WO2014097437A1 - Indoor unit for air conditioning device - Google Patents

Indoor unit for air conditioning device Download PDF

Info

Publication number
WO2014097437A1
WO2014097437A1 PCT/JP2012/083022 JP2012083022W WO2014097437A1 WO 2014097437 A1 WO2014097437 A1 WO 2014097437A1 JP 2012083022 W JP2012083022 W JP 2012083022W WO 2014097437 A1 WO2014097437 A1 WO 2014097437A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor unit
main body
air
drain pan
Prior art date
Application number
PCT/JP2012/083022
Other languages
French (fr)
Japanese (ja)
Inventor
松本 崇
健一 迫田
山中 宗弘
堤 博司
一也 道上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/083022 priority Critical patent/WO2014097437A1/en
Publication of WO2014097437A1 publication Critical patent/WO2014097437A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Definitions

  • the present invention relates to an indoor unit of an air conditioner.
  • the indoor unit of the air conditioner has a main body on which a blower, a heat exchanger, and the like are mounted, and the blower is disposed upstream of the heat exchanger, and an air flow is blown to the heat exchanger, or heat is downstream of the blower.
  • Various proposals have been made in which an exchanger is arranged and an air flow is supplied.
  • heat exchange is performed between the air taken into the main body and the refrigerant, and the air is cooled or heated.
  • the air which performed heat exchange is supplied from the blower outlet of a main body to air-conditioning object space, such as a room
  • Various types such as a once-through type, an axial flow type, a diagonal flow type, and a centrifugal type are adopted for the blower mounted on the indoor unit of such an air conditioner.
  • a multi-blade centrifugal blower used in a general air conditioner, it has an air guide path that guides a suction airflow of a fan having a plurality of blades, and a casing that guides a fan blowout flow. Is installed on the bottom surface of the main body on the upstream side of the heat exchanger so as to be horizontal.
  • the indoor unit of an air conditioner is installed in a building, its main body is required to be small.
  • the casing is stored and installed behind the ceiling of the falling ceiling, so the height of the main body must be small and the width in the direction parallel to the air flow direction of the main body must be small. It has been.
  • a conventional air conditioner indoor unit has a cross-flow blower, and has been proposed to reduce the height width of the main body and reduce the width of the main body in the direction parallel to the air flow direction (for example, Patent Document 1).
  • the heat exchanger is arranged in a V shape, so that the height of the main body is reduced and the width in the direction parallel to the air flow direction of the main body is reduced.
  • JP 2007-292405 A see, for example, FIG. 1
  • Japanese Patent Laid-Open No. 3-156221 see, for example, FIGS. 18 and 19
  • This invention solves said subject and provides the indoor unit of the air conditioning apparatus which implement
  • the purpose is that.
  • An indoor unit of an air conditioner according to the present invention is provided in a main body having an air passage through which air flows, an axial blower provided in the main body, and an upstream or downstream side of the axial blower in the main body.
  • a heat exchanger and a drain pan provided in the main body and below the heat exchanger, and the upstream side of the heat exchanger on the bottom surface of the air passage of the main body is downstream from the upstream side of the air passage.
  • the inclined surface is provided so as to increase in height toward the side.
  • the indoor unit of the air conditioner according to the present invention since it has the above-described configuration, it is possible to suppress the turbulence of air in the air passage, reduce the pressure loss of the air passage, and suppress the generation of noise.
  • FIG. 1 It is a perspective view of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a perspective view of the state which decomposed
  • Embodiment 1 FIG. Embodiments of the present invention will be described with reference to the drawings. It should be noted that the drawings described below are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
  • FIG. 1 is a perspective view of an air-conditioning apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of the indoor unit shown in FIG. 1 in an exploded state.
  • 3 is a cross-sectional perspective view of the indoor unit shown in FIG. 4 is a central cross-sectional view of the indoor unit shown in FIG.
  • a shown in FIG. 4 represents the flow direction of air.
  • the configuration of the indoor unit of the air conditioner will be described with reference to FIGS.
  • the indoor unit of the air-conditioning apparatus according to Embodiment 1 includes a main body 1 having an air passage through which air flows, two axial flow fans 2 that supply air, and a heat exchanger 3 that exchanges heat between the air and the refrigerant.
  • the indoor unit according to Embodiment 1 is suspended from a ceiling so that a body bottom 1b (described later) is parallel to the building floor, and a decorative ceiling (not shown) is provided below the body bottom 1b. .
  • a blow grill is provided on the surface formed by the ceiling and the ceiling, and the indoor unit according to the first embodiment can suck airflow from an opening provided in the ceiling.
  • the main body 1 constitutes the outline of the indoor unit, and is equipped with an axial blower 2, a heat exchanger 3, and a drain pan 4.
  • the main body 1 includes a main body upper portion 1a provided on the upper side of the heat exchanger 3, a main body bottom portion 1b provided on the opposite side of the main body upper portion 1a, and a main body upper portion 1a and a main body bottom portion 1b.
  • the main body side surface 1c is provided so as to be substantially orthogonal.
  • the main body 1 is formed with a suction port 1A for taking air into the main body 1 on the front side of the paper surface in FIGS.
  • the blower outlet 1B is formed in the main body 1 on the opposite side to the formation position of the suction inlet 1A.
  • the main body 1 is a member having a main body upper portion 1a, a main body bottom portion 1b, and a main body side surface 1c, in which a suction port 1A and a blower outlet 1B are formed, and a cross-sectional shape perpendicular to the air flow direction is a substantially square member. is there.
  • the main body upper portion 1 a is provided with a heat insulating member 5 that comes into contact with the upper side of the heat exchanger 3.
  • the heat insulating member 5 is provided so that heat of the heat exchanger 3 or the like escapes to the main body upper part 1a side and the heat exchange efficiency of the heat exchanger 3 is not reduced.
  • the heat insulating member 5 is provided so as to extend in the air flow direction, and the upstream end portion side of the heat insulating member 5 is inclined downward from the upstream side to the downstream side of the heat insulating member 5.
  • the main body bottom 1b is provided with the axial blower 2 on the upstream side and the drain pan 4 on the downstream side.
  • the air blown to the main body bottom 1b side by the axial blower 2 and flows along the main body bottom 1b is sent to the drain pan 4 side.
  • the main body side surface 1c has an upper end connected to the upper main body 1a and a lower end connected to the main body bottom 1b.
  • the main body side surface 1c also constitutes an air passage in the main body 1 like the main body upper portion 1a and the main body bottom portion 1b.
  • the main body 1 is provided with a suction partition plate 7 on which an axial blower 2 is installed on the suction port 1A side.
  • the suction partition plate 7 is formed with a circular opening 7 ⁇ / b> A at the installation position of the axial flow fan 2.
  • the suction partition plate 7 is erected on the main body 1 so as to be orthogonal to the main body upper portion 1a, the main body bottom portion 1b, and the main body side surface 1c.
  • the axial blower 2 takes air into the main body 1 and discharges air outside the main body 1.
  • the axial blower 2 is installed at the position where the opening 7 ⁇ / b> A of the suction partition plate 7 is formed, and is provided upstream of the heat exchanger 3 and the drain pan 4.
  • the axial blower 2 has a rotating fan 2a, a motor 2b for rotating the fan 2a, a bell mouth 2c provided on the radially outer side of the fan 2a, and a motor stay 2d for holding the motor 2b. ing.
  • the motor 2b is held by a motor stay 2d so that the opening center axis of the bell mouth 2c coincides with the rotation center axis of the motor 2b.
  • the boss portion of the fan 2a is connected to the rotation center axis of the motor 2b.
  • the blowout / suction flow has a large flow velocity on the fan outer peripheral side. More specifically, the air flow is faster on the outer peripheral side than on the central axis side of the axial blower 2, and the air blown from the axial blower 2 is directed toward the fan rotation direction of the axial blower 2. That is, it becomes a blowing airflow having a swirl velocity component. Most of the blown airflow is blown to the upstream end side of the drain pan 4 on the downstream side.
  • two axial flow fans 2 are provided so as to be aligned in the horizontal direction, but the present invention is not limited to this.
  • the axial blower 2 may be provided so that three or more are arranged in the horizontal direction, or may be one.
  • the axial-flow fan 2 demonstrated the example arrange
  • the heat exchanger 3 exchanges heat between the air taken into the main body 1 by the axial blower 2 and the supplied refrigerant.
  • the heat exchanger 3 has a substantially V shape in which the longitudinal cross-sectional shape protrudes toward the suction port 1 ⁇ / b> A. That is, the heat exchanger 3 is arranged so that the apex side of the V-shaped protruding portion is on the suction port 1A side.
  • the heat exchanger 3 may be configured by combining, for example, a fin plate type two-row heat exchanger and a three-row heat exchanger. That is, the heat exchanger 3 includes an upper main heat exchanger 3 a disposed at a position facing the heat insulating member 5 and a lower main heat exchanger 3 b disposed at a position facing the drain pan 4. .
