WO2014096657A1 - Valve doseuse de distribution d'un aérosol - Google Patents

Valve doseuse de distribution d'un aérosol Download PDF

Info

Publication number
WO2014096657A1
WO2014096657A1 PCT/FR2013/053096 FR2013053096W WO2014096657A1 WO 2014096657 A1 WO2014096657 A1 WO 2014096657A1 FR 2013053096 W FR2013053096 W FR 2013053096W WO 2014096657 A1 WO2014096657 A1 WO 2014096657A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve stem
dispensing
dosing
metering
Prior art date
Application number
PCT/FR2013/053096
Other languages
English (en)
Inventor
Alain REGARD
Grégoire GAUTHIER
Olivier JOLY
Original Assignee
Rexam Healthcare La Verpilliere
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rexam Healthcare La Verpilliere filed Critical Rexam Healthcare La Verpilliere
Publication of WO2014096657A1 publication Critical patent/WO2014096657A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • B65D83/52Valves specially adapted therefor; Regulating devices for metering
    • B65D83/54Metering valves ; Metering valve assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/36Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant allowing operation in any orientation, e.g. discharge in inverted position

Definitions

  • the invention relates to the technical field of metering dispensing valves of an aerosol, and more particularly but not exclusively, retention valves for dispensing pharmaceutical product.
  • Fluid dispensing valves especially dosing valves for dispensing pharmaceutical products in the form of aerosol sprays, are known. They generally comprise a cylindrical valve body in which there is a metering chamber extending between two seals, a high seal and a low seal, a valve stem sliding in a sealing manner in the metering chamber between a high rest position. , a distribution position and a final low position.
  • the valve body is generally attached to the neck of a container containing the product to be dispensed by means of a capsule crimped on the neck.
  • EP 0 803 449 which describes a valve known from the state of the art.
  • valves are generally used to dispense doses of pharmaceuticals, where the doses must be particularly accurate and distributed consistently. These doses must be more precise as the metering valve generally contains powder suspended in a liquid phase comprising a liquefied propellant gas. Also, the valve must both deliver a volume of liquid and powder repeatable at each administration, the liquid being the vector of the powder, but also a quantity of powder (dry mass) very regular. It is therefore important that the valve be able to distribute a rigorously identical dose of the product throughout its use.
  • the present invention is intended to provide a metering valve to limit the variations of doses distributed during the use of the metering device.
  • the invention relates to an aerosol dispensing metering valve, comprising a metering chamber and a valve stem provided with an end disposed on the side of a reservoir and a dispensing end and sliding mounted in the dosing chamber under the effect a spring, between a first high position, said rest position, in which in particular the metering chamber is isolated, in particular hermetically, from the inside of the tank and from the outside and therefore communicates neither with the reservoir nor with the outside, a second position, said intermediate filling position of the metering chamber, and a third position, said final low position, in which the spring is compressed, the valve stem having an expulsion orifice connecting the chamber dispensing end at the dispensing end when the rod is in the final down position, and a filling passage connecting a reservoir to the dosing chamber when the valve stem is in the intermediate filling position, valve in which the final low position is defined by an abutment of the inner end of the valve stem against the bottom of the valve body, the bottom of the valve body having
  • valve in which the rod is provided with a stop for defining the final low position of the pump, by abutment on the bottom of the valve body.
  • the valve stem is more centered relative to the metering chamber, i.e., it is not likely to be misaligned.
  • the bottom of the valve comprises an axial centering shape, the axial orientation of the valve stem is more guaranteed than in the valves of the state of the art, where the final low position is generally defined by a abutting the valve stem against the spring being in a fully compressed state, with contiguous turns.
  • the slightest offset of the end of the rod may create a slight loss of seal between the rod and a high seal and / or a bottom seal of the metering chamber. This loss of sealing can vary the dose of liquid and / or powder dispensed.
  • valve not only is not carried out abutment by a total compression of the spring, but in addition it ensures a stop in two separate planes: on the one hand in the axial direction of the valve, provided by the bottom of the valve, on the other hand in the radial direction, provided by the radial centering shape.
  • the valve stem remains rigorously in its axis during its movement, which guarantees the distribution of homogeneous liquid and powder doses.
  • the position of the valve stem must be particularly precise because it is the position of the rod relative to the valve body or to a ferrule which allows the counter to consider whether a dose has been delivered or not.
  • the performance of the dose counter depends on the accuracy of the position of the valve stem.
  • valve stem when the valve stem is stopped by the spring at the end of the stroke, it is stopped at a distance that can vary from one dose to another, and even more from one metering valve to the other, of on the one hand because the compressed configuration of a spring may depend on the force exerted by the user or the plastic deformation of the spring over time, on the other hand because the spring may tend, during its compression, to skew in its housing, so that it can slightly shift the height of the valve stem in the final low position.
  • the axial centering shape of the valve of the present invention overcomes these disadvantages; the stop at the end of the stroke allows the valve stem, regardless of the force applied by the user, to always be repositioned in the axis of the valve.
  • the terms “high” and “low” refer to the position of the valve stem relative to the tank on which the metering valve is attached.
  • a low position of the rod corresponds to a position in which the rod is closer to the tank than in the case of a high position of the rod.
  • the term "the spring is compressed” means that the spring is in a configuration of maximum compression in the valve, however this does not necessarily mean that the turns of the spring are contiguous.
  • the metering valve is generally intended to be mounted on a neck of a reservoir containing a fluid product to be dispensed in the form of an aerosol, especially a pharmaceutical product. She is destined to be used in reverse position, also called “upside down”.
  • the metering valve may further include one or more of the following features, taken alone or in combination.
  • the centering shape formed in the bottom of the valve body has a central boss and the inner end of the valve stem has a recess substantially complementary shape to the central boss.
  • the cooperation, at the end of the stroke of the valve stem, between the boss of the valve body and the recess of the valve stem has the effect of repositioning the valve stem which would have been actuated in a position substantially offset from the axis of the valve.
  • Axial guide means may also be present, arranged in the metering chamber, in the vicinity of the filling passage. These means may comprise in particular a substantially annular projection. These guiding means have the effect of increasing the guiding of the valve stem during its actuation, and of limiting the shift of the valve stem relative to the axis of the valve. These means are generally in the metering chamber, but must, as far as possible, occupy the smallest possible volume to not clutter the metering chamber, and reduce its volume.
  • the bottom of the valve body further comprises at least one, that is to say one or more filling passage for connecting the reservoir to the filling chamber defined by the valve body.
  • the bottom of the valve body comprises at least two filling passages, and in particular three passages.
  • the filling passage or passages are juxtaposed to the axial centering shape, or boss, of the valve body. Such passages have the effect of limiting the dead volumes in the filling chamber, when the tank contains very little product to distribute and promote circulation during agitation.
  • the valve stem comprises a shoulder carried by a projection providing a function of abutment of the valve stem with a top wall of the metering chamber when the valve stem is in the rest position.
  • a projection is used to provide the stop function defining the rest position.
  • the dosing chamber has a high cylindrical compartment and a low cylindrical compartment, the diameter of the upper compartment being larger than the diameter of the lower compartment. Due to the relatively small diameter of the lower compartment, the liquid can go faster from the reservoir to the metering chamber when the rod moves, it follows that the risk of powder clings to the device when entering the dosing chamber are relatively small.
  • the end of the valve stem comprises a first bearing surface against an inlet seal of the metering chamber ensuring a first sealing of the metering chamber with respect to a reservoir when the rod is in the rest position.
  • this end of the valve stem comprises an attached portion forming a cap, the first bearing surface against the inlet seal being formed on this cap.
  • the cap comprises an outer surface in which is formed a recess substantially complementary to the boss of the bottom of the valve body, and cooperating with it.
  • the first seal between the end of the rod and the seal is made in the axial direction of the device.
  • the valve stem comprises a second bearing surface against an inlet seal of the metering chamber providing a second seal of the metering chamber relative to a reservoir when the rod is in the final low position.
  • the second seal between the rod and the seal is made in the radial direction of the device.
  • the valve comprises an annular or semi-annular opening for entering the aerosol into the metering chamber, the opening being defined by the space between an inlet seal and the valve stem when the stem is in intermediate position.
  • FIG. 1 is a longitudinal sectional view of a metering valve according to an embodiment, in the high rest position, the metering chamber being isolated from the outside of the dispensing device and the inside of the tank.
  • FIG. 2 is a view similar to Figure 1, wherein the metering valve is in the intermediate filling position, wherein the metering chamber communicates with the interior of the tank and is isolated from the outside of the device.
  • Figure 3 is a view similar to Figure 1, and corresponds to an advantageous embodiment.
  • FIG. 4 is a top view of an embodiment of the valve body, to distinguish the inner bottom of the valve body.
  • valve 1 of the metering valve type for aerosol dispensing of a fluid, especially medicinal product, by means of a propellant, in particular of HFA type.
  • a propellant in particular of HFA type.
  • the present invention can also be applied to valves of another type or used in different fields, such as perfumery or cosmetics, and with other propellants, for example CFC or compressed gas. .
  • the metering valve 1 is adapted or adapted to operate in the inverted position, that is to say in the position as shown in the drawings.
  • the metering valve 1 of the invention is intended to be used in a position where the metering valve 1 is located under the reservoir containing the product to be dispensed, taking as a reference the direction of gravity.
  • the metering valve 1 shown in Figure 1 comprises a valve body 7 in which is particularly reported a ring 8, defining a metering chamber 10, or dose chamber.
  • a valve stem 13 is slidably mounted in the metering chamber 10, between a first high position, called the rest position, shown in FIG. 1, and a third distribution position, or final low position, represented in FIG. wherein the valve stem 13 is depressed axially inwardly or downwardly of the metering valve 1, being abutted.
  • the valve stem 13 is urged towards its rest position by a spring 11, or return means, which is compressed when a user actuates the metering valve 1 and pushes the valve stem 13 axially inside the metering valve 1.
  • the compressed spring 11 recalls the valve stem 13 from its dispensing position to its rest position.
  • valve stem 13 During actuation of the valve stem 13, from the high position to the low position, or when the valve stem 13 is brought from its final low position to its high rest position, the valve stem 13 takes up a second position, said intermediate position, allowing the metering chamber 10 to communicate with the reservoir on which the metering valve 1 is mounted. It will be noted that the first, second and third positions of the rod correspond to distinct positions.
  • the valve stem 13 comprises, in its upper part, a central axial channel
  • valve metering device 1 comprises a top seal 21, or outlet seal, forming a seal between the metering chamber 10 and the outside, and a bottom seal 23, or inlet seal, forming a seal between the reservoir and the metering chamber 10.
  • valve stem 13 slides sealingly against the bottom seal 23, respectively against the top seal 21, so that liquid can not not infiltrate between the valve stem 13 and the bottom seal 23, respectively between the valve stem 13 and the top seal 21.
  • the metering valve 1, and more precisely the valve body 7, is assembled on the reservoir by means of a fixing member 120, which is advantageously a ferrule or crimping capsule as shown in Figures 1 to 3.
  • the fastener 120 may be of a different type, for example a screwing means, latching or the like.
  • the metering chamber 10 consists of a high cylindrical compartment 50 also called an upper part 50 and a lower cylindrical compartment 51 also called a lower part 51, the diameter of the upper cylindrical compartment 50 being larger than the diameter of the low cylindrical compartment 51.
  • a shoulder 17 is provided at the interface between the two high and low cylindrical compartments 50 and 51.
  • the metering chamber 10 of the metering valve 1 is constituted as follows:
  • the upper part 50 of the metering chamber 10 is essentially cylindrical with a circular cross-section, of a first determined diameter
  • the lower part 51 of the metering chamber 10 is essentially cylindrical with a circular cross section, of a determined second diameter
  • the second diameter of the lower part of the metering chamber 10 being smaller than that of the upper part of the metering chamber 10
  • the two high and low cylinder compartments 51 being coaxial and juxtaposed in the axial direction, one being in the extension of the other
  • the bottom wall of the metering chamber 10 is defined in particular by the bottom seal 23, and the upper wall of the metering chamber 10 is defined in particular by the top seal 21.
  • the final position is defined by the position taken by the valve stem 13 when it is actuated and that the valve stem 13, and in particular a recess 101 formed on its lower end, between in abutment with the bottom of the valve body 7, and in particular with a form of axial centering 100 of the valve stem 13, formed in the bottom of the valve body 7.
  • This final low position is also called position aerosol distribution, since the dispensing orifice 1200 is then in communication with the metering chamber 10 through the radial channel 14 and allows the release of the aerosol through the dispensing orifice 1200.
  • the radial channel 14 is in communication with the outside before reaching the final low position, and that the final low position corresponds to a distribution position among several successive distribution positions.
  • the two high and low cylindrical compartments 50 and 51 of the metering chamber 10 communicate with each other. In other words, there is never a seal between these two high and low cylindrical compartments 50 and 51.
  • the high rest position corresponds to the position where the spring 11 is the most relaxed and exerts a minimal thrust on the valve stem 13.
  • the metering chamber 10, in the high rest position is isolated from both the outside of the device and the inside of the tank to which the metering valve 1 is attached. Because of this double insulation of the metering chamber 10 in the high rest position, the metering valve 1 is a valve called "retention", because the metering chamber 10 is normally filled and the liquid it contains communicates neither with the tank nor with the outside. It will be noted that the metering valve 1 delivers the dose shortly before reaching the final high position of rest.
  • An intermediate position is also defined which corresponds to a position taken by the valve stem 13 between the high rest and final low positions described above.
  • the metering chamber 10 communicates only with the interior of the reservoir on which the metering valve 1 is mounted.
  • Figure 1 shows the metering valve 1 in the up position, or home position.
  • the resting dosing chamber 10 is sealed from the outside of the device and from the inside of the tank on which the metering valve 1 is mounted.
  • valve stem 13 comprises a portion 22, attached to its lower end, forming a cap there.
  • the lower end of the valve stem 13 facing the bottom of the metering valve 1, more precisely the cap 22, cooperates with the spring 11.
  • the cap 22 has a substantially horizontal and horizontal surface 24 which serves as a bearing surface, opposite to the surface cooperating with the spring 11 and shown in FIGS. 1 and 3.
  • This bearing surface 24 serves as a surface support against the bottom seal 23, abuts with the bottom seal 23 in the high rest position of the valve stem 13.
  • the cooperation between the cap 22 and the bottom seal 23 seals the lower part of the metering chamber 10 in this high rest position.
  • the bottom seal 23 and the bearing surface 24 cooperate axially, by crushing the bottom seal 23, to ensure the sealing of the metering chamber 10.
  • the axial seal has the effect of limiting the wear of the lower seal 23 during the sliding of the valve stem 13, as would be the case in the case of a radial engagement of the bottom seal 23. It will be noted that this radial mobilization of the bottom seal 23 may take place slightly when the valve stem 13 comprises ribs interfering with the bottom seal 23. Thus it is particularly advantageous to provide a valve stem 13 without ribs cooperating with the bottom seal 23.
  • valve chamber 10 is hermetically closed in two ways:
  • a first means consisting of the radial cooperation between the valve stem 13 and the top seal 21 to ensure the sealing of the metering chamber 10
  • an auxiliary means consisting of an axial cooperation between a projection 16, in particular an annular projection, of the valve stem 13 and the top seal 21.
  • the sealing of the upper part of the metering chamber 10 is increased by crushing the top seal 21 by the annular projection 16 of the valve stem 13.
  • the aerosol contained in the metering chamber 10 when the metering valve 1 is in the inverted position as indicated in the figures, can not escape to the outside.
  • the projection 16, in particular annular, of the valve stem 13 forms a shoulder having a substantially conical surface which abuts with the top seal 21, when the valve stem 1 3 is in the up position, or rest position.
  • the boss 100 makes it possible to improve the accuracy of a dose metering system when it is coupled to the metering valve 1.
  • valve stem 13 When the valve stem 13 is biased into its dispensing position, as shown in FIG. 2, by compression of the spring 11, the recess 101 abuts the boss 100 present at the bottom of the metering valve body 1. It is understood that the spring 11 acts as a return member of the valve stem 13 towards its upper rest position. It is understood that any resilient member exerting the same effect on the valve stem 13 is also adapted and may be called a spring.
  • valve stem 13 can not be biased axially beyond the stop made by the boss 100, it is therefore its final low position or dispensing position.
  • the abutment of the valve stem 13 has the effect of reducing the stress of the spring 11, and to ensure its longevity because the turns are not contiguous.
  • top and bottom seals 23 are made of elastomeric material, otherwise the seal would be theoretically impossible because it would then have non-deformable materials.
  • the bottom of the valve body 7 comprises one or more filling passages 110, connecting the reservoir to a filling chamber 102 delimited by the valve body 7.
  • FIG. 4 shows an advantageous embodiment of a valve body 7 of such a metering valve 1, comprising three filling passages 110. It is understood from FIG. 4 that the filling passages 110 are juxtaposed to the axial centering shape 100. It is advisable that the bottom surface of the valve body 7 is sufficiently full, that is to say without passages, to prevent the bottom breaks when the valve stem 13 abuts against the bottom of the valve body 7.
  • the filling passages 110 are individually extended by slits 107 passing through the wall of the valve body 7.
  • the valve body 7 further comprises ribs 108 provided on the solid parts separating two slots. These ribs contribute to the axial guidance of the spring 11 and possibly to that of the cap 22.
  • valve stem 13 can slide in the metering chamber 10, between the top 23 and bottom seals 21, in a so-called intermediate filling position.
  • the metering valve 1 When the valve stem 13 is mobilized towards the bottom of the metering valve 1, exerting a thrust on the spring 11, the metering valve 1 in its position intermediate as defined above allows the aerosol to enter from the reservoir to the metering chamber 10, by the lower part of the metering chamber 10.
  • the filling passage 15 in the lower part of the metering chamber 10 corresponds to an annular opening defined between the bottom seal 23 and the lower part of the valve stem 13.
  • This annular opening could be semi-annular, in the form of sectors. ring.
  • the valve stem 13 does not cooperate radially, at least in part, with the bottom seal 23, thus creating a free space through which the aerosol contained in the reservoir on which is mounted the metering valve 1 can enter the metering chamber 10.
  • the lower part of the valve stem 13 which does not cooperate at least partially with the top seal 23 is of semi-annular shape interrupted by one or more, in particular from two to six, preferably from three to six, axial ribs 30.
  • Such a valve stem 13 is shown in FIGS. 1 to 3.
  • the presence of axial ribs 30 makes it possible to increase the passage section through the opening without weakening the end of the valve stem 13.
  • a valve stem 13 having no axial ribs 30, and thus having an annular bottom portion is possible and has the advantage of further freeing the space for the entry of liquid into the metering chamber 10, so a filling more fast.
  • the valve stem 13 can finally take a fourth position in which the metering chamber 10 is isolated from the outside and the inside of the tank. In this fourth position, the valve stem 13 has slid axially between the bottom and top seals 23 and 21, but the recess 101 has not yet come into abutment with the boss 100 of the valve body 7.
  • the upper portion of the metering chamber 10 is always closed by the portion of the valve stem 13 included above the projection 16, in particular annular, without the radial channel 14 being in contact with the inside. of the dosing chamber 10.
  • the lower part of the metering chamber 10 is obstructed by the cooperation of the portion of the valve stem 13 disposed immediately above the lower part of the valve stem 13. As the diameter of this lower part of the valve stem 13 is greater than the internal diameter of the bottom seal 23, the lower part cooperates radially with the bottom seal 23, thus obstructing the low cylindrical compartment 50 of the metering chamber 10.
  • the metering valve 1 may furthermore be provided with axial guiding means 103.
  • These axial guiding means 103 are arranged in the metering chamber 10, in the vicinity of the filling passage 15, in the lower part of the metering chamber 10.
  • the axial guiding means 103 may be provided during the shaping of the ring 8 delimiting the metering chamber 10.
  • the axial guiding means 103 serve to guide the valve stem 13. when moving.
  • the axial guiding means 103 prevent deformation of the bottom seal 23 through the filling passage 15 during the displacement of the valve stem 13 from its rest position to its final low position.
  • Such axial guide means 103 are essentially annular, that is to say annular or semi-annular. It should be noted that the invention is not limited to the embodiments presented above.

Abstract

La valve doseuse (1) de distribution d'un aérosol comporte une chambre de dosage (10) et une tige de valve (13). La tige de valve (13) est munie d'une extrémité disposée du côté d'un réservoir et d'une extrémité de distribution (12) et montée coulissante dans la chambre de dosage (10) sous l'effet d'un ressort (11), entre une première position haute, dite position de repos, une deuxième position, dite position intermédiaire de remplissage de la chambre de dosage (10). La position basse finale est définie par une mise en butée de l'extrémité intérieure de la tige de valve (13) contre le fond du corps de valve (7), le fond du corps de valve (7) présentant une forme de centrage axial (100) de la tige de valve (13).

Description

Valve doseuse de distribution d'un aérosol
L'invention concerne le domaine technique des valves doseuses de distribution d'un aérosol, et plus particulièrement mais non exclusivement, des valves à rétention pour la distribution de produit pharmaceutique.
Les valves de distribution de produit fluide, notamment les valves doseuses pour distribuer des produits pharmaceutiques sous forme de sprays aérosols sont connues. Elles comportent généralement un corps de valve cylindrique dans lequel se trouve une chambre de dosage s'étendant entre deux joints, un joint haut et un joint bas, une tige de valve coulissant de manière étanche dans la chambre de dosage entre une position haute de repos, une position de distribution et une position basse finale. Le corps de valve est généralement fixé sur le col d'un récipient contenant le produit à distribuer au moyen d'une capsule sertie sur le col. En tant qu'exemple, on peut citer la demande EP 0 803 449, qui décrit une valve connue de l'état de la technique.
Un problème que pose ce type de valve concerne le volume ou la quantité de la dose à distribuer. En effet, de telles valves servent généralement à distribuer des doses de produits pharmaceutiques, où les doses doivent être particulièrement précises et distribuées de manière constante. Ces doses doivent être d'autant plus précises que la valve doseuse contient en général de la poudre en suspension dans une phase liquide comprenant un gaz propulseur liquéfié. Aussi, la valve doit à la fois délivrer un volume de liquide et poudre répétable à chaque administration, le liquide étant le vecteur de la poudre, mais également une quantité de poudre (masse sèche) très régulière. Il est donc important que la valve puisse distribuer tout au long de son utilisation une dose rigoureusement identique du produit.
La présente invention a notamment pour but de proposer une valve doseuse permettant de limiter les variations des doses distribuées au cours de l'utilisation du dispositif de dosage.
A cet effet, l'invention concerne une valve doseuse de distribution d'un aérosol, comportant une chambre de dosage et une tige de valve munie d'une extrémité disposée du côté d'un réservoir et d'une extrémité de distribution et montée coulissante dans la chambre de dosage sous l'effet d'un ressort, entre une première position haute, dite position de repos, dans laquelle notamment la chambre de dosage est isolée, en particulier hermétiquement, de l'intérieur du réservoir et de l'extérieur et donc ne communique ni avec le réservoir ni avec l'extérieur, une deuxième position, dite position intermédiaire de remplissage de la chambre de dosage, et une troisième position, dite position basse finale, dans laquelle le ressort est comprimé, la tige de valve comportant un orifice d'expulsion reliant la chambre de dosage à l'extrémité de distribution lorsque la tige est en position basse finale, et un passage de remplissage reliant un réservoir à la chambre de dosage lorsque la tige de valve est en position intermédiaire de remplissage, valve dans laquelle la position basse finale est définie par une mise en butée de l'extrémité intérieure de la tige de valve contre le fond du corps de valve, le fond du corps de valve présentant une forme de centrage axial de la tige de valve.
Ainsi, on propose une valve dans laquelle la tige est munie d'une butée permettant de définir la position basse finale de la pompe, par une mise en butée sur le fond du corps de valve. Il en résulte que la tige de valve est davantage centrée par rapport à la chambre de dosage, c'est-à-dire qu'elle ne risque pas d'être désaxée. En fait, comme le fond de la valve comprend une forme de centrage axial, l'orientation axiale de la tige de valve est davantage garantie que dans les valves de l'état de la technique, où la position basse finale est généralement définie par une mise en butée de la tige de valve contre le ressort se trouvant dans un état totalement comprimé, avec des spires jointives. En effet, le fait que la position basse finale soit définie par le ressort en fin de course, c'est-à-dire lorsque le ressort arrive à son état de compression maximale, présente un risque de décaler légèrement l'extrémité de la tige de valve, du fait d'un léger décalage ou chevauchement possible des spires du ressort lorsqu'elles sont jointes. Or, le moindre décalage de l'extrémité de la tige risque de créer une légère perte d'étanchéité entre la tige et un joint haut et/ou un joint bas de la chambre de dosage. Cette perte d'étanchéité peut faire varier la dose de liquide et/ou de poudre distribuées. Ainsi grâce à la valve proposée ci-dessus, non seulement on ne réalise pas une mise en butée par une compression totale du ressort, mais en outre on assure une butée dans deux plans distincts : d'une part dans la direction axiale de la valve, assurée par le fond de la valve, d'autre part dans la direction radiale, assurée par la forme de centrage radial. Il en résulte que la tige de valve reste rigoureusement dans son axe au cours de son déplacement, ce qui garantit la distribution de doses de liquide et de poudre homogènes.
En outre, dans le cas où la valve doseuse est équipée d'un système compteur de dose, la position de la tige de valve doit être particulièrement précise car c'est la position de la tige par rapport au corps de valve ou à une férule qui permet au compteur de considérer qu'une dose a été délivrée ou non. Ainsi, les performances du compteur de doses dépendent de la précision de la position de la tige de valve. Or, lorsque la tige de valve est stoppée par le ressort en fin de course, elle est stoppée à une distance qui peut varier d'une dose à l'autre, et encore plus d'une valve doseuse à l'autre, d'une part parce que la configuration comprimée d'un ressort peut dépendre de la force exercée par l'utilisateur ou encore de la déformation plastique du ressort au cours du temps, d'autre part parce que le ressort peut avoir tendance, au cours de sa compression, à se mettre de travers dans son logement, si bien que cela peut légèrement décaler la hauteur de la tige de valve en position basse finale. A l'inverse, la forme de centrage axial de la valve de la présente invention permet de palier à ces inconvénients ; la butée en fin de course permet à la tige de valve, quelle que soit la force appliquée par l'utilisateur, d'être toujours repositionnée dans l'axe de la valve.
Dans la présente description, les expressions « haut » et « bas » font référence à la position de la tige de valve par rapport au réservoir sur lequel est rapportée la valve doseuse. Ainsi, une position basse de la tige correspond à une position dans laquelle la tige est plus proche du réservoir que dans le cas d'une position haute de la tige.
On comprend que l'on entend par « le ressort est comprimé » le fait que le ressort se trouve dans une configuration de compression maximale dans la valve, toutefois cela ne signifie pas nécessairement que les spires du ressort sont jointives.
La valve doseuse est généralement destinée à être montée sur un col d'un réservoir contenant un produit fluide à distribuer sous la forme d'un aérosol, tout particulièrement un produit pharmaceutique. Elle est destinée à être utilisée en position inversée, également appelée « tête en bas ».
La valve doseuse peut en outre comporter l'une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison.
- La forme de centrage ménagée dans le fond du corps de valve comporte un bossage central et l'extrémité intérieure de la tige de valve présente un évidement de forme sensiblement complémentaire au bossage central. La coopération, en fin de course de la tige de valve, entre le bossage du corps de valve et l'évidement de la tige de valve a pour effet de repositionner la tige de valve qui aurait été actionnée dans une position sensiblement décalée par rapport à l'axe de la valve.
- Des moyens de guidage axial peuvent également être présents, disposés dans la chambre de dosage, au voisinage du passage de remplissage. Ces moyens peuvent comprendre notamment une saillie essentiellement annulaire. Ces moyens de guidage ont pour effet d'augmenter le guidage de la tige de valve lors de son actionnement, et de limiter le décalage de la tige de valve par rapport à l'axe de la valve. Ces moyens sont généralement dans la chambre de dosage, mais doivent, autant que cela est possible, occuper le plus petit volume possible pour ne pas encombrer la chambre de dosage, et en réduire son volume.
- Le fond du corps de valve comprend en outre au moins un, c'est-à-dire un ou plusieurs, passage de remplissage permettant de relier le réservoir à la chambre de remplissage délimitée par le corps de valve. Avantageusement, le fond du corps de valve comprend au moins deux passages de remplissage, et notamment trois passages. Le ou les passages de remplissage sont juxtaposés à la forme de centrage axial, ou bossage, du corps de valve. De tels passages ont pour effet de limiter les volumes morts dans la chambre de remplissage, lorsque le réservoir ne contient que très peu de produit à distribuer et de favoriser la circulation lors de l'agitation.
La tige de valve comprend un épaulement porté par une saillie assurant une fonction de mise en butée de la tige de valve avec une paroi haute de la chambre de dosage lorsque la tige de valve est en position de repos. Ainsi, on utilise une saillie pour assurer la fonction de butée définissant la position de repos.
- La chambre de dosage comporte un compartiment cylindrique haut et un compartiment cylindrique bas, le diamètre du compartiment haut étant plus grand que le diamètre du compartiment bas. Grâce au diamètre relativement faible du compartiment bas, le liquide peut aller plus vite du réservoir vers la chambre de dosage lorsque la tige se déplace, il en résulte que les risques que de la poudre s'accroche au dispositif lors de l'entrée dans la chambre de dosage sont relativement faibles.
- En position basse finale de la tige, le ressort n'est pas complètement comprimé.
- L'extrémité de la tige de valve comprend une première surface d'appui contre un joint d'entrée de la chambre de dosage assurant une première étanchéité de la chambre de dosage par rapport à un réservoir lorsque la tige est en position de repos. De préférence, cette extrémité de la tige de valve comprend une partie rapportée, formant un capuchon, la première surface d'appui contre le joint d'entrée étant ménagée sur ce capuchon. Le capuchon comprend une surface extérieure dans laquelle est ménagé un évidement essentiellement complémentaire du bossage du fond du corps de valve, et coopérant avec lui.
- La première étanchéité entre l'extrémité de la tige et le joint est réalisée dans la direction axiale du dispositif.
- La tige de valve comprend une deuxième surface d'appui contre un joint d'entrée de la chambre de dosage assurant une deuxième étanchéité de la chambre de dosage par rapport à un réservoir lorsque la tige est en position basse finale.
- La deuxième étanchéité entre la tige et le joint est réalisée dans la direction radiale du dispositif.
- La valve comprend une ouverture annulaire, ou semi-annulaire, d'entrée de l'aérosol dans la chambre de dosage, l'ouverture étant définie par l'espace entre un joint d'entrée et la tige de valve lorsque la tige est en position intermédiaire.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins dans lesquels :
- La figure 1 est une vue en coupe longitudinale d'une valve doseuse selon un mode de réalisation, dans la position haute de repos, la chambre de dosage étant isolée de l'extérieur du dispositif de distribution et de l'intérieur du réservoir.
- La figure 2 est une vue similaire à la figure 1 , dans laquelle la valve doseuse se trouve dans la position intermédiaire de remplissage, dans laquelle la chambre de dosage communique avec l'intérieur du réservoir et est isolée de l'extérieur du dispositif.
- La figure 3 est une vue similaire à la figure 1 , et correspond à un mode de réalisation avantageux.
- La figure 4 est une vue de dessus d'un mode de réalisation du corps de valve, permettant de distinguer le fond intérieur du corps de valve.
En se référant notamment à la figure 1 , on a représenté une valve 1 de type valve doseuse pour la distribution sous forme aérosol d'un produit fluide, notamment médicamenteux, au moyen d'un gaz propulseur, notamment du type HFA. Bien entendu, la présente invention peut également s'appliquer à des valves d'un autre type ou utilisées dans des domaines différents, tels que la parfumerie ou la cosmétique, et avec d'autres gaz propulseurs, par exemple du CFC ou du gaz comprimé.
La valve doseuse 1 est apte ou adaptée à fonctionner en position inversée, c'est-à-dire dans la position telle que représentée dans les dessins. En d'autres termes, la valve doseuse 1 de l'invention est destinée à être utilisée dans une position où la valve doseuse 1 est située sous le réservoir contenant le produit à distribuer, en prenant comme référence le sens de la gravité.
La valve doseuse 1 représentée sur la figure 1 comporte un corps de valve 7 dans lequel est rapportée notamment une bague 8, délimitant une chambre de dosage 10, ou chambre de dose. Une tige de valve 13 est montée coulissante dans la chambre de dosage 10, entre une première position haute, dite position de repos, représentée sur la figure 1 , et une troisième position de distribution, ou position basse finale, représentée sur la figure 3, dans laquelle la tige de valve 13 est enfoncée axialement vers l'intérieur, ou vers le bas, de la valve doseuse 1 , en étant mise en butée. La tige de valve 13 est sollicitée vers sa position de repos par un ressort 11 , ou moyen de rappel, qui se comprime lorsqu'un utilisateur actionne la valve doseuse 1 et pousse la tige de valve 13 axialement à l'intérieur de la valve doseuse 1 . Lorsque l'utilisateur relâche sa force d'actionnement, le ressort 11 comprimé rappelle la tige de valve 13 de sa position de distribution vers sa position de repos.
Au cours de l'actionnement de la tige de valve 13, de la position haute à la position basse, ou lorsque la tige de valve 13 est ramenée de sa position basse finale à sa position haute de repos, la tige de valve 13 prend dans une deuxième position, dite position intermédiaire, permettant à la chambre de dosage 10 de communiquer avec le réservoir sur lequel est monté la valve doseuse 1 . On notera que les première, deuxième et troisième positions de la tige correspondent à des positions distinctes. La tige de valve 13 comporte, dans sa partie haute, un canal axial central
12 débouchant d'un coté sur un orifice de sortie axiale 1200, appelé également orifice de distribution 1200, destiné à être raccordé à un embout de distribution, par exemple un embout de pulvérisation, et de l'autre coté sur un canal radial 14, qui débouche dans la chambre de dosage 10 lorsque la tige de valve 13 est en position de distribution. La chambre de dosage 10 communique avec un réservoir et avec l'orifice de distribution 1200 respectivement grâce à un passage de remplissage 15 et au canal radial 14, par l'intermédiaire d'un orifice d'expulsion 1400. A cet effet, la valve doseuse 1 comporte un joint haut 21 , ou joint de sortie, formant une étanchéité entre la chambre de dosage 10 et l'extérieur, et un joint bas 23, ou joint d'entrée, formant une étanchéité entre le réservoir et la chambre de dosage 10. On comprend que lorsque le passage de remplissage 15, respectivement le canal radial 14, est fermé, la tige de valve 13 coulisse de manière étanche contre le joint bas 23, respectivement contre le joint haut 21 , de sorte que du liquide ne peut pas s'infiltrer entre la tige de valve 13 et le joint bas 23, respectivement entre la tige de valve 13 et le joint haut 21 .
La valve doseuse 1 , et plus précisément le corps de valve 7, est assemblée sur le réservoir au moyen d'un organe de fixation 120, qui est avantageusement une férule ou capsule à sertir comme représentée sur les figures 1 à 3. Il est à noter ici que l'organe de fixation 120 pourrait être d'un type différent, par exemple un moyen de vissage, d'encliquetage ou similaire. La chambre de dosage 10 est constituée dans cet exemple d'un compartiment cylindrique haut 50 appelé également partie haute 50 et d'un compartiment cylindrique bas 51 appelé également partie basse 51 , le diamètre du compartiment cylindrique haut 50 étant plus grand que le diamètre du compartiment cylindrique bas 51 . Un épaulement 17 est ménagé à l'interface entre les deux compartiments cylindriques haut 50 et bas 51 . En d'autres termes, la chambre de dosage 10 de la valve doseuse 1 est constituée de la manière suivante :
- la partie haute 50 de la chambre de dosage 10 est essentiellement cylindrique de section circulaire, d'un premier diamètre déterminé, et - la partie basse 51 de la chambre de dosage 10 est essentiellement cylindrique de section circulaire, d'un second diamètre déterminé ; le second diamètre de la partie basse de la chambre de dosage 10 étant inférieur à celui de la partie haute de la chambre de dosage 10, les deux compartiments cylindres haut 50 et bas 51 étant coaxiaux et juxtaposés dans la direction axiale, l'un étant dans le prolongement de l'autre,
la somme des volumes des deux compartiments cylindriques haut 50 et bas 51 , à laquelle on retranche le volume de la tige de valve 13 dans cette zone, définissant le volume de la dose distribuée par la valve doseuse 1 , lors de son actionnement.
La paroi basse de la chambre de dosage 10 est délimitée notamment par le joint bas 23, et la paroi haute de la chambre de dosage 10 est délimitée notamment par le joint haut 21 .
En référence à la figure 2, on définit ici par position basse finale la position prise par la tige de valve 13 lorsque celle-ci est actionnée et que la tige de valve 13, et en particulier un évidement 101 ménagé sur son extrémité basse, entre en butée avec le fond du corps de valve 7, et notamment avec une forme de centrage axial 100 de la tige de valve 13, ménagée dans le fond du corps de valve 7. Cette position basse finale est également appelée position de distribution de l'aérosol, puisque l'orifice de distribution 1200 est alors en communication avec la chambre de dosage 10 par l'intermédiaire du canal radial 14 et permet la libération de l'aérosol par l'orifice de distribution 1200. On notera que le canal radial 14 est en communication avec l'extérieur avant que l'on atteigne la position basse finale, et que la position basse finale correspond à une position de distribution parmi plusieurs positions de distribution successives. On notera qu'en position basse finale ; les deux compartiments cylindriques haut 50 et bas 51 de la chambre de dosage 10 communiquent entre eux. En d'autres termes, il n'y a jamais d'étanchéité entre ces deux compartiments cylindriques haut 50 et bas 51 .
En référence aux figures 1 et 3, la position haute de repos correspond à la position où le ressort 11 est le plus détendu et exerce une poussée minimale sur la tige de valve 13. La chambre de dosage 10, dans la position haute de repos, est isolée à la fois de l'extérieur du dispositif et de l'intérieur du réservoir sur lequel est fixé la valve doseuse 1 . Du fait de cette double isolation de la chambre de dosage 10 en position haute de repos, la valve doseuse 1 est une valve appelée « à rétention », du fait que la chambre de dosage 10 est normalement remplie et le liquide qu'elle contient ne communique ni avec le réservoir, ni avec l'extérieur. On notera que la valve doseuse 1 délivre la dose peu avant d'atteindre la position finale haute de repos.
On définit également une position intermédiaire qui correspond à une position prise par la tige de valve 13, entre les positions haute de repos et basse finale décrites ci-dessus. Dans cette position intermédiaire, la chambre de dosage 10 communique uniquement avec l'intérieur du réservoir sur lequel est montée la valve doseuse 1 .
La figure 1 montre la valve doseuse 1 en position haute, ou position de repos.
Dans cette position, la chambre de dosage 10 de repos est isolée de manière étanche de l'extérieur du dispositif et de l'intérieur du réservoir sur lequel est montée la valve doseuse 1 .
L'étanchéité de la chambre de dosage 10 est assurée :
- dans la partie haute de la chambre de dosage 10, par coopération radiale entre le joint haut 21 et la tige de de valve 13, ainsi que par coopération axiale entre une saillie 16, notamment annulaire, et le joint haut 21 , et - dans la partie basse de la chambre de dosage 10, par coopération axiale entre le joint bas 23 et une partie de la tige de valve 13. Plus précisément, la tige de valve 13 comprend une partie 22, rapportée sur son extrémité basse, formant ici un capuchon.
En position haute de repos, l'extrémité basse de la tige de valve 13 orientée vers le fond de la valve doseuse 1 , plus précisément le capuchon 22, coopère avec le ressort 11 . Le capuchon 22 possède une surface 24 essentiellement plane et horizontale, qui sert de surface d'appui, opposée à la surface coopérant avec le ressort 11 et représentée sur les figures 1 et 3. Cette surface d'appui 24, qui sert de surface d'appui contre le joint bas 23, entre en butée avec le joint bas 23 dans la position haute de repos de la tige de valve 13. La coopération entre le capuchon 22 et le joint bas 23 assure l'étanchéité de la partie basse de la chambre de dosage 10 dans cette position haute de repos. Aussi, en position haute de repos, le joint bas 23 et la surface d'appui 24 coopèrent axialement, par écrasement du joint bas 23, afin d'assurer l'étanchéité de la chambre de dosage 10. Si le dispositif auquel est fixée la valve doseuse 1 est en position « tête en haut » (la valve doseuse 1 étant en position inverse à celle représentée dans les figures), l'aérosol contenu dans la chambre de dosage 10 ne peut pas s'échapper vers le réservoir. Par ailleurs, l'étanchéité axiale a pour effet de limiter l'usure du joint bas 23 au cours du coulissement de la tige de valve 13, comme cela serait le cas dans le cas d'une mobilisation radiale du joint bas 23. On notera que cette mobilisation radiale du joint bas 23 peut avoir légèrement lieu lorsque la tige de valve 13 comprend des nervures interférant avec le joint bas 23. Ainsi il est particulièrement intéressant de prévoir une tige de valve 13 sans nervures coopérant avec le joint bas 23.
Toujours en position haute de repos, la partie haute de la chambre de valve 10 est fermée hermétiquement selon deux moyens :
- un premier moyen consistant en la coopération radiale entre la tige de valve 13 et le joint haut 21 pour assurer l'étanchéité de la chambre de dosage 10, et - un moyen auxiliaire consistant en une coopération axiale entre une saillie 16, notamment annulaire, de la tige de valve 13 et le joint haut 21 .
Ainsi, grâce au moyen auxiliaire, l'étanchéité de la partie haute de la chambre de dosage 10 est augmentée par écrasement du joint haut 21 par la saillie annulaire 16 de la tige de valve 13. L'aérosol contenu dans la chambre de dosage 10, lorsque la valve doseuse 1 est dans la position retournée comme indiquée dans les figures, ne peut donc pas s'échapper vers l'extérieur.
Avantageusement, la saillie 16, notamment annulaire, de la tige de valve 13 forme un épaulement comportant une surface essentiellement conique qui entre en butée avec le joint haut 21 , lorsque la tige de valve 1 3 est en position haute, ou position repos.
Le bossage 100 permet d'améliorer la précision d'un système de comptage de doses lorsqu'il est couplé à la valve doseuse 1 .
Lorsque la tige de valve 13 est sollicitée dans sa position de distribution, comme indiqué à la figure 2, par compression du ressort 11 , l'évidement 101 entre en butée avec le bossage 100 présent au fond du corps de valve doseuse 1 . On comprend que le ressort 11 agit comme organe de rappel de la tige de valve 13 vers sa position haute de repos. Il est entendu que tout organe élastique exerçant le même effet sur la tige de valve 13 est également adapté et peut être appelé ressort.
La tige de valve 13 ne peut pas être sollicitée axialement au-delà de la butée réalisée par le bossage 100, il s'agit donc de sa position basse finale ou position de distribution.
La mise en butée de la tige de valve 13 a pour effet de réduire la contrainte du ressort 11 , et d'assurer sa longévité du fait que les spires ne sont pas jointives.
On constate en effet que dans le domaine des valves doseuses, les ressorts sollicités à leur maximum, dits ressorts fonctionnant en fin de course, ont tendance à se mettre de travers, c'est-à-dire à se déplacer de telle sorte qu'ils ne sont plus positionnés axialement par rapport à la tige de valve (l'enveloppe extérieure du ressort n'est plus strictement un cylindre). Dans une telle position, le ressort peut exercer un effort radial en complément de l'effort axial, cette composante radiale pouvant déplacer la tige de valve. Un tel changement de position du ressort, non seulement est susceptible de modifier la position de fin de course de la tige, mais peut également provoquer des pertes d'étanchéité entre la tige de valve et les joints haut ou bas.
On comprend qu'en position haute de repos dans la présente valve doseuse 1 à rétention, la surface d'appui 24 du capuchon 22 et la surface de la saillie annulaire 16 sont simultanément en appui sur des joints haut 21 et bas 23, ce qui garantit l'isolation de la chambre de dosage 10 par rapport au réservoir et à l'extérieur. On comprend par ailleurs que les joints haut 21 et bas 23 sont en matériau élastomère, sans quoi l'étanchéité serait théoriquement impossible car on disposerait alors de matériaux indéformables.
Avantageusement, le fond du corps de valve 7 comprend un ou plusieurs passages de remplissage 110, reliant le réservoir à une chambre de remplissage 102 délimitée par le corps de valve 7. La figure 4 montre un mode de réalisation avantageux d'un corps de valve 7 d'une telle valve doseuse 1 , comprenant trois passages de remplissage 110. On comprend de la figure 4 que les passages de remplissage 110 sont juxtaposés à la forme de centrage axial 100. Il convient que la surface du fond du corps de valve 7 soit suffisamment pleine, c'est-à-dire dépourvue de passages, pour éviter que le fond ne casse lorsque la tige de valve 13 entre en butée avec le fond du corps de valve 7. Les passages de remplissage 110 sont individuellement prolongés par des fentes 107 traversant la paroi du corps de valve 7. Le corps de valve 7 comporte en outre des nervures 108 prévues sur les parties pleines séparant deux fentes. Ces nervures permettent participent au guidage axial du ressort 11 et éventuellement à celui du capuchon 22.
La tige de valve 13 peut coulisser dans la chambre de dosage 10, entre les joints haut 23 et bas 21 , dans une position dite intermédiaire de remplissage.
Lorsque la tige de valve 13 est mobilisée vers le bas de la valve doseuse 1 , exerçant une poussée sur le ressort 11 , la valve doseuse 1 dans sa position intermédiaire telle que définie précédemment permet à l'aérosol d'entrer depuis le réservoir vers la chambre de dosage 10, par la partie basse de la chambre de dosage 10.
Le passage de remplissage 15 dans la partie basse de la chambre de dosage 10 correspond à une ouverture annulaire définie entre le joint bas 23 et la partie basse de la tige de valve 13. Cette ouverture annulaire pourrait être semi-annulaire, sous forme de secteurs d'anneau. Sur la partie basse de la tige de valve 13, la tige de valve 13 ne coopère pas radialement, au moins en partie, avec le joint bas 23, créant ainsi un espace libre par lequel l'aérosol contenu dans le réservoir sur lequel est montée la valve doseuse 1 peut pénétrer dans la chambre de dosage 10.
Avantageusement, la partie basse de la tige de valve 13 qui ne coopère pas au moins partiellement avec le joint haut 23 est de forme semi annulaire interrompue par une ou plusieurs, notamment de deux à six, préférentiellement de trois à six, nervures axiales 30. Une telle tige de valve 13 est représentée aux figures 1 à 3. La présence de nervures axiales 30 permet d'augmenter la section de passage au travers de l'ouverture sans affaiblir l'extrémité de la tige de valve 13.
Une tige de valve 13 ne comportant pas de nervures axiales 30, et présentant donc une partie basse annulaire est envisageable et présente l'avantage de libérer davantage l'espace permettant l'entrée de liquide dans la chambre de dosage 10, donc un remplissage plus rapide.
La tige de valve 13 peut enfin prendre une quatrième position dans laquelle la chambre de dosage 10 est isolée de l'extérieur et de l'intérieur du réservoir. Dans cette quatrième position, la tige de valve 13 a coulissé axialement entre les joints bas 23 et haut 21 , mais l'évidement 101 n'est pas encore entré en butée avec le bossage 100 du corps de valve 7.
La partie haute de la chambre de dosage 10 est toujours fermée par la partie de la tige de valve 13 comprise au-dessus de la saillie 16, notamment annulaire, sans pour autant que le un canal radial 14 ne soit en contact avec l'intérieur de la chambre de dosage 10.
La partie basse de la chambre de dosage 10 est obstruée par la coopération de la partie de la tige de valve 13 disposée immédiatement au- dessus de la partie basse de la tige de valve 13. Le diamètre de cette partie basse de la tige de valve 13 étant plus important que le diamètre interne du joint bas 23, la partie basse coopère radialement avec le joint bas 23, obstruant ainsi le compartiment cylindrique bas 50 de la chambre de dosage 10.
Une telle obstruction du compartiment cylindrique bas 50 de la chambre de dosage 10 a pour effet d'éviter la communication entre le réservoir et l'extérieur du dispositif lorsque la tige de valve 13 est en position basse finale. Ainsi, seul le contenu de la chambre de dosage 10 peut être distribué. En se référant notamment à la figure 3, la valve doseuse 1 peut en outre être dotée de moyens de guidage axial 103. Ces moyens de guidage axial 103 sont disposés dans la chambre de dosage 10, au voisinage du passage de remplissage 15, dans la partie basse de la chambre de dosage 10. Les moyens de guidage axial 103 peuvent être prévus lors du façonnage de la bague 8 délimitant la chambre de dosage 10. Les moyens de guidage axial 103 permettent d'assurer le guidage de la tige de valve 13 lors de son déplacement. De plus, les moyens de guidage axial 103 empêchent la déformation du joint bas 23 au travers du passage de remplissage 15 lors du déplacement de la tige de valve 13 de sa position de repos vers sa position basse finale.
De tels moyens de guidage axial 103 sont essentiellement annulaires, c'est-à-dire annulaires ou semi-annulaires. On notera que l'invention n'est pas limitée aux modes de réalisations présentés ci-dessus.

Claims

REVENDICATIONS
1 . - Valve doseuse (1 ) de distribution d'un aérosol comportant
- une chambre de dosage (10),
- un corps de valve (7), présentant un fond sur lequel s'appuie un ressort (11 ), et
- une tige de valve (13) munie d'une extrémité disposée du côté d'un réservoir, appelée extrémité intérieure, et d'une extrémité de distribution (12) appelée extrémité extérieure, la tige de valve (13) étant montée coulissante dans la chambre de dosage (10) sous l'effet du ressort (11 ), entre une première position haute, dite position de repos, une deuxième position, dite position intermédiaire de remplissage de la chambre de dosage (10), et une troisième position, dite position basse finale, dans laquelle le ressort (11 ) est comprimé,
la tige de valve (13) comportant un orifice d'expulsion (1400) reliant la chambre de dosage (10) à l'extrémité de distribution (12) lorsque la tige de valve (13) est en position basse finale, et un passage de remplissage (15) reliant un réservoir à la chambre de dosage (10) lorsque la tige de valve (13) est en position intermédiaire de remplissage,
caractérisée en ce que la position basse finale est définie par une mise en butée de l'extrémité intérieure de la tige de valve (13) contre le fond du corps de valve (7), le fond du corps de valve (7) présentant une forme de centrage radial (100) de la tige de valve (13).
2. - Valve doseuse (1 ) de distribution d'un aérosol selon la revendication 1 , dans laquelle la chambre de dosage (10) ne communique ni avec le réservoir ni avec l'extérieur lorsque la tige de valve (13) se trouve dans la première position haute de repos.
3. - Valve doseuse (1 ) de distribution d'un aérosol selon la revendication 1 ou 2, dans laquelle la forme de centrage (100) ménagée dans le fond du corps de valve (7) comporte un bossage central (100) et l'extrémité intérieure de la tige de valve (13) présente un évidement (101 ) de forme sensiblement complémentaire au bossage central (100).
4.- Valve doseuse de distribution d'un aérosol selon la revendication 1 ou 2, dans laquelle la forme de centrage ménagée dans le fond du corps de valve comporte un évidement central et l'extrémité intérieure de la tige de valve présente un bossage de forme sensiblement complémentaire à l'évidement central.
5. - Valve doseuse (1 ) de distribution d'un aérosol selon l'une quelconque des revendications 1 à 4, dans laquelle le passage de remplissage (15) est muni de moyens de guidage radial (103) disposés dans la chambre de dosage (10), au voisinage du passage de remplissage (15).
6. - Valve doseuse (1 ) de distribution d'un aérosol selon la revendication 5, dans laquelle les moyens de guidage axial (103) comprennent une saillie essentiellement annulaire (16).
7. - Valve doseuse (1 ) de distribution d'un aérosol selon l'une quelconque des revendications 1 à 6, dans lequel, en position basse finale de la tige de valve (13), le ressort (11 ) n'est pas complètement comprimé.
8- Valve doseuse (1 ) de distribution d'un aérosol selon l'une quelconque des revendications 1 à 7, dans laquelle le fond du corps de valve (7) comprend en outre au moins un passage de remplissage (110) reliant un réservoir à une chambre de remplissage (102) délimitée par le corps de valve (7).
9- Valve doseuse (1 ) de distribution d'un aérosol selon 8, dans laquelle le passage de remplissage (110) est juxtaposé à la forme de centrage axial (100) de la tige de valve (13).
10.- Valve doseuse (1 ) de distribution d'un aérosol selon l'une quelconque des revendications 1 à 7, où l'extrémité de la tige de valve (13) comprend une première surface d'appui (24) contre un joint bas (23) d'entrée de la chambre de dosage (10) assurant une première étanchéité de la chambre de dosage (10) par rapport à un réservoir lorsque la tige de valve (13) est en position haute de repos.
11 .- Valve doseuse (1 ) de distribution d'un aérosol selon l'une quelconque des revendications 1 à 10, où la valve doseuse (1 ) comprend une ouverture annulaire d'entrée de l'aérosol dans la chambre de dosage (10), l'ouverture étant définie par l'espace entre un joint bas (23) d'entrée et la tige de valve (13) lorsque la tige de valve (13) est en position intermédiaire.
PCT/FR2013/053096 2012-12-17 2013-12-16 Valve doseuse de distribution d'un aérosol WO2014096657A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262135A FR2999542B1 (fr) 2012-12-17 2012-12-17 Valve doseuse de distribution d'un aerosol
FR1262135 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014096657A1 true WO2014096657A1 (fr) 2014-06-26

Family

ID=48040343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/053096 WO2014096657A1 (fr) 2012-12-17 2013-12-16 Valve doseuse de distribution d'un aérosol

Country Status (2)

Country Link
FR (1) FR2999542B1 (fr)
WO (1) WO2014096657A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156580A1 (fr) 2020-02-07 2021-08-12 Aptar France Sas Valve doseuse avec chambre de dosage améliorée
WO2023131758A1 (fr) 2022-01-07 2023-07-13 Aptar France Sas Valve doseuse avec chambre de dosage ameliorée

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803449A1 (fr) 1996-04-26 1997-10-29 Bespak plc Valve doseuse pour un récipient de distribution
FR2860503A1 (fr) * 2003-10-07 2005-04-08 Valois Sas Valve et dispositif de distribution comportant une telle valve.
WO2011039196A1 (fr) * 2009-09-29 2011-04-07 Helen Mary Trill Améliorations apportées à des inhalateurs-doseurs pressurisés

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803449A1 (fr) 1996-04-26 1997-10-29 Bespak plc Valve doseuse pour un récipient de distribution
FR2860503A1 (fr) * 2003-10-07 2005-04-08 Valois Sas Valve et dispositif de distribution comportant une telle valve.
WO2011039196A1 (fr) * 2009-09-29 2011-04-07 Helen Mary Trill Améliorations apportées à des inhalateurs-doseurs pressurisés

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156580A1 (fr) 2020-02-07 2021-08-12 Aptar France Sas Valve doseuse avec chambre de dosage améliorée
FR3107039A1 (fr) * 2020-02-07 2021-08-13 Aptar France Sas Valve doseuse avec chambre de dosage améliorée
US11878855B2 (en) 2020-02-07 2024-01-23 Aptar France Sas Metering valve having an improved metering chamber
WO2023131758A1 (fr) 2022-01-07 2023-07-13 Aptar France Sas Valve doseuse avec chambre de dosage ameliorée
FR3131738A1 (fr) 2022-01-07 2023-07-14 Aptar France Sas Valve doseuse avec chambre de dosage améliorée

Also Published As

Publication number Publication date
FR2999542A1 (fr) 2014-06-20
FR2999542B1 (fr) 2014-12-05

Similar Documents

Publication Publication Date Title
EP2906484B1 (fr) Valve doseuse de distribution d'un aerosol
EP1697670B1 (fr) Tete de pulverisation de produit fluide et pompe de distribution comportant une telle tete.
EP1216195B1 (fr) Joint de soupape pour valve doseuse
EP3003907B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
EP3199245B1 (fr) Dispositif de purge d'air pour distributeur de produit liquide sans reprise d'air
EP2459466B1 (fr) Valve de distribution de produit fluide
WO2012072962A1 (fr) Valve de distribution de produit fluide.
EP0821775B1 (fr) Ensemble de clapet d'admission
EP1914006A2 (fr) Pompe comprenant des moyens d'échappement d'air
FR2990421A1 (fr) Valve de distribution de produit fluide.
EP2167398B1 (fr) Valve de distribution de produit fluide et dispositif de distribution de produit fluide comportant une telle valve
WO2014096657A1 (fr) Valve doseuse de distribution d'un aérosol
EP2906483A1 (fr) Valve doseuse de distribution d'un aérosol
WO2004013017A1 (fr) Dispositif de pulverisation de produit fluide
EP3199244A1 (fr) Dispositif d'aspiration de produit liquide dans un distributeur
FR3042785A1 (fr) Valve doseuse amelioree pour la distribution d'un fluide.
WO2009071823A1 (fr) Valve amelioree
FR3028571A1 (fr) Pompe manuelle
EP3634883B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
EP3433184B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
FR3043392A1 (fr) Valve doseuse a etancheite amelioree pour la distribution d'un fluide.
FR3126632A1 (fr) Tête de remplissage d'un dispositif de distribution de produit fluide comportant une valve
FR3114759A1 (fr) Valve doseuse
EP3969750A1 (fr) Pompe a precompression haute pression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13818308

Country of ref document: EP

Kind code of ref document: A1