WO2014097986A1 - Raw glass plate, method for producing raw glass plate, and method for producing chemically reinforced glass - Google Patents

Raw glass plate, method for producing raw glass plate, and method for producing chemically reinforced glass Download PDF

Info

Publication number
WO2014097986A1
WO2014097986A1 PCT/JP2013/083467 JP2013083467W WO2014097986A1 WO 2014097986 A1 WO2014097986 A1 WO 2014097986A1 JP 2013083467 W JP2013083467 W JP 2013083467W WO 2014097986 A1 WO2014097986 A1 WO 2014097986A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
compressive stress
base plate
chemical strengthening
depth
Prior art date
Application number
PCT/JP2013/083467
Other languages
French (fr)
Japanese (ja)
Inventor
小池 章夫
伊賀 元一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014097986A1 publication Critical patent/WO2014097986A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the load at which cracks are generated at a rate of 50% (hereinafter also referred to as 50% crack generation load) takes the probability of crack occurrence (%) on the vertical axis and the load (kgf) on the horizontal axis. , Defined as a load at which the probability of occurrence of cracks is 50%.
  • the slow cooling furnace 13 is, for example, supplying an amount of heat whose output is controlled by an electric heater H to a required position in the furnace and slowly cooling the glass ribbon conveyed by the conveying roller 14 to a temperature range close to room temperature. Residual stress inherent in the glass ribbon G is eliminated, and the glass has a function of suppressing warping and cracking.
  • the above-described chemical strengthening treatment can be performed in the slow cooling furnace 13. That is, the glass base plate is manufactured through a forming step of forming a glass ribbon with the float bath 11 and a slow cooling step of gradually cooling the glass ribbon with the slow cooling furnace 13. In the slow cooling step, the above-described chemical strengthening treatment is applied to the glass ribbon. Is done.

Abstract

A raw glass plate produced by shaping a molten glass into a plate continuously, subsequently gradually cooling and, at the same time, chemically reinforcing the plate, and subsequently cutting the plate. The raw glass plate has a compression stress layer, wherein the compression stress layer has a depth of 12 μm or less and the outermost surface of the compression stress layer has a compressive stress of more than 500 MPa.

