WO2014098191A1 - Carbon black and rubber composition produced using same - Google Patents

Carbon black and rubber composition produced using same Download PDF

Info

Publication number
WO2014098191A1
WO2014098191A1 PCT/JP2013/084115 JP2013084115W WO2014098191A1 WO 2014098191 A1 WO2014098191 A1 WO 2014098191A1 JP 2013084115 W JP2013084115 W JP 2013084115W WO 2014098191 A1 WO2014098191 A1 WO 2014098191A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
carbon black
size distribution
component
rubber
Prior art date
Application number
PCT/JP2013/084115
Other languages
French (fr)
Japanese (ja)
Inventor
悟司 浜谷
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2014098191A1 publication Critical patent/WO2014098191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • Patent Document 1 iodine absorption no. Has been disclosed that a mixture of two types of carbon black having a large particle size of less than 115 and a small particle size exceeding 115 is used in this document. In FIG. 5, selection from two sections with 115 as a boundary is shown, and the relationship between the sections is not shown. Similarly, DBPNo. And iodine absorption no. In this case, the iodine absorption No. is also disclosed. In FIG. 5, selection from two sections with 110 as a boundary is shown, and the relationship between the sections is not shown. Patent Document 2 discloses the use of a mixture of two types of carbon black specified by the nitrogen adsorption specific surface area and the dibutyl phthalate oil absorption amount.
  • the present inventors blend a carbon black mixture composed of two or more particle size components exhibiting a specific particle size distribution behavior with an optimum particle size and mixing ratio, so that there is no occurrence of poor dispersion in the rubber and the optimum.
  • the carbon black suitable for the rubber composition having ultra-low heat generation while maintaining the balance between the unprecedented cut resistance and crack resistance, and was able to be packed into the present invention. It is.
  • the present invention resides in the following (1) to (5).
  • the particle size distribution curve shows a bimodality, and the peak position particle size and frequency value (SDst, Sh) of the component with small particle size and the peak position particle size and frequency of the component with large particle size
  • the relationship between the values (LDst, Lh) is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5 Carbon black that meets the requirements.
  • the carbon black is a carbon black showing a bimodal particle size distribution obtained in a single step, or a carbon black showing a unimodal particle size distribution obtained in two independent steps.
  • the carbon black having a bimodal particle size distribution when mixed or a carbon black having a wide distribution is fractionated except for a specific particle size range and exhibits a bimodal particle size distribution
  • Carbon black (3)
  • (4) 5 to 80 parts by weight of carbon black described in (1) to (3) above is blended with 100 to 100 parts by weight of natural rubber and 0 to 100 parts by weight of diene rubber.
  • the particle size distribution curve in the disk centrifugal sedimentation type particle size distribution measurement shows bimodality as shown in Fig. 1 for 100 parts by weight of natural rubber and 0 to 100 parts by weight of diene rubber.
  • the relationship between the peak position particle size and frequency value (SDst, Sh) of the component with small particle size and the peak position particle size and frequency value (LDst, Lh) of the component with large particle size is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5
  • Carbon black satisfying These carbon blacks are obtained by mixing a carbon black showing a bimodal particle size distribution obtained in a single process, or a carbon black showing a monomodal particle size distribution obtained in two independent processes.
  • the particle size distribution curve schematically shown in FIG. 1 in the disc centrifugal sedimentation type particle size distribution measurement is bimodal, and the peak position particle size, frequency value (SDst, Sh) and particle size of the component having a small particle size.
  • the relationship between the peak position particle size and the frequency value (LDst, Lh) of the component having a large value is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5 It is characterized by being carbon black satisfying the above.
  • the particle size distribution curve is a plot of frequency versus particle size obtained by disk centrifugal sedimentation type particle size distribution measurement based on JIS K6218, with the horizontal axis representing the particle size and the vertical axis representing the frequency.
  • the particle size distribution curve shows a bimodal distribution means that this curve shows a maximum value at two places as shown in FIG. 1, and after passing through the maximum value on the small particle size side, It means that a curve is drawn which shows the minimum value and again shows the maximum value on the large grain size side. If the distribution of each component or one of the two granularity intervals giving the frequency maxima is wide, if these are superimposed, the two maxima and the minima between them will not be seen. Does not assume bimodal distribution.
  • the quotient obtained by dividing the particle size giving the mode value of the large particle size component by the particle size giving the mode value of the small particle size component in advance for each particle size distribution is 2.8. Even if it is larger, the above condition is not always satisfied. Since each or one has a broad distribution, it may not appear as a bimodal distribution after mixing. Further, even after mixing, even when the bimodal distribution can be discriminated, the particle size giving the mode of the small particle size component before mixing, which is A indicated by a dotted line in the schematic FIG.
  • the SDst read from the particle size distribution curve of FIG. 2, the particle size giving the mode of the large particle size component before mixing, which is B indicated by a broken line in FIG. 2, and the LDst read from the particle size distribution curve after mixing are not necessarily one. You don't have to. For example, in FIG. 2, the mode value of the large-size component before mixing is the peak position of B, but this may not match LDst.
  • the particle size distribution curve shows a bimodal distribution. In this case, the particle size distribution curve was read.
  • LDst / SDst is less than 2.8, it is not considered that there is a sufficient relative size relationship suitable for the present invention between the large particle size component and the small particle size component.
  • LDst / SDst> 2.8 may be satisfied, but preferably in the range of 8> LDst / SDst> 3, and 7> LDst / SDst> 3. A range of 5 is more preferable.
  • the peak frequency value of the component having a small particle size and the peak frequency value of the component having a large particle size these values read from the particle size distribution curve, respectively, and the DCP ratio that is the ratio of Sh and Lh satisfy the above conditions. Good.
  • the ratio of peak frequency values known in advance for each component before mixing does not necessarily have to match.
  • the frequency value Sh on the small particle size side is almost the same as the frequency value of the small particle size component represented by the dotted line A before mixing, but the frequency value Lh on the large particle size side is the same as before mixing.
  • the frequency value of the large particle size component represented by the broken line B may be clearly different.
  • the carbon black of the present invention can be obtained, but preferably in the range of 3> Sh / Lh> 0.5. 2.5> Sh / Lh> 1 is more preferable.
  • the carbon black produced from a single process shows a bimodal distribution as a result of particle size distribution measurement. Or, even if it is a mixture of two monomodal carbon blacks originally obtained from two independent processes, or from a carbon black having a broad distribution, it is separated by removing a specific particle size range, The effect of the present invention can be obtained even with carbon black satisfying the above conditions and exhibiting a bimodal particle size distribution.
  • Carbon black produced from a single process or exhibiting a bimodal distribution by mixing or fractionation may have a peak particle size position within the range of 10 nm to 1 ⁇ m in the particle size distribution of each component. It does not matter if the tail of each peak of the peak distribution has a distribution spread outside this range. Within this range, it is preferable that LDst and SDst satisfy the above-described relative magnitude relationship, so that dispersion with optimum packing is possible without causing poor dispersion in the rubber component.
  • the peak particle size position of the particle size distribution of each component of carbon black produced from a single process or exhibiting a bimodal distribution by mixing or fractionation is preferably within the range of 10 nm to 800 nm.
  • the range is more preferable, and the range of 10 nm to 200 nm is particularly preferable.
  • the rubber composition of the present invention is added by adding 5 to 80 parts by weight of the carbon black of the present invention mixed or separated so as to satisfy the above conditions or manufactured from one step with respect to 100 parts by weight of the rubber component. Things are obtained.
  • the carbon black that has a bimodal distribution in the particle size distribution curve to be added in an amount of 5 to 80 parts by weight is a mixture of two types of carbon black, it is necessary to mix them in advance in use. Not required.
  • the required weight parts of each of the two types of carbon black are 5 to 80 parts by weight in total with respect to 100 parts by weight of the rubber component.
  • two types of carbon blacks may be added individually and simultaneously. Or you may add with a time difference. Further, those obtained by adding each carbon black to the rubber component and kneading may be further kneaded.
  • the amount of carbon black that exhibits a bimodal distribution in the particle size distribution curve is preferably 5 to 50 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the rubber component.
  • the rubber composition of the present invention comprises a diene rubber selected from natural rubber (NR) and / or isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), etc., from 0 to 100 weights of natural rubber. It can be used by appropriately blending it so that it becomes 100 parts by weight of rubber, consisting of 0 to 100 parts by weight and / or diene rubber.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • CR chloroprene rubber
  • the rubber composition of the present invention can contain various components commonly used in the rubber industry in addition to the above-described rubber component and carbon black exhibiting a bimodal distribution in the particle size distribution measurement.
  • various components fillers (for example, reinforcing fillers such as silica; and inorganic fillers such as calcium carbonate and calcium carbonate); vulcanization accelerators; anti-aging agents; zinc oxide; stearic acid; And additives such as an ozone degradation inhibitor.
  • thiazole vulcanization accelerators such as M (2-mercaptobenzothiazole), DM (dibenzothiazolyl disulfide) and CZ (N-cyclohexyl-2-benzothiazolylsulfenamide); And thiuram vulcanization accelerators such as TT (tetramethylthiuram sulfide); and guanidine vulcanization accelerators such as DPG (diphenylguanidine).
  • the rubber composition using the carbon black of the present invention can be produced by kneading the above components with, for example, a Banbury mixer, a kneader, etc., and a tread portion of a large tire such as a truck, a bus, or a heavy machine. Can be suitably used.
  • Exothermic index ⁇ (tan ⁇ of test vulcanized rubber composition) / (tan ⁇ of vulcanized rubber composition of Comparative Example 1) ⁇ ⁇ 100
  • Elastic modulus index ⁇ (G ′ of test vulcanized rubber composition) / (G ′ of vulcanized rubber composition of Comparative Example 1) ⁇ ⁇ 100.
  • (Crack resistance) For the vulcanized rubber composition, a tensile strength tester (manufactured by Instron) was used, and the tear strength was measured in a trouser form according to JIS K6252. The tear strength of Comparative Example 1 was taken as 100, and indexed by the following formula. The larger the cracking resistance index, the better the cracking resistance.
  • Crack resistance index ⁇ (Tear strength of test vulcanized rubber composition) / (Tear strength of vulcanized rubber composition of Comparative Example 1) ⁇ ⁇ 100
  • Dst ratio LDst / SDst
  • DCP ratio Sh / Lh
  • Comparative Example 4 although the crack resistance is improved, the cut resistance is deteriorated.
  • Comparative Example 5 the heat generation is improved, but the cut resistance and fatigue resistance are poor.
  • Comparative Example 6 cut resistance and crack resistance are improved, but heat generation is poor.
  • Examples, especially Examples 1 to 7, have high cut resistance and crack resistance, and excellent heat generation.
  • Examples 8 to 10 also have a balance of cut resistance, heat generation, and crack resistance. It can be seen that the rubber composition was removed.
  • carbon black containing components of different particle sizes can be obtained.
  • rubber composition with an extremely low exothermic property while maintaining a balance between cut resistance and crack resistance, in which the rubber component is effectively reinforced without causing poor dispersion with optimal packing. Is obtained.
  • a tire using the rubber composition as a tire tread is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Carbon black, which has a particle size distribution curve that shows a bimodal distribution pattern as shown in fig. 1 that is shown as a schematic illustration, and in which the relationship between the peak position particle size and the frequency value (SDst, Sh) of a component having a smaller particle size and the peak position particle size and the frequency value (LDst, Lh) of a component having a larger particle size, which are read from the particle size distribution curve, fulfils the formula: 10 > LDst/SDst > 2.8 and the formula: 4 > Sh/Lh > 0.5, said carbon black being produced in a single step or by mixing or fractionation and having a bimodal particle size distribution, wherein the peak position particle size of each of the components falls within the range from 10 nm to 1 μm; and a rubber composition and a tire, each of which is produced using the carbon black, has an excellent balance between cutting resistance and cracking resistance and also has ultra-low pyrogenicity.

Description

カーボンブラック及びそれを用いたゴム組成物Carbon black and rubber composition using the same
 本発明は、タイヤトレッド用ゴム組成物に関し、耐カット性、耐亀裂性とのバランスを維持しつつ、低発熱性を向上させたゴム組成物に適したカーボンブラックに関する。 The present invention relates to a rubber composition for a tire tread, and relates to a carbon black suitable for a rubber composition having improved low heat buildup while maintaining a balance between cut resistance and crack resistance.
 大型タイヤ業界では、耐カット性、低発熱性、耐亀裂性を向上させた、タイヤトレッド用ゴム組成物が提案されている。特に低発熱性は、低燃費性を実現する上で、重要な性能であり、例えば、様々な大粒度カーボンブラックやシリカを充填剤として使用することにより、改善をめざす提案がなされている。 In the large tire industry, rubber compositions for tire treads with improved cut resistance, low heat buildup and crack resistance have been proposed. In particular, low exothermicity is an important performance in realizing low fuel consumption. For example, proposals have been made for improvement by using various large particle size carbon blacks and silica as fillers.
 小粒度で、低ストラクチャのカーボンブラックを添加すると比表面積が大きく、ゴム成分との相互作用が強くなり、耐カット性、耐亀裂性に優れるようになるが、カーボンブラック同士が凝集しやすいため、発熱性は悪化する。一方、大粒度で、高ストラクチャのカーボンブラックを添加すると、比表面積を大きく保ったまま、低ストラクチャのカーボンブラックよりも凝集が抑えられるため、発熱性は良好となるが、低弾性率になるため、耐亀裂性は悪化する。また、シリカを用いることで、発熱性を向上させることがなされているが、やはり低弾性率のため、耐亀裂性、耐カット性は低下するといった問題がある。 When carbon black with a small particle size and low structure is added, the specific surface area is large, the interaction with the rubber component becomes strong, and the cut resistance and crack resistance become excellent. The exotherm deteriorates. On the other hand, the addition of carbon black with a large particle size and high structure suppresses agglomeration compared to carbon black with a low structure while maintaining a large specific surface area. The crack resistance deteriorates. Moreover, although the exothermic property is improved by using silica, there is a problem that crack resistance and cut resistance are lowered due to the low elastic modulus.