  • An upper auxiliary heat exchanger 3aa is provided on the downstream side surface of the upper main heat exchanger 3a, and a lower auxiliary heat exchanger 3bb is provided on the downstream side surface of the lower main heat exchanger 3b. The amount of heat exchange is increased.
  • the upstream end side of the upper main heat exchanger 3a and the upstream end side of the lower main heat exchanger 3b are in contact with each other.
  • the heat exchanger 3 is mounted on the main body 1 so that the contact portion is on the extension of the rotation shaft of the axial blower 2, the turbulence of air can be further suppressed.
  • the upper main heat exchanger 3a may have a smaller number of stages than the lower main heat exchanger 3b so that the contact portion is on the extension of the rotation shaft of the axial blower 2.
  • the upper main heat exchanger 3a and the lower main heat exchanger 3b are cut at the joints of the respective heat exchangers. That is, as shown in FIG. 3 and FIG. 4, the end side on the upstream side in the air flow direction of the upper main heat exchanger 3 a and the end side on the upstream side in the air flow direction of the lower main heat exchanger 3 b are as shown in FIGS. It is formed to be tapered. Accordingly, the V-shaped angle formed by the upper main heat exchanger 3a and the lower main heat exchanger 3b can be made gentle, and the size of the main body 1 can be reduced, so that the size can be reduced. Become.
  • the drain pan 4 stores the condensed water of the heat exchanger 3.
  • the drain pan 4 may be configured such that the area of the drain pan 4 is larger than the projected area of the heat exchanger 3 when the heat exchanger 3 is projected onto the drain pan 4 from the upper surface side of the main body 1.
  • the downstream side portion of the drain pan 4 is in contact with the downstream end side of the lower main heat exchanger 3b, so that leakage of airflow and condensed water can be prevented.
  • the upstream surface portion of the drain pan 4 is formed with an inclined surface 4A so as to become higher from the upstream side of the air passage in the main body 1 toward the downstream side. If the angle ⁇ formed between the inclined surface 4A and the main body bottom 1b is, for example, not less than 30 degrees and not more than 60 degrees, turbulence of the air blown from the axial blower 2 can be suppressed with high efficiency.
  • the angle of the inclined surface 4A will be described in detail with reference to FIGS.
  • the inclined surface 4A is described as being formed on the drain pan 4, but the present invention is not limited to this.
  • the inclined surface 4 ⁇ / b> A may be formed of a member different from the drain pan 4. That is, even if the drain pan 4 is not formed with a portion of the inclined surface 4A, a member having an inclined surface such as the inclined surface 4A is placed at the position of the inclined surface 4A shown in FIG. It may be arranged.
  • the inclined surface 4A is linearly inclined
  • the present invention is not limited to this and may be a curved surface.
  • the inclined surface 4A is a curved surface, for example, it is formed so as to protrude upward, and its radius of curvature is 10% or more of the diameter of the fan 2a. Can do.
  • indoor high-humidity air passes through the heat exchanger 3 having a low temperature, so that moisture in the air is condensed on the surface of the heat exchanger 3 to generate dew condensation water.
  • the generated condensed water flows down according to gravity and is stored in the drain pan 4 installed in the main body bottom 1b.
  • the heat exchanger 3 is described as being supplied with a refrigerant.
  • the present invention is not limited to this, and water or an antifreeze containing water as a main component is supplied. May be.
  • water-based refrigerant When such a water-based refrigerant is used, an increase in cost can be suppressed as compared with the case of using it for another solvent.
  • FIG. 5 is a vector diagram of the air flow in the vicinity of the suction port 1A.
  • a shown in FIG. 5 represents the flow direction of air.
  • the suppression of air turbulence will be described with reference to FIG.
  • the air blown out from the axial blower 2 spreads radially outward of the fan 2a, then flows along the main body bottom 1b and the inclined surface 4A, and then flows into the heat exchanger 3.
  • the flow is smooth on the inclined surface 4 ⁇ / b> A of the drain pan 4.
  • the drain pan 4 Since the drain pan 4 has a concave shape having a predetermined depth so that condensed water can be stored, the upstream portion of the drain pan 4 collides with air, and air turbulence is likely to occur. .
  • the air passage at the position where the drain pan 4 is installed has a locally narrowed air passage cross-sectional area corresponding to the installation of the drain pan 4, causing pressure loss and abnormal noise.
  • the drain pan 4 since the drain pan 4 has the inclined surface 4A, it is possible to suppress the occurrence of air turbulence, reduce the pressure loss, and suppress the generation of abnormal noise. It is like that.
  • FIG. 6 is an explanatory diagram of the relationship between the inclination angle of the inclined surface 4 ⁇ / b> A of the drain pan 4 and the length of the drain pan 4.
  • FIG. 7 is an explanatory diagram of the relationship between the inclination angle of the inclined surface 4A of the drain pan 4 and the pressure loss.
  • FIG. 8 is an explanatory diagram of the relationship between the distance from the axial blower 2 and the wake turbulence amount.
  • FIG. 6 when the inclination angle of the inclined surface 4A is reduced, the length of the drain pan 4 in the direction parallel to the air flow direction is increased accordingly, and the main body 1 is increased in size. Also, as shown in FIG.
  • the pressure loss is less than half that of 90 degrees. Furthermore, as shown in FIG. 8, it can be seen that if the inclination angle is less than 60 degrees, the influence of turbulence in the wake of the fan 2a can be reduced to less than 10%.
  • the length dimension of the main body 1 in the direction parallel to the air flow direction is the axial flow. This is a region where the main body 1 becomes larger because the fan 2 becomes the same size.
  • the turbulence of the wake of the fan 2a affects the upstream end of the drain pan 4, and the pressure loss in the air passage increases and the noise increases. This area is known from analysis and experiments.
  • the angle of the inclined surface 4A is in the range of 30 degrees or more and 60 degrees or less in the region C in order to achieve both the miniaturization of the main body 1 and the suppression of air turbulence, the reduction of pressure loss, and the reduction of noise. It turns out that it is good.
  • FIG. 9 is a central sectional view of the indoor unit of the air-conditioning apparatus according to Embodiment 2.
  • a shown in FIG. 9 represents the flow direction of air.
  • the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the vertical cross-sectional shape of the heat exchanger 3 is substantially V-shaped so as to protrude toward the suction port 1A. That is, in Embodiment 1, the upper main heat exchanger 3a and the lower main heat exchanger 3b are arranged in the heat exchanger 3 so that the apex side of the V-shaped protruding portion is on the suction port 1A side. (See FIG. 3 and FIG. 4). In the indoor unit of the air-conditioning apparatus according to Embodiment 2, the heat exchanger 3 has a substantially V shape that protrudes toward the outlet 1B.
  • the upper main heat exchanger 3a and the lower main heat exchanger 3b are arranged in the heat exchanger 3 so that the apex side of the V-shaped protruding portion is on the outlet 1B side.
  • the upper auxiliary heat exchanger 3aa is installed on the upstream side surface of the upper main heat exchanger 3a
  • the lower auxiliary heat exchanger 3bb is installed on the upstream side surface of the lower main heat exchanger 3b.
  • the indoor unit of the air conditioning apparatus according to Embodiment 2 has the same effects as the indoor unit of the air conditioning apparatus according to Embodiment 1.
  • FIG. 10 is a central cross-sectional view of the indoor unit of the air-conditioning apparatus according to Embodiment 3.
  • a shown in FIG. 10 represents the flow direction of air.
  • the differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments are denoted by the same reference numerals.
  • the axial flow fan 2 is installed on the main body bottom 1b so that the rotation center axis of the axial flow fan 2 is parallel to the main body bottom 1b.
  • the axial flow fan 2 is installed on the main body bottom 1b so that the rotation center axis of the axial flow fan 2 forms a predetermined angle larger than 0 degrees with respect to the main body bottom 1b. That is, the fan 2a, the motor 2b, the bell mouth 2c, and the motor stay 2d are installed at a predetermined angle.
  • the heat exchanger 3 is in contact with the upstream end portion of the upper main heat exchanger 3a and the upstream end portion of the lower main heat exchanger 3b.
  • the heat exchanger 3 is mounted on the main body 1 so that the contact portion is on the extension of the rotating shaft of the axial blower 2. Thereby, turbulence of the air supplied to the heat exchanger 3 can be further suppressed.
  • the indoor unit of the air conditioner according to Embodiment 3 has the same effects as the indoor unit of the air conditioner according to Embodiments 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

An indoor unit for an air conditioning device comprises: a body which has an air flow passage through which air flows; an axial flow blower which is provided within the body; a heat exchanger which is provided within the body at a position upstream or downstream of the axial flow blower; and a drain pan which is provided within the body at a position downstream of the heat exchanger. A sloped surface is provided at a portion of the bottom surface of the air flow passage of the body, the portion being located upstream of the heat exchanger, and the sloped surface causes the height of the portion of the bottom surface to increase from upstream to downstream of the air flow passage.