Description

ガラス素板、ガラス素板の製造方法及び化学強化ガラスの製造方法Glass base plate, glass base plate manufacturing method, and chemically strengthened glass manufacturing method
 本発明は、化学強化処理が施されたガラス素板、ガラス素板の製造方法及び化学強化ガラスの製造方法に関する。 The present invention relates to a glass base plate subjected to a chemical strengthening treatment, a method for manufacturing a glass base plate, and a method for manufacturing a chemically strengthened glass.
 近年、携帯電話、携帯情報端末(PDA)、タブレットPC等のディスプレイ装置が普及している。ディスプレイ装置の前面には、化学強化ガラスがカバーガラスとして取り付けられており、液晶ディプレイ(LCD)を保護する機能を果たしている。 In recent years, display devices such as mobile phones, personal digital assistants (PDAs), and tablet PCs have become widespread. A chemically strengthened glass is attached as a cover glass on the front surface of the display device, and functions to protect a liquid crystal display (LCD).
 この化学強化ガラスは、フロート法、フュージョン法等の製造方法により製造され、所定形状に切断されたガラス素板に、所望の形状に切断する切断処理や面取り処理等の加工処理を行なった後、化学強化処理が行なわれることで製造されている。 This chemically strengthened glass is manufactured by a manufacturing method such as a float method, a fusion method, etc., and after performing processing such as cutting processing and chamfering processing to cut into a desired shape on a glass base plate cut into a predetermined shape, Manufactured by chemical strengthening treatment.
日本国特開2011-197708号公報Japanese Unexamined Patent Publication No. 2011-197708
 しかしながら、所定形状に切断されたガラス素板は、搬送中や加工処理中に傷がつくおそれがあった。このような傷は扱い傷と呼ばれ、一度扱い傷が発生するとその後に化学強化処理が施された場合でも、最終製品に影響を与えるおそれがあった。 However, the glass base plate cut into a predetermined shape may be damaged during transportation or processing. Such a flaw is called a flaw, and once the flaw is generated, there is a possibility that the final product may be affected even if a chemical strengthening treatment is performed thereafter.
 そこで、本発明は、扱い傷を抑制可能なガラス素板、ガラス素板の製造方法及び化学強化ガラスの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass base plate, a glass base plate manufacturing method, and a chemically strengthened glass manufacturing method capable of suppressing handling flaws.
 本発明者らは、化学強化前に形成された扱い傷の影響が最終製品に及ぶ場合があることを見出した。そして、先ず、応力プロファイルに対するクラック発生挙動を理解するため、広い範囲で圧縮応力層の圧縮応力の深さ(以下、圧縮応力深さと呼ぶことがある。)と最表面の圧縮応力(以下、表面圧縮応力と呼ぶことがある。)を変化させ、化学強化されたソーダライムガラスのクラック発生率の評価を行った。 The present inventors have found that the effects of handling scratches formed before chemical strengthening may reach the final product. First, in order to understand the crack generation behavior with respect to the stress profile, the compressive stress depth of the compressive stress layer (hereinafter sometimes referred to as the compressive stress depth) and the outermost compressive stress (hereinafter referred to as the surface) in a wide range. The rate of occurrence of cracks in soda lime glass that was chemically strengthened was evaluated by changing the stress (sometimes referred to as compressive stress).
 評価は、表1に記載のソーダライムガラスを化学強化時間と溶融塩の温度を変えながら18個のサンプルに化学強化処理を行い、ビッカースダイヤモンド圧子を用いた場合の50%の割合でクラックが発生する荷重を図1のグラフより求め、図2のグラフに円の大きさでマッピングした。図1のグラフは、それぞれのサンプルに対し、各荷重で20個のインデンテーションを行って得られたものである。それぞれのサンプルは、化学強化処理前に、酸化セリウムにて研磨仕上げを行った。 Evaluation was performed on 18 samples while changing the chemical strengthening time and molten salt temperature of the soda lime glass listed in Table 1, and cracks occurred at a rate of 50% when using a Vickers diamond indenter. The load to be obtained was obtained from the graph of FIG. 1 and mapped to the graph of FIG. The graph of FIG. 1 is obtained by performing 20 indentations for each sample at each load. Each sample was polished with cerium oxide before chemical strengthening treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 50%の割合でクラックが発生する荷重(以下、50%クラック発生荷重とも呼ぶ。)は、図1に示すように、縦軸にクラック発生確率(%)、横軸に荷重(kgf)をとり、クラック発生確率が50%となる荷重と定義した。 As shown in FIG. 1, the load at which cracks are generated at a rate of 50% (hereinafter also referred to as 50% crack generation load) takes the probability of crack occurrence (%) on the vertical axis and the load (kgf) on the horizontal axis. , Defined as a load at which the probability of occurrence of cracks is 50%.
 図2は、それぞれのサンプルの圧縮応力深さと表面圧縮応力における50%クラック発生荷重を円の大きさで表したグラフである。
 図2から、同一の圧縮応力深さにおける50%クラック発生荷重は、所定の表面圧縮応力を超えると顕著に大きくなることが分かる。例えば、圧縮応力深さが約10μmの場合、表面圧縮応力が100~500MPaの間は50%クラック発生荷重が0.5kgfであったのに対し、表面圧縮応力が500MPaを超えると50%クラック発生荷重が1.0kgfとなる。また、図2から、圧縮応力深さが深ければ深いほど、50%クラック発生荷重が顕著に大きくなる表面圧縮応力が小さくなる傾向が見受けられる。例えば、圧縮応力深さが約10μmの場合には表面圧縮応力が500MPaを超えると50%クラック発生荷重が顕著に大きくなったが、圧縮応力深さが約20μmの場合には表面圧縮応力が約450MPa、圧縮応力深さが約40μmの場合には表面圧縮応力が約400MPa、圧縮応力深さが約50μmの場合には表面圧縮応力が約300MPaを超えると50%クラック発生荷重が顕著に大きくなっている。しかし、いずれの圧縮応力深さにおいても、ある程度表面圧縮応力を大きくしなければ、化学強化処理をしていないガラス(圧縮応力深さ=0μm、表面圧縮応力=0MPa)よりも50%クラック発生荷重が小さくなり、クラックが発生しやすく強度が弱くなることが分かった。一方で、圧縮応力層深さが深いと、後の加工処理時にガラス粉々に割れる虞が大きいことも分かっている。
FIG. 2 is a graph showing the 50% crack generation load at the compressive stress depth and surface compressive stress of each sample as a circle.
From FIG. 2, it can be seen that the 50% crack generation load at the same compressive stress depth is significantly increased when a predetermined surface compressive stress is exceeded. For example, when the compression stress depth is about 10 μm, the 50% crack generation load is 0.5 kgf when the surface compression stress is 100 to 500 MPa, whereas 50% crack generation occurs when the surface compression stress exceeds 500 MPa. The load is 1.0 kgf. Further, it can be seen from FIG. 2 that the deeper the compressive stress depth, the smaller the surface compressive stress at which the 50% crack generation load is significantly increased. For example, when the compressive stress depth is about 10 μm, the 50% crack generation load is significantly increased when the surface compressive stress exceeds 500 MPa. However, when the compressive stress depth is about 20 μm, the surface compressive stress is about When the compressive stress depth is about 450 MPa and the compressive stress depth is about 40 μm, the surface compressive stress is about 400 MPa, and when the compressive stress depth is about 50 μm, the surface compressive stress exceeds about 300 MPa and the 50% crack generation load becomes remarkably large. ing. However, at any compressive stress depth, unless the surface compressive stress is increased to some extent, 50% crack generation load is higher than that of glass not subjected to chemical strengthening treatment (compressive stress depth = 0 μm, surface compressive stress = 0 MPa). It became clear that cracks were easily generated and the strength was weakened. On the other hand, it is also known that if the depth of the compressive stress layer is deep, there is a high possibility of breaking into glass powder during subsequent processing.
 本発明者らは、これまで注目されていなかった扱い傷の抑制という新たな課題を見出し、扱い傷を有効に抑制しつつ、その後の加工処理時にガラスが割れることを抑制可能なガラス素板、化学強化ガラスの製造方法及び化学強化ガラスの製造方法に至ったものである。 The present inventors have found a new problem of suppression of handling flaws that have not been attracting attention so far, while effectively suppressing the handling flaws, a glass base plate capable of suppressing the cracking of the glass during subsequent processing, It came to the manufacturing method of chemically strengthened glass, and the manufacturing method of chemically strengthened glass.