 小粒度及び大粒度カーボンブラックがもたらす特性を引き出すべく、両者をブレンドすることで、耐カット性と低発熱性を両立させようとしたアプローチもなされてはいるが、期待するような効果は得られていない。 In order to bring out the properties brought about by small and large carbon blacks, an approach has been made to achieve both cut resistance and low heat generation by blending the two, but the expected effect is obtained. Not.
 特許文献1ではヨウ素吸収No.が115未満の大粒子径、と115をこえる小粒子径の2種のカーボンブラックを、混合して用いることが開示されてはいるが、この文献においては、粒子径の基準としてヨウ素吸収No.において115を境界とする、2つの区分からの選択が示されているものであって、それぞれの区分の間の関係を示したものではない。同様に、DBPNo.とヨウ素吸収No.で規定した区分も開示されているが、この場合もヨウ素吸収No.において110を境界とする、2つの区分からの選択が示されているものであって、それぞれの区分の間の関係を示したものではない。
 特許文献2には、窒素吸着比表面積並びにジブチルフタレート吸油量で規定された、2種のカーボンブラックを混合して用いることが開示されているが、これらカーボンブラックの粒度に関連する物性値の間に、どのような関係性があれば良いのかは、示されておらず、特定の2種のカーボンブラックが用いられているのみであり、ある閾値より、大きいか小さいかの、2つの区分からそれぞれのカーボンブラックが選択されている。また、混合した効果よりも、他の特定成分による効果の方が支配的であり、2種のカーボンブラックの配合比の違いにより、もたらされた効果は明確ではない。
 特許文献3にはセチルトリメチルアンモニウムブロミド比表面積と、ジブチルフタレート吸油量との間の関係が規定されたカーボンブラックの2種を混合して用いることが開示されているが、2種のカーボンブラック間での物性値の関係性が、明らかにされているわけではない。
In Patent Document 1, iodine absorption no. Has been disclosed that a mixture of two types of carbon black having a large particle size of less than 115 and a small particle size exceeding 115 is used in this document. In FIG. 5, selection from two sections with 115 as a boundary is shown, and the relationship between the sections is not shown. Similarly, DBPNo. And iodine absorption no. In this case, the iodine absorption No. is also disclosed. In FIG. 5, selection from two sections with 110 as a boundary is shown, and the relationship between the sections is not shown.
Patent Document 2 discloses the use of a mixture of two types of carbon black specified by the nitrogen adsorption specific surface area and the dibutyl phthalate oil absorption amount. However, it is not shown what kind of relationship is necessary, only two types of carbon black are used, and it is based on two categories, which are larger or smaller than a certain threshold. Each carbon black is selected. Moreover, the effect by other specific components is more dominant than the mixed effect, and the effect brought about by the difference in the mixing ratio of the two types of carbon black is not clear.
Patent Document 3 discloses the use of a mixture of two carbon blacks in which the relationship between the cetyltrimethylammonium bromide specific surface area and the dibutyl phthalate oil absorption is defined. The relationship of physical property values is not clarified.
特開平7-041602号公報Japanese Patent Laid-Open No. 7-041602 特許第3778662号公報Japanese Patent No. 3778662 特開平6-212024号公報Japanese Patent Application Laid-Open No. 6-212012
 ストラクチャを変えなくとも、2種類以上のカーボンブラックをブレンドして用いることにより、通常は両立させることが難しい、耐カット性、耐亀裂性と低発熱性を備えた、ゴム組成物に適したカーボンブラックを得ることを目的とする。 Carbon suitable for rubber compositions with cut resistance, crack resistance and low heat build-up, which is usually difficult to achieve by blending two or more types of carbon black without changing the structure. Aim to get black.
 本発明者らは、特定の粒度分布挙動を示す、2つ以上の粒度成分からなる、カーボンブラック混合物を最適な粒度、並びに混合比でブレンドすることにより、ゴム中で分散不良など起こらず、最適にパッキングすることができ、従来にはない耐カット性、耐亀裂性とのバランスを保持しつつ、超低発熱性であるゴム組成物に適したカーボンブラックを得て、本願発明に至ったものである。 The present inventors blend a carbon black mixture composed of two or more particle size components exhibiting a specific particle size distribution behavior with an optimum particle size and mixing ratio, so that there is no occurrence of poor dispersion in the rubber and the optimum. The carbon black suitable for the rubber composition having ultra-low heat generation while maintaining the balance between the unprecedented cut resistance and crack resistance, and was able to be packed into the present invention. It is.
 すなわち、本発明は、次の(1)~(5)に存する。
(1) ディスク遠心沈降式粒度分布測定における、粒度分布曲線が2峰性を示し、その粒度が小さい成分のピーク位置粒度、頻度値(SDst、Sh)と粒度が大きい成分のピーク位置粒度、頻度値(LDst、Lh)の関係が
  10>LDst/SDst>2.8 かつ 4>Sh/Lh>0.5
を満たすカーボンブラック。
(2)上記、カーボンブラックは、単一の工程で得られた2峰性粒度分布を示すカーボンブラック、または、独立した2工程でそれぞれ得られた、単峰性粒度分布を示すカーボンブラックを、混合して2峰性粒度分布を示すカーボンブラック、もしくは、広い分布を有するカーボンブラックから、特定の粒度範囲を除いて分別し、2峰性粒度分布を示すものとなった(1)に記載のカーボンブラック。
(3)上記、カーボンブラックは、粒度分布における各々の成分のピーク位置粒度が10nm~1μmの範囲にある、(1)に記載のカーボンブラック。
(4)天然ゴム0~100重量部及び/またはジエン系ゴム0~100重量部からなるゴム100重量部に対し、上記(1)乃至(3)に記載のカーボンブラックを5~80重量部配合してなる、ゴム組成物。
(5)(4)に記載のゴム組成物をトレッドゴムに用いたタイヤ。
That is, the present invention resides in the following (1) to (5).
(1) In the disk centrifugal sedimentation type particle size distribution measurement, the particle size distribution curve shows a bimodality, and the peak position particle size and frequency value (SDst, Sh) of the component with small particle size and the peak position particle size and frequency of the component with large particle size The relationship between the values (LDst, Lh) is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5
Carbon black that meets the requirements.
(2) The carbon black is a carbon black showing a bimodal particle size distribution obtained in a single step, or a carbon black showing a unimodal particle size distribution obtained in two independent steps. The carbon black having a bimodal particle size distribution when mixed or a carbon black having a wide distribution is fractionated except for a specific particle size range and exhibits a bimodal particle size distribution (1) Carbon black.
(3) The carbon black described in (1), wherein the peak position particle size of each component in the particle size distribution is in the range of 10 nm to 1 μm.
(4) 5 to 80 parts by weight of carbon black described in (1) to (3) above is blended with 100 to 100 parts by weight of natural rubber and 0 to 100 parts by weight of diene rubber. A rubber composition.
(5) A tire using the rubber composition according to (4) as a tread rubber.
 本発明によれば、従来にはない耐カット性、耐亀裂性とのバランスを保持しつつ、超低発熱性、タイヤトレッド用ゴム組成物に適したカーボンブラックを得ることができる。 According to the present invention, carbon black suitable for a rubber composition for tire tread can be obtained while maintaining a balance between cut resistance and crack resistance, which has not been conventionally obtained.
本発明のカーボンブラックが満たすべき2峰性の粒度分布とパラメータを模式的に表す図の1例である。It is an example of the figure which represents typically the bimodal particle size distribution and parameter which the carbon black of this invention should satisfy | fill. 混合によるカーボンブラックにおける、混合前の大粒度成分と小粒度成分と混合後の分布とパラメータを模式的に表す図の1例である。It is an example of the figure which represents typically the distribution and parameter after mixing the large particle size component and small particle size component before mixing in carbon black by mixing.
 以下に、本発明の実施形態を詳しく説明する。
 天然ゴム0~100重量部及び/またはジエン系ゴム0~100重量部からなるゴム100重量部に対し、ディスク遠心沈降式粒度分布測定における、粒度分布曲線が図1のような2峰性を示し、その粒度が小さい成分のピーク位置粒度、頻度値(SDst、Sh)と粒度が大きい成分のピーク位置粒度、頻度値(LDst、Lh)の関係が
   10>LDst/SDst>2.8 かつ 4>Sh/Lh>0.5
を満たすカーボンブラックである。これらカーボンブラックは単一の工程で得られた2峰性粒度分布を示すカーボンブラック、または、独立した2工程でそれぞれ得られた、単峰性粒度分布を示すものを、混合して2峰性粒度分布を示すカーボンブラック、もしくは、広い分布を有するカーボンブラックから、特定の粒度範囲を除いて分別し、2峰性粒度分布を示すものとなったカーボンブラックのいずれであってもよい。各々の成分のピーク位置粒度が10nm~1μmの範囲にある、カーボンブラックが上記のような、粒度と、頻度値の関係を満たすことで、耐カット性、耐亀裂性とのバランスを保持しつつ、超低発熱性のゴム組成物に適したカーボンブラックを与えるものであり、前記カーボンブラックを5~80重量部配合してなる、ゴム組成物とそれをトレッドゴムに用いたタイヤである。
Hereinafter, embodiments of the present invention will be described in detail.
The particle size distribution curve in the disk centrifugal sedimentation type particle size distribution measurement shows bimodality as shown in Fig. 1 for 100 parts by weight of natural rubber and 0 to 100 parts by weight of diene rubber. The relationship between the peak position particle size and frequency value (SDst, Sh) of the component with small particle size and the peak position particle size and frequency value (LDst, Lh) of the component with large particle size is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5
Carbon black satisfying These carbon blacks are obtained by mixing a carbon black showing a bimodal particle size distribution obtained in a single process, or a carbon black showing a monomodal particle size distribution obtained in two independent processes. Any of carbon black showing a particle size distribution or carbon black having a broad distribution and fractionated by excluding a specific particle size range and showing a bimodal particle size distribution may be used. While the peak position particle size of each component is in the range of 10 nm to 1 μm, the carbon black satisfies the relationship between the particle size and the frequency value as described above, while maintaining the balance between cut resistance and crack resistance. The present invention provides a carbon black suitable for an ultra-low heat-generating rubber composition, a rubber composition comprising 5 to 80 parts by weight of the carbon black, and a tire using the rubber composition as a tread rubber.
 本発明においては、ディスク遠心沈降式粒度分布測定における、模式的な図1に示す粒度分布曲線が2峰性を示し、その粒度が小さい成分のピーク位置粒度、頻度値(SDst、Sh)と粒度が大きい成分のピーク位置粒度、頻度値(LDst、Lh)の関係が
   10>LDst/SDst>2.8 かつ4>Sh/Lh>0.5
を満たすカーボンブラックであることを特徴とする。
In the present invention, the particle size distribution curve schematically shown in FIG. 1 in the disc centrifugal sedimentation type particle size distribution measurement is bimodal, and the peak position particle size, frequency value (SDst, Sh) and particle size of the component having a small particle size. The relationship between the peak position particle size and the frequency value (LDst, Lh) of the component having a large value is 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5
It is characterized by being carbon black satisfying the above.
 粒度分布曲線は、模式的な図1に示すように、横軸に粒度、縦軸に頻度をとり、JIS K6218に基づくディスク遠心沈降式粒度分布測定で得られた、粒度に対する頻度をプロットしたものであるが、粒度分布曲線が2峰性分布を示すとは、図1のようにこの曲線が2か所で極大値を示すことであり、小粒度側での極大値を経たのち、一度、極小値を示し、再び大粒度側で極大を示すような、曲線を描いていることをいう。頻度の極大を与える、2つの粒度の間隔に対して、それぞれ又は一方の成分の分布が広い場合に、これらが重ね合わさると、2つの極大とその間の極小は見られなくなるが、このような場合は2峰性分布を示すとはみなさない。 The particle size distribution curve, as schematically shown in FIG. 1, is a plot of frequency versus particle size obtained by disk centrifugal sedimentation type particle size distribution measurement based on JIS K6218, with the horizontal axis representing the particle size and the vertical axis representing the frequency. However, that the particle size distribution curve shows a bimodal distribution means that this curve shows a maximum value at two places as shown in FIG. 1, and after passing through the maximum value on the small particle size side, It means that a curve is drawn which shows the minimum value and again shows the maximum value on the large grain size side. If the distribution of each component or one of the two granularity intervals giving the frequency maxima is wide, if these are superimposed, the two maxima and the minima between them will not be seen. Does not assume bimodal distribution.
 上記のように、明確な2峰性分布が示されていない場合に、複数の対数正規分布曲線などの重ね合わせを仮定し、回帰分析等で、複数の粒度成分が存在していることが、判別できる場合もあるが、本願ではそのような回帰分析等行わずとも、粒度分布曲線を直接、目視すれば小粒度、大粒度の2成分が存在していることが判別できる場合の、粒度分布状態にあり、それぞれの粒度成分のピーク位置粒度や、頻度値が読み取ることができる、カーボンブラックについて、パラメータを設定し、その条件を規定するものである。 As described above, when a clear bimodal distribution is not shown, it is assumed that a plurality of logarithmic normal distribution curves and the like are superimposed, and a plurality of granularity components are present in regression analysis or the like. In some cases, it is possible to determine the particle size distribution, but without performing such regression analysis in the present application, it is possible to determine the presence of two components of small particle size and large particle size by directly observing the particle size distribution curve. For carbon black, which is in a state and from which the peak position particle size and frequency value of each particle size component can be read, parameters are set and the conditions are defined.
 2つの異なる粒度のカーボンブラックを混合する場合に、あらかじめ個々の粒度分布について、大粒度成分の最頻値を与える粒度を、小粒度成分の最頻値を与える粒度で除した商が2.8より大きい場合であっても、上記の条件を満たすとは限らない。それぞれ、もしくは一方が、広い分布を有しているために、混合後は2峰性分布にみえない場合もある。また、混合後も、2峰性分布が判別できる場合であっても、模式的な図2において点線で示されたAである混合前の小粒度成分の最頻値を与える粒度と、混合後の粒度分布曲線から読み取ったSDst、図2において破線で示されたBである混合前の大粒度成分の最頻値を与える粒度と、混合後の粒度分布曲線から読み取ったLDst、はそれぞれ必ずしも一致しなくともよい。例えば、図2において、混合前の大粒度成分の最頻値はBのピーク位置であるが、これはLDstとは一致しないこともある。 When carbon black having two different particle sizes are mixed, the quotient obtained by dividing the particle size giving the mode value of the large particle size component by the particle size giving the mode value of the small particle size component in advance for each particle size distribution is 2.8. Even if it is larger, the above condition is not always satisfied. Since each or one has a broad distribution, it may not appear as a bimodal distribution after mixing. Further, even after mixing, even when the bimodal distribution can be discriminated, the particle size giving the mode of the small particle size component before mixing, which is A indicated by a dotted line in the schematic FIG. The SDst read from the particle size distribution curve of FIG. 2, the particle size giving the mode of the large particle size component before mixing, which is B indicated by a broken line in FIG. 2, and the LDst read from the particle size distribution curve after mixing are not necessarily one. You don't have to. For example, in FIG. 2, the mode value of the large-size component before mixing is the peak position of B, but this may not match LDst.
 粒度分布曲線から読み取った、SDst、LDstがLDst/SDst>2.8を満たすということは、LDstとSDstとが、2峰性分布を示し得る程度に十分に離れており、かつ粒度において特定の閾値と比べての大小ではなく、それぞれの相対的な、2.8倍より大きい、大小関係があることを示す。 The fact that SDst and LDst satisfy LDst / SDst> 2.8, read from the particle size distribution curve, indicates that LDst and SDst are sufficiently separated to exhibit a bimodal distribution, and a specific particle size is specified. It indicates that there is a magnitude relationship that is greater than 2.8 times relative to each other, not the magnitude of the threshold.
 各々の成分が、狭い分布を有しており、LDstとSDstが近接しているにもかかわらず、粒度分布曲線が2峰性分布を示しているが、この場合に、粒度分布曲線から読み取った、LDst/SDstが2.8未満の場合は、大粒度成分と小粒度成分の間に本願発明に適した、十分な相対的大小関係があるとは考えない。 Although each component has a narrow distribution and the LDst and SDst are close to each other, the particle size distribution curve shows a bimodal distribution. In this case, the particle size distribution curve was read. When LDst / SDst is less than 2.8, it is not considered that there is a sufficient relative size relationship suitable for the present invention between the large particle size component and the small particle size component.
 粒度分布曲線から読み取った、SDst、LDstについては、10>LDst/SDst>2.8を満たせばよいが、8>LDst/SDst>3の範囲にあれば好ましく、7>LDst/SDst>3.5の範囲にあればより好ましい。 Regarding SDst and LDst read from the particle size distribution curve, 10> LDst / SDst> 2.8 may be satisfied, but preferably in the range of 8> LDst / SDst> 3, and 7> LDst / SDst> 3. A range of 5 is more preferable.
 次に、粒度が小さい成分のピーク頻度値、粒度が大きい成分のピーク頻度値についても、これらは粒度分布曲線から、それぞれ読み取った値、ShならびにLhの比であるDCP比が上記条件を満たせばよい。2種類のカーボンブラックを混合して、配合に用いるカーボンブラックを調製する場合に、混合前のそれぞれの成分について、あらかじめわかっているピーク頻度値の比とは必ずしも一致しなくともよい。例えば、図2において小粒度側の頻度値Shは、混合前の、Aの点線で表される小粒度成分の頻度値と、ほとんど同じであるが、大粒度側の頻度値Lhは、混合前の、Bの破線で表される大粒度成分の頻度値とは明らかに異なることもある。 Next, regarding the peak frequency value of the component having a small particle size and the peak frequency value of the component having a large particle size, these values read from the particle size distribution curve, respectively, and the DCP ratio that is the ratio of Sh and Lh satisfy the above conditions. Good. When two types of carbon black are mixed to prepare carbon black used for blending, the ratio of peak frequency values known in advance for each component before mixing does not necessarily have to match. For example, in FIG. 2, the frequency value Sh on the small particle size side is almost the same as the frequency value of the small particle size component represented by the dotted line A before mixing, but the frequency value Lh on the large particle size side is the same as before mixing. The frequency value of the large particle size component represented by the broken line B may be clearly different.
 ピーク頻度値の比であるDCP比は4>Sh/Lh>0.5を満たせば、本願発明のカーボンブラックを得ることができるが、3>Sh/Lh>0.5の範囲にあれば好ましく、2.5>Sh/Lh>1の範囲にあればより好ましい。 If the DCP ratio, which is the ratio of peak frequency values, satisfies 4> Sh / Lh> 0.5, the carbon black of the present invention can be obtained, but preferably in the range of 3> Sh / Lh> 0.5. 2.5> Sh / Lh> 1 is more preferable.
 粒度分布曲線から読み取った、ピークの粒度、頻度値が上記条件を満たすものであれば、単一の工程から製造されたカーボンブラックが、粒度分布測定を行った結果、2峰性分布を示すもの、または、もともと独立した2工程から得られた、単峰性の2種のカーボンブラックを混合したものであっても、もしくは広い分布を有するカーボンブラックから、特定の粒度範囲を除いて分別し、上記条件を満たしている、2峰性粒度分布を示すものとなったカーボンブラックであっても、本願発明の効果が得られる。 If the particle size and frequency of the peak read from the particle size distribution curve satisfy the above conditions, the carbon black produced from a single process shows a bimodal distribution as a result of particle size distribution measurement. Or, even if it is a mixture of two monomodal carbon blacks originally obtained from two independent processes, or from a carbon black having a broad distribution, it is separated by removing a specific particle size range, The effect of the present invention can be obtained even with carbon black satisfying the above conditions and exhibiting a bimodal particle size distribution.
 単一の工程から製造された、または、混合もしくは分別により、2峰性分布を示すカーボンブラックは、各々の成分の粒度分布のピーク粒度位置が、10nm~1μmの範囲内にあればよく、2峰性分布の、それぞれの峰の裾が、この範囲外に分布の広がりを持っていても差支えない。この範囲内において、LDstとSDstが上記、相対的な大小関係を満たしていれば、ゴム成分中で分散不良を起こすことなく、最適なパッキングでの分散が可能であり、好ましい。 Carbon black produced from a single process or exhibiting a bimodal distribution by mixing or fractionation may have a peak particle size position within the range of 10 nm to 1 μm in the particle size distribution of each component. It does not matter if the tail of each peak of the peak distribution has a distribution spread outside this range. Within this range, it is preferable that LDst and SDst satisfy the above-described relative magnitude relationship, so that dispersion with optimum packing is possible without causing poor dispersion in the rubber component.
 単一の工程から製造された、または、混合もしくは分別により、2峰性分布を示すカーボンブラックの各々の成分の粒度分布のピーク粒度位置は、10nm~800nmの範囲内が好ましく、10nm~500nmの範囲内がより好ましく、10nm~200nmの範囲内が特に好ましい。 The peak particle size position of the particle size distribution of each component of carbon black produced from a single process or exhibiting a bimodal distribution by mixing or fractionation is preferably within the range of 10 nm to 800 nm. The range is more preferable, and the range of 10 nm to 200 nm is particularly preferable.
 上記、条件を満たすように混合或いは分別された、もしくは、一工程から製造された本願発明のカーボンブラックを、ゴム成分100重量部に対し、5~80重量部添加することで本願発明のゴム組成物が得られる。この場合、5~80重量部添加すべき、粒度分布曲線において2峰性分布を示すカーボンブラックが、2種のカーボンブラックを混合して成るものである場合、使用においてあらかじめ混合しておくことは必須でない。上記条件を満たす、混合比配分があらかじめ判明している場合に、2種のカーボンブラックのそれぞれの必要重量部を、ゴム成分100重量部に対し、合計で5~80重量部となるように、ゴム成分への添加時に、2種のカーボンブラックを個々に同時に添加してもよい。或いは、時間差を伴って添加してもよい。又、各々のカーボンブラックをゴム成分に添加し混練したものを、さらに合わせて混練してもよい。 The rubber composition of the present invention is added by adding 5 to 80 parts by weight of the carbon black of the present invention mixed or separated so as to satisfy the above conditions or manufactured from one step with respect to 100 parts by weight of the rubber component. Things are obtained. In this case, when the carbon black that has a bimodal distribution in the particle size distribution curve to be added in an amount of 5 to 80 parts by weight is a mixture of two types of carbon black, it is necessary to mix them in advance in use. Not required. When the mixture ratio distribution satisfying the above conditions is known in advance, the required weight parts of each of the two types of carbon black are 5 to 80 parts by weight in total with respect to 100 parts by weight of the rubber component. At the time of addition to the rubber component, two types of carbon blacks may be added individually and simultaneously. Or you may add with a time difference. Further, those obtained by adding each carbon black to the rubber component and kneading may be further kneaded.
 上記とは逆に、分散性を考慮して、あらかじめ2種のカーボンブラックを混合したものを、調製して用いる場合には、混合・撹拌等において、乾式、湿式をはじめ種々の方法を用いることができるが、その工程において、特に大粒度成分のストラクチャが破壊され、粒度変化をきたさない程度に、また粒度変化をきたし難い方法を用いて、行うことが好ましい。 Contrary to the above, in consideration of dispersibility, when a mixture of two types of carbon black is prepared and used, various methods such as dry and wet should be used for mixing and stirring. However, it is preferable to carry out the process using a method in which the structure of the large particle size component is destroyed and the particle size does not change and the particle size does not easily change.
 上記、粒度分布曲線において2峰性分布を示すカーボンブラックの添加量は、ゴム成分100重量部に対して、5~50重量部が好ましく、10~50重量部がより好ましい。 The amount of carbon black that exhibits a bimodal distribution in the particle size distribution curve is preferably 5 to 50 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the rubber component.
 本発明のゴム組成物は、天然ゴム(NR)及び/または、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、などから選ばれるジエン系ゴムを、天然ゴム0~100重量部及び/またはジエン系ゴム0~100重量部からなる、ゴム100重量部となるように、適宜配合して用いることができる。 The rubber composition of the present invention comprises a diene rubber selected from natural rubber (NR) and / or isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), etc., from 0 to 100 weights of natural rubber. It can be used by appropriately blending it so that it becomes 100 parts by weight of rubber, consisting of 0 to 100 parts by weight and / or diene rubber.
 本発明のゴム組成物は、上記、ゴム成分と、粒度分布測定において2峰性分布を示す、カーボンブラックに加え、ゴム工業で通常使用されている種々の成分を含むことができる。例えば、種々の成分として、充填剤(例えば、シリカ等の補強性充填剤;並びに炭酸カルシウム及び炭酸カルシウムなどの無機充填剤);加硫促進剤;老化防止剤;酸化亜鉛;ステアリン酸;軟化剤;及びオゾン劣化防止剤等の添加剤を挙げることができる。なお、加硫促進剤として、M(2-メルカプトベンゾチアゾール)、DM(ジベンゾチアゾリルジスルフィド)及びCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)等のチアゾール系加硫促進剤;TT(テトラメチルチウラムスルフィド)等のチウラム系加硫促進剤;並びにDPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤等を挙げることができる。 The rubber composition of the present invention can contain various components commonly used in the rubber industry in addition to the above-described rubber component and carbon black exhibiting a bimodal distribution in the particle size distribution measurement. For example, as various components, fillers (for example, reinforcing fillers such as silica; and inorganic fillers such as calcium carbonate and calcium carbonate); vulcanization accelerators; anti-aging agents; zinc oxide; stearic acid; And additives such as an ozone degradation inhibitor. As vulcanization accelerators, thiazole vulcanization accelerators such as M (2-mercaptobenzothiazole), DM (dibenzothiazolyl disulfide) and CZ (N-cyclohexyl-2-benzothiazolylsulfenamide); And thiuram vulcanization accelerators such as TT (tetramethylthiuram sulfide); and guanidine vulcanization accelerators such as DPG (diphenylguanidine).
 さらに、硫黄をゴム成分100重量部に対して1~10重量部の範囲で配合することができ、3~7重量部の範囲が好ましく、4~6重量部の範囲がより好ましい。 Furthermore, sulfur can be blended in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the rubber component, preferably 3 to 7 parts by weight, more preferably 4 to 6 parts by weight.
 本発明のカーボンブラックを用いたゴム組成物は、上記各成分を、例えば、バンバリーミキサー、ニーダー等により混練することにより、製造することができ、トラック、バス、重機等の大型タイヤの、トレッド部として好適に使用できる。 The rubber composition using the carbon black of the present invention can be produced by kneading the above components with, for example, a Banbury mixer, a kneader, etc., and a tread portion of a large tire such as a truck, a bus, or a heavy machine. Can be suitably used.
 次に、実施例、比較例により、本発明を更に詳細に説明するが、本発明はこれらに制約されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited thereto.
 下記の表1に示す配合内容にて、カーボンブラックのLDst/SDst、Sh/Lhを様々な値に変化させた、各種ゴム組成物、実施例1~10、比較例1~6を処方した。これらをバンバリーミキサーにて混練して調製し、145℃、30分で加圧プレス加硫して、厚さ2mmのゴムシートを得た。これらのサンプルについて、耐カット性、発熱性、耐亀裂性について以下のようにして、測定試験を行った。 Various rubber compositions, Examples 1 to 10 and Comparative Examples 1 to 6, in which LDst / SDst and Sh / Lh of carbon black were changed to various values according to the blending contents shown in Table 1 below, were formulated. These were kneaded with a Banbury mixer, prepared, and pressure-press vulcanized at 145 ° C. for 30 minutes to obtain a rubber sheet having a thickness of 2 mm. About these samples, the measurement test was done as follows about cut resistance, exothermic property, and crack resistance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
シリカ:日本シリカ工業(株)製、ニップシールAQ、
    (BET表面積=220m/g)
老化防止剤:大内新興化学工業製、ノクラック6C
加硫促進剤:大内新興化学工業製、ノクセラーCZ 
      (N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)
カーボンブラック
・サンプル1、2、4~8、10は旭カーボン社製のFEFカーボンブラックとSAFカーボンブラックをブレンドで作成。
・サンプル3は旭カーボン社製のSRFカーボンブラックとSAFカーボンブラックをブレンドで作成。
・サンプル9は旭カーボン社製の2種類のHAFカーボンブラックをブレンドで作成。
・サンプル11~13は旭カーボン社製のHAFカーボンブラックとSAFカーボンブラックをブレンドで作成。
・サンプル14~16は旭カーボン社製のGPFカーボンブラックとSAFカーボンブラックをブレンドで作成。
Silica: manufactured by Nippon Silica Industry Co., Ltd., nip seal AQ,
(BET surface area = 220 m 2 / g)
Anti-aging agent: Nouchi 6C, manufactured by Ouchi Shinsei Chemical Industry
Vulcanization accelerator: Ouchi Shinsei Chemical Industry, Noxeller CZ
(N-cyclohexyl-2-benzothiazylsulfenamide)
Carbon black samples 1, 2, 4-8, and 10 are made by blending FEF carbon black and SAF carbon black from Asahi Carbon.
・ Sample 3 is a blend of SRF carbon black and SAF carbon black manufactured by Asahi Carbon.
・ Sample 9 is a blend of two types of HAF carbon blacks from Asahi Carbon.
・ Samples 11 to 13 were prepared by blending Asahi Carbon's HAF carbon black and SAF carbon black.
・ Samples 14 to 16 were prepared by blending Asahi Carbon's GPF carbon black and SAF carbon black.
 〔発熱性・弾性率(=耐カット性)〕
 上記加硫ゴム組成物に対し、粘弾性測定装置(レオメトリックス社製)を使用し、温度60℃、歪5%、周波数15HzでtanδおよびG’を測定した。比較例1のtanδおよびG’を100として下記式にて指数表示した。発熱性指数が小さいほど、発熱性が低く、ヒステリシスロスが小さいことを示す。弾性率指数は大きいほど耐カット性が良いことを示す。発熱性指数={(供試加硫ゴム組成物のtanδ)/(比較例1の加硫ゴム組成物のtanδ)}×100
弾性率指数={(供試加硫ゴム組成物のG’)/(比較例1の加硫ゴム組成物のG’)}×100。
 〔耐亀裂性〕
 上記加硫ゴム組成物に対し、引張試験装置(インストロン社製)を使用し、JIS K6252に従い、トラウザ形で引き裂き強度を測定した。比較例1の引き裂き強度を100として下記式にて指数表示した。耐亀裂性指数は大きいほど、耐亀裂性に優れることを示す。
耐亀裂性指数={(供試加硫ゴム組成物の引き裂き強度)/(比較例1の加硫ゴム組成物の引き裂き強度)}×100
[Heat generation and elastic modulus (= cut resistance)]
The vulcanized rubber composition was measured for tan δ and G ′ at a temperature of 60 ° C., a strain of 5%, and a frequency of 15 Hz using a viscoelasticity measuring device (Rheometrics). The tan δ and G ′ of Comparative Example 1 were set to 100, and indexed by the following formula. The smaller the exothermic index, the lower the exothermic property and the smaller the hysteresis loss. The larger the elastic modulus index, the better the cut resistance. Exothermic index = {(tan δ of test vulcanized rubber composition) / (tan δ of vulcanized rubber composition of Comparative Example 1)} × 100
Elastic modulus index = {(G ′ of test vulcanized rubber composition) / (G ′ of vulcanized rubber composition of Comparative Example 1)} × 100.
(Crack resistance)
For the vulcanized rubber composition, a tensile strength tester (manufactured by Instron) was used, and the tear strength was measured in a trouser form according to JIS K6252. The tear strength of Comparative Example 1 was taken as 100, and indexed by the following formula. The larger the cracking resistance index, the better the cracking resistance.
Crack resistance index = {(Tear strength of test vulcanized rubber composition) / (Tear strength of vulcanized rubber composition of Comparative Example 1)} × 100
Figure JPOXMLDOC01-appb-T000002
 Dst比 = LDst/SDst、DCP比 = Sh/Lh
Figure JPOXMLDOC01-appb-T000002
Dst ratio = LDst / SDst, DCP ratio = Sh / Lh
 Dst比及び DCP比が条件を満たす実施例1~10と比べ、比較例1~3は弾性率が高く(=耐カット性は向上)するものの、発熱性が悪化している。比較例4は耐亀裂性が向上するものの、耐カット性が悪化している。比較例5は発熱性が向上するが、耐カット性、耐疲労性が悪い。比較例6は耐カット性、耐亀裂性が向上するが、発熱性が悪い。その一方で、実施例、特に実施例1~7は耐カット性、耐亀裂性が高く、発熱性に優れており、実施例8~10も耐カット性、発熱性、耐亀裂性のバランスが取れたゴム組成物であることがわかる。 Compared with Examples 1 to 10 in which the Dst ratio and DCP ratio satisfy the conditions, Comparative Examples 1 to 3 have higher elastic modulus (= improved cut resistance), but exothermicity is deteriorated. In Comparative Example 4, although the crack resistance is improved, the cut resistance is deteriorated. In Comparative Example 5, the heat generation is improved, but the cut resistance and fatigue resistance are poor. In Comparative Example 6, cut resistance and crack resistance are improved, but heat generation is poor. On the other hand, Examples, especially Examples 1 to 7, have high cut resistance and crack resistance, and excellent heat generation. Examples 8 to 10 also have a balance of cut resistance, heat generation, and crack resistance. It can be seen that the rubber composition was removed.
 本発明を利用すれば、異なる粒度の成分を含む、カーボンブラックが得られる。前記カーボンブラックを用いて、最適なパッキングで分散不良など起こさず、ゴム成分が効果的に補強された、耐カット性、耐亀裂性とのバランスを維持しながら、超低発熱性のゴム組成物が得られる。さらに前記ゴム組成物をタイヤトレッドに用いたタイヤが得られる。また、カーボンブラックのストラクチャを変えなくとも、種々の範囲の耐カット性、耐亀裂性と発熱性のバランスを変えた、ゴム組成物に適したカーボンブラックを得ることが可能となる。 If the present invention is used, carbon black containing components of different particle sizes can be obtained. Using the above-mentioned carbon black, rubber composition with an extremely low exothermic property while maintaining a balance between cut resistance and crack resistance, in which the rubber component is effectively reinforced without causing poor dispersion with optimal packing. Is obtained. Further, a tire using the rubber composition as a tire tread is obtained. Further, it is possible to obtain a carbon black suitable for a rubber composition with various balances of cut resistance, crack resistance and heat generation without changing the structure of the carbon black.

Claims (5)

  1.  ディスク遠心沈降式粒度分布測定における、粒度分布曲線が2峰性を示し、その粒度が小さい成分のピーク位置粒度、頻度値(SDst、Sh)と粒度が大きい成分のピーク位置粒度、頻度値(LDst、Lh)の関係が
      10>LDst/SDst>2.8 かつ 4>Sh/Lh>0.5
    を満たすカーボンブラック。
    In the disk centrifugal sedimentation type particle size distribution measurement, the particle size distribution curve is bimodal, and the peak position particle size and frequency value (SDst, Sh) of the component with small particle size and the peak position particle size and frequency value (LDst of the component with large particle size) , Lh) are 10> LDst / SDst> 2.8 and 4> Sh / Lh> 0.5
    Carbon black that meets the requirements.
  2.  上記、カーボンブラックは、単一の工程で得られた2峰性粒度分布を示すカーボンブラック、または、独立した2工程でそれぞれ得られた、単峰性粒度分布を示すカーボンブラックを、混合して2峰性粒度分布を示すカーボンブラック、もしくは、広い分布を有するカーボンブラックから、特定の粒度範囲を除いて分別し、2峰性粒度分布を示すものとなった請求項1に記載のカーボンブラック。 The above-mentioned carbon black is obtained by mixing carbon black showing a bimodal particle size distribution obtained in a single process, or carbon black showing a monomodal particle size distribution obtained in two independent processes. The carbon black according to claim 1, wherein the carbon black having a bimodal particle size distribution or a carbon black having a wide distribution is fractionated except for a specific particle size range to exhibit a bimodal particle size distribution.
  3.  上記、カーボンブラックは、粒度分布における各々の成分のピーク位置粒度が10nm~1μmの範囲にある、請求項1に記載のカーボンブラック。 The carbon black according to claim 1, wherein the peak position particle size of each component in the particle size distribution is in the range of 10 nm to 1 μm.
  4.  天然ゴム0~100重量部及び/またはジエン系ゴム0~100重量部からなるゴム100重量部に対し、上記、請求項1乃至3に記載のカーボンブラックを5~80重量部配合してなる、ゴム組成物。 5 to 80 parts by weight of the carbon black according to any one of claims 1 to 3 above is blended with 100 parts by weight of rubber comprising 0 to 100 parts by weight of natural rubber and / or 0 to 100 parts by weight of diene rubber. Rubber composition.
  5.  請求項4に記載のゴム組成物をトレッドゴムに用いたタイヤ。 A tire using the rubber composition according to claim 4 as a tread rubber.
PCT/JP2013/084115 2012-12-20 2013-12-19 Carbon black and rubber composition produced using same WO2014098191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012277803 2012-12-20
JP2012-277803 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098191A1 true WO2014098191A1 (en) 2014-06-26

Family

ID=50978511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084115 WO2014098191A1 (en) 2012-12-20 2013-12-19 Carbon black and rubber composition produced using same

Country Status (1)

Country Link
WO (1) WO2014098191A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102251A (en) * 1982-12-06 1984-06-13 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS63179941A (en) * 1987-01-21 1988-07-23 Tokai Carbon Co Ltd Rubber composition
JPS6474242A (en) * 1987-09-16 1989-03-20 Yokohama Rubber Co Ltd Rubber composition
JPH06212024A (en) * 1993-01-14 1994-08-02 Toyo Tire & Rubber Co Ltd Rubber composition
JPH0741602A (en) * 1992-11-06 1995-02-10 Hydril Co Pair of carbon blacks having different particle diameters and improved rubber material
EP0866092A1 (en) * 1997-03-20 1998-09-23 The Goodyear Tire & Rubber Company Tire with tread of rubber composition containing two different carbon blacks
JPH1180584A (en) * 1997-08-29 1999-03-26 Mitsubishi Chem Corp Carbon black for forming black resist pattern
US20020111416A1 (en) * 1999-08-27 2002-08-15 Mcnutt Jamie J. Large sized carbon black particles to reduce needed mixing energy of high hardness, stiff tire compositions
JP2013112732A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire base tread and pneumatic tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102251A (en) * 1982-12-06 1984-06-13 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS63179941A (en) * 1987-01-21 1988-07-23 Tokai Carbon Co Ltd Rubber composition
JPS6474242A (en) * 1987-09-16 1989-03-20 Yokohama Rubber Co Ltd Rubber composition
JPH0741602A (en) * 1992-11-06 1995-02-10 Hydril Co Pair of carbon blacks having different particle diameters and improved rubber material
JPH06212024A (en) * 1993-01-14 1994-08-02 Toyo Tire & Rubber Co Ltd Rubber composition
EP0866092A1 (en) * 1997-03-20 1998-09-23 The Goodyear Tire & Rubber Company Tire with tread of rubber composition containing two different carbon blacks
JPH1180584A (en) * 1997-08-29 1999-03-26 Mitsubishi Chem Corp Carbon black for forming black resist pattern
US20020111416A1 (en) * 1999-08-27 2002-08-15 Mcnutt Jamie J. Large sized carbon black particles to reduce needed mixing energy of high hardness, stiff tire compositions
JP2013112732A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire base tread and pneumatic tire

Similar Documents

Publication Publication Date Title
JP2009074069A (en) Rubber composition for tire and its producing method
JP2016191018A (en) Method for producing rubber composition, rubber composition and pneumatic tire
JP4573523B2 (en) Silica masterbatch, method for producing the same, and rubber composition using silica masterbatch
JP5552730B2 (en) Rubber composition for undertread
JP2007231177A (en) Rubber composition for tire tread
JP2009001758A (en) Method for manufacturing rubber composition for use in tire
JP5172091B2 (en) Method for producing rubber composition for tire
JP4102241B2 (en) Rubber composition for sidewall and pneumatic tire using the same
JP6248004B2 (en) Cushion rubber for retreaded tires and retreaded tires
JP2012153758A (en) Production method for rubber composition for tire
JP2007231179A (en) Rubber composition for tire tread
JP2010013553A (en) Rubber composition for tire sidewall
JP2006265400A (en) Method of manufacturing rubber composition and pneumatic tire using the same
JP2001294711A (en) Rubber composition
WO2014098191A1 (en) Carbon black and rubber composition produced using same
JP5191687B2 (en) Rubber composition for tire tread
JPWO2003031511A1 (en) Rubber composition
JP2003041059A (en) Rubber composition for tire tread
JP5992747B2 (en) High performance tire tread rubber composition and high performance tire
JP2011046817A (en) Rubber composition for tire tread
JP2009256516A (en) Rubber composition for clinch, process for producing the same and pneumatic tire
JP5493251B2 (en) Pneumatic tire
JP5493250B2 (en) Rubber composition for tire tread
JP7058496B2 (en) Rubber composition
JP2005206702A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP