方位置の導電性カーボンには、紫外線が照射されない。前記樹脂層が存在しない個所の下方位置の導電性カーボンには、紫外線が照射される。絶縁性とすべき個所に、紫外線が照射される。紫外線未照射領域は導電性を確保すべき領域である。紫外線照射領域は導電性を喪失すべき領域である。所定パターンの導電性膜(又は、絶縁性膜)を形成する為、紫外線照射が行われる。樹脂層(樹脂製マスク)を用いたことで、オーバーコート層とマスクとの密着性が向上した。これにより、紫外線がマスクされた個所や、紫外線照射による活性化酸素がマスクされた箇所には、紫外線が到達し難くなる。この結果、導電性膜(絶縁性膜)のパターン精度が高くなる。解像度が高いパターンの膜が得られた。前記オーバーコート層は、好ましくは、加水分解性オルガノシランの加水分解物の群の中から選ばれる少なくとも一つを含有する組成物で構成されてなる。前記紫外線は、好ましくは、10~400nmの範囲に波長を有する紫外線である。より好ましくは、150~260nmの範囲に波長を有する紫外線である。特に好ましくは、150~180nmの範囲に波長を有する紫外線である。前記酸素を有する雰囲気は、好ましくは、酸素圧(混合気体の場合、酸素分圧)が101~21273Paである。より好ましくは、酸素圧が507~20260Paである。特に好ましくは、酸素圧が1013~10130Paである。前記導電性カーボン層は、例えばグラフェンで構成される。前記導電性カーボン層(グラフェン層)は、例えばカーボンナノチューブで構成される。前記導電性カーボン層(カーボンナノチューブ層)は、例えば単層カーボンナノチューブで構成される。前記導電性カーボン層(カーボンナノチューブ層)は、例えば酸処理を受けた単層カーボンナノチューブで構成される。カーボンナノチューブは、好ましくは、G(1590cm-1付近に表れるグラファイト物質に共通なラマンピークにおける強度)/D(1350cm-1付近に表れる欠陥に起因するラマンピークにおける強度)≧10のカーボンナノチューブである。G/Dの上限値は、例えば150程度である。 The first aspect of the present invention is a film forming method. The method is, for example, a method of forming a conductive film having a predetermined pattern. Alternatively, it is a method of forming an insulating film having a predetermined pattern. The method is a method of forming a transparent conductive film having a predetermined pattern. Alternatively, a transparent insulating film having a predetermined pattern is formed. The method is a film formation method of a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity. The above-described method is an insulating film forming method, particularly if the portion modified to be insulating is taken up. The above method is a method for forming a conductive film, particularly if the conductive part is taken up. The method includes the step of providing a conductive carbon layer. The conductive carbon layer is provided on both surfaces (front surface and back surface) of the substrate. There are cases where they are provided simultaneously on both sides, and cases where they are provided on the other side after being provided on one side. Either may be adopted. For example, a conductive carbon (for example, conductive graphene (conductive carbon nanotube))-containing (for example, dispersed) paint is applied onto a base material (for example, a substrate). By this coating, a conductive carbon layer is provided. A method other than coating may be used. For example, CVD (chemical vapor deposition method) and PVD (physical vapor deposition method) can be used. However, it is preferable to employ a coating method. The method includes a step of providing an overcoat layer on the conductive carbon layer. For example, an overcoat paint is applied on the conductive carbon layer. This coating forms an overcoat layer. An overcoat layer is provided on the conductive carbon layer provided on the front surface side (one surface side). An overcoat layer is provided on the conductive carbon layer provided on the back side (the other side). The overcoat layer may be provided simultaneously, or may be provided on the other side after being provided on the one side. Either may be adopted. The conductive carbon layer and the overcoat layer may be simultaneously provided by a simultaneous multilayer coating method. Alternatively, they may be provided separately. The method includes the step of providing a mask on the overcoat layer. Here, the mask is described in the case of a resin layer made of a material that does not transmit ultraviolet rays. However, the mask is not limited to this. The resin layer is provided on an overcoat layer provided on the front surface side (one surface side). The resin layer is provided on an overcoat layer provided on the back surface side (other surface side). The resin layer may be provided on both sides simultaneously, or may be provided on the other side after being provided on one side. Either may be adopted. The conductive overcoat layer and the resin layer may be provided simultaneously by a simultaneous multilayer coating method. Alternatively, they may be provided separately. The overcoat layer and the resin layer are preferably in close contact with each other. Adhesion means that a special force is required for peeling. That is, [bonding strength (peel strength) between the overcoat layer and the resin layer]> 0. It means that ultraviolet rays do not enter the boundary between the overcoat layer and the resin layer. It means that oxygen (active oxygen) does not enter the boundary between the overcoat layer and the resin layer. In this sense, a particularly large adhesive strength (peel strength) is not necessary. The resin layer has a predetermined pattern. The resin layer is provided at a location corresponding to a location (pattern) where the conductive carbon layer maintains conductivity. The resin layer is not provided at a location corresponding to a location (pattern) where the conductive carbon layer loses conductivity and becomes insulating. That is, the resin layer having the predetermined pattern functions as a mask for forming a conductive film (insulating film) having a predetermined pattern. Various resins can be used as the resin that does not transmit ultraviolet rays. For example, a resist material, a photocurable resin, a thermosetting resin, a thermoplastic resin, and the like can be given. Of course, it is not limited to this. The resin layer having the predetermined pattern is formed by printing means such as screen printing. Alternatively, it is formed using a photolithography technique. Of course, it is not limited to this. The method includes a step of irradiating with ultraviolet rays in an oxygen-containing atmosphere after the resin layer having the predetermined pattern is provided. In this irradiation step, the conductive carbon in the lower position where the resin layer exists is not irradiated with ultraviolet rays. The conductive carbon in the lower position where the resin layer does not exist is irradiated with ultraviolet rays. Ultraviolet rays are irradiated to the portions that should be insulated. The ultraviolet non-irradiated region is a region where electrical conductivity should be ensured. The ultraviolet irradiation region is a region where conductivity should be lost. In order to form a conductive film (or insulating film) having a predetermined pattern, ultraviolet irradiation is performed. Adhesion between the overcoat layer and the mask was improved by using the resin layer (resin mask). Thereby, it is difficult for the ultraviolet rays to reach a portion where the ultraviolet rays are masked or a portion where the activated oxygen due to the ultraviolet irradiation is masked. As a result, the pattern accuracy of the conductive film (insulating film) is increased. A film with a high resolution pattern was obtained. The overcoat layer is preferably composed of a composition containing at least one selected from the group of hydrolyzable organosilane hydrolysates. The ultraviolet rays are preferably ultraviolet rays having a wavelength in the range of 10 to 400 nm. More preferred is ultraviolet light having a wavelength in the range of 150 to 260 nm. Particularly preferred is ultraviolet light having a wavelength in the range of 150 to 180 nm. The atmosphere containing oxygen preferably has an oxygen pressure (oxygen partial pressure in the case of a mixed gas) of 101 to 21273 Pa. More preferably, the oxygen pressure is 507-20260 Pa. Particularly preferably, the oxygen pressure is 1013 to 10130 Pa. The conductive carbon layer is made of graphene, for example. The conductive carbon layer (graphene layer) is composed of, for example, carbon nanotubes. The conductive carbon layer (carbon nanotube layer) is composed of single-walled carbon nanotubes, for example. The conductive carbon layer (carbon nanotube layer) is composed of, for example, single-walled carbon nanotubes subjected to acid treatment. The carbon nanotube is preferably a carbon nanotube of G (intensity at a Raman peak common to graphite substances appearing near 1590 cm −1 ) / D (intensity at a Raman peak due to defects appearing near 1350 cm −1 ) ≧ 10 . The upper limit value of G / D is about 150, for example.
 第2の本発明は導電膜である。前記膜は前記膜形成方法により形成された導電膜である。 The second aspect of the present invention is a conductive film. The film is a conductive film formed by the film forming method.
 第3の本発明は絶縁膜である。前記膜は前記膜形成方法により形成された絶縁膜である。 The third aspect of the present invention is an insulating film. The film is an insulating film formed by the film forming method.
 以下、更に詳しい説明がされる。 The following is a more detailed explanation.
 図1~図3は本発明の一実施形態の説明図である。図1は紫外線照射前における層構成を示す概略断面図、図2は紫外線照射後における層構成を示す概略断面図、図3はオーバーコート層上に設けられた樹脂層(マスク)の平面図である。 1 to 3 are explanatory views of an embodiment of the present invention. FIG. 1 is a schematic cross-sectional view showing the layer structure before ultraviolet irradiation, FIG. 2 is a schematic cross-sectional view showing the layer structure after ultraviolet irradiation, and FIG. 3 is a plan view of a resin layer (mask) provided on the overcoat layer. is there.
 1は、透明導電性カーボン層である。
 前記透明導電性カーボン層1は、例えばグラフェンで構成された。
 前記透明導電性カーボン層1は、例えばカーボンナノチューブで構成された。
 前記透明導電性カーボン層1は、例えば単層カーボンナノチューブで構成された。
 前記透明導電性カーボン層1は、例えば酸処理を受けた単層カーボンナノチューブで構成された。
1 is a transparent conductive carbon layer.
The transparent conductive carbon layer 1 is made of graphene, for example.
The transparent conductive carbon layer 1 was made of carbon nanotubes, for example.
The transparent conductive carbon layer 1 was composed of, for example, single-walled carbon nanotubes.
The transparent conductive carbon layer 1 is composed of, for example, single-walled carbon nanotubes that have been subjected to acid treatment.
 透明導電性カーボン層1を構成するカーボンナノチューブ(CNT)としては、単層カーボンナノチューブ、2層カーボンナノチューブ、多層カーボンナノチューブ等が挙げられる。
 単層カーボンナノチューブは好ましい。特に、G/Dが10以上(例えば、20~60)の単層カーボンナノチューブが好ましい。
 直径が0.3~100nmのCNTが好ましい。特に、直径が0.3~2nmのCNTが好ましい。
 長さが0.1~100μmのCNTが好ましい。特に、長さが0.1~5μmのCNTが好ましい。
 透明導電性カーボン層1におけるCNTは、例えば互いに絡み合ったものである。
Examples of the carbon nanotubes (CNT) constituting the transparent conductive carbon layer 1 include single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
Single-walled carbon nanotubes are preferred. In particular, single-walled carbon nanotubes having a G / D of 10 or more (for example, 20 to 60) are preferable.
CNTs having a diameter of 0.3 to 100 nm are preferable. In particular, CNT having a diameter of 0.3 to 2 nm is preferable.
CNTs having a length of 0.1 to 100 μm are preferred. In particular, CNTs having a length of 0.1 to 5 μm are preferable.
The CNTs in the transparent conductive carbon layer 1 are intertwined with each other, for example.
 単層カーボンナノチューブは、如何なる製法によって得られた単層カーボンナノチューブでも良い。例えば、アーク放電法、化学気相法、レーザー蒸発法などの製法で得られた単層カーボンナノチューブを用いることが出来る。
 結晶性の観点から、アーク放電法で得られた単層カーボンナノチューブが好ましい。このものは入手も容易である。
 単層カーボンナノチューブは、酸処理が施された単層カーボンナノチューブが好ましい。酸処理は、酸性液体中に単層カーボンナノチューブが浸漬されることで実施される。浸漬の代わりに噴霧と言った手法が採用されても良い。酸性液体は各種のものが用いられる。例えば、無機酸または有機酸が用いられる。但し、無機酸が好ましい。例えば、硝酸、塩酸、硫酸、リン酸、或いはこれらの混合物が挙げられる。中でも、硝酸、或いは硝酸と硫酸との混酸を用いた酸処理が好ましい。この酸処理によって、単層カーボンナノチューブと炭素微粒子とがアモルファスカーボンを介して物理的に結合している場合に、アモルファスカーボンが分解した。両者が分離した。単層カーボンナノチューブ作製時に使用した金属触媒の微粒子が分解した。前記酸処理によって、官能基が付く。前記酸処理によって、導電性が向上していた。
 単層カーボンナノチューブは、濾過によって不純物が除去され、純度が向上した単層カーボンナノチューブが好ましい。不純物による導電性の低下や光透過率の低下が防止されたからである。濾過には各種の手法が採用される。例えば、吸引濾過、加圧濾過、クロスフロー濾過などが用いられる。中でも、スケールアップの観点から、中空糸膜を用いたクロスフロー濾過の採用が好ましい。
The single-walled carbon nanotube may be a single-walled carbon nanotube obtained by any manufacturing method. For example, single-walled carbon nanotubes obtained by production methods such as arc discharge, chemical vapor deposition, and laser evaporation can be used.
From the viewpoint of crystallinity, single-walled carbon nanotubes obtained by an arc discharge method are preferred. This is easily available.
The single-walled carbon nanotube is preferably a single-walled carbon nanotube subjected to acid treatment. The acid treatment is performed by immersing single-walled carbon nanotubes in an acidic liquid. A technique called spraying may be employed instead of immersion. Various kinds of acidic liquids are used. For example, an inorganic acid or an organic acid is used. However, inorganic acids are preferred. For example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or a mixture thereof can be used. Among these, acid treatment using nitric acid or a mixed acid of nitric acid and sulfuric acid is preferable. By this acid treatment, amorphous carbon was decomposed when single-walled carbon nanotubes and carbon fine particles were physically bonded through amorphous carbon. Both separated. The fine particles of the metal catalyst used in the production of the single-walled carbon nanotube were decomposed. A functional group is attached by the acid treatment. The conductivity was improved by the acid treatment.
The single-walled carbon nanotube is preferably a single-walled carbon nanotube in which impurities are removed by filtration and purity is improved. This is because a decrease in conductivity and a decrease in light transmittance due to impurities are prevented. Various methods are employed for filtration. For example, suction filtration, pressure filtration, cross flow filtration and the like are used. Among these, from the viewpoint of scale-up, it is preferable to employ cross flow filtration using a hollow fiber membrane.
 導電層(カーボンナノチューブ層)1中には、前記CNTの他に、好ましくは、フラーレンが含まれる。
 導電層1は、好ましくは、前記特徴のCNT、及びフラーレンを含有する。
 本明細書にあっては、「フラーレン」には「フラーレン類縁体」も含まれる。
 フラーレンを含ませておくことにより、耐熱性が向上したからである。導電性にも優れていたからである。
 フラーレンは如何なるフラーレンでも良い。例えば、C60,C70,C76,C78,C82,C84,C90,C96等が挙げられる。勿論、複数種のフラーレンの混合物でも良い。
 分散性能の観点から、C60が、特に好ましい。更に、C60は入手し易い。C60のみでは無く、C60と他の種類のフラーレン(例えば、C70)との混合物でも良い。
 フラーレン内部に金属原子が内包されたものでも良い。
 フラーレン類縁体としては、官能基(例えば、OH基、エポキシ基、エステル基、アミド基、スルホニル基、エーテル基などの官能基)を持つものが挙げられる。フェニル-C61-プロピル酸アルキルエステル、フェニル-C61-ブチル酸アルキルエステルも挙げられる。水素化フラーレンなども挙げられる。中でも、OH基(水酸基)を持つフラーレン(水酸化フラーレン)が好ましい。それは、単層カーボンナノチューブ分散液の塗工時の分散性が高かったからである。尚、OH基の数が少ないと、単層カーボンナノチューブの分散性向上度が低下する。逆に、多すぎると、合成が困難である。従って、OH基の数はフラーレン1分子当り5~30個が好ましい。特に、8~15個が好ましい。フラーレンの添加量(含有量)は、多すぎると、導電性が低下する。逆に、少なすぎると、効果が乏しい。従って、フラーレン量は、好ましくは、CNT100質量部に対して10~1000質量部(特に、20質量部以上。100質量部以下。)である。
The conductive layer (carbon nanotube layer) 1 preferably contains fullerene in addition to the CNT.
The conductive layer 1 preferably contains the above-mentioned CNT and fullerene.
In the present specification, “fullerene” includes “fullerene analog”.
This is because heat resistance is improved by including fullerene. It is because it was excellent also in electroconductivity.
The fullerene may be any fullerene. For example, C60, C70, C76, C78, C82, C84, C90, C96 etc. are mentioned. Of course, a mixture of plural kinds of fullerenes may be used.
From the viewpoint of dispersion performance, C60 is particularly preferable. Furthermore, C60 is easy to obtain. Not only C60 but also a mixture of C60 and another kind of fullerene (for example, C70) may be used.
The fullerene may contain metal atoms.
Examples of the fullerene analog include those having a functional group (for example, a functional group such as OH group, epoxy group, ester group, amide group, sulfonyl group, ether group). Examples also include phenyl-C61-propyl acid alkyl ester and phenyl-C61-butyric acid alkyl ester. Examples thereof include hydrogenated fullerene. Among them, fullerene having an OH group (hydroxyl group) (fullerene hydroxide) is preferable. This is because the dispersibility during coating of the single-walled carbon nanotube dispersion was high. When the number of OH groups is small, the degree of improvement in dispersibility of the single-walled carbon nanotube is lowered. On the other hand, if too much, synthesis is difficult. Accordingly, the number of OH groups is preferably 5 to 30 per molecule of fullerene. In particular, 8 to 15 are preferable. When there is too much addition amount (content) of fullerene, electroconductivity will fall. Conversely, if the amount is too small, the effect is poor. Therefore, the amount of fullerene is preferably 10 to 1000 parts by mass (particularly 20 parts by mass or more and 100 parts by mass or less) with respect to 100 parts by mass of CNT.
 透明導電性カーボン層(カーボンナノチューブ層)1は、バインダ樹脂を含有していても良い。但し、導電性の観点からすると、バインダ樹脂を含まない方が好ましい。例えば、絡み合ったCNTが用いられると、バインダ樹脂が無くても済む。絡み合ったCNTは、CNT同士が、直接、接触している。間に絶縁物が介在してないことから、導電性が良い。走査型電子顕微鏡で導電膜表面を観察したならば、CNTが絡み合った構造であるか否かを確認・判定できる。 The transparent conductive carbon layer (carbon nanotube layer) 1 may contain a binder resin. However, from the viewpoint of conductivity, it is preferable not to include a binder resin. For example, when entangled CNTs are used, there is no need for a binder resin. The CNTs that are intertwined are in direct contact with each other. Since no insulator is interposed between them, the conductivity is good. If the surface of the conductive film is observed with a scanning electron microscope, it can be confirmed / determined whether the structure is intertwined with CNTs.
 2は基材(基板)である。透明導電性カーボン層1は、基材(基板)2の表裏(上下)両面に、設けられている。
 透明導電性カーボン層1は、CNT分散液(上記特徴のCNT、及び必要に応じて添加されたフラーレンが分散した分散液)が基材(基板)2の上に塗布されることによって、構成される。塗布方法としては、例えばダイコート、ナイフコート、スプレー塗布、スピンコート、スリットコート、マイクログラビア、フレキソ等が挙げられる。勿論、これに限らない。カーボンナノチューブ分散液の塗布は基板2の全面に行われる。紫外線照射時の絶縁化を均一に進行させる為、透明導電性カーボン層(カーボンナノチューブ層)1は均一に成膜されることが好ましい。
Reference numeral 2 denotes a base material (substrate). The transparent conductive carbon layer 1 is provided on both front and back (upper and lower) surfaces of a base material (substrate) 2.
The transparent conductive carbon layer 1 is configured by applying a CNT dispersion liquid (a dispersion liquid in which CNT having the above characteristics and fullerene added as necessary are dispersed) on a substrate (substrate) 2. The Examples of the coating method include die coating, knife coating, spray coating, spin coating, slit coating, micro gravure, flexo and the like. Of course, it is not limited to this. The carbon nanotube dispersion liquid is applied to the entire surface of the substrate 2. The transparent conductive carbon layer (carbon nanotube layer) 1 is preferably formed uniformly in order to uniformly promote insulation during ultraviolet irradiation.
 基板2の構成材料としては各種のものが適宜用いられる。例えば、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、スチレン-メチルメタクリレート共重合体(MS)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の樹脂が用いられる。本発明では、パターン形成に際して過度な加熱を要さないことから、耐熱性の要求度が低い。従って、基板2構成材料として樹脂が用いられる場合でも、樹脂選定の自由度が高い。樹脂の他にも、無機ガラス材料やセラミック材料を用いることが出来る。 Various materials are appropriately used as the constituent material of the substrate 2. For example, polystyrene (PS), polymethyl methacrylate (PMMA), styrene-methyl methacrylate copolymer (MS), polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate (PET), A resin such as polyethylene naphthalate (PEN) is used. In the present invention, since heating is not required for pattern formation, the degree of required heat resistance is low. Therefore, even when a resin is used as the constituent material of the substrate 2, the degree of freedom in resin selection is high. In addition to the resin, an inorganic glass material or a ceramic material can be used.
 本発明にあっては、透明導電性カーボン層1上に、オーバーコート層(保護層)3が設けられる。
 透明導電性カーボン層1は、基板2の表裏両面に設けられている。従って、オーバーコート層(保護層)3も、基板2の表面側と裏面側とに設けられている。
 オーバーコート層3は、有機系高分子材料、無機系高分子材料、又は有機-無機のハイブリッド樹脂などで構成される。
 有機系高分子材料としては、熱可塑性樹脂、熱硬化性樹脂、セルロース樹脂、光硬化性樹脂などが挙げられる。可視光透過性、基板の耐熱性、ガラス転移点および膜硬化度などの観点から、適宜、選択される。熱可塑性樹脂としては、例えばポリメタクリル酸メチル、ポリスチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリ乳酸、ABS樹脂などが挙げられる。熱硬化性樹脂としては、例えばフェノール樹脂、メラミン樹脂、アルキド樹脂、ポリイミド、エポキシ樹脂、フッ素樹脂、ウレタン樹脂などが挙げられる。セルロース樹脂としては、例えばアセチルセルロース、トリアセチルセルロース等が挙げられる。光硬化性樹脂としては、例えば各種オリゴマー、モノマー、光重合開始剤を含有する樹脂等が挙げられる。
 無機系材料としては、例えばシリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾル等が挙げられる。前記無機系材料に水や酸触媒を加えて加水分解し、脱水縮合させた重合物なども挙げられる。
 有機-無機のハイブリッド樹脂としては、例えば前記無機材料の一部が有機官能基で修飾(例えば、置換または付加)されたものや、シランカップリング剤などの各種カップリング剤を主成分とする樹脂等が挙げられる。
 オーバーコート層3は、その膜厚が厚すぎると、導電膜の接触抵抗が大きくなる。逆に、オーバーコート層3の膜厚が薄すぎると、保護膜としての効果が得られ難い。従って、オーバーコート層3の厚さは1nm~1μmが好ましい。特に、10nm以上が好ましい。200nm以下が好ましい。更には150nm以下が好ましい。
In the present invention, an overcoat layer (protective layer) 3 is provided on the transparent conductive carbon layer 1.
The transparent conductive carbon layer 1 is provided on both the front and back surfaces of the substrate 2. Therefore, the overcoat layer (protective layer) 3 is also provided on the front surface side and the back surface side of the substrate 2.
The overcoat layer 3 is composed of an organic polymer material, an inorganic polymer material, or an organic-inorganic hybrid resin.
Examples of organic polymer materials include thermoplastic resins, thermosetting resins, cellulose resins, and photocurable resins. It is appropriately selected from the viewpoints of visible light transmittance, substrate heat resistance, glass transition point, film curing degree, and the like. Examples of the thermoplastic resin include polymethyl methacrylate, polystyrene, polyethylene terephthalate, polycarbonate, polylactic acid, and ABS resin. Examples of the thermosetting resin include phenol resin, melamine resin, alkyd resin, polyimide, epoxy resin, fluorine resin, and urethane resin. Examples of the cellulose resin include acetyl cellulose and triacetyl cellulose. Examples of the photocurable resin include various oligomers, monomers, resins containing a photopolymerization initiator, and the like.
Examples of the inorganic material include silica sol, alumina sol, zirconia sol, titania sol and the like. Examples thereof include a polymer obtained by hydrolyzing and dehydrating and condensing water or an acid catalyst to the inorganic material.
Examples of the organic-inorganic hybrid resin include those in which a part of the inorganic material is modified (for example, substituted or added) with an organic functional group, and resins mainly composed of various coupling agents such as a silane coupling agent. Etc.
If the overcoat layer 3 is too thick, the contact resistance of the conductive film increases. On the contrary, if the overcoat layer 3 is too thin, it is difficult to obtain an effect as a protective film. Accordingly, the thickness of the overcoat layer 3 is preferably 1 nm to 1 μm. In particular, 10 nm or more is preferable. 200 nm or less is preferable. Furthermore, 150 nm or less is preferable.
 透明導電性カーボン層(カーボンナノチューブ層)1上に設けられるオーバーコート層3は、特に、好ましくは、例えば加水分解性オルガノシランの加水分解物を含有する組成物からなる。
 好ましくは、4官能加水分解性オルガノシランを含有する組成物からなる。
 特に、4官能加水分解性オルガノシランと、エポキシ基及びアルコキシ基を有する加水分解性オルガノシランとの加水分解物を含有する組成物からなる。
 中でも、前記エポキシ基及びアルコキシ基を有する加水分解性オルガノシランの加水分解物の含有量が、樹脂の全固形分に対して1~10重量%のものが好ましい。
 エポキシ基及びアルコキシ基を有する加水分解性オルガノシランの共加水分解物が含まれていると、前記組成物を塗布して硬化させた場合、共加水分解物のエポキシ基が、基板に含まれる水酸基やカルボニル基といった酸素サイトと結合する。この為、オーバーコート層(保護膜)と透明導電性カーボン層(カーボンナノチューブ層)1との密着性が向上する。
 シリカ系金属酸化物微粒子を含有する組成物からなる。場合によっては、フッ素置換アルキル基を有する加水分解性オルガノシランの加水分解物を更に含有する組成物からなる。
 前記加水分解性オルガノシランの加水分解物は、該加水分解性オルガノシランに含まれるアルコキシ基に対する水比が1.0~3.0で反応させたものが好ましい。
 前記加水分解性オルガノシランの加水分解物は、ポリスチレン換算重量平均分子量1000~2000の化合物のものが好ましい。
The overcoat layer 3 provided on the transparent conductive carbon layer (carbon nanotube layer) 1 is particularly preferably composed of a composition containing, for example, a hydrolyzate of hydrolyzable organosilane.
Preferably, it consists of a composition containing a tetrafunctional hydrolyzable organosilane.
In particular, it comprises a composition containing a hydrolyzate of a tetrafunctional hydrolyzable organosilane and a hydrolyzable organosilane having an epoxy group and an alkoxy group.
Among them, the content of the hydrolyzable organosilane hydrolyzate having an epoxy group and an alkoxy group is preferably 1 to 10% by weight based on the total solid content of the resin.
When a hydrolyzable organosilane cohydrolyzate having an epoxy group and an alkoxy group is contained, the epoxy group of the cohydrolyzate is a hydroxyl group contained in the substrate when the composition is applied and cured. And oxygen sites such as carbonyl groups. For this reason, the adhesion between the overcoat layer (protective film) and the transparent conductive carbon layer (carbon nanotube layer) 1 is improved.
It consists of a composition containing silica-based metal oxide fine particles. In some cases, the composition further comprises a hydrolyzate of hydrolyzable organosilane having a fluorine-substituted alkyl group.
The hydrolyzate of the hydrolyzable organosilane is preferably a product obtained by reacting at a water ratio of 1.0 to 3.0 with respect to the alkoxy group contained in the hydrolyzable organosilane.
The hydrolyzate of the hydrolyzable organosilane is preferably a compound having a polystyrene equivalent weight average molecular weight of 1000 to 2000.
 前記4官能加水分解性オルガノシランは、例えばSiXで表される化合物である。前記Xは加水分解基である。例えば、アルコキシ基、アセトキシ基、オキシム基、エノキシ基などである。特に、Si(ORで表される4官能加水分解性オルガノアルコキシシランである。前記Rは、好ましくは、1価の炭化水素基である。例えば、炭素数1~8の1価の炭化水素基である。例えば、炭素数1~8のアルキル基(メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基)である。本実施形態で用いられる4官能加水分解性オルガノシランとしては、例えばテトラメトキシシランやテトラエトキシシラン等が挙げられる。エポキシ基及びアルコキシ基を有する加水分解性オルガノシランは、例えばRSi(OR,RSi(ORで表される化合物である。Rは、エポキシ基、グリシドキシ基、及びこれらの置換体から選ばれた基である。Rは、前記Rと同様に、1価の炭化水素基である。例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などである。Rは、水素、アルキル基、フルオロアルキル基、アリール基、アルケニル基、メタクリルオキシ基、エポキシ基、グリシドキシ基、アミノ基、及びそれらの置換体から選ばれた基である。
 本実施形態で用いられるエポキシ基及びアルコキシ基を有する加水分解性オルガノシランとしては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルジメトキシメチルシラン等が挙げられる。
 シリカ系金属酸化物微粒子としては、好ましくは、中空シリカ微粒子が用いられる。中空シリカ微粒子は、シリカ系金属酸化物の外殻の内部に空洞が形成されたものである。外殻は、細孔を有する多孔質なものが好ましい。細孔が閉塞されて空洞を密封したものであっても良い。形成された被膜の低屈折率化に寄与するものであれば、必ずしも、上述した中空シリカに限られない。
The tetrafunctional hydrolyzable organosilane is a compound represented by, for example, SiX 4 . X is a hydrolyzable group. For example, an alkoxy group, an acetoxy group, an oxime group, an enoxy group, and the like. In particular, it is a tetrafunctional hydrolyzable organoalkoxysilane represented by Si (OR 1 ) 4 . R 1 is preferably a monovalent hydrocarbon group. For example, it is a monovalent hydrocarbon group having 1 to 8 carbon atoms. For example, it is an alkyl group having 1 to 8 carbon atoms (methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group). Examples of the tetrafunctional hydrolyzable organosilane used in the present embodiment include tetramethoxysilane and tetraethoxysilane. The hydrolyzable organosilane having an epoxy group and an alkoxy group is, for example, a compound represented by R 2 Si (OR 3 ) 3 or R 2 R 4 Si (OR 3 ) 2 . R 2 is a group selected from an epoxy group, a glycidoxy group, and substituted products thereof. R 3 is a monovalent hydrocarbon group as in R 1 . For example, methyl group, ethyl group, propyl group, butyl group, pentyl group and the like. R 4 is a group selected from hydrogen, an alkyl group, a fluoroalkyl group, an aryl group, an alkenyl group, a methacryloxy group, an epoxy group, a glycidoxy group, an amino group, and substituents thereof.
Examples of the hydrolyzable organosilane having an epoxy group and an alkoxy group used in this embodiment include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropyltrisilane. Examples thereof include ethoxysilane and γ-glycidoxypropyldimethoxymethylsilane.
As silica-based metal oxide fine particles, hollow silica fine particles are preferably used. The hollow silica fine particles are those in which cavities are formed inside the outer shell of the silica-based metal oxide. The outer shell is preferably a porous one having pores. It may be one in which the pores are closed and the cavity is sealed. As long as it contributes to lowering the refractive index of the formed film, it is not necessarily limited to the hollow silica described above.
 斯かる組成のオーバーコート層の場合、光反射率が低下し、光透過率が高くなった。摩擦などに対する物理的保護が高かった。熱や湿度などの環境変化に対しても保護が高かった。斯かるオーバーコート層3が設けられていると、短時間での紫外線照射により、透明導電性カーボン層(カーボンナノチューブ層)1が導電性から絶縁性に変性すると言う現象が確認された。本発明では、斯かるオーバーコート層が、紫外線照射工程に先立って、透明導電性カーボン層(カーボンナノチューブ層)1上に設けられている。 In the case of an overcoat layer having such a composition, the light reflectance was lowered and the light transmittance was increased. High physical protection against friction. Protection was high against environmental changes such as heat and humidity. When such an overcoat layer 3 was provided, it was confirmed that the transparent conductive carbon layer (carbon nanotube layer) 1 was modified from conductive to insulating by ultraviolet irradiation in a short time. In the present invention, such an overcoat layer is provided on the transparent conductive carbon layer (carbon nanotube layer) 1 prior to the ultraviolet irradiation step.
 オーバーコート層3は、上記組成物を含有する塗料が塗布されることによって設けられる。塗布方法としては、上記CNT分散液の塗布で説明された方法が採用される。塗布は導電層(カーボンナノチューブ層)上に行われる。しかも、全面に塗布される。紫外線照射時の絶縁化を均一に進行させる為、オーバーコート層3も均一に成膜されることが好ましい。 The overcoat layer 3 is provided by applying a paint containing the above composition. As the application method, the method described in the application of the CNT dispersion liquid is employed. The coating is performed on the conductive layer (carbon nanotube layer). Moreover, it is applied to the entire surface. It is preferable that the overcoat layer 3 is also formed uniformly in order to make the insulation at the time of ultraviolet irradiation progress uniformly.
 所定パターンの樹脂層(マスク)4がオーバーコート層3上に設けられた。オーバーコート層(保護層)3は、基材(基板)2の表面側と裏面側とに設けられている。従って、所定パターンの樹脂層4も、基材(基板)2の表面側と裏面側とに設けられている。表面側に設けられた樹脂層4のパターンと、裏面側に設けられた樹脂層4のパターンとは、同一でも、異なっていても良い。樹脂層4が存在する個所の下方(基板2側)位置の透明導電性カーボン層(カーボンナノチューブ層)1には、紫外線が照射されない。樹脂層4が存在しない個所の下方(基板2側)位置の透明導電性カーボン層(カーボンナノチューブ層)1には、紫外線が照射される。樹脂層4はマスクとしての機能を奏する。樹脂層4を構成する樹脂は、絶縁化の為に用いられる波長の紫外線を透過しない樹脂である。例えば、レジスト材(例えば、ノボラック樹脂、メラミン樹脂など)、光硬化性樹脂(例えば、アクリロイル基変性樹脂など)、熱硬化性樹脂(例えば、エポキシ樹脂など)、熱可塑性樹脂(例えば、アクリル樹脂や芳香族樹脂など)が挙げられる。樹脂層4は上方からの紫外線照射を遮蔽する機能を奏するのみではない。樹脂層4は、オーバーコート層3との高い密着性から、導電性を保持させたい部分への紫外線の漏れ(回り込み)を防止したり、酸素から発生するオゾンなどの活性酸素の漏れ(進入)を防止する。これによって、精度の高いパターニングが得られた。樹脂層4の形成方法は、特に限定され無い。例えば、スクリーン印刷、オフセット印刷、インクジェット印刷、グラビア印刷などの印刷手段を用いることが出来る。印刷手段を採用すれば、所定のパターン対応箇所のオーバーコート層3上に、樹脂を設けることが出来る。 A resin layer (mask) 4 having a predetermined pattern was provided on the overcoat layer 3. The overcoat layer (protective layer) 3 is provided on the front surface side and the back surface side of the base material (substrate) 2. Therefore, the resin layer 4 having a predetermined pattern is also provided on the front surface side and the back surface side of the base material (substrate) 2. The pattern of the resin layer 4 provided on the front surface side and the pattern of the resin layer 4 provided on the back surface side may be the same or different. The transparent conductive carbon layer (carbon nanotube layer) 1 below the position where the resin layer 4 exists (on the substrate 2 side) is not irradiated with ultraviolet rays. The transparent conductive carbon layer (carbon nanotube layer) 1 below the position where the resin layer 4 does not exist (substrate 2 side) is irradiated with ultraviolet rays. The resin layer 4 functions as a mask. The resin constituting the resin layer 4 is a resin that does not transmit ultraviolet light having a wavelength used for insulation. For example, a resist material (for example, novolak resin, melamine resin, etc.), a photocurable resin (for example, acryloyl group-modified resin, etc.), a thermosetting resin (for example, epoxy resin, etc.), a thermoplastic resin (for example, acrylic resin, etc. Aromatic resin). The resin layer 4 does not only have a function of shielding ultraviolet irradiation from above. The resin layer 4 has high adhesion to the overcoat layer 3 to prevent leakage of ultraviolet rays (around) to a portion where conductivity is desired to be maintained, or leakage of active oxygen such as ozone generated from oxygen (entrance). To prevent. Thereby, highly accurate patterning was obtained. The formation method of the resin layer 4 is not specifically limited. For example, printing means such as screen printing, offset printing, ink jet printing, and gravure printing can be used. If the printing means is employed, a resin can be provided on the overcoat layer 3 at a predetermined pattern corresponding portion.
 紫外線が、透明導電性カーボン層(カーボンナノチューブ層)1に照射された。この紫外線は、好ましくは、波長が10~260nmである。より好ましくは、波長が150~260nmである。特に好ましくは、波長が150~180nmである。もっと好ましくは、波長が160~175nmの紫外線である。例えば、260nmを越えた長波長の紫外線を照射した場合には、一方の面から照射した紫外線が基材を透過して反対面側の導電性カーボン層を絶縁化する場合がある。導電性カーボンナノチューブを絶縁性カーボンナノチューブに変性させる為には、照射される紫外線は、波長が180nm以下のものが一層好ましかった。例えば、低圧水銀灯の紫外線(波長:185nm,254nm)照射によれば、照射個所においては、カーボンナノチューブは導電性から絶縁性に容易に変性した。但し、基材2が樹脂製の場合、基材2に変色と言った現象が認められる場合も有った。このようなことから、照射紫外線は180nm以下、更には175nm以下の波長のものが特に好ましかった。例えば、キセノンエキシマランプによる紫外線(波長:172nm)は格別に好ましいものであった。上記特性の紫外線照射の時間は、例えば10秒~1時間程度である。好ましくは1分以上である。好ましくは40分以下である。紫外線の照射積算光量は、例えば50~500,000mJ/cm程度であった。好ましくは、100~100,000mJ/cmであった。更に好ましくは500~30,000mJ/cmであった。好ましい積算光量はカーボンナノチューブ層の厚さによっても、多少、変動する。オーバーコート層の有無によって大きく変動した。オーバーコート層が有ると、カーボンナノチューブは、短時間で、導電性から絶縁性に変性した。オーバーコート層の種類や厚さによっても変動した。オーバーコート層が加水分解性オルガノシランの加水分解物を含有する組成物であると、照射時間が、大幅に、短縮された。オーバーコート層3の厚さは、好ましくは、10nm~200nmであった。更に好ましくは、50nm~150nmであった。1aは紫外線照射個所である。紫外線照射個所1aは絶縁性に変性している。1bは紫外線未照射個所である。紫外線未照射個所1bは導電性のままである。 The transparent conductive carbon layer (carbon nanotube layer) 1 was irradiated with ultraviolet rays. This ultraviolet ray preferably has a wavelength of 10 to 260 nm. More preferably, the wavelength is 150 to 260 nm. Particularly preferably, the wavelength is 150 to 180 nm. More preferred is ultraviolet light having a wavelength of 160 to 175 nm. For example, when ultraviolet rays having a long wavelength exceeding 260 nm are irradiated, the ultraviolet rays irradiated from one surface may pass through the substrate and insulate the conductive carbon layer on the opposite surface side. In order to denature conductive carbon nanotubes into insulating carbon nanotubes, it was more preferable that the irradiated ultraviolet rays have a wavelength of 180 nm or less. For example, when irradiated with ultraviolet light (wavelength: 185 nm, 254 nm) from a low-pressure mercury lamp, the carbon nanotubes were easily denatured from conductive to insulating at the irradiated site. However, when the substrate 2 is made of a resin, a phenomenon called discoloration may be observed in the substrate 2 in some cases. For this reason, it was particularly preferable that the irradiated ultraviolet light has a wavelength of 180 nm or less, and further 175 nm or less. For example, ultraviolet rays (wavelength: 172 nm) from a xenon excimer lamp were particularly preferable. The ultraviolet irradiation time having the above characteristics is, for example, about 10 seconds to 1 hour. Preferably it is 1 minute or more. Preferably it is 40 minutes or less. The cumulative amount of UV irradiation was, for example, about 50 to 500,000 mJ / cm 2 . Preferably, it was 100 to 100,000 mJ / cm 2 . More preferably, it was 500 to 30,000 mJ / cm 2 . The preferable integrated light amount varies somewhat depending on the thickness of the carbon nanotube layer. It varied greatly depending on the presence or absence of the overcoat layer. With the overcoat layer, the carbon nanotubes were modified from conductive to insulating in a short time. It also varied depending on the type and thickness of the overcoat layer. When the overcoat layer was a composition containing a hydrolyzate of hydrolyzable organosilane, the irradiation time was significantly shortened. The thickness of the overcoat layer 3 was preferably 10 nm to 200 nm. More preferably, it was 50 nm to 150 nm. 1a is an ultraviolet irradiation location. The ultraviolet irradiation part 1a is denatured to be insulating. Reference numeral 1b denotes a portion not irradiated with ultraviolet rays. The portion 1b not irradiated with ultraviolet rays remains conductive.
 紫外線照射時において、雰囲気中には、酸素(或いは、活性酸素)が存在していることが好ましかった。紫外線照射が行われても、無酸素状態では、透明導電性カーボン層(カーボンナノチューブ層)1の導電性から絶縁性への変性は認められなかった。前記酸素を有する雰囲気は、好ましくは、酸素圧が101~21273Paであった。より好ましくは、酸素圧が507~20260Paであった。特に好ましくは、酸素圧が1013~10130Paであった。 It was preferable that oxygen (or active oxygen) was present in the atmosphere during the ultraviolet irradiation. Even when UV irradiation was performed, no modification of the transparent conductive carbon layer (carbon nanotube layer) 1 from conductivity to insulation was observed in an oxygen-free state. The atmosphere containing oxygen preferably had an oxygen pressure of 101 to 21273 Pa. More preferably, the oxygen pressure was 507-20260 Pa. Particularly preferably, the oxygen pressure was 1013 to 10130 Pa.
 透明導電性カーボン層(カーボンナノチューブ層)1は、紫外線照射によって、所定パターンの導電性(又は絶縁性)膜になる。この本発明と従来のパターン形成方法とは大きく異なる。すなわち、オーバーコート層(被覆層)3が、そのまま、残っている。導電層(絶縁層)がオーバーコート層3で覆われたままである。露出していない。この結果、導電層(絶縁層)の保護効果が高い。すなわち、耐久性が高い。例えば、導電層(絶縁層)に欠け(脱落)が起き難い。導電層(絶縁層)に水分(湿気)が進入し難い。所定パターンの導電膜を得る為、透明導電性カーボン層(カーボンナノチューブ層)1を除去(エッチング除去)する必要が無い。除去の為に薬剤を使用する必要が無いから、環境に優しい。非常に簡単な作業で導電膜(絶縁膜)が得られた。 The transparent conductive carbon layer (carbon nanotube layer) 1 becomes a conductive (or insulating) film having a predetermined pattern by ultraviolet irradiation. The present invention and the conventional pattern forming method are greatly different. That is, the overcoat layer (coating layer) 3 remains as it is. The conductive layer (insulating layer) remains covered with the overcoat layer 3. Not exposed. As a result, the protective effect of the conductive layer (insulating layer) is high. That is, the durability is high. For example, the conductive layer (insulating layer) is hardly chipped (dropped off). It is difficult for moisture (humidity) to enter the conductive layer (insulating layer). In order to obtain a conductive film having a predetermined pattern, there is no need to remove (etch away) the transparent conductive carbon layer (carbon nanotube layer) 1. Because it is not necessary to use chemicals for removal, it is environmentally friendly. A conductive film (insulating film) was obtained by a very simple operation.
 紫外線照射によって所定パターンの膜が形成された後、樹脂層4は、必要に応じて、除去された。除去方法は、特に限定されない。例えば、粘着シートやロールを使って剥離する方法、ブラシ等を使って擦り取る方法、溶解や膨潤する薬液を使って溶解(又は剥離)させる方法が、適宜、用いられる。 After a film having a predetermined pattern was formed by ultraviolet irradiation, the resin layer 4 was removed as necessary. The removal method is not particularly limited. For example, a method of peeling using an adhesive sheet or roll, a method of rubbing using a brush or the like, and a method of dissolving (or peeling) using a chemical solution that dissolves or swells are appropriately used.
 以下、具体的な実施例を挙げて説明が行われる。本発明は下記実施例に限定されない。 Hereinafter, description will be given with specific examples. The present invention is not limited to the following examples.
  [実施例1]
 アーク放電により合成されたシングルウォールカーボンナノチューブ(市販品)に対して、酸処理、水洗浄、遠心分離、濾過が行われた。界面活性剤(ドデシルベンゼンスルホン酸ナトリウム:SDBS)0.2wt%水溶液が、前記精製カーボンナノチューブに、加えられた。このカーボンナノチューブ含有水溶液に対して、超音波装置により、分散処理が行われた。次いで、遠心分離が行われた。このようにしてカーボンナノチューブ分散液(CNT:3200ppm)が得られた。
[Example 1]
The single wall carbon nanotubes (commercially available) synthesized by arc discharge were subjected to acid treatment, water washing, centrifugation and filtration. A surfactant (sodium dodecylbenzenesulfonate: SDBS) 0.2 wt% aqueous solution was added to the purified carbon nanotubes. The carbon nanotube-containing aqueous solution was subjected to a dispersion treatment using an ultrasonic device. Centrifugation was then performed. Thus, a carbon nanotube dispersion liquid (CNT: 3200 ppm) was obtained.
 上記カーボンナノチューブ分散液が基板2の表裏(上下)両面に塗布された。基板2はPETフィルム(MKZ-T4A:東山フイルム社製)である。塗布方法はダイコーティングである。塗布厚さは0.05μm(乾燥後の厚さ)である。塗布後、イオン交換水洗浄が行われた。これにより、塗膜(カーボンナノチューブ層)中に含まれる界面活性剤が取り除かれた。この後、乾燥(1.5分間;120℃)が行われた。このようにして、カーボンナノチューブ層(透明導電性カーボン層)1が、PETフィルム2の表裏(上下)両面に、設けられた。 The carbon nanotube dispersion was applied to both the front and back (upper and lower) surfaces of the substrate 2. The substrate 2 is a PET film (MKZ-T4A: manufactured by Higashiyama Film). The application method is die coating. The coating thickness is 0.05 μm (thickness after drying). After application, ion exchange water cleaning was performed. Thereby, the surfactant contained in the coating film (carbon nanotube layer) was removed. This was followed by drying (1.5 minutes; 120 ° C.). Thus, the carbon nanotube layer (transparent conductive carbon layer) 1 was provided on both the front and back (upper and lower) surfaces of the PET film 2.
 PETフィルム2の表裏(上下)両面側にオーバーコート層3が設けられた。一つのオーバーコート層3は一つのカーボンナノチューブ層(透明導電性カーボン層)1の上に、もう一つのオーバーコート層3はもう一つのカーボンナノチューブ層(透明導電性カーボン層)1の上に設けられた。各々のオーバーコート層3の構成には、1.5wt%エアロセラ(加水分解性オルガノシラン含有組成物:パナソニック社製)が用いられた。塗布方法はダイコーティングである。塗布厚さは0.1μm(乾燥後の厚さ)である。 The overcoat layer 3 was provided on the front and back (upper and lower) both sides of the PET film 2. One overcoat layer 3 is provided on one carbon nanotube layer (transparent conductive carbon layer) 1, and the other overcoat layer 3 is provided on another carbon nanotube layer (transparent conductive carbon layer) 1. It was. As the structure of each overcoat layer 3, 1.5 wt% Aerocera (hydrolyzable organosilane-containing composition: manufactured by Panasonic Corporation) was used. The application method is die coating. The coating thickness is 0.1 μm (thickness after drying).
 PETフィルム2の表裏(上下)両面側に樹脂層(マスク)4が設けられた。一つの樹脂層4は一つのオーバーコート層3の上に、もう一つの樹脂層4はもう一つのオーバーコート層3の上に設けられた。所定パターンのマスク(樹脂層)4は、スクリーン印刷によって、形成された。すなわち、所定の個所に、熱硬化性樹脂(X-100 CL1:太陽インキ製造社製)が印刷された。塗布厚さは50μmであった。この後、オーブン中にて100℃で30分間硬化処理が行われた。樹脂層4が設けられていない個所は開口部5となっている。開口部5から紫外線がカーボンナノチューブ層(透明導電性カーボン層)1に照射された。開口部5は、ライン幅が100μmで、一辺の長さが5mmの□形である。 The resin layer (mask) 4 was provided on the front and back (upper and lower) both sides of the PET film 2. One resin layer 4 was provided on one overcoat layer 3, and the other resin layer 4 was provided on the other overcoat layer 3. The mask (resin layer) 4 having a predetermined pattern was formed by screen printing. That is, a thermosetting resin (X-100 CL1: manufactured by Taiyo Ink Manufacturing Co., Ltd.) was printed at a predetermined location. The coating thickness was 50 μm. Then, the hardening process was performed for 30 minutes at 100 degreeC in oven. A portion where the resin layer 4 is not provided is an opening 5. Ultraviolet rays were applied to the carbon nanotube layer (transparent conductive carbon layer) 1 from the opening 5. The opening 5 has a square shape with a line width of 100 μm and a side length of 5 mm.
 この後、所定パターンの樹脂層(マスク)4上方から、キセノンエキシマランプによる紫外線(波長:172nm)が、両面に、照射された。紫外線照射時の雰囲気は、窒素94%、酸素6%であった。混合気体による圧力は1.013×10Paである。照射紫外線の積算光量は10,560mJ/cmであった。照射後に、粘着シートを用いて、樹脂層4が剥離・除去された。 Thereafter, ultraviolet light (wavelength: 172 nm) from a xenon excimer lamp was irradiated on both surfaces from above the resin layer (mask) 4 having a predetermined pattern. The atmosphere during ultraviolet irradiation was 94% nitrogen and 6% oxygen. The pressure by the mixed gas is 1.013 × 10 5 Pa. The integrated light quantity of irradiated ultraviolet rays was 10,560 mJ / cm 2 . After the irradiation, the resin layer 4 was peeled off and removed using an adhesive sheet.
 前記□形状のパターンの内側と外側との導通が、テスターで、調べられた。この結果、両者の間では導通が無い(絶縁されている)ことが判明した。 The continuity between the inside and outside of the □ -shaped pattern was examined by a tester. As a result, it was found that there was no conduction (insulation) between the two.
 更に、マスク4の開口部5のパターン形状(□形状)と、カーボンナノチューブ導電層のパターン形状(□形状)とが、比較された。両者の一致度は極めて高かった。すなわち、透明導電膜が高精度で形成されていた。 Furthermore, the pattern shape (□ shape) of the opening 5 of the mask 4 and the pattern shape (□ shape) of the carbon nanotube conductive layer were compared. The agreement between the two was extremely high. That is, the transparent conductive film was formed with high accuracy.
  [比較例1]
 実施例1において、窒素雰囲気下(酸素分圧0Pa:酸素なし)とした以外は同様に行われた。
[Comparative Example 1]
In Example 1, it carried out similarly except having set it as nitrogen atmosphere (oxygen partial pressure 0Pa: no oxygen).
 紫外線照射個所が、比較例1では、導電性から絶縁性に変性していなかった。 The ultraviolet irradiation site was not modified from conductive to insulating in Comparative Example 1.
  [比較例2]
 実施例1において、オーバーコート層3が設けられなかった以外は同様に行われた。
[Comparative Example 2]
In Example 1, it carried out similarly except that the overcoat layer 3 was not provided.
 紫外線照射個所が、比較例2でも、導電性から絶縁性に変性していなかった。 The ultraviolet irradiation site was not modified from conductive to insulating even in Comparative Example 2.
1    透明導電性カーボン層(カーボンナノチューブ層)
1a   紫外線照射個所(絶縁性変性個所)
1b   紫外線未照射個所(透明導電性個所)
2    基板(基材)
3    オーバーコート層(加水分解性オルガノシラン含有組成物層)
4    樹脂層(マスク)
5    開口部(紫外線透過部)
 
 
1 Transparent conductive carbon layer (carbon nanotube layer)
1a UV irradiation location (insulation modified location)
1b UV-irradiated area (transparent conductive area)
2 Substrate (base material)
3 Overcoat layer (hydrolyzable organosilane-containing composition layer)
4 Resin layer (mask)
5 opening (ultraviolet ray transmission part)

Claims (17)

  1.  紫外線照射領域の導電性カーボン層が絶縁性に変性し、紫外線未照射領域の導電性カーボン層が導電性を保持している所定パターンの膜形成方法であって、
     導電性カーボン層が基材の一面側に設けられる工程と、
     導電性カーボン層が基材の他面側に設けられる工程と、
     前記一面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
     前記他面側に設けられた導電性カーボン層の上にオーバーコート層が設けられる工程と、
     前記一面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
     前記他面側に設けられたオーバーコート層の上に所定パターンのマスクが設けられる工程と、
     酸素を有する雰囲気下において、前記マスクの開口部に対応して、紫外線が前記導電性カーボン層に照射される工程
    とを具備することを特徴とする膜形成方法。
    A method of forming a film with a predetermined pattern in which the conductive carbon layer in the ultraviolet irradiation region is modified to be insulative, and the conductive carbon layer in the non-ultraviolet irradiation region retains conductivity,
    A step in which a conductive carbon layer is provided on one side of the substrate;
    A step in which a conductive carbon layer is provided on the other side of the substrate;
    A step of providing an overcoat layer on the conductive carbon layer provided on the one surface side;
    A step of providing an overcoat layer on the conductive carbon layer provided on the other side;
    A step of providing a mask having a predetermined pattern on the overcoat layer provided on the one surface side;
    A step of providing a mask having a predetermined pattern on the overcoat layer provided on the other surface side;
    And a step of irradiating the conductive carbon layer with ultraviolet rays corresponding to the opening of the mask in an atmosphere containing oxygen.
  2.  前記オーバーコート層は、加水分解性オルガノシランの加水分解物の群の中から選ばれる少なくとも一つを含有する組成物で構成されてなる
    ことを特徴とする請求項1の膜形成方法。
    2. The film forming method according to claim 1, wherein the overcoat layer is composed of a composition containing at least one selected from the group of hydrolyzable hydrolyzable organosilanes.
  3.  前記オーバーコート層は、厚さが1nm~1μmである
    ことを特徴とする請求項1又は請求項2の膜形成方法。
    3. The film forming method according to claim 1, wherein the overcoat layer has a thickness of 1 nm to 1 μm.
  4.  前記マスクは、紫外線を透過しない素材の樹脂が用いられて印刷手段で樹脂層として設けられる
    ことを特徴とする請求項1~請求項3いずれかの膜形成方法。
    4. The film forming method according to claim 1, wherein the mask is made of a resin that does not transmit ultraviolet rays and is provided as a resin layer by printing means.
  5.  前記マスクは前記オーバーコート層に密着して設けられる
    ことを特徴とする請求項1~請求項4いずれかの膜形成方法。
    5. The film forming method according to claim 1, wherein the mask is provided in close contact with the overcoat layer.
  6.  前記紫外線は、10~400nmの範囲に波長を有する紫外線である
    ことを特徴とする請求項1~請求項5いずれかの膜形成方法。
    6. The film forming method according to claim 1, wherein the ultraviolet ray is an ultraviolet ray having a wavelength in a range of 10 to 400 nm.
  7.  前記紫外線は、150~180nmの範囲に波長を有する紫外線である
    ことを特徴とする請求項1~請求項5いずれかの膜形成方法。
    6. The film forming method according to claim 1, wherein the ultraviolet ray is an ultraviolet ray having a wavelength in a range of 150 to 180 nm.
  8.  前記紫外線の照射積算光量は、50~500000mJ/cmである
    ことを特徴とする請求項1~請求項7いずれかの膜形成方法。
    The film forming method according to any one of claims 1 to 7, wherein the cumulative amount of ultraviolet irradiation is 50 to 500,000 mJ / cm 2 .
  9.  前記紫外線の照射積算光量は、500~30000mJ/cmである
    ことを特徴とする請求項1~請求項7いずれかの膜形成方法。
    The film forming method according to any one of claims 1 to 7, wherein the cumulative amount of UV irradiation is 500 to 30000 mJ / cm 2 .
  10.  前記紫外線照射後、前記マスクが除去される工程を更に具備する
    ことを特徴とする請求項1~請求項9いずれかの膜形成方法。
    10. The film forming method according to claim 1, further comprising a step of removing the mask after the ultraviolet irradiation.
  11.  前記酸素を有する雰囲気は、酸素圧が101~21273Paである
    ことを特徴とする請求項1~請求項10いずれかの膜形成方法。
    11. The film forming method according to claim 1, wherein the atmosphere containing oxygen has an oxygen pressure of 101 to 21273 Pa.
  12.  前記酸素を有する雰囲気は、酸素圧が1013~10130Paである
    ことを特徴とする請求項1~請求項10いずれかの膜形成方法。
    11. The film forming method according to claim 1, wherein the atmosphere containing oxygen has an oxygen pressure of 1013 to 10130 Pa.
  13.  前記導電性カーボン層が、グラフェンで構成されてなる
    ことを特徴とする請求項1~請求項12いずれかの膜形成方法。
    13. The film forming method according to claim 1, wherein the conductive carbon layer is made of graphene.
  14.  前記導電性カーボン層が、カーボンナノチューブで構成されてなる
    ことを特徴とする請求項1~請求項13いずれかの膜形成方法。
    The film forming method according to any one of claims 1 to 13, wherein the conductive carbon layer comprises carbon nanotubes.
  15.  前記導電性カーボン層が、酸処理を受けた単層カーボンナノチューブで構成されてなる
    ことを特徴とする請求項1~請求項14いずれかの膜形成方法。
    The film forming method according to any one of claims 1 to 14, wherein the conductive carbon layer is composed of acid-treated single-walled carbon nanotubes.
  16.  請求項1~請求項15いずれかの膜形成方法によって形成されてなる導電膜。 A conductive film formed by the film forming method according to any one of claims 1 to 15.
  17.  請求項1~請求項15いずれかの膜形成方法によって形成されてなる絶縁膜。
     
     
    An insulating film formed by the film forming method according to any one of claims 1 to 15.

PCT/JP2013/084292 2012-12-21 2013-12-20 Film formation method, conductive film, and insulation film WO2014098230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553226A JPWO2014098230A1 (en) 2012-12-21 2013-12-20 Film forming method, conductive film, and insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012280273 2012-12-21
JP2012-280273 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098230A1 true WO2014098230A1 (en) 2014-06-26

Family

ID=50978544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084292 WO2014098230A1 (en) 2012-12-21 2013-12-20 Film formation method, conductive film, and insulation film

Country Status (3)

Country Link
JP (1) JPWO2014098230A1 (en)
TW (1) TW201442950A (en)
WO (1) WO2014098230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105922669A (en) * 2016-05-10 2016-09-07 北京创新爱尚家科技股份有限公司 Graphene heating fabric and production method and system
JP2019518228A (en) * 2016-03-23 2019-06-27 トゥワリブ ムバラク ハタヤン リミテッド Container electronic display system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351602A (en) * 2003-05-30 2004-12-16 Fuji Xerox Co Ltd Carbon nano-tube device, producing method thereof and carbon nano-tube transfer body
JP2005183636A (en) * 2003-12-18 2005-07-07 Seiko Epson Corp Method for forming conductive pattern, conductive pattern, electronic part and electronic equipment
JP2007165678A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing semiconductor device, and device
WO2012176905A1 (en) * 2011-06-24 2012-12-27 株式会社クラレ Method for forming conductive film, conductive film, insulation method, and insulation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351602A (en) * 2003-05-30 2004-12-16 Fuji Xerox Co Ltd Carbon nano-tube device, producing method thereof and carbon nano-tube transfer body
JP2005183636A (en) * 2003-12-18 2005-07-07 Seiko Epson Corp Method for forming conductive pattern, conductive pattern, electronic part and electronic equipment
JP2007165678A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing semiconductor device, and device
WO2012176905A1 (en) * 2011-06-24 2012-12-27 株式会社クラレ Method for forming conductive film, conductive film, insulation method, and insulation film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518228A (en) * 2016-03-23 2019-06-27 トゥワリブ ムバラク ハタヤン リミテッド Container electronic display system
CN105922669A (en) * 2016-05-10 2016-09-07 北京创新爱尚家科技股份有限公司 Graphene heating fabric and production method and system

Also Published As

Publication number Publication date
JPWO2014098230A1 (en) 2017-01-12
TW201442950A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
WO2012176905A1 (en) Method for forming conductive film, conductive film, insulation method, and insulation film
Geng et al. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension
Fukaya et al. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications
CN100341629C (en) Method for patterning carbon nanotube coating and carbon nanotube wiring
TWI519616B (en) Carbon nanotube based transparent conductive films and methods for preparing and patterning the same
JP4412315B2 (en) Method for manufacturing substrate having regions having different hydrophilicity and lipophilicity on the same surface
US20050266162A1 (en) Carbon nanotube stripping solutions and methods
WO2013176155A1 (en) Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel
JP2010287540A (en) Method of manufacturing transparent conductive pattern, and base material with transparent conductive pattern
WO2014098158A1 (en) Film forming method, conductive film, and insulating film
WO2014098230A1 (en) Film formation method, conductive film, and insulation film
WO2014098157A1 (en) Film forming method, conductive film and insulating film
Kim et al. Transparent and Multi‐Foldable Nanocellulose Paper Microsupercapacitors
JP2013008877A (en) Patterning method of composite layer including carbon nanotube layer and overcoat layer, and pattern formed by that method
JP5688395B2 (en) Method for forming conductive pattern and transparent conductive film
Sun et al. Carbon nanotube transparent electrode
KR20100125068A (en) The method for fabricating transparent conducting film from carbon nanotube and the transparent conducting film using the same
KR101726492B1 (en) Method of manufacturing a transparent electrode pattern
JP2019194010A (en) Optical laminate having transparent conductive film, and coating composition
Joo et al. High-quality parallel patterning of carbon nanotube thin films by a pulsed laser beam
JP6352085B2 (en) Film and film forming method
JP2016018714A (en) Conductive film
JP5835633B1 (en) Method for producing conductive substrate
Kim et al. Applications of carbon nanotubes to flexible transparent conductive electrodes
KR101908604B1 (en) Manufacturing method for transparent electrode panel using composite solution of CNT and graphene, and transparent electrode panel prepared by the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865166

Country of ref document: EP

Kind code of ref document: A1