WO2014098085A1 - Rod lens array, and manufacturing method therefor - Google Patents

Rod lens array, and manufacturing method therefor Download PDF

Info

Publication number
WO2014098085A1
WO2014098085A1 PCT/JP2013/083772 JP2013083772W WO2014098085A1 WO 2014098085 A1 WO2014098085 A1 WO 2014098085A1 JP 2013083772 W JP2013083772 W JP 2013083772W WO 2014098085 A1 WO2014098085 A1 WO 2014098085A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod lens
lens array
rod
adhesive
buffer layer
Prior art date
Application number
PCT/JP2013/083772
Other languages
French (fr)
Japanese (ja)
Inventor
成史 北村
菊枝 入江
川原田 泰
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2014502288A priority Critical patent/JPWO2014098085A1/en
Publication of WO2014098085A1 publication Critical patent/WO2014098085A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/031Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors
    • H04N1/0311Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors using an array of elements to project the scanned image elements onto the photodetectors
    • H04N1/0312Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors using an array of elements to project the scanned image elements onto the photodetectors using an array of optical fibres or rod-lenses

Definitions

  • the present invention relates to a rod lens array and a manufacturing method thereof, and more particularly to a rod lens array in which a plurality of rod lenses are arranged between substrates and a manufacturing method thereof.
  • a cylindrical rod lens whose both end surfaces are mirror-polished is known as one of microlenses.
  • a rod lens is in the form of a rod lens array in which a large number of rod lenses are arranged and integrated, and is used in a copying machine, facsimile, scanner, hand scanner, etc.
  • a writing device in an apparatus such as an LED printer using an LED (light emitting diode) as a light source, a liquid crystal printer using a liquid crystal element, or an EL printer using an EL element.
  • the rod lens array as described above is configured such that the rod lens is sandwiched between the two substrates so that the rod lens is in contact with the two substrates in order to eliminate the uneven arrangement of the rod lenses. .
  • the rod lens is sandwiched so that the rod lens comes into contact with the two substrates in this way, the substrate is pulled in the direction of compressing the rod lens due to the shrinkage of the adhesive when the adhesive is cured, and the lens Unnecessary force will be applied. As a result, the lens is deformed or the refractive index of the lens is changed. As a result, anisotropy occurs in the optical performance of the rod lens, and the optical performance as the array deteriorates. It was. Furthermore, when the durability test of the rod lens is performed in a high temperature and high humidity environment, there is a problem that the shrinkage of the adhesive proceeds and the optical performance is further deteriorated.
  • the present invention has been made to solve the above-described problems, and a rod lens array capable of satisfying the required advanced performance even when the adhesive shrinks upon curing, and a method for manufacturing the same.
  • the purpose is to provide.
  • a rod lens array in which a plurality of rod lenses are arranged between two substrates so that the central axes of the rod lenses are substantially parallel to each other. And (1) TC difference ⁇ TC ⁇ 1.0 mm between the main scanning direction and the sub-scanning direction before performing the durability test, (2) ⁇ TC ⁇ 1.0 mm after performing a durability test for 500 hours at a temperature of 60 ° C. and a humidity of 90%, (3) MTFave ⁇ 70% @ 6Lp / mm at BestTC, A rod lens array is provided. (Here, BestTC is the average TC of the TC in the main scanning direction and the TC in the sub-scanning direction.)
  • a rod lens array characterized by the depth of focus DOF ⁇ 0.9 mm at BestTC.
  • a rod lens array that satisfies the following four requirements is provided.
  • a rod lens array in which a plurality of rod lenses are arranged between two substrates so that the central axes of the rod lenses are substantially parallel to each other.
  • a rod lens array is provided, wherein a buffer layer having a thickness of more than 5 ⁇ m is provided between the lens and the two substrates, respectively, between the substrate and the rod lens.
  • a method of manufacturing a rod lens array comprising: a curing step of curing the adhesive applied to the two substrates to form a rod lens array.
  • the present invention includes the following aspects.
  • the rod lens array wherein the thickness of the buffer layer between the substrate and the rod lens is 10 ⁇ m or more.
  • the thickness of the buffer layer between the substrate and the rod lens is a rod lens array having a thickness of 15 ⁇ m or more.
  • Rod lens array in which a buffer layer between rod lenses is provided between adjacent rod lenses.
  • the rod lens array has a buffer layer thickness between 5 ⁇ m and 30 ⁇ m.
  • a rod lens array in which the buffer layer between the rod lenses has a thickness of 10 ⁇ m or more and 20 ⁇ m or less.
  • the buffer layer between the substrate and the rod lens is a rod lens array satisfying hardness (JIS 6253): A50 to A95 and tensile strength (JIS 6251): 1 MPa to 100 MPa.
  • the rod lens buffer layer has a hardness (JIS 6253): A50 to A95 and a tensile strength (JIS 6251): 1 MPa to 100 MPa.
  • the buffer layer between the substrate and the rod lens is a rod lens array formed by interposing the adhesive between the substrate and the rod lens.
  • the rod lens array is formed by interposing the adhesive between the rod lenses adjacent to each other.
  • a rod lens array in which the rod lens is a plastic rod lens is a plastic rod lens.
  • Rod lens array satisfying the following four requirements (1) 0.06 ⁇ numerical aperture NA ⁇ 0.4 (2) 0.3 mm ⁇ 1 ⁇ refractive index distribution constant g ⁇ 1.0 mm ⁇ 1 (3) 0.1 mm ⁇ lens effective radius re ⁇ 0.4 mm (4) 0.70 ⁇ 2re / P (effective lens radius / arrangement pitch)
  • the adhesive is applied so that the thickness of the adhesive after the first curing step exceeds 5 ⁇ m.
  • the rod lenses are arranged so that an interval between the rod lenses is 5 ⁇ m or more and 30 ⁇ m or less, and in the second application step, an interval between the rod lenses of the rod lens array is an adhesive.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time.
  • 4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. It is a graph which shows the relationship between the difference (DELTA) TC of conjugate length TC in the main scanning direction of the rod lens array by the Example of this invention and a comparative example, and a subscanning direction, and a buffer layer thickness.
  • DELTA difference
  • the difference ⁇ TC between the conjugate length TC in the main scanning direction and the sub-scanning direction after the rod lens array according to the example of the present invention and the comparative example was treated for 500 h under high temperature and high humidity conditions of 60 ° C. and 90% RH, and the buffer layer It is a graph which shows the relationship with thickness. It is a cross-sectional photograph of the rod lens array by a comparative example, and the change of the lattice image before and after an endurance test. 6 is a cross-sectional photograph of a rod lens array according to an embodiment of the present invention and a change in a lattice image before and after a durability test. 6 is a cross-sectional photograph of a rod lens array according to an embodiment of the present invention and a change in a lattice image before and after a durability test.
  • FIG. 1 is a perspective view showing a rod lens array.
  • the rod lens array 1 includes two substrates 3, 5, a substrate-rod lens buffer layer 11, a rod lens buffer layer 13, and an adhesive 7.
  • a plurality of rod lenses 9 fixed between the substrates 3 and 5 through a buffer layer between the substrate and rod lenses.
  • a plurality of the rod lenses 9 are arranged in a line between the two substrates 3 and 5 so that the central axes of the rod lenses 9 are substantially parallel to each other. Has been placed.
  • plates such as bakelite (phenol resin), ABS resin, epoxy resin, and acrylic resin containing a light shielding agent such as carbon black and dye are used.
  • substrates 3 and 5 may use a plate-shaped thing, and the U-shape or V-shape used as the standard for arrange
  • a groove having a shape or the like may be provided.
  • the material of the substrates 3 and 5 is not particularly limited, but is preferably a material that can be easily processed in the process of manufacturing the rod lens array 1.
  • various thermoplastic resins, various thermosetting resins, and the like are preferably used, and acrylic resins, ABS resins, polyimide resins, liquid crystal polymers, epoxy resins, and the like are more preferable.
  • fibers and paper may be used as the base material and the reinforcing material of the substrate, and a release agent, a dye, a pigment, and the like may be added to the substrate.
  • the rod lens array in the rod lens array may be one in which rod lenses are arranged between two substrates as illustrated in FIG. 1, or two or more rows of rod lenses are stacked between two substrates. May be arranged. In a configuration in which two or more rod lenses are stacked, it is preferable that the rod lenses are arranged so as to be shifted in the arrangement direction by a distance corresponding to the radius of the rod lens so that a gap between adjacent rod lens rows is minimized.
  • a surface protective layer may be provided on the end surface of the rod lens 9 for the purpose of preventing dust adhesion and damage. Examples of the surface protective layer include a protective layer made of an existing UV curable hard coating agent, a cover glass installed on the lens end face, and the like. In the following, an example in which a plurality of rod lenses 9 are arranged in a row between two substrates 3 and 5 will be described.
  • the rod lenses 9 have a cylindrical shape and are arranged in parallel at equal intervals.
  • the rod lens 9 is preferably a plastic or glass rod lens of a refractive index distribution (GI) type in which the refractive index continuously decreases from the center of the circular cross section toward the outer periphery.
  • GI refractive index distribution
  • N (L) is the refractive index n 0 at the position of the radial distance L from the central axis of the rod lens, the refractive index at the radial central axis of the rod lens, and L is the radial distance from the radial center of the rod lens. (0 ⁇ L ⁇ r), g represents the refractive index distribution constant of the rod lens.
  • the refractive index distribution constant g is a second-order coefficient related to the position L of the refractive index distribution curve approximated by the above formula, and is a constant that defines the slope of the refractive index distribution curve. That is, the larger the refractive index distribution constant g, the steeper shape of the refractive index distribution curve, which means that the refractive index decreases more rapidly from the central axis toward the outer peripheral surface in the rod lens.
  • the value of the refractive index n 0 at the radial center is not particularly limited, but preferably satisfies the following formula (2). 1.45 ⁇ n 0 ⁇ 1.65 (2)
  • the refractive index n 0 is in this range, the choices of materials that can be used for the rod lens are widened, so that a rod lens having a favorable refractive index distribution and excellent transparency can be obtained.
  • the rod lens and rod lens array used in this embodiment preferably satisfy the following requirements. 0.06 ⁇ Numerical aperture NA ⁇ 0.4 0.3 mm ⁇ -1 ⁇ refractive index distribution constant g ⁇ 1.0 mm ⁇ 1 0.1 mm ⁇ effective lens radius re ⁇ 0.4 mm 0.70 ⁇ 2re / P (effective lens radius / arrangement pitch)
  • the depth of focus DOF having an inversely proportional relationship with the numerical aperture NA can be increased.
  • the upper limit value of the numerical aperture NA is preferably 0.15 or less.
  • the lower limit value of the numerical aperture NA is preferably 0.06 or more, and more preferably 0.1 or more. preferable.
  • the numerical aperture NA represented by the product of n 0 ⁇ g ⁇ re can be designed to be small, thereby increasing the depth of focus. . Furthermore, by setting the refractive index distribution constant g to 0.3 mm ⁇ 1 or more, the working distance L 0 does not become too long and the entire apparatus can be miniaturized, and the product of the formula n 0 ⁇ g ⁇ re The numerical aperture NA expressed can be designed to be large, thereby increasing the amount of light.
  • the lower limit value of the refractive index distribution constant g is more preferably 0.35 mm ⁇ 1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.95 mm ⁇ 1 or less.
  • the radius r of the rod lens used in the present invention preferably satisfies the following formula (3). 0.1 mm ⁇ r ⁇ 0.4 mm (3)
  • the numerical aperture NA can be designed to be small, and the depth of focus can be increased accordingly.
  • the lower limit value of the radius r is preferably 0.15 mm or more.
  • the effective radius re which is the radius of the effective portion that performs the lens action
  • NA the numerical aperture NA expressed by the product of the formula n 0 ⁇ g ⁇ re
  • the effective radius re can be 0.1 mm or more, when configuring the rod lens array of the present invention and an optical system such as an image sensor incorporating the rod lens array, the optical axis of the rod lens and the light source or It is difficult for the optical axis to be shifted from the light receiving sensor, and it is possible to suppress a decrease in optical characteristics associated therewith.
  • the effective radius re by setting the effective radius re to be 0.1 mm or more, the numerical aperture NA expressed by the product of the formula n 0 ⁇ g ⁇ re can be designed to be large, thereby increasing the amount of light.
  • a preferable range of the effective radius re is 0.15 mm or more and 0.35 mm or less, and more preferably 0.16 or more and 0.30 or less.
  • the radius r and the effective radius re may be the same value, but preferably satisfy the relationship of the equation re ⁇ r, and more preferably satisfy the relationship of the equation 0.70r ⁇ re ⁇ r.
  • the arrangement pitch P is the distance between the centers of adjacent rod lenses in the rod lens array, and the value 2re is the diameter of the effective portion that performs the lens action of the rod lens used.
  • a preferable range of the value 2re / P is 0.7 or more and 1 or less, and a more preferable range is 0.85 or more and 1 or less.
  • the clearance between the rod lenses 9 is improved for the purpose of improving the alignment accuracy, removing crosstalk light, and providing the inter-rod lens buffer layer 13.
  • the arrangement pitch P is larger than the diameter 2r of the rod lens 9 and the diameter 2re of the effective portion.
  • the effective portion that performs the lens action exists in “jumping”.
  • the position between the optical axes of adjacent lenses is more than the position on the optical axis of each lens.
  • the depth of focus tends to be narrow. For this reason, if there is an “excessive” effective portion that performs the lens action in the lens array, the depth of focus tends to increase.
  • the ratio of the effective portion that performs the lens action is reduced, so that the amount of light is likely to be small and the unevenness in the amount of light is likely to be large.
  • the ratio 2re / P between the diameter 2re of the effective portion of the rod lens 9 and the center-to-center distance P of the adjacent rod lenses 9 in the rod lens array is 0.70 ⁇ 2re /
  • P ⁇ 1 the depth of focus spot can be reduced, the light amount can be increased, and the light amount spot can be further reduced.
  • the rod lens array 1 includes a substrate-rod lens buffer layer 11 between the rod lens 9 and the substrates 3, 5 so that the substrates 3, 5 and the rod lens 9 do not come into contact with each other.
  • the buffer layer 11 between the substrate and the rod lens is provided between all the rod lenses 9 and the substrates 3 and 5, so that the rod lens 9 is not in contact with the substrates 3 and 5. .
  • the material of the buffer layer 11 between the substrate and the rod lens is not particularly limited as long as the hardness defined by JIS6253 is A50 to A95 and the tensile strength defined by JIS6251 satisfies 1 MPa to 100 MPa.
  • a material for forming the buffer layer 11 between the substrate and the rod lens a urethane polymer, an epoxy polymer, a silicon polymer, an EVA polymer, a rubber polymer, or the like can be used. Maintaining the workability of machining such as cutting, cutting and polishing in the process of manufacturing the rod lens array 1 by setting the hardness of the buffer layer 11 between the substrate and the rod lens to A50 or more and the tensile strength to 1 MPa or more. Can do.
  • the inter-rod lens buffer layer 11 preferably has a hardness of A55 or more and A90 or less, a tensile strength of 2 MPa or more and 50 MPa or less, a hardness of A60 or more and A85 or less, and a tensile strength of 3 MPa or more and 20 MPa or less. Is more preferable.
  • the buffer layer 11 between the substrate and rod lens may be formed by interposing a layer of adhesive 7 (adhesive layer) between the substrates 3 and 5 and the rod lens 9. Since the buffer layer 11 between the substrate and the rod lens is formed of an adhesive layer, the periphery of the rod lens 9 can be made of a single material. Therefore, when the adhesive 7 contracts, it acts on the rod lens 9. Anisotropic force can be reduced.
  • the adhesive 7 the rod lens 9 and the substrates 3 and 5, the rod lens 9 and the substrate-rod lens buffer layer 11, the rod lens 9 and the rod lens buffer layer 13, and the rod lenses 9 and 9 can be fixed to each other. There is no particular limitation as long as it has an adhesive strength of.
  • a cyanoacrylic adhesive, a urethane adhesive, an epoxy adhesive, a silicone adhesive, an EVA adhesive, a rubber adhesive, or the like can be used.
  • an adhesive that can be applied in a thin film, a spray-type adhesive, a hot-melt-type adhesive, or the like can be used. Among these, urethane adhesives, epoxy adhesives, silicone adhesives, EVA adhesives, and the like are preferable.
  • a known coating method such as a screen printing method or a spray coating method can be used depending on the type of the adhesive.
  • the buffer layer 11 between the substrate and the rod lens may be composed only of the adhesive 7 layer, or may have a cushioning layer other than the adhesive layer.
  • the cushion layer may be a urethane polymer, an epoxy polymer, a silicon polymer, an EVA polymer.
  • a cushion layer made of a rubber polymer or the like can be used.
  • the ratio of the thickness of the adhesive layer and the cushion layer is not particularly limited, and can be appropriately selected according to the type of the rod lens array, the thickness of the buffer layer, and the like. Further, the arrangement of the adhesive layer and the cushion layer is not particularly limited. For example, a layer that adheres to the substrate and a layer that adheres to the rod lens is used as an adhesive layer, and a cushion layer is provided between these adhesive layers. be able to.
  • the inter-rod lens buffer layer 13 is provided between the adjacent rod lenses 9 so that the adjacent rod lenses 9 do not come into contact with each other.
  • the inter-rod lens buffer layer 13 can prevent the rod lens 9 from deforming due to the adhesive 7 solidifying and contracting, and the adjacent rod lenses 9 interfering with each other.
  • the adhesive 7 is solidified and contracts, and adjacent rod lenses interfere with each other. Therefore, unnecessary force acts in the direction of compressing the rod lens, and the lens is deformed.
  • the refractive index of the lens changes, and as a result, anisotropy occurs in the optical performance of the rod lens, and the resolution decreases.
  • the inter-rod lens buffer layer 13 between the adjacent rod lenses 9 it is possible to prevent unnecessary force from acting on the rod lens 9 when the adhesive 7 is solidified and contracts. it can.
  • the thickness of the inter-rod lens buffer layer 13 is preferably 5 to 30 ⁇ m, and more preferably 10 to 20 ⁇ m. By setting the thickness of the inter-rod lens buffer layer 13 to 5 ⁇ m or more, deformation of the rod lens can be sufficiently suppressed. The reason why the thickness of the inter-rod lens buffer layer 13 is set to 30 ⁇ m or less is that a dramatic improvement in the effect is not recognized even if the thickness is increased beyond that.
  • the material composing the inter-rod lens buffer layer 13 is not particularly limited as long as the material has a hardness defined by JIS6253 of A50 to A95 and a tensile strength defined by JIS6251 of 1 MPa to 100 MPa.
  • a material constituting the inter-rod lens buffer layer 13 urethane polymer, epoxy polymer, silicon polymer, EVA polymer, rubber polymer, or the like can be used.
  • the inter-rod lens buffer layer 13 preferably has a hardness of A55 or more and A90 or less, a tensile strength of 2 MPa or more and 50 MPa or less, a hardness of A60 or more and A85 or less, and a tensile strength of 3 MPa or more and 20 PMa or less. .
  • the inter-rod lens buffer layer 13 may be formed by interposing an adhesive 7 layer (adhesive layer) between the adjacent first rod lenses.
  • an adhesive 7 layer adheresive layer
  • the periphery of the rod lens 9 can be made of a single material, so that the anisotropic action acting on the rod lens 9 when the adhesive 7 contracts. Force can be reduced.
  • FIG. 2 is a perspective view showing a process for manufacturing the rod lens array described above.
  • an adhesive layer is used for the buffer layer.
  • an adhesive 7a is applied on the substrate 3 to a thickness of more than 5 ⁇ m.
  • the adhesive 7a is applied on the surface of the substrate 3 so as to form a large number of strips extending linearly.
  • the adhesive 7a is cured for a certain period of time to form the substrate-rod lens buffer layer 11 having a thickness of more than 5 ⁇ m.
  • the adhesive 7b is applied again on the strip of the cured adhesive 7a (substrate-rod lens buffer layer 11).
  • the some rod lens 9 is arrange
  • the rod lens 9 is disposed on the adhesive 7 so as to extend perpendicular to the direction in which the layer of the adhesive 7 extends. At this time, in order to form the inter-rod lens buffer layer 13, the rod lens 9 is disposed with a gap of about 5 to 30 ⁇ m provided between the rod lenses 9. Thereafter, another substrate 5 on which a layer of the adhesive 7 is formed as shown in FIG. 2B is prepared. The prepared substrate 5 is placed on the rod lens 9 and the rod lens 9 is sandwiched between the two substrates 3 and 5. Thus, a sheet in which the rod lens 9 is sandwiched between the two substrates 3 and 5 is formed.
  • the uncured adhesive 7b is deformed and filled between the rod lenses 9, so that a predetermined thickness is established between the rod lenses 9.
  • the inter-rod lens buffer layer 13 is formed. Further, by bringing the rod lens 9 and the cured adhesive layer 7a (substrate-rod lens buffer layer 11) into contact, a substrate-rod having a predetermined thickness is provided between the rod lens 9 and the substrates 3, 5. The inter-lens buffer layer 11 is formed. Thereafter, the rod lens array 1 can be obtained by cutting the sheet in a direction orthogonal to the extending direction of the rod lens 9.
  • the adhesive 7b is applied with a thickness corresponding to the diameter of the rod lens 9 so as not to cause overfilling or underfilling of the adhesive. It is preferable.
  • the layer of the adhesive 7b is preferably applied with a thickness of 110 ⁇ m to 140 ⁇ m, and the rod lens array 1 using a lens having a diameter of 600 ⁇ m.
  • the layer of the adhesive 7b is applied with a thickness of 70 ⁇ m to 100 ⁇ m. It is preferably applied with a thickness of ⁇ 70 ⁇ m.
  • the adhesive solidifies and shrinks, and unnecessary force acts in the direction of compressing the rod lens, so the lens is deformed or the refractive index of the lens is It will change. As a result, anisotropy occurs in the optical performance of the rod lens, and the resolution decreases.
  • the resolution is lowered when the optical performance is evaluated or when the image is read. Therefore, the rod is in a state where a difference ⁇ TC is generated between the sub-scanning direction TC and the main scanning direction TC.
  • the resolution decreases in the main scanning direction or the sub-scanning direction.
  • the conjugate length TC is obtained as follows.
  • a chart 20 having a spatial frequency of 6 line pairs / mm (Lp / mm) is used, and a light source is applied to the rod lens array 1 whose both end faces perpendicular to the optical axis are polished.
  • 21 is incident through the chart 20 (only the light having a wavelength of 525 nm is used by the color filter 23 and the diffusion plate 24 is placed between the color filter and the chart so that the chart is uniformly irradiated with light).
  • MTF modulation transfer function
  • the chart and the CCD line sensor 22 are symmetrical with respect to the rod lens array 1.
  • the MTF is measured by moving, and the distance between the chart and the CCD line sensor when the MTF is the best is the conjugate length TC.
  • the spatial frequency indicates a combination of the white line 20 and the black line 20 as one line, and indicates how many combinations of the lines are provided within a width of 1 mm.
  • the conjugate length TC in the main scanning direction and the sub-scanning direction can be measured by adjusting the orientation of the chart 20 and the CCD line sensor 22 as shown in FIGS. 19a and 19b.
  • the chart when measuring the TC in the main scanning direction (FIG. 19a), the chart is installed in such a direction that the extending direction of the white and black lines provided in the chart is perpendicular to the main scanning direction. Measurement can be performed by installing a CCD line sensor in such a direction that the direction in which the pixels are arranged is parallel to the main scanning direction.
  • the chart and the CCD line sensor can be measured by rotating them 90 ° C. from the direction in the main scanning direction.
  • the chart when measuring in the main scanning direction, install the chart in a direction in which the extending direction of the white and black lines provided in the chart is perpendicular to the main scanning direction,
  • the CCD line sensor is installed in a direction in which the pixels of the CCD line sensor are arranged in parallel with the main scanning direction.
  • the white and black lines provided in the chart are displayed. It is assumed that the chart is installed in a direction in which the extending direction is parallel to the main scanning direction, and the CCD line sensor is installed in a direction in which the direction in which the pixels of the CCD line sensor are arranged is perpendicular to the main scanning direction.
  • the periphery of the rod lens 9 is made of the same material by interposing the substrate-rod lens buffer layer 11 for the purpose of reducing the above-described ⁇ TC. Therefore, even when the adhesive 7 contracts, the anisotropic force acting on the rod lens 9 can be reduced. Then, by reducing the force acting on the rod lens 9 to suppress the difference ⁇ TC, it is possible to reduce the decrease in resolution. Further, even when the rod lens array 1 is placed under a high temperature and high humidity condition and the adhesive further contracts, the anisotropic force acting on the rod lens 9 can be reduced. As a result, even when the rod lens array 1 is placed under a high temperature and high humidity condition, the difference ⁇ TC can be kept small, and a reduction in resolution can be reduced.
  • the difference ⁇ TC is set in the main scanning direction and the sub-scanning direction.
  • the influence on the optical performance can be reduced to the minimum.
  • the resolution in the main scanning direction and the sub-scanning direction is lowered when the difference ⁇ TC is large.
  • the read image is blurred in the main scanning direction and the sub-scanning direction. Therefore, a decrease in resolution can be suppressed by setting the difference ⁇ TC to 1 mm or less.
  • the difference ⁇ TC is preferably 0.6 mm or less, and more preferably 0.1 mm or less. Particularly in a lens for an LED printer, a high resolution requirement can be satisfied by setting the difference ⁇ TC to 0.1 mm or less, and it is more preferable to set the difference ⁇ TC to 0.08 mm or less.
  • the thickness of the buffer layer 11 between the substrate and the rod lens should be more than 5 ⁇ m, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the thickness of the substrate-rod lens buffer layer 11 is preferably 2000 ⁇ m or less. This is because even if the buffer layer 11 between the substrate and the rod lens is made thicker, the dramatic improvement in the effect is hardly recognized, and the arrangement of the rod lenses 9 is likely to occur.
  • the difference ⁇ TC can be suppressed to a small value, thereby reducing the resolution. Further, even when the adhesive further shrinks in the high-temperature and high-humidity conditions of the rod lens array 1, the anisotropic force acting on the rod lens 9 can be reduced, so that the difference ⁇ TC is kept small. Reduction in resolution can be reduced.
  • the difference ⁇ TC at room temperature before being placed in a high temperature and high humidity environment is 1.0 mm or less, and more preferably 0.6 mm or less.
  • the difference ⁇ TC when the rod lens array 1 is treated for 500 hours in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90% is preferably 1.0 mm or less, more preferably 0.6 mm or less. Preferably, it is 0.1 mm or less.
  • the average resolution MTFave at the value BestTC over the entire length of the rod lens 9 is 70% @ 6 Lp / mm or more.
  • the anisotropy of the optical performance of the rod lens array 1 can be reduced, and an image can be obtained using the rod lens array 1. It is possible to maintain a high resolution when the image is formed.
  • the average resolution MTFave measured at the value BestTC over the entire length of the rod lens array 1 is set to 70% @ 6 Lp / mm or more, so that the resolution when an image is formed using the rod lens array is kept high. can do.
  • a more preferable range of the average resolution MTFave is 73% @ 6Lp / mm or more, and further preferably 75% @ 6Lp / mm.
  • the average resolution MTFave (%) is a chart having a value of 6 Lp / mm, in which the distance between the chart and the CCD line sensor is fixed at a value BestTC set as an average value in the main scanning direction TC and the sub-scanning direction TC.
  • the main scanning of the rod lens and the light receiving sensor is performed by scanning the entire width of the rod lens array with the distance between the chart and the incident end of the rod lens array equal to the distance between the exit end of the rod lens array and the CCD line sensor. It is an average value (MTFave) when the MTF in the direction is measured at 50 points.
  • the average resolution MTFave is an index of resolution. The larger the average resolution MTFave value, the better the resolution.
  • the rod lens array 1 according to the present embodiment has the above-described average resolution MTFave, and can be used in applications such as a copying machine and an LED printer that require high resolution.
  • the rod lens and the rod lens array used for the copying machine satisfy the following requirements. 0.06 ⁇ Numerical aperture NA ⁇ 0.175 0.3 mm ⁇ 1 ⁇ refractive index distribution constant g ⁇ 0.6 mm ⁇ 1
  • the depth of focus DOF having an inversely proportional relationship with the numerical aperture NA can be sufficiently deepened.
  • the upper limit value of NA is preferably 0.15 or less.
  • the lower limit value of NA is preferably 0.06 or more, and more preferably 0.1 or more.
  • the thickness of the platen glass of the image scanner in which the rod lens array is incorporated is about 3 mm or less.
  • the working distance L 0 of the rod lens In consideration of the floating of the focus caused by the platen glass having a refractive index of 1.52, the thickness of 3 mm (about ⁇ 1 mm), and the clearance between the platen glass and the lens end surface (preferably 1 mm or more), the working distance L 0 of the rod lens. Needs to be at least 3 mm or more, and the working distance of the rod lens can be 3 mm or more by setting the refractive index distribution constant g to 0.6 mm ⁇ 1 or less.
  • the numerical aperture NA represented by the product of n 0 ⁇ g ⁇ re can be designed to be small as will be described later, and the depth of focus can be reduced. Can be deep.
  • the working distance L 0 does not become too long and the entire apparatus can be miniaturized, and the product of the formula n 0 ⁇ g ⁇ re
  • the numerical aperture NA expressed can be designed to be large, and the amount of light can be increased.
  • the lower limit value of the refractive index distribution constant g is more preferably 0.35 mm ⁇ 1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.5 mm ⁇ 1 or less.
  • the depth of focus DOF can be 0.9 mm or more. By taking the depth of focus in this way, the image can be read clearly even when the original is lifted from the reading table when the original is read by combining the rod lens array and the image sensor.
  • the focal depth DOF is more preferably 1.0 mm or more, and further preferably 1.1 mm or more.
  • the depth of focus DOF refers to a chart having a value of 6 Lp / mm, a rod lens, and a light receiving sensor, a distance between the chart and the entrance end of the rod lens array, and a distance between the exit end of the rod lens array and the CCD line sensor.
  • the MTF in the main scanning direction is 40% when only the chart is moved back and forth. This is the width (mm) of the moving range of the chart. The larger the depth of focus value, the easier it is to maintain a high resolution even when the document is displaced from the focal position.
  • the rod lens array 1 of the present embodiment has a value in the above range, the optical performance is low and the optical performance is low even when used in a high-temperature and high-humidity environment. Since there is no focus and the depth of focus is deep, the image can be read clearly and unevenly even when the read original is lifted, and is suitable for copying machines.
  • the amount of light is proportional to the square of the numerical aperture NA
  • the lower limit of NA is required from the viewpoint of increasing the amount of light.
  • the value is preferably 0.15 or more, and more preferably 0.175 or more.
  • the numerical aperture NA is preferably 0.35 or less, and more preferably 0.30 or less.
  • the working distance L 0 of the rod lens needs to be 3.5 mm or less.
  • the working distance of the rod lens can be 3.5 mm or less by setting the refractive index distribution constant g to 0.6 mm ⁇ 1 or more. Further, by setting the refractive index distribution constant g to 0.6 mm ⁇ 1 or more, the numerical aperture NA represented by the product of the formula n 0 ⁇ g ⁇ re can be designed large, and the amount of light can be increased. .
  • the refractive index distribution constant g is set to 1.0 mm ⁇ 1 or less, it is possible to prevent the working distance L 0 from becoming too short and causing interference with peripheral members. growing.
  • the refractive index distribution constant g is set to 1.0 mm ⁇ 1 or less, the numerical aperture NA represented by the product of n 0 ⁇ g ⁇ re can be designed to be small, and the depth of focus can be increased. it can.
  • the lower limit value of the refractive index distribution constant g is more preferably 0.7 mm ⁇ 1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.95 mm ⁇ 1 or less.
  • the plastic material constituting the rod lens 9 preferably has a glass transition temperature Tg of 60 ° C. or higher. If the glass transition temperature is too low, the heat resistance of the rod lens array may be insufficient, and it becomes difficult to select an adhesive to be filled inside.
  • Tg glass transition temperature
  • the plastic material constituting the rod lens 9 polymethyl methacrylate, a copolymer of methyl methacrylate and another monomer, or the like is used.
  • the difference ⁇ TC between the main scanning direction TC and the sub-scanning direction TC is 0.1 mm or less, and the difference ⁇ TC when treated in a high temperature and high humidity environment of 60 ° C. and 90% humidity is 500 ° C.
  • the average resolution MTFave over the entire length of the rod lens 9 may be 80% @ 12 Lp / mm or more, and the resolution spot MTFcv over the entire length of the rod lens 9 may be 3% @ 12 Lp / mm or less.
  • the difference ⁇ TC between the main scanning direction TC and the sub-scanning direction TC By setting the difference ⁇ TC between the main scanning direction TC and the sub-scanning direction TC to be 0.1 mm or less, the anisotropy of the optical performance of the rod lens array 1 can be reduced, and an image can be obtained using the rod lens array 1. It is possible to maintain a high resolution when the image is formed.
  • a more preferable range of the difference ⁇ TC between the main scanning direction TC and the sub-scanning direction TC is ⁇ TC 0.08 mm or less, and more preferably 0.06 mm or less. Further, when the difference ⁇ TC when treated for 500 hours in a high temperature and high humidity environment of 60 ° C. and 90% humidity is 0.1 mm or less, the rod lens array 1 is used in a high temperature and high humidity environment for a long time.
  • a more preferable range of the difference ⁇ TC when treated for 500 hours in a high-temperature and high-humidity environment with a temperature of 60 ° C. and a humidity of 90% is 0.08 mm or less, and more preferably 0.06 mm or less.
  • the average resolution MTFave measured over the entire length of the array is 80% @ 12 Lp / mm or more, it is possible to maintain a high resolution when the rod lens array 1 is used to form an image.
  • a more preferable range of the average resolution MTFave is 83% @ 12 Lp / mm or more, and more preferably 85% @ 12 Lp / mm or more.
  • the resolution unevenness MTFcv measured over the entire length of the array to 3% @ 12 Lp / mm or less, when the image is formed using the rod lens array 1, the unevenness in resolution can be suppressed to be small.
  • a more preferable range of the average resolution MTFave is 83% @ 12 Lp / mm or more, and more preferably 85% @ 12 Lp / mm or more.
  • the resolution spot MTFcv (%) is a value obtained by dividing the standard deviation of the resolution MTF by the average resolution MTFave when the MTF in the main scanning direction is measured at 50 points by scanning the entire width of the rod lens array by the above method. Is a value obtained by multiplying 100 by 100, and is an index of resolution spots. The smaller the value of MTFcv, the smaller the resolution spot and the more uniform the image.
  • the rod lens array 1 of the present embodiment has a value in the above range, the optical performance is low and the optical performance is low even when used in a high-temperature and high-humidity environment. In addition, since there are few optical performance spots, it is possible to provide a rod lens array suitable for LED printer applications, which can provide a uniform and spotless image.
  • the plastic rod lens is used for detailed description.
  • a glass rod lens may be used.
  • the glass rod lens 9 it is not necessary to consider the deformation of the rod lens 9 due to the shrinkage of the adhesive 7 when it is cured, so that the substrate-rod lens is interposed between the rod lens 9 and the substrates 3 and 5.
  • the intermediate buffer layer 11 Even if the inter-substrate rod lens buffer layer 11 is provided, it can be made thinner than the thickness of the inter-substrate rod lens buffer layer 11 described above.
  • FIGS. 5 to 7 are the conjugate length (TC) of the rod lens array according to the embodiment of the present invention. It is a graph which shows the time-dependent change.
  • Examples 1 to 6 and Comparative Examples 1 to 3 of the present invention polymethyl methacrylate, methyl methacrylate, phenyl methacrylate, t-butyl methacrylate, tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, Using 2,2,3,3-tetrafluoropropyl methacrylate as a raw material, radius r is 0.232 mm, center refractive index n 0 is 1.503 at a wavelength of 525 nm, and 0.2 r to 0.9 r from the center toward the outer periphery.
  • the refractive index distribution is approximated by the formula (1) in the range of ⁇ , the refractive index distribution constant g is 0.43 mm ⁇ 1 at the wavelength of 525 nm, the effective diameter re is 0.220 mm, the numerical aperture NA is 0.142, and the length is long.
  • a plastic rod lens having a length of 166 mm was used.
  • the radius r is made from polymethyl methacrylate, methyl methacrylate, benzyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate as a raw material.
  • the center refractive index n 0 is 1.513 at a wavelength of 525 nm
  • the refractive index distribution constant g is 0.88 mm ⁇ 1 at a wavelength of 525 nm
  • the effective diameter re is 0.222 mm
  • NA numerical aperture NA is 0.1.
  • a plastic rod lens with a length of 166 mm was used.
  • the adhesive was applied onto the substrate in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 ⁇ m.
  • Approximately 700 rod lenses were arranged in close contact with each other so that there was no gap between adjacent rod lenses, and were arranged on the adhesive so that the direction in which the adhesive extends and the lenses were orthogonal.
  • two substrates are prepared by preparing another substrate coated with an adhesive in the same manner as described above, and placing the rod lens on the rod lens so that the substrate on which the rod lens has already been disposed faces the adhesive coated surface. The rod lens was inserted. Thereafter, when the specimen was heated to 60 ° C.
  • the uncured adhesive was deformed and filled between the lenses. It became the state which adhered completely. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive.
  • the rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to obtain a finished rod lens array having a width of 8.5 mm.
  • the main scanning direction TC was 19.77 mm
  • the sub-scanning direction TC was 20.84 mm
  • the difference ⁇ TC in the conjugate length between the main scanning direction and the sub-scanning direction was 1. 07 mm and BestTC were 20.31 mm.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 59%, and the depth of focus DOF @ 6Lp / mm was 0.75 mm.
  • the main scanning direction TC after the endurance test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C.
  • a rod lens array was produced in the same manner as in Comparative Example 1 except that approximately 670 rod lenses were arrayed using a plate having array grooves formed at intervals of 480 ⁇ m.
  • a microscope Leica stereomicroscope M205C magnification 100 ⁇
  • a buffer layer of 15 ⁇ m was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.95. Further, no buffer layer was formed between the substrate and the rod lens, and it was completely in contact.
  • the main scanning direction TC was 18.99 mm
  • the sub-scanning direction TC was 20.57 mm
  • the conjugate length difference ⁇ TC between the main scanning direction and the sub-scanning direction was 1. 58 mm
  • BestTC was 19.78 mm
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 55%
  • the depth of focus DOF @ 6Lp / mm was 0.72 mm.
  • the main scanning direction TC after the endurance test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C.
  • an adhesive is applied on the substrate in multiple strips so that the application width is 8.8 mm, the application pitch is 10.3 mm, and the application thickness is 5 ⁇ m, and the treatment is performed in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours. Then, the adhesive was cured to provide a buffer layer between the substrate and the rod lens. After the adhesive was cured, the adhesive was applied in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 ⁇ m so as to overlap the cured adhesive.
  • rod lenses were arranged using a plate in which an array groove having an interval of 480 ⁇ m was formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal. Furthermore, a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface. As described above, the rod lens was sandwiched between the two substrates by being arranged on the rod lens. After that, when the specimen was heated to 60 ° C.
  • the uncured adhesive was deformed and filled between the lenses, and the lens and the cured
  • the adhesive (substrate-rod lens buffer layer) was in complete contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive.
  • the rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then cured in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours to cure the adhesive. I let you. After the adhesive was cured, the cut surface of the rod lens array original plate was mirror-cut and finished to a width of 9.0 mm to obtain a rod lens array.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 65%, and the focal depth DOF @ 6Lp / mm was 0.89 mm.
  • the main scanning direction TC after the endurance test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of a temperature of 60 ° C. and a humidity of 90% RH for 500 hours is 17.36 mm and the sub scanning direction.
  • the TC was 18.17 mm, and the conjugate length difference ⁇ TC between the main scanning direction and the sub-scanning direction was 0.81 mm.
  • FIG. 5 show the conjugate length TC (mm) in the direction) and the sub-scanning direction (substrate surface direction), and the difference ⁇ TC (mm) between the conjugate lengths in the main scanning direction and the sub-scanning direction.
  • Example 1 Adhesive is applied onto the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 10 ⁇ m, and the bonding is performed by treating for 24 hours in an environment of 60 ° C. and 90% humidity.
  • a rod lens array was prepared in the same manner as in Comparative Example 3 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 87%, and the focal depth DOF @ 6Lp / mm was 1.15 mm.
  • the main scanning direction TC is 17.49 mm and the sub-scanning direction TC after the endurance test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.50 mm.
  • Example 2 For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production. First, an adhesive is applied on the substrate in multiple strips so that the application width is 8.8 mm, the application pitch is 10.3 mm, and the application thickness is 20 ⁇ m, and the treatment is performed for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH.
  • a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa)
  • an adhesive is applied on
  • the adhesive was cured to provide a buffer layer between the substrate and the rod lens.
  • the adhesive was applied in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 ⁇ m so as to overlap the cured adhesive.
  • Approximately 670 rod lenses were arranged using a plate in which an array groove having an interval of 480 ⁇ m was formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal.
  • a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface.
  • the rod lens was sandwiched between the two substrates by being arranged on the rod lens. Then, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the cured Since the adhesive (buffer layer between the substrate and the rod lens) is completely in contact with each other, the rod lens is sandwiched between the two substrates by cooling the specimen to 20 ° C. and filled with the adhesive. I got the original plate.
  • the rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a width of 8.5 mm.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 91%, and the focal depth DOF @ 6Lp / mm was 1.19 mm.
  • the main scanning direction TC is 18.59 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of an air temperature of 60 ° C. and a humidity of 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.52 mm.
  • Example 3 Adhesive is applied onto the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 30 ⁇ m, and it is bonded by treating for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH.
  • a rod lens array was prepared in the same manner as in Example 2 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided. When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ⁇ ), a buffer layer of 15 ⁇ m was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92.
  • a 34 ⁇ m buffer layer was formed between the substrate and the rod lens.
  • the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 19.70 mm, the sub scanning direction TC was 20.04 mm, and the difference ⁇ TC in the conjugate length between the main scanning direction and the sub scanning direction was 0. 33 mm and BestTC were 19.87 mm.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 89.0%, and the depth of focus DOF @ 6Lp / mm was 1.2 mm.
  • the main scanning direction TC is 18.63 mm after the endurance test in which the rod lens array is exposed to a high temperature and high humidity condition of a temperature of 60 ° C. and a humidity of 90% RH is 18.63 mm.
  • the scanning direction TC was 19.10 mm, and the conjugate length difference ⁇ TC between the main scanning direction and the sub-scanning direction was 0.47 mm.
  • Example 4 Adhesive is coated on the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 40 ⁇ m, and the adhesive is bonded for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH.
  • a rod lens array was prepared in the same manner as in Example 2 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 90%, and the focal depth DOF @ 6Lp / mm was 1.18 mm.
  • the main scanning direction TC after the endurance test in which the rod lens array thus manufactured is subjected to a high temperature and high humidity condition of an air temperature of 60 ° C. and a humidity of 90% RH for 500 hours is 18.57 mm.
  • the sub-scanning direction TC was 19.06 mm, and the conjugate length difference ⁇ TC between the main scanning direction and the sub-scanning direction was 0.49 mm.
  • Example 5 Adhesive is coated on the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 100 ⁇ m, and the adhesive is bonded by treating for 24 hours in an environment of 60 ° C. and 90% humidity.
  • a rod lens array was produced in the same manner as in Example 1 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided. When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ⁇ ), a buffer layer of 15 ⁇ m was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92.
  • a buffer layer of 100 ⁇ m was formed between the substrate and the rod lens.
  • the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 18.58 mm, the sub-scanning direction TC was 18.67 mm, and the difference ⁇ TC in the conjugate length between the main scanning direction and the sub-scanning direction was 0.8. 09 mm and BestTC were 18.62 mm.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 87%, and the focal depth DOF @ 6Lp / mm was 1.17 mm.
  • the main scanning direction TC is 17.75 mm and the sub-scanning direction TC after a durability test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.14 mm.
  • Example 6 The rod lens array was manufactured by laminating a 1.0 mm thick ethylene propylene rubber on the surface of a phenolic substrate having a length of 330 mm, a width of 170 mm, and a thickness of 2.0 mm (recycled rubber-laminated laminate RS -1769X: manufactured by Risho Kogyo Co., Ltd .; JIS 6253 hardness A71 of rubber part; JIS 6251 tensile strength 24.2 MPa), moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller Co., Ltd .; JIS 6253 hardness A71; JIS 6251 tensile strength 3.
  • the uncured adhesive was deformed and filled between the lenses, and the lens and the substrate rubber The surface (buffer layer between the substrate and the rod lens) was in close contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive.
  • the rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a width of 9.0 mm.
  • the main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 83%, and the focal depth DOF @ 6Lp / mm was 1.13 mm.
  • the main scanning direction TC is 17.84 mm and the sub-scanning direction TC after the endurance test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours.
  • the conjugate length difference ⁇ TC between the main scanning direction and the sub-scanning direction was 0.11 mm.
  • Example 7 For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production. First, an adhesive is applied onto a substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 20 ⁇ m, and the substrate is treated in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours.
  • a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa)
  • the adhesive was cured to provide a buffer layer between the substrate and the rod lens.
  • the adhesive was applied in multiple strips so as to have a coating width of 8.8 mm, a coating pitch of 10.3 mm, and a coating thickness of 90 ⁇ m so as to overlap the cured adhesive.
  • Approximately 520 rod lenses were arranged using a plate in which arrangement grooves with a spacing of 615 ⁇ m were formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal.
  • a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface.
  • the rod lens was sandwiched between the two substrates by being arranged on the rod lens. After that, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the cured The adhesive (substrate-rod lens buffer layer) was in complete contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive. The rod lens array original plate thus obtained is cut at 5.0 mm intervals parallel to the direction in which the adhesive extends, and then treated in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours. The agent was cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a 4.4 mm width.
  • the main scanning MTFave @ 12Lp / mm at BestTC of this rod lens array was 85%, and the main scanning MTFcv @ 12Lp / mm at BestTC was 2.0%.
  • the main scanning direction TC is 9.80 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.08 mm.
  • Example 8 Adhesive is applied on the substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 30 ⁇ m.
  • a rod lens array was prepared in the same manner as in Example 7 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
  • This rod lens array had a main scan MTFave @ 12Lp / mm at BestTC of 88% and a main scan MTFcv @ 12Lp / mm at BestTC of 2.3%.
  • the main scanning direction TC is 9.84 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of 60 ° C. and humidity 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.06 mm.
  • Example 9 Adhesive is applied onto the substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 40 ⁇ m, and the adhesive is bonded by treating for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH.
  • a rod lens array was prepared in the same manner as in Example 7 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
  • This rod lens array had a main scan MTFave @ 12Lp / mm at BestTC of 84% and a main scan MTFcv @ 12Lp / mm at BestTC of 1.9%.
  • the main scanning direction TC is 9.88 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours.
  • the difference ⁇ TC in conjugate length between the main scanning direction and the sub-scanning direction was 0.05 mm.
  • 6 to 14 show the conjugate length TC (mm) in the (plane direction of the substrate) and the difference ⁇ TC (mm) between the conjugate lengths in the main scanning direction and the sub-scanning direction.
  • FIG. 15 shows the relationship between the conjugate length difference ⁇ TC (mm) and the buffer layer thickness.
  • the relationship between the thickness of the buffer layer and the value of the difference ⁇ TC (mm) in the conjugate length that occurs after 500 hours of endurance test of exposure to high temperature and high humidity conditions of 60 ° C and 90% RH is shown.
  • the deformation of the lens due to the shrinkage of the adhesive can be suppressed. It has been found that the optical characteristics of the rod lens array can be maintained while suppressing a significant difference in conjugate length between the main scanning direction and the sub-scanning direction of the lens.
  • FIG. 17 shows a rod lens array (Comparative Example 1) that does not have a buffer layer between a rod lens and a buffer layer between a substrate and a rod lens, and has a buffer layer between a rod lens of 15 ⁇ m, but has a buffer layer between a substrate and a rod lens.
  • a cross-sectional photograph of a rod lens array (Comparative Example 2) that is not provided and a rod lens array (Comparative Example 3) that has a buffer layer between rod lenses of 15 ⁇ m and a buffer layer between the substrate and rod lenses of 5 ⁇ m is shown. .
  • FIG. 1 shows a rod lens array (Comparative Example 1) that does not have a buffer layer between a rod lens and a buffer layer between a substrate and a rod lens, and has a buffer layer between a rod lens of 15 ⁇ m, but has a buffer layer between a substrate and a rod lens.
  • FIG. 18 shows an image (grating image) obtained by forming an image of a lattice having a spacing of 100 ⁇ m using these rod lens arrays, and these rod lens arrays are subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH.
  • the lattice image after performing the durability test of exposing to 500 hours is shown.
  • FIG. 18 shows a rod lens array (Example 1) having a buffer layer between the rod lenses of 15 ⁇ m and a buffer layer between the substrate and rod lenses of 10 ⁇ m, a buffer layer between the rod lenses of 15 ⁇ m, and a buffer layer between the substrate and rod lenses of 20 ⁇ m.
  • Rod lens array (Example 2), 15 ⁇ m buffer lens between rod lenses and 24 ⁇ m substrate-lens buffer layer (Example 3), buffer layer between 15 ⁇ m rod lenses and 34 ⁇ m substrate -Rod lens array having a buffer layer between rod lenses (Example 4), 15 [mu] m rod lens buffer layer and 41 [mu] m rod lens array having a substrate-rod lens buffer layer (Example 4), between 15 [mu] m rod lenses Rod lens array having a buffer layer and a buffer layer between a substrate and a rod lens of 100 ⁇ m (Example 5) , And 15 ⁇ m of the rod lens between the substrates of the buffer layer and 1068Myuemu - shows a cross-sectional photograph of the rod lens array having a buffer layer between the rod lens (Example 6).
  • FIG. 18 shows an image (grating image) obtained by forming an image of a grid having an interval of 100 ⁇ m using these rod lens arrays, and these rod lens arrays under a high temperature and high humidity condition of 60 ° C. and 90% RH.
  • the lattice image after performing the durability test of exposing to 500 hours is shown.
  • the left and right are the main scanning direction, and the upper and lower are the sub scanning direction.
  • the lattice image of the rod lens array having a substrate-rod lens buffer layer of 5 ⁇ m or less is disturbed before and after the durability test.
  • it was found that the lattice image of the rod lens array having the substrate-rod lens buffer layer was hardly disturbed even after the durability test. This also shows that according to the embodiment of the present invention, it is possible to prevent the lattice image from being disturbed by providing the substrate-rod lens buffer layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Heads (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

Provided are a rod lens array and a manufacturing method therefor, which enable deformation of rod lenses and/or variation in the refractive index of the rod lenses to be suppressed, even if an adhesive agent has contracted during curing. This rod lens array (1), in which a plurality of rod lenses (9) are fixed between two substrates (3, 5) using an adhesive agent (7), is provided with intersubstrate-rod lens buffer layers (11) between the rod lenses (9) and the two substrates (3, 5) severally.

Description

ロッドレンズアレイ及びその製造方法Rod lens array and manufacturing method thereof
 本発明は、ロッドレンズアレイ及びその製造方法に関し、特に、基板の間に複数のロッドレンズを配列させたロッドレンズアレイ及びその製造方法に関する。 The present invention relates to a rod lens array and a manufacturing method thereof, and more particularly to a rod lens array in which a plurality of rod lenses are arranged between substrates and a manufacturing method thereof.
 従来から、微小レンズの一つとして、両端面が鏡面研磨された円柱状のロッドレンズが知られている。このようなロッドレンズは、単体で用いられる他に、多数のロッドレンズを配列して一体化させたロッドレンズアレイの形態とされ、複写機、ファクシミリ、スキャナ、ハンドスキャナ等で使用されるイメージセンサ用の光学部品として、あるいは、光源にLED(発光ダイオード)を用いたLEDプリンタ、液晶素子を用いた液晶プリンタ、EL素子を用いたELプリンタのような装置における書き込みデバイスとして用いられている。 Conventionally, a cylindrical rod lens whose both end surfaces are mirror-polished is known as one of microlenses. In addition to being used alone, such a rod lens is in the form of a rod lens array in which a large number of rod lenses are arranged and integrated, and is used in a copying machine, facsimile, scanner, hand scanner, etc. As a writing device in an apparatus such as an LED printer using an LED (light emitting diode) as a light source, a liquid crystal printer using a liquid crystal element, or an EL printer using an EL element.
 このようなロッドレンズアレイは、二枚の基板を準備して一方の基板の上に接着剤を塗布してその上にロッドレンズを配列し、その後表面に接着剤が塗布された他方の基板を重ねるよう方法によって製造されている(特許文献1)。 In such a rod lens array, two substrates are prepared, an adhesive is applied on one substrate, a rod lens is arranged thereon, and then the other substrate having an adhesive applied on the surface is arranged. It is manufactured by a method of overlapping (Patent Document 1).
特許第4778220号公報Japanese Patent No. 4778220
 一般的に、上述したようなロッドレンズアレイは、ロッドレンズの配列斑を無くすために、ロッドレンズが2枚の基板と接触するように、ロッドレンズを2枚の基板によって挟み込むようになっている。 In general, the rod lens array as described above is configured such that the rod lens is sandwiched between the two substrates so that the rod lens is in contact with the two substrates in order to eliminate the uneven arrangement of the rod lenses. .
 しかしながら、このようにロッドレンズが2枚の基板と接触するようにロッドレンズを挟み込むと、接着剤が硬化するときの接着剤の収縮によって基板がロッドレンズを圧縮する方向に引っ張られてしまい、レンズに不要な力が作用してしまう。そしてこれによりレンズが変形し、又はレンズの屈折率が変化してしまい、その結果、ロッドレンズの光学性能に異方性が発生し、アレイとしての光学性能が低下してしまう、という問題があった。さらに、高温高湿環境下でロッドレンズの耐久試験を行うと、接着剤の収縮が進行し、光学性能がさらに低下してしまうという問題があった。そして近年では、LEDプリンタおよび複写機の高精度化、印刷速度の高速化、及び機器の小型化が急速に進んできており、これに伴ってロッドレンズアレイに求められる要求性能も高度化しているが、接着剤の収縮によって光学性能が低下したロッドレンズアレイでは、この要求性能を満足することができなかった。 However, if the rod lens is sandwiched so that the rod lens comes into contact with the two substrates in this way, the substrate is pulled in the direction of compressing the rod lens due to the shrinkage of the adhesive when the adhesive is cured, and the lens Unnecessary force will be applied. As a result, the lens is deformed or the refractive index of the lens is changed. As a result, anisotropy occurs in the optical performance of the rod lens, and the optical performance as the array deteriorates. It was. Furthermore, when the durability test of the rod lens is performed in a high temperature and high humidity environment, there is a problem that the shrinkage of the adhesive proceeds and the optical performance is further deteriorated. In recent years, LED printers and copiers have become more precise, faster printing speeds, and smaller devices, and the required performance required for rod lens arrays has also become higher. However, the rod lens array whose optical performance is lowered due to shrinkage of the adhesive cannot satisfy the required performance.
 そこで本発明は、上述した問題点を解決するためになされたものであり、接着剤が硬化時に収縮した場合でも、要求されている高度な性能を満足することができるロッドレンズアレイ及びその製造方法を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems, and a rod lens array capable of satisfying the required advanced performance even when the adhesive shrinks upon curing, and a method for manufacturing the same. The purpose is to provide.
 上述した課題を解決するために、本発明によれば、2枚の基板の間に、複数のロッドレンズが各ロッドレンズの中心軸が互いに略平行となるように配列されたロッドレンズアレイであって、
(1)耐久試験を行う前の主走査方向と副走査方向のTCの差ΔTC≦1.0mmであり、
(2)温度60℃、湿度90%下で500時間耐久試験を行った後のΔTC≦1.0mmであり、
(3)BestTCにおけるMTFave≧70%@6Lp/mmである、
ことを特徴とする、ロッドレンズアレイが提供される。
(ここでBestTCとは、主走査方向のTCと副走査方向のTCとの平均TCである)
In order to solve the above-described problems, according to the present invention, there is provided a rod lens array in which a plurality of rod lenses are arranged between two substrates so that the central axes of the rod lenses are substantially parallel to each other. And
(1) TC difference ΔTC ≦ 1.0 mm between the main scanning direction and the sub-scanning direction before performing the durability test,
(2) ΔTC ≦ 1.0 mm after performing a durability test for 500 hours at a temperature of 60 ° C. and a humidity of 90%,
(3) MTFave ≧ 70% @ 6Lp / mm at BestTC,
A rod lens array is provided.
(Here, BestTC is the average TC of the TC in the main scanning direction and the TC in the sub-scanning direction.)
 本発明の他の態様によれば、上記に加え、BestTCにおける焦点深度DOF≧0.9mmである、ことを特徴とする、ロッドレンズアレイが提供される。 According to another aspect of the present invention, in addition to the above, there is provided a rod lens array characterized by the depth of focus DOF ≧ 0.9 mm at BestTC.
 また本発明の他の態様によれば、以下の4つの要件を満たすロッドレンズアレイが提供される。
(1)耐久試験を行う前のΔTC≦0.1mm
(2)温度60℃、湿度90%下で500時間耐久試験を行った後のΔTC≦0.1mm
(3)BestTCにおけるMTFave≧80%@12Lp/mm
(4)BestTCにおけるMTFcv≦3%@12Lp/mm
According to another aspect of the present invention, a rod lens array that satisfies the following four requirements is provided.
(1) ΔTC ≦ 0.1 mm before endurance test
(2) ΔTC ≦ 0.1 mm after a 500 hour durability test at a temperature of 60 ° C. and a humidity of 90%
(3) MTFave ≧ 80% @ 12Lp / mm at BestTC
(4) MTCvv ≦ 3% at BestTC @ 12 Lp / mm
 また本発明の他の様態によれば、2枚の基板の間に、複数のロッドレンズが各ロッドレンズの中心軸が互いに略平行となるように配列されたロッドレンズアレイであって、前記ロッドレンズと前記2枚の基板との間に、各々、基板‐ロッドレンズ間に厚さが5μm超の緩衝層が設けられている、ことを特徴とする、ロッドレンズアレイが提供される。 According to another aspect of the present invention, there is provided a rod lens array in which a plurality of rod lenses are arranged between two substrates so that the central axes of the rod lenses are substantially parallel to each other. A rod lens array is provided, wherein a buffer layer having a thickness of more than 5 μm is provided between the lens and the two substrates, respectively, between the substrate and the rod lens.
 また本発明の他の態様によれば、
 2枚の基板の上に、各々、緩衝層を設ける段階と、
 前記2枚の基板の上に形成された緩衝層の上に接着剤を塗布する塗布段階と、
 前記2枚の基板のうちの何れか一方の基板に塗布された接着剤の上にロッドレンズを配列する配列段階と、
 前記2枚の基板のうちの他方の基板に塗布された接着剤がロッドレンズに接着されるように、当該他方の基板をロッドレンズの上に配置する配置段階と、
 前記2枚の基板に塗布された前記接着剤を硬化させ、ロッドレンズアレイとする硬化段階と、を備えていることを特徴とする、ロッドレンズアレイの製造方法が提供される。
According to another aspect of the invention,
Providing a buffer layer on each of the two substrates;
An application step of applying an adhesive on the buffer layer formed on the two substrates;
An arrangement step of arranging rod lenses on an adhesive applied to any one of the two substrates;
An arrangement step of disposing the other substrate on the rod lens so that the adhesive applied to the other substrate of the two substrates is adhered to the rod lens;
There is provided a method of manufacturing a rod lens array, comprising: a curing step of curing the adhesive applied to the two substrates to form a rod lens array.
 上記課題の解決手段として、本発明は以下の態様を包含する。 As a means for solving the above problems, the present invention includes the following aspects.
 前記基板‐ロッドレンズ間緩衝層の厚さは、10μm以上である、ロッドレンズアレイ。 The rod lens array wherein the thickness of the buffer layer between the substrate and the rod lens is 10 μm or more.
 前記基板‐ロッドレンズ間緩衝層の厚さは、15μm以上である、ロッドレンズアレイ。 The thickness of the buffer layer between the substrate and the rod lens is a rod lens array having a thickness of 15 μm or more.
 隣接するロッドレンズの間にロッドレンズ間緩衝層が設けられている、ロッドレンズアレイ。 Rod lens array in which a buffer layer between rod lenses is provided between adjacent rod lenses.
 前記ロッドレンズ間緩衝層の厚さは、5μm以上30μm以下である、ロッドレンズアレイ。 The rod lens array has a buffer layer thickness between 5 μm and 30 μm.
 前記ロッドレンズ間緩衝層の厚さは、10μm以上20μm以下である、ロッドレンズアレイ。 A rod lens array in which the buffer layer between the rod lenses has a thickness of 10 μm or more and 20 μm or less.
 前記基板‐ロッドレンズ間緩衝層は、硬度(JIS6253):A50~A95、引張強度(JIS6251):1MPa~100MPaを満足する、ロッドレンズアレイ。 The buffer layer between the substrate and the rod lens is a rod lens array satisfying hardness (JIS 6253): A50 to A95 and tensile strength (JIS 6251): 1 MPa to 100 MPa.
 前記ロッドレンズ間緩衝層は、硬度(JIS6253):A50~A95、引張強度(JIS6251):1MPa~100MPaを満足する、ロッドレンズアレイ。 The rod lens buffer layer has a hardness (JIS 6253): A50 to A95 and a tensile strength (JIS 6251): 1 MPa to 100 MPa.
 前記基板‐ロッドレンズ間緩衝層は、前記基板と前記ロッドレンズとの間に前記接着剤を介在させることによって形成されている、ロッドレンズアレイ。 The buffer layer between the substrate and the rod lens is a rod lens array formed by interposing the adhesive between the substrate and the rod lens.
 前記ロッドレンズ間緩衝層は、隣接する前記ロッドレンズの間に前記接着剤を介在させることによって形成されている、ロッドレンズアレイ。 The rod lens array is formed by interposing the adhesive between the rod lenses adjacent to each other.
 前記ロッドレンズがプラスチックロッドレンズである、ロッドレンズアレイ。 A rod lens array in which the rod lens is a plastic rod lens.
 以下の4つの要件を満たすロッドレンズアレイ
(1)0.06≦開口数NA≦0.4
(2)0.3mm-1≦屈折率分布定数g≦1.0mm-1
(3)0.1mm≦レンズ有効半径re≦0.4mm
(4)0.70≦2re/P(レンズ有効半径/配列ピッチ)
Rod lens array satisfying the following four requirements (1) 0.06 ≦ numerical aperture NA ≦ 0.4
(2) 0.3 mm −1 ≦ refractive index distribution constant g ≦ 1.0 mm −1
(3) 0.1 mm ≦ lens effective radius re ≦ 0.4 mm
(4) 0.70 ≦ 2re / P (effective lens radius / arrangement pitch)
 2枚の基板の上に、各々、接着剤を塗布する第1の塗布段階と、
 前記2枚の基板の上に塗布された接着剤を硬化させる第1の硬化段階と、
 前記2枚の基板の上で硬化された接着剤の上にさらに接着剤を塗布する第2の塗布段階と、
 前記2枚の基板のうちの何れか一方の基板に塗布された接着剤の上にロッドレンズを配列する配列段階と、
 前記2枚の基板のうちの他方の基板に塗布された接着剤がロッドレンズに接着されるように、当該他方の基板をロッドレンズの上に配置する配置段階と、
 前記2枚の基板に塗布された前記接着剤を硬化させ、ロッドレンズアレイとする第2の硬化段階と、
を備えている、ロッドレンズアレイの製造方法。
A first application step of applying an adhesive on each of the two substrates;
A first curing step of curing the adhesive applied on the two substrates;
A second application step of further applying an adhesive on the adhesive cured on the two substrates;
An arrangement step of arranging rod lenses on an adhesive applied to any one of the two substrates;
An arrangement step of disposing the other substrate on the rod lens so that the adhesive applied to the other substrate of the two substrates is adhered to the rod lens;
A second curing step of curing the adhesive applied to the two substrates to form a rod lens array;
A method for manufacturing a rod lens array, comprising:
 前記第1の塗布段階において、前記第1の硬化段階後の接着剤の厚みが5μm超となるように接着剤を塗布することを特徴とする、ロッドレンズアレイの製造方法。 In the first application step, the adhesive is applied so that the thickness of the adhesive after the first curing step exceeds 5 μm.
 前記配列段階において、前記ロッドレンズ同士の間隔が5μm以上30μm以下となるように、前記ロッドレンズが配列し、前記第2の塗布段階において、前記ロッドレンズアレイの前記ロッドレンズ同士の間隔が接着剤で埋まる量の接着剤が塗布されることを特徴とする、記載のロッドレンズアレイの製造方法。 In the arranging step, the rod lenses are arranged so that an interval between the rod lenses is 5 μm or more and 30 μm or less, and in the second application step, an interval between the rod lenses of the rod lens array is an adhesive. The method for manufacturing a rod lens array according to claim 1, wherein the adhesive is filled with an amount of the adhesive.
 以上のように本発明によれば、接着剤が硬化時に収縮した場合でも、要求されている高度な性能を満足することができる。 As described above, according to the present invention, even when the adhesive shrinks during curing, the required advanced performance can be satisfied.
本発明の実施形態によるロッドレンズアレイを示す斜視図である。It is a perspective view showing a rod lens array according to an embodiment of the present invention. 本発明の実施形態によるロッドレンズアレイを製造するための工程を示す斜視図である。It is a perspective view which shows the process for manufacturing the rod lens array by embodiment of this invention. 比較例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。It is a graph which shows the conjugate length (TC) of the rod lens array by a comparative example, and its time-dependent change. 比較例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。It is a graph which shows the conjugate length (TC) of the rod lens array by a comparative example, and its time-dependent change. 比較例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。It is a graph which shows the conjugate length (TC) of the rod lens array by a comparative example, and its time-dependent change. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。4 is a graph illustrating a conjugate length (TC) of a rod lens array according to an embodiment of the present invention and its change with time. 本発明の実施例および比較例によるロッドレンズアレイの主走査方向と副走査方向での共役長TCの差ΔTCと、緩衝層厚との関係を示すグラフである。It is a graph which shows the relationship between the difference (DELTA) TC of conjugate length TC in the main scanning direction of the rod lens array by the Example of this invention and a comparative example, and a subscanning direction, and a buffer layer thickness. 本発明の実施例および比較例によるロッドレンズアレイを60℃90%RHの高温高湿条件下で500h処理した後の、主走査方向と副走査方向での共役長TCの差ΔTCと、緩衝層厚との関係を示すグラフである。The difference ΔTC between the conjugate length TC in the main scanning direction and the sub-scanning direction after the rod lens array according to the example of the present invention and the comparative example was treated for 500 h under high temperature and high humidity conditions of 60 ° C. and 90% RH, and the buffer layer It is a graph which shows the relationship with thickness. 比較例によるロッドレンズアレイの、断面写真と耐久試験前後での格子像の変化である。It is a cross-sectional photograph of the rod lens array by a comparative example, and the change of the lattice image before and after an endurance test. 本発明の実施例によるロッドレンズアレイの、断面写真と耐久試験前後での格子像の変化である。6 is a cross-sectional photograph of a rod lens array according to an embodiment of the present invention and a change in a lattice image before and after a durability test. 本発明の実施例によるロッドレンズアレイの、断面写真と耐久試験前後での格子像の変化である。6 is a cross-sectional photograph of a rod lens array according to an embodiment of the present invention and a change in a lattice image before and after a durability test.
 以下、図面を参照して、本発明の実施形態によるロッドレンズアレイ1について説明する。図1は、ロッドレンズアレイを示す斜視図である。 Hereinafter, a rod lens array 1 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a rod lens array.
(ロッドレンズ)
 本発明に係るロッドレンズについて、図1を参照にしながら説明する。まず、図1に示すように、ロッドレンズアレイ1は、2枚の基板3,5と、基板-ロッドレンズ間緩衝層11と、ロッドレンズ間緩衝層13と、接着剤7を用いて2枚の基板3,5の間に基板-ロッドレンズ間緩衝層を介して固定された複数のロッドレンズ9とを備えている。本実施形態によるロッドレンズアレイ1では、複数本の上記ロッドレンズ9が、2枚の基板3,5間に、各ロッドレンズ9の中心軸が互いに略平行方向となるように、1列に並列配置されている。
(Rod lens)
The rod lens according to the present invention will be described with reference to FIG. First, as shown in FIG. 1, the rod lens array 1 includes two substrates 3, 5, a substrate-rod lens buffer layer 11, a rod lens buffer layer 13, and an adhesive 7. A plurality of rod lenses 9 fixed between the substrates 3 and 5 through a buffer layer between the substrate and rod lenses. In the rod lens array 1 according to the present embodiment, a plurality of the rod lenses 9 are arranged in a line between the two substrates 3 and 5 so that the central axes of the rod lenses 9 are substantially parallel to each other. Has been placed.
 基板3,5としては、カーボンブラック、染料等の遮光剤を含有させた、ベークライト(フェノール樹脂)、ABS樹脂、エポキシ樹脂、アクリル樹脂等の板が用いられる。 As the substrates 3 and 5, plates such as bakelite (phenol resin), ABS resin, epoxy resin, and acrylic resin containing a light shielding agent such as carbon black and dye are used.
 また、基板3,5は、図1に示すように、平板状のものを用いてもよいし、その表面に、ロッドレンズを一定の間隔で配置するための目安となるU字状又はV字状等の溝を設けたものであってもよい。 Moreover, as shown in FIG. 1, the board | substrates 3 and 5 may use a plate-shaped thing, and the U-shape or V-shape used as the standard for arrange | positioning a rod lens on the surface at fixed intervals. A groove having a shape or the like may be provided.
 基板3,5の材質は特に限定されないが、ロッドレンズアレイ1を製造する工程での加工が容易な材料であることが好ましい。基板の材料としては、各種熱可塑性樹脂、各種熱硬化性樹脂等を用いることが好ましく、アクリル系樹脂、ABS樹脂、ポリイミド系樹脂、液晶ポリマー、エポキシ系樹脂等を用いることがより好ましい。また、基板の基材、補強材として繊維や紙を用いてもよいし、基板に離型剤、染料、顔料等を添加してもよい。 The material of the substrates 3 and 5 is not particularly limited, but is preferably a material that can be easily processed in the process of manufacturing the rod lens array 1. As the material for the substrate, various thermoplastic resins, various thermosetting resins, and the like are preferably used, and acrylic resins, ABS resins, polyimide resins, liquid crystal polymers, epoxy resins, and the like are more preferable. Further, fibers and paper may be used as the base material and the reinforcing material of the substrate, and a release agent, a dye, a pigment, and the like may be added to the substrate.
 ロッドレンズアレイにおけるロッドレンズの配列は、図1に例示するように2枚の基板間にロッドレンズを1列配列したものでもよいし、2枚の基板間にロッドレンズの列を2列以上積み重ねて配列したものであってもよい。ロッドレンズを2列以上積み重ねた構成では、隣接するロッドレンズ列間の隙間が最小になるように、ロッドレンズの半径に相当する距離だけ配列方向にずらして配列することが好ましい。ロッドレンズ9の端面には、ゴミ付着及び傷つき防止を目的として表面保護層を設けてもよい。この表面保護層としては、既存のUV硬化型のハードコート剤による保護層、レンズ端面に設置されたカバーガラス等が挙げられる。なお以下では、2枚の基板3,5間に複数本のロッドレンズ9を1列に配列した例について説明する。 The rod lens array in the rod lens array may be one in which rod lenses are arranged between two substrates as illustrated in FIG. 1, or two or more rows of rod lenses are stacked between two substrates. May be arranged. In a configuration in which two or more rod lenses are stacked, it is preferable that the rod lenses are arranged so as to be shifted in the arrangement direction by a distance corresponding to the radius of the rod lens so that a gap between adjacent rod lens rows is minimized. A surface protective layer may be provided on the end surface of the rod lens 9 for the purpose of preventing dust adhesion and damage. Examples of the surface protective layer include a protective layer made of an existing UV curable hard coating agent, a cover glass installed on the lens end face, and the like. In the following, an example in which a plurality of rod lenses 9 are arranged in a row between two substrates 3 and 5 will be described.
 ロッドレンズ9は円柱形状を有し、等間隔で並列に配置されている。ロッドレンズ9は、その円形断面の中心から外周部に向かって屈折率が連続的に低下する屈折率分布(GI)型のプラスチック製またはガラス製のロッドレンズが好ましい。より詳細には、本実施形態で使用されるロッドレンズは、中心軸から0.2r~0.9r(但し、rは断面の半径)の範囲における屈折率nの分布が、下記式(1)で規定される2次曲線で近似されるレンズである。
 n(L)=n0{1-(g2/2)L2}…(1)
 (n(L)は、ロッドレンズの中心軸からの径方向距離Lの位置における屈折率n0はロッドレンズの径方向中心軸における屈折率、Lはロッドレンズの径方向中心からの径方向距離(0≦L≦r)、gはロッドレンズの屈折率分布定数をそれぞれ表す。)
The rod lenses 9 have a cylindrical shape and are arranged in parallel at equal intervals. The rod lens 9 is preferably a plastic or glass rod lens of a refractive index distribution (GI) type in which the refractive index continuously decreases from the center of the circular cross section toward the outer periphery. More specifically, the rod lens used in the present embodiment has a refractive index n distribution in the range of 0.2r to 0.9r (where r is the radius of the cross section) from the central axis. It is a lens approximated by a quadratic curve defined by
n (L) = n 0 { 1- (g 2/2) L 2} ... (1)
(N (L) is the refractive index n 0 at the position of the radial distance L from the central axis of the rod lens, the refractive index at the radial central axis of the rod lens, and L is the radial distance from the radial center of the rod lens. (0 ≦ L ≦ r), g represents the refractive index distribution constant of the rod lens.
 屈折率分布定数gは、上記式で近似される屈折率分布曲線の位置Lに関する2次の係数であり、屈折率分布曲線の傾斜を規定する定数である。すなわち、屈折率分布定数gが大きいほど、屈折率分布曲線はより急峻な形状となり、ロッドレンズ内で中心軸から外周面に向かっての屈折率の減少が急激であることを意味する。本発明で使用されるロッドレンズでは、径方向中心における屈折率n0の値は特には限定されないが、下記式(2)を満足することが好ましい。
 1.45≦n0≦1.65…(2)
The refractive index distribution constant g is a second-order coefficient related to the position L of the refractive index distribution curve approximated by the above formula, and is a constant that defines the slope of the refractive index distribution curve. That is, the larger the refractive index distribution constant g, the steeper shape of the refractive index distribution curve, which means that the refractive index decreases more rapidly from the central axis toward the outer peripheral surface in the rod lens. In the rod lens used in the present invention, the value of the refractive index n 0 at the radial center is not particularly limited, but preferably satisfies the following formula (2).
1.45 ≦ n 0 ≦ 1.65 (2)
 屈折率n0がこの範囲にあると、ロッドレンズに用いることができる材料の選択肢が広くなるため、良好な屈折率分布を有し、透明性に優れたロッドレンズを得ることができるので好ましい。 If the refractive index n 0 is in this range, the choices of materials that can be used for the rod lens are widened, so that a rod lens having a favorable refractive index distribution and excellent transparency can be obtained.
 本実施態様で使用されるロッドレンズ及びロッドレンズアレイは、以下の要件を満足することが好ましい。
 0.06≦開口数NA≦0.4
 0.3mm-1≦屈折率分布定数g≦1.0mm-1
 0.1mm≦レンズ有効半径re≦0.4mm
 0.70≦2re/P(レンズ有効半径/配列ピッチ)
The rod lens and rod lens array used in this embodiment preferably satisfy the following requirements.
0.06 ≦ Numerical aperture NA ≦ 0.4
0.3 mm <-1 ≦ refractive index distribution constant g ≦ 1.0 mm −1
0.1 mm ≤ effective lens radius re ≤ 0.4 mm
0.70 ≦ 2re / P (effective lens radius / arrangement pitch)
 開口数NA≦0.4とすることによって、開口数NAと反比例関係を有する焦点深度DOFを深くすることができる。焦点深度DOFを深くする観点から、開口数NAの上限値は0.15以下であることが好ましい。また、光量は開口数NAの2乗と比例関係を有するため、光量を大きくする観点から、開口数NAの下限値は0.06以上であることが好ましく、0.1以上であることが更に好ましい。 By setting the numerical aperture NA ≦ 0.4, the depth of focus DOF having an inversely proportional relationship with the numerical aperture NA can be increased. From the viewpoint of increasing the depth of focus DOF, the upper limit value of the numerical aperture NA is preferably 0.15 or less. Further, since the light quantity has a proportional relationship with the square of the numerical aperture NA, from the viewpoint of increasing the light quantity, the lower limit value of the numerical aperture NA is preferably 0.06 or more, and more preferably 0.1 or more. preferable.
 屈折率分布定数gを1.0mm-1以下にすることによって、n0×g×reの積で表される開口数NAを小さく設計することができ、これにより焦点深度を深くすることができる。さらに、屈折率分布定数gを0.3mm-1以上とすることによって、作動距離L0が長くなりすぎず、装置全体を小型化することができるとともに、式n0×g×reの積で表される開口数NAを大きく設計することができ、これにより光量を大きくすることができる。屈折率分布定数gの下限値は0.35mm-1以上であることがより好ましく、屈折率分布定数gの上限値は0.95mm-1以下であることがより好ましい。 By setting the refractive index distribution constant g to 1.0 mm −1 or less, the numerical aperture NA represented by the product of n 0 × g × re can be designed to be small, thereby increasing the depth of focus. . Furthermore, by setting the refractive index distribution constant g to 0.3 mm −1 or more, the working distance L 0 does not become too long and the entire apparatus can be miniaturized, and the product of the formula n 0 × g × re The numerical aperture NA expressed can be designed to be large, thereby increasing the amount of light. The lower limit value of the refractive index distribution constant g is more preferably 0.35 mm −1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.95 mm −1 or less.
 本発明で使用されるロッドレンズの半径rは、下記式(3)を満足することが好ましい。
 0.1mm≦r≦0.4mm…(3)
The radius r of the rod lens used in the present invention preferably satisfies the following formula (3).
0.1 mm ≦ r ≦ 0.4 mm (3)
 半径rを0.4mm以下とすることによって、開口数NAを小さく設計することができ、これにより焦点深度を深くすることができる。半径rを0.1mm以上とすることによって、本発明のロッドレンズアレイを製造する際の加工性や取り扱い性が良くなる。半径rの下限値は0.15mm以上であることが好ましい。 When the radius r is 0.4 mm or less, the numerical aperture NA can be designed to be small, and the depth of focus can be increased accordingly. By setting the radius r to 0.1 mm or more, workability and handleability when manufacturing the rod lens array of the present invention are improved. The lower limit value of the radius r is preferably 0.15 mm or more.
 また、レンズ作用をなす有効部分の半径である有効半径reを0.4mm以下とすることによって、式n0×g×reの積で表される開口数NAを小さく設計することができ、これにより焦点深度を深くすることができる。有効半径reを0.1mm以上とすることによって、本発明のロッドレンズアレイ、及びそのロッドレンズアレイが組み込まれたイメージセンサ等の光学系を構成する際に、ロッドレンズの光軸と、光源又は受光センサとの光軸のずれが生じにくくなり、それに伴う光学特性の低下を抑制することができる。また、有効半径reを0.1mm以上とすることによって、式n0×g×reの積で表される開口数NAを大きく設計することができ、これにより光量が大きくすることができる。有効半径reの好ましい範囲は、0.15mm以上0.35mm以下であり、より好ましくは0.16以上0.30以下である。半径rと有効半径reは同じ値でもよいが、式re≦rの関係を満たすことが好ましく、式0.70r≦re≦rの関係を満たすことがより好ましい。 In addition, by setting the effective radius re, which is the radius of the effective portion that performs the lens action, to 0.4 mm or less, the numerical aperture NA expressed by the product of the formula n 0 × g × re can be designed to be small. This can increase the depth of focus. By configuring the effective radius re to be 0.1 mm or more, when configuring the rod lens array of the present invention and an optical system such as an image sensor incorporating the rod lens array, the optical axis of the rod lens and the light source or It is difficult for the optical axis to be shifted from the light receiving sensor, and it is possible to suppress a decrease in optical characteristics associated therewith. In addition, by setting the effective radius re to be 0.1 mm or more, the numerical aperture NA expressed by the product of the formula n 0 × g × re can be designed to be large, thereby increasing the amount of light. A preferable range of the effective radius re is 0.15 mm or more and 0.35 mm or less, and more preferably 0.16 or more and 0.30 or less. The radius r and the effective radius re may be the same value, but preferably satisfy the relationship of the equation re ≦ r, and more preferably satisfy the relationship of the equation 0.70r ≦ re ≦ r.
 配列ピッチPとは、ロッドレンズアレイ中の隣り合うロッドレンズの中心間の距離であり、値2reは、使用されるロッドレンズのレンズ作用をなす有効部分の直径である。値2re/Pの好ましい範囲は0.7以上1以下であり、より好ましい範囲は0.85以上1以下である。 The arrangement pitch P is the distance between the centers of adjacent rod lenses in the rod lens array, and the value 2re is the diameter of the effective portion that performs the lens action of the rod lens used. A preferable range of the value 2re / P is 0.7 or more and 1 or less, and a more preferable range is 0.85 or more and 1 or less.
 ロッドレンズ9を配列してロッドレンズアレイ1を製造する際、配列精度を向上させること、クロストーク光を除去すること及びロッドレンズ間緩衝層13を設けることを目的として、ロッドレンズ9間に隙間を設けて配列する。配列ピッチPはロッドレンズ9の直径2r、及び有効部分の直径2reよりも大きくなる。 When manufacturing the rod lens array 1 by arranging the rod lenses 9, the clearance between the rod lenses 9 is improved for the purpose of improving the alignment accuracy, removing crosstalk light, and providing the inter-rod lens buffer layer 13. Are arranged. The arrangement pitch P is larger than the diameter 2r of the rod lens 9 and the diameter 2re of the effective portion.
 この結果、レンズアレイ中で、レンズ作用をなす有効部分が「とびとび」に存在することとなる。複数本のロッドレンズにより像が結像されるとき、ロッドレンズアレイの結像面上では、レンズ収差によって、各レンズの光軸上の位置よりも、隣り合うレンズの光軸間の位置の方が、焦点深度が狭くなる傾向がある。このため、レンズアレイ中で、レンズ作用をなす有効部分が「とびとび」に存在すると、焦点深度の斑が大きくなりやすい。また、レンズ作用をなす有効部分が「とびとび」に存在すると、レンズ作用をなす有効部分の割合が小さくなることにより、光量が小さくなりやすく、また光量斑が大きくなりやすい。これに対してロッドレンズアレイ1では、ロッドレンズ9の有効部分の直径2reと、ロッドレンズアレイ中で隣接するロッドレンズ9の中心間距離Pとの比率2re/Pを、0.70≦2re/P≦1とすることにより、焦点深度斑を小さくし、光量を大きくし、さらに光量斑の小さくすることができる。 As a result, in the lens array, the effective portion that performs the lens action exists in “jumping”. When an image is formed by a plurality of rod lenses, on the image plane of the rod lens array, due to lens aberration, the position between the optical axes of adjacent lenses is more than the position on the optical axis of each lens. However, the depth of focus tends to be narrow. For this reason, if there is an “excessive” effective portion that performs the lens action in the lens array, the depth of focus tends to increase. In addition, if there is an effective portion that performs the lens action in “jumping”, the ratio of the effective portion that performs the lens action is reduced, so that the amount of light is likely to be small and the unevenness in the amount of light is likely to be large. On the other hand, in the rod lens array 1, the ratio 2re / P between the diameter 2re of the effective portion of the rod lens 9 and the center-to-center distance P of the adjacent rod lenses 9 in the rod lens array is 0.70 ≦ 2re / By setting P ≦ 1, the depth of focus spot can be reduced, the light amount can be increased, and the light amount spot can be further reduced.
 ロッドレンズアレイ1は、ロッドレンズ9と基板3,5の間に、基板3,5とロッドレンズ9が接触しないようにする、基板‐ロッドレンズ間緩衝層11を備えている。この基板‐ロッドレンズ間緩衝層11を設けることにより、接着剤7が固化して収縮し、基板3,5が変形した場合でも、基板3,5の変形がロッドレンズ9に伝わらないようにすることができる。この基板‐ロッドレンズ間緩衝層11は、全てのロッドレンズ9と、基板3,5との間に設けられており、これによりロッドレンズ9は、基板3,5と接触しないようになっている。 The rod lens array 1 includes a substrate-rod lens buffer layer 11 between the rod lens 9 and the substrates 3, 5 so that the substrates 3, 5 and the rod lens 9 do not come into contact with each other. By providing the buffer layer 11 between the substrate and the rod lens, even when the adhesive 7 is solidified and contracts and the substrates 3 and 5 are deformed, the deformation of the substrates 3 and 5 is not transmitted to the rod lens 9. be able to. The buffer layer 11 between the substrate and rod lens is provided between all the rod lenses 9 and the substrates 3 and 5, so that the rod lens 9 is not in contact with the substrates 3 and 5. .
 基板‐ロッドレンズ間緩衝層11は、JIS6253により定められる硬度がA50~A95であるとともに、JIS6251により定められる引張強度が1MPa~100MPaを満たすものであれば、材質は特に制限されるものではない。基板-ロッドレンズ間緩衝層11を作るための材料としては、ウレタン系高分子、エポキシ系高分子、シリコン系高分子、EVA系高分子、ゴム系高分子等を材質とすることができる。基板-ロッドレンズ間緩衝層11の硬度をA50以上、及び引張強度を1MPa以上とすることによって、ロッドレンズアレイ1を製造する工程において、切断、切削、研磨といった機械加工の加工性を維持することができる。また硬度をA95以下、及び引張強度100MPa以下とすることによって、接着剤7が固化して収縮した場合であっても、ロッドレンズ9に作用する力を抑制することができ、ロッドレンズ9の変形、または屈折率の変化を抑制することができる。またロッドレンズ間緩衝層11の硬度は、A55以上A90以下とし、かつ引張強度を2MPa以上50MPa以下とすることが好ましく、硬度をA60以上A85以下とし、かつ引張強度を3MPa以上20PMa以下とすることがさらに好ましい。基板‐ロッドレンズ間緩衝層11は、基板3,5とロッドレンズ9との間に接着剤7の層(接着剤層)を介在させることによって形成してもよい。基板‐ロッドレンズ間緩衝層11を、接着剤層によって形成することにより、ロッドレンズ9の周囲を一つの材料で構成することができるため、接着剤7が収縮したときに、ロッドレンズ9に作用する異方的な力を低減することができる。 The material of the buffer layer 11 between the substrate and the rod lens is not particularly limited as long as the hardness defined by JIS6253 is A50 to A95 and the tensile strength defined by JIS6251 satisfies 1 MPa to 100 MPa. As a material for forming the buffer layer 11 between the substrate and the rod lens, a urethane polymer, an epoxy polymer, a silicon polymer, an EVA polymer, a rubber polymer, or the like can be used. Maintaining the workability of machining such as cutting, cutting and polishing in the process of manufacturing the rod lens array 1 by setting the hardness of the buffer layer 11 between the substrate and the rod lens to A50 or more and the tensile strength to 1 MPa or more. Can do. Further, by setting the hardness to A95 or less and the tensile strength of 100 MPa or less, even when the adhesive 7 is solidified and contracts, the force acting on the rod lens 9 can be suppressed, and the deformation of the rod lens 9 can be suppressed. Or a change in refractive index can be suppressed. The inter-rod lens buffer layer 11 preferably has a hardness of A55 or more and A90 or less, a tensile strength of 2 MPa or more and 50 MPa or less, a hardness of A60 or more and A85 or less, and a tensile strength of 3 MPa or more and 20 MPa or less. Is more preferable. The buffer layer 11 between the substrate and rod lens may be formed by interposing a layer of adhesive 7 (adhesive layer) between the substrates 3 and 5 and the rod lens 9. Since the buffer layer 11 between the substrate and the rod lens is formed of an adhesive layer, the periphery of the rod lens 9 can be made of a single material. Therefore, when the adhesive 7 contracts, it acts on the rod lens 9. Anisotropic force can be reduced.
 接着剤7としては、ロッドレンズ9と基板3,5、ロッドレンズ9と基板-ロッドレンズ間緩衝層11、ロッドレンズ9とロッドレンズ間緩衝層13、及びロッドレンズ9、9同士を固定できる程度の粘着力を有するものであれば特に制限されるものではない。接着剤7としては、シアノアクリル系接着剤、ウレタン系接着剤、エポキシ系接着剤、シリコーン系接着剤、EVA系接着剤、ゴム系接着剤等を使用することができる。また、接着剤7としては、薄膜状に塗布可能な接着剤や、スプレー式粘着剤、ホットメルト型粘着剤等を用いることができる。これらの中でも、ウレタン系接着剤、エポキシ系接着剤、シリコーン系接着剤、EVA系接着剤等が好ましい。基板3,5やロッドレンズ9への接着剤7の塗布方法としては、接着剤の種類に応じて、スクリーン印刷法、スプレーコーティング法等の公知のコーティング法を用いることができる。 As the adhesive 7, the rod lens 9 and the substrates 3 and 5, the rod lens 9 and the substrate-rod lens buffer layer 11, the rod lens 9 and the rod lens buffer layer 13, and the rod lenses 9 and 9 can be fixed to each other. There is no particular limitation as long as it has an adhesive strength of. As the adhesive 7, a cyanoacrylic adhesive, a urethane adhesive, an epoxy adhesive, a silicone adhesive, an EVA adhesive, a rubber adhesive, or the like can be used. As the adhesive 7, an adhesive that can be applied in a thin film, a spray-type adhesive, a hot-melt-type adhesive, or the like can be used. Among these, urethane adhesives, epoxy adhesives, silicone adhesives, EVA adhesives, and the like are preferable. As a method for applying the adhesive 7 to the substrates 3 and 5 and the rod lens 9, a known coating method such as a screen printing method or a spray coating method can be used depending on the type of the adhesive.
 また基板‐ロッドレンズ間緩衝層11は、接着剤7の層のみからなっていてもよいし、接着剤層以外のクッションとなる層を有していてもよい。また、基板-ロッドレンズ間緩衝層11が、接着剤7の層に加えてクッション層を有する場合、クッション層としては、ウレタン系高分子、エポキシ系高分子、シリコン系高分子、EVA系高分子、ゴム系高分子等を材質とするクッション層を使用することができる。 Further, the buffer layer 11 between the substrate and the rod lens may be composed only of the adhesive 7 layer, or may have a cushioning layer other than the adhesive layer. When the substrate-rod lens buffer layer 11 has a cushion layer in addition to the adhesive 7 layer, the cushion layer may be a urethane polymer, an epoxy polymer, a silicon polymer, an EVA polymer. In addition, a cushion layer made of a rubber polymer or the like can be used.
 接着剤層とクッション層の厚さの比は特には限定されず、ロッドレンズアレイの種類や緩衝層の厚さ等に応じて適宜選択することができる。また、接着剤層とクッション層の配置についても特には限定されず、例えば、基板と接着する層とロッドレンズと接着する層を接着剤層とし、これらの接着剤層の間にクッション層を設けることができる。 The ratio of the thickness of the adhesive layer and the cushion layer is not particularly limited, and can be appropriately selected according to the type of the rod lens array, the thickness of the buffer layer, and the like. Further, the arrangement of the adhesive layer and the cushion layer is not particularly limited. For example, a layer that adheres to the substrate and a layer that adheres to the rod lens is used as an adhesive layer, and a cushion layer is provided between these adhesive layers. be able to.
 また、上述したように、隣接するロッドレンズ9の間には、隣接するロッドレンズ9同士が接触しないようにするロッドレンズ間緩衝層13が設けられている。このロッドレンズ間緩衝層13は、接着剤7が固化して収縮し、隣接するロッドレンズ9同士が干渉してロッドレンズ9が変形することがないようにすることができる。従来のようにロッドレンズ間緩衝層がない場合、接着剤7が固化して収縮し、隣接するロッドレンズ同士が干渉するため、ロッドレンズを圧縮する方向に不要な力が作用し、レンズが変形し、又はレンズの屈折率が変化してしまい、その結果、ロッドレンズの光学性能に異方性が発生し、解像度が低下してしまう。これに対して隣接するロッドレンズ9の間にロッドレンズ間緩衝層13を設けることにより、接着剤7が固化して収縮したときにロッドレンズ9に不要な力が作用するのを防止することができる。 Further, as described above, the inter-rod lens buffer layer 13 is provided between the adjacent rod lenses 9 so that the adjacent rod lenses 9 do not come into contact with each other. The inter-rod lens buffer layer 13 can prevent the rod lens 9 from deforming due to the adhesive 7 solidifying and contracting, and the adjacent rod lenses 9 interfering with each other. When there is no buffer layer between rod lenses as in the past, the adhesive 7 is solidified and contracts, and adjacent rod lenses interfere with each other. Therefore, unnecessary force acts in the direction of compressing the rod lens, and the lens is deformed. Alternatively, the refractive index of the lens changes, and as a result, anisotropy occurs in the optical performance of the rod lens, and the resolution decreases. On the other hand, by providing the inter-rod lens buffer layer 13 between the adjacent rod lenses 9, it is possible to prevent unnecessary force from acting on the rod lens 9 when the adhesive 7 is solidified and contracts. it can.
 ロッドレンズ間緩衝層13の厚さは、5~30μmとすることが好ましく、10~20μmとすることがより好ましい。ロッドレンズ間緩衝層13の厚さを5μm以上とすることにより、ロッドレンズの変形を十分に抑制することができる。ロッドレンズ間緩衝層13の厚さを30μm以下とするのは、それ以上厚くしても飛躍的な効果の向上が認められないからである。 The thickness of the inter-rod lens buffer layer 13 is preferably 5 to 30 μm, and more preferably 10 to 20 μm. By setting the thickness of the inter-rod lens buffer layer 13 to 5 μm or more, deformation of the rod lens can be sufficiently suppressed. The reason why the thickness of the inter-rod lens buffer layer 13 is set to 30 μm or less is that a dramatic improvement in the effect is not recognized even if the thickness is increased beyond that.
 ロッドレンズ間緩衝層13を構成する材料は、JIS6253により定められる硬度がA50~A95であるとともに、JIS6251により定められる引張強度が1MPa~100MPaを満たす材料であれば、特に制限されるものではない。ロッドレンズ間緩衝層13を構成する材料としては、ウレタン系高分子、エポキシ系高分子、シリコン系高分子、EVA系高分子、ゴム系高分子等を用いることができる。ロッドレンズ間緩衝層13の硬度をA50以上、且つ引張強度を1MPa以上とすることによって、ロッドレンズアレイ1を製造する工程において、切断、切削、研磨といった機械加工の加工性を維持することができる。またロッドレンズ間緩衝層13の硬度をA95以下、且つ引張強度100MPa以下とすることによって、接着剤7が固化して収縮したときに、ロッドレンズ9に作用する力を小さくすることができ、ロッドレンズ9の変形、またはロッドレンズ9の屈折率の変化を抑制することができる。またロッドレンズ間緩衝層13の硬度をA55以上A90以下、且つ引張強度を2MPa以上50MPa以下とすることが好ましく、硬度をA60以上A85以下、且つ引張強度を3MPa以上20PMa以下とすることがさらに好ましい。 The material composing the inter-rod lens buffer layer 13 is not particularly limited as long as the material has a hardness defined by JIS6253 of A50 to A95 and a tensile strength defined by JIS6251 of 1 MPa to 100 MPa. As a material constituting the inter-rod lens buffer layer 13, urethane polymer, epoxy polymer, silicon polymer, EVA polymer, rubber polymer, or the like can be used. By setting the hardness of the inter-rod lens buffer layer 13 to A50 or more and the tensile strength to 1 MPa or more, it is possible to maintain the workability of machining such as cutting, cutting and polishing in the process of manufacturing the rod lens array 1. . Further, by setting the hardness of the inter-rod lens buffer layer 13 to A95 or less and a tensile strength of 100 MPa or less, the force acting on the rod lens 9 when the adhesive 7 is solidified and contracted can be reduced. The deformation of the lens 9 or the change in the refractive index of the rod lens 9 can be suppressed. The inter-rod lens buffer layer 13 preferably has a hardness of A55 or more and A90 or less, a tensile strength of 2 MPa or more and 50 MPa or less, a hardness of A60 or more and A85 or less, and a tensile strength of 3 MPa or more and 20 PMa or less. .
 ロッドレンズ間緩衝層13は、隣接する前期ロッドレンズの間に接着剤7の層(接着剤層)を介在させることで形成してもよい。ロッドレンズ間緩衝層13を接着剤7で形成することにより、ロッドレンズ9の周囲を一つの材料で構成することができるため、接着剤7が収縮したときに、ロッドレンズ9に作用する異方的な力を低減することができる。 The inter-rod lens buffer layer 13 may be formed by interposing an adhesive 7 layer (adhesive layer) between the adjacent first rod lenses. By forming the inter-rod lens buffer layer 13 with the adhesive 7, the periphery of the rod lens 9 can be made of a single material, so that the anisotropic action acting on the rod lens 9 when the adhesive 7 contracts. Force can be reduced.
 図2は、上述のロッドレンズアレイを製造するための工程を示す斜視図である。説明を簡略化するために、緩衝層に接着剤層を使用する場合について説明する。 FIG. 2 is a perspective view showing a process for manufacturing the rod lens array described above. In order to simplify the description, a case where an adhesive layer is used for the buffer layer will be described.
 先ず、図2(a)に示すように、基板3上に接着剤7aを5μm超の厚さで塗布する。接着剤7aは、基板3の表面上に、直線状に延びる多数の条を形成するように塗布される。そして一定時間、接着剤7aを硬化させることで5μm超の厚さの基板-ロッドレンズ間緩衝層11を形成する。その後、図2(b)に示すように、硬化した接着剤7a(基板-ロッドレンズ間緩衝層11)の条の上に、再度接着剤7bを塗布する。そして、図2(c)に示すように、二層の接着剤7の上に、複数のロッドレンズ9を配置する。ロッドレンズ9は、接着剤7の層が延びる方向と直交して延びるように、接着剤7の上に配置される。このとき、ロッドレンズ間緩衝層13を形成するために、ロッドレンズ9同士の間に5~30μm程度の隙間を設けてロッドレンズ9を配置する。その後、図2(b)に示すような、接着剤7の層が形成された基板5をもう一枚準備する。そして準備した基板5を、ロッドレンズ9の上に配置し、2枚の基板3,5によりロッドレンズ9を挟み込む。これにより、2枚の基板3,5にロッドレンズ9が挟み込まれたシートを形成する。このとき、基板3,5を押圧する力を調整して、未硬化状態の接着剤7bを変形させて、ロッドレンズ9間に充填させることで、ロッドレンズ9同士の間に予め決定された厚さのロッドレンズ間緩衝層13を形成されるようにする。またロッドレンズ9と硬化した接着剤層7a(基板-ロッドレンズ間緩衝層11)を接触させることで、ロッドレンズ9と基板3,5との間に、予め決定された厚さの基板‐ロッドレンズ間緩衝層11が形成されるようにする。その後、ロッドレンズ9の延伸方向と直交する方向にシートを切断することにより、ロッドレンズアレイ1を得ることができる。 First, as shown in FIG. 2A, an adhesive 7a is applied on the substrate 3 to a thickness of more than 5 μm. The adhesive 7a is applied on the surface of the substrate 3 so as to form a large number of strips extending linearly. Then, the adhesive 7a is cured for a certain period of time to form the substrate-rod lens buffer layer 11 having a thickness of more than 5 μm. After that, as shown in FIG. 2B, the adhesive 7b is applied again on the strip of the cured adhesive 7a (substrate-rod lens buffer layer 11). And as shown in FIG.2 (c), the some rod lens 9 is arrange | positioned on the adhesive agent 7 of two layers. The rod lens 9 is disposed on the adhesive 7 so as to extend perpendicular to the direction in which the layer of the adhesive 7 extends. At this time, in order to form the inter-rod lens buffer layer 13, the rod lens 9 is disposed with a gap of about 5 to 30 μm provided between the rod lenses 9. Thereafter, another substrate 5 on which a layer of the adhesive 7 is formed as shown in FIG. 2B is prepared. The prepared substrate 5 is placed on the rod lens 9 and the rod lens 9 is sandwiched between the two substrates 3 and 5. Thus, a sheet in which the rod lens 9 is sandwiched between the two substrates 3 and 5 is formed. At this time, by adjusting the force for pressing the substrates 3 and 5, the uncured adhesive 7b is deformed and filled between the rod lenses 9, so that a predetermined thickness is established between the rod lenses 9. The inter-rod lens buffer layer 13 is formed. Further, by bringing the rod lens 9 and the cured adhesive layer 7a (substrate-rod lens buffer layer 11) into contact, a substrate-rod having a predetermined thickness is provided between the rod lens 9 and the substrates 3, 5. The inter-lens buffer layer 11 is formed. Thereafter, the rod lens array 1 can be obtained by cutting the sheet in a direction orthogonal to the extending direction of the rod lens 9.
 接着剤7bの層は、後の工程にてレンズ間に充填される接着剤となるため、接着剤の充填過多、充填不足が生じないように、ロッドレンズ9の径に応じた厚みで塗布されることが好ましい。例えば、直径1000μmのレンズを用いてロッドレンズアレイ1を製造する場合、接着剤7bの層は、110μm~140μmの厚さで塗布されることが好ましく、直径600μmのレンズを用いてロッドレンズアレイ1を製造する場合、接着剤7bの層は、70μm~100μmの厚さで塗布されることが好ましく、直径300μmのレンズを用いてロッドレンズアレイ1を製造する場合、接着剤7bの層は、40μm~70μmの厚さで塗布されることが好ましい。 Since the layer of the adhesive 7b becomes an adhesive to be filled between the lenses in a later step, the adhesive 7b is applied with a thickness corresponding to the diameter of the rod lens 9 so as not to cause overfilling or underfilling of the adhesive. It is preferable. For example, when the rod lens array 1 is manufactured using a lens having a diameter of 1000 μm, the layer of the adhesive 7b is preferably applied with a thickness of 110 μm to 140 μm, and the rod lens array 1 using a lens having a diameter of 600 μm. When manufacturing the rod lens array 1 using a lens having a diameter of 300 μm, it is preferable that the layer of the adhesive 7b is applied with a thickness of 70 μm to 100 μm. It is preferably applied with a thickness of ˜70 μm.
 次に、上述した構成を有するロッドレンズアレイの作用について詳述する。 Next, the operation of the rod lens array having the above-described configuration will be described in detail.
 従来のように、基板‐ロッドレンズ緩衝層がない場合、接着剤が固化して収縮し、ロッドレンズを圧縮する方向に不要な力が作用するため、レンズが変形し、又はレンズの屈折率が変化してしまう。その結果、ロッドレンズの光学性能に異方性が発生し、解像度が低下してしまう。 When there is no substrate-rod lens buffer layer as in the past, the adhesive solidifies and shrinks, and unnecessary force acts in the direction of compressing the rod lens, so the lens is deformed or the refractive index of the lens is It will change. As a result, anisotropy occurs in the optical performance of the rod lens, and the resolution decreases.
 より具体的には、接着剤の固化時に接着剤が収縮すると、レンズの円形断面において、ロッドレンズの配列方向(主走査方向)の共役長TCと、主走査方向と直交する副走査方向の共役長TCとの間に差(副走査方向TC―主走査方向TC=ΔTC)が生じてしまう。そして共役長TCから外れた位置では、光学性能の評価時、または画像の読取時に解像度が低下してしまうため、副走査方向TCと主走査方向TCとの間に差ΔTCが生じた状態でロッドレンズアレイの光学性能を評価し、又は画像の読取を行うと、主走査方向または副走査方向において解像度が低下してしまう。 More specifically, when the adhesive contracts when the adhesive is solidified, the conjugate length TC in the arrangement direction of the rod lenses (main scanning direction) and the conjugate in the sub-scanning direction orthogonal to the main scanning direction in the circular cross section of the lens. A difference (sub scanning direction TC−main scanning direction TC = ΔTC) occurs with respect to the length TC. At a position that is out of the conjugate length TC, the resolution is lowered when the optical performance is evaluated or when the image is read. Therefore, the rod is in a state where a difference ΔTC is generated between the sub-scanning direction TC and the main scanning direction TC. When the optical performance of the lens array is evaluated or when an image is read, the resolution decreases in the main scanning direction or the sub-scanning direction.
 ここで、共役長TCは、以下のように求める。共役長TCを求めるには、図19に示すように空間周波数6ラインペア/mm(Lp/mm)を有するチャート20を用いて、光軸に垂直な両端面を研磨したロッドレンズアレイ1に光源21からの光(カラーフィルター23により波長525nmの光のみを使用し、チャートに均一に光が照射されるよう拡散板24をカラーフィルターとチャートの間に設置する)を、チャート20を通して入射させる。そして、結像面に設置したCCDラインセンサ22により画像を読み取り、その測定光量の最大値(imax)と最小値(imin)を測定し、下記式によりMTF(modulation transfer function)を求める。
MTF(%)={(imax-imin)/(imax+imin)}×100
Here, the conjugate length TC is obtained as follows. In order to obtain the conjugate length TC, as shown in FIG. 19, a chart 20 having a spatial frequency of 6 line pairs / mm (Lp / mm) is used, and a light source is applied to the rod lens array 1 whose both end faces perpendicular to the optical axis are polished. 21 is incident through the chart 20 (only the light having a wavelength of 525 nm is used by the color filter 23 and the diffusion plate 24 is placed between the color filter and the chart so that the chart is uniformly irradiated with light). Then, the image is read by the CCD line sensor 22 installed on the imaging surface, the maximum value (i max ) and the minimum value (i min ) of the measured light quantity are measured, and MTF (modulation transfer function) is obtained by the following equation.
MTF (%) = {(i max −i min ) / (i max + i min )} × 100
 チャートとロッドレンズアレイの入射端との距離と、ロッドレンズアレイ1の出射端とCCDラインセンサ22との距離を等しくした状態で、チャートとCCDラインセンサ22をロッドレンズアレイ1に対し対称的に動かしてMTFを測定し、MTFが最良になるときの、チャートとCCDラインセンサとの距離を共役長TCとする。ここで空間周波数とは、白ライン20と黒ライン20との組み合わせを1ラインとし、このラインの組み合わせが1mmの幅の中に何組設けてあるかを示すものである。 With the distance between the chart and the incident end of the rod lens array equal to the distance between the exit end of the rod lens array 1 and the CCD line sensor 22, the chart and the CCD line sensor 22 are symmetrical with respect to the rod lens array 1. The MTF is measured by moving, and the distance between the chart and the CCD line sensor when the MTF is the best is the conjugate length TC. Here, the spatial frequency indicates a combination of the white line 20 and the black line 20 as one line, and indicates how many combinations of the lines are provided within a width of 1 mm.
 主走査方向と副走査方向の共役長TCに関しては図19a、19bのようにチャート20とCCDラインセンサ22の向きを調整することにより測定することができる。たとえば主走査方向のTCを測定する場合(図19a)、チャートに設けられている白と黒のラインの伸びる方向が主走査方向に対して垂直となる向きにチャートを設置し、CCDラインセンサの画素が並ぶ方向が主走査方向と平行になる向きにCCDラインセンサを設置することにより測定することができる。また副走査方向のTCを測定する場合には(図19b)、チャートとCCDラインセンサの向きを、それぞれ主走査方向測定時の向きから90℃回転させて設置することにより測定することができる。以降特に断りがない場合は、主走査方向の測定をする場合には、チャートに設けられている白と黒のラインの伸びる方向が主走査方向に対して垂直となる向きにチャートを設置し、CCDラインセンサの画素が並ぶ方向が主走査方向と平行になる向きにCCDラインセンサを設置することとし、副走査方向の測定をする場合には、チャートに設けられている白と黒のラインの伸びる方向が主走査方向に対して平行となる向きにチャートを設置し、CCDラインセンサの画素が並ぶ方向が主走査方向と垂直となる向きにCCDラインセンサを設置することとする。 The conjugate length TC in the main scanning direction and the sub-scanning direction can be measured by adjusting the orientation of the chart 20 and the CCD line sensor 22 as shown in FIGS. 19a and 19b. For example, when measuring the TC in the main scanning direction (FIG. 19a), the chart is installed in such a direction that the extending direction of the white and black lines provided in the chart is perpendicular to the main scanning direction. Measurement can be performed by installing a CCD line sensor in such a direction that the direction in which the pixels are arranged is parallel to the main scanning direction. When measuring the TC in the sub-scanning direction (FIG. 19b), the chart and the CCD line sensor can be measured by rotating them 90 ° C. from the direction in the main scanning direction. Thereafter, unless otherwise specified, when measuring in the main scanning direction, install the chart in a direction in which the extending direction of the white and black lines provided in the chart is perpendicular to the main scanning direction, The CCD line sensor is installed in a direction in which the pixels of the CCD line sensor are arranged in parallel with the main scanning direction. When measuring in the sub-scanning direction, the white and black lines provided in the chart are displayed. It is assumed that the chart is installed in a direction in which the extending direction is parallel to the main scanning direction, and the CCD line sensor is installed in a direction in which the direction in which the pixels of the CCD line sensor are arranged is perpendicular to the main scanning direction.
 そして本発明の実施形態によるロッドレンズアレイ1では、上述したΔTCを小さくすることを目的として、基板‐ロッドレンズ間緩衝層11を介在させることにより、ロッドレンズ9の周囲を同一の材料で構成することができるため、接着剤7が収縮した場合であっても、ロッドレンズ9に作用する異方的な力を小さくすることができる。そしてロッドレンズ9に作用する力を小さくして差ΔTCを小さく抑えることにより、解像度の低下を低減することができる。また、ロッドレンズアレイ1を高温高湿条件下においたて接着剤がさらに収縮した場合であっても、ロッドレンズ9に作用する異方的な力を低減することができる。これにより、ロッドレンズアレイ1を高温高湿条件下においた場合でも差ΔTCを小さく抑えることができ、解像度の低下を低減することができる。 In the rod lens array 1 according to the embodiment of the present invention, the periphery of the rod lens 9 is made of the same material by interposing the substrate-rod lens buffer layer 11 for the purpose of reducing the above-described ΔTC. Therefore, even when the adhesive 7 contracts, the anisotropic force acting on the rod lens 9 can be reduced. Then, by reducing the force acting on the rod lens 9 to suppress the difference ΔTC, it is possible to reduce the decrease in resolution. Further, even when the rod lens array 1 is placed under a high temperature and high humidity condition and the adhesive further contracts, the anisotropic force acting on the rod lens 9 can be reduced. As a result, even when the rod lens array 1 is placed under a high temperature and high humidity condition, the difference ΔTC can be kept small, and a reduction in resolution can be reduced.
 特に、主走査方向のTCと副走査方向のTCとの平均TCを示す値BestTCを主走査方向TCと副走査方向TCの平均値として設定することで、差ΔTCが主走査方向及び副走査方向の光学性能に与える影響を最小限に低減することができる。しかしながら、このようにした場合においても、差ΔTCが大きく発生した状態では主走査方向、副走査方向の解像度が低下してしまう。またそのようなロッドレンズアレイ1を用いて読取を行った場合、主走査方向及び副走査方向で読取画像がぼけてしまう。従って、差ΔTCを1mm以下にすることによって、解像度の低下を抑制することができる。また差ΔTCは、0.6mm以下であることが好ましく、0.1mm以下であることがさらに好ましい。特にLEDプリンタ用レンズにおいては、差ΔTCを0.1mm以下とすることによって高い解像度要求を満たすことができ、0.08mm以下とすることがより好ましい。 In particular, by setting the value BestTC indicating the average TC between the TC in the main scanning direction and the TC in the sub-scanning direction as the average value of the main scanning direction TC and the sub-scanning direction TC, the difference ΔTC is set in the main scanning direction and the sub-scanning direction. The influence on the optical performance can be reduced to the minimum. However, even in this case, the resolution in the main scanning direction and the sub-scanning direction is lowered when the difference ΔTC is large. Further, when reading is performed using such a rod lens array 1, the read image is blurred in the main scanning direction and the sub-scanning direction. Therefore, a decrease in resolution can be suppressed by setting the difference ΔTC to 1 mm or less. Further, the difference ΔTC is preferably 0.6 mm or less, and more preferably 0.1 mm or less. Particularly in a lens for an LED printer, a high resolution requirement can be satisfied by setting the difference ΔTC to 0.1 mm or less, and it is more preferable to set the difference ΔTC to 0.08 mm or less.
 差ΔTCを小さくするためには、基板‐ロッドレンズ間緩衝層11の厚さを、5μm超、好ましくは10μm以上、より好ましくは15μm以上とするのがよい。基板‐ロッドレンズ間緩衝層11の厚さを5μm超とすることにより、基板3,5の変形がロッドレンズ9に伝わらなくすることができ、これにより差ΔTCを小さく抑えることができる。また、基板‐ロッドレンズ間緩衝層11の厚さは2000μm以下とすることが好ましい。基板-ロッドレンズ間緩衝層11をそれ以上厚くしても飛躍的な効果の向上が認められにくく、またロッドレンズ9の配列斑を生じやすくなるからである。 In order to reduce the difference ΔTC, the thickness of the buffer layer 11 between the substrate and the rod lens should be more than 5 μm, preferably 10 μm or more, more preferably 15 μm or more. By setting the thickness of the buffer layer 11 between the substrate and the rod lens to be more than 5 μm, the deformation of the substrates 3 and 5 can be prevented from being transmitted to the rod lens 9, and thus the difference ΔTC can be suppressed small. The thickness of the substrate-rod lens buffer layer 11 is preferably 2000 μm or less. This is because even if the buffer layer 11 between the substrate and the rod lens is made thicker, the dramatic improvement in the effect is hardly recognized, and the arrangement of the rod lenses 9 is likely to occur.
 このように、緩衝層11,13を設けることにより、差ΔTCを小さく抑えることができ、これにより解像度の低下を低減することができる。また、ロッドレンズアレイ1を高温高湿条件下において接着剤がさらに収縮した場合であっても、ロッドレンズ9に作用する異方的な力を低減することができるため、差ΔTCを小さく抑えて解像度の低下を低減することができる。 Thus, by providing the buffer layers 11 and 13, the difference ΔTC can be suppressed to a small value, thereby reducing the resolution. Further, even when the adhesive further shrinks in the high-temperature and high-humidity conditions of the rod lens array 1, the anisotropic force acting on the rod lens 9 can be reduced, so that the difference ΔTC is kept small. Reduction in resolution can be reduced.
 また、本実施形態によるロッドレンズアレイ1は、高温高湿環境下におく前の室温での差ΔTCは、1.0mm以下であり、0.6mm以下であることがより好ましい。また、ロッドレンズアレイ1を、温度60℃、湿度90%の高温高湿環境下で500h処理した際の差ΔTCは、1.0mm以下であることが好ましく、0.6mm以下であることがより好ましく、0.1mm以下であることが更に好ましい。またロッドレンズ9全長にわたっての値BestTCでの平均解像度MTFaveは、70%@6Lp/mm以上である。主走査方向と副走査方向のTCの差ΔTCを1.0mm以下とすることにより、ロッドレンズアレイ1の光学性能の異方性を低減することができ、ロッドレンズアレイ1を使用して像を結像させたときの解像度を高く維持することが可能である。 Further, in the rod lens array 1 according to the present embodiment, the difference ΔTC at room temperature before being placed in a high temperature and high humidity environment is 1.0 mm or less, and more preferably 0.6 mm or less. Further, the difference ΔTC when the rod lens array 1 is treated for 500 hours in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a humidity of 90% is preferably 1.0 mm or less, more preferably 0.6 mm or less. Preferably, it is 0.1 mm or less. The average resolution MTFave at the value BestTC over the entire length of the rod lens 9 is 70% @ 6 Lp / mm or more. By setting the difference ΔTC between the TC in the main scanning direction and the sub-scanning direction to 1.0 mm or less, the anisotropy of the optical performance of the rod lens array 1 can be reduced, and an image can be obtained using the rod lens array 1. It is possible to maintain a high resolution when the image is formed.
 また、ロッドレンズアレイ1の全長にわたって値BestTCで測定した平均解像度MTFaveを、70%@6Lp/mm以上とすることにより、ロッドレンズアレイを使用して像を結像させたときの解像度を高く維持することができる。平均解像度MTFaveのより好ましい範囲は、73%@6Lp/mm以上であり、75%@6Lp/mmであることが更に好ましい。ここで、平均解像度MTFave(%)とは、チャートとCCDラインセンサとの距離を、主走査方向TCと副走査方向TCの平均値として設定した値BestTCで固定し、値6Lp/mmのチャート、ロッドレンズ、及び受光センサを、チャートとロッドレンズアレイの入射端との距離と、ロッドレンズアレイの出射端とCCDラインセンサとの距離を等しくした状態で、ロッドレンズアレイ全幅について走査して主走査方向の上記MTFを50点測定したときの平均値(MTFave)のことである。平均解像度MTFaveは解像度の指標であり、平均解像度MTFaveの値が大きい程、解像度が優れている。本実施形態のロッドレンズアレイ1は、平均解像度MTFaveが上述の値を有しており、高い解像度が求められる複写機やLEDプリンタ等の用途で使用することが可能である。 In addition, the average resolution MTFave measured at the value BestTC over the entire length of the rod lens array 1 is set to 70% @ 6 Lp / mm or more, so that the resolution when an image is formed using the rod lens array is kept high. can do. A more preferable range of the average resolution MTFave is 73% @ 6Lp / mm or more, and further preferably 75% @ 6Lp / mm. Here, the average resolution MTFave (%) is a chart having a value of 6 Lp / mm, in which the distance between the chart and the CCD line sensor is fixed at a value BestTC set as an average value in the main scanning direction TC and the sub-scanning direction TC. The main scanning of the rod lens and the light receiving sensor is performed by scanning the entire width of the rod lens array with the distance between the chart and the incident end of the rod lens array equal to the distance between the exit end of the rod lens array and the CCD line sensor. It is an average value (MTFave) when the MTF in the direction is measured at 50 points. The average resolution MTFave is an index of resolution. The larger the average resolution MTFave value, the better the resolution. The rod lens array 1 according to the present embodiment has the above-described average resolution MTFave, and can be used in applications such as a copying machine and an LED printer that require high resolution.
(複写機用ロッドレンズ)
 複写機用途に使用されるロッドレンズ及びロッドレンズアレイにおいては、上述した条件に加え、以下の要件を満足することが好ましい。
 0.06≦開口数NA≦0.175
 0.3mm-1≦屈折率分布定数g≦0.6mm-1
(Rod lens for copier)
In addition to the above-described conditions, it is preferable that the rod lens and the rod lens array used for the copying machine satisfy the following requirements.
0.06 ≦ Numerical aperture NA ≦ 0.175
0.3 mm −1 ≦ refractive index distribution constant g ≦ 0.6 mm −1
 複写機用途では、特に焦点深度を深くすることが求められており、開口数NA≦0.175とすることによって、開口数NAと反比例関係を有する焦点深度DOFを十分深くすることができる。焦点深度を深くする観点から、NAの上限値は0.15以下であることが好ましい。また、光量を大きくする観点から、NAの下限値は0.06以上であることが好ましく、0.1以上であることが更に好ましい。 In copying machine applications, it is particularly required to increase the depth of focus. By setting the numerical aperture NA ≦ 0.175, the depth of focus DOF having an inversely proportional relationship with the numerical aperture NA can be sufficiently deepened. From the viewpoint of increasing the depth of focus, the upper limit value of NA is preferably 0.15 or less. From the viewpoint of increasing the amount of light, the lower limit value of NA is preferably 0.06 or more, and more preferably 0.1 or more.
 また、近年の複写機の小型化要求によって、ロッドレンズアレイが組み込まれるイメージスキャナのプラテンガラスの厚さは、3mm以下程度となる。 Also, due to the recent demand for miniaturization of copying machines, the thickness of the platen glass of the image scanner in which the rod lens array is incorporated is about 3 mm or less.
 屈折率1.52、厚さが3mmのプラテンガラスによって生じる焦点の浮き(約-1mm)、及びプラテンガラスとレンズ端面とのクリアランス(1mm以上が好ましい)を考慮すると、ロッドレンズの作動距離L0は少なくとも3mm以上となる必要があり、屈折率分布定数gを0.6mm-1以下にすることによって、ロッドレンズの作動距離を3mm以上とすることができる。 In consideration of the floating of the focus caused by the platen glass having a refractive index of 1.52, the thickness of 3 mm (about −1 mm), and the clearance between the platen glass and the lens end surface (preferably 1 mm or more), the working distance L 0 of the rod lens. Needs to be at least 3 mm or more, and the working distance of the rod lens can be 3 mm or more by setting the refractive index distribution constant g to 0.6 mm −1 or less.
 また、屈折率分布定数gを0.6mm-1以下にすることによって、後述するようにn0×g×reの積で表される開口数NAを、小さく設計することができ、焦点深度を深くすることができる。 Further, by setting the refractive index distribution constant g to 0.6 mm −1 or less, the numerical aperture NA represented by the product of n 0 × g × re can be designed to be small as will be described later, and the depth of focus can be reduced. Can be deep.
 さらに、屈折率分布定数gを0.3mm-1以上とすることによって、作動距離L0が長くなりすぎず、装置全体を小型化することができるとともに、式n0×g×reの積で表される開口数NAを大きく設計することができ、光量を大きくすることができる。 Furthermore, by setting the refractive index distribution constant g to 0.3 mm −1 or more, the working distance L 0 does not become too long and the entire apparatus can be miniaturized, and the product of the formula n 0 × g × re The numerical aperture NA expressed can be designed to be large, and the amount of light can be increased.
 屈折率分布定数gの下限値は0.35mm-1以上であることがより好ましく、屈折率分布定数gの上限値は0.5mm-1以下であることがより好ましい。 The lower limit value of the refractive index distribution constant g is more preferably 0.35 mm −1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.5 mm −1 or less.
 また、上記の要件に加え、焦点深度DOFを0.9mm以上とすることができる。このように焦点深度をとることにより、本ロッドレンズアレイとイメージセンサを組み合わせ、原稿の読み取りを行った際に、原稿が読取台から浮き上がっている場合でも像を鮮明に読み取ることができる。焦点深度DOFは、1.0mm以上とすることがより好ましく、1.1mm以上とすることがさらに好ましい。ここで、焦点深度DOFとは、値6Lp/mmのチャート、ロッドレンズ、及び受光センサを、チャートとロッドレンズアレイの入射端との距離と、ロッドレンズアレイの出射端とCCDラインセンサとの距離を等しくした状態で、チャートとCCDラインセンサとの距離を上記のように決定した値BestTCとなるよう配置させた後、チャートのみを前後に移動させたときに、主走査方向のMTFが40%以上となるチャートの移動範囲の幅(mm)である。焦点深度の値が大きいほど、原稿が焦点位置からずれた場合でも高い解像度を維持しやすくなる。 In addition to the above requirements, the depth of focus DOF can be 0.9 mm or more. By taking the depth of focus in this way, the image can be read clearly even when the original is lifted from the reading table when the original is read by combining the rod lens array and the image sensor. The focal depth DOF is more preferably 1.0 mm or more, and further preferably 1.1 mm or more. Here, the depth of focus DOF refers to a chart having a value of 6 Lp / mm, a rod lens, and a light receiving sensor, a distance between the chart and the entrance end of the rod lens array, and a distance between the exit end of the rod lens array and the CCD line sensor. When the distance between the chart and the CCD line sensor is set to the value BestTC determined as described above in the state where the values are equal, the MTF in the main scanning direction is 40% when only the chart is moved back and forth. This is the width (mm) of the moving range of the chart. The larger the depth of focus value, the easier it is to maintain a high resolution even when the document is displaced from the focal position.
 本実施形態のロッドレンズアレイ1は、上記のような範囲の値をとることにより、光学性能の異方性が少ないため、解像度が高く、高温高湿環境下での使用時にも光学性能低下が無く、かつ焦点深度の深いため、読み取り原稿に浮きが生じた場合であっても像を鮮明に斑なく読み取ることができ、複写機用途に適している。 Since the rod lens array 1 of the present embodiment has a value in the above range, the optical performance is low and the optical performance is low even when used in a high-temperature and high-humidity environment. Since there is no focus and the depth of focus is deep, the image can be read clearly and unevenly even when the read original is lifted, and is suitable for copying machines.
(LEDプリンタ用ロッドレンズ)
 また、LEDプリンタ用途に使用されるロッドレンズ及びロッドレンズアレイにおいては、以下の要件を満足することが好ましい。
 0.15≦開口数NA≦0.4
 0.7mm-1≦屈折率分布定数g≦1.0mm-1
(Rod lens for LED printer)
Moreover, in the rod lens and rod lens array used for LED printer application, it is preferable to satisfy the following requirements.
0.15 ≦ Numerical aperture NA ≦ 0.4
0.7 mm −1 ≦ refractive index distribution constant g ≦ 1.0 mm −1
 LEDプリンタ用途では、印刷の高速化要求に伴い、特に光量を大きくすることが求められており、光量は開口数NAの2乗と比例関係を有するため、光量を大きくする観点から、NAの下限値は0.15以上であることが好ましく、0.175以上であることが更に好ましい。開口数NAを0.4以下とすることによって、開口数NAと反比例関係を有する焦点深度DOFを深くすることができる。焦点深度を深くする観点から、開口数NAの上限値は0.35以下であることが好ましく、0.30以下であることがさらに好ましい。 In LED printer applications, it is required to increase the amount of light especially in response to demands for higher printing speed. Since the amount of light is proportional to the square of the numerical aperture NA, the lower limit of NA is required from the viewpoint of increasing the amount of light. The value is preferably 0.15 or more, and more preferably 0.175 or more. By setting the numerical aperture NA to 0.4 or less, the depth of focus DOF having an inversely proportional relationship with the numerical aperture NA can be increased. From the viewpoint of increasing the depth of focus, the upper limit of the numerical aperture NA is preferably 0.35 or less, and more preferably 0.30 or less.
 また、近年のLEDプリンタの小型化要求によって、ロッドレンズの作動距離L0を3.5mm以下とする必要がある。この要求に対して屈折率分布定数gを0.6mm-1以上にすることによって、ロッドレンズの作動距離を3.5mm以下とすることができる。また、屈折率分布定数gを0.6mm-1以上にすることによって、式n0×g×reの積で表される開口数NAを大きく設計することができ、光量を大きくすることができる。 Further, due to recent demands for downsizing LED printers, the working distance L 0 of the rod lens needs to be 3.5 mm or less. In response to this requirement, the working distance of the rod lens can be 3.5 mm or less by setting the refractive index distribution constant g to 0.6 mm −1 or more. Further, by setting the refractive index distribution constant g to 0.6 mm −1 or more, the numerical aperture NA represented by the product of the formula n 0 × g × re can be designed large, and the amount of light can be increased. .
 また、屈折率分布定数gを1.0mm-1以下とすることによって、作動距離L0が短くなりすぎて周辺部材との干渉が生じることを防止することができるため、装置設計の自由度が大きくなる。また、屈折率分布定数gを1.0mm-1以下にすることによって、n0×g×reの積で表される開口数NAを、小さく設計することができ、焦点深度を深くすることができる。屈折率分布定数gの下限値は0.7mm-1以上であることがより好ましく、屈折率分布定数gの上限値は0.95mm-1以下であることがより好ましい。 In addition, by setting the refractive index distribution constant g to 1.0 mm −1 or less, it is possible to prevent the working distance L 0 from becoming too short and causing interference with peripheral members. growing. In addition, by setting the refractive index distribution constant g to 1.0 mm −1 or less, the numerical aperture NA represented by the product of n 0 × g × re can be designed to be small, and the depth of focus can be increased. it can. The lower limit value of the refractive index distribution constant g is more preferably 0.7 mm −1 or more, and the upper limit value of the refractive index distribution constant g is more preferably 0.95 mm −1 or less.
 ロッドレンズ9を構成するプラスチック材料としては、ガラス転移温度Tgが60℃以上のものが好ましい。ガラス転移温度が低すぎると、ロッドレンズアレイの耐熱性が不十分となるおそれがあり、又、内部に充填する接着剤の選択が難しくなる。具体的には、ロッドレンズ9を構成するプラスチック材料としては、ポリメチルメタクリレート、メチルメタクリレートと他の単量体との共重合体等が使用される。他の単量体としては、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート等のフッ素化アルキル(メタ)アクリレート(屈折率n=1.37~1.44)、屈折率1.43~1.62の(メタ)アクリレート類例えばエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート、トリメチロールプロパン-ジ又はトリ-(メタ)アクリレート、ペンタエリスリトール-ジ、トリ又はテトラ-(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、その他、ジエチレングリコールビスアリルカーボネート、フッ素化アルキレングリコールポリ(メタ)アクリレート等が挙げられる。 The plastic material constituting the rod lens 9 preferably has a glass transition temperature Tg of 60 ° C. or higher. If the glass transition temperature is too low, the heat resistance of the rod lens array may be insufficient, and it becomes difficult to select an adhesive to be filled inside. Specifically, as the plastic material constituting the rod lens 9, polymethyl methacrylate, a copolymer of methyl methacrylate and another monomer, or the like is used. Other monomers include 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl (meth) acrylate, 2, Fluorinated alkyl (meth) acrylates such as 2,3,4,4,4-hexafluorobutyl (meth) acrylate and 2,2,2-trifluoroethyl (meth) acrylate (refractive index n = 1.37 to 1) .44), (meth) acrylates having a refractive index of 1.43 to 1.62, such as ethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, hydroxyalkyl (meth) acrylate, alkylene glycol (meth) Acrylate, trimethylolpropane-di or tri- (meth) acrylate, pentaerythritol-di, tri or teto - (meth) acrylate, diglycerol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, other, diethylene glycol bis allyl carbonate, a fluorinated alkylene glycol poly (meth) acrylate.
 また本発明のロッドレンズアレイは主走査方向TCと副走査方向TCの差ΔTCが0.1mm以下であり、温度60℃、湿度90%の高温高湿環境下で500h処理した際の差ΔTCが0.1mm以下であり、ロッドレンズ9全長にわたっての平均解像度MTFaveが80%@12Lp/mm以上、ロッドレンズ9全長にわたっての解像度斑MTFcvが3%@12Lp/mm以下とすることができる。主走査方向TCと副走査方向TCの差ΔTCを0.1mm以下とすることにより、ロッドレンズアレイ1の光学性能の異方性を低減することができ、ロッドレンズアレイ1を使用して像を結像させたときの解像度を高く維持することが可能である。主走査方向TCと副走査方向TCの差ΔTCのより好ましい範囲は、ΔTC0.08mm以下であり、0.06mm以下であることが更に好ましい。また温度60℃、湿度90%の高温高湿環境下で500h処理した際の差ΔTCを0.1mm以下とすることにより、ロッドレンズアレイ1を長時間高温高湿環境下で使用した場合であっても光学性能の異方性を低減することができ、ロッドレンズアレイ1を使用して像を結像させたときの解像度を高く維持することが可能である。温度60℃、湿度90%の高温高湿環境下で500h処理した際の差ΔTCのより好ましい範囲は、0.08mm以下であり、0.06mm以下であることが更に好ましい。 In the rod lens array of the present invention, the difference ΔTC between the main scanning direction TC and the sub-scanning direction TC is 0.1 mm or less, and the difference ΔTC when treated in a high temperature and high humidity environment of 60 ° C. and 90% humidity is 500 ° C. The average resolution MTFave over the entire length of the rod lens 9 may be 80% @ 12 Lp / mm or more, and the resolution spot MTFcv over the entire length of the rod lens 9 may be 3% @ 12 Lp / mm or less. By setting the difference ΔTC between the main scanning direction TC and the sub-scanning direction TC to be 0.1 mm or less, the anisotropy of the optical performance of the rod lens array 1 can be reduced, and an image can be obtained using the rod lens array 1. It is possible to maintain a high resolution when the image is formed. A more preferable range of the difference ΔTC between the main scanning direction TC and the sub-scanning direction TC is ΔTC 0.08 mm or less, and more preferably 0.06 mm or less. Further, when the difference ΔTC when treated for 500 hours in a high temperature and high humidity environment of 60 ° C. and 90% humidity is 0.1 mm or less, the rod lens array 1 is used in a high temperature and high humidity environment for a long time. However, the anisotropy of the optical performance can be reduced, and the resolution when the image is formed using the rod lens array 1 can be kept high. A more preferable range of the difference ΔTC when treated for 500 hours in a high-temperature and high-humidity environment with a temperature of 60 ° C. and a humidity of 90% is 0.08 mm or less, and more preferably 0.06 mm or less.
 またアレイ全長にわたって測定した平均解像度MTFaveを80%@12Lp/mm以上とすることにより、ロッドレンズアレイ1を使用して像を結像させたときの解像度を高く維持することができる。平均解像度MTFaveのより好ましい範囲は、83%@12Lp/mm以上であり、85%@12Lp/mm以上とすることが更に好ましい。またアレイ全長にわたって測定した解像度斑MTFcvを3%@12Lp/mm以下とすることにより、ロッドレンズアレイ1を使用して像を結像させたとき、解像度の斑を小さく抑えることができる。これにより、本実施形態にかかるロッドレンズアレイ1とLEDアレイを組み合わせて画像の書き込みを行った際に、均質で斑のない画像を提供することができる。平均解像度MTFaveのより好ましい範囲は、83%@12Lp/mm以上であり、85%@12Lp/mm以上とすることが更に好ましい。 Further, by setting the average resolution MTFave measured over the entire length of the array to 80% @ 12 Lp / mm or more, it is possible to maintain a high resolution when the rod lens array 1 is used to form an image. A more preferable range of the average resolution MTFave is 83% @ 12 Lp / mm or more, and more preferably 85% @ 12 Lp / mm or more. Further, by setting the resolution unevenness MTFcv measured over the entire length of the array to 3% @ 12 Lp / mm or less, when the image is formed using the rod lens array 1, the unevenness in resolution can be suppressed to be small. Thereby, when writing the image by combining the rod lens array 1 and the LED array according to the present embodiment, it is possible to provide a uniform and spotless image. A more preferable range of the average resolution MTFave is 83% @ 12 Lp / mm or more, and more preferably 85% @ 12 Lp / mm or more.
 ここで解像度斑MTFcv(%)とは、上記の方法でロッドレンズアレイ全幅について走査して主走査方向の上記MTFを50点測定したときの、解像度MTFの標準偏差を平均解像度MTFaveで除した値に100を乗じた値であり、解像度斑の指標である。MTFcvの値が小さい程、解像度斑が小さく均一な画像が得られる。 Here, the resolution spot MTFcv (%) is a value obtained by dividing the standard deviation of the resolution MTF by the average resolution MTFave when the MTF in the main scanning direction is measured at 50 points by scanning the entire width of the rod lens array by the above method. Is a value obtained by multiplying 100 by 100, and is an index of resolution spots. The smaller the value of MTFcv, the smaller the resolution spot and the more uniform the image.
 本実施形態のロッドレンズアレイ1は、上記のような範囲の値をとることにより、光学性能の異方性が少ないため、解像度が高く、高温高湿環境下での使用時にも光学性能低下が無く、光学性能斑が少ないため、均質で斑のない画像を提供することができる、LEDプリンタ用途に適したロッドレンズアレイを提供することができる。 Since the rod lens array 1 of the present embodiment has a value in the above range, the optical performance is low and the optical performance is low even when used in a high-temperature and high-humidity environment. In addition, since there are few optical performance spots, it is possible to provide a rod lens array suitable for LED printer applications, which can provide a uniform and spotless image.
 なお、本実施形態では、プラスチック製のロッドレンズを用いて詳細な説明を行うが、本発明によれば、ガラス製のロッドレンズを用いてもよい。ガラ製ロッドレンズ9を用いた場合、接着剤7の硬化時の収縮によってロッドレンズ9が変形することを考慮する必要がないため、ロッドレンズ9と基板3,5との間に基板-ロッドレンズ間緩衝層11を設ける必要がない。また、仮に基板ロッドレンズ間緩衝層11を設けたとしても、上述した基板ロッドレンズ間緩衝層11の厚みよりも更に薄くすることができる。 In this embodiment, the plastic rod lens is used for detailed description. However, according to the present invention, a glass rod lens may be used. When the glass rod lens 9 is used, it is not necessary to consider the deformation of the rod lens 9 due to the shrinkage of the adhesive 7 when it is cured, so that the substrate-rod lens is interposed between the rod lens 9 and the substrates 3 and 5. There is no need to provide the intermediate buffer layer 11. Even if the inter-substrate rod lens buffer layer 11 is provided, it can be made thinner than the thickness of the inter-substrate rod lens buffer layer 11 described above.
 以下、本発明の実施例及び比較例について詳述する。図3及び4は、比較例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフであり、図5乃至図7は、本発明の実施例によるロッドレンズアレイの共役長(TC)及びその経時変化を示すグラフである。 Hereinafter, examples and comparative examples of the present invention will be described in detail. 3 and 4 are graphs showing the conjugate length (TC) of the rod lens array according to the comparative example and its change with time, and FIGS. 5 to 7 are the conjugate length (TC) of the rod lens array according to the embodiment of the present invention. It is a graph which shows the time-dependent change.
 まず、本発明の実施例1~6及び比較例1~3では、ポリメチルメタクリレート、メチルメタクリレート、フェニルメタクリレート、t-ブチルメタクリレート、トリシクロ[5.2.1.02,6]デカニルメタクリレート、2,2,3,3-テトラフルオロプロピルメタクリレートを原料とする、半径rが0.232mm、中心屈折率n0は525nmの波長において1.503、中心から外周に向かう0.2r~0.9rの範囲において屈折率分布が式(1)に近似され、525nmの波長において屈折率分布定数gが0.43mm-1であり、有効径reが0.220mm、開口数NAが0.142、長さが166mmであるプラスチックロッドレンズを用いた。 First, in Examples 1 to 6 and Comparative Examples 1 to 3 of the present invention, polymethyl methacrylate, methyl methacrylate, phenyl methacrylate, t-butyl methacrylate, tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, Using 2,2,3,3-tetrafluoropropyl methacrylate as a raw material, radius r is 0.232 mm, center refractive index n 0 is 1.503 at a wavelength of 525 nm, and 0.2 r to 0.9 r from the center toward the outer periphery. The refractive index distribution is approximated by the formula (1) in the range of λ, the refractive index distribution constant g is 0.43 mm −1 at the wavelength of 525 nm, the effective diameter re is 0.220 mm, the numerical aperture NA is 0.142, and the length is long. A plastic rod lens having a length of 166 mm was used.
 また、本発明の実施例7~9では、ポリメチルメタクリレート、メチルメタクリレート、ベンジルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレートを原料とする、半径rが0.300mm、中心屈折率n0は525nmの波長において1.513、525nmの波長において屈折率分布定数gが0.88mm-1であり、有効径reが0.222mm、開口数NAが0.292、長さが166mmであるプラスチックロッドレンズを用いた。 Further, in Examples 7 to 9 of the present invention, the radius r is made from polymethyl methacrylate, methyl methacrylate, benzyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate as a raw material. The center refractive index n 0 is 1.513 at a wavelength of 525 nm, the refractive index distribution constant g is 0.88 mm −1 at a wavelength of 525 nm, the effective diameter re is 0.222 mm, and the numerical aperture NA is 0.1. A plastic rod lens with a length of 166 mm was used.
 〔比較例1〕
 ロッドレンズアレイの作製には、長さ330mm、幅170mm、厚さ0.42mmのベークライト製基板、湿気硬化性ウレタンホットメルト(エスダイン9607R:(株)積水フーラー製;JIS6253硬度A71;JIS6251引張強度3.1MPa)、特許文献1に記載の装置を用いて作製を行った。
[Comparative Example 1]
For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production.
 まず、基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ60μmとなるよう多条に塗布した。おおよそ700本のロッドレンズを、隣接するロッドレンズ同士の隙間がないよう密着して配列し、接着剤が延びる方向とレンズが直交するように接着剤の上に配置した。さらに、上記と同様に接着剤が塗布された基板をもう一枚準備し、すでにロッドレンズが配置済みの基板と接着剤塗布面が対向するようにロッドレンズ上に配置することで2枚の基板によりロッドレンズを挟み込んだ。その後、試験体を60℃に加温した状態で0.4MPa/cm2の圧力で30秒間プレスを行ったところ、未硬化状態の接着剤が変形してレンズ間に充填され、レンズと基板が完全に密着した状態となった。その後、試験体を20℃に冷却することにより2枚の基板にロッドレンズが挟み込まれ接着剤が充填されたロッドレンズアレイ原板を得た。このようにして得られたロッドレンズアレイ原板を、接着剤が伸びる方向と平行に10mm間隔で切断した後、温度60℃、湿度90%RHの環境下で24時間処理することにより、接着剤を硬化させた。接着剤の硬化後、ロッドレンズアレイの切断面を鏡面切削して、8.5mm幅に仕上げロッドレンズアレイを得た。このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間の緩衝層、及び基板-ロッドレンズ間緩衝層は形成されておらず、ロッドレンズ同士は完全に密着しており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は、0.95であった。 First, the adhesive was applied onto the substrate in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 μm. Approximately 700 rod lenses were arranged in close contact with each other so that there was no gap between adjacent rod lenses, and were arranged on the adhesive so that the direction in which the adhesive extends and the lenses were orthogonal. Further, two substrates are prepared by preparing another substrate coated with an adhesive in the same manner as described above, and placing the rod lens on the rod lens so that the substrate on which the rod lens has already been disposed faces the adhesive coated surface. The rod lens was inserted. Thereafter, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses. It became the state which adhered completely. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive. The rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to obtain a finished rod lens array having a width of 8.5 mm. When both ends of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ×), the buffer layer between the rod lenses and the buffer layer between the substrate and the rod lens were not formed. The rod lens was completely adhered, and the ratio between the effective diameter and the arrangement pitch of the rod lens represented by the formula 2re / P was 0.95.
 このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは19.77mmであり、副走査方向TCは20.84mm、主走査方向と副走査方向での共役長の差ΔTCは1.07mm、BestTCは20.31mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは59%であり、焦点深度DOF@6Lp/mmは0.75mmであった。このように作製したロッドレンズアレイに対して、温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは18.19mm、副走査方向TCは19.55mmであり、主走査方向と副走査方向での共役長の差ΔTCは1.36mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は不鮮明であり、また原稿の浮きが生じた場合、極端に画像が不鮮明となった。 When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 19.77 mm, the sub-scanning direction TC was 20.84 mm, and the difference ΔTC in the conjugate length between the main scanning direction and the sub-scanning direction was 1. 07 mm and BestTC were 20.31 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 59%, and the depth of focus DOF @ 6Lp / mm was 0.75 mm. The main scanning direction TC after the endurance test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours is 18.19 mm, and the sub-scanning direction The TC was 19.55 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 1.36 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was unclear, and when the original floated, the image was extremely unclear.
 〔比較例2〕
 おおよそ670本のロッドレンズを、480μm間隔の配列溝が形成されたプレートを用いて配列したこと以外は比較例1と同様にしてロッドレンズアレイを作製した。このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.95であった。また、基板-ロッドレンズ間には緩衝層は形成されておらず、完全に密着していた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは18.99mmであり、副走査方向TCは20.57mm、主走査方向と副走査方向での共役長の差ΔTCは1.58mm、BestTCは19.78mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは55%であり、焦点深度DOF@6Lp/mmは0.72mmであった。このように作製したロッドレンズアレイに対して、温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは17.78mm、副走査方向TCは19.41mmであり、主走査方向と副走査方向での共役長の差ΔTCは1.63mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は不鮮明であり、また原稿の浮きが生じた場合、極端に画像が不鮮明となった。
[Comparative Example 2]
A rod lens array was produced in the same manner as in Comparative Example 1 except that approximately 670 rod lenses were arrayed using a plate having array grooves formed at intervals of 480 μm. When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.95. Further, no buffer layer was formed between the substrate and the rod lens, and it was completely in contact. When the conjugate length TC of the rod lens array was measured, the main scanning direction TC was 18.99 mm, the sub-scanning direction TC was 20.57 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 1. 58 mm, BestTC was 19.78 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 55%, and the depth of focus DOF @ 6Lp / mm was 0.72 mm. The main scanning direction TC after the endurance test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours is 17.78 mm, and the sub-scanning direction The TC was 19.41 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 1.63 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was unclear, and when the original floated, the image was extremely unclear.
 〔比較例3〕
 ロッドレンズアレイの作製には、長さ330mm、幅170mm、厚さ0.42mmのベークライト製基板、湿気硬化性ウレタンホットメルト(エスダイン9607R:(株)積水フーラー製;JIS6253硬度A71;JIS6251引張強度3.1MPa)、特許文献1にある装置を用いて作製を行った。
[Comparative Example 3]
For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production.
 まず、基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ5μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けた。接着剤の硬化後、硬化した接着剤の上に重なるように塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ60μmとなるよう接着剤を多条に塗布した。おおよそ670本のロッドレンズを、480μm間隔の配列溝が形成されたプレートを用いて配列し、接着剤が延びる方向とレンズが直交するように接着剤の上に配置した。さらに、上記と同様に基板-ロッドレンズ間緩衝層が設けられ、その上に接着剤が塗布された基板をもう一枚準備し、すでにロッドレンズが配置済みの基板と接着剤塗布面が対向するように、ロッドレンズ上に配置することで2枚の基板によりロッドレンズを挟み込んだ。その後、試験体を60℃に加温した状態で0.4MPa/cm2の圧力で30秒間プレスを行ったところ、未硬化状態の接着剤が変形してレンズ間に充填され、レンズと硬化済の接着剤(基板-ロッドレンズ間緩衝層)が完全に密着した状態となった。その後、試験体を20℃に冷却することにより2枚の基板にロッドレンズが挟み込まれ接着剤が充填されたロッドレンズアレイ原板を得た。このようにして得られたロッドレンズアレイ原板を、接着剤が伸びる方向と平行に10mm間隔で切断後、温度60℃、湿度90%RHの環境下で24時間処理することにより、接着剤を硬化させた。接着剤の硬化後、ロッドレンズアレイ原板の切断面を鏡面切削して、9.0mm幅に仕上げてロッドレンズアレイを得た。 First, an adhesive is applied on the substrate in multiple strips so that the application width is 8.8 mm, the application pitch is 10.3 mm, and the application thickness is 5 μm, and the treatment is performed in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours. Then, the adhesive was cured to provide a buffer layer between the substrate and the rod lens. After the adhesive was cured, the adhesive was applied in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 μm so as to overlap the cured adhesive. Approximately 670 rod lenses were arranged using a plate in which an array groove having an interval of 480 μm was formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal. Furthermore, a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface. As described above, the rod lens was sandwiched between the two substrates by being arranged on the rod lens. After that, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the cured The adhesive (substrate-rod lens buffer layer) was in complete contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive. The rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then cured in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours to cure the adhesive. I let you. After the adhesive was cured, the cut surface of the rod lens array original plate was mirror-cut and finished to a width of 9.0 mm to obtain a rod lens array.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は、0.92であった。また基板-ロッドレンズ間に5μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは18.14mmであり、副走査方向TCは19.25mm、主走査方向と副走査方向での共役長の差ΔTCは1.11mm、BestTCは18.70mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは65%であり、焦点深度DOF@6Lp/mmは0.89mmであった。このように作製したロッドレンズアレイに対して、温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは17.36mm、副走査方向TCは18.17mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.81mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は不鮮明であり、また原稿の浮きが生じた場合、極端に画像が不鮮明となった。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. A buffer layer of 5 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 18.14 mm, the sub-scanning direction TC was 19.25 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 1. 11 mm and BestTC were 18.70 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 65%, and the focal depth DOF @ 6Lp / mm was 0.89 mm. The main scanning direction TC after the endurance test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of a temperature of 60 ° C. and a humidity of 90% RH for 500 hours is 17.36 mm and the sub scanning direction. The TC was 18.17 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0.81 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was unclear, and when the original floated, the image was extremely unclear.
 そして、このように作製した比較例によるロッドレンズアレイに対して、温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向(アレイの配列方向)及び副走査方向(基板の面方向)での共役長TC(mm)、及び主走査方向と副走査方向での共役長の差ΔTC(mm)を図3乃至5に示す。 Then, the rod lens array according to the comparative example manufactured as described above was subjected to a durability test of being exposed to a high temperature and high humidity condition of a temperature of 60 ° C. and a humidity of 90% RH for 500 hours after the main scanning direction (array arrangement). 3) and FIG. 5 show the conjugate length TC (mm) in the direction) and the sub-scanning direction (substrate surface direction), and the difference ΔTC (mm) between the conjugate lengths in the main scanning direction and the sub-scanning direction.
 〔実施例1〕
 基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ10μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は比較例3と同様にしてロッドレンズアレイを作製した。
[Example 1]
Adhesive is applied onto the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 10 μm, and the bonding is performed by treating for 24 hours in an environment of 60 ° C. and 90% humidity. A rod lens array was prepared in the same manner as in Comparative Example 3 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に10μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは18.32mmであり、副走査方向TCは19.14mm、主走査方向と副走査方向での共役長の差ΔTCは0.83mm、BestTCは18.73mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは87%であり、焦点深度DOF@6Lp/mmは1.15mmであった。このように作製したロッドレンズアレイに対して気温60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは17.49mm、副走査方向TCは17.99mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.50mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. A 10 μm buffer layer was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 18.32 mm, the sub-scanning direction TC was 19.14 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0. 83 mm and BestTC were 18.73 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 87%, and the focal depth DOF @ 6Lp / mm was 1.15 mm. The main scanning direction TC is 17.49 mm and the sub-scanning direction TC after the endurance test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours. Was 17.99 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.50 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例2〕
 ロッドレンズアレイの作製には、長さ330mm、幅170mm、厚さ0.42mmのベークライト製基板、湿気硬化性ウレタンホットメルト(エスダイン9607R:(株)積水フーラー製;JIS6253硬度A71;JIS6251引張強度3.1MPa)、特許文献1にある装置を用いて作製を行った。まず、基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ20μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けた。接着剤の硬化後、硬化した接着剤の上に重なるように塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ60μmとなるよう接着剤を多条に塗布した。おおよそ670本のロッドレンズを、480μm間隔の配列溝が形成されたプレートを用いて配列し、接着剤が延びる方向とレンズが直交するように接着剤の上に配置した。さらに、上記と同様に基板-ロッドレンズ間緩衝層が設けられ、その上に接着剤が塗布された基板をもう一枚準備し、すでにロッドレンズが配置済みの基板と接着剤塗布面が対向するように、ロッドレンズ上に配置することで2枚の基板によりロッドレンズを挟み込んだ。その後、試験体を60℃に加温した状態で0.4MPa/cm2の圧力で30秒間プレスを行ったところ、未硬化状態の接着剤が変形してレンズ間に充填され、レンズと硬化済の接着剤(基板-ロッドレンズ間緩衝層)が完全に密着した状態となったため、試験体を20℃に冷却することにより2枚の基板にロッドレンズが挟み込まれ接着剤が充填されたロッドレンズアレイ原板を得た。このようにして得られたロッドレンズアレイ原板を、接着剤が伸びる方向と平行に10mm間隔で切断した後、温度60℃、湿度90%RHの環境下で24時間処理することにより、接着剤を硬化させた。接着剤の硬化後、ロッドレンズアレイの切断面を鏡面切削して、8.5mm幅に仕上げた。
[Example 2]
For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production. First, an adhesive is applied on the substrate in multiple strips so that the application width is 8.8 mm, the application pitch is 10.3 mm, and the application thickness is 20 μm, and the treatment is performed for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH. Then, the adhesive was cured to provide a buffer layer between the substrate and the rod lens. After the adhesive was cured, the adhesive was applied in multiple strips so that the coating width was 8.8 mm, the coating pitch was 10.3 mm, and the coating thickness was 60 μm so as to overlap the cured adhesive. Approximately 670 rod lenses were arranged using a plate in which an array groove having an interval of 480 μm was formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal. Furthermore, a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface. As described above, the rod lens was sandwiched between the two substrates by being arranged on the rod lens. Then, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the cured Since the adhesive (buffer layer between the substrate and the rod lens) is completely in contact with each other, the rod lens is sandwiched between the two substrates by cooling the specimen to 20 ° C. and filled with the adhesive. I got the original plate. The rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a width of 8.5 mm.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に24μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは19.69mmであり、副走査方向TCは20.12mm、主走査方向と副走査方向での共役長の差ΔTCは0.44mm、BestTCは19.91mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは91%であり、焦点深度DOF@6Lp/mmは1.19mmであった。このように作製したロッドレンズアレイに対して気温60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは18.59mm、副走査方向TCは19.11mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.52mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. A buffer layer of 24 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 19.69 mm, the sub-scanning direction TC was 20.12 mm, and the difference ΔTC in the conjugate length between the main scanning direction and the sub-scanning direction was 0. 44 mm, BestTC was 19.91 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 91%, and the focal depth DOF @ 6Lp / mm was 1.19 mm. The main scanning direction TC is 18.59 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of an air temperature of 60 ° C. and a humidity of 90% RH for 500 hours. Was 19.11 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.52 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例3〕
 基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ30μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は実施例2と同様にしてロッドレンズアレイを作製した。このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に34μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは19.70mmであり、副走査方向TCは20.04mm、主走査方向と副走査方向での共役長の差ΔTCは0.33mm、BestTCは19.87mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは89.0%であり、焦点深度DOF@6Lp/mmは1.2mmであった。このように作製したロッドレンズアレイにおいて、ロッドレンズアレイを温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは18.63mm、副走査方向TCは19.10mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.47mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。
Example 3
Adhesive is applied onto the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 30 μm, and it is bonded by treating for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH. A rod lens array was prepared in the same manner as in Example 2 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided. When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. In addition, a 34 μm buffer layer was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 19.70 mm, the sub scanning direction TC was 20.04 mm, and the difference ΔTC in the conjugate length between the main scanning direction and the sub scanning direction was 0. 33 mm and BestTC were 19.87 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 89.0%, and the depth of focus DOF @ 6Lp / mm was 1.2 mm. In the rod lens array thus manufactured, the main scanning direction TC is 18.63 mm after the endurance test in which the rod lens array is exposed to a high temperature and high humidity condition of a temperature of 60 ° C. and a humidity of 90% RH is 18.63 mm. The scanning direction TC was 19.10 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0.47 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例4〕
 基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ40μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は実施例2と同様にしてロッドレンズアレイを作製した。
Example 4
Adhesive is coated on the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 40 μm, and the adhesive is bonded for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH. A rod lens array was prepared in the same manner as in Example 2 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に41μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは19.69mmであり、副走査方向TCは20.08mm、主走査方向と副走査方向での共役長の差ΔTCは0.38mm、BestTCは19.89mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは90%であり、焦点深度DOF@6Lp/mmは1.18mmであった。このように作製したロッドレンズアレイに対して、ロッドレンズアレイを気温60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは18。57mm、副走査方向TCは19.06mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.49mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. In addition, a buffer layer of 41 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 19.69 mm, the sub scanning direction TC was 20.08 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub scanning direction was 0. 38 mm and BestTC were 19.89 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 90%, and the focal depth DOF @ 6Lp / mm was 1.18 mm. The main scanning direction TC after the endurance test in which the rod lens array thus manufactured is subjected to a high temperature and high humidity condition of an air temperature of 60 ° C. and a humidity of 90% RH for 500 hours is 18.57 mm. The sub-scanning direction TC was 19.06 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0.49 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例5〕
 基板上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ100μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は実施例1と同様にしてロッドレンズアレイを作製した。このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に100μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは18.58mmであり、副走査方向TCは18.67mm、主走査方向と副走査方向での共役長の差ΔTCは0.09mm、BestTCは18.62mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは87%であり、焦点深度DOF@6Lp/mmは1.17mmであった。このように作製したロッドレンズアレイに対して温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは17.75mm、副走査方向TCは17.88mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.14mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。
Example 5
Adhesive is coated on the substrate in multiple strips so that the coating width is 8.8 mm, the coating pitch is 10.3 mm, and the coating thickness is 100 μm, and the adhesive is bonded by treating for 24 hours in an environment of 60 ° C. and 90% humidity. A rod lens array was produced in the same manner as in Example 1 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided. When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. A buffer layer of 100 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 18.58 mm, the sub-scanning direction TC was 18.67 mm, and the difference ΔTC in the conjugate length between the main scanning direction and the sub-scanning direction was 0.8. 09 mm and BestTC were 18.62 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 87%, and the focal depth DOF @ 6Lp / mm was 1.17 mm. The main scanning direction TC is 17.75 mm and the sub-scanning direction TC after a durability test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours. Was 17.88 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.14 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例6〕
 ロッドレンズアレイの作製には、長さ330mm、幅170mm、厚さ2.0mmのフェーノール製基板の表面に厚さ1.0mmのエチレンプロピレンゴムが張り合わされた積層板(リショーライトゴム貼り積層板RS-1769X:利昌工業株式会社製;ゴム部のJIS6253硬度A71;JIS6251引張強度24.2MPa)、湿気硬化性ウレタンホットメルト(エスダイン9607R:(株)積水フーラー製;JIS6253硬度A71;JIS6251引張強度3.1MPa)、特許文献1にある装置を用いて作製を行った。まず、基板のゴム面上に接着剤を塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ60μmとなるよう多条に塗布した。凡そ670本のロッドレンズを、480μm間隔の配列溝が形成されたプレートを用いて配列し、接着剤が延びる方向とレンズが直交するように接着剤の上に配置した。さらに、上記と同様に接着剤が塗布された基板をもう一枚準備し、すでにロッドレンズが配置済みの基板と接着剤塗布面が対向するように、ロッドレンズ上に配置することで2枚の基板によりロッドレンズを挟み込んだ。その後、試験体を60℃に加温した状態で0.4MPa/cm2の圧力で30秒間プレスを行ったところ、未硬化状態の接着剤が変形してレンズ間に充填され、レンズと基板ゴム面(基板-ロッドレンズ間緩衝層)が完全に密着した状態となった。その後、試験体を20℃に冷却することにより2枚の基板にロッドレンズが挟み込まれ接着剤が充填されたロッドレンズアレイ原板を得た。このようにして得られたロッドレンズアレイ原板を、接着剤が伸びる方向と平行に10mm間隔で切断した後、温度60℃、湿度90%RHの環境下で24時間処理することにより、接着剤を硬化させた。接着剤の硬化後、ロッドレンズアレイの切断面を鏡面切削して、9.0mm幅に仕上げた。
Example 6
The rod lens array was manufactured by laminating a 1.0 mm thick ethylene propylene rubber on the surface of a phenolic substrate having a length of 330 mm, a width of 170 mm, and a thickness of 2.0 mm (recycled rubber-laminated laminate RS -1769X: manufactured by Risho Kogyo Co., Ltd .; JIS 6253 hardness A71 of rubber part; JIS 6251 tensile strength 24.2 MPa), moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller Co., Ltd .; JIS 6253 hardness A71; JIS 6251 tensile strength 3. 1 MPa), and the device described in Patent Document 1 was used for production. First, an adhesive was applied in multiple stripes on the rubber surface of the substrate so that the application width was 8.8 mm, the application pitch was 10.3 mm, and the application thickness was 60 μm. Approximately 670 rod lenses were arrayed using a plate on which array grooves having an interval of 480 μm were formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal. Further, as described above, another substrate coated with an adhesive is prepared, and the two substrates are arranged on the rod lens so that the substrate on which the rod lens has already been disposed and the adhesive coated surface face each other. A rod lens was sandwiched between the substrates. After that, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the substrate rubber The surface (buffer layer between the substrate and the rod lens) was in close contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive. The rod lens array original plate thus obtained is cut at intervals of 10 mm parallel to the direction in which the adhesive extends, and then treated in an environment of temperature 60 ° C. and humidity 90% RH for 24 hours. Cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a width of 9.0 mm.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.92であった。また基板-ロッドレンズ間に1068μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは18.43mmであり、副走査方向TCは18.53mm、主走査方向と副走査方向での共役長の差ΔTCは0.10mm、BestTCは18.48mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@6Lp/mmは83%であり、焦点深度DOF@6Lp/mmは1.13mmであった。このように作製したロッドレンズアレイに対して温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは17.84mm、副走査方向TCは17.95mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.11mmであった。このロッドレンズアレイとイメージセンサを組み合わせて、読取を行ったところ、読取画像は鮮明であり、また原稿の浮きが生じた場合でも、鮮明な画像が得られた。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.92. In addition, a 1068 μm buffer layer was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 18.43 mm, the sub-scanning direction TC was 18.53 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0.8. 10 mm, BestTC was 18.48 mm. The main scanning MTFave @ 6Lp / mm at BestTC of this rod lens array was 83%, and the focal depth DOF @ 6Lp / mm was 1.13 mm. The main scanning direction TC is 17.84 mm and the sub-scanning direction TC after the endurance test in which the rod lens array thus produced is subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours. Was 17.95 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub-scanning direction was 0.11 mm. When reading was performed by combining this rod lens array and an image sensor, the read image was clear, and a clear image was obtained even when the original floated.
 〔実施例7〕
 ロッドレンズアレイの作製には、長さ330mm、幅170mm、厚さ0.42mmのベークライト製基板、湿気硬化性ウレタンホットメルト(エスダイン9607R:(株)積水フーラー製;JIS6253硬度A71;JIS6251引張強度3.1MPa)、特許文献1にある装置を用いて作製を行った。まず、基板上に接着剤を塗布幅4.0mm、塗布ピッチ5.3mm、塗布厚さ20μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けた。接着剤の硬化後、硬化した接着剤の上に重なるように塗布幅8.8mm、塗布ピッチ10.3mm、塗布厚さ90μmとなるよう接着剤を多条に塗布した。おおよそ520本のロッドレンズを、615μm間隔の配列溝が形成されたプレートを用いて配列し、接着剤が延びる方向とレンズが直交するように接着剤の上に配置した。さらに、上記と同様に基板-ロッドレンズ間緩衝層が設けられ、その上に接着剤が塗布された基板をもう一枚準備し、すでにロッドレンズが配置済みの基板と接着剤塗布面が対向するように、ロッドレンズ上に配置することで2枚の基板によりロッドレンズを挟み込んだ。その後、試験体を60℃に加温した状態で0.4MPa/cm2の圧力で30秒間プレスを行ったところ、未硬化状態の接着剤が変形してレンズ間に充填され、レンズと硬化済の接着剤(基板-ロッドレンズ間緩衝層)が完全に密着した状態となった。その後試験体を20℃に冷却することにより2枚の基板にロッドレンズが挟み込まれ接着剤が充填されたロッドレンズアレイ原板を得た。このようにして得られたロッドレンズアレイ原板を、接着剤が伸びる方向と平行に5.0mm間隔で切断した後、温度60℃、湿度90%RHの環境下で24時間処理することにより、接着剤を硬化させた。接着剤の硬化後、ロッドレンズアレイの切断面を鏡面切削して、4.4mm幅に仕上げた。
Example 7
For the production of the rod lens array, a Bakelite substrate having a length of 330 mm, a width of 170 mm, and a thickness of 0.42 mm, a moisture curable urethane hot melt (Esdyne 9607R: manufactured by Sekisui Fuller; JIS 6253 hardness A71; JIS 6251 tensile strength 3 .1 MPa), and the device described in Patent Document 1 was used for the production. First, an adhesive is applied onto a substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 20 μm, and the substrate is treated in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours. Then, the adhesive was cured to provide a buffer layer between the substrate and the rod lens. After the adhesive was cured, the adhesive was applied in multiple strips so as to have a coating width of 8.8 mm, a coating pitch of 10.3 mm, and a coating thickness of 90 μm so as to overlap the cured adhesive. Approximately 520 rod lenses were arranged using a plate in which arrangement grooves with a spacing of 615 μm were formed, and arranged on the adhesive so that the direction in which the adhesive extends and the lens were orthogonal. Furthermore, a substrate-rod lens buffer layer is provided in the same manner as described above, and another substrate on which an adhesive is applied is prepared, and the substrate on which the rod lens is already arranged faces the adhesive application surface. As described above, the rod lens was sandwiched between the two substrates by being arranged on the rod lens. After that, when the specimen was heated to 60 ° C. and pressed at a pressure of 0.4 MPa / cm 2 for 30 seconds, the uncured adhesive was deformed and filled between the lenses, and the lens and the cured The adhesive (substrate-rod lens buffer layer) was in complete contact. Thereafter, the specimen was cooled to 20 ° C. to obtain a rod lens array original plate in which rod lenses were sandwiched between two substrates and filled with an adhesive. The rod lens array original plate thus obtained is cut at 5.0 mm intervals parallel to the direction in which the adhesive extends, and then treated in an environment of a temperature of 60 ° C. and a humidity of 90% RH for 24 hours. The agent was cured. After the adhesive was cured, the cut surface of the rod lens array was mirror-cut to a 4.4 mm width.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.72であった。また基板-ロッドレンズ間に20μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは9.90mmであり、副走査方向TCは9.97mm、主走査方向と副走査方向での共役長の差ΔTCは0.07mm、BestTCは9.94mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@12Lp/mmは85%であり、BestTCでの主走査MTFcv@12Lp/mmは2.0%であった。このように作製したロッドレンズアレイに対して温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは9.80mm、副走査方向TCは9.88mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.08mmであった。このロッドレンズアレイとLEDアレイを組み合わせて、感光ドラムへ印字を行い、続いて黒色トナーを用いて印刷を行ったところ、印刷画像は鮮明であり、また画像の斑が少なかった。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.72. In addition, a 20 μm buffer layer was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 9.90 mm, the sub scanning direction TC was 9.97 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub scanning direction was 0.8. 07 mm and BestTC were 9.94 mm. The main scanning MTFave @ 12Lp / mm at BestTC of this rod lens array was 85%, and the main scanning MTFcv @ 12Lp / mm at BestTC was 2.0%. The main scanning direction TC is 9.80 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours. Was 9.88 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.08 mm. When this rod lens array and LED array were combined and printed on a photosensitive drum, followed by printing with black toner, the printed image was clear and there were few image spots.
 〔実施例8〕
 基板上に接着剤を塗布幅4.0mm、塗布ピッチ5.3mm、塗布厚さ30μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は実施例7と同様にしてロッドレンズアレイを作製した。
Example 8
Adhesive is applied on the substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 30 μm. A rod lens array was prepared in the same manner as in Example 7 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.72であった。また基板-ロッドレンズ間に30μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは9.89mmであり、副走査方向TCは9.94mm、主走査方向と副走査方向での共役長の差ΔTCは0.05mm、BestTCは9.92mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@12Lp/mmは88%であり、BestTCでの主走査MTFcv@12Lp/mmは2.3%であった。このように作製したロッドレンズアレイに対して温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは9.84mm、副走査方向TCは9.90mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.06mmであった。このロッドレンズアレイとLEDアレイを組み合わせて、感光ドラムへ印字を行い、続いて黒色トナーを用いて印刷を行ったところ、印刷画像は鮮明であり、また画像の斑が少なかった。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.72. A buffer layer of 30 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 9.89 mm, the sub scanning direction TC was 9.94 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub scanning direction was 0.8. 05 mm and BestTC were 9.92 mm. This rod lens array had a main scan MTFave @ 12Lp / mm at BestTC of 88% and a main scan MTFcv @ 12Lp / mm at BestTC of 2.3%. The main scanning direction TC is 9.84 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus manufactured to a high temperature and high humidity condition of 60 ° C. and humidity 90% RH for 500 hours. Was 9.90 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.06 mm. When this rod lens array and LED array were combined and printed on a photosensitive drum, followed by printing with black toner, the printed image was clear and there were few image spots.
 〔実施例9〕
 基板上に接着剤を塗布幅4.0mm、塗布ピッチ5.3mm、塗布厚さ40μmとなるよう多条に塗布し、温度60℃、湿度90%RHの環境下で24時間処理することで接着剤を硬化させ、基板-ロッドレンズ間緩衝層を設けたこと以外は実施例7と同様にしてロッドレンズアレイを作製した。
Example 9
Adhesive is applied onto the substrate in multiple strips so that the coating width is 4.0 mm, the coating pitch is 5.3 mm, and the coating thickness is 40 μm, and the adhesive is bonded by treating for 24 hours in an environment of temperature 60 ° C. and humidity 90% RH. A rod lens array was prepared in the same manner as in Example 7 except that the agent was cured and a buffer layer between the substrate and the rod lens was provided.
 このロッドレンズアレイの両端面を顕微鏡(Leica実体顕微鏡M205C 拡大倍率100倍)により観察したところ、ロッドレンズ間に15μmの緩衝層が形成されており、式2re/Pで表わされるロッドレンズの有効直径と配列ピッチとの比は0.72であった。また基板-ロッドレンズ間に40μmの緩衝層が形成されていた。このロッドレンズアレイの共役長TCを測定したところ、主走査方向TCは9.93mmであり、副走査方向TCは9.96mm、主走査方向と副走査方向での共役長の差ΔTCは0.03mm、BestTCは9.95mmであった。このロッドレンズアレイのBestTCでの主走査MTFave@12Lp/mmは84%であり、BestTCでの主走査MTFcv@12Lp/mmは1.9%であった。このように作製したロッドレンズアレイに対して温度60℃、気温90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向TCは9.88mm、副走査方向TCは9.93mmであり、主走査方向と副走査方向での共役長の差ΔTCは0.05mmであった。このロッドレンズアレイとLEDアレイを組み合わせて、感光ドラムへ印字を行い、続いて黒色トナーを用いて印刷を行ったところ、印刷画像は鮮明であり、また画像の斑が少なかった。このように作製したロッドレンズアレイに対して温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の主走査方向(アレイの配列方向)及び副走査方向(基板の面方向)での共役長TC(mm)、及び主走査方向と副走査方向での共役長の差ΔTC(mm)を図6乃至14に示す。また緩衝層の厚みに対する共役長の差ΔTC(mm)の値の関係を図15に示す。また緩衝層の厚みに対して、温度60℃、湿度90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後に発生する共役長の差ΔTC(mm)の値の関係を図16に示す。 When both end surfaces of this rod lens array were observed with a microscope (Leica stereomicroscope M205C, magnification 100 ×), a buffer layer of 15 μm was formed between the rod lenses, and the effective diameter of the rod lens represented by the formula 2re / P And the array pitch was 0.72. A buffer layer of 40 μm was formed between the substrate and the rod lens. When the conjugate length TC of this rod lens array was measured, the main scanning direction TC was 9.93 mm, the sub scanning direction TC was 9.96 mm, and the conjugate length difference ΔTC between the main scanning direction and the sub scanning direction was 0.8. 03 mm and BestTC were 9.95 mm. This rod lens array had a main scan MTFave @ 12Lp / mm at BestTC of 84% and a main scan MTFcv @ 12Lp / mm at BestTC of 1.9%. The main scanning direction TC is 9.88 mm and the sub-scanning direction TC after a durability test of exposing the rod lens array thus fabricated to a high temperature and high humidity condition of 60 ° C. and 90% RH for 500 hours. Was 9.93 mm, and the difference ΔTC in conjugate length between the main scanning direction and the sub-scanning direction was 0.05 mm. When this rod lens array and LED array were combined and printed on a photosensitive drum, followed by printing with black toner, the printed image was clear and there were few image spots. The main scanning direction (array arrangement direction) and sub-scanning direction after the endurance test in which the rod lens array thus manufactured is subjected to a high temperature and high humidity condition of 60 ° C. and humidity 90% RH for 500 hours. 6 to 14 show the conjugate length TC (mm) in the (plane direction of the substrate) and the difference ΔTC (mm) between the conjugate lengths in the main scanning direction and the sub-scanning direction. FIG. 15 shows the relationship between the conjugate length difference ΔTC (mm) and the buffer layer thickness. In addition, the relationship between the thickness of the buffer layer and the value of the difference ΔTC (mm) in the conjugate length that occurs after 500 hours of endurance test of exposure to high temperature and high humidity conditions of 60 ° C and 90% RH is shown. 16 shows.
 また、比較例及び実施例の試験結果をまとめて表1に示す。 Also, the test results of the comparative examples and examples are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3乃至5及び表1から分かるように、基板‐ロッドレンズ間緩衝層が設けられていない比較例2、基板‐ロッドレンズ間緩衝層及びロッドレンズ間緩衝層が設けられていない比較例1では、主走査方向及び副操作方向の共役長の差が大きく、耐久試験によってその差が大きくなる傾向がある。これに対して、図6乃至図14の基板‐ロッドレンズ間緩衝層が設けられている実施例では、主走査方向及び副操作方向の共役長の差が小さく、また耐久試験における共役長の差にほとんど変化がなく、ほぼ同じ割合で低下していることが分かった。従って、本発明の実施例によれば、基板とロッドレンズとの間に5μm超の基板‐ロッドレンズ間緩衝層を設けることによって、接着剤の収縮によるレンズの変形を抑制でき、これにより、ロッドレンズの主走査方向及び副走査方向での共役長の差が著しくなるのを抑制してロッドレンズアレイの光学特性を維持できることが分かった。 As can be seen from FIGS. 3 to 5 and Table 1, in Comparative Example 2 in which the substrate-rod lens buffer layer is not provided, and in Comparative Example 1 in which the substrate-rod lens buffer layer and the rod lens buffer layer are not provided. The difference in conjugate length between the main scanning direction and the sub-operation direction is large, and the difference tends to increase due to the durability test. On the other hand, in the example in which the buffer layer between the substrate and the rod lens shown in FIGS. 6 to 14 is provided, the difference in the conjugate length between the main scanning direction and the sub-operation direction is small, and the difference in the conjugate length in the durability test. It was found that there was almost no change, and the rate decreased at almost the same rate. Therefore, according to the embodiment of the present invention, by providing a substrate-rod lens buffer layer of more than 5 μm between the substrate and the rod lens, the deformation of the lens due to the shrinkage of the adhesive can be suppressed. It has been found that the optical characteristics of the rod lens array can be maintained while suppressing a significant difference in conjugate length between the main scanning direction and the sub-scanning direction of the lens.
 図17は、ロッドレンズ間緩衝層及び基板-ロッドレンズ間緩衝層を有していないロッドレンズアレイ(比較例1)、15μmのロッドレンズ間緩衝層を有するが基板‐ロッドレンズ間緩衝層を有していないロッドレンズアレイ(比較例2)、及び15μmのロッドレンズ間緩衝層を有し、基板‐ロッドレンズ間緩衝層を5μm有しているロッドレンズアレイ(比較例3)の断面写真を示す。これに加えて図18にはこれらのロッドレンズアレイを用いて100μm間隔の格子を結像させたときの像(格子像)、またこれらのロッドレンズアレイを60℃90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の格子像を示す。 FIG. 17 shows a rod lens array (Comparative Example 1) that does not have a buffer layer between a rod lens and a buffer layer between a substrate and a rod lens, and has a buffer layer between a rod lens of 15 μm, but has a buffer layer between a substrate and a rod lens. A cross-sectional photograph of a rod lens array (Comparative Example 2) that is not provided and a rod lens array (Comparative Example 3) that has a buffer layer between rod lenses of 15 μm and a buffer layer between the substrate and rod lenses of 5 μm is shown. . In addition to this, FIG. 18 shows an image (grating image) obtained by forming an image of a lattice having a spacing of 100 μm using these rod lens arrays, and these rod lens arrays are subjected to a high temperature and high humidity condition of 60 ° C. and 90% RH. The lattice image after performing the durability test of exposing to 500 hours is shown.
 また図18は、15μmのロッドレンズ間緩衝層及び10μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例1)、15μmのロッドレンズ間緩衝層及び20μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例2)、15μmのロッドレンズ間緩衝層及び24μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例3)、15μmのロッドレンズ間緩衝層及び34μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例4)、15μmのロッドレンズ間緩衝層及び41μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例4)、15μmのロッドレンズ間緩衝層及び100μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例5)、及び15μmのロッドレンズ間緩衝層及び1068μmの基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイ(実施例6)の断面写真を示す。これに加えて図18にはこれらのロッドレンズアレイを用いて100μm間隔の格子を結像させたときの像(格子像)、及びこれらのロッドレンズアレイを60℃90%RHの高温高湿条件下にさらすという耐久試験を500時間行った後の格子像を示す。尚、図17、18では、左右が主走査方向であり、上下が副走査方向である。 FIG. 18 shows a rod lens array (Example 1) having a buffer layer between the rod lenses of 15 μm and a buffer layer between the substrate and rod lenses of 10 μm, a buffer layer between the rod lenses of 15 μm, and a buffer layer between the substrate and rod lenses of 20 μm. Rod lens array (Example 2), 15 μm buffer lens between rod lenses and 24 μm substrate-lens buffer layer (Example 3), buffer layer between 15 μm rod lenses and 34 μm substrate -Rod lens array having a buffer layer between rod lenses (Example 4), 15 [mu] m rod lens buffer layer and 41 [mu] m rod lens array having a substrate-rod lens buffer layer (Example 4), between 15 [mu] m rod lenses Rod lens array having a buffer layer and a buffer layer between a substrate and a rod lens of 100 μm (Example 5) , And 15μm of the rod lens between the substrates of the buffer layer and 1068Myuemu - shows a cross-sectional photograph of the rod lens array having a buffer layer between the rod lens (Example 6). In addition to this, FIG. 18 shows an image (grating image) obtained by forming an image of a grid having an interval of 100 μm using these rod lens arrays, and these rod lens arrays under a high temperature and high humidity condition of 60 ° C. and 90% RH. The lattice image after performing the durability test of exposing to 500 hours is shown. In FIGS. 17 and 18, the left and right are the main scanning direction, and the upper and lower are the sub scanning direction.
 同図から分かるように、ロッドレンズ間緩衝層及び基板‐ロッドレンズ間緩衝層を有していないロッドレンズアレイの格子像、及び基板‐ロッドレンズ間緩衝層を有していないロッドレンズアレイ、または5μm以下の基板‐ロッドレンズ間緩衝層を有するロッドレンズアレイの格子像は、耐久試験の前後で格子像が乱れている。一方で、基板‐ロッドレンズ間緩衝層を有しているロッドレンズアレイの格子像は、耐久試験後もほとんど乱れていないことが分かった。このことからも、本発明の実施例によれば、基板‐ロッドレンズ間緩衝層を設けることによって格子像が乱れるのを抑制できることが分かった。 As can be seen from the figure, a lattice image of a rod lens array that does not have a buffer layer between rod lenses and a buffer layer between substrate and rod lens, and a rod lens array that does not have a buffer layer between substrate and rod lens, or The lattice image of the rod lens array having a substrate-rod lens buffer layer of 5 μm or less is disturbed before and after the durability test. On the other hand, it was found that the lattice image of the rod lens array having the substrate-rod lens buffer layer was hardly disturbed even after the durability test. This also shows that according to the embodiment of the present invention, it is possible to prevent the lattice image from being disturbed by providing the substrate-rod lens buffer layer.
1 ロッドレンズアレイ
3,5 基板
7 接着剤
9 ロッドレンズ
11 基板‐ロッドレンズ間緩衝層
13 ロッドレンズ間緩衝層
20 チャート
21 光源
22 CCDラインセンサ
23 カラーフィルター
24 拡散板
DESCRIPTION OF SYMBOLS 1 Rod lens array 3, 5 Substrate 7 Adhesive 9 Rod lens 11 Buffer layer between substrate and rod lens 13 Buffer layer between rod lenses 20 Chart 21 Light source 22 CCD line sensor 23 Color filter 24 Diffusion plate

Claims (19)

  1.  2枚の基板の間に、複数のロッドレンズが各ロッドレンズの中心軸が互いに略平行となるように配列されたロッドレンズアレイであって、以下の3つの要件を満たすロッドレンズアレイ。
     (1)主走査方向と副走査方向のTCの差ΔTC≦1.0mm
     (2)60℃90%500h耐久試験後のΔTC≦1.0mm
     (3)BestTCにおけるMTFave≧70%@6Lp/mm
     (ここでBestTCとは、主走査方向TCと副走査方向TCの平均TCである)
    A rod lens array in which a plurality of rod lenses are arranged between two substrates so that the central axes of the rod lenses are substantially parallel to each other, and satisfy the following three requirements.
    (1) TC difference ΔTC ≦ 1.0 mm between the main scanning direction and the sub-scanning direction
    (2) ΔTC ≦ 1.0 mm after 60 ° C. and 90% 500 h durability test
    (3) MTFave ≧ 70% @ 6Lp / mm at BestTC
    (Here, BestTC is an average TC in the main scanning direction TC and the sub-scanning direction TC)
  2.  焦点深度DOF≧0.9mmである、請求項1に記載のロッドレンズアレイ。 The rod lens array according to claim 1, wherein the focal depth DOF ≧ 0.9 mm.
  3.  以下の4つの要件を満たす請求項1に記載のロッドレンズアレイ。
     (1)ΔTC≦0.1mm
     (2)耐久試験後のΔTC≦0.1mm
     (3)BestTCにおけるMTFave≧80%@12Lp/mm
     (4)BestTCにおけるMTFcv≦3%@12Lp/mm
     (ここでBestTCとは、主走査方向TCと副走査方向TCの平均TCである)
    The rod lens array according to claim 1, which satisfies the following four requirements.
    (1) ΔTC ≦ 0.1mm
    (2) ΔTC ≦ 0.1mm after durability test
    (3) MTFave ≧ 80% @ 12Lp / mm at BestTC
    (4) MTCvv ≦ 3% at BestTC @ 12 Lp / mm
    (Here, BestTC is an average TC in the main scanning direction TC and the sub-scanning direction TC)
  4.  前記ロッドレンズと前記2枚の基板との間に、各々、基板‐ロッドレンズ間に厚さが5μm超の緩衝層が設けられている、請求項1~3に記載のロッドレンズアレイ。 4. The rod lens array according to claim 1, wherein a buffer layer having a thickness of more than 5 μm is provided between the rod lens and the two substrates, respectively, between the substrate and the rod lens.
  5.  前記基板‐ロッドレンズ間緩衝層の厚さは、10μm以上である、請求項4に記載のロッドレンズアレイ。 The rod lens array according to claim 4, wherein the thickness of the buffer layer between the substrate and the rod lens is 10 μm or more.
  6.  前記基板‐ロッドレンズ間緩衝層の厚さは、15μm以上である、請求項5に記載のロッドレンズアレイ。 The rod lens array according to claim 5, wherein a thickness of the buffer layer between the substrate and the rod lens is 15 µm or more.
  7.  隣接するロッドレンズの間にロッドレンズ間緩衝層が設けられている、請求項4~6のいずれかに記載のロッドレンズアレイ。 The rod lens array according to any one of claims 4 to 6, wherein a buffer layer between rod lenses is provided between adjacent rod lenses.
  8.  前記ロッドレンズ間緩衝層の厚さは、5μm以上30μm以下である、請求項7に記載のロッドレンズアレイ。 The rod lens array according to claim 7, wherein the buffer layer between the rod lenses has a thickness of 5 µm to 30 µm.
  9.  前記ロッドレンズ間緩衝層の厚さは、10μm以上20μm以下である、請求項8に記載のロッドレンズアレイ。 The rod lens array according to claim 8, wherein the buffer layer between the rod lenses has a thickness of 10 µm or more and 20 µm or less.
  10.  前記基板‐ロッドレンズ間緩衝層が、硬度(JIS6253):A50~A95、引張強度(JIS6251):1MPa~100MPaである、請求項4に記載のロッドレンズアレイ。 The rod lens array according to claim 4, wherein the buffer layer between the substrate and the rod lens has a hardness (JIS 6253): A50 to A95 and a tensile strength (JIS 6251): 1 MPa to 100 MPa.
  11.  前記ロッドレンズ間緩衝層が、硬度(JIS6253):A50~A95、引張強度(JIS6251):1MPa~100MPaである、請求項7に記載のロッドレンズアレイ。 The rod lens array according to claim 7, wherein the buffer layer between the rod lenses has a hardness (JIS 6253): A50 to A95 and a tensile strength (JIS 6251): 1 MPa to 100 MPa.
  12.  前記基板‐ロッドレンズ間緩衝層は、前記基板と前記ロッドレンズとの間に前記接着剤を介在させることによって形成されている、請求項4に記載のロッドレンズアレイ。 The rod lens array according to claim 4, wherein the buffer layer between the substrate and the rod lens is formed by interposing the adhesive between the substrate and the rod lens.
  13.  前記ロッドレンズ間緩衝層は、隣接する前記ロッドレンズの間に前記接着剤を介在させることによって形成されている、請求項7に記載のロッドレンズアレイ。 The rod lens array according to claim 7, wherein the buffer layer between rod lenses is formed by interposing the adhesive between the adjacent rod lenses.
  14.  前記ロッドレンズがプラスチックロッドレンズである、請求項4に記載のロッドレンズアレイ。 The rod lens array according to claim 4, wherein the rod lens is a plastic rod lens.
  15.  以下の4つの要件を満たす請求項1~14のいずれか一項に記載のロッドレンズアレイ
     (1)0.06≦開口数NA≦0.4
     (2)0.3mm-1≦屈折率分布定数g≦1.0mm-1
     (3)0.1mm≦レンズ有効半径re≦0.4mm
     (4)0.70≦2re/P(レンズ有効半径/配列ピッチ)
    The rod lens array according to any one of claims 1 to 14, which satisfies the following four requirements: (1) 0.06 ≤ numerical aperture NA ≤ 0.4
    (2) 0.3 mm −1 ≦ refractive index distribution constant g ≦ 1.0 mm −1
    (3) 0.1 mm ≦ lens effective radius re ≦ 0.4 mm
    (4) 0.70 ≦ 2re / P (effective lens radius / arrangement pitch)
  16.  2枚の基板の上に、各々、緩衝層を設ける段階と、
     前記2枚の基板の上に形成された緩衝層の上に接着剤を塗布する塗布段階と、
     前記2枚の基板のうちの何れか一方の基板に塗布された接着剤の上にロッドレンズを配列する配列段階と、
     前記2枚の基板のうちの他方の基板に塗布された接着剤がロッドレンズに接着されるように、当該他方の基板をロッドレンズの上に配置する配置段階と、
     前記2枚の基板に塗布された前記接着剤を硬化させ、ロッドレンズアレイとする硬化段階と、
     を備えている、ロッドレンズアレイの製造方法。
    Providing a buffer layer on each of the two substrates;
    An application step of applying an adhesive on the buffer layer formed on the two substrates;
    An arrangement step of arranging rod lenses on an adhesive applied to any one of the two substrates;
    An arrangement step of disposing the other substrate on the rod lens so that the adhesive applied to the other substrate of the two substrates is adhered to the rod lens;
    Curing the adhesive applied to the two substrates to form a rod lens array; and
    A method for manufacturing a rod lens array, comprising:
  17.  2枚の基板の上に、各々、接着剤を塗布する第1の塗布段階と、
     前記2枚の基板の上に塗布された接着剤を硬化させる第1の硬化段階と、
     前記2枚の基板の上で硬化された接着剤の上にさらに接着剤を塗布する第2の塗布段階と、
     前記2枚の基板のうちの何れか一方の基板に塗布された接着剤の上にロッドレンズを配列する配列段階と、
     前記2枚の基板のうちの他方の基板に塗布された接着剤がロッドレンズに接着されるように、当該他方の基板をロッドレンズの上に配置する配置段階と、
     前記2枚の基板に塗布された前記接着剤を硬化させ、ロッドレンズアレイとする第2の硬化段階と、
     を備えている、請求項16に記載のロッドレンズアレイの製造方法。
    A first application step of applying an adhesive on each of the two substrates;
    A first curing step of curing the adhesive applied on the two substrates;
    A second application step of further applying an adhesive on the adhesive cured on the two substrates;
    An arrangement step of arranging rod lenses on an adhesive applied to any one of the two substrates;
    An arrangement step of disposing the other substrate on the rod lens so that the adhesive applied to the other substrate of the two substrates is adhered to the rod lens;
    A second curing step of curing the adhesive applied to the two substrates to form a rod lens array;
    The manufacturing method of the rod lens array of Claim 16 provided with these.
  18.  前記第1の塗布段階において、前記第1の硬化段階後の接着剤の厚みが5μm超となるように接着剤を塗布することを特徴とする、請求項17に記載のロッドレンズアレイの製造方法。 18. The method of manufacturing a rod lens array according to claim 17, wherein, in the first application step, the adhesive is applied so that the thickness of the adhesive after the first curing step is more than 5 [mu] m. .
  19.  前記配列段階において、前記ロッドレンズ同士の間隔が5μm以上30μm以下となるように、前記ロッドレンズが配列し、前記第2の塗布段階において、前記ロッドレンズアレイの前記ロッドレンズ同士の間隔が接着剤で埋まる量の接着剤が塗布されることを特徴とする、請求項17に記載のロッドレンズアレイの製造方法。 In the arranging step, the rod lenses are arranged so that an interval between the rod lenses is 5 μm or more and 30 μm or less, and in the second application step, an interval between the rod lenses of the rod lens array is an adhesive. The method for manufacturing a rod lens array according to claim 17, wherein an amount of adhesive filled in is applied.
PCT/JP2013/083772 2012-12-17 2013-12-17 Rod lens array, and manufacturing method therefor WO2014098085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502288A JPWO2014098085A1 (en) 2012-12-17 2013-12-17 Rod lens array and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-274830 2012-12-17
JP2012274830 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014098085A1 true WO2014098085A1 (en) 2014-06-26

Family

ID=50978412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083772 WO2014098085A1 (en) 2012-12-17 2013-12-17 Rod lens array, and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JPWO2014098085A1 (en)
TW (1) TW201432320A (en)
WO (1) WO2014098085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133704A (en) * 2015-01-21 2016-07-25 三菱レイヨン株式会社 Rod lens array and non-zoom imaging optical system using the same
JP2016191833A (en) * 2015-03-31 2016-11-10 株式会社沖データ Rod lens array unit, method of manufacturing rod lens array unit, led print head, image sensor head, image formation device, and image reading device
JP2016212206A (en) * 2015-05-07 2016-12-15 三菱レイヨン株式会社 Method for manufacturing optical transmission body array

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277593A (en) * 2000-03-31 2001-10-09 Canon Inc Image forming apparatus
JP2001318208A (en) * 2000-05-11 2001-11-16 Nippon Sheet Glass Co Ltd Rod lens array
JP2010015144A (en) * 2008-06-05 2010-01-21 Mitsubishi Rayon Co Ltd Method of manufacturing two-layer structure rod lens array
JP2010130066A (en) * 2008-11-25 2010-06-10 Konica Minolta Business Technologies Inc Image reading unit
JP2010187187A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Contact image sensor
JP2012078750A (en) * 2010-10-06 2012-04-19 Mitsubishi Rayon Co Ltd Rod lens, manufacturing method for rod lens, rod lens array, and manufacturing method for rod lens array
WO2012093726A1 (en) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 Plastic rod lens, plastic rod lens array, color image sensor head, and led printer head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277593A (en) * 2000-03-31 2001-10-09 Canon Inc Image forming apparatus
JP2001318208A (en) * 2000-05-11 2001-11-16 Nippon Sheet Glass Co Ltd Rod lens array
JP2010015144A (en) * 2008-06-05 2010-01-21 Mitsubishi Rayon Co Ltd Method of manufacturing two-layer structure rod lens array
JP2010130066A (en) * 2008-11-25 2010-06-10 Konica Minolta Business Technologies Inc Image reading unit
JP2010187187A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Contact image sensor
JP2012078750A (en) * 2010-10-06 2012-04-19 Mitsubishi Rayon Co Ltd Rod lens, manufacturing method for rod lens, rod lens array, and manufacturing method for rod lens array
WO2012093726A1 (en) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 Plastic rod lens, plastic rod lens array, color image sensor head, and led printer head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133704A (en) * 2015-01-21 2016-07-25 三菱レイヨン株式会社 Rod lens array and non-zoom imaging optical system using the same
JP2016191833A (en) * 2015-03-31 2016-11-10 株式会社沖データ Rod lens array unit, method of manufacturing rod lens array unit, led print head, image sensor head, image formation device, and image reading device
JP2016212206A (en) * 2015-05-07 2016-12-15 三菱レイヨン株式会社 Method for manufacturing optical transmission body array

Also Published As

Publication number Publication date
TW201432320A (en) 2014-08-16
JPWO2014098085A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5417554B1 (en) Rod lens array and image sensor head using the same
JP5009209B2 (en) Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information device
WO2014098085A1 (en) Rod lens array, and manufacturing method therefor
KR101493156B1 (en) Manufacturing method of apodizer and optical module
JP5522587B2 (en) Method for manufacturing two-stage rod lens array
JP6590292B2 (en) Rod lens array
US9855766B2 (en) Rod lens array, LED print head, contact image sensor head, image forming apparatus, and image reading apparatus
JP2016133704A (en) Rod lens array and non-zoom imaging optical system using the same
JP6621591B2 (en) Rod lens array unit, rod lens array unit manufacturing method, LED print head, image sensor head, image forming apparatus, and image reading apparatus
JP2016093989A (en) Rod lens array and equipment having rod lens array
JP2005165054A (en) Optical component, optical recording medium, and its manufacturing method
JP2001027713A (en) Optical transmission body array and its manufacture, and led printer and scanner
JP6550798B2 (en) Rod lens array manufacturing method, rod lens array, and apparatus including the rod lens
JP2004054251A (en) Rod lens array and manufacturing method therefor, and image sensor and printer using the same
JP4202988B2 (en) Solid-state image sensor mounting structure, image reading unit, and image forming apparatus
JP4778220B2 (en) Method for manufacturing optical transmitter array
JP2001159716A (en) Method of producing optical fiber array and image sensor using the same
JP2012078750A (en) Rod lens, manufacturing method for rod lens, rod lens array, and manufacturing method for rod lens array
JP3705083B2 (en) Optical memory device manufacturing method and optical memory device
JP5858282B2 (en) Rod lens and method for manufacturing rod lens
JP6411190B2 (en) Rod lens array, LED print head, image sensor head, image forming apparatus, and image reading apparatus
JP2006106361A (en) Method for manufacturing light guide plate, and light guide plate
JP4131957B2 (en) OPTICAL TRANSMITTER ARRAY STACK AND OPTICAL TRANSMITTER ARRAY MANUFACTURING METHOD
JP2004206051A (en) Rod lens array, its manufacturing method, image sensor, and printer
JP2009265148A (en) Plastic-made rod lens and plastic-made rod lens array

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502288

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864129

Country of ref document: EP

Kind code of ref document: A1