 本発明は、以下の態様を提供するものである。
(1) 溶融ガラスを連続的に板状に成形し、その後徐冷と同時に化学強化し、切断して得られるガラス素板であって、
 圧縮応力層を有し、該圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超であることを特徴とするガラス素板。
(2) 大きさが300mm×300mm以上であることを特徴とする(1)に記載のガラス素板。
(3) 溶融ガラスを連続的に板状に成形して得られたガラスリボンを徐冷する工程において、徐冷後の圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超となるように化学強化し、その後ガラスリボンを切断することを特徴とするガラス素板の製造方法。
(4) 前記ガラス素板の大きさが300mm×300mm以上であることを特徴とする(3)に記載のガラス素板の製造方法。
(5) 溶融塩に前記ガラスリボンを0.5~3分間浸漬させることで化学強化することを特徴とする(3)又は(4)に記載のガラス素板の製造方法。
(6) 溶融塩を噴射して該溶融塩に前記ガラスリボンを0.5~3分間さらすことで化学強化することを特徴とする(3)又は(4)に記載のガラス素板の製造方法。
(7) 前記溶融塩の温度が400℃~530℃であることを特徴とする(5)又は(6)に記載のガラス素板の製造方法。
(8) 前記溶融ガラスを溶融金属上に浮かせて板状に成形し前記ガラスリボンを得ることを特徴とする(3)~(7)のいずれかに記載のガラス素板の製造方法。
(9) 圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超となるようにガラス板を化学強化する一次化学強化工程と、
 前記一次化学強化工程で化学強化されたガラス板を、さらに化学強化する二次化学強化工程と、を備えることを特徴とする化学強化ガラスの製造方法。
(10) 前記ガラス板はフロート成形法により製造され、
 前記一次化学強化工程は、オンライン上で行われることを特徴とする(9)に記載の化学強化ガラスの製造方法。
(11) 前記一次化学強化工程は、溶融塩に前記ガラスリボンを0.5~3分間浸漬させることで化学強化することを特徴とする(9)又は(10)に記載の化学強化ガラスの製造方法。
(12) 前記一次化学強化工程は、溶融塩を噴射して該溶融塩に前記ガラスリボンを0.5~3分間さらすことで化学強化することを特徴とする(9)又は(10)に記載の化学強化ガラスの製造方法。
(13) 前記溶融塩の温度が400℃~530℃であることを特徴とする(11)又は(12)に記載の化学強化ガラスガの製造方法。
(14) 前記一次化学強化工程と前記二次化学強化工程との間に、前記一次化学強化工程で化学強化されたガラス素板を加工する加工工程を備えることを特徴とする(9)~(13)のいずれかに記載の化学強化ガラスの製造方法。
The present invention provides the following aspects.
(1) A glass base plate obtained by continuously forming molten glass into a plate shape, and then chemically strengthening and cutting simultaneously with slow cooling,
A glass base plate having a compressive stress layer, wherein the depth of the compressive stress layer is 12 μm or less, and the compressive stress on the outermost surface is more than 500 MPa.
(2) The glass base plate according to (1), wherein the size is 300 mm × 300 mm or more.
(3) In the step of gradually cooling a glass ribbon obtained by continuously forming molten glass into a plate shape, the depth of the compressive stress layer after slow cooling is 12 μm or less, and the compressive stress on the outermost surface is 500 MPa. A method for producing a glass base plate, characterized by being chemically strengthened to be super, and then cutting a glass ribbon.
(4) The method for producing a glass base plate according to (3), wherein the size of the glass base plate is 300 mm × 300 mm or more.
(5) The method for producing a glass base plate according to (3) or (4), wherein the glass ribbon is chemically strengthened by immersing the glass ribbon in a molten salt for 0.5 to 3 minutes.
(6) The method for producing a glass base plate according to (3) or (4), wherein the glass ribbon is chemically strengthened by spraying the molten salt and exposing the glass ribbon to the molten salt for 0.5 to 3 minutes. .
(7) The method for producing a glass base plate according to (5) or (6), wherein the temperature of the molten salt is 400 ° C. to 530 ° C.
(8) The method for producing a glass base plate according to any one of (3) to (7), wherein the molten glass is floated on a molten metal and formed into a plate shape to obtain the glass ribbon.
(9) a primary chemical strengthening step of chemically strengthening the glass plate so that the depth of the compressive stress layer is 12 μm or less and the compressive stress of the outermost surface is over 500 MPa;
A method for producing chemically strengthened glass, comprising: a secondary chemical strengthening step for further chemically strengthening the glass plate chemically strengthened in the primary chemical strengthening step.
(10) The glass plate is manufactured by a float forming method,
The method for producing chemically tempered glass according to (9), wherein the primary chemical tempering step is performed on-line.
(11) The chemical tempered glass production according to (9) or (10), wherein the primary chemical tempering step is chemically tempered by immersing the glass ribbon in a molten salt for 0.5 to 3 minutes. Method.
(12) The primary chemical strengthening step includes chemical strengthening by spraying molten salt and exposing the glass ribbon to the molten salt for 0.5 to 3 minutes. Of manufacturing chemically strengthened glass.
(13) The method for producing a chemically strengthened glass film according to (11) or (12), wherein the temperature of the molten salt is 400 ° C to 530 ° C.
(14) The method includes a processing step of processing the glass base plate chemically strengthened in the primary chemical strengthening step between the primary chemical strengthening step and the secondary chemical strengthening step. The manufacturing method of the chemically strengthened glass in any one of 13).
 なお、本明細書において、化学強化ガラスとは、化学強化処理が施されたガラスをいい、化学強化用ガラスとは、化学強化処理が施されたか否かに関わらず、後に化学強化処理が施されるガラスをいう。従って、一次化学強化工程により化学強化されたガラス素板は、化学強化ガラスであると共に化学強化用ガラスであり、二次化学強化工程により化学強化されたガラスは、化学強化ガラスである。
 また、ガラス素板とは、溶融ガラスを連続的に板状に成形し、その後徐冷し、切断して得られる、加工処理前のガラスを意味する。ガラス素板の大きさは、典型的には300mm×300mm以上であり、通常は短辺が500mm以上または700mm以上である。
In this specification, chemically strengthened glass refers to glass that has been subjected to chemical strengthening treatment, and chemically strengthened glass refers to glass that has been subjected to chemical strengthening treatment later, regardless of whether or not chemical strengthening treatment has been performed. Refers to glass that is made. Therefore, the glass base plate chemically strengthened by the primary chemical strengthening process is chemically strengthened glass as well as chemically strengthened glass, and the glass chemically strengthened by the secondary chemical strengthening process is chemically strengthened glass.
Moreover, a glass base plate means the glass before a processing process obtained by shape | molding molten glass continuously in plate shape, then cooling slowly and cut | disconnecting. The size of the glass base plate is typically 300 mm × 300 mm or more, and usually has a short side of 500 mm or more or 700 mm or more.
 本発明のガラス素板及びガラス素板の製造方法によれば、ガラス素板の圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超であるので、ガラス表面にクラックが発生しにくく、扱い傷を抑制することができる。また、圧縮応力層が浅いことで、後の加工処理時にガラスが割れることが抑制され、扱い傷の発生を抑制しつつ、その後の処理を円滑に行なうことができる。さらに、ガラス素板の段階で既に化学強化されているので、ガラスリボンがガラス素板に切断されるまでの搬送工程での扱い傷も抑制することができる。 According to the glass base plate and the glass base plate manufacturing method of the present invention, since the depth of the compressive stress layer of the glass base plate is 12 μm or less and the compressive stress of the outermost surface is more than 500 MPa, there are cracks on the glass surface. It is difficult to occur and handling damage can be suppressed. In addition, since the compressive stress layer is shallow, the glass is prevented from cracking during subsequent processing, and subsequent processing can be performed smoothly while suppressing the occurrence of handling flaws. Furthermore, since it has already been chemically strengthened at the stage of the glass base plate, it is possible to suppress handling flaws in the transport process until the glass ribbon is cut into the glass base plate.
 また、本発明の化学強化ガラスの製造方法によれば、一次化学強化工程により圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超のガラス板が得られるので、ガラス表面にクラックが発生しにくく、扱い傷を抑制することができる。また、圧縮応力層が浅いことで、後の加工処理時にガラスが割れることが抑制され、扱い傷の発生を抑制しつつ、その後の処理を円滑に行なうことができる。また、二次化学強化工程により、最終製品としての圧縮応力層の深さ及び最表面の圧縮応力を適宜調整することができる。 In addition, according to the method for producing chemically strengthened glass of the present invention, a glass plate having a compressive stress layer depth of 12 μm or less and an outermost surface compressive stress of more than 500 MPa is obtained by the primary chemical strengthening step. Cracks are less likely to occur, and handling flaws can be suppressed. In addition, since the compressive stress layer is shallow, the glass is prevented from cracking during subsequent processing, and subsequent processing can be performed smoothly while suppressing the occurrence of handling flaws. Further, the depth of the compressive stress layer as the final product and the compressive stress on the outermost surface can be appropriately adjusted by the secondary chemical strengthening step.
50%クラック発生荷重を説明するための、クラック発生確率と荷重との関係を示すグラフである。It is a graph which shows the relationship between a crack generation probability and a load for demonstrating a 50% crack generation load. 圧縮応力深さ及び表面圧縮応力と、50%クラック発生荷重との関係を示すグラフである。It is a graph which shows the relationship between compression stress depth and surface compressive stress, and 50% crack generation load. 400~450℃で10時間化学強化したソーダライムガラス及びアルミノシリケートガラスの圧縮応力層深さと表面圧縮応力の関係を示したグラフである。3 is a graph showing the relationship between compressive stress layer depth and surface compressive stress of soda lime glass and aluminosilicate glass chemically strengthened at 400 to 450 ° C. for 10 hours. オンライン上で化学強化処理を行う際のガラス製造装置の一例を示す図である。It is a figure which shows an example of the glass manufacturing apparatus at the time of performing a chemical strengthening process on-line. オンライン上で化学強化処理を行う際のガラス製造装置の他の例を示す図である。It is a figure which shows the other example of the glass manufacturing apparatus at the time of performing a chemical strengthening process on-line.
 以下、本発明の一実施形態のガラス素板及びガラス素板の製造方法について説明する。
 本発明のガラス素板は、圧縮応力層を有する化学強化ガラスであって、圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超である。圧縮応力層の深さは、好ましくは10μm以下であり、さらに好ましくは8μm以下であり、特に好ましくは7μm以下である。圧縮応力層の深さは浅ければ浅いほど、後に切断処理や面取り処理等の加工処理をする際の影響を小さく抑えることができる。最表面の圧縮応力は、550MPa以上が好ましく、600MPa以上がより好ましく、650MPa以上がさらに好ましく、700MPa以上であることが特に好ましい。最表面の圧縮応力は、大きければ大きいほど、扱い傷の発生を抑制することができる。圧縮応力層の深さ及び最表面の圧縮応力は、表面応力測定装置(折原製作所製FSM-6000)を用いて測定することができる。また、断面を複屈折顕微鏡にて観察することで得られるレターデーションから求めることができる。
Hereinafter, the manufacturing method of the glass base plate and glass base plate of one Embodiment of this invention is demonstrated.
The glass base plate of the present invention is a chemically strengthened glass having a compressive stress layer, the depth of the compressive stress layer is 12 μm or less, and the compressive stress on the outermost surface is more than 500 MPa. The depth of the compressive stress layer is preferably 10 μm or less, more preferably 8 μm or less, and particularly preferably 7 μm or less. The shallower the depth of the compressive stress layer, the smaller the influence of subsequent processing such as cutting or chamfering. The outermost compression stress is preferably 550 MPa or more, more preferably 600 MPa or more, further preferably 650 MPa or more, and particularly preferably 700 MPa or more. As the compressive stress on the outermost surface increases, the generation of handling flaws can be suppressed. The depth of the compressive stress layer and the compressive stress on the outermost surface can be measured using a surface stress measuring device (FSM-6000 manufactured by Orihara Seisakusho). Moreover, it can obtain | require from the retardation obtained by observing a cross section with a birefringence microscope.
 このようなガラス素板を得るためには、ガラス素板を極短時間のみ溶融塩に浸漬又はさらすことで化学強化(一次化学強化)することが有効である。化学強化処理は、ガラス転移点以下の温度でイオン交換によりガラス表面のイオン半径が小さなアルカリ金属イオン(典型的にはLiイオン、Naイオン)をイオン半径のより大きなアルカリイオン(典型的にはKイオン)に交換することで、ガラス表面に圧縮応力層を、ガラス内部に引張応力層を形成する処理である。具体的には、例えば、400℃~530℃の溶融塩に0.5~3分間浸漬させる又はさらすことで化学強化を行う。これにより、圧縮応力深さが小さく表面圧縮応力の大きいガラスを得ることができる。500℃を超える温度では表面圧縮応力が小さくなり、所望の耐擦傷性を得ることができなくなってしまう。溶融塩としては、硝酸カリウム(KNO)を主成分とする溶融塩が好ましく、溶融塩の温度は400℃~500℃が好ましく、400℃~450℃がさらに好ましい。溶融塩の温度が530℃より高いと、アルカリイオンが拡散しやすいため圧縮応力深さが深くなる傾向にあるが、所望の表面圧縮応力を得ることができない。一方で、溶融塩の温度が400℃より低いと、アルカリイオンが拡散しにくいため化学強化に長時間を要することになる。 In order to obtain such a glass base plate, it is effective to perform chemical strengthening (primary chemical strengthening) by immersing or exposing the glass base plate to the molten salt for a very short time. In the chemical strengthening treatment, alkali metal ions (typically Li ions, Na ions) having a small ion radius on the glass surface are exchanged with ions having a larger ion radius (typically K) by ion exchange at a temperature below the glass transition point. This is a treatment for forming a compressive stress layer on the glass surface and a tensile stress layer inside the glass by exchanging them with ions. Specifically, for example, chemical strengthening is performed by immersing or exposing to a molten salt at 400 ° C. to 530 ° C. for 0.5 to 3 minutes. Thereby, glass with a small compressive stress depth and a large surface compressive stress can be obtained. If the temperature exceeds 500 ° C., the surface compressive stress becomes small and the desired scratch resistance cannot be obtained. The molten salt is preferably a molten salt mainly composed of potassium nitrate (KNO 3 ), and the temperature of the molten salt is preferably 400 ° C. to 500 ° C., more preferably 400 ° C. to 450 ° C. When the temperature of the molten salt is higher than 530 ° C., alkali ions are likely to diffuse and the depth of compressive stress tends to be deep, but a desired surface compressive stress cannot be obtained. On the other hand, when the temperature of the molten salt is lower than 400 ° C., it takes a long time for chemical strengthening because alkali ions hardly diffuse.
 ガラス素板用のガラスは、ソーダライムガラス、アルミノシリケートガラスなどが使用され得る。図3は、400~450℃で10時間化学強化したソーダライムガラス及びアルミノシリケートガラスの圧縮応力層深さと表面圧縮応力の関係を示したグラフである。
 圧縮応力深さは強化時間の1/2乗に比例するため、400~450℃で1分間化学強化した場合の圧縮力深さは、理論上、10時間化学強化した場合の約1/25程度となる。従って、図3から、400~450℃で1分間化学強化した場合、ソーダライムガラスは1μm程度、アルミノシリケートガラスは3μm程度となることが想定される。
As the glass for the glass base plate, soda lime glass, aluminosilicate glass, or the like can be used. FIG. 3 is a graph showing the relationship between the compressive stress layer depth and surface compressive stress of soda lime glass and aluminosilicate glass chemically strengthened at 400 to 450 ° C. for 10 hours.
Since the compressive stress depth is proportional to the 1/2 power of the strengthening time, the compressive force depth when chemically strengthened at 400 to 450 ° C. for 1 minute is theoretically about 1/25 when chemically strengthened for 10 hours. It becomes. Therefore, it can be assumed from FIG. 3 that when chemically strengthened at 400 to 450 ° C. for 1 minute, soda-lime glass is about 1 μm and aluminosilicate glass is about 3 μm.

 ソーダライムガラスとしては、例えば以下の組成のガラスが使用される。
(i)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、RO(R=Mg、Ca、Sr、Ba)を合量で5~25%、ZrO2を0~5%を含むガラス。
(ii)質量%で表示した組成で、SiOを64~77%、Alを0.01~7%、NaOを10~18%、KOを0~5%、MgOを1~10%、CaOを1~12%、SrOを0~5%、BaOを0~5%、ZrOを0~3%であるガラス。
(iii)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上であるガラス。
(iv)質量%で表示した組成で、SiOを60~80%、Alを0.01~8%、NaOを8~22%、KOを0~7%、ZrOを0~5%含有し、MgO、CaO、SrOまたはBaOを含有する場合MgO、CaO、SrOおよびBaOの含有量の合計が5~25%であり、CaO、SrOおよびBaOの含有量の合計が1~7%であり、NaOおよびAlの含有量の比NaO/Alが1.5以上であるガラス。
(v)質量%で表示した組成で、SiOを60~75%、Alを3~12%、MgOを2~10%、CaOを0~10%、SrOを0~3%、BaOを0~3%、NaOを10~18%、KOを0~8%、ZrOを0~3%であるガラス。

As soda lime glass, for example, glass having the following composition is used.
(I) Composition expressed in mass%, SiO 2 60-60%, Al 2 O 3 0.01-8%, Na 2 O 8-22%, K 2 O 0-7%, RO Glass containing (R = Mg, Ca, Sr, Ba) in a total amount of 5 to 25% and ZrO2 in an amount of 0 to 5%.
(Ii) Composition expressed in mass%, SiO 2 64 to 77%, Al 2 O 3 0.01 to 7%, Na 2 O 10 to 18%, K 2 O 0 to 5%, MgO 1-10%, CaO 1-12%, SrO 0-5%, BaO 0-5%, ZrO 2 0-3%.
(Iii) Composition expressed as mass%, SiO 2 60-60%, Al 2 O 3 0.01-8%, Na 2 O 8-22%, K 2 O 0-7%, ZrO 2 to 0 to 5% and MgO, CaO, SrO or BaO is contained, the total content of MgO, CaO, SrO and BaO is 5 to 25%, and Na 2 O and Al 2 O 3 are contained. A glass having a ratio of Na 2 O / Al 2 O 3 of 1.5 or more.
(Iv) Composition expressed in mass%, SiO 2 60-60%, Al 2 O 3 0.01-8%, Na 2 O 8-22%, K 2 O 0-7%, ZrO 2 is contained in an amount of 0 to 5%, and MgO, CaO, SrO or BaO is contained, the total content of MgO, CaO, SrO and BaO is 5 to 25%, and the total content of CaO, SrO and BaO There 1 is 1-7%, the glass Na 2 O and Al 2 ratio of the content of O 3 Na 2 O / Al 2 O 3 is 1.5 or more.
(V) SiO 2 60-75%, Al 2 O 3 3-12%, MgO 2-10%, CaO 0-10%, SrO 0-3%, Glass with BaO 0-3%, Na 2 O 10-18%, K 2 O 0-8% and ZrO 2 0-3%.
 アルミノシリケートガラスとしては、例えば以下の組成のガラスが使用される。
(i)モル%で表示した組成で、SiOを50~80%、Alを2~25%、LiOを0~10%、NaOを0~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス。ここで、たとえば「KOを0~10%含む」とはKOは必須ではないが10%までの範囲で、かつ、本発明の目的を損なわない範囲で含んでもよい、の意である。
(ii)モル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス。
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス。
(iv)モル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
As the aluminosilicate glass, for example, a glass having the following composition is used.
(I) a composition that is displayed in mol%, the SiO 2 50 ~ 80%, the Al 2 O 3 2 ~ 25% , the Li 2 O 0 ~ 10%, a Na 2 O 0 ~ 18%, K 2 O 0-10%, MgO 0-15%, CaO 0-5% and ZrO 2 0-5%. Here, for example, in the range of "the K 2 O containing 0-10%" Until 10% not essential K 2 O is a, and an object may include a range that does not impair the present invention, in the meaning of is there.
(Ii) The composition expressed in mol% is SiO 2 50-74%, Al 2 O 3 1-10%, Na 2 O 6-14%, K 2 O 3-11%, MgO 2 -15%, CaO 0-6% and ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O Is 12 to 25%, and the total content of MgO and CaO is 7 to 15%.
(Iii) The composition expressed in mol% is SiO 2 68-80%, Al 2 O 3 4-10%, Na 2 O 5-15%, K 2 O 0-1%, MgO 4 to 15% and a ZrO 2 0 - 1% glass containing.
(Iv) The composition expressed in mol% is SiO 2 67-75%, Al 2 O 3 0-4%, Na 2 O 7-15%, K 2 O 1-9%, MgO 6 -14% and ZrO 2 0-1.5%, the total content of SiO 2 and Al 2 O 3 is 71-75%, the total content of Na 2 O and K 2 O is 12-20 %, And when it contains CaO, its content is less than 1%.
 また、ガラス素板は、板厚が好ましくは1.5mm以下、より好ましくは、0.3~1.1mmである。また、ガラス素板は、大きさが好ましくは300mm×300mm以上である。 The glass base plate has a thickness of preferably 1.5 mm or less, more preferably 0.3 to 1.1 mm. Further, the glass base plate preferably has a size of 300 mm × 300 mm or more.
 ガラス素板は、フロート法で製造されることが好ましいが、必ずしもこれに限定されるものではなく、フュージョン法等の他の製造方法で製造されたものでもよい。いずれかの製造方法で製造されたガラスリボンを、上記したように化学強化処理をすることで、圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超である化学強化ガラスであるガラス素板が製造され得る。特に、フロート法によりガラス素板を製造することで、化学強化処理をオンライン上で行うことが可能となり、扱い傷の発生を最も早い段階で抑制することができる。また、これにより、一度冷却したガラス素板を再度加熱する必要がないので、製造工程を簡略化でき、製造コストを抑制することができる。なお、ガラスリボンの幅は、典型的には2m以上、3m以上または4m以上である。 The glass base plate is preferably manufactured by a float process, but is not necessarily limited thereto, and may be manufactured by another manufacturing method such as a fusion method. Chemically strengthened glass in which the depth of the compressive stress layer is 12 μm or less and the compressive stress on the outermost surface exceeds 500 MPa by subjecting the glass ribbon manufactured by any of the manufacturing methods to chemical strengthening treatment as described above. A glass base plate can be manufactured. In particular, by manufacturing a glass base plate by the float process, it is possible to perform chemical strengthening treatment on-line, and the generation of handling flaws can be suppressed at the earliest stage. Moreover, since it is not necessary to reheat the glass base plate once cooled by this, a manufacturing process can be simplified and manufacturing cost can be suppressed. The width of the glass ribbon is typically 2 m or more, 3 m or more, or 4 m or more.
 図4、5は、オンライン上で化学強化処理を行う際のガラス製造装置の例を示す図である。
 ガラス製造装置10は、ガラスの原料を溶解する溶解炉(図示せず)と、溶解された溶融ガラスを溶融錫上に浮かせて平坦なガラスリボンGを成形するフロートバス11と、リフトアウトロール12によってガラスリボンGをフロートバス11から引き出した後に、ガラスリボンGの温度を徐々に下げることで徐冷する徐冷炉13と、を備えて構成される。
4 and 5 are diagrams illustrating an example of a glass manufacturing apparatus when performing chemical strengthening treatment on-line.
The glass manufacturing apparatus 10 includes a melting furnace (not shown) for melting glass raw materials, a float bath 11 for floating the molten glass on molten tin to form a flat glass ribbon G, and a lift-out roll 12. And a slow cooling furnace 13 for gradually cooling the glass ribbon G by gradually lowering the temperature of the glass ribbon G after the glass ribbon G is pulled out of the float bath 11.
 徐冷炉13は、例えば、電気ヒータHにより、その出力が制御された熱量を炉内の必要位置に供給して搬送ローラ14で搬送されるガラスリボンを常温に近い温度域までゆっくり冷却することで、ガラスリボンGに内在する残留応力をなくし、ガラスに反りや割れが発生するのを抑制する作用を有する。上記した化学強化処理は、この徐冷炉13内で、実施され得る。即ち、ガラス素板は、フロートバス11によりガラスリボンを成形する成形工程と、徐冷炉13によりガラスリボンを徐冷する徐冷工程を経て製造され、徐冷工程において、ガラスリボンに上記した化学強化処理が行われる。 The slow cooling furnace 13 is, for example, supplying an amount of heat whose output is controlled by an electric heater H to a required position in the furnace and slowly cooling the glass ribbon conveyed by the conveying roller 14 to a temperature range close to room temperature. Residual stress inherent in the glass ribbon G is eliminated, and the glass has a function of suppressing warping and cracking. The above-described chemical strengthening treatment can be performed in the slow cooling furnace 13. That is, the glass base plate is manufactured through a forming step of forming a glass ribbon with the float bath 11 and a slow cooling step of gradually cooling the glass ribbon with the slow cooling furnace 13. In the slow cooling step, the above-described chemical strengthening treatment is applied to the glass ribbon. Is done.
 例えば、図4に示すように、徐冷炉13のガラスリボンGの温度が約400℃~530℃に対応する位置に、溶融塩バス15を設け、搬送ローラ14の位置を調整することで搬送されるガラスリボンGが溶融塩バス15に溜められた溶融塩を通るようにしてもよく、図5に示すように、徐冷炉13のガラスリボンGの温度が約400℃~530℃に対応する位置に、溶融塩を吹きつける噴射装置16をガラスリボンGのトップ面側及びボトム面側に設け、搬送されるガラスリボンGが噴射装置16から噴射される溶融塩にさらされるようにしてもよい。符号20は化学強化を行う領域を大気雰囲気、N雰囲気などに保つための雰囲気ガス供給装置であり、符号21は溶融塩を吹き飛ばすエア供給装置である。 For example, as shown in FIG. 4, a molten salt bath 15 is provided at a position corresponding to the temperature of the glass ribbon G in the slow cooling furnace 13 corresponding to about 400 ° C. to 530 ° C., and the transport is performed by adjusting the position of the transport roller 14. The glass ribbon G may pass through the molten salt stored in the molten salt bath 15, and as shown in FIG. 5, the glass ribbon G in the slow cooling furnace 13 has a temperature corresponding to about 400 ° C. to 530 ° C. The injection device 16 for spraying the molten salt may be provided on the top surface side and the bottom surface side of the glass ribbon G so that the conveyed glass ribbon G is exposed to the molten salt injected from the injection device 16. Reference numeral 20 denotes an atmospheric gas supply device for keeping the region where chemical strengthening is performed in an air atmosphere, an N 2 atmosphere, and the like, and reference numeral 21 denotes an air supply device that blows away the molten salt.
 上記した化学強化処理が行われたガラス素板は、所望の形状に切断する切断処理や面取り処理等の加工処理が行なわれた後、さらに化学強化処理(二次化学強化)が施され、所望の強度を有する化学強化ガラスとなる。扱い傷を抑制するための化学強化処理(一次化学強化)後の化学強化処理(二次化学強化)により、化学強化ガラスにおける圧縮応力層深さは、15μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましく、40μm以上が特に好ましい。また、表面圧縮応力は500MPa超が好ましく、550MPa以上がより好ましく、600MPa以上がさらに好ましく、700MPa以上が特に好ましい。具体的には、例えば、425~465℃の硝酸カリウム(KNO)溶融塩に2~4hr浸漬させる。なお、ガラス素板は必ずしも二次化学強化処理が行われる必要はない。言い換えると、ガラス素板は化学強化用ガラスであってもよく、化学強化用ガラスでなくてもよい。 The glass base plate subjected to the above-described chemical strengthening treatment is subjected to a processing treatment such as a cutting treatment or a chamfering treatment for cutting into a desired shape, and further subjected to a chemical strengthening treatment (secondary chemical strengthening) to obtain a desired shape. This is a chemically strengthened glass having the following strength. Due to the chemical strengthening treatment (secondary chemical strengthening) after the chemical strengthening treatment (primary chemical strengthening) to suppress handling flaws, the depth of the compressive stress layer in the chemically strengthened glass is preferably 15 μm or more, more preferably 20 μm or more, It is more preferably 30 μm or more, and particularly preferably 40 μm or more. The surface compressive stress is preferably more than 500 MPa, more preferably 550 MPa or more, further preferably 600 MPa or more, and particularly preferably 700 MPa or more. Specifically, for example, it is immersed in molten potassium nitrate (KNO 3 ) at 425 to 465 ° C. for 2 to 4 hours. The glass base plate does not necessarily need to be subjected to the secondary chemical strengthening treatment. In other words, the glass base plate may be chemically strengthened glass or not chemically strengthened glass.
 以下、本発明の実施例について説明する。
 表2に示すガラスについて、厚さ0.7mmのフロート板を40mm四方に切り出し、硝酸カリウム(KNO)で1分間又は3分間、化学強化処理を行い、圧縮応力深さ及び表面圧縮応力の値をそれぞれの面(A,B)につき1点ずつ表面応力測定装置(折原製作所製FSM-6000)で測定した。結果を表3に示す。
Examples of the present invention will be described below.
For the glass shown in Table 2, a 0.7 mm thick float plate was cut into a 40 mm square and subjected to chemical strengthening treatment with potassium nitrate (KNO 3 ) for 1 minute or 3 minutes, and the values of compressive stress depth and surface compressive stress were determined. One point was measured for each surface (A, B) with a surface stress measuring device (FSM-6000 manufactured by Orihara Seisakusho). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、溶融塩の温度及び浸漬時間を調整することで、実際に圧縮応力層深さが浅く、表面圧縮応力が大きい化学強化ガラスが得られることが実証された。なお、サンプル1の圧縮応力層深さは、圧縮応力層深さが浅いため測定が困難であったものと考えられ、本来であればもう少し浅いものと考えられる。 From the results in Table 3, it was proved that by adjusting the temperature of the molten salt and the immersion time, a chemically strengthened glass having a shallow compressive stress layer depth and a large surface compressive stress can be obtained. In addition, the compressive stress layer depth of Sample 1 is considered to be difficult to measure because the compressive stress layer depth is shallow.
 また、サンプル4は、500℃の硝酸カリウムに3分間保持することで化学強化したものであるため圧縮応力層深さが12μmとなっているが、例えば500℃から450℃まで冷却しながら化学強化することで圧縮応力層深さを小さくすることができる。即ち、この場合、サンプル4は、500℃から450℃の温度域で3分間保持されることになり、500℃で3分保持する場合と450℃で3分保持する場合の中間程度の圧縮応力層深さになることが想定される。 Sample 4 is chemically strengthened by holding in potassium nitrate at 500 ° C. for 3 minutes, so the compressive stress layer depth is 12 μm. For example, it is chemically strengthened while cooling from 500 ° C. to 450 ° C. Thus, the depth of the compressive stress layer can be reduced. That is, in this case, the sample 4 is held for 3 minutes in the temperature range of 500 ° C. to 450 ° C., and the compressive stress is about intermediate between the case of holding at 500 ° C. for 3 minutes and the case of holding at 450 ° C. for 3 minutes. It is assumed that the layer depth will be reached.
 表1に示すソーダライムガラスについて、厚さ0.7mmのフロート板を40mm四方に切り出し、硝酸カリウム(KNO)で1分間又は3分間、化学強化処理を行い、圧縮応力深さ及び表面圧縮応力の値をそれぞれの面(A,B)につき1点ずつ表面応力測定装置(折原製作所製FSM-6000)で測定した。本装置では圧縮応力層深さが浅いため、表面圧縮応力、及び圧縮応力層深さが測定できなかった。しかしながら、表面応力計において縞が観測されたことから、応力が入っていることは確認できた。 About soda lime glass shown in Table 1, a 0.7 mm thick float plate was cut into a 40 mm square, and subjected to chemical strengthening treatment with potassium nitrate (KNO 3 ) for 1 minute or 3 minutes, and the compression stress depth and surface compression stress were measured. The values were measured with a surface stress measuring device (FSM-6000 manufactured by Orihara Seisakusho) for each surface (A, B). Since the compressive stress layer depth is shallow in this apparatus, the surface compressive stress and the compressive stress layer depth could not be measured. However, since stripes were observed in the surface stress meter, it was confirmed that stress was present.
 一方、ソーダライムガラスについて、厚さ0.7mmのフロート板を40mm四方に切り出し、硝酸カリウム(KNO)で2時間化学強化処理を行い、圧縮応力深さ及び表面圧縮応力の値をそれぞれの面(A,B)につき1点ずつ表面応力測定装置(折原製作所製FSM-6000)で測定した。その結果、両面の平均値は表面圧縮応力が572MPa、圧縮応力層深さが15.4μmであった。化学強化は時間を延ばすと応力緩和により表面圧縮応力は低下する傾向が見られることから、1分間又は3分間の化学強化処理後の表面圧縮応力は、2時間の化学強化処理後の表面圧縮応力572MPaより高いと推察される。また、圧縮応力深さは強化時間の1/2乗に比例するため、1分間又は3分間の化学強化処理後の圧縮応力層深さは、2時間の化学強化処理後の圧縮応力層深さ15.4μmより、それぞれ1.4μm、2.4μmと推察される。 On the other hand, about soda lime glass, a 0.7 mm thick float plate was cut into a 40 mm square and subjected to chemical strengthening treatment with potassium nitrate (KNO 3 ) for 2 hours, and the values of compressive stress depth and surface compressive stress were measured on each surface ( One point was measured for each of A and B) with a surface stress measuring device (FSM-6000 manufactured by Orihara Seisakusho). As a result, the average value of both surfaces was a surface compressive stress of 572 MPa and a compressive stress layer depth of 15.4 μm. Since the surface compressive stress tends to decrease due to stress relaxation when the chemical strengthening is prolonged, the surface compressive stress after the chemical strengthening treatment for 1 minute or 3 minutes is the surface compressive stress after the chemical strengthening treatment for 2 hours. It is inferred that it is higher than 572 MPa. Moreover, since the compressive stress depth is proportional to the 1/2 power of the strengthening time, the compressive stress layer depth after the chemical strengthening treatment for 1 minute or 3 minutes is the compressive stress layer depth after the chemical strengthening treatment for 2 hours. From 15.4 μm, it is inferred that they are 1.4 μm and 2.4 μm, respectively.
 以上説明したように、本実施形態の溶融ガラスを連続的に板状に成形し、その後徐冷と同時に化学強化し、切断して得られるガラス素板によれば、圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超であるので、ガラス表面にクラックが発生しにくく、扱い傷を抑制することができる。また、圧縮応力層が浅いことで、後の加工処理時にガラスが割れることが抑制され、扱い傷の発生を抑制しつつ、その後の処理を円滑に行なうことができる。さらに、ガラス素板の段階で既に化学強化されているので、ガラスリボンがガラス素板に切断されるまでの搬送工程での扱い傷も抑制することができる。仮に、ガラスリボンが化学強化される前の段階で、例えばリフトアウトロールによりガラス表面に傷が発生した場合でもその後に化学強化処理が行われることで、扱い傷が最終製品に影響を与えるほど大きくならないうちに強化を行うことができ、その後の扱い傷の発生を抑制することができる。 As described above, according to the glass base plate obtained by continuously forming the molten glass of the present embodiment into a plate shape and then chemically strengthening and cutting simultaneously with the slow cooling, the depth of the compressive stress layer is Since the compressive stress on the outermost surface is 12 μm or less and the outermost surface has a compressive stress of over 500 MPa, cracks are unlikely to occur on the glass surface, and handling flaws can be suppressed. In addition, since the compressive stress layer is shallow, the glass is prevented from cracking during subsequent processing, and subsequent processing can be performed smoothly while suppressing the occurrence of handling flaws. Furthermore, since it has already been chemically strengthened at the stage of the glass base plate, it is possible to suppress handling flaws in the transport process until the glass ribbon is cut into the glass base plate. Even if the glass ribbon is chemically strengthened before the glass ribbon is chemically strengthened, for example, even if scratches occur on the glass surface due to a lift-out roll, the chemical strengthening treatment is performed afterwards, so that the handling scratches have a large effect on the final product. Strengthening can be carried out before it becomes necessary, and subsequent generation of handling flaws can be suppressed.
 このガラス素板は、例えば、400℃~530℃の溶融塩にガラス素板を0.5~3分間浸漬させる又はさらすことで化学強化することで製造され得る。 The glass base plate can be produced, for example, by chemically strengthening the glass base plate by immersing or exposing the glass base plate to molten salt at 400 ° C. to 530 ° C. for 0.5 to 3 minutes.
 また、オンライン上で化学強化処理が行われることで扱い傷の発生を最も早い段階で抑制することができる。また、一度冷却したガラス素板を再度加熱する必要がないので、製造工程を簡略化でき、製造コストを抑制することができる。 Also, the occurrence of handling flaws can be suppressed at the earliest stage by performing chemical strengthening treatment online. Moreover, since it is not necessary to reheat the glass base plate once cooled, a manufacturing process can be simplified and manufacturing cost can be suppressed.
 また、上記した化学強化処理(一次化学強化)後に、さらに化学強化処理(二次化学強化)することで、最終製品としての圧縮応力層の深さ及び最表面の圧縮応力を適宜調整することができる。 Moreover, after the chemical strengthening treatment (primary chemical strengthening) described above, the depth of the compressive stress layer as the final product and the compressive stress on the outermost surface can be appropriately adjusted by further chemical strengthening treatment (secondary chemical strengthening). it can.
 なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。
 例えば、本発明のガラス素板(化学強化ガラス)は、ディスプレイ装置のカバーガラスに限らず、自動車のフロントガラス等の種々の用途に適用することができる。
The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.
For example, the glass base plate (chemically tempered glass) of the present invention is not limited to a cover glass of a display device, but can be applied to various uses such as a windshield of an automobile.
 本出願は、2012年12月19日出願の日本特許出願2012-276839に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2012-276839 filed on December 19, 2012, the contents of which are incorporated herein by reference.
10 ガラス製造装置
11 フロートバス
12 リフトアウトロール
13 徐冷炉
14 搬送ローラ
15 溶融塩バス
16 噴射装置
G  ガラスリボン
H  電気ヒータ
DESCRIPTION OF SYMBOLS 10 Glass manufacturing apparatus 11 Float bath 12 Lift-out roll 13 Slow cooling furnace 14 Conveying roller 15 Molten salt bath 16 Injection apparatus G Glass ribbon H Electric heater

Claims (8)

  1.  溶融ガラスを連続的に板状に成形し、その後徐冷と同時に化学強化し、切断して得られるガラス素板であって、
     圧縮応力層を有し、該圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超であることを特徴とするガラス素板。
    It is a glass base plate obtained by continuously forming molten glass into a plate shape, then chemically strengthening simultaneously with slow cooling, and cutting.
    A glass base plate having a compressive stress layer, wherein the depth of the compressive stress layer is 12 μm or less, and the compressive stress on the outermost surface is more than 500 MPa.
  2.  大きさが300mm×300mm以上であることを特徴とする請求項1に記載のガラス素板。 The glass base plate according to claim 1, wherein the glass base plate has a size of 300 mm × 300 mm or more.
  3.  溶融ガラスを連続的に板状に成形して得られたガラスリボンを徐冷する工程において、徐冷後の圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超となるように化学強化し、その後ガラスリボンを切断することを特徴とするガラス素板の製造方法。 In the step of slowly cooling a glass ribbon obtained by continuously forming molten glass into a plate shape, the depth of the compressive stress layer after slow cooling is 12 μm or less, and the compressive stress on the outermost surface exceeds 500 MPa. A method for producing a glass base plate characterized by chemically strengthening and then cutting the glass ribbon.
  4.  前記ガラス素板の大きさが300mm×300mm以上であることを特徴とする請求項3に記載のガラス素板の製造方法。 The method for producing a glass base plate according to claim 3, wherein the size of the glass base plate is 300 mm x 300 mm or more.
  5.  前記溶融ガラスを溶融金属上に浮かせて板状に成形し前記ガラスリボンを得ることを特徴とする請求項3又は4に記載のガラス素板の製造方法。 The method for producing a glass base plate according to claim 3 or 4, wherein the molten glass is floated on a molten metal and formed into a plate shape to obtain the glass ribbon.
  6.  圧縮応力層の深さが12μm以下、且つ、最表面の圧縮応力が500MPa超となるようにガラス板を化学強化する一次化学強化工程と、
     前記一次化学強化工程で化学強化されたガラス板を、さらに化学強化する二次化学強化工程と、を備えることを特徴とする化学強化ガラスの製造方法。
    A primary chemical strengthening step of chemically strengthening the glass plate such that the depth of the compressive stress layer is 12 μm or less and the compressive stress of the outermost surface exceeds 500 MPa;
    A method for producing chemically strengthened glass, comprising: a secondary chemical strengthening step for further chemically strengthening the glass plate chemically strengthened in the primary chemical strengthening step.
  7.  前記ガラス板はフロート成形法により製造され、
     前記一次化学強化工程は、オンライン上で行われることを特徴とする請求項6に記載の化学強化ガラスの製造方法。
    The glass plate is manufactured by a float forming method,
    The method for producing chemically strengthened glass according to claim 6, wherein the primary chemical strengthening step is performed on-line.
  8.  前記一次化学強化工程と前記二次化学強化工程との間に、前記一次化学強化工程で化学強化されたガラス板を加工する加工工程を備えることを特徴とする請求項6又は7に記載の化学強化ガラスの製造方法。 The chemistry according to claim 6 or 7, further comprising a processing step of processing the glass plate chemically strengthened in the primary chemical strengthening step between the primary chemical strengthening step and the secondary chemical strengthening step. A method for producing tempered glass.
PCT/JP2013/083467 2012-12-19 2013-12-13 Raw glass plate, method for producing raw glass plate, and method for producing chemically reinforced glass WO2014097986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276839 2012-12-19
JP2012276839A JP2016028987A (en) 2012-12-19 2012-12-19 Glass blank, method for producing glass blank and method for producing chemically strengthened glass

Publications (1)

Publication Number Publication Date
WO2014097986A1 true WO2014097986A1 (en) 2014-06-26

Family

ID=50978318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083467 WO2014097986A1 (en) 2012-12-19 2013-12-13 Raw glass plate, method for producing raw glass plate, and method for producing chemically reinforced glass

Country Status (3)

Country Link
JP (1) JP2016028987A (en)
TW (1) TW201429898A (en)
WO (1) WO2014097986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964655A (en) * 2015-06-01 2015-10-07 东旭集团有限公司 Glass chemical strengthening treatment depth testing method
JPWO2018074198A1 (en) * 2016-10-21 2019-08-22 Agc株式会社 Chemically strengthened glass plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132620A (en) * 1978-04-07 1979-10-15 Asahi Glass Co Ltd Ion exchange strengthening of glass
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2008247732A (en) * 2007-03-02 2008-10-16 Nippon Electric Glass Co Ltd Reinforced plate glass and method for manufacturing the same
JP2012184155A (en) * 2011-02-17 2012-09-27 Hoya Corp Method for manufacturing cover glass substrate for mobile electronic device, cover glass substrate for mobile electronic device, and mobile electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132620A (en) * 1978-04-07 1979-10-15 Asahi Glass Co Ltd Ion exchange strengthening of glass
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2008247732A (en) * 2007-03-02 2008-10-16 Nippon Electric Glass Co Ltd Reinforced plate glass and method for manufacturing the same
JP2012184155A (en) * 2011-02-17 2012-09-27 Hoya Corp Method for manufacturing cover glass substrate for mobile electronic device, cover glass substrate for mobile electronic device, and mobile electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964655A (en) * 2015-06-01 2015-10-07 东旭集团有限公司 Glass chemical strengthening treatment depth testing method
JPWO2018074198A1 (en) * 2016-10-21 2019-08-22 Agc株式会社 Chemically strengthened glass plate

Also Published As

Publication number Publication date
JP2016028987A (en) 2016-03-03
TW201429898A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US11535548B2 (en) Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
US11420898B2 (en) High strength ultrathin glass and method of making the same
TWI439435B (en) Glass plate for display devices
US10370286B2 (en) Glass for chemical tempering, chemically tempered glass, and glass plate for display device
EP2762461B1 (en) Chemically strengthened glass and method for producing same
EP2762460B1 (en) Chemically strengthened glass plate and method for manufacturing same
JP2020152637A (en) Method for strengthening alkali aluminosilicate glass and glass article thereof
JP5751494B2 (en) Method for producing tempered plate glass
US8835007B2 (en) Tempered glass and tempered glass sheet
CN109715573B (en) Glass for chemical strengthening and chemically strengthened glass
US20130219966A1 (en) Method of manufacturing chemically strengthened glass plate
TWI676609B (en) Tempered glass
JP2017537051A (en) Chemically temperable glass plate
WO2020075708A1 (en) Reinforced glass and method for producing reinforced glass
US20150152003A1 (en) Reinforced glass, reinforced glass plate, and glass to be reinforced
JP2017509575A (en) Chemically temperable glass plate
EP3322676B1 (en) Method for chemically strengthening with controlled curvature
US10370288B2 (en) Glass sheet capable of having controlled warping through chemical strengthening
CN106167357B (en) Method for producing chemically strengthened glass
EP3303237A1 (en) Glass sheet capable of having controlled warping through chemical strengthening
CN107207335B (en) Method for producing glass substrate
WO2014097986A1 (en) Raw glass plate, method for producing raw glass plate, and method for producing chemically reinforced glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP