WO2014097409A1 - Rapid charger - Google Patents

Rapid charger Download PDF

Info

Publication number
WO2014097409A1
WO2014097409A1 PCT/JP2012/082841 JP2012082841W WO2014097409A1 WO 2014097409 A1 WO2014097409 A1 WO 2014097409A1 JP 2012082841 W JP2012082841 W JP 2012082841W WO 2014097409 A1 WO2014097409 A1 WO 2014097409A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
storage battery
target
soct
Prior art date
Application number
PCT/JP2012/082841
Other languages
French (fr)
Japanese (ja)
Inventor
敬峰 向井
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to PCT/JP2012/082841 priority Critical patent/WO2014097409A1/en
Publication of WO2014097409A1 publication Critical patent/WO2014097409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a quick charger.
  • Patent Document 1 includes a single quick charger for an electric vehicle and a quick charge distributor that distributes power from the quick charger for the electric vehicle to each of n charging adapters.
  • a quick charger for electric vehicles When charging an electric vehicle using a quick charger for electric vehicles, the total of the current values flowing through each charging adapter is maximized within the range of the maximum output current value of the quick charger for electric vehicles, A technique for charging a single electric vehicle is disclosed.
  • a quick charger having a power receiving means for receiving power from a commercial power supply, it is desired that the amount of power received through the power receiving means can be reduced.
  • An object of the present invention is to provide a quick charger that can reduce the amount of power received from a commercial power source.
  • the quick charger of the present invention includes a power receiving means connected to a commercial power source, a storage battery connected to the power receiving means, an output connected to the power receiving means and the storage battery, and outputs electric power for charging to an external device. And a target value for the amount of electricity stored in the storage battery varies according to the power received via the power receiving means.
  • the target value of the charged amount when the power received through the power receiving unit is small is larger than the target value of the stored amount when the power received through the power receiving unit is large. Is preferred.
  • the target value of the charged amount is a charging time per time for the external device, a maximum power output to the external device, and a power received via the power receiving means. Is preferably based on
  • the upper limit of the target value of the storage amount corresponds to a product of the maximum output of the storage battery and the charging time per time.
  • the electric power received through the power receiving means is based on an external command value, and the target value of the charged amount is further changed by a change range per time of the external command value. Is preferably based on
  • the target value of the storage amount of the storage battery changes according to the power received through the power receiving means. According to the quick charger according to the present invention, there is an effect that the amount of power received from the commercial power source can be reduced.
  • FIG. 1 is a schematic configuration diagram of a quick charger according to the embodiment.
  • FIG. 2 is a diagram illustrating a relationship between the received power and the target power storage amount according to the embodiment.
  • FIG. 3 is a time chart relating to charging and discharging of the quick charger according to the embodiment.
  • FIG. 4 is another diagram illustrating the relationship between the received power and the target power storage amount according to the embodiment.
  • FIG. 5 is a diagram illustrating a relationship between the received power and the target power storage amount according to the second modification of the embodiment.
  • FIG. 1 is a schematic configuration diagram of a quick charger according to the embodiment.
  • a quick charger 1-1 shown in FIG. 1 is connected to an AC / DC converter 6 as a power receiving means, an equipment storage battery 10 connected to the AC / DC converter 6, and an AC / DC converter 6 and the equipment storage battery 10. And a first DC / DC converter 7 as output means for outputting electric power for charging to an external device.
  • the quick charger 1-1 can function as a power storage facility that can store electric power received from a commercial power source. Further, the quick charger 1-1 can function as a power storage facility capable of appropriately discharging the power stored in the facility storage battery 10 to the store side via the AC / DC converter 6.
  • the quick charger 1-1 includes a bus 5, an AC / DC converter 6, a first DC / DC converter 7, a power conditioner 8, a second DC / DC converter 9, and a storage battery for equipment. 10, an output line 11, and a control device 20.
  • the distribution board 2 is connected to the commercial power line 1.
  • the distribution board 2 is connected to a store power line 3 and a charger power line 4. That is, the quick charger 1-1 is connected to the store via the charger power line 4, the distribution board 2, and the store power line 3.
  • the store power line 3 supplies power to a power consumption facility outside the quick charger 1-1, for example, a store such as a convenience store.
  • the quick charger 1-1 and the store are connected to a commercial power source through a common circuit including the distribution board 2.
  • the bus 5 is connected to the power supply line 4 for the charger via the AC / DC converter 6.
  • the AC / DC converter 6 converts the alternating current input from the power supply line 4 for the charger into a direct current and outputs it to the bus 5, and converts the direct current input from the bus 5 into an alternating current for the charger.
  • the power can be output to the power line 4.
  • the output line 11 is connected to the bus 5 via the first DC / DC converter 7.
  • the output line 11 is a power supply line that supplies electric power to a battery of an external device, in this embodiment, a battery mounted on an electric vehicle (EV).
  • the electric vehicle EV includes not only one having no power source other than the electric motor but also a hybrid vehicle having a power source such as an internal combustion engine in addition to the electric motor.
  • the first DC / DC converter 7 converts the direct current voltage of the bus 5 into a target voltage and outputs it to the output line 11.
  • a storage battery 10 for equipment is connected to the bus 5 via a second DC / DC converter 9.
  • the storage battery 10 for facilities can be charged and discharged.
  • the storage battery 10 for equipment of this embodiment is a lithium ion storage battery.
  • the effective capacity (storage capacity) of the facility storage battery 10 is Qb (kWh).
  • the effective capacity Qb is a capacity in a range used in the charge / discharge control among the total capacity of the facility storage battery 10. For example, when charge / discharge control is performed in the range of 10% to 90% of the total capacity of the storage battery 10 for facilities, the effective capacity Qb is a value of 80% of the total capacity.
  • the second DC / DC converter 9 converts the voltage of the direct current of the bus 5 into a target voltage and outputs it to the facility storage battery 10, and the target voltage of the direct current discharged from the facility storage battery 10 Can be output to the bus 5. Even if the voltage of the storage battery 10 for facilities changes according to the storage amount SOC, the second DC / DC converter 9 can suppress fluctuations in the voltage output to the bus 5. Therefore, the stability of the voltage supplied to the electric vehicle EV can be improved. In addition, since the second DC / DC converter 9 is arranged, the number of batteries of the storage battery 10 for facilities (the number of series connection) can be changed without reassembling the circuit.
  • a solar power generation device 12 is connected to the bus 5 via a power conditioner 8.
  • the solar power generation device 12 converts the light energy of sunlight into electrical energy and outputs a direct current.
  • the maximum value of the generated power is 20 kW.
  • the power conditioner 8 has a DC / DC converter and can execute MPPT (Maximum Power Point Tracking) control.
  • the MPPT control is control for causing the solar power generation device 12 to generate power at a voltage and current value that can maximize the output.
  • the current generated by the solar power generation device 12 is output to the bus 5 via the power conditioner 8.
  • the power conditioner 8 increases the output voltage to the bus 5 higher than the voltage of the storage battery 10 for facilities in the control of the input power Pg input from the solar power generator 12 to the bus 5. When the input power Pg becomes equal to the generated power of the solar power generation device 12, the balance is automatically made. Note that the power conditioner 8 controls the output voltage to the bus 5 to be equal to or lower than the voltage when the storage battery 10 for facilities is fully charged.
  • the control device 20 controls the quick charger 1-1.
  • the control device 20 of the present embodiment is connected to the AC / DC converter 6, the first DC / DC converter 7, the second DC / DC converter 9, the storage battery 10 for equipment, and the power conditioner 8, respectively. 6. Control the first DC / DC converter 7, the second DC / DC converter 9, the storage battery 10 for equipment, and the power conditioner 8.
  • the facility storage battery 10 has a monitoring device that monitors the temperature and voltage of the facility storage battery 10, the storage amount SOC (kWh), the current value to be charged and discharged, and the like.
  • the control device 20 acquires information related to the facility storage battery 10 from the monitoring device for the facility storage battery 10.
  • the storage amount SOC is calculated in the range of the effective capacity Qb. For example, when charge / discharge control is performed within the range of 10% to 90% of the total capacity of the storage battery 10 for facilities, the storage amount SOC is calculated by setting the remaining amount of 10% of the total capacity to 0 (kWh) of the storage amount SOC. Is done.
  • the storage rate (%) of the facility storage battery 10 is such that the remaining amount of 10% of the total capacity of the facility storage battery 10 is 0% of the storage rate, and the remaining amount of 90% of the total capacity is 100% of the storage rate. It becomes.
  • Control device 20 determines transmission / reception power Pqc (kW) that is power received from charger power supply line 4 via AC / DC converter 6 or discharged to charger power supply line 4 via AC / DC converter 6. .
  • Control device 20 outputs a command value of voltage and current to be output to bus 5 or a command value of voltage and current to be discharged to charger power supply line 4 based on transmission / reception power Pqc.
  • the AC / DC converter 6 controls the voltage and current output to the bus 5 or the voltage and current discharged to the charger power supply line 4 based on the command value received from the control device 20.
  • a current value input / output via the AC / DC converter 6 is referred to as an exchange current value Iqc.
  • the control device 20 sets the output power Po (kW) to be supplied to the electric vehicle EV in response to a charging request from the electric vehicle EV connected to the output line 11.
  • the maximum output power Pomax which is the maximum value of the output power Po, is 50 kW, but it may be any value.
  • the control device 20 outputs to the first DC / DC converter 7 a voltage and current command value to be output to the output line 11 based on a request from the electric vehicle EV.
  • the first DC / DC converter 7 controls the voltage and current output from the bus 5 to the output line 11 based on the command value from the control device 20.
  • the control device 20 acquires input power Pg (voltage and current) generated by the solar power generation device 12 and input to the bus 5 from the power conditioner 8.
  • the control device 20 can instruct the power conditioner 8 to shut off the solar power generation device 12 and the bus 5 and set the input power Pg to zero.
  • the control device 20 determines the discharge power Pb of the facility storage battery 10 and outputs a voltage and current command value output from the facility storage battery 10 to the bus 5 based on the discharge power Pb, or outputs from the bus 5 to the facility storage battery 10.
  • the voltage and current command values are output to the second DC / DC converter 9.
  • the second DC / DC converter 9 controls the voltage and current output from the facility storage battery 10 to the bus 5 or the voltage and current output from the bus 5 to the facility storage battery 10 based on the command value from the control device 20. To do.
  • the demand controller 15 is connected to the control device 20.
  • the demand controller 15 is an external control device that controls the power-receiving demand by combining the power consumption equipment connected to the store power line 3 and the quick charger 1-1.
  • the demand controller 15 detects the power received from the commercial power supply line 1 via the distribution board 2 and calculates the amount of power received per predetermined time.
  • the demand controller 15 outputs a command value (allowable maximum power) indicating the maximum value of power that can be received by the quick charger 1-1 based on the calculated power amount.
  • the quick charger 1-1 determines the transfer power Pqc based on the allowable maximum power output from the demand controller 15.
  • the power received from the commercial power supply via the AC / DC converter 6 is set to be equal to or lower than the allowable maximum power.
  • the control device 20 receives the power via the AC / DC converter 6 with the transmission / reception power Pqc as the allowable maximum power.
  • the control device 20 causes the facility storage battery 10 to discharge when the exchanged power Pqc is insufficient with respect to the output power Po.
  • control device 20 outputs at least a part of the output power Po that is insufficient with the exchanged power Pqc from the input power Pg from the solar power generation device 12 and discharges it to the facility storage battery 10 when the power is insufficient. It can also be made to do.
  • the amount of power received from a commercial power source can be reduced.
  • the amount of power received can be reduced during the daytime when the unit price of the power rate is relatively high or during peak hours when the power demand is high.
  • the target value of the storage amount SOC of the facility storage battery 10 changes according to the power received via the AC / DC converter 6 as the power receiving means.
  • the target value of the stored electricity amount SOC can be appropriately determined according to the received power, and the received power amount can be reduced.
  • the target value of the storage amount SOC is the upper limit of the storage amount SOC when the facility storage battery 10 is stored. Therefore, even if the charged amount SOC exceeds the target value, it is not necessary to reduce the charged amount SOC to the target value.
  • FIG. 2 is a diagram illustrating a relationship between the received power and the target power storage amount according to the embodiment.
  • the horizontal axis indicates the received power received from the commercial power supply via the AC / DC converter 6, and the vertical axis indicates the target value of the storage amount SOC (hereinafter referred to as “target storage amount SOCt”).
  • the received power on the horizontal axis may be the power actually received by the quick charger 1-1 or the command value from the demand controller 15, that is, the allowable maximum power.
  • FIG. 2 shows the relationship between the received power and the target charged amount SOCt when the maximum output of the facility storage battery 10 is equal to or greater than the maximum output power Pomax for the electric vehicle EV.
  • the maximum output power Pomax is 50 kW. Therefore, when the maximum output of the facility storage battery 10 is 50 kW or more, the target storage amount SOCt is determined based on the correspondence shown in FIG.
  • the target storage amount SOCt when the received power is small is larger than the target storage amount SOCt when the received power is large. Therefore, when large electric power can be received from the commercial power source, the charged amount SOC can be kept low, and the received power amount from the commercial power source can be suppressed.
  • the relationship between the received power and the target charged amount SOCt is linear, and the target charged amount SOCt decreases as the received power increases.
  • the target charged amount SOCt is determined by the charging time Tchg per time for an external device, the maximum power output to the external device (maximum output power Pomax), and AC / Based on the power received via the DC converter 6.
  • the target power storage amount SOCt can continue to output the maximum output power Pomax to the electric vehicle EV by the received power from the commercial power source and the discharge power Pb of the facility storage battery 10 during one charging time Tchg. It is stipulated in.
  • the target storage amount SOCt is determined so that, for example, the charging of the electric vehicle EV can be completed by the discharge power Pb of the facility storage battery 10 even when the received power is 0 kW.
  • the charging time Tchg (maximum charging time) per electric vehicle EV is 30 min (0.5 h).
  • the storage amount SOC needs to be 25 kWh.
  • the target storage amount SOCt when the received power is 0 kW is 25 kWh. If the storage amount SOC is 25 kWh at the start of charging of the electric vehicle EV, the charging of the electric vehicle EV can be completed by the facility storage battery 10 even if the received power is 0 kW.
  • the target storage amount SOCt when the received power is 50 kW or more is 0 kWh. If the received power is 50 kW or more, it is possible to complete charging of the electric vehicle EV with the received power even if the storage amount SOC of the facility storage battery 10 is 0 kWh. If the storage battery 10 for facilities is stored based on the target storage amount SOCt shown in FIG. 2, the output power Po of 50 kW is continuously supplied to the electric vehicle EV during the charging time Tchg regardless of the received power. be able to.
  • the target charged amount SOCt is set to a minimum value that can complete the charging of the electric vehicle EV. Therefore, the amount of power received from the commercial power source can be minimized.
  • FIG. 3 is a time chart relating to charging / discharging of the quick charger 1-1 according to the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the storage amount SOC.
  • the electric vehicle EV is charged between time t1 and t2 (first time), between time t3 and t4 (second time), and between time t5 and t6 (third time). Done.
  • the storage amount SOC after the first charge and the second charge is larger than the target storage amount SOCt, respectively. Accordingly, the storage of the facility storage battery 10 is not performed after the charging is completed.
  • the storage amount SOC after the third charge is less than the target storage amount SOCt.
  • the electrical storage with respect to the storage battery 10 for facilities is started from the time t6.
  • the storage amount SOC recovers to the target storage amount SOCt at time t7, the power reception from the commercial power supply is ended, and the storage of the facility storage battery 10 is ended. Thereafter, when the storage amount SOC falls below the target storage amount SOCt, the facility storage battery 10 is charged.
  • the storage amount SOC of the facility storage battery 10 can be kept to the minimum necessary for completing the charging of the electric vehicle EV. It is possible to suppress the amount of power received from the.
  • the method for determining the target charged amount SOCt may be performed constantly or when a predetermined condition is satisfied.
  • the method for determining the target storage amount SOCt as described above may be performed during a predetermined period or a predetermined time period.
  • the predetermined time zone can be, for example, a time zone in which the unit price of the power rate is relatively high in one day, for example, daytime time.
  • the predetermined time zone may be a time zone (heavy load time, peak time) when power demand is large.
  • the predetermined period can be, for example, summer.
  • the target power storage amount SOCt during the time period excluding the predetermined time period may be different from the target power storage amount SOCt during the predetermined time period.
  • the target power storage amount SOCt in the time zone excluding the predetermined time zone is desirably equal to or greater than the target power storage amount SOCt in the predetermined time zone, and is preferably larger than the target power storage amount SOCt in the predetermined time zone. In this way, in preparation for the discharge in the next predetermined time zone, the charged amount SOC can be sufficiently recovered in the time zone excluding the predetermined time zone.
  • the target power storage amount SOCt when the received power is large may be made larger than the target power storage amount SOCt when the received power is low, contrary to the predetermined time zone.
  • the target power storage amount SOCt when the power reception amount is 0 kW may be common between the predetermined time zone and a time zone other than the predetermined time zone.
  • the target power storage amount SOCt when the received power in the time zone other than the predetermined time zone is 0 kW may be 25 kWh.
  • the relationship between the target power storage amount SOCt and the received power in a time zone other than the predetermined time zone can be linear, for example.
  • the target storage amount SOCt in the time period excluding the predetermined time period may be a constant value, for example, the maximum value (storage rate 100%) of the storage amount SOC.
  • the facility storage battery 10 can be charged to the maximum extent in preparation for discharge in the next predetermined time period.
  • FIG. 4 is another diagram showing the relationship between the received power and the target charged amount SOCt according to the embodiment.
  • FIG. 4 shows the relationship between the received power and the target charged amount SOCt when the maximum output of the facility storage battery 10 is less than the maximum output power Pomax for the electric vehicle EV.
  • the maximum value of the target storage amount SOCt is the maximum amount of power output from the facility storage battery 10 in one charge time Tchg.
  • the relationship between the received power and the target storage amount SOCt shown in FIG. 4 is that the maximum output of the facility storage battery 10 is 25 kW and the charging time Tchg is 0.5 h, and the maximum value of the target storage amount SOCt is 12.5 kWh. It is.
  • the upper limit of the target storage amount SOCt corresponds to the product of the maximum output of the facility storage battery 10 and the charging time Tchg per time.
  • the target storage amount SOCt is constant at the maximum value of 25 kWh.
  • the target charged amount SOCt is variable.
  • the target charged amount SOCt when the received power is small is larger than the target charged amount SOCt when the received power is large.
  • the relationship between the received power and the target charged amount SOCt is linear in the received power region greater than 25 kW.
  • the storage when storing in the facility storage battery 10, the storage is stopped when the storage amount SOC reaches the target storage amount SOCt.
  • the storage using the input power Pg from the solar power generation device 12 is not performed. It may be performed separately. That is, the target storage amount SOCt can be the upper limit of the storage amount SOC when the facility storage battery 10 is stored by receiving power from a commercial power source.
  • Power storage using the input power Pg from the solar power generation device 12 may be executed regardless of the target power storage amount SOCt. For example, power may be stored using the input power Pg up to the maximum power storage amount SOC.
  • the relationship between the received power and the target charged amount SOCt when the target charged amount SOCt changes according to the received power is not limited to linear.
  • the target storage amount SOCt may change stepwise with respect to a change in received power.
  • the target power storage amount SOCt may be decreased by a certain amount every time the received power increases by a certain amount.
  • FIG. 5 is a diagram illustrating a relationship between the received power and the target charged amount SOCt according to the second modification of the embodiment.
  • the target charged amount SOCt is indicated by a white circle ( ⁇ ).
  • the solid line shown in FIG. 5 is the minimum storage amount SOC required to complete the charging of the electric vehicle EV when the received power is constant.
  • a predetermined margin hereinafter referred to as “addition amount ⁇ S” is added to the minimum required storage amount SOC in preparation for fluctuations in the maximum allowable power to determine the target storage amount SOCt. ing.
  • the allowable maximum power output from the demand controller 15 can fluctuate according to the detected amount of power received. Even when the allowable maximum power is reduced, it is preferable that the charging of the electric vehicle EV can be completed in one charging time Tchg.
  • the target power storage amount SOCt includes the addition amount ⁇ S.
  • the addition amount ⁇ S may be a constant value or may be variable according to the received power.
  • the addition amount ⁇ S may be a predetermined ratio (for example, 5% or 10%) with respect to the minimum required storage amount SOC (value on the straight line in FIG. 5) determined from the current received power, for example. Good.
  • the addition amount ⁇ S when the received power is large may be smaller than the addition amount ⁇ S when the received power is small.
  • the shortage of the output power Po when charging the electric vehicle EV is suppressed because the target charged amount SOCt includes the added amount ⁇ S.
  • charging can be completed even when the allowable maximum power is reduced during charging of the electric vehicle EV.
  • the time interval at which the demand controller 15 changes the allowable maximum power is preferably equal to or longer than the charging time Tchg. In this way, even if the allowable maximum power changes during charging of the electric vehicle EV, the number of times is at most one. Therefore, it is possible to secure a minimum required storage amount SOC in preparation for a decrease in the allowable maximum power, and to suppress an excessive storage in the facility storage battery 10 and an increase in the amount of received power. .
  • the target of charging by the quick charger 1-1 is the electric vehicle EV.
  • the present invention is not limited to this, and other external devices may be charged.
  • the quick charger 1-1 may be one that does not receive power from an external power generator such as the solar power generator 12.
  • the quick charger 1-1 may receive power from a power generation device other than the solar power generation device 12, for example, a wind power generation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A rapid charger, comprising: a power reception means connected to a commercial power supply; a storage battery connected to the power reception means; and an output means which is connected to the power reception means and the storage battery, and which outputs power for charging to an external device. The storage amount target value (SOCt) for the storage battery varies depending on the power received via the power reception means. The storage amount target value (SOCt), when the amount of power received via the power reception means is small, is preferably greater than the storage amount target value (SOCt) when the amount of power received via the power reception means is large.