Description

空気調和装置の室内機Air conditioner indoor unit
 本発明は、空気調和装置の室内機に関するものである。 The present invention relates to an indoor unit of an air conditioner.
 空気調和装置の室内機には、送風機及び熱交換器などが搭載される本体を有し、送風機を熱交換器の上流に配置し、熱交換器へ気流を吹き付ける、或いは、送風機の下流に熱交換器を配置し、気流を供給するように構成したものが各種提案されている。このような空気調和装置の室内機は、本体内に取り込まれた空気と冷媒との間で熱交換が行われて、空気が冷却または加熱される。そして、熱交換を行った空気は、本体の吹出口から室内などの空調対象空間へと供給される。 The indoor unit of the air conditioner has a main body on which a blower, a heat exchanger, and the like are mounted, and the blower is disposed upstream of the heat exchanger, and an air flow is blown to the heat exchanger, or heat is downstream of the blower. Various proposals have been made in which an exchanger is arranged and an air flow is supplied. In such an indoor unit of an air conditioner, heat exchange is performed between the air taken into the main body and the refrigerant, and the air is cooled or heated. And the air which performed heat exchange is supplied from the blower outlet of a main body to air-conditioning object space, such as a room | chamber interior.
 このような空気調和装置の室内機に搭載される送風機には、貫流型、軸流型、斜流型、遠心型などの様々な形態が採用されている。たとえば、一般的な空気調和装置に用いられる多翼型遠心送風機であれば、翼を複数持つファンの吸込気流を導く導風路と、ファン吹出流を導くケーシングとを有しており、回転軸が水平となるように、熱交換器の上流側の本体底面に設置される。 Various types such as a once-through type, an axial flow type, a diagonal flow type, and a centrifugal type are adopted for the blower mounted on the indoor unit of such an air conditioner. For example, in the case of a multi-blade centrifugal blower used in a general air conditioner, it has an air guide path that guides a suction airflow of a fan having a plurality of blades, and a casing that guides a fan blowout flow. Is installed on the bottom surface of the main body on the upstream side of the heat exchanger so as to be horizontal.
 ここで、空気調和装置の室内機は、建物に据え付けられるためその本体が小型であることが求められる。特に、天井吊下型の室内機では、下がり天井の天井裏に筺体を格納して設置するため、本体の高さ幅が小さく、本体の空気流れ方向に平行な方向の幅が小さいことが求められている。 Here, since the indoor unit of an air conditioner is installed in a building, its main body is required to be small. In particular, in a ceiling-suspended indoor unit, the casing is stored and installed behind the ceiling of the falling ceiling, so the height of the main body must be small and the width in the direction parallel to the air flow direction of the main body must be small. It has been.
 従来の空気調和装置の室内機には、貫流送風機を有し、本体の高さ幅を小さくするとともに、本体の空気流れ方向に平行な方向の幅を小さくしたものが提案されている(たとえば、特許文献1)。
 また、従来の空気調和装置の室内機には、熱交換器をV字状に配置することで、本体の高さ幅を小さくするとともに、本体の空気流れ方向に平行な方向の幅を小さくしたものが提案されている(たとえば特許文献1、2参照)。
A conventional air conditioner indoor unit has a cross-flow blower, and has been proposed to reduce the height width of the main body and reduce the width of the main body in the direction parallel to the air flow direction (for example, Patent Document 1).
In addition, in the indoor unit of the conventional air conditioner, the heat exchanger is arranged in a V shape, so that the height of the main body is reduced and the width in the direction parallel to the air flow direction of the main body is reduced. Some have been proposed (see, for example, Patent Documents 1 and 2).
特開2007-292405号公報(たとえば、図1参照)JP 2007-292405 A (see, for example, FIG. 1) 特開平3-156221号公報(たとえば、図18及び図19参照)Japanese Patent Laid-Open No. 3-156221 (see, for example, FIGS. 18 and 19)
 特許文献1に記載の技術は、熱交換器に貫流送風機の翼端が近接するため、送風機の羽根枚数Zに回転数nを乗じた値の整数倍となる卓越周波数騒音が発生してしまうという課題があった。
 また、特許文献1に記載の技術は、貫流送風機を採用しているため、熱交換器への不均一流れが発生し、熱交換性能が低下することがあるという課題があった。
According to the technique described in Patent Document 1, since the blade tip of the once-through fan is close to the heat exchanger, the dominant frequency noise that is an integral multiple of the value obtained by multiplying the number of blades Z of the fan by the rotation speed n is generated. There was a problem.
Moreover, since the technique of patent document 1 employ | adopted the once-through fan, the nonuniform flow to a heat exchanger generate | occur | produced and the subject that heat exchange performance might fall occurred.
 特許文献1、2に記載の技術のように、多翼型遠心送風機や貫流送風機の下流に熱交換器を配置して室内機を構成すると、吹出速度分布が急峻となっている空気が熱交換器などが設けられた下流側風路に流れる分、この下流側風路における空気の乱れの増大、圧力損失の増大、及び騒音の増加を引き起こしてしまうという課題があった。 As in the technologies described in Patent Documents 1 and 2, when an indoor unit is configured by arranging a heat exchanger downstream of a multi-blade centrifugal blower or a cross-flow blower, the air with a steep blowout velocity distribution is heat exchanged. Therefore, there is a problem that an increase in air turbulence, an increase in pressure loss, and an increase in noise in the downstream air passage are caused due to the flow in the downstream air passage provided with the vessel.
 本発明は、上記の課題を解決するものであり、風路の空気の乱れを抑制、風路の圧力損失の低減及び騒音発生の抑制をすることを実現する空気調和装置の室内機を提供することを目的としている。 This invention solves said subject and provides the indoor unit of the air conditioning apparatus which implement | achieves suppressing the turbulence of the air of a wind path, reducing the pressure loss of a wind path, and suppression of noise generation. The purpose is that.
 本発明に係る空気調和装置の室内機は、空気が流れる風路を有する本体と、本体内に設けられた軸流送風機と、本体内であって軸流送風機の上流側又は下流側に設けられた熱交換器と、本体内であって熱交換器の下側に設けられたドレンパンと、を有し、本体の風路の底面の熱交換器の上流側は、風路の上流側から下流側に向かうにしたがって高さが高くなるように傾斜面が設けられているものである。 An indoor unit of an air conditioner according to the present invention is provided in a main body having an air passage through which air flows, an axial blower provided in the main body, and an upstream or downstream side of the axial blower in the main body. A heat exchanger and a drain pan provided in the main body and below the heat exchanger, and the upstream side of the heat exchanger on the bottom surface of the air passage of the main body is downstream from the upstream side of the air passage. The inclined surface is provided so as to increase in height toward the side.
 本発明に係る空気調和装置の室内機によれば、上記構成を有しているので、風路の空気の乱れを抑制、風路の圧力損失の低減及び騒音発生の抑制をすることができる。 According to the indoor unit of the air conditioner according to the present invention, since it has the above-described configuration, it is possible to suppress the turbulence of air in the air passage, reduce the pressure loss of the air passage, and suppress the generation of noise.
本発明の実施の形態1に係る空気調和装置の室内機の斜視図である。It is a perspective view of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 図1に示す室内機を分解した状態の斜視図である。It is a perspective view of the state which decomposed | disassembled the indoor unit shown in FIG. 図1に示す室内機の断面斜視図である。It is a cross-sectional perspective view of the indoor unit shown in FIG. 図1に示す室内機の中央断面図である。It is a center sectional view of the indoor unit shown in FIG. 吸込口の近傍の空気の流れのベクトル図である。It is a vector diagram of the air flow in the vicinity of the suction port. ドレンパンの傾斜面の傾斜角とドレンパンの長さの関係の説明図である。It is explanatory drawing of the relationship between the inclination angle of the inclined surface of a drain pan, and the length of a drain pan. ドレンパンの傾斜面の傾斜角と圧力損失の関係の説明図である。It is explanatory drawing of the relationship between the inclination angle of the inclined surface of a drain pan, and a pressure loss. 軸流送風機からの距離と後流乱れ量の関係の説明図である。It is explanatory drawing of the relationship between the distance from an axial blower, and a wake turbulence amount. 本発明の実施の形態2に係る空気調和装置の室内機の中央断面図である。It is a center sectional view of the indoor unit of the air harmony device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る空気調和装置の室内機の中央断面図である。It is a center sectional view of the indoor unit of the air-conditioning apparatus according to Embodiment 3 of the present invention.
実施の形態1.
 本発明の実施の形態について、図面に基づいて説明する。なお、以下に説明する図面は模式的なものであり、各寸法の比率などは現実のものと異なることに留意すべきである。したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Embodiment 1 FIG.
Embodiments of the present invention will be described with reference to the drawings. It should be noted that the drawings described below are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 図1は、実施の形態1に係る空気調和装置の斜視図である。図2は、図1に示す室内機を分解した状態の斜視図である。図3は、図1に示す室内機の断面斜視図である。図4は、図1に示す室内機の中央断面図である。なお、図4に示すAは、空気の流れ方向を表している。図1~図4を参照して、空気調和装置の室内機の構成について説明する。
 本実施の形態1に係る空気調和装置の室内機は、空気が流れる風路を有する本体1と、空気を供給する2つの軸流送風機2と、空気と冷媒とを熱交換させる熱交換器3と、熱交換器3の結露水を貯留するドレンパン4とを有している。
 なお、本実施の形態1に係る室内機は、天井裏に後述の本体底部1bが建物床面と平行となるように吊り下げ設置され、本体底部1bの下部に図示省略の化粧天井が設けられる。この化粧天井と天井がなす面に吹き出しグリルが設けられ、本実施の形態1に係る室内機は、化粧天井に設けた開口から気流を吸い込むことができるようになっている。
1 is a perspective view of an air-conditioning apparatus according to Embodiment 1. FIG. FIG. 2 is a perspective view of the indoor unit shown in FIG. 1 in an exploded state. 3 is a cross-sectional perspective view of the indoor unit shown in FIG. 4 is a central cross-sectional view of the indoor unit shown in FIG. In addition, A shown in FIG. 4 represents the flow direction of air. The configuration of the indoor unit of the air conditioner will be described with reference to FIGS.
The indoor unit of the air-conditioning apparatus according to Embodiment 1 includes a main body 1 having an air passage through which air flows, two axial flow fans 2 that supply air, and a heat exchanger 3 that exchanges heat between the air and the refrigerant. And a drain pan 4 for storing the dew condensation water of the heat exchanger 3.
The indoor unit according to Embodiment 1 is suspended from a ceiling so that a body bottom 1b (described later) is parallel to the building floor, and a decorative ceiling (not shown) is provided below the body bottom 1b. . A blow grill is provided on the surface formed by the ceiling and the ceiling, and the indoor unit according to the first embodiment can suck airflow from an opening provided in the ceiling.
(本体1)
 本体1は、室内機の外郭を構成するものであり、軸流送風機2、熱交換器3及びドレンパン4が搭載されているものである。本体1は、熱交換器3の上側に設けられている本体上部1aと、本体上部1aの対面側に設けられ、ドレンパン4が設置される本体底部1bと、本体上部1a及び本体底部1bとに略直交するように設けられる本体側面1cとを有している。
 本体1は、図1及び図2における紙面手前側に、本体1内に空気を取り込む吸込口1Aが形成されている。また、本体1は、吸込口1Aの形成位置の反対側には、吹出口1Bが形成されている。このように、本体1は、本体上部1a、本体底部1b及び本体側面1cを有し、吸込口1A及び吹出口1Bが形成されている、空気流れ方向に垂直な断面形状が略四角形の部材である。
(Main unit 1)
The main body 1 constitutes the outline of the indoor unit, and is equipped with an axial blower 2, a heat exchanger 3, and a drain pan 4. The main body 1 includes a main body upper portion 1a provided on the upper side of the heat exchanger 3, a main body bottom portion 1b provided on the opposite side of the main body upper portion 1a, and a main body upper portion 1a and a main body bottom portion 1b. The main body side surface 1c is provided so as to be substantially orthogonal.
The main body 1 is formed with a suction port 1A for taking air into the main body 1 on the front side of the paper surface in FIGS. Moreover, the blower outlet 1B is formed in the main body 1 on the opposite side to the formation position of the suction inlet 1A. Thus, the main body 1 is a member having a main body upper portion 1a, a main body bottom portion 1b, and a main body side surface 1c, in which a suction port 1A and a blower outlet 1B are formed, and a cross-sectional shape perpendicular to the air flow direction is a substantially square member. is there.
 本体上部1aには、熱交換器3の上側と接触する断熱部材5が設けられている。この断熱部材5は、熱交換器3の熱などが本体上部1a側に逃げるなどして、熱交換器3の熱交換効率が低減してしまわないように設けられているものである。この断熱部材5は、空気流れ方向に伸びるように設けられており、この断熱部材5の上流側の端部側は、断熱部材5の上流側から下流側に向かって下側に傾斜するようなテーパーを有している。断熱部材5は、このテーパーを有するために、軸流送風機2によって本体上部1a側に吹き出され、本体上部1aに沿って流れてくる空気の乱れを抑制することができる。 The main body upper portion 1 a is provided with a heat insulating member 5 that comes into contact with the upper side of the heat exchanger 3. The heat insulating member 5 is provided so that heat of the heat exchanger 3 or the like escapes to the main body upper part 1a side and the heat exchange efficiency of the heat exchanger 3 is not reduced. The heat insulating member 5 is provided so as to extend in the air flow direction, and the upstream end portion side of the heat insulating member 5 is inclined downward from the upstream side to the downstream side of the heat insulating member 5. Has a taper. Since the heat insulating member 5 has this taper, it is possible to suppress the turbulence of the air blown out toward the main body upper portion 1a by the axial blower 2 and flowing along the main body upper portion 1a.
 本体底部1bは、上流側に軸流送風機2が設置され、下流側にドレンパン4が設置されるものである。軸流送風機2によって本体底部1b側に吹き出され、本体底部1bに沿って流れてくる空気は、ドレンパン4側に送り込まれるようになっている。
 本体側面1cは、上端側が本体上部1aに接続され、下端側が本体底部1bに接続されているものである。本体側面1cも、本体上部1a及び本体底部1bと同様に、本体1内の風路を構成している。
The main body bottom 1b is provided with the axial blower 2 on the upstream side and the drain pan 4 on the downstream side. The air blown to the main body bottom 1b side by the axial blower 2 and flows along the main body bottom 1b is sent to the drain pan 4 side.
The main body side surface 1c has an upper end connected to the upper main body 1a and a lower end connected to the main body bottom 1b. The main body side surface 1c also constitutes an air passage in the main body 1 like the main body upper portion 1a and the main body bottom portion 1b.
 本体1は、吸込口1A側に、軸流送風機2が設置される吸込仕切板7が設けられている。この吸込仕切板7は、軸流送風機2の設置位置に、円形の開口部7Aが形成されているものである。吸込仕切板7は、本体上部1a、本体底部1b及び本体側面1cに対して直交するように、本体1に立設される。 The main body 1 is provided with a suction partition plate 7 on which an axial blower 2 is installed on the suction port 1A side. The suction partition plate 7 is formed with a circular opening 7 </ b> A at the installation position of the axial flow fan 2. The suction partition plate 7 is erected on the main body 1 so as to be orthogonal to the main body upper portion 1a, the main body bottom portion 1b, and the main body side surface 1c.
(軸流送風機2)
 軸流送風機2は、本体1内に空気を取り込み、本体1外に空気を放出するものである。軸流送風機2は、吸込仕切板7の開口部7Aの形成位置に設置され、熱交換器3及びドレンパン4よりも上流側に設けられている。
 軸流送風機2は、回転するファン2aと、このファン2aを回転させるモータ2bと、ファン2aの半径方向外側に設けられているベルマウス2cと、モータ2bを保持するモータステイ2dとを有している。なお、モータ2bは、ベルマウス2cの開口中心軸とモータ2bの回転中心軸とが一致するように、モータステイ2dによって保持されている。また、モータ2bの回転中心軸にファン2aのボス部分が接続される。
(Axial flow fan 2)
The axial blower 2 takes air into the main body 1 and discharges air outside the main body 1. The axial blower 2 is installed at the position where the opening 7 </ b> A of the suction partition plate 7 is formed, and is provided upstream of the heat exchanger 3 and the drain pan 4.
The axial blower 2 has a rotating fan 2a, a motor 2b for rotating the fan 2a, a bell mouth 2c provided on the radially outer side of the fan 2a, and a motor stay 2d for holding the motor 2b. ing. The motor 2b is held by a motor stay 2d so that the opening center axis of the bell mouth 2c coincides with the rotation center axis of the motor 2b. The boss portion of the fan 2a is connected to the rotation center axis of the motor 2b.
 軸流送風機2は、吹出・吸込流れがファン外周側で大きな流速をもっている。より詳細には、軸流送風機2の中心軸側よりも外周側の方が空気の流れが速くなっており、軸流送風機2から吹き出される空気は、軸流送風機2のファン回転方向への旋回速度成分を有した吹き出し気流となるということである。なお、この吹き出し気流は、その多くが、下流側のドレンパン4の上流側の端部側に吹き付けられる。
 なお、本実施の形態では、軸流送風機2が水平方向に並ぶようにして2つ設けられているが、これに限定されるものではない。たとえば、軸流送風機2は、3つ以上が水平方向に並ぶように設けられていてもよいし、1つであってもよい。
 また、本実施の形態では、軸流送風機2が熱交換器3及びドレンパン4の上流側に配置された例について説明したが、これに限定されるものではなく、熱交換器3及びドレンパン4の下流側に設置されていてもよい。
In the axial blower 2, the blowout / suction flow has a large flow velocity on the fan outer peripheral side. More specifically, the air flow is faster on the outer peripheral side than on the central axis side of the axial blower 2, and the air blown from the axial blower 2 is directed toward the fan rotation direction of the axial blower 2. That is, it becomes a blowing airflow having a swirl velocity component. Most of the blown airflow is blown to the upstream end side of the drain pan 4 on the downstream side.
In the present embodiment, two axial flow fans 2 are provided so as to be aligned in the horizontal direction, but the present invention is not limited to this. For example, the axial blower 2 may be provided so that three or more are arranged in the horizontal direction, or may be one.
Moreover, in this Embodiment, although the axial-flow fan 2 demonstrated the example arrange | positioned in the upstream of the heat exchanger 3 and the drain pan 4, it is not limited to this, The heat exchanger 3 and the drain pan 4 You may install in the downstream.
(熱交換器3)
 熱交換器3は、軸流送風機2によって本体1内に取り込まれた空気と、供給される冷媒とを熱交換させるものである。熱交換器3は、図3及び図4に示すように、縦断面形状が、吸込口1A側に突出するような略V字形状をしているものである。すなわち、熱交換器3は、V字の突出部分の頂点側が、吸込口1A側にくるように配置されているものである。
(Heat exchanger 3)
The heat exchanger 3 exchanges heat between the air taken into the main body 1 by the axial blower 2 and the supplied refrigerant. As shown in FIGS. 3 and 4, the heat exchanger 3 has a substantially V shape in which the longitudinal cross-sectional shape protrudes toward the suction port 1 </ b> A. That is, the heat exchanger 3 is arranged so that the apex side of the V-shaped protruding portion is on the suction port 1A side.
 熱交換器3は、たとえば、フィンプレート型の2列熱交換器と3列熱交換器を組み合わせて構成するとよい。すなわち、熱交換器3は、断熱部材5の対向位置に配置される上部主熱交換器3aと、ドレンパン4の対向位置に配置される下部主熱交換器3bとを有しているものである。上部主熱交換器3aの下流側面には、上部副熱交換器3aaが設けられ、下部主熱交換器3bの下流側面には、下部副熱交換器3bbが設けられており、熱交換器3の熱交換量が大きくなるようにしている。 The heat exchanger 3 may be configured by combining, for example, a fin plate type two-row heat exchanger and a three-row heat exchanger. That is, the heat exchanger 3 includes an upper main heat exchanger 3 a disposed at a position facing the heat insulating member 5 and a lower main heat exchanger 3 b disposed at a position facing the drain pan 4. . An upper auxiliary heat exchanger 3aa is provided on the downstream side surface of the upper main heat exchanger 3a, and a lower auxiliary heat exchanger 3bb is provided on the downstream side surface of the lower main heat exchanger 3b. The amount of heat exchange is increased.
 熱交換器3は、上部主熱交換器3aの上流側の端部側と、下部主熱交換器3bの上流側の端部側とが接触している。この接触部分は、軸流送風機2の回転軸の延長上にくるように熱交換器3が本体1に搭載されていると、空気の乱れをより抑制することができる。なお、この接触部分が軸流送風機2の回転軸の延長上にくるように、たとえば上部主熱交換器3aが、下部主熱交換器3bよりも少ない段数とするとよい。 In the heat exchanger 3, the upstream end side of the upper main heat exchanger 3a and the upstream end side of the lower main heat exchanger 3b are in contact with each other. When the heat exchanger 3 is mounted on the main body 1 so that the contact portion is on the extension of the rotation shaft of the axial blower 2, the turbulence of air can be further suppressed. For example, the upper main heat exchanger 3a may have a smaller number of stages than the lower main heat exchanger 3b so that the contact portion is on the extension of the rotation shaft of the axial blower 2.
 上部主熱交換器3aと下部主熱交換器3bは、各々の熱交換器の合わせ目において切断されている。すなわち、上部主熱交換器3aの空気の流れ方向上流側の端部側と、下部主熱交換器3bの空気の流れ方向上流側の端部側とは、図3及び図4に示すように、テーパー状となるように形成されている。これにより、上部主熱交換器3aと下部主熱交換器3bとがなすV字の角度を緩やかにすることができ、本体1の高さ方向を小さくすることができる分、小型化が可能となる。 The upper main heat exchanger 3a and the lower main heat exchanger 3b are cut at the joints of the respective heat exchangers. That is, as shown in FIG. 3 and FIG. 4, the end side on the upstream side in the air flow direction of the upper main heat exchanger 3 a and the end side on the upstream side in the air flow direction of the lower main heat exchanger 3 b are as shown in FIGS. It is formed to be tapered. Accordingly, the V-shaped angle formed by the upper main heat exchanger 3a and the lower main heat exchanger 3b can be made gentle, and the size of the main body 1 can be reduced, so that the size can be reduced. Become.
(ドレンパン4)
 ドレンパン4は、熱交換器3の結露水を貯留するものである。ドレンパン4は、熱交換器3を本体1の上面側からドレンパン4に投影したとき、この熱交換器3の投影面積よりも、ドレンパン4の面積の方が大きくなるように構成するとよい。ドレンパン4のうちの下流側部分は、下部主熱交換器3bの下流側の端部側と接触しており、気流と結露水の漏れを防ぐことができるようになっている。
(Drain pan 4)
The drain pan 4 stores the condensed water of the heat exchanger 3. The drain pan 4 may be configured such that the area of the drain pan 4 is larger than the projected area of the heat exchanger 3 when the heat exchanger 3 is projected onto the drain pan 4 from the upper surface side of the main body 1. The downstream side portion of the drain pan 4 is in contact with the downstream end side of the lower main heat exchanger 3b, so that leakage of airflow and condensed water can be prevented.
 ドレンパン4のうちの上流側部分は、本体1内の風路の上流側から下流側に向かうにしたがって高くなるように傾斜面4Aが形成されている。この傾斜面4Aは、本体底部1bとのなす角度θが、たとえば、30度以上60度以下とすると、軸流送風機2から吹き出される空気の乱れを高効率に抑制することができる。なお、この傾斜面4Aの角度については、後述の図5~図8で詳細に説明する。 The upstream surface portion of the drain pan 4 is formed with an inclined surface 4A so as to become higher from the upstream side of the air passage in the main body 1 toward the downstream side. If the angle θ formed between the inclined surface 4A and the main body bottom 1b is, for example, not less than 30 degrees and not more than 60 degrees, turbulence of the air blown from the axial blower 2 can be suppressed with high efficiency. The angle of the inclined surface 4A will be described in detail with reference to FIGS.
 なお、本実施の形態1では、傾斜面4Aがドレンパン4に形成されているものとして説明したが、それに限定されるものではない。たとえば、傾斜面4Aをドレンパン4とは別部材で構成してもよい。すなわち、ドレンパン4に、傾斜面4Aの部分が形成されていない場合であっても、金属板や樹脂などによって傾斜面4Aのような斜面を有する部材を、図4に示す傾斜面4Aの位置に配置してもよいということである。 In the first embodiment, the inclined surface 4A is described as being formed on the drain pan 4, but the present invention is not limited to this. For example, the inclined surface 4 </ b> A may be formed of a member different from the drain pan 4. That is, even if the drain pan 4 is not formed with a portion of the inclined surface 4A, a member having an inclined surface such as the inclined surface 4A is placed at the position of the inclined surface 4A shown in FIG. It may be arranged.
 また、本実施の形態1では、傾斜面4Aが、直線的に傾斜している場合を例に説明したが、それに限定されるものではなく、曲面であってもよいことは言うまでもない。傾斜面4Aが曲面である場合には、たとえば上側に突出するように形成し、その曲率半径が、ファン2aの直径の10%以上となるようにすると、高効率に空気の乱れを抑制することができる。 In the first embodiment, the case where the inclined surface 4A is linearly inclined has been described as an example. However, the present invention is not limited to this and may be a curved surface. When the inclined surface 4A is a curved surface, for example, it is formed so as to protrude upward, and its radius of curvature is 10% or more of the diameter of the fan 2a. Can do.
[動作説明]
 空気調和装置を稼動する場合、モータ2bに電力を投入することで、ファン2aが反時計周りに回転し、室内の気流が本体1の吸込口1Aからベルマウス2cの開口面へと吸い込まれる。これにより、本体1内の熱交換器3へ、空気が供給される。
 熱交換器3には、図示省略の室外機側から冷媒が供給され、本体1内に取り込まれた空気と冷媒との間で熱交換が行われることで、本体1内に取り込まれた空気が冷却、又は加熱される。熱交換を行った空気は、本体1の吹出口1Bから室内へと吹き出され室内の空気調和を達成することができる。
[Description of operation]
When the air conditioner is operated, by applying electric power to the motor 2b, the fan 2a rotates counterclockwise, and the airflow in the room is sucked from the suction port 1A of the main body 1 into the opening surface of the bell mouth 2c. Thereby, air is supplied to the heat exchanger 3 in the main body 1.
Refrigerant is supplied to the heat exchanger 3 from an outdoor unit (not shown), and heat exchange is performed between the air taken into the main body 1 and the refrigerant, so that the air taken into the main body 1 is exchanged. Cooled or heated. The air that has undergone heat exchange is blown into the room from the air outlet 1B of the main body 1 so that air conditioning in the room can be achieved.
 なお、空気調和装置の冷房運転時には、室内の高湿度の空気が低温となった熱交換器3を通過するため、熱交換器3の表面で空気中の水分が凝縮し結露水が発生する。発生した結露水は重力に従って流れ落ち本体底部1bに設置されたドレンパン4に貯留される。 In the cooling operation of the air conditioner, indoor high-humidity air passes through the heat exchanger 3 having a low temperature, so that moisture in the air is condensed on the surface of the heat exchanger 3 to generate dew condensation water. The generated condensed water flows down according to gravity and is stored in the drain pan 4 installed in the main body bottom 1b.
 なお、本実施の形態1では、熱交換器3には冷媒が供給されるものとして説明したが、それに限定されるものではなく、水や水を主成分とする不凍液が供給されるものであってもよい。このような水系の冷媒を用いると、他の溶媒に使用する場合に比べると、コストアップを抑制できる。 In the first embodiment, the heat exchanger 3 is described as being supplied with a refrigerant. However, the present invention is not limited to this, and water or an antifreeze containing water as a main component is supplied. May be. When such a water-based refrigerant is used, an increase in cost can be suppressed as compared with the case of using it for another solvent.
[空気の流れの説明]
 図5は、吸込口1Aの近傍の空気の流れのベクトル図である。なお、図5に示すAは、空気の流れ方向を表している。図5を参照して空気の乱れが抑制されることについて説明する。
 図5に示すように、軸流送風機2から吹き出された空気は、ファン2aの半径方向外側に広がった後に、本体底部1b及び傾斜面4Aに沿うように流れた後に、熱交換器3に流入する。図5に示すように、ドレンパン4の傾斜面4Aでは、流れが滑らかとなっていることが分かる。
 ドレンパン4は、結露水を貯留することができるように所定の深さを有する凹状としているため、特に、ドレンパン4の上流側部分と空気とが衝突し、空気の乱れが発生しやすくなっている。また、ドレンパン4が設置される位置の風路は、ドレンパン4が設置される分だけ、風路断面積が局所的に狭くなり、圧力損失や異常音発生の原因となっている。しかし、本実施の形態1に係る室内機では、ドレンパン4が傾斜面4Aを有しているため、空気の乱れの発生を抑制、圧力損失の低減及び異常音発生の抑制を実現することができるようになっている。
[Explanation of air flow]
FIG. 5 is a vector diagram of the air flow in the vicinity of the suction port 1A. In addition, A shown in FIG. 5 represents the flow direction of air. The suppression of air turbulence will be described with reference to FIG.
As shown in FIG. 5, the air blown out from the axial blower 2 spreads radially outward of the fan 2a, then flows along the main body bottom 1b and the inclined surface 4A, and then flows into the heat exchanger 3. To do. As shown in FIG. 5, it can be seen that the flow is smooth on the inclined surface 4 </ b> A of the drain pan 4.
Since the drain pan 4 has a concave shape having a predetermined depth so that condensed water can be stored, the upstream portion of the drain pan 4 collides with air, and air turbulence is likely to occur. . In addition, the air passage at the position where the drain pan 4 is installed has a locally narrowed air passage cross-sectional area corresponding to the installation of the drain pan 4, causing pressure loss and abnormal noise. However, in the indoor unit according to the first embodiment, since the drain pan 4 has the inclined surface 4A, it is possible to suppress the occurrence of air turbulence, reduce the pressure loss, and suppress the generation of abnormal noise. It is like that.
[傾斜面4Aの角度について]
 図6は、ドレンパン4の傾斜面4Aの傾斜角とドレンパン4の長さの関係の説明図である。図7は、ドレンパン4の傾斜面4Aの傾斜角と圧力損失の関係の説明図である。図8は、軸流送風機2からの距離と後流乱れ量の関係の説明図である。
 図6に示すように、傾斜面4Aの傾斜角を小さくすると、その分だけ、ドレンパン4の空気流れ方向に平行な方向の長さが大きくなるため、本体1が大型化してしまう。また、図7に示すように傾斜角が70度未満であれば90度に比べて半減以下の圧損となる。さらに、図8に示すように傾斜角が60度未満であればファン2aの後流乱れの影響が10%未満に低減できることがわかる。
[An angle of the inclined surface 4A]
FIG. 6 is an explanatory diagram of the relationship between the inclination angle of the inclined surface 4 </ b> A of the drain pan 4 and the length of the drain pan 4. FIG. 7 is an explanatory diagram of the relationship between the inclination angle of the inclined surface 4A of the drain pan 4 and the pressure loss. FIG. 8 is an explanatory diagram of the relationship between the distance from the axial blower 2 and the wake turbulence amount.
As shown in FIG. 6, when the inclination angle of the inclined surface 4A is reduced, the length of the drain pan 4 in the direction parallel to the air flow direction is increased accordingly, and the main body 1 is increased in size. Also, as shown in FIG. 7, if the tilt angle is less than 70 degrees, the pressure loss is less than half that of 90 degrees. Furthermore, as shown in FIG. 8, it can be seen that if the inclination angle is less than 60 degrees, the influence of turbulence in the wake of the fan 2a can be reduced to less than 10%.
 ここで、図6に示すBの領域は、ファン径の0.5倍以上の距離をドレンパン4が有することとなるため、本体1の空気流れ方向に平行な方向の長さ寸法が、軸流送風機2並みになってしまい、本体1が大型化してしまう領域である。
 一方、図6に示すDの領域は、ファン2aの後流の乱れがドレンパン4の上流側端部に影響を与えてしまい、風路の圧力損失が増加して騒音が増大することが、数値解析と実験から判明している領域である。
 これらから、傾斜面4Aの角度は、本体1の小型化と、空気の乱れの抑制、圧力損失の低減及び低騒音化とを両立するためには、領域Cの30度以上60度以下の範囲とすることがよいことがわかる。
Here, in the region B shown in FIG. 6, since the drain pan 4 has a distance of 0.5 times or more the fan diameter, the length dimension of the main body 1 in the direction parallel to the air flow direction is the axial flow. This is a region where the main body 1 becomes larger because the fan 2 becomes the same size.
On the other hand, in the area D shown in FIG. 6, the turbulence of the wake of the fan 2a affects the upstream end of the drain pan 4, and the pressure loss in the air passage increases and the noise increases. This area is known from analysis and experiments.
From these, the angle of the inclined surface 4A is in the range of 30 degrees or more and 60 degrees or less in the region C in order to achieve both the miniaturization of the main body 1 and the suppression of air turbulence, the reduction of pressure loss, and the reduction of noise. It turns out that it is good.
[本実施の形態1に係る空気調和装置の室内機の有する効果]
 本実施の形態1に係る空気調和装置の室内機は、所定角度の傾斜面4Aを有しているため、「本体1の小型化」と、「ドレンパン4の上流側端部に起因した空気の乱れを抑制、風路の圧力損失の低減、及びドレンパン4とファン2aの後流との干渉に起因した騒音発生の抑制」とを両立することができる。
[Effect of indoor unit of air-conditioning apparatus according to Embodiment 1]
Since the indoor unit of the air conditioner according to the first embodiment has the inclined surface 4A of a predetermined angle, “the size reduction of the main body 1” and “the air flow caused by the upstream end of the drain pan 4” It is possible to achieve both suppression of turbulence, reduction of pressure loss in the air passage, and suppression of noise generation due to interference between the drain pan 4 and the fan 2a.
実施の形態2.
 図9は、実施の形態2に係る空気調和装置の室内機の中央断面図である。なお、図9に示すAは、空気の流れ方向を表している。また、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付している。
Embodiment 2. FIG.
FIG. 9 is a central sectional view of the indoor unit of the air-conditioning apparatus according to Embodiment 2. In addition, A shown in FIG. 9 represents the flow direction of air. In the second embodiment, the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals.
 実施の形態1では、熱交換器3の縦断面形状が、吸込口1A側に突出するような略V字形状をしているものであった。すなわち、実施の形態1では、熱交換器3は、V字の突出部分の頂点側が、吸込口1A側にくるように、上部主熱交換器3a及び下部主熱交換器3bが配置されているものであった(図3及び図4参照)。
 本実施の形態2に係る空気調和装置の室内機では、熱交換器3が、吹出口1B側に突出するような略V字形状をしているものである。すなわち、実施の形態2では、熱交換器3は、V字の突出部分の頂点側が、吹出口1B側にくるように、上部主熱交換器3a及び下部主熱交換器3bが配置されている。なお、上部副熱交換器3aaは、上部主熱交換器3aの上流側面に設置され、下部副熱交換器3bbは、下部主熱交換器3bの上流側面に設置される。
In the first embodiment, the vertical cross-sectional shape of the heat exchanger 3 is substantially V-shaped so as to protrude toward the suction port 1A. That is, in Embodiment 1, the upper main heat exchanger 3a and the lower main heat exchanger 3b are arranged in the heat exchanger 3 so that the apex side of the V-shaped protruding portion is on the suction port 1A side. (See FIG. 3 and FIG. 4).
In the indoor unit of the air-conditioning apparatus according to Embodiment 2, the heat exchanger 3 has a substantially V shape that protrudes toward the outlet 1B. That is, in the second embodiment, the upper main heat exchanger 3a and the lower main heat exchanger 3b are arranged in the heat exchanger 3 so that the apex side of the V-shaped protruding portion is on the outlet 1B side. . The upper auxiliary heat exchanger 3aa is installed on the upstream side surface of the upper main heat exchanger 3a, and the lower auxiliary heat exchanger 3bb is installed on the upstream side surface of the lower main heat exchanger 3b.
[本実施の形態2に係る空気調和装置の室内機の有する効果]
 本実施の形態2に係る空気調和装置の室内機は、実施の形態1に係る空気調和装置の室内機と同様の効果を奏する。
[Effect of indoor unit of air-conditioning apparatus according to Embodiment 2]
The indoor unit of the air conditioning apparatus according to Embodiment 2 has the same effects as the indoor unit of the air conditioning apparatus according to Embodiment 1.
実施の形態3.
 図10は、実施の形態3に係る空気調和装置の室内機の中央断面図である。なお、図10に示すAは、空気の流れ方向を表している。また、実施の形態3では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付している。
Embodiment 3 FIG.
FIG. 10 is a central cross-sectional view of the indoor unit of the air-conditioning apparatus according to Embodiment 3. In addition, A shown in FIG. 10 represents the flow direction of air. In the third embodiment, the differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments are denoted by the same reference numerals.
 実施の形態1、2では、軸流送風機2の回転中心軸が、本体底部1bと平行となるように軸流送風機2が本体底部1bに設置されていた。
 本実施の形態3では、軸流送風機2の回転中心軸が、本体底部1bに対して0度より大きい所定の角度が形成されるように軸流送風機2が本体底部1bに設置されている。すなわち、ファン2a、モータ2b、ベルマウス2c及びモータステイ2dが所定の角度傾斜して設置されるということである。
In the first and second embodiments, the axial flow fan 2 is installed on the main body bottom 1b so that the rotation center axis of the axial flow fan 2 is parallel to the main body bottom 1b.
In Embodiment 3, the axial flow fan 2 is installed on the main body bottom 1b so that the rotation center axis of the axial flow fan 2 forms a predetermined angle larger than 0 degrees with respect to the main body bottom 1b. That is, the fan 2a, the motor 2b, the bell mouth 2c, and the motor stay 2d are installed at a predetermined angle.
 なお、実施の形態3においても、熱交換器3は、上部主熱交換器3aの上流側の端部側と、下部主熱交換器3bの上流側の端部側とが接触しており、この接触部分は、軸流送風機2の回転軸の延長上にくるように熱交換器3が本体1に搭載されている。これにより、熱交換器3に供給される空気の乱れをより抑制することができる。 In the third embodiment, the heat exchanger 3 is in contact with the upstream end portion of the upper main heat exchanger 3a and the upstream end portion of the lower main heat exchanger 3b. The heat exchanger 3 is mounted on the main body 1 so that the contact portion is on the extension of the rotating shaft of the axial blower 2. Thereby, turbulence of the air supplied to the heat exchanger 3 can be further suppressed.
[本実施の形態3に係る空気調和装置の室内機の有する効果]
 本実施の形態3に係る空気調和装置の室内機は、実施の形態1、2に係る空気調和装置の室内機と同様の効果を奏する。
[Effects of the indoor unit of the air-conditioning apparatus according to Embodiment 3]
The indoor unit of the air conditioner according to Embodiment 3 has the same effects as the indoor unit of the air conditioner according to Embodiments 1 and 2.
 1 本体、1a 本体上部、1b 本体底部、1A 吸込口、1B 吹出口、2 軸流送風機、2a ファン、2b モータ、2c ベルマウス、2d モータステイ、3 熱交換器、3a 上部主熱交換器、3aa 上部副熱交換器、3b 下部主熱交換器、3bb 下部副熱交換器、4 ドレンパン、4A 傾斜面、5 断熱部材、7 吸込仕切板、7A 開口部。 1 body, 1a body top, 1b body bottom, 1A inlet, 1B outlet, 2 axial fan, 2a fan, 2b motor, 2c bell mouth, 2d motor stay, 3 heat exchanger, 3a upper main heat exchanger, 3aa Upper auxiliary heat exchanger, 3b Lower main heat exchanger, 3bb Lower auxiliary heat exchanger, 4 Drain pan, 4A inclined surface, 5 Thermal insulation member, 7 Suction partition plate, 7A opening.

Claims (8)

  1.  空気が流れる風路を有する本体と、
     前記本体内に設けられた軸流送風機と、
     前記本体内であって前記軸流送風機の上流側又は下流側に設けられた熱交換器と、
     前記本体内であって前記熱交換器の下側に設けられたドレンパンと、
     を有し、
     前記本体の前記風路の底面の前記熱交換器の上流側は、
     前記風路の上流側から下流側に向かうにしたがって高さが高くなるように傾斜面が設けられている
     ことを特徴とする空気調和装置の室内機。
    A main body having an air passage through which air flows;
    An axial blower provided in the main body,
    A heat exchanger provided in the main body and upstream or downstream of the axial blower;
    A drain pan provided in the main body and below the heat exchanger;
    Have
    The upstream side of the heat exchanger on the bottom surface of the air passage of the main body is
    An indoor unit of an air conditioner, wherein an inclined surface is provided so as to increase in height from the upstream side to the downstream side of the air passage.
  2.  前記傾斜面は、
     前記ドレンパンとは別部材で構成されており、
     前記本体の前記風路の前記ドレンパンの上流側に設けられている
     ことを特徴とする請求項1に記載の空気調和装置の室内機。
    The inclined surface is
    It consists of a separate member from the drain pan,
    The indoor unit of the air conditioner according to claim 1, wherein the indoor unit is provided on an upstream side of the drain pan of the air passage of the main body.
  3.  前記傾斜面は、
     前記ドレンパンの上流側の一部で構成されている
     ことを特徴とする請求項1に記載の空気調和装置の室内機。
    The inclined surface is
    The indoor unit of the air conditioner according to claim 1, wherein the indoor unit is configured by a part of an upstream side of the drain pan.
  4.  前記傾斜面は、
     前記本体の底面とのなす角度が30度以上、60度以下となるように形成されている
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置の室内機。
    The inclined surface is
    The indoor unit for an air conditioner according to any one of claims 1 to 3, wherein an angle formed with the bottom surface of the main body is 30 degrees or more and 60 degrees or less.
  5.  前記傾斜面は、
     前記軸流送風機のファン直径の10%以上の曲率半径を有する曲面により形成されている
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置の室内機。
    The inclined surface is
    The indoor unit of an air conditioner according to any one of claims 1 to 3, wherein the indoor unit is formed of a curved surface having a radius of curvature of 10% or more of a fan diameter of the axial blower.
  6.  前記熱交換器は、
     前記ドレンパンに対向するように設けられた下部主熱交換器と、
     当該下部主熱交換器の上側に設けられた上部主熱交換器と、
     から少なくとも構成され、
     前記下部主熱交換器及び前記上部主熱交換器は、
     前記熱交換器の縦断面形状が、前記風路の上流側又は下流側に突出する略V字形状となるように、前記下部主熱交換器の一方の端部側と前記上部主の一方の端部側が接触するように配置されている
     ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置の室内機。
    The heat exchanger is
    A lower main heat exchanger provided to face the drain pan;
    An upper main heat exchanger provided on the upper side of the lower main heat exchanger;
    Consisting of at least
    The lower main heat exchanger and the upper main heat exchanger are:
    One end side of the lower main heat exchanger and one of the upper mains so that the longitudinal cross-sectional shape of the heat exchanger has a substantially V shape protruding upstream or downstream of the air passage. The indoor unit for an air conditioner according to any one of claims 1 to 5, wherein the indoor unit is arranged so that the end side comes into contact therewith.
  7.  前記熱交換器は、
     前記下部主熱交換器と前記上部主熱交換器との接触部分が、前記軸流送風機の回転軸の略延長上にくるように設けられている
     ことを特徴とする請求項6に記載の空気調和装置の室内機。
    The heat exchanger is
    The air according to claim 6, wherein a contact portion between the lower main heat exchanger and the upper main heat exchanger is provided so as to be substantially extended from a rotation shaft of the axial blower. The indoor unit of the harmony device.
  8.  前記下部主熱交換器及び前記上部主熱交換器は、
     前記下部主熱交換器の一方の端部側と前記上部主熱交換器の一方の端部側とが接触して設けられ、
     この接触部分がテーパー状に形成されている
     ことを特徴とする請求項6又は7に記載の空気調和装置の室内機。
    The lower main heat exchanger and the upper main heat exchanger are:
    One end side of the lower main heat exchanger and one end side of the upper main heat exchanger are provided in contact with each other,
    The indoor unit of the air conditioner according to claim 6 or 7, wherein the contact portion is formed in a tapered shape.
PCT/JP2012/083022 2012-12-20 2012-12-20 Indoor unit for air conditioning device WO2014097437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083022 WO2014097437A1 (en) 2012-12-20 2012-12-20 Indoor unit for air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083022 WO2014097437A1 (en) 2012-12-20 2012-12-20 Indoor unit for air conditioning device

Publications (1)

Publication Number Publication Date
WO2014097437A1 true WO2014097437A1 (en) 2014-06-26

Family

ID=50977818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083022 WO2014097437A1 (en) 2012-12-20 2012-12-20 Indoor unit for air conditioning device

Country Status (1)

Country Link
WO (1) WO2014097437A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066249A (en) * 2015-08-05 2015-11-18 广东志高空调有限公司 Indoor unit of air conditioner
CN106050713A (en) * 2015-04-08 2016-10-26 三星电子株式会社 Fan assembly and air conditioner with fan assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591935A (en) * 1982-06-25 1984-01-07 Daikin Ind Ltd Air conditioner
JPS61170931U (en) * 1985-04-10 1986-10-23
JP3050175U (en) * 1997-12-25 1998-06-30 自力 陳 Expandable indoor unit for separated room air conditioner
JPH10238806A (en) * 1997-02-24 1998-09-08 Matsushita Electric Ind Co Ltd Ceiling embedded air conditioner
JP2000283491A (en) * 1999-03-29 2000-10-13 Sanyo Electric Co Ltd Air conditioner
JP2000337652A (en) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd Air-conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591935A (en) * 1982-06-25 1984-01-07 Daikin Ind Ltd Air conditioner
JPS61170931U (en) * 1985-04-10 1986-10-23
JPH10238806A (en) * 1997-02-24 1998-09-08 Matsushita Electric Ind Co Ltd Ceiling embedded air conditioner
JP3050175U (en) * 1997-12-25 1998-06-30 自力 陳 Expandable indoor unit for separated room air conditioner
JP2000283491A (en) * 1999-03-29 2000-10-13 Sanyo Electric Co Ltd Air conditioner
JP2000337652A (en) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd Air-conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050713A (en) * 2015-04-08 2016-10-26 三星电子株式会社 Fan assembly and air conditioner with fan assembly
CN105066249A (en) * 2015-08-05 2015-11-18 广东志高空调有限公司 Indoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP6248486B2 (en) Air conditioner duct type indoor unit
JP5029577B2 (en) Air conditioner indoor unit
JP6369684B2 (en) Embedded ceiling air conditioner
JP6167780B2 (en) Fan unit and air conditioner
WO2018018877A1 (en) Indoor ceiling air conditioning unit
JP2007170331A (en) Turbofan and indoor unit of air conditioner using it
JP6578907B2 (en) Embedded ceiling air conditioner
JP2006226595A (en) Air conditioner
US20150253032A1 (en) Air conditioner
JP5837235B2 (en) Air conditioner outdoor unit
JP2008240590A (en) Turbo fan
JP6758992B2 (en) Indoor unit and air conditioner
JPWO2014174625A1 (en) Air conditioner
WO2014097437A1 (en) Indoor unit for air conditioning device
JP2016223679A (en) Duct type air conditioner
JP2014190309A (en) Ceiling-embedded air conditioner
JP2001124359A (en) Air conditioner
JP2013044481A (en) Outdoor unit of heat pump device
JP6241959B2 (en) Air conditioner indoor unit
JP2016188578A (en) Air blower
JP2017048979A (en) Ceiling embedded type air conditioner
JP5389076B2 (en) Blower and air conditioner outdoor unit
WO2023002956A1 (en) Air conditioner
WO2018029878A1 (en) Indoor unit and air-conditioning device
JP7370466B2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP