WO2014098187A1 - 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ - Google Patents
移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ Download PDFInfo
- Publication number
- WO2014098187A1 WO2014098187A1 PCT/JP2013/084095 JP2013084095W WO2014098187A1 WO 2014098187 A1 WO2014098187 A1 WO 2014098187A1 JP 2013084095 W JP2013084095 W JP 2013084095W WO 2014098187 A1 WO2014098187 A1 WO 2014098187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- user terminal
- signal
- interference
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/0026—Interference mitigation or co-ordination of multi-user interference
- H04J11/0036—Interference mitigation or co-ordination of multi-user interference at the receiver
- H04J11/004—Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/0026—Interference mitigation or co-ordination of multi-user interference
- H04J11/003—Interference mitigation or co-ordination of multi-user interference at the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03898—Spatial equalizers codebook-based design
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a mobile communication system, a communication control method, a base station, a user terminal, and a processor that support CoMP.
- CoMP Coordinated Multi-Point
- JT Joint Transmission
- DPS Dynamic Point Selection
- CS Coordinatd Scheduling
- CB Coordinatd Beamforming
- JT-CoMP is a method in which a plurality of points simultaneously transmit to user terminals using the same radio resource.
- DPS-CoMP and CS-CoMP are systems in which a plurality of points secure the same radio resource and selectively transmit to a user terminal.
- CB-CoMP is a scheme in which a plurality of points perform beamforming / null steering of a transmission beam in a coordinated manner.
- JT-CoMP, DPS-CoMP, and CS-CoMP consume radio resources at each point with respect to one user terminal, and thus there is a problem in that the utilization efficiency of radio resources decreases.
- each point needs to have a plurality of antennas, and there is a problem that the cost (device cost and installation cost) of each point is high.
- the present invention provides a mobile communication system, a communication control method, a base station, a user terminal, and a processor that realize a new CoMP method that can solve the above-described problems.
- a mobile communication system receives a desired wave signal from a serving cell and receives an interference wave signal that is a signal to another user terminal, and a first base station that manages the serving cell And having.
- the first base station generates an interference replica signal corresponding to the interference wave signal, superimposes the interference replica signal on the desired wave signal, and the desired wave signal on which the interference replica signal is superimposed.
- a transmission unit for transmitting to the user terminal The control unit generates the interference replica signal so that the interference replica signal received by the user terminal cancels the interference wave signal received by the user terminal.
- the mobile communication system receives a desired wave signal from a serving cell and receives an interference wave signal that is a signal to another user terminal; a first base station that manages the serving cell; Have.
- the first base station generates an interference replica signal corresponding to the interference wave signal, superimposes the interference replica signal on the desired wave signal, and the desired wave signal on which the interference replica signal is superimposed.
- the control unit generates the interference replica signal so that the interference replica signal received by the user terminal cancels the interference wave signal received by the user terminal.
- the reception power of the interference wave signal at the user terminal can be reduced, it is possible to improve the desired signal-to-interference ratio (SIR). Furthermore, even when the base station does not have a plurality of antennas, that is, when beam forming / null steering is not possible, this method can be applied.
- the other user terminal is connected to an adjacent cell adjacent to the serving cell, and the interference wave signal is a signal from the adjacent cell.
- the interference wave signal is a signal from the adjacent cell.
- the first base station manages the serving cell connected to the user terminal and an adjacent cell adjacent to the serving cell connected to the other user terminal, and the transmission unit transmits the interference wave signal. Transmit to the other user terminal.
- the other user terminal is located in the serving cell to which the user terminal is connected, and the transmission unit transmits the interference wave signal to the other user terminal.
- the first base station manages communication with the user terminal and communication with the other user terminal, and the transmission unit transmits the interference wave signal to the other user terminal. Send to.
- control unit generates the interference replica signal so that the phase of the interference replica signal received by the user terminal is opposite to the phase of the interference wave signal received by the user terminal.
- control unit generates the interference replica signal such that the amplitude of the interference replica signal received by the user terminal is the same as the amplitude of the interference wave signal received by the user terminal.
- the first base station includes at least one antenna associated with the serving cell.
- the control unit determines whether to apply superimposition transmission that superimposes the interference replica signal on the desired wave signal based on the number of antennas.
- control unit determines whether or not to apply superimposition transmission that superimposes the interference replica signal on the desired wave signal based on a reception signal state in the user terminal.
- control unit determines whether or not to apply superimposition transmission that superimposes the interference replica signal on the desired wave signal based on a usage state of radio resources in the mobile communication system.
- control unit determines whether to apply superimposition transmission that superimposes the interference replica signal on the desired wave signal based on QoS required by the user terminal.
- the mobile communication system further includes a management device that manages the first base station.
- the first base station includes a reception unit that receives information used to generate the interference replica signal from at least one of the management device and the user terminal.
- the control unit generates the interference replica signal based on information received by the receiving unit.
- the mobile communication system further includes a second base station that manages the neighboring cell, the management device manages the second base station, and the reception unit includes the interference replica signal.
- the information used for generating is received from at least one of the second base station, the management device, and the user terminal.
- the information used to generate the interference replica signal includes waveform information related to the signal waveform of the interference wave signal.
- the second base station transmits the waveform information to the first base station.
- the receiving unit receives the waveform information.
- the information used for generating the interference replica signal includes transmission data before being converted into the interference wave signal in the second base station.
- the second base station transmits the transmission data to the first base station.
- the receiving unit receives the transmission data from the second base station.
- the information used for generating the interference replica signal further includes transmission processing information indicating the content of the transmission processing when the second base station converts the transmission data into the interference wave signal.
- the second base station further transmits the transmission processing information to the first base station.
- the receiving unit further receives the transmission processing information from the second base station.
- the information used for generating the interference replica signal includes transmission data before being converted into the interference wave signal in the second base station.
- the management device transmits the transmission data to the first base station.
- the receiving unit receives the transmission data from the management device.
- the information used for generating the interference replica signal further includes transmission processing information indicating the content of the transmission processing when the second base station converts the transmission data into the interference wave signal.
- the second base station transmits the transmission processing information to the first base station.
- the receiving unit receives the transmission processing information from the second base station.
- the interference wave signal includes a data signal transmitted on a physical downlink shared channel.
- the information used for generating the interference replica signal is difference information indicating at least one of an amplitude difference or a phase difference between the reference signal transmitted by the second base station and the data signal.
- the second base station transmits the difference information to the first base station.
- the receiving unit receives the difference information from the second base station.
- the information used for generating the interference replica signal is reception power information indicating reception power of a reference signal received by the user terminal from the second base station.
- the user terminal transmits the received power information to the second base station.
- the second base station transfers the received power information to the first base station.
- the receiving unit receives the received power information from the second base station.
- the information used for generating the interference replica signal is reception power information indicating reception power of a reference signal received by the user terminal from the second base station.
- the user terminal transmits the received power information to the first base station.
- the receiving unit receives the received power information from the user terminal.
- the interference wave signal includes a data signal transmitted on a physical downlink shared channel.
- the information used for generating the interference replica signal is power difference information indicating a power difference between the reference signal transmitted by the second base station and the data signal.
- the user terminal transmits the power difference information to the first base station.
- the receiving unit receives the power difference information from the user terminal.
- the interference wave signal includes a data signal transmitted on a physical downlink shared channel.
- the information used for generating the interference replica signal is power difference information indicating a power difference between the reference signal transmitted by the second base station and the data signal.
- the second base station transmits the power difference information to the first base station.
- the receiving unit receives the power difference information from the second base station.
- the information used for generating the interference replica signal includes a delay time from the first base station to the user terminal and a delay time from the second base station to the user terminal. It is the time difference information which shows the delay time difference between.
- the user terminal transmits the time difference information to the first base station.
- the receiving unit receives the time difference information from the user terminal.
- the information used for generating the interference replica signal is channel information indicating channel characteristics between the second base station and the user terminal.
- the receiving unit receives the channel information from at least one of the second base station and the user terminal.
- the control unit generates the interference replica signal based on the channel information received by the receiving unit.
- the user terminal generates the channel information based on a reference signal received from the second base station, and transmits the generated channel information to the first base station.
- the receiving unit receives the channel information from the user terminal.
- the user terminal generates the channel information based on a reference signal received from the second base station, and transmits the generated channel information to the second base station.
- the second base station transfers the channel information from the user terminal to the first base station.
- the receiving unit receives the channel information from the second base station.
- the first base station transmits cell designation information indicating a cell to be estimated for channel characteristics to the user terminal.
- the user terminal generates the channel information by estimating channel characteristics for a cell indicated by the cell designation information.
- the second base station generates the channel information based on a reference signal received from the user terminal, and transmits the generated channel information to the first base station.
- the receiving unit receives the channel information from the second base station.
- the first base station transmits terminal designation information indicating a user terminal to be a channel characteristic estimation target to the second base station.
- the second base station generates the channel information by estimating channel characteristics of the user terminal indicated by the terminal designation information.
- the first base station transmits demodulation information for demodulating the reference signal transmitted by the user terminal to the second base station.
- the second base station generates the channel information by demodulating the reference signal using the demodulation information.
- a communication control method includes a user terminal that receives a desired wave signal from a serving cell and receives an interference wave signal that is a signal to another user terminal; a first base station that manages the serving cell; Are used in a mobile communication system.
- the communication control method includes a generation step of generating an interference replica signal corresponding to the interference wave signal in the first base station, a superposition step of superimposing the interference replica signal on the desired wave signal, and the interference replica. Transmitting the desired wave signal on which the signal is superimposed to the user terminal.
- the interference replica signal is generated such that the interference replica signal received by the user terminal cancels the interference wave signal received by the user terminal.
- the mobile communication system manages a second base station that manages an adjacent cell that is adjacent to the serving cell and is connected to the other user terminal, and the first base station and the second base station.
- the communication control method receives information used to generate the interference replica signal from at least one of the second base station, the management device, and the user terminal in the first base station. Includes a receiving step. In the generation step, the interference replica signal is generated based on the information received in the reception step.
- the information used for generating the interference replica signal is channel information indicating channel characteristics between the second base station and the user terminal.
- the base station manages the serving cell in a mobile communication system having a user terminal that receives a desired wave signal from a serving cell and receives an interference wave signal that is a signal to another user terminal.
- the base station generates an interference replica signal corresponding to the interference wave signal, superimposes the interference replica signal on the desired wave signal, and transmits the desired wave signal on which the interference replica signal is superimposed to the user.
- a transmission unit for transmitting to the terminal The control unit generates the interference replica signal so that the interference replica signal received by the user terminal cancels the interference wave signal received by the user terminal.
- the base station manages the information used for generating the interference replica signal, the other base station that manages the neighboring cell adjacent to the serving cell and connected to the other user terminal, the base station, and the other It further includes a management unit that manages a base station, and a reception unit that receives from at least one of the user terminals.
- the control unit generates the interference replica signal based on information received by the receiving unit.
- the information used to generate the interference replica signal is channel information indicating channel characteristics between the other base station and the user terminal.
- the base station manages the adjacent cell in a mobile communication system having a user terminal that receives a desired wave signal from a serving cell and receives an interference wave signal from an adjacent cell adjacent to the serving cell. Another base station that manages the serving cell transmits an interference replica signal corresponding to the interference wave signal superimposed on the desired wave signal.
- the base station includes a transmitter that transmits information used to generate the interference replica signal to the other base station.
- the information used for generating the interference replica signal is channel information indicating channel characteristics between the base station and the user terminal.
- the user terminal receives a desired wave signal from the serving cell and also receives an interference wave signal that is a signal to another user terminal.
- the first base station that manages the serving cell transmits an interference replica signal corresponding to the interference wave signal superimposed on the desired wave signal.
- the user terminal includes a transmission unit that transmits information used to generate the interference replica signal to the first base station.
- the information used for generating the interference replica signal is a channel characteristic between the second base station that manages the neighboring cell adjacent to the serving cell and connected to the other user terminal, and the user terminal. Is channel information.
- a processor receives a desired wave signal from a serving cell and a base station that manages the serving cell in a mobile communication system having a user terminal that receives an interference wave signal that is a signal to another user terminal.
- the processor includes a generation process for generating an interference replica signal corresponding to the interference wave signal, a superposition process for superimposing the interference replica signal on the desired wave signal, and the desired wave signal on which the interference replica signal is superimposed. And a transmission process for transmitting to the user terminal.
- the interference replica signal is generated such that the interference replica signal received by the user terminal cancels the interference wave signal received by the user terminal.
- the processor uses the base station, the base station, and the other base that manage information used for generating the interference replica signal to a neighboring cell adjacent to the serving cell and connected to the other user terminal.
- a reception process for receiving from at least one of the management apparatus that manages the station and the user terminal is further executed.
- the interference replica signal is generated based on the received information.
- the information used to generate the interference replica signal is channel information indicating channel characteristics between the other base station and the user terminal.
- the processor which concerns on embodiment is a base station which manages the said adjacent cell in the mobile communication system which has a user terminal which receives the interference wave signal from the adjacent cell which adjoins the said serving cell while receiving the desired wave signal from a serving cell Prepared for.
- Another base station that manages the serving cell transmits an interference replica signal corresponding to the interference wave signal superimposed on the desired wave signal.
- the processor performs processing for transmitting information used to generate the interference replica signal to the other base station.
- the information used for generating the interference replica signal is channel information indicating channel characteristics between the base station and the user terminal.
- the processor according to the embodiment is provided in a user terminal that receives a desired wave signal from a serving cell and receives an interference wave signal that is a signal to another user terminal.
- the first base station that manages the serving cell transmits an interference replica signal corresponding to the interference wave signal superimposed on the desired wave signal.
- the processor performs processing for transmitting information used to generate the interference replica signal to the first base station.
- the information used for generating the interference replica signal is a channel characteristic between the second base station that manages the neighboring cell adjacent to the serving cell and connected to the other user terminal, and the user terminal. Is channel information.
- FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
- the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
- the EPC 20 corresponds to a core network.
- the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
- UE100 is corresponded to a user terminal.
- the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
- the eNB 200 corresponds to a base station.
- the eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell.
- cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
- the eNB 200 has a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
- RRM radio resource management
- the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
- the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
- the EPC 20 configured by the MME / S-GW 300 accommodates the eNB 200.
- the eNB 200 is connected to each other via the X2 interface.
- the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
- FIG. 2 is a block diagram of the UE 100.
- the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
- the memory 150 and the processor 160 constitute a control unit.
- the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
- the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
- a plurality of antennas 101 may be provided.
- the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
- the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
- the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
- the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
- the battery 140 stores power to be supplied to each block of the UE 100.
- the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
- the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
- the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
- the processor 160 executes various processes and various communication protocols described later.
- FIG. 3 is a block diagram of the eNB 200.
- the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
- the memory 230 and the processor 240 constitute a control unit.
- the memory 230 may be integrated with the processor 240, and this set (ie, chip set) may be used as the processor.
- the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
- a plurality of antennas 201 may be provided.
- the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
- the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
- the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
- the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
- the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
- the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
- the processor 240 executes various processes and various communication protocols described later.
- FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
- the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
- Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
- Layer 3 includes an RRC (Radio Resource Control) layer.
- the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, resource mapping / demapping, and the like. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
- the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
- the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
- the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
- the PDCP layer performs header compression / decompression and encryption / decryption.
- the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
- the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
- RRC connected state When there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
- the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
- FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
- OFDMA Orthogonal Frequency Division Multiplexing Access
- SC-FDMA Single Carrier Frequency Multiple Access
- the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
- the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
- Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
- a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
- the resource block includes a plurality of subcarriers in the frequency direction.
- a minimum resource unit composed of one subcarrier and one symbol is called a resource element (RE).
- RE resource element
- a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
- both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH). Furthermore, a sounding reference signal (SRS) is arranged in each subframe.
- PUCCH physical uplink control channel
- PUSCH physical uplink shared channel
- SRS sounding reference signal
- FIG. 6 is a configuration diagram of a radio frame used in the downlink.
- the section of the first few symbols of each subframe is a control area mainly used as a physical downlink control channel (PDCCH).
- the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
- PDSCH physical downlink shared channel
- downlink reference signals such as a cell-specific reference signal (CRS) and / or a channel state information reference signal (CSI-RS) are distributed and arranged in each subframe.
- the downlink reference signal is configured by a predetermined orthogonal signal sequence and is arranged in a predetermined resource element.
- FIG. 7 is a diagram for explaining the outline of the cooperative interference cancellation method according to the present embodiment.
- UE 100-1 is a UE to which a cooperative interference cancellation scheme is applied.
- the UE 100-1 has established a connection (RRC connection) with a cell managed by the eNB 200-1. That is, the cell managed by eNB 200-1 corresponds to the serving cell of UE 100-1.
- the neighboring cell adjacent to the serving cell is managed by the eNB 200-2 different from the eNB 200-1.
- the UE 100-2 has established a connection (RRC connection) with a cell managed by the eNB 200-2. Note that the eNB 200-1 and the eNB 200-2 are synchronized.
- the eNB 200-1 and the eNB 200-2 are connected to each other via the X2 interface. Also, the eNB 200-1 and the eNB 200-2 are connected to the MME / S-GW 300 through the S1 interface.
- UE 100-1 is located near the boundary between a cell (serving cell) managed by eNB 200-1 and a cell (adjacent cell) managed by eNB 200-2. Therefore, when eNB 200-2 performs transmission to UE 100-2 using the same radio resource as eNB 200-1, UE 100-1 receives downlink interference from eNB 200-2. That is, UE 100-1 receives the desired wave signal from the serving cell and also receives the interference wave signal from the adjacent cell.
- the eNB 200-1 In such an operating environment, the eNB 200-1 generates an interference replica signal corresponding to the interference wave signal, and superimposes the interference replica signal on the desired wave signal. Then, the eNB 200-1 transmits the desired wave signal on which the interference replica signal is superimposed to the UE 100-1.
- the eNB 200-1 generates an interference replica signal so that the interference replica signal received by the UE 100-1 cancels the interference wave signal received by the UE 100-1. Specifically, the eNB 200-1 generates an interference replica signal so that the phase of the interference replica signal received by the UE 100-1 is opposite to the phase of the interference wave signal received by the UE 100-1. Further, the eNB 200-1 generates an interference replica signal so that the amplitude of the interference replica signal received by the UE 100-1 is the same as the amplitude of the interference wave signal received by the UE 100-1.
- the interference replica signal is synthesized in the opposite phase to the interference wave signal at the position of the UE 100-1, and cancels the interference wave signal. Therefore, since the reception power of the interference wave signal in UE 100-1 can be reduced, SIR can be improved. Further, since it is not necessary to secure radio resources for the UE 100-1 in the adjacent cell, the use efficiency of radio resources can be improved compared to JT-CoMP, DPS-CoMP, and CS-CoMP. Furthermore, even when the eNB 200-2 does not have a plurality of antennas, that is, when beam forming / null steering is not possible, this method (cooperative interference cancellation method) can be applied.
- the interference replica signal remains in a position other than the position of the UE 100-1 without being synthesized in an opposite phase to the interference wave signal. Therefore, the interference replica signal also functions as an interference signal that interferes with demodulation of the desired wave signal at a position other than the position of the UE 100-1. Therefore, according to the cooperative interference cancellation method, the confidentiality of communication can be improved.
- the eNB 200-1 acquires at least part of information necessary for generating the interference replica signal from at least one of the eNB 200-2, the MME / S-GW 300, and the UE 100-1.
- interference wave information regarding the signal waveform of the interference wave signal transmitted by the eNB 200-2 is required.
- the interference wave signal transmitted by the eNB 200-2 is received by the UE 100-1 due to the influence of the channel characteristics between the eNB 200-2 and the UE 100-1. Therefore, in order to generate an interference replica signal, secondly, information (channel information) regarding channel characteristics between the eNB 200-2 and the UE 100-1 is necessary.
- interference wave information and channel information can be used. Details of such information will be described later.
- FIG. 8 is a block diagram of the eNB 200-1 for realizing the cooperative interference cancellation scheme.
- the processor 240 includes a desired wave signal generation unit 241 that generates a desired wave signal, an interference replica signal generation unit 242 that generates an interference replica signal, and a superposition that superimposes the interference replica signal on the desired wave signal And an OFDM signal generation unit 244 that generates an OFDM signal (superimposed signal) from the desired wave signal on which the interference replica signal is superimposed.
- the radio signal transceiver 210 includes a transmitter 211 that amplifies and transmits an OFDM signal (superimposed signal).
- Desired wave signal generation section 241 converts transmission data to UE 100-1 into a desired wave signal by performing transmission processing on transmission data (user data) to UE 100-1.
- the transmission process includes an encoding process, a modulation process, a precoding process, and a resource mapping process.
- the encoding process is a process for encoding transmission data.
- the encoding process may include a process of adding an error detection code (CRC code) to transmission data, a scramble process, and the like.
- CRC code error detection code
- Modulation processing is processing for modulating encoded transmission data (encoded data).
- the precoding process is a process of precoding modulated encoded data (desired wave signal waveform) based on channel information indicating channel characteristics between the eNB 200-1 and the UE 100-1.
- channel information indicating channel characteristics between the eNB 200-1 and the UE 100-1 is referred to as “channel information 1”
- channel information indicating channel characteristics between the eNB 200-2 and the UE 100-1 is referred to as “channel information 1”.
- channel information 2 is referred to as “channel information 2”.
- the resource mapping process is a process for mapping a pre-coded desired wave signal waveform to a physical resource.
- the desired wave signal generation unit 241 outputs the desired wave signal to the superimposing unit 243.
- the interference replica signal generation unit 242 adjusts the phase and amplitude of the interference wave signal waveform corresponding to the interference wave information based on at least the channel information 2 to generate an interference replica signal. Further, the interference replica signal generation unit 242 generates an interference replica signal in consideration of information for improving the accuracy of the interference replica signal. Further, the interference replica signal generation unit 242 may adjust the transmission power in the radio transceiver 210.
- the interference replica signal generation unit 242 generates the interference replica signal so that the phase of the interference replica signal received by the UE 100-1 is opposite to the phase of the interference wave signal received by the UE 100-1.
- the eNB 200-1 generates an interference replica signal so that the amplitude of the interference replica signal received by the UE 100-1 is the same as the amplitude of the interference wave signal received by the UE 100-1.
- the interference replica signal generation unit 242 estimates the interference wave reception waveform received by the UE 100-1 using the interference wave information and the channel information 2. Next, the interference replica signal generation unit 242 maps (vectorizes) the interference wave reception waveform on the phase plane, rotates the phase by 180 degrees while keeping the amplitude constant, and thereby generates an interference replica signal (replica vector). ) Is generated. However, it is necessary to generate a replica so that the resource element position can be taken into consideration in consideration of the difference in CRS position and the presence or absence of DMRS (demodulation reference signal). Further, no replica is superimposed on the CRS position of the serving cell.
- DMRS demodulation reference signal
- the interference wave information is, for example, an interference wave signal waveform.
- the interference wave signal waveform is a waveform of a signal after modulation in the eNB 200-2.
- the interference wave information may be an inverse characteristic interference signal.
- the network interface 220 of the eNB 200-1 receives the interference wave signal waveform or the reverse characteristic interference signal waveform from the eNB 200-1. Then, the interference replica signal generation unit 242 acquires the interference wave signal waveform or inverse characteristic interference signal waveform received by the network interface 220.
- the interference wave information is transmission data (user data to the UE 100-2) before being converted into an interference wave signal in the eNB 200-2.
- the transmission data may be transmission data before encoding or may be transmission data after encoding.
- transmission data for UE 100-1 is referred to as “transmission data 1”
- transmission data for UE 100-2 is referred to as “transmission data 2”.
- the network interface 220 of the eNB 200-1 receives the transmission data 2 from the eNB 200-1 or the MME / S-GW 300.
- the interference replica signal generation unit 242 acquires the transmission data 2 received by the network interface 220.
- the interference replica signal generation unit 242 needs to generate the interference wave signal waveform by performing the same transmission process as the transmission process performed by the eNB 200-2 on the transmission data 2 There is. Therefore, the network interface 220 of the eNB 200-1 receives transmission processing information indicating the content of the transmission processing performed by the eNB 200-2 on the transmission data 2 from the eNB 200-2.
- the contents of the transmission process are, for example, the contents of the encoding process, the contents of the modulation process, and the contents of the resource mapping process.
- the interference replica signal generation unit 242 acquires the transmission processing information received by the network interface 220.
- channel information 2 is information indicating downlink channel characteristics
- channel information 2 is generated in UE 100-1.
- channel information 2 is generated in the UE 100-1 or the eNB 200-2.
- the interference replica signal generation unit 242 does not need to acquire the channel information 2 when the interference wave information is an inverse characteristic interference signal waveform.
- the channel information 2 may be transmitted directly from the UE 100-1 to the eNB 200-1, or indirectly from the UE 100-1 to the eNB 200-1 via the eNB 200-2. May be transmitted automatically.
- the network interface 220 of the eNB 200-1 receives the channel information 2 from the eNB 200-2.
- the radio transceiver 210 of the eNB 200-1 receives the channel information 2 from the UE 100-1.
- the interference replica signal generation unit 242 acquires the channel information 2 received by the network interface 220 or the wireless transceiver 210.
- reception power information indicating reception power (RSRP; Reference Signal Received Power) for the reference signal received by the UE 100-1 from the eNB 200-2.
- the interference replica signal generation unit 242 can appropriately adjust the amplitude (including transmission power) of the interference replica signal by taking the received power information into consideration.
- Received power information is generated in UE 100-1.
- the received power information may be directly transmitted from the UE 100-1 to the eNB 200-1, or may be indirectly transmitted from the UE 100-1 to the eNB 200-1 via the eNB 200-2.
- the network interface 220 of the eNB 200-1 receives the received power information from the eNB 200-2.
- the radio transceiver 210 of the eNB 200-1 receives the received power information from the UE 100-1.
- the interference replica signal generation unit 242 acquires received power information received by the network interface 220 or the wireless transceiver 210.
- the information for improving the accuracy of the interference replica signal is difference information indicating at least one of an amplitude difference or a phase difference between the reference signal (CRS) transmitted by the eNB 200-2 and the data signal.
- the data signal is a signal transmitted by the eNB 200-2 on the physical downlink shared channel (PDSCH).
- the interference replica signal generation unit 242 can appropriately adjust the amplitude and / or phase of the interference replica signal by adding the difference information.
- the difference information is generated in the eNB 200-2.
- the eNB 200-2 transmits the difference information to the eNB 200-1.
- the network interface 220 of the eNB 200-1 receives the difference information from the eNB 200-2.
- the interference replica signal generation unit 242 acquires difference information received by the network interface 220.
- the information for improving the accuracy of the interference replica signal is power difference information indicating a power difference between the reference signal (CRS) transmitted by the eNB 200-2 and the data signal.
- the interference replica signal generation unit 242 can appropriately adjust the amplitude (including transmission power) of the interference replica signal by taking into account the power difference information.
- the power difference information is, for example, power difference information (information indicating a transmission power difference) generated in the eNB 200-2.
- the power difference information may be transmitted directly from the eNB 200-2 to the eNB 200-1, or may be indirectly transmitted from the eNB 200-2 to the eNB 200-1 via the UE 100-1.
- the network interface 220 of the eNB 200-1 receives the power difference information from the eNB 200-2.
- the radio transceiver 210 of the eNB 200-1 receives the power difference information from the UE 100-1.
- the interference replica signal generation unit 242 acquires the power difference information received by the network interface 220 or the wireless transceiver 210.
- the information for improving the accuracy of the interference replica signal is time difference information indicating a delay time difference between the delay time from the eNB 200-1 to the UE 100-1 and the delay time from the eNB 200-2 to the UE 100-1. It is.
- the interference replica signal generation unit 242 can appropriately adjust the transmission timing of the interference replica signal by adding the time difference information.
- the time difference information is generated in the UE 100-1.
- the time difference information may be transmitted directly from the UE 100-1 to the eNB 200-1, or may be indirectly transmitted from the UE 100-1 to the eNB 200-1 via the eNB 200-2.
- the network interface 220 of the eNB 200-1 receives the time difference information from the eNB 200-2.
- the radio transceiver 210 of the eNB 200-1 receives time difference information from the UE 100-1.
- the interference replica signal generation unit 242 acquires time difference information received by the network interface 220 or the wireless transceiver 210.
- FIG. 9 is a sequence diagram of the operation pattern 1 according to the present embodiment.
- the interference wave information acquired by the eNB 200-1 is an interference signal waveform.
- step S1101 the eNB 200-2 performs scheduling (or pre-scheduling) for the UE 100-2 connected to the own cell.
- step S1102 the eNB 200-2 generates a transmission signal waveform from the transmission data 2 based on the scheduling result, and samples the transmission signal waveform.
- step S1103 the eNB 200-2 transmits the sampled transmission signal waveform to the eNB 200-1.
- the sampled transmission signal waveform corresponds to an interference signal waveform.
- step S1104 the eNB 200-1 performs scheduling for the UE 100-1 connected to the own cell, and generates a transmission signal waveform (desired signal waveform).
- step S1105 the eNB 200-1 acquires channel information 2.
- a specific example of the operation for the eNB 200-1 to acquire the channel information 2 will be described later.
- step S1106 based on the channel information 2, the eNB 200-1 generates an inverse characteristic signal of the interference signal waveform as an interference replica signal. Then, the eNB 200-1 superimposes the interference replica signal on the desired wave signal.
- the eNB 200-2 performs transmission to the UE 100-1.
- the UE 100-1 receives the signal from the eNB 200-2 as an interference wave signal.
- the eNB 200-1 transmits a superimposed signal to the UE 100-1.
- the UE 100-1 receives the superimposed signal.
- the interference wave signal is canceled by the interference replica signal included in the superimposed signal.
- step S1108 the UE 100-1 demodulates the desired wave signal included in the superimposed signal.
- the interference wave signal is canceled mainly at the UE receiving end (wireless signal state), but may be canceled at the time of demodulation (baseband signal state).
- FIG. 10 is a sequence diagram of Operation Example 1 for the eNB 200-1 to acquire the channel information 2.
- the channel information 2 is generated in the UE 100-1 and transmitted from the UE 100-1 to the eNB 200-1 via the eNB 200-2.
- step S11 the eNB 200-1 transmits the identifier (terminal ID) of the UE 100-1 to which the cooperative interference cancellation scheme is applied to the eNB 200-2.
- step S12 the eNB 200-1 transmits, to the UE 100-1, the identifier (cell ID) of the neighboring cell from which the UE 100-1 should acquire the channel information 2.
- the cell ID corresponds to cell designation information indicating a cell to be estimated for channel characteristics.
- step S13 the eNB 200-2 transmits a reference signal (CRS).
- CRS reference signal
- step S14 the UE 100-1 receives the reference signal (CRS) from the eNB 200-2 based on the cell ID received from the eNB 200-1. Then, the UE 100-1 performs channel estimation based on the CRS and generates channel information 2. As described above, the UE 100-1 generates the channel information 2 by estimating the channel characteristics of the cell indicated by the cell ID received from the eNB 200-1.
- CRS reference signal
- step S15 the UE 100-1 transmits the channel information 2 to the eNB 200-2 based on the cell ID received from the eNB 200-1.
- UE 100-1 adds its own terminal ID to channel information 2 and transmits it.
- step S16 the eNB 200-2 transfers the channel information 2 received from the UE 100-1 to the eNB 200-1 based on the terminal ID received from the eNB 200-1.
- the eNB 200-1 receives the channel information 2 from the eNB 200-2.
- FIG. 11 is a sequence diagram of operation example 2 for the eNB 200-1 to acquire the channel information 2.
- the channel information 2 is generated in the UE 100-1 and transmitted directly from the UE 100-1 to the eNB 200-1.
- the eNB 200-1 transmits to the UE 100-1 the identifier (cell ID) of the neighboring cell from which the UE 100-1 should acquire the channel information 2.
- the cell ID corresponds to cell designation information indicating a cell to be estimated for channel characteristics.
- step S22 the eNB 200-2 transmits a reference signal (CRS).
- CRS reference signal
- step S23 the UE 100-1 receives the reference signal (CRS) from the eNB 200-2 based on the cell ID received from the eNB 200-1. Then, the UE 100-1 performs channel estimation based on the CRS and generates channel information 2. As described above, the UE 100-1 generates the channel information 2 by estimating the channel characteristics of the cell indicated by the cell ID received from the eNB 200-1.
- CRS reference signal
- step S24 the UE 100-1 transmits the channel information 2 to the eNB 200-1 based on the cell ID received from the eNB 200-1.
- the eNB 200-1 receives the channel information 2 from the UE 100-1.
- FIG. 12 is a sequence diagram of Operation Example 3 for the eNB 200-1 to acquire the channel information 2.
- the channel information 2 is generated in the eNB 200-2 and transmitted from the eNB 200-2 to the eNB 200-1.
- the eNB 200-1 transmits the identifier (terminal ID) of the UE 100-1 to which the cooperative interference cancellation scheme is applied to the eNB 200-2.
- the terminal ID corresponds to terminal designation information indicating a UE to be estimated for channel characteristics.
- the eNB 200-1 transmits SRS demodulation information for demodulating the reference signal (SRS) transmitted by the UE 100-1 to the eNB 200-2.
- the SRS demodulation information includes the SRS insertion subframe interval, the orthogonal code of the target UE, the SRS bandwidth, the SRS frequency domain position, the SRS hopping band, and the like.
- the information for SRS demodulation may further include a subframe start position and a system bandwidth.
- the eNB 200-1 may include the terminal ID in the SRS demodulation information and transmit it to the eNB 200-2. In this case, step S31 can be omitted.
- step S33 the UE 100-1 transmits a reference signal (SRS).
- SRS reference signal
- step S34 the eNB 200-2 receives and demodulates the reference signal (SRS) from the UE 100-1 based on the SRS demodulation information received from the eNB 200-1. Then, the eNB 200-2 performs channel estimation based on the SRS, and generates channel information 2.
- SRS reference signal
- step S35 the eNB 200-2 transmits the channel information 2 to the eNB 200-1.
- the eNB 200-1 receives the channel information 2 from the eNB 200-2.
- FIG. 13 is a sequence diagram of an operation pattern 2 according to the present embodiment.
- the operation pattern 2 is obtained by partially changing the operation pattern 1.
- step S1201 the eNB 200-1 performs scheduling (or pre-scheduling) for the UE 100-1 connected to the own cell.
- the eNB 200-1 transmits resource information indicating the allocated resource block for the UE 100-1 to the eNB 200-2 based on the scheduling result.
- the resource information corresponds to information indicating a radio resource used for transmitting a desired wave signal.
- step S1203 the eNB 200-2 performs scheduling for the UE 100-2 connected to the own cell.
- step S1204 the eNB 200-2 generates a transmission signal waveform from the transmission data 2 for the resource block corresponding to the resource information received from the eNB 200-1 based on the scheduling result, and samples the transmission signal waveform.
- step S1205 the eNB 200-2 transmits the sampled transmission signal waveform to the eNB 200-1.
- the sampled transmission signal waveform corresponds to an interference signal waveform.
- step S1206 the eNB 200-1 acquires channel information 2.
- An operation example for acquiring the channel information 2 is the same as the operation pattern 1 described above.
- step S1207 the eNB 200-1 generates an inverse characteristic signal of the desired signal waveform as an interference replica signal based on the channel information 2. Then, the eNB 200-1 superimposes the interference replica signal on the desired wave signal.
- step S1208 the eNB 200-2 performs transmission to the UE 100-1.
- the UE 100-1 receives the signal from the eNB 200-2 as an interference wave signal.
- the eNB 200-1 transmits a superimposed signal to the UE 100-1.
- the UE 100-1 receives the superimposed signal.
- the interference wave signal is canceled by the interference replica signal included in the superimposed signal.
- step S1209 the UE 100-1 demodulates the desired wave signal included in the superimposed signal.
- FIG. 14 is a sequence diagram of an operation pattern 3 according to the present embodiment.
- the interference wave information acquired by the eNB 200-1 is a reverse characteristic interference signal waveform.
- the eNB 200-2 acquires channel information 2 from the UE 100-1.
- the eNB 200-2 may acquire the channel information 2 by itself.
- step S1302 the eNB 200-2 performs scheduling (or pre-scheduling) for the UE 100-2 connected to the own cell.
- step S1303 the eNB 200-2 generates a transmission signal waveform (interference wave signal waveform) from the transmission data 2 based on the scheduling result.
- a transmission signal waveform interference wave signal waveform
- step S1304 the eNB 200-2 generates an inverse characteristic of the interference wave signal waveform as an inverse characteristic interference waveform based on the channel information 2, and samples the inverse characteristic interference waveform.
- step S1305 the eNB 200-2 transmits the sampled reverse characteristic interference waveform to the eNB 200-1.
- the waveform notification may be performed based on the resource information.
- the eNB 200-1 transmits resource information indicating the allocated resource block for the UE 100-1 to the eNB 200-2, and the eNB 200-2 transmits the resource block corresponding to the resource information.
- a signal waveform is generated and sampled. As a result, the amount of signal transmitted on the X2 interface can be reduced, and the eNB 200-1 can simply superimpose the reverse characteristic signal.
- step S1306 the eNB 200-1 performs scheduling for the UE 100-1 connected to the own cell, and generates a transmission signal waveform (desired signal waveform).
- step S1308 the eNB 200-2 performs transmission to the UE 100-1.
- the UE 100-1 receives the signal from the eNB 200-2 as an interference wave signal.
- the eNB 200-1 transmits a superimposed signal to the UE 100-1.
- the UE 100-1 receives the superimposed signal.
- the interference wave signal is canceled by the interference replica signal included in the superimposed signal.
- step S1309 the UE 100-1 demodulates the desired wave signal included in the superimposed signal.
- FIG. 15 is a sequence diagram of the operation pattern 4 according to the present embodiment.
- the interference wave information acquired by eNB 200-1 is transmission data (transmission data 2) for UE 100-2.
- step S1401 the eNB 200-1 performs scheduling (or pre-scheduling) for the UE 100-1 connected to the own cell.
- step S1402 the eNB 200-1 generates a transmission signal waveform (desired signal waveform) from transmission data (transmission data 1) for the UE 100-1 based on the scheduling result.
- a transmission signal waveform (desired signal waveform) from transmission data (transmission data 1) for the UE 100-1 based on the scheduling result.
- step S1403 the eNB 200-2 transmits the transmission data 2 to the eNB 200-1.
- step S1403 the eNB 200-1 transmits resource information indicating an allocation resource block for the UE 100-1 to the eNB 200-2, and the eNB 200-2 transmits transmission data 2 corresponding to the resource information. Transmit to eNB 200-2. Thereby, the amount of signals transmitted on the X2 interface can be reduced.
- step S1404 the eNB 200-2 performs scheduling (or pre-scheduling) for the UE 100-2 connected to the own cell.
- step S1405 the eNB 200-2 transmits scheduling information to the eNB 200-1 based on the scheduling result.
- the scheduling information corresponds to transmission processing information indicating the content of transmission processing when the transmission data 2 is converted into a transmission signal (interference wave signal).
- step S1406 the eNB 200-1 acquires channel information 2.
- the operation for the eNB 200-1 to acquire the channel information 2 is the same as the operation pattern 1 described above.
- the eNB 200-2 transmits to the eNB 200-1 difference information indicating at least one of an amplitude difference or a phase difference between the reference signal (CRS) transmitted by the eNB 200-2 and the data signal.
- the eNB 200-2 may transmit difference information for each resource block to the eNB 200-1.
- the transmission of difference information from the eNB 200-2 to the eNB 200-1 is not limited to this operation pattern, and can be applied to the above-described operation patterns and the operation patterns described later. Further, when the allocation resource block for the UE 100-1 is notified from the eNB 200-1 to the eNB 200-2 as in the operation pattern 2 described above, the eNB 200-2 transmits the difference information only for the allocation resource block to the eNB 200- 1 may be transmitted.
- step S1408 the eNB 200-2 generates a transmission signal waveform (interference wave signal waveform) from the transmission data 2 based on the result of scheduling (step S1404).
- step S1409 the eNB 200-1 performs transmission processing indicated by the scheduling information (transmission processing information) received from the eNB 200-2 on the transmission data 2 received from the eNB 200-2, and generates an interference signal waveform.
- step S1410 the eNB 200-1 generates an inverse characteristic signal of the interference signal waveform as an interference replica signal based on the channel information 2. At that time, the eNB 200-1 adjusts the phase and amplitude of the interference replica signal based on the difference information received from the eNB 200-2.
- step S1411 the eNB 200-1 superimposes the interference replica signal on the desired wave signal.
- step S1412 the eNB 200-2 performs transmission to the UE 100-1.
- the UE 100-1 receives the signal from the eNB 200-2 as an interference wave signal.
- the eNB 200-1 transmits a superimposed signal to the UE 100-1.
- the UE 100-1 receives the superimposed signal.
- the interference wave signal is canceled by the interference replica signal included in the superimposed signal.
- step S1413 the UE 100-1 demodulates the desired wave signal included in the superimposed signal.
- FIG. 16 is a sequence diagram of an operation pattern 5 according to the present embodiment.
- the operation pattern 5 is obtained by partially changing the operation pattern 4.
- step S1501 the eNB 200-1 performs scheduling (or pre-scheduling) for the UE 100-1 connected to the own cell.
- step S1502 the eNB 200-1 generates a transmission signal waveform (desired signal waveform) from transmission data (transmission data 1) for the UE 100-1 based on the scheduling result.
- a transmission signal waveform (desired signal waveform) from transmission data (transmission data 1) for the UE 100-1 based on the scheduling result.
- step S1503 the S-GW 300 transmits the transmission data 2 to the eNB 200-1 and the eNB 200-2.
- the S-GW 300 corresponds to a management device.
- step S1504 the eNB 200-2 performs scheduling (or pre-scheduling) for the UE 100-2 connected to the own cell.
- step S1505 the eNB 200-2 transmits scheduling information to the eNB 200-1 based on the scheduling result.
- the scheduling information corresponds to transmission processing information indicating the content of transmission processing when the transmission data 2 is converted into a transmission signal (interference wave signal).
- step S1506 the eNB 200-1 acquires channel information 2.
- the operation for the eNB 200-1 to acquire the channel information 2 is the same as the operation pattern 1 described above.
- step S1507 the eNB 200-2 generates a transmission signal waveform (interference wave signal waveform) from the transmission data 2 based on the result of scheduling (step S1504).
- step S1508 the eNB 200-1 performs transmission processing indicated by the scheduling information (transmission processing information) received from the eNB 200-2 on the transmission data 2 received from the eNB 200-2, and generates an interference signal waveform.
- step S1509 the eNB 200-1 generates an inverse characteristic signal of the interference signal waveform as an interference replica signal based on the channel information 2.
- step S1510 the eNB 200-1 superimposes the interference replica signal on the desired wave signal.
- step S1511 the eNB 200-2 performs transmission to the UE 100-1.
- the UE 100-1 receives the signal from the eNB 200-2 as an interference wave signal.
- the eNB 200-1 transmits a superimposed signal to the UE 100-1.
- the UE 100-1 receives the superimposed signal.
- the interference wave signal is canceled by the interference replica signal included in the superimposed signal.
- step S1512 the UE 100-1 demodulates the desired wave signal included in the superimposed signal.
- FIG. 17 is a sequence diagram of an operation pattern 6 according to the present embodiment.
- the operation pattern 6 is an operation pattern for appropriately adjusting the amplitude of the interference replica signal.
- the operation pattern 6 is implemented in combination with any of the operation patterns 1 to 5 described above.
- step S1601 the eNB 200-1 transmits a reference signal (CRS).
- CRS reference signal
- step S1602 the UE 100-1 measures the CRS received power (RSRP1) received from the eNB 200-1.
- RSRP1 CRS received power
- step S1603 the UE 100-1 transmits RSRP1 (RSRP report) to the eNB 200-1.
- RSRP1 RSRP report
- step S1604 the eNB 200-1 calculates the propagation loss (propagation loss 1) between the UE 100-1 and the eNB 200-1 by subtracting RSRP1 from the transmission power of the CRS.
- step S1605 the eNB 200-1 adjusts the amplitude of the desired signal based on the propagation loss 1.
- step S1606 the eNB 200-2 transmits the CRS.
- the UE 100-1 receives the CRS.
- step S1607 the UE 100-1 measures the received power (RSRP2) of the CRS received from the eNB 200-2.
- RSRP2 received power
- step S1608 the UE 100-1 transmits RSRP2 to the eNB 200-2.
- step S1609 the eNB 200-2 transfers the RSRP2 received from the UE 100-1 to the eNB 200-1.
- the eNB 200-2 may transfer RSRP2 to the eNB 200-1 in response to a prior request from the eNB 200-1.
- the UE 100-1 may directly transmit RSRP2 to the eNB 200-1, instead of transmitting RSRP2 to the eNB 200-2.
- the eNB 200-1 calculates a propagation loss (propagation loss 2) between the UE 100-1 and the eNB 200-2 by subtracting RSRP2 from the transmission power of the CRS.
- a propagation loss propagation loss 2
- step S1611 the eNB 200-1 adjusts the amplitude of the interference replica signal based on the propagation loss 2.
- UE 100-1 When eNB 200-1 and / or eNB 200-2 transmits a reference signal other than CRS (specifically, CSI-RS), UE 100-1 also measures the received power of CSI-RS, and CSI-RS May be transmitted to the eNB 200-1 or the eNB 200-2. In this case, information indicating the type of received power (CRS or CSI-RS) may be added.
- CRS C-RNTI
- FIG. 18 is a sequence diagram of the operation pattern 7 according to the present embodiment.
- the operation pattern 7 is an operation pattern for appropriately adjusting the amplitude of the interference replica signal.
- the operation pattern 7 is implemented in combination with any of the operation patterns 1 to 5 described above.
- the eNB 200-1 transmits an identifier (cell ID) of a neighboring cell (cell managed by the eNB 200-2) to the UE 100-1.
- the UE 100-1 receives system information (SIB: System Information Block) transmitted by the eNB 200-2 based on the cell ID received from the eNB 200-1.
- SIB system Information Block
- the SIB includes power difference information indicating a power difference (transmission power difference) between the reference signal transmitted by the eNB 200-2 and the data signal.
- step S1703 the UE 100-1 demodulates the SIB and acquires power difference information included in the SIB.
- step S1704 the UE 100-1 transmits the power difference information to the eNB 200-1.
- step S1705 the eNB 200-1 adjusts the amplitude of the interference replica signal based on the power difference information received from the UE 100-1.
- FIG. 19 is a sequence diagram of the operation pattern 8 according to the present embodiment.
- the operation pattern 8 is an operation pattern for appropriately adjusting the transmission timing (superimposition timing) of the interference replica signal.
- the operation pattern 8 is implemented in combination with any of the operation patterns 1 to 5 described above.
- step S1801 the eNB 200-1 transmits a reference signal (CRS).
- the CRS transmitted by the eNB 200-1 is received by the UE 100-1 after the propagation delay ⁇ s.
- step S1802 the eNB 200-2 transmits the CRS at the same time as the eNB 200-1 transmits the CRS.
- the CRS transmitted by the eNB 200-2 is received by the UE 100-1 after the propagation delay ⁇ n.
- the UE 100-1 generates a difference between the CRS reception timing from the eNB 200-1 and the CRS reception timing from the eNB 200-2 as time difference information. That is, the time difference information is information indicating a delay time difference between the delay time ⁇ s from the eNB 200-1 to the UE 100-1 and the delay time ⁇ n from the eNB 200-2 to the UE 100-1.
- step S1804 the UE 100-1 transmits time difference information to the eNB 200-1.
- the eNB 200-1 adjusts the transmission timing (superimposition timing) of the interference replica signal based on the time difference information received from the UE 100-1.
- eNB 200-1 and eNB 200-2 transmit CRS at the same time, but when the transmission timing of CRS is different, information on the transmission timing difference is shared between eNB 200-1 and eNB 200-2.
- the time difference information received from the UE 100-1 may be corrected.
- the UE 100-1 may correct the delay time and report the delay time difference.
- CRS is used as a reference signal, but CSI-RS may be used instead of CRS.
- the UE 100-1 may transmit information indicating a difference between the CRS received power from the eNB 200-1 and the CRS received power from the eNB 200-2 together with the time difference information.
- the cooperative interference cancellation method (method of superimposing an interference replica signal on a desired wave signal) is always applied.
- the cooperative interference cancellation method is applied only when a predetermined condition is satisfied.
- FIG. 20 is a sequence diagram of operation pattern 1 according to the present embodiment.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the number of antennas (transmission antennas) associated with the serving cell.
- the number of antennas associated with the serving cell is the number of antennas of the eNB 200-1.
- the number of antennas associated with the serving cell is the number of antennas of the serving cell.
- step S2101 the eNB 200-1 checks the number of antennas associated with the serving cell.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the number of antennas associated with the serving cell. For example, when the number of antennas associated with the serving cell is one, the eNB 200-1 determines that the cooperative interference cancellation scheme is applied because CB-CoMP is not applicable. Alternatively, the eNB 200-1 determines that the cooperative interference cancellation scheme is to be applied if there are a plurality of antennas associated with the serving cell and the number is not sufficient for beamforming / null steering. May be. Here, the description will be made assuming that it is determined that the cooperative interference cancellation method is applied.
- step S2103 the eNB 200-1 transmits a notification to the effect that the cooperative interference cancellation scheme is applied to the eNB 200-2.
- step S2104 the eNB 200-2 transmits the interference wave information to the eNB 200-1 in response to the notification from the eNB 200-1.
- FIG. 21 is a sequence diagram of an operation pattern 2 according to the present embodiment.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the received signal state in the UE 100-1. For example, the eNB 200-1 determines to apply the cooperative interference cancellation method when the received signal state (received SIR or the like) does not improve even when CB-CoMP is performed, for example.
- step S2201 the eNB 200-1 and the eNB 200-2 perform normal transmission.
- step S2202 the UE 100-1 measures the received SIR.
- reception SIR not only the reception SIR but other reception quality indicators such as CQI may be used.
- step S2203 the UE 100-1 transmits a reception SIR (SIR report) to the eNB 200-1.
- SIR reception SIR
- step S2204 the eNB 200-1 and the eNB 200-2 perform transmission by CB-CoMP.
- step S2205 the UE 100-1 measures the received SIR.
- reception SIR not only the reception SIR but other reception quality indicators such as CQI may be used.
- step S2206 the UE 100-1 transmits a reception SIR (SIR report) to the eNB 200-1.
- SIR reception SIR
- step S2207 the eNB 200-1 compares the reception SIR before CB-CoMP with the reception SIR in CB-CoMP.
- the eNB 200-1 determines whether or not the reception SIR in the CB-CoMP is improved by a certain amount (including zero) or more than the reception SIR before the CB-CoMP. Note that the certain amount may be shared by the eNB 200-1 and the eNB 200-2.
- ENB 200-1 determines that CB-CoMP is continued when the reception SIR during CB-CoMP is improved over the reception SIR before CB-CoMP. On the other hand, when the reception SIR in CB-CoMP is not improved compared to the reception SIR before CB-CoMP, eNB 200-1 determines to apply the cooperative interference cancellation scheme. Here, the description will be made assuming that it is determined that the cooperative interference cancellation method is applied.
- step S2209 the eNB 200-1 transmits a notification to the effect that the cooperative interference cancellation method is applied to the eNB 200-2.
- step S2210 the eNB 200-2 transmits the interference wave information to the eNB 200-1 in response to the notification from the eNB 200-1.
- FIG. 22 is a sequence diagram of operation pattern 3 according to the present embodiment. This operation pattern is common to the operation pattern 2 described above in that it is determined whether or not to apply the cooperative interference cancellation method based on the received signal state. However, in this operation pattern, the eNB 200-1 determines whether or not to apply the cooperative interference cancellation scheme based on the spatial characteristics (Spatial Signature) as the received signal state.
- This operation pattern is common to the operation pattern 2 described above in that it is determined whether or not to apply the cooperative interference cancellation method based on the received signal state. However, in this operation pattern, the eNB 200-1 determines whether or not to apply the cooperative interference cancellation scheme based on the spatial characteristics (Spatial Signature) as the received signal state.
- spatial characteristics Spatial Signature
- step S2301 the eNB 200-1 and the eNB 200-2 perform normal transmission.
- step S2302 the UE 100-1 measures a spatial characteristic indicating a spatial correlation (spatial separation degree) between antennas in the eNB 200-2.
- step S2303 the UE 100-1 transmits a spatial characteristic (a Spatial Signature report) to the eNB 200-1.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the spatial characteristics. For example, when the eNB 200-1 determines that null steering is difficult based on the spatial correlation (separation) between antennas in the eNB 200-2, the eNB 200-1 considers that CB-CoMP is not applicable, and sets the cooperative interference cancellation scheme. Determine to apply. Here, the description will be made assuming that it is determined that the cooperative interference cancellation method is applied.
- step S2305 the eNB 200-1 transmits a notification to the effect that the cooperative interference cancellation scheme is applied to the eNB 200-2.
- step S2306 the eNB 200-2 transmits the interference wave information to the eNB 200-1 in response to the notification from the eNB 200-1.
- step S2305 may be omitted and the notification of step S2305 may be included in step S2306.
- FIG. 23 is a sequence diagram of the operation pattern 4 according to the present embodiment.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the state of the radio resource.
- the eNB 200-1 and the eNB 200-2 perform JT-CoMP or DPS-CoMP in the initial state.
- step S2401 the eNB 200-2 confirms the free radio resources of its own cell and determines whether or not the free radio resources are tight.
- the description will proceed assuming that it is determined that the available radio resources are tight.
- step S2402 the eNB 200-2 transmits a request to the eNB 200-1 to apply the cooperative interference cancellation method.
- step S2403 the eNB 200-1 determines to apply the cooperative interference cancellation scheme in response to a request from the eNB 200-2.
- step S2404 the eNB 200-1 transmits a notification to the effect that the cooperative interference cancellation method is applied to the eNB 200-2.
- step S2405 the eNB 200-2 transmits the interference wave information to the eNB 200-1 in response to the notification from the eNB 200-1.
- the eNB 200-1 or the eNB 200-2 applies a cooperative interference cancellation scheme in order to avoid interference when radio resources allocated to UEs located near the cell edge exceed a predetermined amount. May be.
- FIG. 24 is a sequence diagram of an operation pattern 5 according to the present embodiment.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the QoS required by the UE 100-1.
- step S2501 the eNB 200-1 and the eNB 200-2 perform normal transmission. However, in this operation pattern, the eNB 200-1 and the eNB 200-2 may perform CB-CoMP.
- step S2502 the eNB 200-1 confirms whether or not the QoS required by the UE 100-1 is satisfied.
- the QoS required by the UE 100-1 can be determined by the type of bearer.
- the eNB 200-1 determines whether to apply the cooperative interference cancellation scheme based on the QoS required by the UE 100-1. For example, the eNB 200-1 determines to apply the cooperative interference cancellation scheme when the QoS required by the UE 100-1 is not satisfied.
- the description will be made assuming that it is determined that the cooperative interference cancellation method is applied.
- step S2504 the eNB 200-1 transmits a notification to the effect that the cooperative interference cancellation scheme is applied to the eNB 200-2.
- step S2505 the eNB 200-2 transmits the interference wave information to the eNB 200-1 in response to the notification from the eNB 200-1.
- the eNB 200-1 generates an OFDM signal from a desired wave signal on which an interference replica signal is superimposed, and transmits the generated OFDM signal, but is not limited thereto.
- the eNB 200-1 may generate a signal such as a CDMA signal, an IDMA signal, an FDMA signal, or a TDMA signal from the desired wave signal on which the interference replica signal is superimposed, and transmit the generated signal.
- the serving cell and the neighboring cell are managed by different eNBs (eNB 200-1, eNB 200-2).
- the serving cell and the neighboring cell may be managed by the same eNB (eNB 200-1).
- the present invention may be applied to the eNB 200-1 when the UE 100-1 and the UE 100-2 are in the same serving cell. Therefore, the eNB 200-1 may manage each of the communication with the UE 100-1 and the communication with the UE 100-2.
- the eNB 200-1 executes MU (Multi User) -MIMO (Multiple Input Multiple Output) that spatially multiplexes a plurality of UEs 100 (UE 100-1 and UE 100-2) by downlink multi-antenna transmission.
- MU Multi User
- MIMO Multiple Input Multiple Output
- the present invention may be applied.
- the eNB 200-1 controls transmission to the UE 100-2, information (for example, transmission data 2, interference wave signal waveform, etc.) used for generating the interference replica signal is transmitted from the neighboring eNB. It can be used without receiving.
- the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
- the mobile communication system since the mobile communication system, the communication control method, the base station, the user terminal, and the processor according to the present invention can reduce the reception power of the interference wave signal in the user terminal, it is useful in the mobile communication field. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
実施形態に係る移動通信システムは、サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末と、前記サービングセルを管理する第1の基地局と、を有する。前記第1の基地局は、前記干渉波信号に対応する干渉レプリカ信号を生成し、前記干渉レプリカ信号を前記希望波信号に重畳する制御部と、前記干渉レプリカ信号が重畳された前記希望波信号を前記ユーザ端末に送信する送信部と、を含む。前記制御部は、前記ユーザ端末が受信する前記干渉レプリカ信号が、前記ユーザ端末が受信する前記干渉波信号を打ち消すように、前記干渉レプリカ信号を生成する。
以下、図面を参照して、3GPP規格に準拠して構成される移動通信システム(LTEシステム)に本発明を適用する一実施形態について説明する。
図1は、本実施形態に係るLTEシステムの構成図である。
図7は、本実施形態に係る協調型干渉キャンセル方式の概要を説明するための図である。
図8は、協調型干渉キャンセル方式を実現するためのeNB200-1のブロック図である。
以下において、本実施形態に係る動作を動作パターン1から動作パターン8の順に説明する。
図9は、本実施形態に係る動作パターン1のシーケンス図である。動作パターン1では、eNB200-1が取得する干渉波情報は、干渉信号波形である。
図13は、本実施形態に係る動作パターン2のシーケンス図である。動作パターン2は、動作パターン1を一部変更したものである。
図14は、本実施形態に係る動作パターン3のシーケンス図である。動作パターン3では、eNB200-1が取得する干渉波情報は、逆特性干渉信号波形である。
図15は、本実施形態に係る動作パターン4のシーケンス図である。動作パターン4では、eNB200-1が取得する干渉波情報は、UE100-2に対する送信データ(送信データ2)である。
図16は、本実施形態に係る動作パターン5のシーケンス図である。動作パターン5は、動作パターン4を一部変更したものである。
図17は、本実施形態に係る動作パターン6のシーケンス図である。動作パターン6は、干渉レプリカ信号の振幅を適切に調整するための動作パターンである。動作パターン6は、上述した動作パターン1乃至5の何れかと組み合わせて実施される。
図18は、本実施形態に係る動作パターン7のシーケンス図である。動作パターン7は、干渉レプリカ信号の振幅を適切に調整するための動作パターンである。動作パターン7は、上述した動作パターン1乃至5の何れかと組み合わせて実施される。
図19は、本実施形態に係る動作パターン8のシーケンス図である。動作パターン8は、干渉レプリカ信号の送信タイミング(重畳タイミング)を適切に調整するための動作パターンである。動作パターン8は、上述した動作パターン1乃至5の何れかと組み合わせて実施される。
以下、第2実施形態について、上述した第1実施形態との相違点を主として説明する。
図20は、本実施形態に係る動作パターン1のシーケンス図である。本動作パターンでは、eNB200-1は、サービングセルと対応付けられたアンテナ(送信アンテナ)の数に基づいて、協調型干渉キャンセル方式を適用するか否かを判定する。ここで、eNB200-1が管理するセルが1つである場合には、サービングセルと対応付けられたアンテナの数とは、eNB200-1のアンテナの数である。eNB200-1が管理するセルが複数であって、かつ、セル毎にアンテナが異なる場合には、サービングセルと対応付けられたアンテナの数とは、サービングセルのアンテナの数である。
図21は、本実施形態に係る動作パターン2のシーケンス図である。本動作パターンでは、eNB200-1は、UE100-1における受信信号状態に基づいて、協調型干渉キャンセル方式を適用するか否かを判定する。eNB200-1は、例えばCB-CoMPを実施しても受信信号状態(受信SIRなど)が改善しない場合に、協調型干渉キャンセル方式を適用すると判定する。
図22は、本実施形態に係る動作パターン3のシーケンス図である。本動作パターンは、受信信号状態に基づいて協調型干渉キャンセル方式を適用するか否かを判定する点で、上述した動作パターン2と共通する。ただし、本動作パターンでは、eNB200-1は、受信信号状態としての空間特性(Spatial Signature)に基づいて、協調型干渉キャンセル方式を適用するか否かを判定する。
図23は、本実施形態に係る動作パターン4のシーケンス図である。本動作パターンでは、eNB200-1は、無線リソースの状況に基づいて、協調型干渉キャンセル方式を適用するか否かを判定する。また、本動作パターンでは、初期状態において、eNB200-1及びeNB200-2は、JT-CoMP又はDPS-CoMPを実施している。
図24は、本実施形態に係る動作パターン5のシーケンス図である。本動作パターンでは、eNB200-1は、UE100-1が必要とするQoSに基づいて、協調型干渉キャンセル方式を適用するか否かを判定する。
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
Claims (49)
- サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末と、
前記サービングセルを管理する第1の基地局と、を有する移動通信システムであって、
前記第1の基地局は、
前記干渉波信号に対応する干渉レプリカ信号を生成し、前記干渉レプリカ信号を前記希望波信号に重畳する制御部と、
前記干渉レプリカ信号が重畳された前記希望波信号を前記ユーザ端末に送信する送信部と、を含み、
前記制御部は、前記ユーザ端末が受信する前記干渉レプリカ信号が、前記ユーザ端末が受信する前記干渉波信号を打ち消すように、前記干渉レプリカ信号を生成することを特徴とする移動通信システム。 - 前記他のユーザ端末は、前記サービングセルに隣接する隣接セルに接続し、
前記干渉波信号は、前記隣接セルからの信号であることを特徴とする請求項1に記載の移動通信システム。 - 前記第1の基地局は、前記ユーザ端末が接続する前記サービングセル及び前記他のユーザ端末が接続する前記サービングセルに隣接する隣接セルを管理し、
前記送信部は、前記干渉波信号を前記他のユーザ端末に送信することを特徴とする請求項1に記載の移動通信システム。 - 前記他のユーザ端末は、前記ユーザ端末が接続する前記サービングセルに在圏し、
前記送信部は、前記干渉波信号を前記他のユーザ端末に送信することを特徴とする請求項1に記載の移動通信システム。 - 前記第1の基地局は、前記ユーザ端末との通信及び前記他のユーザ端末との通信のそれぞれの通信を管理し、
前記送信部は、前記干渉波信号を前記他のユーザ端末に送信することを特徴とする請求項1に記載の移動通信システム。 - 前記制御部は、前記ユーザ端末が受信する前記干渉レプリカ信号の位相が、前記ユーザ端末が受信する前記干渉波信号の位相と逆になるように、前記干渉レプリカ信号を生成することを特徴とする請求項1に記載の移動通信システム。
- 前記制御部は、前記ユーザ端末が受信する前記干渉レプリカ信号の振幅が、前記ユーザ端末が受信する前記干渉波信号の振幅と同じになるように、前記干渉レプリカ信号を生成することを特徴とする請求項6に記載の移動通信システム。
- 前記第1の基地局は、前記サービングセルと対応付けられた少なくとも1つのアンテナを含み、
前記制御部は、前記アンテナの数に基づいて、前記干渉レプリカ信号を前記希望波信号に重畳する重畳送信を適用するか否かを判定することを特徴とする請求項1に記載の移動通信システム。 - 前記制御部は、前記ユーザ端末における受信信号状態に基づいて、前記干渉レプリカ信号を前記希望波信号に重畳する重畳送信を適用するか否かを判定することを特徴とする請求項1に記載の移動通信システム。
- 前記制御部は、前記移動通信システムにおける無線リソースの使用状況に基づいて、前記干渉レプリカ信号を前記希望波信号に重畳する重畳送信を適用するか否かを判定することを特徴とする請求項1に記載の移動通信システム。
- 前記制御部は、前記ユーザ端末が必要とするQoSに基づいて、前記干渉レプリカ信号を前記希望波信号に重畳する重畳送信を適用するか否かを判定することを特徴とする請求項1に記載の移動通信システム。
- 前記第1の基地局を管理する管理装置をさらに有し、
前記第1の基地局は、前記干渉レプリカ信号の生成に使用される情報を、前記管理装置及び前記ユーザ端末のうち少なくとも1つから受信する受信部を含み、
前記制御部は、前記受信部が受信した情報に基づいて前記干渉レプリカ信号を生成することを特徴とする請求項1に記載の移動通信システム。 - 前記隣接セルを管理する第2の基地局をさらに有し、
前記管理装置は、前記第2の基地局を管理し、
前記受信部は、前記干渉レプリカ信号の生成に使用される情報を、前記第2の基地局、前記管理装置、及び前記ユーザ端末のうち少なくとも1つから受信することを特徴とする請求項12に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記干渉波信号の信号波形に関する波形情報を含み、
前記第2の基地局は、前記波形情報を前記第1の基地局に送信し、
前記受信部は、前記波形情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記制御部は、前記希望波信号の送信に使用する無線リソースを示すリソース情報を前記第2の基地局に送信し、
前記第2の基地局は、前記リソース情報に基づいて、前記波形情報を前記第1の基地局に送信することを特徴とする請求項14に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局において前記干渉波信号に変換される前の送信データを含み、
前記第2の基地局は、前記送信データを前記第1の基地局に送信し、
前記受信部は、前記第2の基地局から前記送信データを受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局において前記送信データを前記干渉波信号に変換する際の送信処理の内容を示す送信処理情報をさらに含み、
前記第2の基地局は、前記送信処理情報を前記第1の基地局にさらに送信し、
前記受信部は、前記第2の基地局から前記送信処理情報をさらに受信することを特徴とする請求項16に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局において前記干渉波信号に変換される前の送信データを含み、
前記管理装置は、前記送信データを前記第1の基地局に送信し、
前記受信部は、前記管理装置から前記送信データを受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局において前記送信データを前記干渉波信号に変換する際の送信処理の内容を示す送信処理情報をさらに含み、
前記第2の基地局は、前記送信処理情報を前記第1の基地局に送信し、
前記受信部は、前記第2の基地局から前記送信処理情報を受信することを特徴とする請求項18に記載の移動通信システム。 - 前記干渉波信号は、物理下りリンク共有チャネル上で送信されるデータ信号を含み、
前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局が送信する参照信号と前記データ信号との間の振幅差又は位相差の少なくとも一方を示す差情報であり、
前記第2の基地局は、前記差情報を前記第1の基地局に送信し、
前記受信部は、前記第2の基地局から前記差情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記ユーザ端末が前記第2の基地局から受信する参照信号についての受信電力を示す受信電力情報であり、
前記ユーザ端末は、前記受信電力情報を前記第2の基地局に送信し、
前記第2の基地局は、前記受信電力情報を前記第1の基地局に転送し、
前記受信部は、前記第2の基地局から前記受信電力情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記ユーザ端末が前記第2の基地局から受信する参照信号についての受信電力を示す受信電力情報であり、
前記ユーザ端末は、前記受信電力情報を前記第1の基地局に送信し、
前記受信部は、前記ユーザ端末から前記受信電力情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉波信号は、物理下りリンク共有チャネル上で送信されるデータ信号を含み、
前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局が送信する参照信号と前記データ信号との間の電力差を示す電力差情報であり、
前記ユーザ端末は、前記電力差情報を前記第1の基地局に送信し、
前記受信部は、前記ユーザ端末から前記電力差情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉波信号は、物理下りリンク共有チャネル上で送信されるデータ信号を含み、
前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局が送信する参照信号と前記データ信号との間の電力差を示す電力差情報であり、
前記第2の基地局は、前記電力差情報を前記第1の基地局に送信し、
前記受信部は、前記第2の基地局から前記電力差情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第1の基地局から前記ユーザ端末までの遅延時間と、前記第2の基地局から前記ユーザ端末までの遅延時間と、の間の遅延時間差を示す時間差情報であり、
前記ユーザ端末は、前記時間差情報を前記第1の基地局に送信し、
前記受信部は、前記ユーザ端末から前記時間差情報を受信することを特徴とする請求項13に記載の移動通信システム。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であり、
前記受信部は、前記第2の基地局及び前記ユーザ端末のうち少なくとも一方から前記チャネル情報を受信し、
前記制御部は、前記受信部が受信した前記チャネル情報に基づいて、前記干渉レプリカ信号を生成することを特徴とする請求項13に記載の移動通信システム。 - 前記ユーザ端末は、前記第2の基地局から受信した参照信号に基づいて前記チャネル情報を生成し、生成したチャネル情報を前記第1の基地局に送信し、
前記受信部は、前記ユーザ端末から前記チャネル情報を受信することを特徴とする請求項26に記載の移動通信システム。 - 前記ユーザ端末は、前記第2の基地局から受信した参照信号に基づいて前記チャネル情報を生成し、生成したチャネル情報を前記第2の基地局に送信し、
前記第2の基地局は、前記ユーザ端末からの前記チャネル情報を前記第1の基地局に転送し、
前記受信部は、前記第2の基地局から前記チャネル情報を受信することを特徴とする請求項26に記載の移動通信システム。 - 前記第1の基地局は、チャネル特性の推定対象とすべきセルを示すセル指定情報を前記ユーザ端末に送信し、
前記ユーザ端末は、前記セル指定情報が示すセルについてチャネル特性を推定することにより、前記チャネル情報を生成することを特徴とする請求項27又は28に記載の移動通信システム。 - 前記第2の基地局は、前記ユーザ端末から受信した参照信号に基づいて前記チャネル情報を生成し、生成したチャネル情報を前記第1の基地局に送信し、
前記受信部は、前記第2の基地局から前記チャネル情報を受信することを特徴とする請求項26に記載の移動通信システム。 - 前記第1の基地局は、チャネル特性の推定対象とすべきユーザ端末を示す端末指定情報を前記第2の基地局に送信し、
前記第2の基地局は、前記端末指定情報が示す前記ユーザ端末についてチャネル特性を推定することにより、前記チャネル情報を生成することを特徴とする請求項30に記載の移動通信システム。 - 前記第1の基地局は、前記ユーザ端末が送信する前記参照信号を復調するための復調用情報を前記第2の基地局に送信し、
前記第2の基地局は、前記復調用情報を用いて前記参照信号を復調することにより、前記チャネル情報を生成することを特徴とする請求項30に記載の移動通信システム。 - サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末と、前記サービングセルを管理する第1の基地局と、を有する移動通信システムにおいて用いられる通信制御方法であって、
前記第1の基地局において、
前記干渉波信号に対応する干渉レプリカ信号を生成する生成ステップと、
前記干渉レプリカ信号を前記希望波信号に重畳する重畳ステップと、
前記干渉レプリカ信号が重畳された前記希望波信号を前記ユーザ端末に送信する送信ステップと、を含み、
前記生成ステップにおいて、前記ユーザ端末が受信する前記干渉レプリカ信号が、前記ユーザ端末が受信する前記干渉波信号を打ち消すように、前記干渉レプリカ信号を生成することを特徴とする通信制御方法。 - 前記移動通信システムは、前記サービングセルに隣接し前記他のユーザ端末が接続する隣接セルを管理する第2の基地局と、前記第1の基地局及び前記第2の基地局を管理する管理装置と、をさらに有し、
前記通信制御方法は、
前記第1の基地局において、
前記干渉レプリカ信号の生成に使用される情報を、前記第2の基地局、前記管理装置、及び前記ユーザ端末のうち少なくとも1つから受信する受信ステップを含み、
前記生成ステップにおいて、前記受信ステップで受信した情報に基づいて前記干渉レプリカ信号を生成することを特徴とする請求項33に記載の通信制御方法。 - 前記干渉レプリカ信号の生成に使用される情報は、前記第2の基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項34に記載の通信制御方法。
- サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末を有する移動通信システムにおいて、前記サービングセルを管理する基地局であって、
前記干渉波信号に対応する干渉レプリカ信号を生成し、前記干渉レプリカ信号を前記希望波信号に重畳する制御部と、
前記干渉レプリカ信号が重畳された前記希望波信号を前記ユーザ端末に送信する送信部と、を含み、
前記制御部は、前記ユーザ端末が受信する前記干渉レプリカ信号が、前記ユーザ端末が受信する前記干渉波信号を打ち消すように、前記干渉レプリカ信号を生成することを特徴とする基地局。 - 前記干渉レプリカ信号の生成に使用される情報を、前記サービングセルに隣接し前記他のユーザ端末が接続する隣接セルを管理する他基地局、前記基地局及び前記他基地局を管理する管理装置、及び前記ユーザ端末のうち、少なくとも1つから受信する受信部をさらに含み、
前記制御部は、前記受信部が受信した情報に基づいて前記干渉レプリカ信号を生成することを特徴とする請求項36に記載の基地局。 - 前記干渉レプリカ信号の生成に使用される情報は、前記他基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項37に記載の基地局。
- サービングセルからの希望波信号を受信するとともに、前記サービングセルに隣接する隣接セルからの干渉波信号を受信するユーザ端末を有する移動通信システムにおいて、前記隣接セルを管理する基地局であって、
前記サービングセルを管理する他基地局は、前記干渉波信号に対応する干渉レプリカ信号を前記希望波信号に重畳して送信しており、
前記基地局は、前記干渉レプリカ信号の生成に使用される情報を、前記他基地局に送信する送信部を含むことを特徴とする基地局。 - 前記干渉レプリカ信号の生成に使用される情報は、前記基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項39に記載の基地局。
- サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末であって、
前記サービングセルを管理する第1の基地局は、前記干渉波信号に対応する干渉レプリカ信号を前記希望波信号に重畳して送信しており、
前記ユーザ端末は、前記干渉レプリカ信号の生成に使用される情報を、前記第1の基地局に送信する送信部を含むことを特徴とするユーザ端末。 - 前記干渉レプリカ信号の生成に使用される情報は、前記サービングセルに隣接し前記他のユーザ端末が接続する隣接セルを管理する第2の基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項41に記載のユーザ端末。
- サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末を有する移動通信システムにおいて、前記サービングセルを管理する基地局に備えられるプロセッサであって、
前記干渉波信号に対応する干渉レプリカ信号を生成する生成処理と、
前記干渉レプリカ信号を前記希望波信号に重畳する重畳処理と、
前記干渉レプリカ信号が重畳された前記希望波信号を前記ユーザ端末に送信するための送信処理と、を実行し、
前記生成処理において、前記ユーザ端末が受信する前記干渉レプリカ信号が、前記ユーザ端末が受信する前記干渉波信号を打ち消すように、前記干渉レプリカ信号を生成することを特徴とするプロセッサ。 - 前記干渉レプリカ信号の生成に使用される情報を、前記サービングセルに隣接し前記他のユーザ端末が接続する隣接セルを管理する他基地局、前記基地局及び前記他基地局を管理する管理装置、及び前記ユーザ端末のうち、少なくとも1つから受信するための受信処理をさらに実行し、
前記生成処理において、前記受信した情報に基づいて前記干渉レプリカ信号を生成することを特徴とする請求項43に記載のプロセッサ。 - 前記干渉レプリカ信号の生成に使用される情報は、前記他基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項44に記載のプロセッサ。
- サービングセルからの希望波信号を受信するとともに、前記サービングセルに隣接する隣接セルからの干渉波信号を受信するユーザ端末を有する移動通信システムにおいて、前記隣接セルを管理する基地局に備えられるプロセッサであって、
前記サービングセルを管理する他基地局は、前記干渉波信号に対応する干渉レプリカ信号を前記希望波信号に重畳して送信しており、
前記プロセッサは、前記干渉レプリカ信号の生成に使用される情報を、前記他基地局に送信するための処理を行うことを特徴とするプロセッサ。 - 前記干渉レプリカ信号の生成に使用される情報は、前記基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項46に記載のプロセッサ。
- サービングセルからの希望波信号を受信するとともに、他のユーザ端末への信号である干渉波信号を受信するユーザ端末に備えられるプロセッサであって、
前記サービングセルを管理する第1の基地局は、前記干渉波信号に対応する干渉レプリカ信号を前記希望波信号に重畳して送信しており、
前記プロセッサは、前記干渉レプリカ信号の生成に使用される情報を、前記第1の基地局に送信するための処理を行うことを特徴とするプロセッサ。 - 前記干渉レプリカ信号の生成に使用される情報は、前記サービングセルに隣接し前記他のユーザ端末が接続する隣接セルを管理する第2の基地局と前記ユーザ端末との間のチャネル特性を示すチャネル情報であることを特徴とする請求項48に記載のプロセッサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014553208A JP6111271B2 (ja) | 2012-12-21 | 2013-12-19 | 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ |
EP13864488.5A EP2938123A4 (en) | 2012-12-21 | 2013-12-19 | MOBILE COMMUNICATION SYSTEM, COMMUNICATION CONTROL METHOD, BASE STATION, USER TERMINAL, AND PROCESSOR |
US14/654,051 US9866342B2 (en) | 2012-12-21 | 2013-12-19 | Mobile communication system, communication control method, base station, user terminal and processor |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261745016P | 2012-12-21 | 2012-12-21 | |
US201261745043P | 2012-12-21 | 2012-12-21 | |
US201261740989P | 2012-12-21 | 2012-12-21 | |
US61/745,043 | 2012-12-21 | ||
US61/740,989 | 2012-12-21 | ||
US61/745,016 | 2012-12-21 | ||
US201361748293P | 2013-01-02 | 2013-01-02 | |
US61/748,293 | 2013-01-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014098187A1 true WO2014098187A1 (ja) | 2014-06-26 |
Family
ID=50978507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084095 WO2014098187A1 (ja) | 2012-12-21 | 2013-12-19 | 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9866342B2 (ja) |
EP (1) | EP2938123A4 (ja) |
JP (1) | JP6111271B2 (ja) |
WO (1) | WO2014098187A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016157657A1 (ja) * | 2015-04-03 | 2017-10-05 | 株式会社Nttドコモ | ユーザ装置及び基地局 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6111270B2 (ja) * | 2012-12-21 | 2017-04-05 | 京セラ株式会社 | 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ |
US10236958B2 (en) * | 2016-03-21 | 2019-03-19 | University Of Science And Technology Of China | Method for signal transmission to multiple user equipments utilizing reciprocity of wireless channel |
WO2018192637A1 (en) * | 2017-04-18 | 2018-10-25 | Huawei Technologies Co., Ltd. | Communication system and communication method with targeted interference enhancement |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002044055A (ja) * | 2000-07-27 | 2002-02-08 | Kddi Corp | 無線移動局及び無線通信システム |
JP2011151670A (ja) * | 2010-01-22 | 2011-08-04 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信方法および無線通信システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101005233B1 (ko) * | 2007-03-14 | 2010-12-31 | 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 | 다중 안테나 시스템에서 간섭 제거 장치 및 방법 |
US9516657B2 (en) * | 2011-04-01 | 2016-12-06 | Interdigital Patent Holdings, Inc. | Controlling inter-cell interference in forward access channel (Cell—FACH) state |
-
2013
- 2013-12-19 JP JP2014553208A patent/JP6111271B2/ja active Active
- 2013-12-19 US US14/654,051 patent/US9866342B2/en active Active
- 2013-12-19 WO PCT/JP2013/084095 patent/WO2014098187A1/ja active Application Filing
- 2013-12-19 EP EP13864488.5A patent/EP2938123A4/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002044055A (ja) * | 2000-07-27 | 2002-02-08 | Kddi Corp | 無線移動局及び無線通信システム |
JP2011151670A (ja) * | 2010-01-22 | 2011-08-04 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信方法および無線通信システム |
Non-Patent Citations (1)
Title |
---|
"TR 36. 819 V11.1.0", 3GPP TECHNICAL REPORT, December 2011 (2011-12-01) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016157657A1 (ja) * | 2015-04-03 | 2017-10-05 | 株式会社Nttドコモ | ユーザ装置及び基地局 |
US10833784B2 (en) | 2015-04-03 | 2020-11-10 | Ntt Docomo, Inc. | User apparatus and base station |
Also Published As
Publication number | Publication date |
---|---|
US9866342B2 (en) | 2018-01-09 |
JP6111271B2 (ja) | 2017-04-05 |
EP2938123A4 (en) | 2016-08-10 |
US20150358099A1 (en) | 2015-12-10 |
EP2938123A1 (en) | 2015-10-28 |
JPWO2014098187A1 (ja) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6392920B2 (ja) | 第1基地局、プロセッサ、及び通信制御方法 | |
US10903935B2 (en) | Channel state information reporting on licensed and unlicensed carriers | |
WO2018203441A1 (ja) | 通信装置、基地局装置、方法及び記録媒体 | |
JP6257587B2 (ja) | 無線通信装置及び信号処理方法 | |
KR20220037449A (ko) | 혼합된 뉴머롤러지들을 갖는 캐리어 어그리게이션 모드에서의 연결 모드 불연속 수신(cdrx) | |
JP2022544150A (ja) | サイドリンク同期信号についてのリソース選択およびオンデマンド要求 | |
JP6111270B2 (ja) | 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ | |
CN110391826A (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 | |
JP6111271B2 (ja) | 移動通信システム、通信制御方法、基地局、ユーザ端末及びプロセッサ | |
WO2022221810A1 (en) | Resource configuration for radio frequency energy-harvesting | |
US9888447B2 (en) | Base station | |
JP6216026B2 (ja) | 基地局及びプロセッサ | |
US20240080070A1 (en) | Support of hierarchical/adjustable codebook structure for dl and ul device collaboration | |
WO2016185969A1 (ja) | 無線基地局及び移動通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13864488 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014553208 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14654051 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013864488 Country of ref document: EP |