Description

急速充電器Quick charger
 本発明は、急速充電器に関する。 The present invention relates to a quick charger.
 従来、急速充電器がある。例えば、特許文献1には、1台の電気自動車用急速充電器と、その電気自動車用急速充電器からの電力をn個の各充電アダプタに分配するようにした急速充電ディストリビューターとを備えた電気自動車用急速充電装置を用いて電気自動車を充電するに際して、各充電アダプタに流れる電流値の合計が電気自動車用急速充電器の最大出力電流値以下の範囲で最大となるようにしながら、同時に複数台の電気自動車の充電を行うようにする技術が開示されている。 Conventionally, there is a quick charger. For example, Patent Document 1 includes a single quick charger for an electric vehicle and a quick charge distributor that distributes power from the quick charger for the electric vehicle to each of n charging adapters. When charging an electric vehicle using a quick charger for electric vehicles, the total of the current values flowing through each charging adapter is maximized within the range of the maximum output current value of the quick charger for electric vehicles, A technique for charging a single electric vehicle is disclosed.
特開2011-130593号公報JP 2011-130593 A
 商用電源から受電する受電手段を有する急速充電器において、受電手段を介して受電する電力量を低減できることが望まれている。 In a quick charger having a power receiving means for receiving power from a commercial power supply, it is desired that the amount of power received through the power receiving means can be reduced.
 本発明の目的は、商用電源から受電する電力量を低減することができる急速充電器を提供することである。 An object of the present invention is to provide a quick charger that can reduce the amount of power received from a commercial power source.
 本発明の急速充電器は、商用電源と接続された受電手段と、前記受電手段と接続された蓄電池と、前記受電手段および前記蓄電池と接続され、外部の装置に対する充電用の電力を出力する出力手段と、を備え、前記蓄電池の蓄電量の目標値が、前記受電手段を介して受電する電力に応じて変化することを特徴とする。 The quick charger of the present invention includes a power receiving means connected to a commercial power source, a storage battery connected to the power receiving means, an output connected to the power receiving means and the storage battery, and outputs electric power for charging to an external device. And a target value for the amount of electricity stored in the storage battery varies according to the power received via the power receiving means.
 上記急速充電器において、前記受電手段を介して受電する電力が小さい場合の前記蓄電量の目標値は、前記受電手段を介して受電する電力が大きい場合の前記蓄電量の目標値よりも大きいことが好ましい。 In the quick charger, the target value of the charged amount when the power received through the power receiving unit is small is larger than the target value of the stored amount when the power received through the power receiving unit is large. Is preferred.
 上記急速充電器において、前記蓄電量の目標値は、前記外部の装置に対する1回当たりの充電時間と、前記外部の装置に対して出力する最大電力と、前記受電手段を介して受電する電力とに基づくことが好ましい。 In the quick charger, the target value of the charged amount is a charging time per time for the external device, a maximum power output to the external device, and a power received via the power receiving means. Is preferably based on
 上記急速充電器において、前記蓄電量の目標値の上限は、前記蓄電池の最大出力と前記1回当たりの充電時間との積に相当することが好ましい。 In the quick charger, it is preferable that the upper limit of the target value of the storage amount corresponds to a product of the maximum output of the storage battery and the charging time per time.
 上記急速充電器において、前記受電手段を介して受電する電力は、外部からの指令値に基づいており、前記蓄電量の目標値は、更に、前記外部からの指令値の1回当たりの変更幅に基づくことが好ましい。 In the quick charger, the electric power received through the power receiving means is based on an external command value, and the target value of the charged amount is further changed by a change range per time of the external command value. Is preferably based on
 本発明に係る急速充電器は、蓄電池の蓄電量の目標値が、受電手段を介して受電する電力に応じて変化する。本発明に係る急速充電器によれば、商用電源から受電する電力量を低減することができるという効果を奏する。 In the quick charger according to the present invention, the target value of the storage amount of the storage battery changes according to the power received through the power receiving means. According to the quick charger according to the present invention, there is an effect that the amount of power received from the commercial power source can be reduced.
図1は、実施形態に係る急速充電器の概略構成図である。FIG. 1 is a schematic configuration diagram of a quick charger according to the embodiment. 図2は、実施形態に係る受電電力と目標蓄電量との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between the received power and the target power storage amount according to the embodiment. 図3は、実施形態の急速充電器の充放電に係るタイムチャートである。FIG. 3 is a time chart relating to charging and discharging of the quick charger according to the embodiment. 図4は、実施形態に係る受電電力と目標蓄電量との関係を示す他の図である。FIG. 4 is another diagram illustrating the relationship between the received power and the target power storage amount according to the embodiment. 図5は、実施形態の第2変形例に係る受電電力と目標蓄電量との関係を示す図である。FIG. 5 is a diagram illustrating a relationship between the received power and the target power storage amount according to the second modification of the embodiment.
 以下に、本発明の実施形態に係る急速充電器につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。 Hereinafter, a quick charger according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
[実施形態]
 図1から図4を参照して、実施形態について説明する。本実施形態は、急速充電器に関する。図1は、実施形態に係る急速充電器の概略構成図である。
[Embodiment]
The embodiment will be described with reference to FIGS. 1 to 4. The present embodiment relates to a quick charger. FIG. 1 is a schematic configuration diagram of a quick charger according to the embodiment.
 図1に示す急速充電器1-1は、受電手段としてのAC/DCコンバータ6と、AC/DCコンバータ6と接続された設備用蓄電池10と、AC/DCコンバータ6および設備用蓄電池10と接続され、外部の装置に対して充電用の電力を出力する出力手段としての第一DC/DCコンバータ7とを含んで構成されている。急速充電器1-1は、商用電源から受電した電力を蓄電することができる蓄電設備として機能することができる。また、急速充電器1-1は、設備用蓄電池10に蓄電した電力をAC/DCコンバータ6を介して適宜店舗側に放電することが可能な蓄電設備として機能することができる。 A quick charger 1-1 shown in FIG. 1 is connected to an AC / DC converter 6 as a power receiving means, an equipment storage battery 10 connected to the AC / DC converter 6, and an AC / DC converter 6 and the equipment storage battery 10. And a first DC / DC converter 7 as output means for outputting electric power for charging to an external device. The quick charger 1-1 can function as a power storage facility that can store electric power received from a commercial power source. Further, the quick charger 1-1 can function as a power storage facility capable of appropriately discharging the power stored in the facility storage battery 10 to the store side via the AC / DC converter 6.
 本実施形態に係る急速充電器1-1は、バス5と、AC/DCコンバータ6と、第一DC/DCコンバータ7と、パワーコンディショナー8と、第二DC/DCコンバータ9と、設備用蓄電池10と、出力ライン11と、制御装置20とを含んで構成されている。 The quick charger 1-1 according to the present embodiment includes a bus 5, an AC / DC converter 6, a first DC / DC converter 7, a power conditioner 8, a second DC / DC converter 9, and a storage battery for equipment. 10, an output line 11, and a control device 20.
 分電盤2は、商用電源ライン1に接続されている。分電盤2には、店舗用電源ライン3および充電器用電源ライン4が接続されている。つまり、急速充電器1-1は、充電器用電源ライン4、分電盤2および店舗用電源ライン3を介して店舗と接続されている。店舗用電源ライン3は、急速充電器1-1の外部の電力消費設備、例えばコンビニエンスストア等の店舗に電力を供給する。本実施形態では、急速充電器1-1と店舗とは、分電盤2を含む共通の回路を介して商用電源に接続されている。 The distribution board 2 is connected to the commercial power line 1. The distribution board 2 is connected to a store power line 3 and a charger power line 4. That is, the quick charger 1-1 is connected to the store via the charger power line 4, the distribution board 2, and the store power line 3. The store power line 3 supplies power to a power consumption facility outside the quick charger 1-1, for example, a store such as a convenience store. In the present embodiment, the quick charger 1-1 and the store are connected to a commercial power source through a common circuit including the distribution board 2.
 バス5は、AC/DCコンバータ6を介して充電器用電源ライン4と接続されている。AC/DCコンバータ6は、充電器用電源ライン4から入力される交流電流を直流電流に変換してバス5に出力すること、およびバス5から入力される直流電流を交流電流に変換して充電器用電源ライン4に出力することができる。 The bus 5 is connected to the power supply line 4 for the charger via the AC / DC converter 6. The AC / DC converter 6 converts the alternating current input from the power supply line 4 for the charger into a direct current and outputs it to the bus 5, and converts the direct current input from the bus 5 into an alternating current for the charger. The power can be output to the power line 4.
 バス5には、第一DC/DCコンバータ7を介して出力ライン11が接続されている。出力ライン11は、外部の装置の電池、本実施形態では電気自動車(EV)に搭載された電池に対して電力を供給する電源ラインである。ここで、電気自動車EVは、電動機以外の動力源を有しないものだけでなく、電動機に加えて内燃機関等の動力源を有するハイブリッド自動車も含む。第一DC/DCコンバータ7は、バス5の直流電流の電圧を目標とする電圧に変換して出力ライン11に出力する。 The output line 11 is connected to the bus 5 via the first DC / DC converter 7. The output line 11 is a power supply line that supplies electric power to a battery of an external device, in this embodiment, a battery mounted on an electric vehicle (EV). Here, the electric vehicle EV includes not only one having no power source other than the electric motor but also a hybrid vehicle having a power source such as an internal combustion engine in addition to the electric motor. The first DC / DC converter 7 converts the direct current voltage of the bus 5 into a target voltage and outputs it to the output line 11.
 バス5には、第二DC/DCコンバータ9を介して設備用蓄電池10が接続されている。設備用蓄電池10は、充電および放電が可能なものである。本実施形態の設備用蓄電池10は、リチウムイオン蓄電池である。設備用蓄電池10の有効容量(蓄電容量)は、Qb(kWh)である。なお、有効容量Qbは、設備用蓄電池10の全容量のうち、充放電制御において使用される範囲の容量である。例えば、設備用蓄電池10の全容量の10%から90%の範囲で充放電制御を行う場合、有効容量Qbは、全容量の80%の値である。 A storage battery 10 for equipment is connected to the bus 5 via a second DC / DC converter 9. The storage battery 10 for facilities can be charged and discharged. The storage battery 10 for equipment of this embodiment is a lithium ion storage battery. The effective capacity (storage capacity) of the facility storage battery 10 is Qb (kWh). The effective capacity Qb is a capacity in a range used in the charge / discharge control among the total capacity of the facility storage battery 10. For example, when charge / discharge control is performed in the range of 10% to 90% of the total capacity of the storage battery 10 for facilities, the effective capacity Qb is a value of 80% of the total capacity.
 第二DC/DCコンバータ9は、バス5の直流電流の電圧を目標とする電圧に変換して設備用蓄電池10に出力すること、および設備用蓄電池10から放電される直流電流を目標とする電圧に変換してバス5に出力することが可能である。第二DC/DCコンバータ9は、蓄電量SOCに応じて設備用蓄電池10の電圧が変化したとしても、バス5に出力する電圧の変動を抑制することができる。従って、電気自動車EVに対して供給する電圧の安定性を向上させることができる。また、第二DC/DCコンバータ9が配置されていることで、回路の組み直しをすることなく設備用蓄電池10のバッテリの個数(直列つなぎの個数)を変更することができる。 The second DC / DC converter 9 converts the voltage of the direct current of the bus 5 into a target voltage and outputs it to the facility storage battery 10, and the target voltage of the direct current discharged from the facility storage battery 10 Can be output to the bus 5. Even if the voltage of the storage battery 10 for facilities changes according to the storage amount SOC, the second DC / DC converter 9 can suppress fluctuations in the voltage output to the bus 5. Therefore, the stability of the voltage supplied to the electric vehicle EV can be improved. In addition, since the second DC / DC converter 9 is arranged, the number of batteries of the storage battery 10 for facilities (the number of series connection) can be changed without reassembling the circuit.
 バス5には、パワーコンディショナー8を介して太陽光発電装置12が接続されている。太陽光発電装置12は、太陽光の光エネルギーを電気エネルギーに変換して直流電流を出力する。本実施形態の太陽光発電装置12は、発電電力の最大値が20kWである。パワーコンディショナー8は、DC/DCコンバータを有しており、MPPT(Maximum Power Point Tracking)制御を実行することができる。MPPT制御は、出力を最大化できる電圧および電流値で太陽光発電装置12に発電を行わせる制御である。太陽光発電装置12により発電された電流は、パワーコンディショナー8を介してバス5に出力される。 A solar power generation device 12 is connected to the bus 5 via a power conditioner 8. The solar power generation device 12 converts the light energy of sunlight into electrical energy and outputs a direct current. In the solar power generation device 12 of the present embodiment, the maximum value of the generated power is 20 kW. The power conditioner 8 has a DC / DC converter and can execute MPPT (Maximum Power Point Tracking) control. The MPPT control is control for causing the solar power generation device 12 to generate power at a voltage and current value that can maximize the output. The current generated by the solar power generation device 12 is output to the bus 5 via the power conditioner 8.
 パワーコンディショナー8は、太陽光発電装置12からバス5に入力する入力電力Pgの制御において、バス5への出力電圧を設備用蓄電池10の電圧よりも高めていく。入力電力Pgが太陽光発電装置12の発電電力に等しくなると、自動的にバランスする。なお、パワーコンディショナー8は、バス5への出力電圧を設備用蓄電池10の満充電時の電圧以下に制御する。 The power conditioner 8 increases the output voltage to the bus 5 higher than the voltage of the storage battery 10 for facilities in the control of the input power Pg input from the solar power generator 12 to the bus 5. When the input power Pg becomes equal to the generated power of the solar power generation device 12, the balance is automatically made. Note that the power conditioner 8 controls the output voltage to the bus 5 to be equal to or lower than the voltage when the storage battery 10 for facilities is fully charged.
 制御装置20は、急速充電器1-1を制御する。本実施形態の制御装置20は、AC/DCコンバータ6、第一DC/DCコンバータ7、第二DC/DCコンバータ9、設備用蓄電池10およびパワーコンディショナー8とそれぞれ接続されており、AC/DCコンバータ6、第一DC/DCコンバータ7、第二DC/DCコンバータ9、設備用蓄電池10およびパワーコンディショナー8を制御する。 The control device 20 controls the quick charger 1-1. The control device 20 of the present embodiment is connected to the AC / DC converter 6, the first DC / DC converter 7, the second DC / DC converter 9, the storage battery 10 for equipment, and the power conditioner 8, respectively. 6. Control the first DC / DC converter 7, the second DC / DC converter 9, the storage battery 10 for equipment, and the power conditioner 8.
 設備用蓄電池10は、設備用蓄電池10の温度や電圧、蓄電量SOC(kWh)、充放電する電流値等を監視する監視装置を有している。制御装置20は、設備用蓄電池10の監視装置から、設備用蓄電池10に関する情報を取得する。なお、蓄電量SOCは、有効容量Qbの範囲で算出される。例えば、設備用蓄電池10の全容量の10%から90%の範囲内で充放電制御がなされる場合、全容量の10%の残量を蓄電量SOCの0(kWh)として蓄電量SOCが算出される。また、設備用蓄電池10の蓄電率(%)は、設備用蓄電池10の全容量の10%の残量が蓄電率の0%であり、全容量の90%の残量が蓄電率の100%となる。 The facility storage battery 10 has a monitoring device that monitors the temperature and voltage of the facility storage battery 10, the storage amount SOC (kWh), the current value to be charged and discharged, and the like. The control device 20 acquires information related to the facility storage battery 10 from the monitoring device for the facility storage battery 10. The storage amount SOC is calculated in the range of the effective capacity Qb. For example, when charge / discharge control is performed within the range of 10% to 90% of the total capacity of the storage battery 10 for facilities, the storage amount SOC is calculated by setting the remaining amount of 10% of the total capacity to 0 (kWh) of the storage amount SOC. Is done. The storage rate (%) of the facility storage battery 10 is such that the remaining amount of 10% of the total capacity of the facility storage battery 10 is 0% of the storage rate, and the remaining amount of 90% of the total capacity is 100% of the storage rate. It becomes.
 制御装置20は、充電器用電源ライン4からAC/DCコンバータ6を介して受電、あるいはAC/DCコンバータ6を介して充電器用電源ライン4に放電する電力である授受電力Pqc(kW)を決定する。制御装置20は、授受電力Pqcに基づいてバス5に出力する電圧および電流の指令値、あるいは充電器用電源ライン4に放電する電圧および電流の指令値を出力する。AC/DCコンバータ6は、制御装置20から受け取った指令値に基づいて、バス5に出力する電圧および電流あるいは充電器用電源ライン4に放電する電圧および電流を制御する。本明細書では、AC/DCコンバータ6を介して入出力する電流値を授受電流値Iqcと称する。 Control device 20 determines transmission / reception power Pqc (kW) that is power received from charger power supply line 4 via AC / DC converter 6 or discharged to charger power supply line 4 via AC / DC converter 6. . Control device 20 outputs a command value of voltage and current to be output to bus 5 or a command value of voltage and current to be discharged to charger power supply line 4 based on transmission / reception power Pqc. The AC / DC converter 6 controls the voltage and current output to the bus 5 or the voltage and current discharged to the charger power supply line 4 based on the command value received from the control device 20. In the present specification, a current value input / output via the AC / DC converter 6 is referred to as an exchange current value Iqc.
 また、制御装置20は、出力ライン11に接続された電気自動車EVからの充電要求に応じて、電気自動車EVに対して供給する出力電力Po(kW)を設定する。本実施形態では、出力電力Poの最大値である最大出力電力Pomaxは、50kWとするが、いずれの値であっても構わない。制御装置20は、電気自動車EVからの要求に基づいて出力ライン11に出力する電圧および電流の指令値を第一DC/DCコンバータ7に出力する。第一DC/DCコンバータ7は、制御装置20からの指令値に基づいて、バス5から出力ライン11に出力する電圧および電流を制御する。制御装置20は、パワーコンディショナー8から、太陽光発電装置12によって発電されてバス5に入力される入力電力Pg(電圧および電流)を取得する。制御装置20は、パワーコンディショナー8に指令して太陽光発電装置12とバス5とを遮断し、入力電力Pgを0とすることが可能である。 Further, the control device 20 sets the output power Po (kW) to be supplied to the electric vehicle EV in response to a charging request from the electric vehicle EV connected to the output line 11. In the present embodiment, the maximum output power Pomax, which is the maximum value of the output power Po, is 50 kW, but it may be any value. The control device 20 outputs to the first DC / DC converter 7 a voltage and current command value to be output to the output line 11 based on a request from the electric vehicle EV. The first DC / DC converter 7 controls the voltage and current output from the bus 5 to the output line 11 based on the command value from the control device 20. The control device 20 acquires input power Pg (voltage and current) generated by the solar power generation device 12 and input to the bus 5 from the power conditioner 8. The control device 20 can instruct the power conditioner 8 to shut off the solar power generation device 12 and the bus 5 and set the input power Pg to zero.
 制御装置20は、設備用蓄電池10の放電電力Pbを決定し、放電電力Pbに基づいて設備用蓄電池10からバス5に出力する電圧および電流の指令値、あるいはバス5から設備用蓄電池10に出力する電圧および電流の指令値を第二DC/DCコンバータ9に出力する。第二DC/DCコンバータ9は、制御装置20からの指令値に基づいて、設備用蓄電池10からバス5に出力する電圧および電流、あるいはバス5から設備用蓄電池10に出力する電圧および電流を制御する。 The control device 20 determines the discharge power Pb of the facility storage battery 10 and outputs a voltage and current command value output from the facility storage battery 10 to the bus 5 based on the discharge power Pb, or outputs from the bus 5 to the facility storage battery 10. The voltage and current command values are output to the second DC / DC converter 9. The second DC / DC converter 9 controls the voltage and current output from the facility storage battery 10 to the bus 5 or the voltage and current output from the bus 5 to the facility storage battery 10 based on the command value from the control device 20. To do.
 制御装置20には、デマンドコントローラ15が接続されている。デマンドコントローラ15は、店舗用電源ライン3に接続された電力消費設備と、急速充電器1-1とを合わせた受電のデマンドをコントロールする外部の制御装置である。デマンドコントローラ15は、分電盤2を介して商用電源ライン1から受電する電力を検出し、所定時間当たりに受電する電力量を算出する。デマンドコントローラ15は、算出した電力量に基づいて、急速充電器1-1が受電可能な電力の最大値を示す指令値(許容最大電力)を出力する。 The demand controller 15 is connected to the control device 20. The demand controller 15 is an external control device that controls the power-receiving demand by combining the power consumption equipment connected to the store power line 3 and the quick charger 1-1. The demand controller 15 detects the power received from the commercial power supply line 1 via the distribution board 2 and calculates the amount of power received per predetermined time. The demand controller 15 outputs a command value (allowable maximum power) indicating the maximum value of power that can be received by the quick charger 1-1 based on the calculated power amount.
 急速充電器1-1は、デマンドコントローラ15から出力される許容最大電力に基づいて授受電力Pqcを決定する。AC/DCコンバータ6を介して商用電源から受電する電力は、許容最大電力以下とされる。例えば、制御装置20は、電気自動車EVに対する充電を行う場合に、授受電力Pqcを許容最大電力としてAC/DCコンバータ6を介して受電する。制御装置20は、出力電力Poに対して授受電力Pqcが不足する場合、設備用蓄電池10に放電させる。また、制御装置20は、出力電力Poに対して授受電力Pqcで不足する分の少なくとも一部を太陽光発電装置12からの入力電力Pgから出力し、更に不足する場合に設備用蓄電池10に放電させるようにすることもできる。 The quick charger 1-1 determines the transfer power Pqc based on the allowable maximum power output from the demand controller 15. The power received from the commercial power supply via the AC / DC converter 6 is set to be equal to or lower than the allowable maximum power. For example, when charging the electric vehicle EV, the control device 20 receives the power via the AC / DC converter 6 with the transmission / reception power Pqc as the allowable maximum power. The control device 20 causes the facility storage battery 10 to discharge when the exchanged power Pqc is insufficient with respect to the output power Po. Further, the control device 20 outputs at least a part of the output power Po that is insufficient with the exchanged power Pqc from the input power Pg from the solar power generation device 12 and discharges it to the facility storage battery 10 when the power is insufficient. It can also be made to do.
 ここで、商用電源からの受電量を低減できることが望まれている。例えば、比較的電力料金の単価が高い昼間や、電力需要が多いピーク時間帯における受電量を低減できることが好ましい。 Here, it is desired that the amount of power received from a commercial power source can be reduced. For example, it is preferable that the amount of power received can be reduced during the daytime when the unit price of the power rate is relatively high or during peak hours when the power demand is high.
 本実施形態に係る急速充電器1-1では、設備用蓄電池10の蓄電量SOCの目標値が、受電手段としてのAC/DCコンバータ6を介して受電する電力に応じて変化する。これにより、受電電力に応じて適宜蓄電量SOCの目標値を定めることができ、受電量を低減することが可能となる。なお、蓄電量SOCの目標値は、設備用蓄電池10に蓄電をするときの蓄電量SOCの上限である。従って、蓄電量SOCが目標値を上回っているとしても、蓄電量SOCを目標値まで低下させる必要はない。 In the quick charger 1-1 according to the present embodiment, the target value of the storage amount SOC of the facility storage battery 10 changes according to the power received via the AC / DC converter 6 as the power receiving means. Thereby, the target value of the stored electricity amount SOC can be appropriately determined according to the received power, and the received power amount can be reduced. Note that the target value of the storage amount SOC is the upper limit of the storage amount SOC when the facility storage battery 10 is stored. Therefore, even if the charged amount SOC exceeds the target value, it is not necessary to reduce the charged amount SOC to the target value.
 図2は、実施形態に係る受電電力と目標蓄電量との関係を示す図である。図2において、横軸はAC/DCコンバータ6を介して商用電源から受電する受電電力、縦軸は、蓄電量SOCの目標値(以下、「目標蓄電量SOCt」と称する。)を示す。横軸の受電電力は、急速充電器1-1が実際に受電する電力であっても、デマンドコントローラ15からの指令値、すなわち許容最大電力であってもよい。なお、図2は、設備用蓄電池10の最大出力が、電気自動車EVに対する最大出力電力Pomax以上である場合の受電電力と目標蓄電量SOCtとの関係を示している。本実施形態では、最大出力電力Pomaxが50kWである。従って、設備用蓄電池10の最大出力が50kW以上である場合に図2に示す対応関係に基づいて目標蓄電量SOCtが決定される。 FIG. 2 is a diagram illustrating a relationship between the received power and the target power storage amount according to the embodiment. In FIG. 2, the horizontal axis indicates the received power received from the commercial power supply via the AC / DC converter 6, and the vertical axis indicates the target value of the storage amount SOC (hereinafter referred to as “target storage amount SOCt”). The received power on the horizontal axis may be the power actually received by the quick charger 1-1 or the command value from the demand controller 15, that is, the allowable maximum power. FIG. 2 shows the relationship between the received power and the target charged amount SOCt when the maximum output of the facility storage battery 10 is equal to or greater than the maximum output power Pomax for the electric vehicle EV. In the present embodiment, the maximum output power Pomax is 50 kW. Therefore, when the maximum output of the facility storage battery 10 is 50 kW or more, the target storage amount SOCt is determined based on the correspondence shown in FIG.
 図2に示すように、受電電力が小さい場合の目標蓄電量SOCtは、受電電力が大きい場合の目標蓄電量SOCtよりも大きい。これにより、商用電源から大きな電力を受電できる場合に蓄電量SOCを低く保ち、商用電源からの受電量を抑制することができる。本実施形態では、受電電力と目標蓄電量SOCtとの関係は線形であり、受電電力が大きくなるに従って目標蓄電量SOCtが減少する。 As shown in FIG. 2, the target storage amount SOCt when the received power is small is larger than the target storage amount SOCt when the received power is large. Thereby, when large electric power can be received from the commercial power source, the charged amount SOC can be kept low, and the received power amount from the commercial power source can be suppressed. In the present embodiment, the relationship between the received power and the target charged amount SOCt is linear, and the target charged amount SOCt decreases as the received power increases.
 本実施形態では、以下に説明するように、目標蓄電量SOCtは、外部の装置に対する1回当たりの充電時間Tchgと、外部の装置に対して出力する最大電力(最大出力電力Pomax)と、AC/DCコンバータ6を介して受電する電力とに基づく。目標蓄電量SOCtは、1回の充電時間Tchgの間、商用電源からの受電電力と設備用蓄電池10の放電電力Pbとによって電気自動車EVに対して最大出力電力Pomaxを出力し続けることができるように定められている。 In the present embodiment, as will be described below, the target charged amount SOCt is determined by the charging time Tchg per time for an external device, the maximum power output to the external device (maximum output power Pomax), and AC / Based on the power received via the DC converter 6. The target power storage amount SOCt can continue to output the maximum output power Pomax to the electric vehicle EV by the received power from the commercial power source and the discharge power Pb of the facility storage battery 10 during one charging time Tchg. It is stipulated in.
 目標蓄電量SOCtは、例えば、受電電力が0kWであっても設備用蓄電池10の放電電力Pbによって電気自動車EVに対する充電を完了することができるように定められる。本実施形態では、電気自動車EVに対する1回当たりの充電時間Tchg(最大充電時間)は、30min(0.5h)である。設備用蓄電池10が最大出力電力Pomaxである50kWを0.5h出力し続けるためには、蓄電量SOCが25kWh必要である。図2に示すように、受電電力が0kWである場合の目標蓄電量SOCtは、25kWhである。電気自動車EVに対する充電開始時に蓄電量SOCが25kWhであれば、受電電力が0kWであっても設備用蓄電池10によって電気自動車EVに対する充電を完了することが可能である。 The target storage amount SOCt is determined so that, for example, the charging of the electric vehicle EV can be completed by the discharge power Pb of the facility storage battery 10 even when the received power is 0 kW. In the present embodiment, the charging time Tchg (maximum charging time) per electric vehicle EV is 30 min (0.5 h). In order for the facility storage battery 10 to continue to output 50 kW, which is the maximum output power Pomax, for 0.5 h, the storage amount SOC needs to be 25 kWh. As shown in FIG. 2, the target storage amount SOCt when the received power is 0 kW is 25 kWh. If the storage amount SOC is 25 kWh at the start of charging of the electric vehicle EV, the charging of the electric vehicle EV can be completed by the facility storage battery 10 even if the received power is 0 kW.
 また、受電電力が50kW以上である場合の目標蓄電量SOCtは、0kWhである。受電電力が50kW以上であれば、設備用蓄電池10の蓄電量SOCが0kWhであっても、受電電力によって電気自動車EVに対する充電を完了することが可能である。図2に示す目標蓄電量SOCtに基づいて設備用蓄電池10に蓄電するようにすれば、受電電力にかかわらず、充電時間Tchgの間、電気自動車EVに対して50kWの出力電力Poを供給し続けることができる。 In addition, the target storage amount SOCt when the received power is 50 kW or more is 0 kWh. If the received power is 50 kW or more, it is possible to complete charging of the electric vehicle EV with the received power even if the storage amount SOC of the facility storage battery 10 is 0 kWh. If the storage battery 10 for facilities is stored based on the target storage amount SOCt shown in FIG. 2, the output power Po of 50 kW is continuously supplied to the electric vehicle EV during the charging time Tchg regardless of the received power. be able to.
 また、本実施形態の急速充電器1-1では、目標蓄電量SOCtは、電気自動車EVに対する充電を完了可能な最小限の値とされている。従って、商用電源からの受電量を必要最小限に抑えることが可能となる。 Further, in the quick charger 1-1 of the present embodiment, the target charged amount SOCt is set to a minimum value that can complete the charging of the electric vehicle EV. Therefore, the amount of power received from the commercial power source can be minimized.
 図3は、本実施形態の急速充電器1-1の充放電に係るタイムチャートである。図3において、横軸は時間、縦軸は蓄電量SOCを示す。図3に示すように、時刻t1からt2の間(第1回目)、時刻t3からt4の間(第2回目)、時刻t5からt6の間(第3回目)にそれぞれ電気自動車EVに対する充電が行われる。 FIG. 3 is a time chart relating to charging / discharging of the quick charger 1-1 according to the present embodiment. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the storage amount SOC. As shown in FIG. 3, the electric vehicle EV is charged between time t1 and t2 (first time), between time t3 and t4 (second time), and between time t5 and t6 (third time). Done.
 第1回目および第2回目の充電後の蓄電量SOCは、それぞれ目標蓄電量SOCtよりも大きい。従って、充電完了後に設備用蓄電池10に対する蓄電は行われない。第3回目の充電後の蓄電量SOCは目標蓄電量SOCtを下回っている。これにより、時刻t6から設備用蓄電池10に対する蓄電が開始される。時刻t7に蓄電量SOCが目標蓄電量SOCtまで回復すると、商用電源からの受電が終了し、設備用蓄電池10に対する蓄電が終了する。その後は、蓄電量SOCが目標蓄電量SOCtを下回ると、設備用蓄電池10に対する蓄電がなされる。 The storage amount SOC after the first charge and the second charge is larger than the target storage amount SOCt, respectively. Accordingly, the storage of the facility storage battery 10 is not performed after the charging is completed. The storage amount SOC after the third charge is less than the target storage amount SOCt. Thereby, the electrical storage with respect to the storage battery 10 for facilities is started from the time t6. When the storage amount SOC recovers to the target storage amount SOCt at time t7, the power reception from the commercial power supply is ended, and the storage of the facility storage battery 10 is ended. Thereafter, when the storage amount SOC falls below the target storage amount SOCt, the facility storage battery 10 is charged.
 このように、本実施形態に係る急速充電器1-1によれば、設備用蓄電池10の蓄電量SOCを電気自動車EVに対する充電を完了するために必要な最小限としておくことができ、商用電源からの受電量を抑制することが可能となる。 As described above, according to the quick charger 1-1 according to the present embodiment, the storage amount SOC of the facility storage battery 10 can be kept to the minimum necessary for completing the charging of the electric vehicle EV. It is possible to suppress the amount of power received from the.
 なお、本実施形態に係る目標蓄電量SOCtの決定方法は、常時行われても、所定の条件が成立する場合に行われるようにしてもよい。例えば、予め定められた所定期間や予め定められた所定時間帯に上記のような目標蓄電量SOCtの決定方法が行われてもよい。所定時間帯は、例えば、1日のうちで電力料金の単価が比較的高額な時間帯、例えば昼間時間とすることができる。所定時間帯は、電力需要が大きい時間帯(重負荷時間、ピーク時間)とされてもよい。所定期間は、例えば、夏期とすることができる。 It should be noted that the method for determining the target charged amount SOCt according to the present embodiment may be performed constantly or when a predetermined condition is satisfied. For example, the method for determining the target storage amount SOCt as described above may be performed during a predetermined period or a predetermined time period. The predetermined time zone can be, for example, a time zone in which the unit price of the power rate is relatively high in one day, for example, daytime time. The predetermined time zone may be a time zone (heavy load time, peak time) when power demand is large. The predetermined period can be, for example, summer.
 上記の所定時間帯を除く時間帯の目標蓄電量SOCtは、上記所定時間帯の目標蓄電量SOCtと異なるようにしてもよい。所定時間帯を除く時間帯の目標蓄電量SOCtは、所定時間帯の目標蓄電量SOCt以上であることが望ましく、所定時間帯の目標蓄電量SOCtよりも大きな値であることが好ましい。このようにすれば、次の所定時間帯での放電に備えて、所定時間帯を除く時間帯に蓄電量SOCを十分に回復させておくことができる。 The target power storage amount SOCt during the time period excluding the predetermined time period may be different from the target power storage amount SOCt during the predetermined time period. The target power storage amount SOCt in the time zone excluding the predetermined time zone is desirably equal to or greater than the target power storage amount SOCt in the predetermined time zone, and is preferably larger than the target power storage amount SOCt in the predetermined time zone. In this way, in preparation for the discharge in the next predetermined time zone, the charged amount SOC can be sufficiently recovered in the time zone excluding the predetermined time zone.
 例えば、所定時間帯を除く時間帯には、所定時間帯とは反対に、受電電力が大きい場合の目標蓄電量SOCtを受電電力が小さい場合の目標蓄電量SOCtよりも大きくするようにしてもよい。この場合に、受電量が0kWであるときの目標蓄電量SOCtは、所定時間帯と所定時間帯以外の時間帯とで共通とされてもよい。例えば、所定時間帯の目標蓄電量SOCtが図2に示すように定められている場合、所定時間帯以外の時間帯における受電電力が0kWのときの目標蓄電量SOCtは25kWhとされてもよい。所定時間帯以外の時間帯の目標蓄電量SOCtと受電電力との関係は、例えば、線形とすることができる。 For example, in the time zone excluding the predetermined time zone, the target power storage amount SOCt when the received power is large may be made larger than the target power storage amount SOCt when the received power is low, contrary to the predetermined time zone. . In this case, the target power storage amount SOCt when the power reception amount is 0 kW may be common between the predetermined time zone and a time zone other than the predetermined time zone. For example, when the target power storage amount SOCt in a predetermined time zone is determined as shown in FIG. 2, the target power storage amount SOCt when the received power in the time zone other than the predetermined time zone is 0 kW may be 25 kWh. The relationship between the target power storage amount SOCt and the received power in a time zone other than the predetermined time zone can be linear, for example.
 なお、所定時間帯を除く時間帯の目標蓄電量SOCtは、一定値とされてもよく、例えば、蓄電量SOCの最大値(蓄電率100%)とされてもよい。このようにした場合、次の所定時間帯における放電に備えて設備用蓄電池10に最大限の蓄電を行っておくことができる。 It should be noted that the target storage amount SOCt in the time period excluding the predetermined time period may be a constant value, for example, the maximum value (storage rate 100%) of the storage amount SOC. In this case, the facility storage battery 10 can be charged to the maximum extent in preparation for discharge in the next predetermined time period.
 図4は、実施形態に係る受電電力と目標蓄電量SOCtとの関係を示す他の図である。図4には、設備用蓄電池10の最大出力が、電気自動車EVに対する最大出力電力Pomax未満である場合の受電電力と目標蓄電量SOCtとの関係が示されている。目標蓄電量SOCtの最大値は、1回の充電時間Tchgにおいて設備用蓄電池10が出力する最大電力量とされている。図4に示す受電電力と目標蓄電量SOCtとの関係は、設備用蓄電池10の最大出力が25kW、充電時間Tchgが0.5hのものであり、目標蓄電量SOCtの最大値は、12.5kWhである。これは、1回の充電時間(0.5h)において、設備用蓄電池10が最大出力(25kW)で放電し続けた場合に出力する電力量に相当する。言い換えると、目標蓄電量SOCtの上限は、設備用蓄電池10の最大出力と、1回当たりの充電時間Tchgとの積に相当する。このように目標蓄電量SOCtの最大値を設定することで、設備用蓄電池10に対して必要以上に蓄電がなされることを抑制し、受電量を抑制することができる。 FIG. 4 is another diagram showing the relationship between the received power and the target charged amount SOCt according to the embodiment. FIG. 4 shows the relationship between the received power and the target charged amount SOCt when the maximum output of the facility storage battery 10 is less than the maximum output power Pomax for the electric vehicle EV. The maximum value of the target storage amount SOCt is the maximum amount of power output from the facility storage battery 10 in one charge time Tchg. The relationship between the received power and the target storage amount SOCt shown in FIG. 4 is that the maximum output of the facility storage battery 10 is 25 kW and the charging time Tchg is 0.5 h, and the maximum value of the target storage amount SOCt is 12.5 kWh. It is. This corresponds to the amount of electric power that is output when the storage battery 10 for facilities continues to be discharged at the maximum output (25 kW) in one charging time (0.5 h). In other words, the upper limit of the target storage amount SOCt corresponds to the product of the maximum output of the facility storage battery 10 and the charging time Tchg per time. By setting the maximum value of the target power storage amount SOCt in this way, it is possible to suppress power storage more than necessary for the facility storage battery 10 and to suppress the power reception amount.
 25kW以下の受電電力の領域では、目標蓄電量SOCtが最大値の25kWhで一定である。一方、25kWよりも大きい受電電力の領域では、目標蓄電量SOCtは、可変である。25kWよりも受電電力が大きい場合、受電電力が小さい場合の目標蓄電量SOCtは、受電電力が大きい場合の目標蓄電量SOCtよりも大きい。本実施形態では、25kWよりも大きい受電電力の領域では、受電電力と目標蓄電量SOCtとの関係が線形である。 In the region of the received power of 25 kW or less, the target storage amount SOCt is constant at the maximum value of 25 kWh. On the other hand, in the region of received power greater than 25 kW, the target charged amount SOCt is variable. When the received power is larger than 25 kW, the target charged amount SOCt when the received power is small is larger than the target charged amount SOCt when the received power is large. In the present embodiment, the relationship between the received power and the target charged amount SOCt is linear in the received power region greater than 25 kW.
 なお、本実施形態では、設備用蓄電池10に蓄電する場合に、蓄電量SOCが目標蓄電量SOCtに達したら蓄電を停止することとしたが、太陽光発電装置12からの入力電力Pgによる蓄電はこれとは別に行われてもよい。すなわち、目標蓄電量SOCtは、商用電源からの受電によって設備用蓄電池10に対する蓄電を行う場合の蓄電量SOCの上限とすることができる。太陽光発電装置12からの入力電力Pgによる蓄電は、目標蓄電量SOCtにかかわらず実行されてもよく、例えば、最大の蓄電量SOCまで入力電力Pgによって蓄電がなされてもよい。 In this embodiment, when storing in the facility storage battery 10, the storage is stopped when the storage amount SOC reaches the target storage amount SOCt. However, the storage using the input power Pg from the solar power generation device 12 is not performed. It may be performed separately. That is, the target storage amount SOCt can be the upper limit of the storage amount SOC when the facility storage battery 10 is stored by receiving power from a commercial power source. Power storage using the input power Pg from the solar power generation device 12 may be executed regardless of the target power storage amount SOCt. For example, power may be stored using the input power Pg up to the maximum power storage amount SOC.
[実施形態の第1変形例]
 実施形態の第1変形例について説明する。受電電力に応じて目標蓄電量SOCtが変化する場合の受電電力と目標蓄電量SOCtとの関係は、線形には限定されない。目標蓄電量SOCtは、例えば、受電電力の変化に対して階段状に変化してもよい。例えば、受電電力が一定量増加する毎に目標蓄電量SOCtが一定量減少するようにしてもよい。
[First Modification of Embodiment]
A first modification of the embodiment will be described. The relationship between the received power and the target charged amount SOCt when the target charged amount SOCt changes according to the received power is not limited to linear. For example, the target storage amount SOCt may change stepwise with respect to a change in received power. For example, the target power storage amount SOCt may be decreased by a certain amount every time the received power increases by a certain amount.
[実施形態の第2変形例]
 実施形態の第2変形例について説明する。図5は、実施形態の第2変形例に係る受電電力と目標蓄電量SOCtとの関係を示す図である。図5では、白丸(○)によって目標蓄電量SOCtが示されている。図5に示す実線は、受電電力が一定である場合に電気自動車EVに対する充電を完了するために最低限必要とされる蓄電量SOCである。本変形例では、許容最大電力の変動に備えて、最低限必要とされる蓄電量SOCに所定のマージン(以下、「加算量ΔS」と称する。)が加算されて目標蓄電量SOCtが定められている。
[Second Modification of Embodiment]
A second modification of the embodiment will be described. FIG. 5 is a diagram illustrating a relationship between the received power and the target charged amount SOCt according to the second modification of the embodiment. In FIG. 5, the target charged amount SOCt is indicated by a white circle (◯). The solid line shown in FIG. 5 is the minimum storage amount SOC required to complete the charging of the electric vehicle EV when the received power is constant. In the present modification, a predetermined margin (hereinafter referred to as “addition amount ΔS”) is added to the minimum required storage amount SOC in preparation for fluctuations in the maximum allowable power to determine the target storage amount SOCt. ing.
 デマンドコントローラ15から出力される許容最大電力は、検出された受電量に応じて変動し得る。許容最大電力が低減された場合であっても、1回の充電時間Tchgで電気自動車EVに対する充電を完了できることが好ましい。本変形例では、目標蓄電量SOCtは、加算量ΔSを含んでいる。これにより、デマンドコントローラ15から出力される許容最大電力が低下した場合に、電気自動車EVに対する出力電力Poが不足する可能性を低減できる。 The allowable maximum power output from the demand controller 15 can fluctuate according to the detected amount of power received. Even when the allowable maximum power is reduced, it is preferable that the charging of the electric vehicle EV can be completed in one charging time Tchg. In the present modification, the target power storage amount SOCt includes the addition amount ΔS. Thereby, when the permissible maximum power output from the demand controller 15 decreases, the possibility that the output power Po for the electric vehicle EV is insufficient can be reduced.
 加算量ΔSは、一定値とされても、受電電力に応じて可変とされてもよい。加算量ΔSは、例えば、現在の受電電力から決まる最低限必要な蓄電量SOC(図5の直線上の値)に対して所定の割合(例えば、5%や10%)の値とされてもよい。受電電力が大きい場合の加算量ΔSは、受電電力が小さい場合の加算量ΔSよりも小さくされてもよい。 The addition amount ΔS may be a constant value or may be variable according to the received power. The addition amount ΔS may be a predetermined ratio (for example, 5% or 10%) with respect to the minimum required storage amount SOC (value on the straight line in FIG. 5) determined from the current received power, for example. Good. The addition amount ΔS when the received power is large may be smaller than the addition amount ΔS when the received power is small.
 加算量ΔSは、デマンドコントローラ15が許容最大電力を変化させるときの1回当たりの変更ピッチ(変更幅)に基づいて決定されてもよい。加算量ΔSは、例えば、変更ピッチ分だけ許容最大電力が低下した場合であっても充電時間Tchg内に電気自動車EVに対する充電を完了することが可能となるように定められる。許容最大電力の1回当たりの変更ピッチをΔPiとすると、加算量ΔSは、例えば下記式(1)で算出される。
 ΔS=Tchg×ΔPi…(1)
The addition amount ΔS may be determined based on a change pitch (change width) per time when the demand controller 15 changes the allowable maximum power. For example, the amount of addition ΔS is determined so that charging of the electric vehicle EV can be completed within the charging time Tchg even when the allowable maximum power is reduced by the change pitch. Assuming that the change pitch per allowable maximum power is ΔPi, the addition amount ΔS is calculated by the following equation (1), for example.
ΔS = Tchg × ΔPi (1)
 本変形例によれば、目標蓄電量SOCtが加算量ΔSを含んでいることにより、電気自動車EVに対する充電時の出力電力Poの不足が抑制される。例えば、電気自動車EVに対する充電中に許容最大電力が低下した場合であっても充電を完了させることが可能となる。 According to this modification, the shortage of the output power Po when charging the electric vehicle EV is suppressed because the target charged amount SOCt includes the added amount ΔS. For example, charging can be completed even when the allowable maximum power is reduced during charging of the electric vehicle EV.
 なお、デマンドコントローラ15が許容最大電力を変化させる時間間隔は、充電時間Tchg以上であることが好ましい。このようにすれば、電気自動車EVに対する充電中に許容最大電力が変化するとしても、その回数は多くとも1回である。従って、許容最大電力の低下に備えて最低限必要な蓄電量SOCを確保しておくことができ、かつ設備用蓄電池10に過大に蓄電してしまい受電量が増加することを抑制することができる。 Note that the time interval at which the demand controller 15 changes the allowable maximum power is preferably equal to or longer than the charging time Tchg. In this way, even if the allowable maximum power changes during charging of the electric vehicle EV, the number of times is at most one. Therefore, it is possible to secure a minimum required storage amount SOC in preparation for a decrease in the allowable maximum power, and to suppress an excessive storage in the facility storage battery 10 and an increase in the amount of received power. .
[実施形態の第3変形例]
 実施形態の第3変形例について説明する。上記実施形態では、急速充電器1-1による充電の対象が電気自動車EVであったが、これに限らず、他の外部の装置に対して充電がなされてもよい。また、急速充電器1-1は、太陽光発電装置12のような外部の発電装置から受電しないものであってもよい。急速充電器1-1は、太陽光発電装置12以外の発電装置、例えば風力発電装置から受電してもよい。
[Third Modification of Embodiment]
A third modification of the embodiment will be described. In the above embodiment, the target of charging by the quick charger 1-1 is the electric vehicle EV. However, the present invention is not limited to this, and other external devices may be charged. Further, the quick charger 1-1 may be one that does not receive power from an external power generator such as the solar power generator 12. The quick charger 1-1 may receive power from a power generation device other than the solar power generation device 12, for example, a wind power generation device.
 上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行されることができる。 The contents disclosed in the above embodiments and modifications can be executed in appropriate combination.
 1-1 急速充電器
 1 商用電源ライン
 2 分電盤
 3 店舗用電源ライン
 4 充電器用電源ライン
 6 AC/DCコンバータ(受電手段)
 7 第一DC/DCコンバータ(出力手段)
 9 第二DC/DCコンバータ
 10 設備用蓄電池(蓄電池)
 11 出力ライン
 15 デマンドコントローラ
 20 制御装置
 Pqc 授受電力
 Pg 入力電力
 Pb 放電電力
 Po 出力電力
 Tchg 充電時間
 ΔS 加算量
1-1 Quick charger 1 Commercial power line 2 Distribution board 3 Store power line 4 Charger power line 6 AC / DC converter (power receiving means)
7 First DC / DC converter (output means)
9 Second DC / DC converter 10 Equipment storage battery (storage battery)
11 Output line 15 Demand controller 20 Control device Pqc Transfer power Pg Input power Pb Discharge power Po Output power Tchg Charging time ΔS Addition amount

Claims (5)

  1.  商用電源と接続された受電手段と、
     前記受電手段と接続された蓄電池と、
     前記受電手段および前記蓄電池と接続され、外部の装置に対する充電用の電力を出力する出力手段と、
     を備え、
     前記蓄電池の蓄電量の目標値が、前記受電手段を介して受電する電力に応じて変化する
     ことを特徴とする急速充電器。
    Power receiving means connected to a commercial power source;
    A storage battery connected to the power receiving means;
    Output means connected to the power receiving means and the storage battery, and for outputting electric power for charging to an external device;
    With
    The quick charger, wherein the target value of the amount of electricity stored in the storage battery changes according to the electric power received through the power receiving means.
  2.  前記受電手段を介して受電する電力が小さい場合の前記蓄電量の目標値は、前記受電手段を介して受電する電力が大きい場合の前記蓄電量の目標値よりも大きい
     請求項1に記載の急速充電器。
    The target value of the amount of electricity stored when the power received through the power receiving unit is small is larger than the target value of the amount of electricity stored when the power received through the power receiving unit is large. Charger.
  3.  前記蓄電量の目標値は、前記外部の装置に対する1回当たりの充電時間と、前記外部の装置に対して出力する最大電力と、前記受電手段を介して受電する電力とに基づく
     請求項1に記載の急速充電器。
    The target value of the amount of power storage is based on a charging time per time for the external device, a maximum power output to the external device, and a power received via the power receiving means. The described quick charger.
  4.  前記蓄電量の目標値の上限は、前記蓄電池の最大出力と前記1回当たりの充電時間との積に相当する
     請求項3に記載の急速充電器。
    The quick charger according to claim 3, wherein an upper limit of the target value of the storage amount corresponds to a product of a maximum output of the storage battery and the charging time per time.
  5.  前記受電手段を介して受電する電力は、外部からの指令値に基づいており、
     前記蓄電量の目標値は、更に、前記外部からの指令値の1回当たりの変更幅に基づく
     請求項1に記載の急速充電器。
    The power received through the power receiving means is based on an external command value,
    The quick charger according to claim 1, wherein the target value of the charged amount is further based on a change width per one time of the command value from the outside.
PCT/JP2012/082841 2012-12-18 2012-12-18 Rapid charger WO2014097409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082841 WO2014097409A1 (en) 2012-12-18 2012-12-18 Rapid charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082841 WO2014097409A1 (en) 2012-12-18 2012-12-18 Rapid charger

Publications (1)

Publication Number Publication Date
WO2014097409A1 true WO2014097409A1 (en) 2014-06-26

Family

ID=50977793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082841 WO2014097409A1 (en) 2012-12-18 2012-12-18 Rapid charger

Country Status (1)

Country Link
WO (1) WO2014097409A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2009105998A (en) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd Electrical storage device
JP2011200104A (en) * 2010-01-08 2011-10-06 Jfe Engineering Corp Quick charging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2009105998A (en) * 2007-10-19 2009-05-14 Sumitomo Electric Ind Ltd Electrical storage device
JP2011200104A (en) * 2010-01-08 2011-10-06 Jfe Engineering Corp Quick charging system

Similar Documents

Publication Publication Date Title
JP6459085B2 (en) Charging facility and energy management method
US9559521B1 (en) Renewable energy system with integrated home power
CN101604858B (en) Battery management systems, battery pack and battery management method
JP5865602B2 (en) Power exchange system for exchanging electrical energy between battery and power grid, and method for exchanging electrical energy between battery and power grid
US9013152B2 (en) Power stabilization system and power stabilizing method
WO2013011758A1 (en) Storage battery system and method for controlling same
CA2725623A1 (en) Storage system that maximizes the utilization of renewable energy
US9780565B2 (en) System and method for controlling frequency
JP2017169313A (en) Power storage device, apparatus, and control method
JP6026713B1 (en) Power management system
US20140021920A1 (en) Power supply system for vehicle
JP2016082610A (en) Storage battery device
WO2015111144A1 (en) Power supply system and energy management system used in same
EP2330677B1 (en) Method for controlling sodium-sulfur battery
WO2011105580A1 (en) Charging system, charge/discharge control apparatus, and charge/discharge control method
Burnett et al. A power system combining batteries and supercapacitors in a solar/hydrogen hybrid electric vehicle
JP2012085396A (en) Vehicular power control apparatus
JP2014121216A (en) Power storage equipment and quick charger
WO2014097409A1 (en) Rapid charger
WO2014068735A1 (en) Quick charger
JP6055968B2 (en) Power system
Pawase et al. Controllable Bidirectional Power Transfer between Electric Vehicle and Grid at Different Loading Condition with Solar Power
WO2014068732A1 (en) Quick charger
JP2021069192A (en) Power conditioner
Bampoulas et al. A novel dynamic demand control of an electric vehicle integrated in a solar nanogrid with energy storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP