WO2014094477A1 - 增强物理混合自动重传请求指示信道传输方法及装置 - Google Patents

增强物理混合自动重传请求指示信道传输方法及装置 Download PDF

Info

Publication number
WO2014094477A1
WO2014094477A1 PCT/CN2013/084220 CN2013084220W WO2014094477A1 WO 2014094477 A1 WO2014094477 A1 WO 2014094477A1 CN 2013084220 W CN2013084220 W CN 2013084220W WO 2014094477 A1 WO2014094477 A1 WO 2014094477A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
ephich
time domain
resource element
physical
Prior art date
Application number
PCT/CN2013/084220
Other languages
English (en)
French (fr)
Inventor
弓宇宏
孙云锋
戴博
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014094477A1 publication Critical patent/WO2014094477A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications, and in particular to an Enhanced Physical Hybrid ARQ Indication Channel (ePHICH). Transmission method and device.
  • ePHICH Enhanced Physical Hybrid ARQ Indication Channel
  • BACKGROUND Long Term Evolution (LTE) is an important project of the third generation partner organization.
  • LTE Long Term Evolution
  • LTE system uses Extended Cyclic Prefix, one slot contains 6 lengths of uplink/downlink. symbol.
  • the following downlink physical channels are defined in the LTE system: Physical Broadcast Channel (PBCH): The information carried by the channel includes the frame number of the system, the downlink bandwidth of the system, and the period of the physical hybrid retransmission channel.
  • PBCH Physical Broadcast Channel
  • Physical Multicast Channel (PMCH): It is mainly used to support the Multicast Broadcast Single Frequency Network (MBSFN) service, and broadcast multimedia time-frequency information to multiple users.
  • the PMCH can only be transmitted in the MBSFN subframe and the MBSFN area.
  • Physical Data Shared Channel (PDSCH): Used to carry downlink transmission data.
  • the Physical Downlink Control Channel (PDCCH) is used to carry uplink and downlink scheduling information and uplink power control information.
  • the physical downlink control channel (PDCCH) in LTE R8, R9, and R10 is mainly distributed in the first 1 or 2 or 3 or 4 orthogonal frequency division multiplexing (OFDM) symbols of one subframe.
  • the specific distribution needs to be configured according to the number of ports of different subframe types and common reference signals (Common Reference Signal, CRS for short).
  • CRS Common Reference Signal
  • Table 1 is related to different subframe types and related techniques.
  • the number of downlink resource blocks configured by the number of ports of the CRS is greater than 10 and the OFDM symbol number table of the PDCCH not greater than 10, as shown in Table 1.
  • PCFICH Physical Control Format Indication Channel
  • the information of the bearer is used to indicate the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols for transmitting PDCCH in one subframe.
  • the frequency position is determined by the system downlink bandwidth and the cell identifier (ID).
  • the number of PHICHs and the time-frequency location may be determined by a system message and a cell ID in a Physical Broadcast Channel (PBCH) of a downlink carrier where the PHICH is located.
  • PBCH Physical Broadcast Channel
  • the common reference signal (CRS) is used for pilot measurement and demodulation, that is, all users use CRS for channel estimation.
  • CRS common reference signal
  • the transmitting end needs to additionally notify the receiving end of the data transmitted by the receiving end, and the pilot has a large overhead.
  • MU-MIMO multi-user multi-input multi-output
  • the pilots cannot be orthogonalized, so interference cannot be estimated.
  • LTE-A in order to reduce the pilot overhead, two types of reference signals are respectively defined: a Demodulation Reference Signal (DMRS) and a Channel State Information Reference Signal (CSI-referred to as CSI-).
  • DMRS Demodulation Reference Signal
  • CSI- Channel State Information Reference Signal
  • FIG. 1 is a schematic diagram of a resource block (Resource Block, RB for short) in an LTE system in the related art. As shown in FIG.
  • one resource element (Resource Element, referred to as RE) is one subcarrier in one OFDM symbol
  • one downlink resource block (Resource Block, RB for short) is composed of 12 consecutive subcarriers and consecutive 7 (6 for extending the cyclic prefix) OFDM symbol.
  • a resource block is 180 kHz in the frequency domain and is the length of time of one slot in the time domain.
  • two resource blocks (also called physical resource block pairs) on one subframe (corresponding to two time slots) are allocated as a basic unit.
  • 2 is a schematic diagram of a physical resource block pair of an LTE system in the related art. As shown in FIG. 2, the resource locations of the corresponding PDCCH, CRS, and DMRS are also indicated in FIG. 2 .
  • the specific resource silence method can be divided into a subframe-based muting method, for example, an Almost Blank Subframe (abbreviated as ABS) method, a resource element based method, for example, a CRS silent method.
  • ABS Almost Blank Subframe
  • CRS silent method a resource element based method
  • the Macro eNodeB configures more ABSs, which has a greater impact on the Macro eNodeB, which increases resource waste and prolongs the scheduling delay.
  • the control channel can be reduced under ABS Controlling the interference of channel data resources, but it cannot solve the interference problem of CRS resources and data resources.
  • the method of silent CRS cannot solve the interference between data resources.
  • the backward compatibility of the above existing methods is also poor, and the access delay is also long.
  • more users may be introduced to transmit on the MBSFN subframe. This will result in insufficient capacity of the downlink control channel that the MBSFN can configure for 2 OFDM symbols, in order to ensure the R8/R9/R10 users.
  • the new carrier type is likely to have no downlink control channel region and CRS, but in the traditional time domain downlink control channel mode, the downlink control channel is transmitted and demodulated based on CRS in the downlink control channel region, resulting in the tradition.
  • the downlink control channel is not well suited for use in new carrier types.
  • an enhanced Physical Downlink Control Channel (ePDCCH) is introduced, which initially solves the capacity limitation and interference problem of the PDCCH, but regarding the physical hybrid automatic repeat request indication channel ( The problem of interference and insufficient resources of PHICH is currently not given a solution.
  • ePDCCH enhanced Physical Downlink Control Channel
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission method including: determining, by a network side, an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource element groups Each resource element group includes M resource elements, and all resource elements in one resource element group are located in the same physical resource block pair, and the physical resource block pair is configured by the network side to the terminal side and/or by the network side.
  • the terminal side determines that the M and N are integers greater than or equal to one.
  • the network side transmits information to the terminal side according to the determined ePHICH resource.
  • different ePHICHs are mapped to different ePHICH resources; and/or, multiple ePHICHs are mapped to the same ePHICH resource by using different orthogonal codes.
  • the orthogonal code is an orthogonal mask OCC or a constant envelope zero autocorrelation sequence CAZAC.
  • the mapping is performed on the resource elements of each resource element group belonging to the ePHICH in units of orthogonal codes in order of frequency domain from low to high or time domain from front to back.
  • the remaining resources are used to map the physical downlink shared channel PDSCH, the enhanced physical downlink control channel ePDCCH, or do not perform mapping of any channel, where
  • the remaining resources are resources other than the ePHICH resource, a resource for carrying a CRS, a resource for carrying a DMRS, a resource for mapping a PDCCH, and a resource for carrying a CSI-RS.
  • the method before determining, by the network side, the ePHICH resource that is mapped to the ePHICH, the method further includes: determining, by the network side, a physical resource block pair for mapping the ePHICH by: mapping the ePHICH
  • the physical resource block pair is not a physical resource block pair that transmits a physical broadcast channel, and the physical resource block pair that maps the ePHICH is not a physical resource block pair for carrying a channel state information reference signal.
  • the method further includes: the network side notifying the determined ePHICH resource to the terminal side by using at least one of: The resource control RRC signaling notifies the terminal side of the ePHICH resource; the notification letter of the resource by reusing the zero power channel state information reference signal ZP-CSI-RS or the non-zero power channel state information reference signal NZP-CSI-RS Let the ePHICH resource be notified to the terminal side.
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission method including: determining, by a terminal side, an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource elements a group, each resource element group includes M resource elements, and all resource elements in a resource element group are located in the same physical resource block pair, and the physical resource block pair is configured by the network side to the terminal side and/or by the network side. And determining, by the terminal side, that the M and N are integers greater than or equal to one; and the terminal side receives the transmission information from the network side according to the determined ePHICH resource.
  • different ePHICHs are mapped to different ePHICH resources; and/or, multiple ePHICHs are mapped to the same ePHICH resource by using different orthogonal code multiplexing.
  • the length of the orthogonal code is M
  • mapping to a resource element of each resource element group of the belonging ePHICH according to a frequency domain from low to high or a time domain from front to back and/or
  • the resource elements mapped to each resource element group of the associated ePHICH are repeatedly repeated in units of orthogonal codes in a frequency domain from low to high or time domain from front to back. on.
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus including: a first determining module, configured to determine, by a network side, an ePHICH resource mapped to the ePHICH, where The ePHICH resource includes N resource element groups, each resource element group includes M resource elements, and all resource elements in one resource element group are located in the same physical resource block pair, and the physical resource block pair is configured by the network side to the terminal.
  • the side and/or the network side and the terminal side are determined according to a pre-agreed manner, and M and N are integers greater than or equal to 1; the first transmission module is configured to be configured by the network side according to the determined ePHICH resource to the terminal side. transmit information.
  • the first determining module includes: a first mapping unit, configured to map different ePHICHs to different ePHICH resources; and/or a second mapping unit, configured to use multiple ePHICHs by using different positive The code is mapped to the same ePHICH resource.
  • the first determining module is further configured to determine that the orthogonal code is an orthogonal mask OCC or a constant-envelope zero autocorrelation sequence CAZAC.
  • the first determining module further includes: a third mapping unit, configured to set the orthogonal code from low to high or time domain in the frequency domain if the length of the orthogonal code is M The subsequent order is mapped to the resource element of each resource element group of the associated ePHICH; and/or the fourth mapping unit is set to be the orthogonal code if the length of the orthogonal code is less than M The mapping to the resource elements of each resource element group of the associated ePHICH is repeated in units of orthogonal codes according to the frequency domain from low to high or time domain from front to back.
  • a third mapping unit configured to set the orthogonal code from low to high or time domain in the frequency domain if the length of the orthogonal code is M The subsequent order is mapped to the resource element of each resource element group of the associated ePHICH; and/or the fourth mapping unit is set to be the orthogonal code if the length of the orthogonal code is less than M
  • the mapping to the resource elements of each resource element group of the associated ePHICH is
  • the first determining module is further configured to: when only a part of resources in the physical resource block pair mapping the ePHICH are used for the ePHICH resource, determine to use the remaining resources to map the physical downlink shared channel PDSCH, and enhance physical downlink control.
  • the apparatus further includes: a second determining module, configured to: the network side determines, by at least one of the following manners, a physical resource block pair for mapping the ePHICH: a physical resource block pair mapping the ePHICH is not sent The physical resource block pair of the physical broadcast channel, the physical resource block pair mapping the ePHICH is not a physical resource block pair for carrying the channel state information reference signal.
  • a second determining module configured to: the network side determines, by at least one of the following manners, a physical resource block pair for mapping the ePHICH: a physical resource block pair mapping the ePHICH is not sent The physical resource block pair of the physical broadcast channel, the physical resource block pair mapping the ePHICH is not a physical resource block pair for carrying the channel state information reference signal.
  • the apparatus further includes: a notification module, configured to: notify, by the network side, the determined ePHICH resource to the terminal side by using at least one of: transmitting the ePHICH by adding radio resource control RRC signaling Notifying the terminal side of the resource; notifying the ePHICH resource by using notification signaling of resources of the zero power channel state information reference signal ZP-CSI-RS or the non-zero power channel state information reference signal NZP-CSI-RS Said terminal side.
  • a notification module configured to: notify, by the network side, the determined ePHICH resource to the terminal side by using at least one of: transmitting the ePHICH by adding radio resource control RRC signaling Notifying the terminal side of the resource; notifying the ePHICH resource by using notification signaling of resources of the zero power channel state information reference signal ZP-CSI-RS or the non-zero power channel state information reference signal NZP-CSI-RS Said terminal side.
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus including: a third determining module, configured to determine, by a terminal side, an ePHICH resource mapped to the ePHICH, where
  • the ePHICH resource includes N resource element groups, each resource element group includes M resource elements, and all resource elements in one resource element group are located in the same physical resource block pair, and the physical resource block pair is configured by the network side to the terminal.
  • the side and/or the network side and the terminal side are determined according to a pre-agreed manner, and M and N are integers greater than or equal to 1;
  • the first receiving module is configured to receive, by the terminal side, the network from the network according to the determined ePHICH resource. Side transmission information.
  • the third determining module comprises: a fifth mapping unit, configured to map different ePHICHs to different ePHICH resources; and/or a sixth mapping unit, configured to use multiple ePHICHs by using different positive The code multiplexing is mapped to the same ePHICH resource.
  • the third determining module further includes: a seventh mapping unit, configured to set the orthogonal code from low to high or time domain in the frequency domain if the length of the orthogonal code is M The subsequent order is mapped to the resource element of each resource element group of the associated ePHICH; and/or the eighth mapping unit is set to set the orthogonal code if the length of the orthogonal code is less than M The mapping to the resource elements of each resource element group of the associated ePHICH is repeated in units of orthogonal codes according to the frequency domain from low to high or time domain from front to back.
  • the apparatus further includes: a demodulation module, configured to: when the M resource elements are used not only to map the ePHICH, the terminal side demodulates the ePHICH by using a puncturing manner.
  • the ePHICH resource mapped to the ePHICH is determined by using the network side, where the ePHICH resource includes N resource element groups, and each resource element group includes M resource elements, and all resource elements in one resource element group.
  • the physical resource block pair is configured by the network side to the terminal side and/or by the network side and the terminal side according to a pre-agreed manner, and M and N are integers greater than or equal to 1;
  • the network side transmits the information to the terminal side according to the determined ePHICH resource, which not only solves the problem that the interference of the physical hybrid automatic repeat request indication channel and the resource is insufficient in the related art, but also the method used in the related art. Backward compatibility is also good.
  • FIG. 1 is a schematic diagram of a physical resource block RB of an LTE system in the related art
  • FIG. 2 is a schematic diagram of a physical resource block pair of an LTE system in the related art
  • FIG. 1 is a schematic diagram of a physical resource block RB of an LTE system in the related art
  • FIG. 2 is a schematic diagram of a physical resource block pair of an LTE system in the related art
  • FIG. 1 is a schematic diagram of a physical resource block RB of an LTE system in the related art
  • FIG. 2 is a schematic diagram of a physical resource block pair of an LTE system in the related art
  • FIG. 1 is a schematic diagram of a physical resource block RB of an LTE system in the related art
  • FIG. 2 is a schematic diagram of a physical resource block pair of an LTE system in the related art
  • FIG. 1 is a schematic diagram of a physical resource block RB of an LTE system in the related art
  • FIG. 2 is a schematic diagram of a physical resource block pair
  • FIG. 3 is an enhanced physical hybrid automatic retransmission according to an embodiment of the present invention
  • Flowchart 1 for requesting a channel indication ePHICH transmission method 4 is a flowchart 2 of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission method according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention
  • 6 is a block diagram of a preferred structure of a first determining module 52 in an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention
  • FIG. 7 is an enhanced physical hybrid automatic retransmission according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a preferred structure of the enhanced physical hybrid automatic repeat request indication channel ePHICH transmission device according to an embodiment of the present invention
  • FIG. 10 is a structural block diagram 2 of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention
  • FIG. 11 is a block diagram of a structure of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention
  • the dynamic retransmission request indicates a preferred structural block diagram of the third determining module 102 in the channel ePHICH transmission device.
  • FIG. 12 is a preferred embodiment of the third determining module 102 in the enhanced physical hybrid automatic repeat request indication channel ePHICH transmission device according to an embodiment of the present invention.
  • FIG. 13 is a block diagram 3 of a preferred structure of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention;
  • FIG. 14 is an enhanced physical hybrid automatic repeat request indication according to a preferred embodiment of the present invention.
  • FIG. 15 is a schematic diagram of resource mapping of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 2 of the present invention; FIG.
  • FIG. 16 is an enhanced physical hybrid automatic retransmission according to a preferred embodiment 3 of the present invention;
  • a resource mapping pattern diagram of the request indication channel; 17 is a schematic diagram of a resource mapping of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 4 of the present invention;
  • FIG. 18 is a resource mapping diagram of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 5 of the present invention;
  • 19 is a resource mapping diagram of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 6 of the present invention;
  • FIG. 20 is a resource for enhancing a physical hybrid automatic repeat request indication channel according to a preferred embodiment 7 of the present invention;
  • FIG. 21 is a schematic diagram of a resource mapping pattern constituting one resource element group for every three consecutive subcarriers in each physical resource block pair according to a preferred embodiment of the present invention
  • FIG. 22 is a diagram according to a preferred embodiment of the present invention.
  • FIG. 23 is a diagram of every three pairs of each physical resource block according to a preferred embodiment of the present invention.
  • Discrete subcarriers constitute a resource mapping pattern of a resource element group It is intended
  • FIG. 24 is a schematic view for each physical resource block for each of seven consecutive symbols in the time domain and frequency domain sub-carrier every six discrete resource mapping pattern according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart 1 of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps: Step S302: The network side determines an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource element groups, and each resource element group includes M resource elements and one resource element group.
  • Step S304 the network side transmits information to the terminal side according to the determined ePHICH resource.
  • the physical resource block pair for mapping the ePHICH may be configured by the network side to the terminal side, or may be determined by the network side and the terminal side according to a pre-agreed manner, wherein the network may be determined according to a pre-agreed manner.
  • the physical resource block pair is pre-agreed by the side and the terminal side, and the network side and the terminal side pre-agreed to determine the physical resource block pair.
  • the network side and the terminal side determine the physical resource block for mapping the ePHICH according to the manner. Correct.
  • the orthogonal code may also be multiple.
  • the orthogonal code may be an orthogonal mask OCC (Orthogonal Cover Code (OCC), or a constant envelope zero autocorrelation sequence CAZAC (Const Amplitude). Zero Auto-Corelation, referred to as CAZAC).
  • the frequency domain is mapped from the lowest to the highest or the time domain from the front to the back to the resource element of each resource element group of the associated ePHICH; and/or, in the orthogonal code If the length is less than M, the mapping is repeated to the resource elements of each resource element group of the associated ePHICH in units of orthogonal codes according to the frequency domain from low to high or time domain from front to back.
  • the remaining resources are used to map the physical downlink shared channel (PDSCH), the enhanced physical downlink control channel (ePDCCH), or the channel without any channel mapping.
  • the remaining resources are resources other than the foregoing ePHICH resource, the resource used to carry the CRS, the resource used to carry the DMRS, the resource used to map the PDCCH, and the resource used to carry the CSI-RS.
  • the manner in which the network side determines the physical resource block pair for mapping the ePHICH may also be multiple, for example, except as described above: the network side may be configured for the terminal side.
  • the way of the resource determines the pair of physical resource blocks, and the network side can also pass the
  • the network side may also determine that the physical resource block pair mapping the ePHICH is a physical resource block pair that is not a physical broadcast channel, and the network side may also determine that the physical resource block pair mapping the ePHICH is not used for the bearer.
  • the physical resource block pair of the channel state information reference signal that is, the physical resource block pair for transmitting the physical broadcast channel and the physical resource block pair for carrying the channel state information reference signal are excluded, thereby effectively reducing the physical broadcast channel and the bearer channel state.
  • Information refers to the interference of the signal channel.
  • the network side may notify the terminal side of the determined ePHICH resource in multiple manners.
  • the network side may adopt a new radio resource control (Radio Resource Control, referred to as RRC) signaling notifies the ePHICH resource to the terminal side, wherein preferably the newly added radio resource control signaling is UE-specific, and for example, the network side may also reuse the zero power channel state information reference signal.
  • RRC Radio Resource Control
  • ZP-CSI-RS Zero Power CSI-RS
  • NZP-CSI-RS notification signaling of resources of non-zero power channel state information reference signal
  • the network side may also adopt a configuration similar to a zero power channel state information reference signal (ZP-CSI-RS) or a non-zero power signaling state information reference signal (NZP-CSI-RS) and/or Or the notification method notifies the ePHICH resource to the terminal side.
  • ZP-CSI-RS zero power channel state information reference signal
  • NZP-CSI-RS non-zero power signaling state information reference signal
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission method is further provided.
  • Step S402 The terminal side determines an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource element groups, and each resource element group includes M resource elements and one resource element. All the resource elements in the group are located in the same physical resource block pair.
  • the physical resource block pair is configured by the network side to the terminal side and/or by the network side and the terminal side according to a pre-agreed manner.
  • the terminal side receives the transmission information from the network side according to the determined ePHICH resource.
  • Different ePHICHs are mapped to different ePHICH resources; and/or, multiple ePHICHs are mapped to the same ePHICH resource by using different orthogonal codes.
  • the length of the orthogonal code is M
  • the frequency domain is mapped from the lowest to the highest or the time domain from the front to the back to the resource element of each resource element group of the associated ePHICH; and/or, in the orthogonal code If the length is less than M, the mapping is repeated to the resource elements of each resource element group of the associated ePHICH in units of orthogonal codes according to the frequency domain from low to high or time domain from front to back.
  • an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission device is further provided.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module" can implement a combination of software and/or hardware for a predetermined function.
  • FIG. 5 is a structural block diagram 1 of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention, such as As shown in Figure 5, the apparatus includes a first determination module 52 and a first transmission module 54, which are described below.
  • the first determining module 52 is configured to determine, by the network side, an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource element groups, each resource element group includes M resource elements, and all resource elements in one resource element group In the same physical resource block pair, the physical resource block pair is configured by the network side to the terminal side and/or by the network side and the terminal side according to a pre-agreed manner, and M and N are integers greater than or equal to 1;
  • a transmission module 54 is connected to the first determining module 52, and configured to transmit information to the terminal side according to the determined ePHICH resource.
  • FIG. 6 is a block diagram of a preferred structure of the first determining module 52 in the enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention.
  • the first determining module 52 includes: Unit 62 and/or second mapping unit 64, the first determining module 52 is described below.
  • the first mapping unit 62 is configured to map different ePHICHs to different ePHICH resources; and/or the second mapping unit 64 is configured to map multiple ePHICHs to the same ePHICH resource by using different orthogonal codes.
  • the first determining module 52 is further configured to determine that the orthogonal code is an orthogonal mask OCC or a constant-envelope zero auto-correlation sequence CAZAC.
  • the first determining module 52 includes the first mapping.
  • the unit 62 and/or the second mapping unit 64 further includes: a third mapping unit 72 and/or a fourth mapping unit 74, which will be described below.
  • the third mapping unit 72 is configured to map the orthogonal codes to the resource element group of the associated ePHICH in the order of the frequency domain from low to high or time domain from front to back in the case where the length of the orthogonal code is M.
  • the fourth mapping unit 74 is configured to orthogonalize the orthogonal code according to the frequency domain from low to high or time domain from front to back in the case where the length of the orthogonal code is less than M.
  • the code is repeatedly mapped to the resource elements of each resource element group of the associated ePHICH.
  • the foregoing first determining module 52 is further configured to determine, when only a part of resources in the physical resource block pair mapping the ePHICH is used for the ePHICH resource, to use the remaining resources to map the physical downlink shared channel PDSCH, and enhance physical downlink control.
  • FIG. 8 is a block diagram of a preferred structure of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes, in addition to all the modules shown in FIG.
  • FIG. 9 is a block diagram of a preferred structure of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention. As shown in FIG. 9, the apparatus includes, in addition to all the modules shown in FIG.
  • the module 92, the notification module 92 is connected to the first determining module 52 and the first transmitting module 54, and is configured to notify the terminal side of the determined ePHICH resource by using at least one of the following manners: Controlling RRC signaling to notify the terminal side of the ePHICH resource; and using the notification signal of the resource of the zero power channel state information reference signal ZP-CSI-RS or the non-zero power channel state information reference signal NZP-CSI-RS to reuse the above ePHICH resource Notifying to the terminal side; notifying the above-mentioned ePHICH resource to the terminal by adopting a configuration and/or notification method similar to the zero power channel state information reference signal ZP-CSI-RS or the non-zero power signaling state information reference signal NZP-CSI-RS side.
  • FIG. 10 is a structural block diagram 2 of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention, such as As shown in Fig. 10, the apparatus includes a second determining module 102 and a second transmitting module 104, which will be described below.
  • the third determining module 102 is configured to determine, by the terminal side, an ePHICH resource mapped to the ePHICH, where the ePHICH resource includes N resource element groups, each resource element group includes M resource elements, and all resource elements in one resource element group In the same physical resource block pair, the physical resource block pair is configured by the network side to the terminal side and/or by the network side and the terminal side according to a pre-agreed manner, and M and N are integers greater than or equal to 1;
  • a receiving module 104 is connected to the third determining module 102, and configured to receive, by the terminal side, the transmission information from the network side according to the determined ePHICH resource.
  • FIG. 11 is a block diagram of a preferred structure of a third determining module 102 in an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention.
  • the third determining module 102 includes: Unit 112 and/or sixth mapping unit 114, the preferred structure will be described below.
  • the fifth mapping unit 112 is configured to map different ePHICHs to different ePHICH resources; and/or, the sixth mapping unit 114 is configured to map multiple ePHICHs to the same ePHICH by using different orthogonal code multiplexing.
  • Resources. 12 is a block diagram 2 of a preferred structure of a third determining module 102 in an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention.
  • the third determining module 102 includes the following FIG.
  • the seventh mapping unit 122 is further configured to set the orthogonal code according to the frequency domain from low to high in the case where the length of the orthogonal code is M.
  • the time domain is mapped to the resource elements of each resource element group of the associated ePHICH from the front to the back; and/or the eighth mapping unit 124 is set to be orthogonal if the length of the orthogonal code is less than M.
  • the code is repeatedly mapped to the resource elements of each resource element group of the associated ePHICH in units of orthogonal codes in the order of the frequency domain from low to high or time domain from front to back.
  • FIG. 13 is a block diagram 3 of a preferred structure of an enhanced physical hybrid automatic repeat request indication channel ePHICH transmission apparatus according to an embodiment of the present invention.
  • the apparatus includes: The adjustment module 132 is configured to demodulate the ePHICH by using a puncturing manner when the M resource elements are not only used to map the ePHICH.
  • a resource mapping method for enhancing the physical hybrid automatic repeat request indication channel ePHICH is provided. The method can be applied to an LTE system in 3GPP, and a Long Term Evolution Advanced (LTE-A) system. ).
  • LTE-A Long Term Evolution Advanced
  • the resource mapping method for the enhanced physical hybrid automatic repeat request indication channel includes: an enhanced physical hybrid automatic repeat request indicating that the channel resource is composed of N resource element clusters (RECs).
  • Each resource element group is composed of M resource elements (Resource Element, RE for short), and all resource elements in a resource element group are located in the same physical resource block pair to form an enhanced physical hybrid automatic repeat request indication channel.
  • the N resource element groups are located in the same or different physical resource block pairs. Both M and N are integers greater than or equal to 1, and preferably, the value of N may be a multiple of 1, 2, 2, or a multiple of 3 or 3.
  • the physical resource block pair refers to two physical resource blocks (Physical Resource Blocks, abbreviated as PRBs) in the same frequency domain position in one subframe, and the physical resource block pairs are as shown in FIG. 2 .
  • the physical resource block used to enhance the physical hybrid automatic repeat request channel transmission is configured by the network side to the terminal side or pre-agreed by the network side and the terminal side.
  • CRS non-common reference signals
  • the enhanced physical hybrid automatic repeat request indication channel is mapped to the same one of the enhanced physical hybrid automatic repeat request indication channel resources to form an enhanced physical hybrid automatic repeat request indication channel group, wherein the enhanced physical hybrid automatic repeat request indication is included
  • the enhanced physical hybrid automatic repeat request of the channel group indicates that the channels are multiplexed by different orthogonal masks OCC; for example, the orthogonal mask may have a length of four, and the frequency domain is from low to high or time domain in the past.
  • the subsequent manners are sequentially mapped onto the four resource elements of each resource element group to which the enhanced physical hybrid automatic repeat request indication channel belongs.
  • the retransmission request indication channel resource constitutes an enhanced physical hybrid automatic repeat request indication channel group, wherein the enhanced physical hybrid automatic repeat request indication channel group belonging to an enhanced physical hybrid automatic repeat request indication channel group passes different orthogonal masks Code multiplexing; for example, the orthogonal mask may be two in length and sequentially mapped to each resource of the enhanced physical hybrid automatic repeat request indication channel according to a frequency domain from low to high or time domain from front to back.
  • each resource element group is composed of four resource elements consecutive in time/frequency domain, wherein any two resource elements are continuous in frequency domain or continuous in time domain, and all four resource elements are non-common reference signals (CRS) Non-demodulation reference signal (DMRS), available resource elements of the non-downlink physical control channel (PDCCH), and non-channel state information (CSI-RS) reference signals; multiple enhanced physical hybrid automatic repeat request indication channels mapped to the same
  • An enhanced physical hybrid automatic repeat request indication channel resource constitutes an enhanced physical hybrid automatic repeat request indication channel group, wherein the enhanced physical hybrid automatic repeat request indication channel group belonging to an enhanced physical hybrid automatic repeat request indication channel group Interleaved by different orthogonal masks; the length of the orthogonal mask is four, and is sequentially mapped to the associated enhanced physical mix according to the frequency domain after the time domain and the frequency domain from low to high or clockwise or counterclockwise.
  • the automatic retransmission request indicates on the four resource elements of each resource element group of the channel.
  • each resource element group is composed of one or more symbols on one time domain in one physical resource block pair and/or all resource elements on one or more subcarriers in the frequency domain; multiple enhanced physical hybrid automatic repeat request
  • the indicator channel is mapped to the same enhanced physical hybrid automatic repeat request indication channel resource to form an enhanced physical hybrid automatic repeat request indication channel group, wherein the enhanced physical hybrid automatic retransmission request indication channel group belongs to an enhanced physical hybrid automatic weight
  • the request indication channel is multiplexed by different orthogonal code sequences; the length of the orthogonal code sequence is equal to the number of resource elements in each resource element group, and the frequency domain is in the first frequency domain and the frequency domain is low to high or
  • the first-time domain post-frequency domain and the time-domain from front to back are sequentially mapped to the resource elements of each resource element group to which the enhanced physical hybrid automatic repeat request indication channel belongs.
  • each resource element group is composed of one or more symbols on one time domain in one physical resource block pair and/or all resource elements on one or more subcarriers in the frequency domain; multiple enhanced physical hybrid automatic repeat request
  • the indicator channel is mapped to the same enhanced physical hybrid automatic repeat request indication channel resource to form an enhanced physical hybrid automatic repeat request indication channel group, wherein the enhanced physical hybrid automatic retransmission request indication channel group belongs to an enhanced physical hybrid automatic weight
  • the request indication channel is multiplexed by different orthogonal masks; the length of the orthogonal mask is two, and is continuous in every two frequency domains according to the first frequency domain and the frequency domain from low to high.
  • the resource element is a group of consecutively sequentially mapped to each resource element group of the enhanced physical hybrid automatic repeat request indication channel to which it belongs or in each of the two time domains in a manner of a first time domain followed by a time domain and a time domain from front to back.
  • the resource elements are a set of successively sequentially mapped onto each resource element group of the enhanced physical hybrid automatic repeat request indication channel.
  • each resource element group is composed of one or more symbols on a time domain of one physical resource block and/or all resource elements on one or more subcarriers in the frequency domain; one enhanced physical hybrid automatic repeat request channel Mapping to an enhanced physical hybrid automatic repeat request indication channel resource, resources occupied by different enhanced physical hybrid automatic repeat request channels do not overlap or overlap each other.
  • the enhanced physical hybrid automatic repeat request channel is not transmitted on a physical resource block that transmits the physical broadcast channel.
  • the subframe in which the enhanced physical hybrid automatic repeat request channel is transmitted is a transmission subframe of the non-channel state information reference signal.
  • the resource element in the resource element group of the enhanced physical hybrid automatic repeat request channel simultaneously transmits a downlink physical control channel (PDCCH) or a common reference signal (CRS) or a demodulation reference signal (DMRS) or channel state information The reference signal (CSI-RS), then the enhanced physical hybrid automatic repeat request channel is demodulated by puncturing on these resource elements.
  • PDCCH downlink physical control channel
  • CRS common reference signal
  • DMRS demodulation reference signal
  • CSI-RS channel state information The reference signal
  • the remaining resources are used to transmit a physical downlink shared channel (PDSCH). Or enhance the physical downlink control channel (ePDCCH) or send no information.
  • the remaining resources do not include a common reference signal (CRS), a demodulation reference signal (DMRS), a physical downlink control channel (PDCCH), and a channel state information reference signal (CSI-RS) in addition to the enhanced physical hybrid automatic repeat request channel resource. Remaining resource elements.
  • the mapping resource of the ePHICH is not limited to the previous or first two or the first three or the first four symbols in each physical resource block pair, but may be any resource element in each physical resource block pair.
  • the N resource element groups constituting an ePHICH resource are distributed as discretely as possible among a plurality of physical resource block pairs allocated to the ePHICH. For example, there are 8 resource element groups and 4 physical resource block pairs. It is assumed that the resource element groups are sequentially indexed from 0 to 7, and the physical resource block pairs are sequentially indexed from 0 to 3.
  • the resource element group of the ePHICH is in accordance with The discrete distribution rule can be: resource element group ⁇ 0, 4 ⁇ is distributed on physical resource block pair 0, resource element group ⁇ 1, 5 ⁇ is distributed on physical resource block pair 1, and resource element group ⁇ 2, 6 ⁇ is distributed in On the physical resource block pair 2, the resource element group ⁇ 3, 7 ⁇ is distributed on the physical resource block pair 3.
  • the N resource element groups that make up an ePHICH resource are usually located in the same physical resource block pair.
  • Multiple ePHICHs may be mapped on the same ePHICH resource to form an ePHICH group, but the ePHICHs in the same ePHICH group need to be multiplexed by different orthogonal codes, where the orthogonal codes are preferably orthogonal masks, or A different cyclic shift sequence of a constant envelope zero autocorrelation sequence CAZAC may also be other orthogonal codes.
  • the resources occupied by different ePHICH groups do not overlap or overlap each other. Only one ePHICH can be mapped on one ePHICH resource, and the resources occupied by different ePHICHs do not overlap or overlap each other.
  • a resource element of the enhanced physical hybrid automatic repeat request channel simultaneously transmits a downlink physical control channel (PDCCH) or a common reference signal (CRS) or a demodulation reference signal (DMRS) or a channel state information reference signal (CSI-RS) Then, the enhanced physical hybrid automatic repeat request channel is demodulated by using puncturing on these resource elements. If a physical resource block pairing enhanced physical hybrid automatic repeat request channel occupies only some of the resources, the remaining resources may be used to transmit a physical downlink shared channel (PDSCH) or an enhanced physical downlink control channel or not to transmit any information.
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information reference signal
  • the remaining resource does not include a common reference signal (CRS), a demodulation reference signal (DMRS), a physical downlink control channel (PDCCH), and a channel state information reference signal (CSI-) other than the enhanced physical hybrid automatic repeat request channel resource.
  • CRS common reference signal
  • DMRS demodulation reference signal
  • PDCCH physical downlink control channel
  • CSI- channel state information reference signal
  • CRS non-demodulation reference signal
  • PDCCH non-physical downlink control channel
  • CSI-RS resource elements of non-channel state information reference signal
  • ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by different orthogonal masks.
  • the length of the orthogonal mask is equal to four, and the value is [+1; +1; +1; +1] or [+1; -1; +1; -1] or [+1; +1; 1; -1] or [+1; -1; -1; +1] or [+j; +j ; +j ; +j] or [+j; -j; +j; -j] or [+j; +j; -j; -j] or [+j; +j; -j; -j] or [+j ; -j ; -j] or [+j ; -j ; -j ; +j], and maps to the four resource elements of each resource element group in order of frequency domain from low to high.
  • CRS non-demodulation reference signal
  • PDCH non-physical downlink control channel
  • CSI-RS resource elements of non-channel state information reference signal
  • the length of the orthogonal mask is equal to four, and the value is [+1; +1; +1; +1] or [+1; -1; +1; -1] or [+1; +1; 1; -1] or [+1; -1; -1; +1] or [+j; +j ; +j ; +j] or [+j; -j; +j; -j] or [+ j; +j; -j; -j] or -j; -j; +j], and sequentially maps to the four resource elements of each resource element group in order from the front to the back.
  • the two resource elements are continuous in frequency domain or continuous in time domain, and the four resource elements are non-common reference signals (CRS), non-demodulation reference signals (DMRS), non-physical downlink control channels (PDCCH), and non-channels.
  • Resource element of the status information reference signal (CSI-RS).
  • Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by different orthogonal masks.
  • the length of the orthogonal mask is equal to four, and the value is [+1; +1; +1; +1] or [+1; -1; +1; -1] or [+1; +1; 1; -1] or [+1; -1; -1; +1] or [+j; +j ; +j ; +j] or [+j; -j; +j; -j] or [+ j; +j; -j; -j] or -j; -j; +j], and map to each time in the order of the first frequency domain and the frequency domain from low to high or clockwise or counterclockwise On the four resource elements of the resource element group.
  • CRS non-demodulation reference signal
  • PDCH non-physical downlink control channel
  • CSI-RS resource elements of non-channel state information reference signal
  • the length of the orthogonal mask is equal to two, and the value is [+1; +1] or [+1; -1] or [+j; +j] or [+j; -j], and according to the frequency domain
  • the low-to-high order is mapped to the two resource elements of each resource element group.
  • CRS non-demodulation reference signal
  • PDCCH non-physical downlink control channel
  • CSI-RS resource elements of non-channel state information reference signal
  • ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by different orthogonal masks.
  • the length of the orthogonal mask is equal to two, and the value is [+1; +1] or [+1; -1] or [+j; +j] or [+j; -j], and according to the time domain
  • the order from front to back is sequentially mapped to two resource elements of each resource element group.
  • the network side may adopt a resource configuration and notification manner similar to a zero power channel state information reference signal (ZP-CSI-RS) or a non-zero power channel state information reference signal (NZP-CSI-RS) to enhance physical hybrid automatic
  • ZP-CSI-RS zero power channel state information reference signal
  • NZP-CSI-RS non-zero power channel state information reference signal
  • the retransmission request indicates that the resource location of the channel is notified to the terminal.
  • An ePHICH resource consists of one or more resource element groups, where each resource element group is composed of all resource elements on one subcarrier. Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group. The ePHICHs belonging to the same ePHICH group are multiplexed by different cyclic shift sequences of a CAZAC sequence.
  • the cyclic shift sequence is sequentially mapped to the resource elements of each resource element group in a time domain from front to back.
  • multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by an orthogonal mask of length two.
  • the orthogonal masks are mapped in groups of two consecutive resource elements in each resource element group in a time-domain from front to back, and are sequentially repeated in sequence.
  • only one ePHICH is mapped on one ePHICH resource, and different ePHICH resources do not overlap or overlap each other.
  • An ePHICH resource consists of one or more resource element groups, where each resource element group is composed of all resource elements on one symbol. Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group. The ePHICHs belonging to the same ePHICH group are multiplexed by different cyclic shift sequences of a CAZAC sequence. The cyclic shift sequence is mapped to the resource elements of each resource element group at a time in a frequency domain from low to high. Alternatively, multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group. The ePHICHs belonging to the same ePHICH group are multiplexed by an orthogonal mask of length two.
  • the orthogonal masks are mapped in groups of two consecutive resource elements in each resource element group in descending order of the frequency domain, and are sequentially repeated in sequence. Or, only one ePHICH is mapped on one ePHICH resource, and different ePHICH resources do not overlap or overlap each other.
  • Mode 8 An ePHICH resource is composed of one or more resource element groups, where each resource element group is composed of all resource elements on P consecutive or discrete subcarriers, where P is an integer greater than 1.
  • Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group. The ePHICHs belonging to the same ePHICH group are multiplexed by different cyclic shift sequences of a CAZAC sequence.
  • the cyclic shift sequence is sequentially mapped to the resource elements of each resource element group in the order of the first time domain and the time domain, and the time domain is from front to back.
  • multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by an orthogonal mask of length two.
  • the orthogonal mask is mapped in groups of two consecutive resource elements in each resource element group in the order of the first time domain and the time domain from the front to the back, and is sequentially repeated.
  • only one ePHICH is mapped on one ePHICH resource, and different ePHICH resources do not overlap or overlap each other.
  • An ePHICH resource is composed of one or more resource element groups, wherein each resource element group is composed of all resource elements on P consecutive or discrete symbols, where P is an integer greater than 1.
  • Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by different cyclic shift sequences of a CAZAC sequence.
  • the cyclic shift sequence is sequentially mapped to the resource elements of each resource element group in the order of the first frequency domain and the frequency domain from low to high.
  • multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by an orthogonal mask of length two.
  • the orthogonal mask is mapped in groups of two consecutive resource elements in each resource element group in descending order of the first frequency domain and the frequency domain from low to high, and sequentially repeated. Or, only one ePHICH is mapped on one ePHICH resource, and different ePHICH resources do not overlap or overlap each other.
  • Manner 10 An ePHICH resource is composed of one or more resource element groups, wherein each resource element group is composed of P consecutive/discrete subcarriers and all resource elements on Q consecutive/discrete symbols, wherein P and Q are both Is an integer greater than 1.
  • Multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by different cyclic shift sequences of a CAZAC sequence.
  • the cyclic shift sequence is mapped to the resource elements of each resource element group in the order of the first frequency domain and the frequency domain from low to high or the time domain after the time domain from the front to the back.
  • multiple ePHICHs are mapped onto one and the same ePHICH resource to form an ePHICH group.
  • the ePHICHs belonging to the same ePHICH group are multiplexed by an orthogonal mask of length two.
  • the orthogonal mask is in the order of the first frequency domain and the frequency domain from low to high or the time domain after the frequency domain and the time domain from the front to the back in the order of each two consecutive resources in each resource element group.
  • Elements are mapped as a group, which is repeated in order. Or, only one ePHICH is mapped on one ePHICH resource, and different ePHICH resources do not overlap or overlap each other.
  • An ePHICH resource is composed of one or more resource element groups, wherein the resource element group may also be non-uniform, for example, an ePHICH is composed of three resource element groups, wherein the resource element group 0 and 2 is composed of two resource elements that are consecutive in the time domain, and resource element group 1 is composed of two resource elements that are consecutive in the frequency domain.
  • ePHICH The Enhanced Physical Hybrid Automatic Repeat Request Indication Channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (e.g., a physical uplink shared channel PUSCH).
  • ePHICHs are mapped to the same set of resources to form an ePHICH group, wherein ePHICHs belonging to one ePHICH group are orthogonally orthogonal OCC (Orthogonal Cover Code) multiplexing.
  • An ePHICH resource is indexed by ⁇ 1 TM 11 '" ⁇ 10 ⁇ OK, where is the ePHICH group serial number, " ⁇ HICH is the intra-group ePHICH index, that is, the 0CC configuration index.
  • the physical resource block where the ePHICH is located (hereinafter referred to as ePHICH PRBs) is configured by the network side or pre-agreed.
  • Figure 14 is based on this A schematic diagram of a resource mapping pattern of the enhanced physical hybrid automatic repeat request indication channel according to the first embodiment of the present invention.
  • symbols 9 and 10 in the physical resource block (referred to as ePHICH PRBs) where each ePHICH is located can be used for ePHICH.
  • a total of six resource element groups may be mapped, wherein each resource element group is composed of four resource elements (RE, Resource Element) in a frequency domain.
  • RE Resource Element
  • subcarriers 0-3 in symbol 9 constitute the above ePHICH PRBs.
  • the first available resource element group, subcarrier 4-7 in symbol 9 constitutes the second available resource element group on the ePHICH PRBs, and subcarrier 8-11 in symbol 9 constitutes the above ePHICH PRBs 3 resource element groups, subcarriers 0-3 in symbol 10 constitute the fourth resource element group on the above ePHICH PRBs, and subcarriers 4-7 in symbol 10 constitute the above ePHIC
  • the fifth resource element group on the H PRBs, the subcarrier 8-11 in the symbol 10 constitutes the sixth resource element group on the ePHICH PRBs.
  • the subframe for transmitting the ePHICH is a non-CSI-RS sub- An ePHICH consists of three resource element groups, occupying a total of 12 REs.
  • the three resource element groups of each ePHICH can be distributed on the same PRB or different PRBs.
  • 8 ePHICHs Under the normal CP, 8 ePHICHs have a length of 4
  • the OCC code is multiplexed into a set of ePHICHs and mapped to the same ePHICH resource.
  • the OCC mapping is based on the resource element group described above.
  • the four ePHICHs are multiplexed into a group of ePHICHs by length 2 OCC codes.
  • the OCC mapping is in units of consecutive REs in each of the two frequency domains in the resource element group described above.
  • Table 2 is an OCC configuration table between different ePHICHs, as shown in Table 2.
  • the resource element group resource occupied by the ePHICH 1 of the user 1 on a certain PRB is the first resource element group as shown in FIG. 14 , if it is a regular CP, and the OCC code to which the user 1 is assigned is [+ 1 + 1 + 1 + 1 ], then the OCC code of User 1 will be mapped to the 4 REs of the first resource element group in a frequency domain from low to high; if it is an extended CP, and the OCC code to which User 1 is assigned is [ + 1 + 1 ], then the OCC code of User 1 will be repeatedly mapped to the first 2 and the last 2 REs of the first resource element group in the order of frequency domain from low to high.
  • the resource elements (RE) on symbol 9 and symbol 10 in ePHICH PRBs are only used to transmit ePHICH, and resources other than symbol 9 and symbol 10 can be used to transmit PDCCH, public Reference Signal (CRS, Common Reference Signal) Demodulation Reference Signal (DMRS) Positioning Reference Signal (PRS, Positioning Reference Signal) and signals/channels such as PDSCH and/or ePDCCH.
  • CRS public Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • PRS Positioning Reference Signal
  • the mapping resource of the scheme ePHICH described in the preferred embodiment is not limited to symbol 9 and symbol 10.
  • the mapping resource of the ePHICH may be one or several symbols in the ePHICH PRBs, on these symbols.
  • ePHICH Only the ePHICH is transmitted, and resources other than these symbols can be used for PDCCH, CRS, DMRS, and other signals/channels such as PDSCH and/or ePDCCH; ePHICH is mapped on non-PBCH resources; preferably ePHICH is on non-CSI-RS resources Mapping is performed; N resource element groups constituting one ePHICH are N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 2 An enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" p H '" SneH ), where n is the e p H ICH group sequence number, and " ⁇ ICH is the intra-group ePHICH index, that is, the OCC configuration index.
  • ePHICH PRBs The physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 15 is a schematic diagram of a resource mapping pattern of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment of the present invention. As shown in FIG. 15, a symbol 4 in a physical resource block (referred to as ePHICH PRBs) where each ePHICH is located is shown in FIG. 13 can be used for ePHICH mapping, and a maximum of 12 resource element groups can be mapped, wherein each resource element group is composed of four resource elements (RE, Resource Element) in a time domain.
  • RE Resource Element
  • subcarriers 2, 4, 7, and 8 on symbols 6-9 respectively constitute the 1-4th available resource element group of the above ePHICH PRBs
  • subcarriers 1, 5, 10, and 11 on symbols 8-11 respectively constitute The 5th to 8th available resource element groups of the above ePHICH PRBs
  • the subcarriers 2, 4, 7, and 8 on the symbol 10-13 respectively constitute the 9th to 12th available resource element groups of the above ePHICH PRBs.
  • the RE resources for mapping the ePHICH are the remaining REs other than the PDCCH, the CRS, the DMRS, and the like in the ePHICH PRBs.
  • the subframe used for transmitting the ePHICH is a non-CSI-RS subframe.
  • An ePHICH consists of three resource element groups, occupying a total of 12 REs.
  • the three resource element groups of each ePHICH may be distributed on the same PRB or different PRBs.
  • 8 ePHICHs are multiplexed into a set of ePHICHs by a length of 4 OCC codes, mapped to the same ePHICH resource, and the OCC mapping is based on the resource element group described above.
  • 4 ePHICHs are passed.
  • the length 2 OCC code is multiplexed into a set of ePHICHs mapped to the same ePHICH resource, and the OCC mapping is in units of consecutive two consecutive REs in the resource element group described above.
  • the specific OCC code is as shown in Table 2 above.
  • the resource element group resource occupied by the ePHICH 1 of the user 1 on a certain PRB is the first resource element group as shown in FIG. 3, if it is a regular CP, and the OCC code to which the user 1 is assigned is [ + 1 + 1 + 1 + 1 ], then the OCC code of User 1 will be mapped to the 4 REs of the first resource element group in order from the front to the back (or from the back to the front); if it is an extended CP, And the OCC code assigned by User 1 is [ + 1 + 1 ], then the OCC code of User 1 will be repeatedly mapped to the first resource element group in order from the front to the back (or from the back to the front) in the time domain.
  • the resource elements (REs) on the physical resource blocks (ePHICH PRBs) where the ePHICH is located are not used to transmit other channels such as PDSCH or PDCCH.
  • the mapping resource of the scheme ePHICH described in the preferred embodiment is not limited to this mapping manner, as long as the four REs time domains to which the resource element group of the ePHICH belongs are continuous, and other signals or The channels do not conflict.
  • the mapping resources of the scheme ePHICH described in the preferred embodiment are also not limited to symbols 4 to 13, for example, in the new carrier type, symbols 0 to 13 are all mappable resources of the ePHICH.
  • the ePHICH is mapped on non-PBCH resources, preferably the ePHICH is mapped on non-CSI-RS resources.
  • Embodiment 3 The enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" ⁇ 11 ' ⁇ 11 ), where is the ePHICH group number, " ⁇ HICH is the intra-group ePHICH index, that is, the OCC configuration index.
  • the physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 16 is a schematic diagram of resource mapping of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment of the present invention. As shown in FIG. 16, the symbol 4 in the physical resource block (referred to as ePHICH PRBs) where each ePHICH is located is shown in FIG.
  • each resource element group is composed of two consecutive subcarriers on two consecutive symbols.
  • subcarriers 3 and 4 on symbols 5 and 6 constitute the first available resource element group on the ePHICH PRBs
  • subcarriers 7 and 8 on symbols 5 and 6 constitute the second available resource element group
  • symbol 7 , subcarriers 1 and 2 on 8 constitute a third available resource element group
  • subcarriers 4 and 5 on symbols 7 and 8 constitute a fourth available resource element group
  • subcarriers 7 on symbols 7, 8 8 constitutes the fifth available resource element group
  • the subcarriers 10, 11 on the symbols 7, 8 constitute the sixth available resource element group
  • the subcarriers 0, 1 on the symbols 9, 10 constitute the seventh available resource.
  • Element group, subcarriers 2, 3 on symbols 9, 10 constitute the eighth available resource element group, and subcarriers 4, 5 on symbols 9, 10 constitute the ninth available resource element group, on symbols 9, 10
  • the subcarriers 6, 7 constitute the 10th available resource element group
  • the subcarriers 8, 9 on the symbols 9, 10 constitute the eleventh available resource element group
  • the subcarriers 10, 11 on the symbols 9, 10 constitute the first 12 available resource element groups
  • subcarriers 3, 4 on symbols 12, 13 constitute the 13th available resource element Group, the symbol 12, the 137 subcarriers, 8 14 constituting the available resource element groups.
  • the RE resources for mapping the ePHICH are the remaining REs other than the PDCCH, the CRS, the DMRS, and the like in the ePHICH PRBs.
  • the subframe used for transmitting the ePHICH is a non-CSI-RS subframe.
  • An ePHICH consists of three resource element groups, occupying a total of 12 REs.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • 8 ePHICHs are multiplexed into a set of ePHICHs by a length of 4 OCC codes, mapped to the same ePHICH resource, and the OCC mapping is based on the resource element group described above.
  • 4 ePHICHs are passed.
  • the OCC code of length 2 is multiplexed into a set of ePHICHs and mapped to the same ePHICH resource.
  • the OCC mapping is continuous (or every two frequency domains consecutive) of REs in each of the resource element groups described above. unit.
  • the specific OCC code is shown in Table 2.
  • the resource element group resource occupied by the ePHICH 1 of the user 1 on a certain PRB is the first one as shown in FIG. Resource element group, if it is a regular CP, and the OCC code assigned by user 1 is [ + 1 + 1 + 1 + 1 ], then the OCC code of user 1 will be clockwise from the fixed resource group of the resource element group.
  • the OCC code of User 1 will be in the time domain from front to back ( Or the method from the back to the front is sequentially sequentially mapped to two subcarriers of the resource element group or sequentially mapped to two symbols of the resource element group in a frequency domain from low to high.
  • the resource elements (REs) on the physical resource blocks (ePHICH PRBs) where the ePHICH is located are not used to transmit other channels such as PDSCH or PDCCH.
  • mapping resource of the scheme ePHICH described in this embodiment is not limited to this mapping manner, as long as any two REs of the four REs to which the resource element group of the ePHICH belongs are guaranteed to be time-domain continuous or The frequency domain is continuous and does not conflict with other signals or channels.
  • the ePHICH is mapped on non-PBCH resources, preferably the ePHICH is mapped on non-CSI-RS resources.
  • the resource element group constituting one ePHICH is N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 4 An enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" fp ° HTeH '" ; qHieH ), where n is the e p H ICH group number, which is the OPHICH index of the group, that is, the OCC configuration index.
  • ePHICH PRBs The physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 17 is a schematic diagram of a resource mapping pattern of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 4 of the present invention. As shown in FIG. 17, a symbol 4 in a physical resource block (referred to as ePHICH PRBs) where each ePHICH is located is shown in FIG. 13 can be used for ePHICH mapping, and a total of 36 resource element groups can be mapped at most, wherein each resource element group is composed of two consecutive subcarriers in the frequency domain.
  • subcarriers 1 and 2, 4 and 5, 7 and 8, 10 and 11 of symbol 4 respectively map the first to fourth resource element groups on ePHICH PRBs, and subcarriers 2 and 3, 7 and 8 on symbol 5
  • the 5th and 6th resource element groups on the ePHICH PRBs are mapped respectively
  • the 7th and 8th resource element groups on the ePHICH PRBs are mapped on the subcarriers 2 and 3, 7 and 8 on the symbol 6, respectively
  • the sub-symbols on the symbol 7 Mapping 9th to 12th resource element groups on carriers 1 and 2, 4 and 5, 7 and 8, 10 and 11, respectively
  • the 13th to 16th resource element groups are mapped on subcarriers 1 and 2, 4, and 5, 7 and 8, 10, and 11, respectively, and subcarriers 0 and 1, 2, B, 3, and B on symbol 9 are respectively mapped.
  • the RE resources for mapping the ePHICH are the remaining REs other than the PDCCH, the CRS, the DMRS, and the like in the ePHICH PRBs.
  • the subframe used for transmitting the ePHICH is a non-CSI-RS subframe.
  • An ePHICH consists of three resource element groups, occupying a total of six REs.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the four ePHICHs are multiplexed into a set of ePHICHs by a length of 2 OCC codes, mapped to the same ePHICH resources, and the OCC codes are mapped to each resource element group in a frequency domain from low frequency to high frequency.
  • Table 3 is an OCC configuration table between different ePHICHs, as shown in Table 3.
  • the ePHICH resource mapping in the conventional CP and the extended CP adopts the same resource mapping manner as the PHICH in the existing standard under the extended CP, wherein one resource element group in the ePHICH is composed of two resource element groups.
  • each of the two resource element groups constitutes an enhanced resource element group in each ePHICH PRBs in a manner from frequency domain to time domain and frequency domain from low frequency to high frequency.
  • the resource element (RE) on the physical resource block (ePHICH PRBs) where the ePHICH is located is not used to transmit other channels such as PDSCH or PDCCH.
  • the mapping resource of the scheme ePHICH described in this embodiment is not limited to this mapping manner, as long as the two REs to which the resource element group of the ePHICH belongs are consecutive in the frequency domain, and other letters are
  • the mapping resources of the scheme ePHICH described in this embodiment are not limited to the symbols 4 to 13, for example, in the new carrier type, the symbols 0 to 13 are all mappable resources of the ePHICH.
  • the ePHICH is mapped on non-PBCH resources, preferably the ePHICH is mapped on non-CSI-RS resources.
  • the resource element group constituting one ePHICH is N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 5 An enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" p H '" SneH ), where n is the e p H ICH group number, " HITM is the intra-group ePHICH index, that is, the OCC configuration index.
  • FIG. 18 is a schematic diagram of resource mapping of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment 5 of the present invention. As shown in FIG. 18, the physical environment of each ePHICH is shown. The symbols 4-13 in the resource block (abbreviated as ePHICH PRBs) can be used for ePHICH mapping. A total of 40 resource element groups can be mapped. Each resource element group is composed of two consecutive REs in the time domain or frequency domain.
  • the mapping rule is: the OCC on the subcarrier where all CRSs are located in one ePHICH PRBs is mapped once every two consecutive REs, and the OCC on the symbol where all DMRSs are located is mapped once every two consecutive REs per subcarrier, and the remaining resources are OCC. According to each symbol, every two consecutive REs from low frequency to high frequency are mapped once.
  • the RE resources used for mapping the ePHICH are the remaining REs other than PDCCH, CRS, DMRS, etc. in the ePHICH PRBs.
  • the foregoing subframe for transmitting the ePHICH is a non-CSI-RS subframe.
  • An ePHICH is composed of three resource element groups, and occupies a total of six REs.
  • the three resource element groups of each ePHICH may be distributed in the same or different
  • four ePHICHs are multiplexed into a set of ePHICHs by a length of 2 OCC codes, mapped to the same ePHICH resources, and the OCC codes are mapped to each in the frequency domain from low frequency to high frequency or time domain from front to back.
  • the specific OCC code is shown in Table 3.
  • the ePHICH resource mapping under the regular CP and the extended CP adopts the same resource mapping manner as the PHICH in the existing standard under the extended CP, where one of the ePHICHs
  • the resource element group is composed of two resource element groups. As shown in FIG.
  • each ePHICH PRBs constitutes one continuous resource element group in a frequency domain from a frequency domain to a time domain, and a frequency domain from a low frequency to a high frequency.
  • mapping resources of the scheme ePHICH described in this embodiment are also not limited to symbols 4 to 13, for example, in the new carrier type, symbols 0 to 13 are all mappable resources of the ePHICH.
  • the ePHICH is mapped on non-PBCH resources, preferably the ePHICH is mapped on non-CSI-RS resources.
  • the sixth embodiment enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, physical uplink shared channel PUSCH).
  • Multiple ePHICHs are mapped onto the same set of resources to form an ePHICH group, wherein ePHICHs belonging to one ePHICH group are multiplexed by N different cyclic shift sequences of one ZC sequence.
  • An ePHICH resource is determined by an index pair ( ⁇ ⁇ '" :; ⁇ ), where "HH is the ePHICH group number, and SncH is the intra-group ePHICH index, that is, the cyclic shift sequence is configured.
  • N is fixed or configured by signaling on the network side.
  • ePHICH PRBs The physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 19 is a schematic diagram of a resource mapping pattern of an enhanced physical hybrid automatic repeat request indication channel according to a sixth embodiment of the present invention. As shown in FIG. 19, a symbol 0 ⁇ in a physical resource block (referred to as ePHICH PRBs) where each ePHICH is located. 13 can be used for ePHICH mapping, and a total of 12 resource element groups can be mapped. Each of the resource element groups is composed of 14 REs on each subcarrier in the ePHICH PRBs.
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the N ePHICHs are multiplexed on the same ePHICH resource by N cyclic shift sequences of one ZC sequence.
  • the above ZC sequence has a length of 14, and is sequentially mapped on each subcarrier in a time domain from front to back.
  • mapping resource of the scheme ePHICH described in this embodiment may also be an ePHICH physical resource block to the middle molecular carrier used for ePHICH transmission, and preferably the remaining resources (subcarriers) in the ePHICH PRBs are also Can be used to send ePDCCH or PDSCH.
  • the ePHICH is mapped on a non-PBCH resource, and each resource element group constituting the ePHICH may also be composed of a plurality of subcarriers.
  • the sequence used for multiplexing between different ePHICHs in the ePHICH group in the embodiment of the present invention is not limited to the ZC sequence, as long as the sequences for multiplexing between different ePHICHs are orthogonal. Typically, 7 sets of OCC sequence sequences can also be repeatedly arranged, as shown in Table 4: Table 4
  • the resource element group constituting one ePHICH is N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • the seventh embodiment enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (for example, a physical uplink shared channel PUSCH).
  • Multiple ePHICHs are mapped onto the same set of resources to form an ePHICH group, wherein ePHICHs belonging to one ePHICH group are multiplexed by N different cyclic shift sequences of one ZC sequence.
  • An ePHICH resource is determined by an index pair ( ⁇ ⁇ '" :; ⁇ ), where "HH is the ePHICH group number," ⁇ HICH is the intra-group ePHICH index, that is, the cyclic shift sequence is configured. It is fixed or configured by signaling on the network side.
  • ePHICH PRBs The physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 20 is a schematic diagram of a resource mapping pattern of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment of the present invention. As shown in FIG. 20, a symbol 4 ⁇ in a physical resource block (referred to as ePHICH PRBs) where each ePHICH is located. 13 can be used for ePHICH mapping, and a total of 8 resource element groups can be mapped. Each of the resource element groups consists of 12 REs on each symbol in the ePHICH PRBs.
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the N ePHICHs are multiplexed on the same ePHICH resource by N cyclic shift sequences of one ZC sequence.
  • the above ZC sequence has a length of 12 and is sequentially mapped on each symbol in a frequency domain from low to high.
  • mapping resource of the scheme ePHICH described in this embodiment may also be other symbol configuration in an ePHICH physical resource block pair, for example, all symbols in the new carrier type may be used for ePHICH transmission, or symbols 4-13 Only part of it is used for ePHICH transmission, in which case the remaining resources in the ePHICH PRBs are also preferably used to transmit ePDCCH or PDSCH.
  • the ePHICH is mapped on non-PBCH resources, and each resource element group constituting the ePHICH may also be composed of multiple symbols.
  • the sequence used for multiplexing between different ePHICHs in the ePHICH group in the embodiment of the present invention is not limited to the ZC sequence, as long as the sequences for multiplexing between different ePHICHs are orthogonal, and typically 7 sets of OCC are also available.
  • the sequence is repeated and obtained, as shown in Table 4.
  • N resource element groups constituting one ePHICH N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 8 An enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" p H '" SneH ), where is the e p H ICH group sequence number, which is an intra-group ePHICH index, that is, an OCC configuration index.
  • the physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side. As shown in Figure 19, the symbols 0 ⁇ 13 in the physical resource block (referred to as ePHICH PRBs) where each ePHICH is located can be used for ePHICH mapping. A total of 12 resource element groups can be mapped. Each of the resource element groups is composed of 14 REs on each subcarrier in the ePHICH PRBs. When another signal or channel such as PDCCH, CRS, DMRS, or the like is simultaneously transmitted on the RE transmitting the ePHICH, the ePHICH demodulates the RE and the RE that shares the same group of OCCs with the RE.
  • PDCCH Physical Downlink Control Channel
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the four ePHICHs are multiplexed into a set of ePHICHs by using a length of 2 OCC codes, which are mapped to the same ePHICH resource.
  • the OCC codes are in a time-domain every two consecutive REs on each subcarrier in a front-to-back manner. Repeat the mapping in sequence.
  • mapping resource of the scheme ePHICH described in this embodiment may also be a partial subcarrier in an ePHICH physical resource block pair, and preferably the remaining resources (subcarriers) in the pair of physical resource blocks are also Can be used to send ePDCCH or PDSCH.
  • the ePHICH is mapped on non-PBCH resources, and the resource element group constituting the ePHICH may also be composed of multiple subcarriers.
  • the resource element group constituting one ePHICH is N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 9 An enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" p H '" SneH ), where n is the e p H ICH group number, " ⁇ HICH is the intra-group ePHICH index, that is, the OCC configuration index.
  • the physical resource block where the ePHICH is located (hereinafter referred to as ePHICH) PRBs) are configured or pre-agreed by the network side. As shown in Figure 20, the symbols 4 ⁇ 13 in the physical resource block (referred to as ePHICH PRBs) where each ePHICH is located can be used for ePHICH mapping. A total of 8 can be mapped. a resource element group, wherein each resource element group is composed of 12 REs on each symbol in the ePHICH PRBs. When other signals or channels such as PDCCH, CRS, DMRS, etc.
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the four ePHICHs are multiplexed into a set of ePHICHs by a length of 2 OCC codes, which are mapped to the same ePHICH resource.
  • the OCC codes are from low frequency to high frequency in a frequency domain of two consecutive REs on each symbol. The method repeats the mapping in order.
  • mapping resource of the scheme ePHICH described in this embodiment may also be other symbol configuration in an ePHICH physical resource block pair, for example, all symbols in the new carrier type may be used for ePHICH transmission, or symbols 4 ⁇ 13. Only part of it is used for ePHICH transmission, in which case the remaining resources in the ePHICH PRBs are also preferably used to transmit ePDCCH or PDSCH.
  • the ePHICH is mapped on non-PBCH resources, and the resource element group constituting the ePHICH may also be composed of multiple symbols.
  • the resource element group constituting one ePHICH is N, N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • the tenth enhanced physical hybrid automatic repeat request indication channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a physical uplink shared channel PUSCH). At most one ePHICH is mapped to an ePHICH resource. The resources occupied by different ePHICHs do not overlap or overlap each other. An ePHICH resource can be determined by means of network side signaling, or by resource indexing.
  • the physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • 21-24 are schematic diagrams of resource mapping of an enhanced physical hybrid automatic repeat request indication channel according to a preferred embodiment of the present invention, as shown in FIG.
  • FIG. 21 is a schematic diagram of a resource mapping pattern that constitutes one resource element group for every three consecutive subcarriers in each physical resource block pair according to a preferred embodiment of the present invention, such as As shown in FIG.
  • FIG. 22 is a frequency and frequency of every seven consecutive symbols in the time domain of each physical resource block according to a preferred embodiment of the present invention.
  • FIG. 23 is according to the present Each of the three physical resource block pairs of the preferred embodiment of the invention San subcarrier A schematic diagram of a resource mapping pattern constituting a resource element group, as shown in FIG. 23;
  • FIG. 24 is a diagram showing a sequence of every seven consecutive symbols in the time domain for each physical resource block and six discrete elements in the frequency domain according to a preferred embodiment of the present invention.
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs. It is worth noting that ePHICH is mapped on non-PBCH resources.
  • the mapping resource of the scheme ePHICH described in this embodiment may also be a partial resource or resource element group of an ePHICH physical resource block pair. In this case, preferably, the remaining resources in the ePHICH PRBs may also be used to send the ePDCCH or the PDSCH.
  • There are N resource element groups constituting one ePHICH N is not limited to 3, N is an arbitrary integer greater than or equal to 1, and the value of N is fixed or configured by the network side.
  • Embodiment 1 An Enhanced Physical Hybrid Automatic Repeat Request Indicator Channel (ePHICH) carries ACK/NACK information corresponding to an uplink data transmission (eg, a Physical Uplink Shared Channel (PUSCH)). Multiple ePHICHs are mapped to the same set of resources to form an ePHICH group, and ePHICHs belonging to one ePHICH group are multiplexed by different orthogonal mask OCCs.
  • An ePHICH resource is determined by an index pair (" ⁇ 11 ' ⁇ 11 ), where is the ePH ICH group sequence number, " ⁇ ICH is the intra-group ePHICH index, that is, the OCC configuration index.
  • the physical resource blocks (hereinafter referred to as ePHICH PRBs) where the ePHICH is located are configured or pre-agreed by the network side.
  • each physical resource block (referred to as ePHICH PRBs) in which each ePHICH is located is divided into a maximum of four resource element groups, each of which occupies one quarter of the above physical resource blocks. Resources, and do not overlap or overlap each other. There are various methods for dividing four resource element groups. For example, one resource element group is formed for every three consecutive subcarriers in each physical resource block pair. As shown in FIG. 21, all REs on subcarriers 0 ⁇ 2 constitute a group.
  • the first resource element group, all REs on subcarriers 3 ⁇ 5 constitute a second resource element group, and all REs on subcarriers 6-8 form a third resource element group, and all REs on subcarriers 9-11 Forming a fourth resource element group; according to the division manner of every seven consecutive symbols in the time domain of each physical resource block and every six consecutive subcarriers in the frequency domain, as shown in FIG.
  • the subcarriers on the symbols 0-6 0 ⁇ 5 constitutes the first resource element group
  • subcarriers 0 ⁇ 5 on symbols 7 ⁇ 13 constitute the second resource element group
  • subcarriers 6 ⁇ 11 on symbols 0 ⁇ 6 constitute the third resource element group
  • symbol The subcarriers 6 ⁇ 11 on 7 ⁇ 13 constitute a fourth resource element group
  • each resource subgroup consists of one resource element group according to each physical resource block pair, as shown in Fig. 23; according to each physical resource
  • the manner in which the block pairs are in the middle time domain every seven consecutive symbols and every six discrete subcarriers in the frequency domain is as shown in FIG.
  • other signals or channels such as PDCCH, CRS, DMRS, etc.
  • An ePHICH consists of three resource element groups.
  • the three resource element groups of each ePHICH can be distributed on the same or different PRBs.
  • the four ePHICHs are multiplexed into a set of ePHICHs by a length of 2 OCC codes, which are mapped to the same ePHICH resource.
  • the OCC codes are from low frequency to high frequency in a frequency domain of two consecutive REs on each symbol.
  • the method repeats the mapping in order, or sequentially repeats the mapping from low frequency to high frequency in a time domain every two consecutive REs on each subcarrier.
  • ePHICH is mapped on non-PBCH resources.
  • the mapping resource of the scheme ePHICH described in this embodiment may also be a partial resource or resource element group of an ePHICH physical resource block pair.
  • the remaining resources in the ePHICH PRBs may also be used to send the ePDCCH or the PDSCH.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种增强物理混合自动重传请求指示信道ePHICH传输方法及装置,该方法包括:网络侧确定映射于ePHICH的ePHICH资源,其中,该ePHICH资源包括N个资源元素群,每个资源元素群包括M个资源元素,一个资源元素群中的所有资源元素位于同一个物理资源块对中,该物理资源块对由网络侧配置给终端侧和/或由网络侧与终端侧按照预先约定好的方式确定,M、N均为大于等于1的整数;网络侧根据确定的ePHICH资源向终端侧传输信息,通过本发明,不仅解决了相关技术中物理混合自动重传请求指示信道的干扰和资源不够用的问题,而且相对于相关技术中所采用的方法后向兼容性也较好。

Description

增强物理混合自动重传请求指示信道传输方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种增强物理混合自动重传请求指示信道 ePHICH (enhanced Physical Hybrid ARQ Indication Channel, 简称为 ePHICH) 传输方 法及装置。 背景技术 长期演进系统 (Long Term Evolution, 简称为 LTE) 是第三代伙伴组织的重要计 划。 LTE系统采用常规循环前缀 (Normal Cyclic Prefix) 时, 一个时隙包含 7个长度 的上 /下行符号, LTE系统采用扩展循环前缀 (Extended Cyclic Prefix) 时, 一个时隙 包含 6个长度的上 /下行符号。 在 LTE系统中定义了如下几种下行物理信道: 物理广播信道(Physical Broadcast Channel, 简称为 PBCH): 该信道承载的信息包 括系统的帧号、 系统的下行带宽、 物理混合重传信道的周期、 以及用于确定物理混合 重传请求指示信道(Physical HybridARQ Indicator Channel, 简称为 PHICH)信道组数 的参数^ /61/212 。 物理多播信道(Physical Multicast Channel, 简称为 PMCH): 主要用于支持多播广 播单频网络 (Multicast Broadcast Single Frequency Network, 简称为 MBSFN) 业务, 将多媒体时频信息向多用户广播。 PMCH只能在 MBSFN子帧和 MBSFN区域传输。 物理下行共享信道 (Physical Data Shared Channel, 简称为 PDSCH): 用于承载下 行传输数据。 物理下行控制信道 (Physical Downlink Control Channel, 简称为 PDCCH): 用于 承载上、 下行调度信息, 以及上行功率控制信息。 在 LTE R8、 R9和 R10中的物理下 行控制信道 (PDCCH) 主要分布在一个子帧的前 1或 2或 3个或 4个正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM)符号, 具体分布需要按 照不同的子帧类型和公共参考信号( Common Reference Signal或 Cell-specific Reference Signal, 简称为 CRS) 的端口数目来配置。 表 1是相关技术中按照不同的子帧类型和 CRS的端口数目配置的下行资源块数目( )大于 10和不大于 10的 PDCCH的 OFDM 符号数目表, 如表 1所示。
表 1
Figure imgf000004_0001
物理控制格式指示信道 (Physical Control Format Indication Channel , 简称为 PCFICH ) : 承载的信息用于指示在一个子帧里传输 PDCCH 的正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM)符号的数目, 在子帧的 第一个 OFDM符号上发送, 所在频率位置由系统下行带宽与小区标识(Identity, 简称 为 ID) 确定。 物理混合重传请求指示信道 (PHICH): 用于承载上行传输数据的肯定应答 /否定 应答 (ACK/NACK) 反馈信息。 PHICH的数目、 时频位置可由 PHICH所在的下行载 波的物理广播信道 (Physical Broadcast Channel, 简称为 PBCH) 中的系统消息和小区 ID确定。 在 LTE中, 采用的是公共参考信号 (CRS) 进行导频测量和解调, 即所有用户都 使用 CRS进行信道估计。 采用这种 CRS时需要发射端额外通知接收端所发射的数据 采用了的具体预处理方式, 而且导频的开销较大。 另外在多用户多输入多输出 (Multi-user Multi-input Multi-output, 简称为 MU-MIMO)中, 由于多个终端使用相同 的 CRS,无法实现导频的正交, 因此无法估计干扰。在 LTE-A中, 为了降低导频开销, 分别定义了两类参考信号: 解调参考信号 (Demodulation Reference Signal, 简称为 DMRS)和信道状态信息参考信号(Channel State Information Reference Signal, 简称为 CSI-RS), 其中, DMRS用于物理下行共享信道 (PDSCH) 的解调。 用于信道状态信 息 (Channel State Information, 简称为 CSI,) 测量的 CSI-RS, 其用于信道质量指示 (Channel Quality Indicator,简称为 CQI)、预编码矩阵指示(Precoding Matrix Indicator, 简称为 PMI)、 秩指示 (Rank Indicator, 简称为 RI) 等信息的上报。 图 1是相关技术中 LTE系统物理资源块(Resource Block, 简称为 RB)的示意图。 如图 1所示, 一个资源单元 (Resource Element, 简称为 RE) 为一个 OFDM符号中的 一个子载波, 而一个下行资源块(Resource Block, 简称为 RB) 由连续的 12个子载波 和连续的 7个 (扩展循环前缀的时候为 6个) OFDM符号构成。 一个资源块在频域上 为 180kHz, 时域上为一个时隙的时间长度。 进行资源分配时, 会以一个子帧(对应两 个时隙) 上的两个资源块 (也称为物理资源块对) 为基本单位来进行分配。 图 2是相 关技术中 LTE 系统物理资源块对的示意图, 如图 2 所示, 图 2 中也标出了相应的 PDCCH、 CRS以及 DMRS等的资源位置。
LTE-A异构网下,由于不同基站类型有较强的干扰,考虑了宏基站 (Macro eNodeB) 对微基站 (Pico) 的干扰问题, 提出了利用资源静默的方法来解决不同类型基站之间 的相互干扰问题, 具体的资源静默方法可以分为基于子帧的静默 (Muting) 方法, 比 如, 空子帧 (Almost Blank Subframe, 简称为 ABS) 的方法, 基于资源元素的方法, 例如, CRS静默方法。 现有利用资源静默的方法来解决不同类型基站之间的相互干扰 问题的方法, 不但增加了资源的浪费, 而且对于调度带来了极大的限制, 特别是在考 虑 Macro eNodeB的 ABS配置时, 如果 Pico的分布较多, Macro eNodeB配置的 ABS 较多, 给 Macro eNodeB带来了较大的影响, 增加了资源浪费, 也延长了调度时延; 而且, 虽然对于控制信道在 ABS下可以减少不同控制信道数据资源的干扰, 但是无法 解决 CRS资源和数据资源的干扰问题, 对于静默 CRS的方法无法解决数据资源之间 的干扰。 另外, 上述现有方法的后向兼容性也不好, 接入时延也较长。 在 LTE R11阶段可能引入更多的用户在 MBSFN子帧上进行发送, 这样将会导致 MBSFN 配置 2 个 OFDM 符号所能承载的下行控制信道的容量不足, 为了保证对 R8/R9/R10用户的后向兼容性, 需要在物理下行共享信道 (PDSCH) 资源上开辟新的 传输控制信息的资源, 而且在 R11阶段引入了 CoMP技术, 这种技术可以通过空分的 方式解决这种不同类型小区之间的干扰问题, 节省了资源开销, 避免了静默带来的资 源浪费, 减少了对调度的限制。 但是, 按照传统时域下行控制信道的方式是无法通过 空分的方法解决这个问题的。 在 LTE R12研究中, 新载波类型很可能没有下行控制信道区域以及 CRS, 但是在 传统的时域下行控制信道方式中下行控制信道是在下行控制信道区域基于 CRS 进行 传输和解调的, 导致传统下行控制信道无法很好地适用在新载波类型中。 另外在 Low cost MTC中, 很可能只支持小带宽接收技术, 但由于传统时域下行控制信道方式是将 控制信道信息离散地分布在全带宽上, 因此无法很好地支持小带宽接收。 鉴于最新会议的讨论进展, 引入了增强物理下行控制信道 (enhanced Physical Downlink Control Channel, 简称为 ePDCCH), 这样初步解决了 PDCCH的容量受限和 干扰问题, 然而关于物理混合自动重传请求指示信道 (PHICH) 的干扰和资源不够用 的问题目前并没有给出解决方案。 发明内容 本发明提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输方法及装 置, 以至少解决相关技术物理混合自动重传请求指示信道 (PHICH) 的干扰和资源不 够用的问题。 根据本发明的一个方面,提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输方法,包括:网络侧确定映射于所述 ePHICH的 ePHICH资源,其中,所述 ePHICH 资源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素群中 的所有资源元素位于同一个物理资源块对中, 所述物理资源块对由网络侧配置给终端 侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的整数; 所述网络侧根据确定的所述 ePHICH资源向终端侧传输信息。 优选地, 所述每个资源元素群所包括的 M个资源元素为以下至少之一: 时域固定 一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连 续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M 个资源元素; 频域固一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连 续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mxn, m、 n均为 大于 1的整数;时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素,其中, M=axb, a、 b均为大于 1的整数; 时域离散的 x个符号和频域连续的 y个子载波上 的 M个资源元素, 其中, M = xxy, x、 y均为大于 1的整数。 优选地, 不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或, 多个 ePHICH通 过使用不同的正交码映射到同一个 ePHICH资源上。 优选地, 所述正交码为正交掩码 OCC或者恒包络零自相关序列 CAZAC。 优选地, 在所述正交码的长度为 M的情况下, 按照频域从低到高或时域从前到后 的顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或, 在所述正交码的 长度小于 M的情况下,按照频域从低到高或时域从前到后的顺序以正交码为单位重复 映射到所属 ePHICH的每个资源元素群的资源元素上。 优选地, 在映射 ePHICH的物理资源块对中只有部分资源用于 ePHICH资源的情 况下,剩余资源用于映射物理下行共享信道 PDSCH、增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射,其中,所述剩余资源为除所述 ePHICH资源、用于承载 CRS 的资源、 用于承载 DMRS的资源、 用于映射 PDCCH的资源、 用于承载 CSI-RS的资 源之外的资源。 优选地, 在所述网络侧确定映射于所述 ePHICH的 ePHICH资源之前, 还包括: 所述网络侧通过以下方式至少之一确定用于映射所述 ePHICH的物理资源块对: 映射 所述 ePHICH 的物理资源块对不为发送物理广播信道的物理资源块对、 映射所述 ePHICH的物理资源块对不为用于承载信道状态信息参考信号的物理资源块对。 优选地, 在所述网络侧确定映射于所述 ePHICH的 ePHICH资源之后, 还包括: 所述网络侧通过以下方式至少之一将确定的所述 ePHICH资源通知给所述终端侧: 通 过新增无线资源控制 RRC信令将所述 ePHICH资源通知给所述终端侧;通过重用零功 率信道状态信息参考信号 ZP-CSI-RS或非零功率信道状态信息参考信号 NZP-CSI-RS 的资源的通知信令将所述 ePHICH资源通知给所述终端侧。 根据本发明的另一方面,提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输方法,包括:终端侧确定映射于所述 ePHICH的 ePHICH资源,其中,所述 ePHICH 资源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素群中 的所有资源元素位于同一个物理资源块对中, 所述物理资源块对由网络侧配置给终端 侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、N均为大于等于 1的整数; 所述终端侧根据确定的所述 ePHICH资源接收来自网络侧的传输信息。 优选地, 所述每个资源元素群所包括的 M个资源元素为以下至少之一: 时域固定 一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连 续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M 个资源元素; 频域固一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连 续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mxn, m、 n均为 大于 1的整数;时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素,其中, M=axb, a、 b均为大于 1的整数; 时域离散的 x个符号和频域连续的 y个子载波上 的 M个资源元素, 其中, M = xxy, x、 y均为大于 1的整数。 优选地, 不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或, 多个 ePHICH通 过使用不同的正交码复用映射到同一个 ePHICH资源上。 优选地, 在所述正交码的长度为 M的情况下, 按照频域从低到高或时域从前到后 的顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或, 在所述正交码的 长度小于 M的情况下,按照频域从低到高或时域从前到后的顺序以正交码为单位重复 映射到所属 ePHICH的每个资源元素群的资源元素上。 优选地, 在所述终端侧根据确定的所述 ePHICH资源接收来自网络侧的传输信息 之后, 还包括: 在所述 M个资源元素不仅用于映射所述 ePHICH的情况下, 所述终端 侧采用打孔的方式对所述 ePHICH进行解调。 根据本发明的又一方面,提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输装置, 包括: 第一确定模块, 设置为网络侧确定映射于所述 ePHICH的 ePHICH 资源, 其中, 所述 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资源 元素, 一个资源元素群中的所有资源元素位于同一个物理资源块对中, 所述物理资源 块对由网络侧配置给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的整数;第一传输模块,设置为所述网络侧根据确定的所述 ePHICH 资源向终端侧传输信息。 优选地, 所述第一确定模块, 设置为通过以下方式至少之一确定所述每个资源元 素群所包括的 M个资源元素: 时域固定一个符号和频域连续 M个子载波上的 M个资 源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一 个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离 散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M 个资源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离 散的 b个子载波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域 离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y 均为大于 1的整数。 优选地, 所述第一确定模块包括: 第一映射单元, 设置为将不同的 ePHICH映射 到不同的 ePHICH资源上; 和 /或, 第二映射单元, 设置为将多个 ePHICH通过使用不 同的正交码映射到同一个 ePHICH资源上。 优选地,所述第一确定模块,还设置为确定所述正交码为正交掩码 OCC或者恒包 络零自相关序列 CAZAC。 优选地, 所述第一确定模块还包括: 第三映射单元, 设置为在所述正交码的长度 为 M 的情况下, 将所述正交码按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或, 第四映射单元, 设置为在所述正交 码的长度小于 M的情况下,将所述正交码按照频域从低到高或时域从前到后的顺序以 正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素上。 优选地, 所述第一确定模块, 还设置为在映射 ePHICH的物理资源块对中只有部 分资源用于 ePHICH 资源的情况下, 确定将剩余资源用于映射物理下行共享信道 PDSCH, 增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射, 其中, 所述剩 余资源为除所述 ePHICH资源、 用于承载 CRS的资源、 用于承载 DMRS的资源、 用 于映射 PDCCH的资源、 用于承载 CSI-RS的资源之外的资源。 优选地, 该装置还包括: 第二确定模块, 设置为所述网络侧通过以下方式至少之 一确定用于映射所述 ePHICH的物理资源块对: 映射所述 ePHICH的物理资源块对不 为发送物理广播信道的物理资源块对、 映射所述 ePHICH的物理资源块对不为用于承 载信道状态信息参考信号的物理资源块对。 优选地, 该装置还包括: 通知模块, 设置为所述网络侧通过以下方式至少之一将 确定的所述 ePHICH资源通知给所述终端侧:通过新增无线资源控制 RRC信令将所述 ePHICH 资源通知给所述终端侧; 通过重用零功率信道状态信息参考信号 ZP-CSI-RS 或非零功率信道状态信息参考信号 NZP-CSI-RS的资源的通知信令将所述 ePHICH资 源通知给所述终端侧。 根据本发明的还一方面,提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输装置, 包括: 第三确定模块, 设置为终端侧确定映射于所述 ePHICH的 ePHICH 资源, 其中, 所述 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资源 元素, 一个资源元素群中的所有资源元素位于同一个物理资源块对中, 所述物理资源 块对由网络侧配置给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的整数;第一接收模块,设置为所述终端侧根据确定的所述 ePHICH 资源接收来自网络侧的传输信息。 优选地, 所述第三确定模块, 设置为通过以下方式至少之一确定所述每个资源元 素群所包括的 M个资源元素: 时域固定一个符号和频域连续 M个子载波上的 M个资 源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一 个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离 散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M 个资源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离 散的 b个子载波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域 离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y 均为大于 1的整数。 优选地, 所述第三确定模块包括: 第五映射单元, 设置为将不同的 ePHICH映射 到不同的 ePHICH资源上; 和 /或, 第六映射单元, 设置为将多个 ePHICH通过使用不 同的正交码复用映射到同一个 ePHICH资源上。 优选地, 所述第三确定模块还包括: 第七映射单元, 设置为在所述正交码的长度 为 M 的情况下, 将所述正交码按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或, 第八映射单元, 设置为在所述正交 码的长度小于 M的情况下,将所述正交码按照频域从低到高或时域从前到后的顺序以 正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素上。 优选地, 该装置还包括: 解调模块, 设置为在所述 M个资源元素不仅用于映射所 述 ePHICH的情况下, 所述终端侧采用打孔的方式对所述 ePHICH进行解调。 通过本发明, 采用网络侧确定映射于所述 ePHICH的 ePHICH资源, 其中, 所述 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元 素群中的所有资源元素位于同一个物理资源块对中, 所述物理资源块对由网络侧配置 给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1 的整数; 所述网络侧根据确定的所述 ePHICH资源向终端侧传输信息, 不仅解决了相 关技术中物理混合自动重传请求指示信道的干扰和资源不够用的问题, 而且相对于相 关技术中所采用的方法后向兼容性也较好。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是相关技术中 LTE系统物理资源块 RB的示意图; 图 2是相关技术中 LTE系统物理资源块对的示意图; 图 3是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输方 法的流程图一; 图 4是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输方 法的流程图二; 图 5是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的结构框图一; 图 6是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第一确定模块 52的优选结构框图一; 图 7是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第一确定模块 52的优选结构框图二; 图 8是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图一; 图 9是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图二; 图 10是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的结构框图二; 图 11是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第三确定模块 102的优选结构框图一; 图 12是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第三确定模块 102的优选结构框图二; 图 13是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图三; 图 14 是根据本发明优选实施例一的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 15 是根据本发明优选实施例二的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 16 是根据本发明优选实施例三的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 17 是根据本发明优选实施例四的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 18 是根据本发明优选实施例五的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 19 是根据本发明优选实施例六的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 20 是根据本发明优选实施例七的增强物理混合自动重传请求指示信道的资源 映射图样示意图; 图 21 是根据本发明优选实施例的按照每个物理资源块对中每三个连续子载波构 成一个资源元素群的资源映射图样示意图; 图 22 是根据本发明优选实施例的按照每个物理资源块对中时域每七个连续符号 且频域每六个连续子载波的资源映射图样示意图; 图 23 是根据本发明优选实施例的按照每个物理资源块对中每三个离散子载波构 成一个资源元素群的资源映射图样示意图; 图 24 是根据本发明优选实施例的按照每个物理资源块对中时域每七个连续符号 且频域每六个离散子载波的资源映射图样示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在本实施例中提供了一种增强物理混合自动重传请求指示信道 ePHICH 传输方 法, 图 3是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输方 法的流程图一, 如图 3所示, 该流程包括如下步骤: 步骤 S302, 网络侧确定映射于 ePHICH的 ePHICH资源, 其中, 该 ePHICH资源 包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素群中的所 有资源元素位于同一个物理资源块对中, 该物理资源块对由网络侧配置给终端侧和 / 或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的整数; 步骤 S304, 网络侧根据确定的该 ePHICH资源向终端侧传输信息。 通过上述步骤, 根据新定义的 ePHICH, 并对该新定义的 ePHICH进行资源映射, 不仅解决了相关技术中物理混合自动重传请求指示信道的干扰和资源不够用的问题, 而且相对于相关技术中所采用的方法后向兼容性也较好。 优选地, 用于映射 ePHICH的物理资源块对可以由网络侧配置给终端侧, 也可以 由网络侧与终端侧按照预先约定好的方式确定, 其中, 按照预先约定好的方式确定可 以是由网络侧与终端侧预先约定好该物理资源块对, 也可以是网络侧与终端侧预先约 定好确定物理资源块对的方式,之后网络侧与终端侧根据该方式确定用于映射 ePHICH 的物理资源块对。 另外, 每个资源元素群所包括的 M个资源元素的方式可以多种, 例 如可以采用以下方式至少之一: 时域固定一个符号和频域连续 M个子载波上的 M个 资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定 一个符号和频域离散的 M个子载波上的 M个资源元素; 频域固一个子载波和时域离 散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M 个资源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离 散的 b个子载波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域 离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y 均为大于 1的整数。 另夕卜, 不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或, 多 个 ePHICH通过使用不同的正交码映射到同一个 ePHICH资源上。 需要说明的是, 正交码也可以为多种, 例如, 正交码可以为正交掩码 OCC (Orthogonal Cover Code,简称为 OCC),也可以为恒包络零自相关序列 CAZAC( Const Amplitude Zero Auto-Corelation, 简称为 CAZAC)。 在正交码的长度为 M的情况下, 按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素群的资 源元素上; 和 /或, 在正交码的长度小于 M 的情况下, 按照频域从低到高或时域从前 到后的顺序以正交码为单位重复映射到所属 ePHICH 的每个资源元素群的资源元素 上。 在映射 ePHICH的物理资源块对中只有部分资源用于 ePHICH资源的情况下, 剩 余资源较优地用于映射物理下行共享信道 PDSCH、 增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射, 其中, 该剩余资源为除上述 ePHICH资源、 用于承载 CRS 的资源、 用于承载 DMRS的资源、 用于映射 PDCCH的资源、 用于承载 CSI-RS的资 源之外的资源。 优选地, 在网络侧确定映射于 ePHICH的 ePHICH资源之前, 网络侧确定用于映 射 ePHICH的物理资源块对的方式也可以多种, 例如, 除了上述所说明的: 网络侧可 以通过为终端侧配置资源的方式确定物理资源块对, 网络侧也可以通过与终端侧预先 协商的方式确定物理资源块对外, 网络侧还可以确定映射 ePHICH的物理资源块对不 为发送物理广播信道的物理资源块对, 网络侧还可以确定映射 ePHICH的物理资源块 对不为用于承载信道状态信息参考信号的物理资源块对, 即排除用于发送物理广播信 道的物理资源块对和用于承载信道状态信息参考信号的物理资源块对, 从而有效降低 对物理广播信道与承载信道状态信息参考信号信道的干扰。 而在网络侧确定映射于 ePHICH的 ePHICH资源之后, 网络侧还可以通过多种方 式将确定的该 ePHICH资源通知给终端侧: 例如, 网络侧可以通过新增无线资源控制 (Radio Resource Control, 简称为 RRC) 信令将该 ePHICH资源通知给终端侧, 其中 优选地该新增无线资源控制信令是用户特定的 (UE-specific), 又例如, 网络侧还可以 通过重用零功率信道状态信息参考信号 (Zero Power CSI-RS, 简称为 ZP-CSI-RS) 或 非零功率信道状态信息参考信号 (Non Zero Power CSI-RS, 简称为 NZP-CSI-RS) 的 资源的通知信令将 ePHICH资源通知给终端侧, 还例如, 网络侧还可以通过采用类似 于零功率信道状态信息参考信号 (ZP-CSI-RS ) 或非零功率信令状态信息参考信号 (NZP-CSI-RS) 的配置和 /或通知方法将该 ePHICH资源通知给终端侧。 在本实施例中还提供了一种增强物理混合自动重传请求指示信道 ePHICH传输方 法, 图 4是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输方 法的流程图二, 如图 4所示, 该方法包括如下步骤: 步骤 S402, 终端侧确定映射于 ePHICH的 ePHICH资源, 其中, 该 ePHICH资源 包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素群中的所 有资源元素位于同一个物理资源块对中, 该物理资源块对由网络侧配置给终端侧和 / 或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的整数; 步骤 S404, 终端侧根据确定的上述 ePHICH资源接收来自网络侧的传输信息。 优选地, 每个资源元素群所包括的 M个资源元素也可以有多种方式, 例如可以采 用以下方式至少之一: 时域固定一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符号和 频域离散的 M个子载波上的 M个资源元素; 频域固一个子载波和时域离散的 M个符 号上的 M个资源元素;时域连续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离散的 b个子载 波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域离散的 X个符 号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y均为大于 1的 整数。 其中, 不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或, 多个 ePHICH通过 使用不同的正交码复用映射到同一个 ePHICH资源上。在正交码的长度为 M的情况下, 按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素群的资 源元素上; 和 /或, 在正交码的长度小于 M 的情况下, 按照频域从低到高或时域从前 到后的顺序以正交码为单位重复映射到所属 ePHICH 的每个资源元素群的资源元素 上。 需要说明的是, 在终端侧根据确定的 ePHICH资源接收来自网络侧的传输信息之 后, 并且, 在 M个资源元素不仅用于映射 ePHICH的情况下, 终端侧采用打孔的方式 对 ePHICH进行解调。 在本实施例中还提供了一种增强物理混合自动重传请求指示信道 ePHICH传输装 置, 该装置用于实现上述实施例及优选实施方式, 已经进行过说明的不再赘述。 如以 下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例 所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是可 能并被构想的。 在本实施例中还提供了一种增强物理混合自动重传请求指示信道 ePHICH传输装 置, 图 5是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的结构框图一, 如图 5所示, 该装置包括第一确定模块 52和第一传输模块 54, 下 面对该装置进行说明。 第一确定模块 52, 设置为网络侧确定映射于 ePHICH的 ePHICH资源, 其中, 该 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元 素群中的所有资源元素位于同一个物理资源块对中, 该物理资源块对由网络侧配置给 终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1的 整数; 第一传输模块 54, 连接至上述第一确定模块 52, 设置为网络侧根据确定的 ePHICH资源向终端侧传输信息。 优选地, 该第一确定模块, 还设置为通过以下方式至少之一确定每个资源元素群 所包括的 M个资源元素: 时域固定一个符号和频域连续 M个子载波上的 M个资源元 素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符 号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M个资 源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域离散 的 x个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y均为 大于 1的整数。 图 6是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第一确定模块 52的优选结构框图一, 如图 6所示, 该第一确定模块 52包括: 第 一映射单元 62和 /或, 第二映射单元 64, 下面对该第一确定模块 52进行说明。 第一映射单元 62, 设置为将不同的 ePHICH映射到不同的 ePHICH资源上; 和 / 或, 第二映射单元 64, 设置为将多个 ePHICH通过使用不同的正交码映射到同一个 ePHICH资源上。 优选地, 上述第一确定模块 52, 还设置为确定正交码为正交掩码 OCC或者恒包 络零自相关序列 CAZAC。 图 7是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第一确定模块 52的优选结构框图二, 如图 7所示, 该第一确定模块 52除包括第 一映射单元 62和 /或, 第二映射单元 64外, 还包括: 第三映射单元 72和 /或第四映射 单元 74, 下面对该优选结构进行说明。 第三映射单元 72, 设置为在正交码的长度为 M的情况下, 将正交码按照频域从 低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或, 第四映射单元 74, 设置为在正交码的长度小于 M的情况下, 将正交码按照频 域从低到高或时域从前到后的顺序以正交码为单位重复映射到所属 ePHICH的每个资 源元素群的资源元素上。 优选地, 上述第一确定模块 52, 还设置为在映射 ePHICH的物理资源块对中只有 部分资源用于 ePHICH 资源的情况下, 确定将剩余资源用于映射物理下行共享信道 PDSCH, 增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射, 其中, 该剩余 资源为除上述 ePHICH资源、 用于承载 CRS的资源、 用于承载 DMRS的资源、 用于 映射 PDCCH的资源、 用于承载 CSI-RS的资源之外的资源。 图 8是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图一, 如图 8所示, 该装置除包括图 5所示的所有模块外, 还包括- 第二确定模块 82, 该第二确定模块 82, 连接至上述第一确定模块 52, 设置为网络侧 通过以下方式至少之一确定用于映射 ePHICH的物理资源块对: 映射该 ePHICH的物 理资源块对不为发送物理广播信道的物理资源块对、 映射该 ePHICH的物理资源块对 不为用于承载信道状态信息参考信号的物理资源块对。 图 9是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图二, 如图 9所示, 该装置除包括图 5所示的所有模块外, 还包括- 通知模块 92, 该通知模块 92, 连接至上述第一确定模块 52和上述第一传输模块 54, 设置为网络侧通过以下方式至少之一将确定的上述 ePHICH资源通知给终端侧: 通过 新增无线资源控制 RRC信令将 ePHICH资源通知给终端侧;通过重用零功率信道状态 信息参考信号 ZP-CSI-RS或非零功率信道状态信息参考信号 NZP-CSI-RS的资源的通 知信令将上述 ePHICH资源通知给终端侧; 通过采用类似于零功率信道状态信息参考 信号 ZP-CSI-RS或非零功率信令状态信息参考信号 NZP-CSI-RS的配置和 /或通知方法 将上述 ePHICH资源通知给终端侧。 在本实施例中又提供了一种增强物理混合自动重传请求指示信道 ePHICH传输装 置,图 10是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的结构框图二, 如图 10所示, 该装置包括第二确定模块 102和第二传输模块 104, 下面对该装置进行说明。 第三确定模块 102, 设置为终端侧确定映射于 ePHICH的 ePHICH资源, 其中, 该 ePHICH资源包括 N个资源元素群,每个资源元素群包括 M个资源元素,一个资源 元素群中的所有资源元素位于同一个物理资源块对中, 该物理资源块对由网络侧配置 给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为大于等于 1 的整数; 第一接收模块 104, 连接至上述第三确定模块 102, 设置为终端侧根据确定的 上述 ePHICH资源接收来自网络侧的传输信息。 优选地, 该第三确定模块 102, 还设置为通过以下方式至少之一确定每个资源元 素群所包括的 M个资源元素: 时域固定一个符号和频域连续 M个子载波上的 M个资 源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一 个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离 散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M 个资源元素, 其中, M = mxn, m、 n均为大于 1的整数; 时域连续 a个符号和频域离 散的 b个子载波上的 M个资源元素, 其中, M = axb, a、 b均为大于 1的整数; 时域 离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xxy, x、 y 均为大于 1的整数。 图 11是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第三确定模块 102的优选结构框图一, 如图 11所示, 该第三确定模块 102包括: 第五映射单元 112和 /或第六映射单元 114, 下面对该优选结构进行说明。 第五映射单元 112, 设置为将不同的 ePHICH映射到不同的 ePHICH资源上; 和 / 或, 第六映射单元 114, 设置为将多个 ePHICH通过使用不同的正交码复用映射到同 一个 ePHICH资源上。 图 12是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置中第三确定模块 102的优选结构框图二, 如图 12所示, 该第三确定模块 102除包括 图 11中的第五映射单元 112和 /或第六映射单元 114外, 还包括: 第七映射单元 122, 设置为在正交码的长度为 M的情况下,将正交码按照频域从低到高或时域从前到后的 顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或,第八映射单元 124, 设置为在正交码的长度小于 M的情况下,将正交码按照频域从低到高或时域从前到后 的顺序以正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素上。 图 13是根据本发明实施例的增强物理混合自动重传请求指示信道 ePHICH传输装 置的优选结构框图三, 如图 13所示, 该装置除包括图 10所示的所有模块外, 还包括: 解调模块 132, 该解调模块 132, 设置为在 M个资源元素不仅用于映射 ePHICH的情 况下, 终端侧采用打孔的方式对 ePHICH进行解调。 在本优选实施例中提供了一种增强物理混合自动重传请求指示信道 ePHICH的资 源映射方法, 该方法可以应用于 3GPP中 LTE系统、 高级长期演进系统 (Long Term Evolution Advanced, 简称为 LTE-A) 中。 针对相关技术中物理混合自动重传请求指示信道 (PHICH) 的干扰和资源不够用 的问题。 在本实施例中提供的增强物理混合自动重传请求指示信道的资源映射方法包 括: 一个增强物理混合自动重传请求指示信道资源由 N 个资源元素群 (Resource Element Cluster, 简称为 REC) 构成, 每个资源元素群由 M 个资源元素 (Resource Element, 简称为 RE) 组成, 一个资源元素群中的所有资源元素位于同一个物理资源 块对中, 构成一个增强物理混合自动重传请求指示信道的 N个资源元素群位于相同或 不同的物理资源块对中。 M和 N均为大于等于 1的整数, 较优地, N的取值可以为 1、 2、 2的倍数、 3或者 3的倍数。 其中, 物理资源块对是指一个子帧中频域位置相同的 两个物理资源块 (Physical Resource block, 简称为 PRB), 物理资源块对如图 2所示。 其中, 用于增强物理混合自动重传请求信道传输的物理资源块是由网络侧配置给 终端侧或由网络侧和终端侧预先约定好的。 较优地,每个资源元素群可以由频域或时域连续的四个资源元素(即 M=4)构成, 且这四个资源元素均为非公共参考信号 (CRS)、 非解调参考信号 (DMRS)、 非物理 下行控制信道 (PDCCH)、 以及非信道状态信息参考信号 (CSI-RS) 的资源元素; 多 个增强物理混合自动重传请求指示信道映射到相同的一个增强物理混合自动重传请求 指示信道资源上构成一个增强物理混合自动重传请求指示信道组, 其中属于一个增强 物理混合自动重传请求指示信道组的增强物理混合自动重传请求指示信道之间通过不 同的正交掩码 OCC复用; 例如, 该正交掩码的长度可以为四, 并按照频域从低到高或 时域从前到后的方式依次顺序映射到所属增强物理混合自动重传请求指示信道的每个 资源元素群的四个资源元素上。 优选地, 每个资源元素群也可以由频域或时域连续的两个资源元素 (即 M=2) 构 成, 且这两个资源元素均为非公共参考信号 (CRS)、 非解调参考信号 (DMRS)、 非 下行物理控制信道(PDCCH)、 以及非信道状态信息参考信号 (CSI-RS) 的资源元素; 多个增强物理混合自动重传请求指示信道映射到相同的一个增强物理混合自动重传请 求指示信道资源上构成一个增强物理混合自动重传请求指示信道组, 其中属于一个增 强物理混合自动重传请求指示信道组的增强物理混合自动重传请求指示信道之间通过 不同正交掩码复用; 例如, 该正交掩码的长度可以为二, 并按照频域从低到高或时域 从前到后的方式顺序映射到所属增强物理混合自动重传请求指示信道的每个资源元素 群的两个资源元素上。 优选地, 每个资源元素群由时 /频域连续的四个资源元素构成, 其中任意两个资源 元素频域连续或时域连续, 且这四个资源元素均为非公共参考信号(CRS)、 非解调参 考信号 (DMRS)、 非下行物理控制信道 (PDCCH) 的可用资源元素、 以及非信道状 态信息 (CSI-RS) 参考信号; 多个增强物理混合自动重传请求指示信道映射到相同的 一个增强物理混合自动重传请求指示信道资源上构成一个增强物理混合自动重传请求 指示信道组, 其中属于一个增强物理混合自动重传请求指示信道组的增强物理混合自 动重传请求指示信道之间通过不同的正交掩码复用; 正交掩码的长度为四, 并按照先 频域后时域且频域从低到高或者顺时针或者逆时针的方式顺序映射到所属增强物理混 合自动重传请求指示信道的每个资源元素群的四个资源元素上。 优选地, 每个资源元素群由一个物理资源块对中时域上一个或多个符号和 /或频域 上一个或多个子载波上的所有资源元素构成; 多个增强物理混合自动重传请求指示信 道映射到相同的一个增强物理混合自动重传请求指示信道资源上构成一个增强物理混 合自动重传请求指示信道组, 其中属于一个增强物理混合自动重传请求指示信道组的 增强物理混合自动重传请求指示信道之间通过不同的正交码序列复用; 正交码序列的 长度等于每个资源元素群中的资源元素数量, 并按照先频域后时域且频域从低到高或 者先时域后频域且时域从前到后的方式顺序映射到所属增强物理混合自动重传请求指 示信道的每个资源元素群的资源元素上。 优选地, 每个资源元素群由一个物理资源块对中时域上一个或多个符号和 /或频域 上一个或多个子载波上的所有资源元素构成; 多个增强物理混合自动重传请求指示信 道映射到相同的一个增强物理混合自动重传请求指示信道资源上构成一个增强物理混 合自动重传请求指示信道组, 其中属于一个增强物理混合自动重传请求指示信道组的 增强物理混合自动重传请求指示信道之间通过不同正交掩码复用; 该正交掩码的长度 为二, 并按照先频域后时域且频域从低到高的方式以每两个频域连续的资源元素为一 组依次顺序重复映射到所属增强物理混合自动重传请求指示信道的每个资源元素群上 或者按照先时域后频域且时域从前到后的方式以每两个时域连续的资源元素为一组依 次顺序重复映射到增强物理混合自动重传请求指示信道的每个资源元素群上。 优选地, 每个资源元素群由一个物理资源块对中时域上一个或多个符号和 /或频域 上一个或多个子载波上的所有资源元素构成; 一个增强物理混合自动重传请求信道映 射到一个增强物理混合自动重传请求指示信道资源上, 不同的增强物理混合自动重传 请求信道所占用的资源相互不重叠或覆盖。 优选地, 增强物理混合自动重传请求信道不在发送物理广播信道的物理资源块上 发送。 优选地, 发送增强物理混合自动重传请求信道的子帧为非信道状态信息参考信号 的发送子帧。 优选地, 如果增强物理混合自动重传请求信道的资源元素群中的资源元素上同时 发送了下行物理控制信道(PDCCH)或公共参考信号(CRS)或解调参考信号(DMRS) 或信道状态信息参考信号 (CSI-RS), 那么在这些资源元素上采用打孔的方式对增强 物理混合自动重传请求信道进行解调。 优选地, 如果用于增强物理混合自动重传请求信道的物理资源块对中只有部分资 源用于增强物理混合自动重传请求信道的资源映射, 那么剩余资源用于发送物理下行 共享信道 (PDSCH) 或增强物理下行控制信道 (ePDCCH) 或不发送任何信息。 剩余 资源为除增强物理混合自动重传请求信道资源外不包括公共参考信号(CRS)、解调参 考信号(DMRS)、物理下行控制信道(PDCCH)、以及信道状态信息参考信号(CSI-RS) 的剩余资源元素。 需要说明的是, ePHICH 的映射资源不限于每个物理资源块对中的前一个或前两 个或前三个或前四个符号, 而可能是每个物理资源块对中的任意资源元素。 对于分布式 (Distributed) 的 ePHICH传输, 构成一个 ePHICH资源的 N个资源 元素群, 尽量离散地分布在分配给该 ePHICH的多个物理资源块对之间。 例如, 有 8 个资源元素群和 4个物理资源块对, 假设资源元素群依次索引为 0~7, 物理资源块对 依次索引为 0~3, 那么举个例子, 该 ePHICH的资源元素群按照离散分布规则可以为: 资源元素群 {0,4}分布在物理资源块对 0上,资源元素群 {1,5}分布在物理资源块对 1上, 资源元素群 {2,6}分布在物理资源块对 2上,资源元素群 {3,7}分布在物理资源块对 3上。 对于集中式 (Localized) 的 ePHICH传输, 构成一个 ePHICH资源的 N个资源元 素群通常位于同一个物理资源块对中。 多个 ePHICH可以映射在同一个 ePHICH资源 上构成一个 ePHICH组, 但是同一个 ePHICH组内的 ePHICH之间需要通过不同的正 交码进行复用, 其中正交码优选地为正交掩码, 或者为一个恒包络零自相关序列 CAZAC的不同循环移位序列,也可以为其它的正交码。不同的 ePHICH组所占用的资 源相互不重叠或覆盖。 一个 ePHICH资源上也可以只映射一个 ePHICH,这时不同 ePHICH所占用的资源 相互不重叠或覆盖。 如果一个增强物理混合自动重传请求信道的资源元素中同时发送了下行物理控制 信道 (PDCCH) 或公共参考信号 (CRS) 或解调参考信号 (DMRS) 或信道状态信息 参考信号 (CSI-RS), 那么在这些资源元素上采用打孔的方式对增强物理混合自动重 传请求信道进行解调。 如果一个物理资源块对中增强物理混合自动重传请求信道只占用了其中部分资 源, 那么剩余资源可以用于发送物理下行共享信道 (PDSCH) 或增强物理下行控制信 道或不发送任何信息。 其中该剩余资源为除增强物理混合自动重传请求信道资源外不 包括公共参考信号 (CRS)、 解调参考信号 (DMRS)、 物理下行控制信道 (PDCCH)、 以及信道状态信息参考信号 (CSI-RS) 的剩余资源。 下面对 ePHICH资源映射方法进行举例说明。 方式一: 一个 ePHICH资源由多个资源元素群构成, 其中每个资源元素群是由频域连续的 四个资源元素 (即 M=4) 构成, 且这四个资源元素均为非公共参考信号 (CRS)、 非 解调参考信号 (DMRS)、 非物理下行控制信道 (PDCCH)、 以及非信道状态信息参考 信号 (CSI-RS) 的资源元素。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过不同的正交掩码复用。 其中, 正交掩码的长度等于四, 取值为 [+1 ; +1; +1; +1]或 [+1 ; -1; +1; -1]或 [+1 ; +1 ; -1; -1]或 [+1 ; -1; -1; +1]或 [+j; +j ; +j ; +j]或 [+j; -j; +j; -j]或 [+j; +j; -j; -j] 或 [+j; -j; -j; +j], 并按照频域从低到高的顺序依次映射到每个资源元素群的四个资源 元素上。 方式二: 一个 ePHICH资源由多个资源元素群构成, 其中每个资源元素群是由时域连续的 四个资源元素 (即 M=4) 构成, 且这四个资源元素均为非公共参考信号 (CRS)、 非 解调参考信号 (DMRS)、 非物理下行控制信道 (PDCCH)、 以及非信道状态信息参考 信号 (CSI-RS) 的资源元素。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过不同的正交掩码复用。 其中, 正交掩码的长度等于四, 取值为 [+1 ; +1; +1; +1]或 [+1 ; -1; +1; -1]或 [+1 ; +1; -1; -1]或 [+1 ; -1; -1; +1]或 [+j; +j ; +j ; +j]或 [+j; -j; +j; -j]或 [+j; +j; -j; -j] 或 -j; -j; +j], 并按照时域从前到后顺序依次映射到每个资源元素群的四个资源元 素上。 方式三: 一个 ePHICH资源由多个资源元素群构成, 其中每个资源元素群是由时域和频域 连续的四个资源元素 (即 M=4) 构成, 其中这四个资源元素中的任意两个资源元素为 频域连续或时域连续, 且这四个资源元素均为非公共参考信号(CRS)、 非解调参考信 号(DMRS)、非物理下行控制信道(PDCCH)、以及非信道状态信息参考信号(CSI-RS) 的资源元素。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过不同的正交掩码复用。 其中, 正交掩码的长度等于四, 取值为 [+1 ; +1; +1; +1]或 [+1 ; -1; +1; -1]或 [+1 ; +1 ; -1; -1]或 [+1 ; -1; -1; +1]或 [+j; +j ; +j ; +j]或 [+j; -j; +j; -j]或 [+j; +j; -j; -j] 或 -j; -j; +j], 并按照先频域后时域且频域从低到高的顺序或顺时针或逆时针顺序 依次映射到每个资源元素群的四个资源元素上。 方式四: 一个 ePHICH资源由多个资源元素群构成, 其中每个资源元素群是由频域连续的 两个资源元素 (即 M=2) 构成, 且这两个资源元素均为非公共参考信号 (CRS)、 非 解调参考信号 (DMRS)、 非物理下行控制信道 (PDCCH)、 以及非信道状态信息参考 信号 (CSI-RS) 的资源元素。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过不同的正交掩码复用。 其中, 正交掩码的长度等于二, 取值为 [+1 ; +1]或 [+1 ; -1]或 [+j ; +j]或 [+j ; -j], 并按照频域从低到高的顺序依次映射到每个资源元素群的两个资源元素上。 方式五: 一个 ePHICH资源由多个资源元素群构成, 其中每个资源元素群是由时域连续的 两个资源元素 (即 M=2) 构成, 且这两个资源元素均为非公共参考信号 (CRS)、 非 解调参考信号 (DMRS)、 非物理下行控制信道 (PDCCH)、 以及非信道状态信息参考 信号 (CSI-RS) 的资源元素。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过不同的正交掩码复用。 其中, 正交掩码的长度等于二, 取值为 [+1 ; +1]或 [+1 ; -1]或 [+j ; +j]或 [+j ; -j], 并按照时域从前到后的顺序依次映射到每个资源元素群的两个资源元素上。 优选地, 网络侧可以采用类似于零功率信道状态信息参考信号 (ZP-CSI-RS ) 或 非零功率信道状态信息参考信号(NZP-CSI-RS)的资源配置及通知方式将增强物理混 合自动重传请求指示信道的资源位置通知给终端。 方式六: 一个 ePHICH资源由一个或多个资源元素群构成, 其中每个资源元素群是由一个 子载波上的所有资源元素构成。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过一个 CAZAC序列的不同循环移位序列 复用。 其中, 循环移位序列按照时域从前到后的顺序依次映射到每个资源元素群的资 源元素上。 或者, 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过长度为二的正交掩码复用。 其中, 正交 掩码按照时域从前到后的顺序以每个资源元素群中的每两个连续资源元素为一组进行 映射, 依次顺序重复。 或者, 一个 ePHICH资源上最多只映射一个 ePHICH, 不同 ePHICH资源之间相互不重 叠或覆盖。 方式七: —个 ePHICH资源由一个或多个资源元素群构成, 其中每个资源元素群是由一个 符号上的所有资源元素构成。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过一个 CAZAC序列的不同循环移位序列 复用。 其中, 循环移位序列按照频域从低到高的顺序一次映射到每个资源元素群的资 源元素上。 或者, 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过长度为二的正交掩码复用。 其中, 正交 掩码按照频域从低到高的顺序以每个资源元素群中的每两个连续资源元素为一组进行 映射, 依次顺序重复。 或者, 一个 ePHICH资源上最多只映射一个 ePHICH, 不同 ePHICH资源之间相互不重 叠或覆盖。 方式八: 一个 ePHICH资源由一个或多个资源元素群构成, 其中每个资源元素群是由 P个 连续或离散子载波上的所有资源元素构成, 其中 P为大于 1的整数。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过一个 CAZAC序列的不同循环移位序列 复用。 其中, 循环移位序列按照先时域后频域且时域从前到后的顺序依次映射到每个 资源元素群的资源元素上。 或者, 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过长度为二的正交掩码复用。 其中, 正交 掩码按照先时域后频域且时域从前到后的顺序以每个资源元素群中的每两个连续资源 元素为一组进行映射, 依次顺序重复。 或者, 一个 ePHICH资源上最多只映射一个 ePHICH, 不同 ePHICH资源之间相互不重 叠或覆盖。 方式九: 一个 ePHICH资源由一个或多个资源元素群构成, 其中每个资源元素群是由 P个 连续或离散符号上的所有资源元素构成, 其中 P为大于 1的整数。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过一个 CAZAC序列的不同循环移位序列 复用。 其中, 循环移位序列按照先频域后时域且频域从低到高的顺序依次映射到每个 资源元素群的资源元素上。 或者, 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过长度为二的正交掩码复用。 其中, 正交 掩码按照先频域后时域且频域从低到高的顺序以每个资源元素群中的每两个连续资源 元素为一组进行映射, 依次顺序重复。 或者, 一个 ePHICH资源上最多只映射一个 ePHICH, 不同 ePHICH资源之间相互不重 叠或覆盖。 方式十: 一个 ePHICH资源由一个或多个资源元素群构成, 其中每个资源元素群是由 P个 连续 /离散子载波和 Q个连续 /离散符号上的所有资源元素构成, 其中 P和 Q均为大于 1的整数。 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过一个 CAZAC序列的不同循环移位序列 复用。 其中, 循环移位序列按照先频域后时域且频域从低到高的顺序或先时域后频域 时域从前到后的顺序依次映射到每个资源元素群的资源元素上。 或者, 多个 ePHICH映射到一个相同的 ePHICH资源上, 从而构成一个 ePHICH组。 其 中属于同一个 ePHICH组的 ePHICH之间通过长度为二的正交掩码复用。 其中, 正交 掩码按照先频域后时域且频域从低到高的顺序或先时域后频域且时域从前到后的顺序 以每个资源元素群中的每两个连续资源元素为一组进行映射, 依次顺序重复。 或者, 一个 ePHICH资源上最多只映射一个 ePHICH, 不同 ePHICH资源之间相互不重 叠或覆盖。 方式 ^一: 一个 ePHICH资源由一个或多个资源元素群构成, 其中资源元素群的资源组成方 式也可以是不统一的, 例如一个 ePHICH由三个资源元素群组成, 其中资源元素群 0 和 2是由时域连续的两个资源元素组成, 而资源元素群 1是由频域连续的两个资源元 素组成。 下面针对上述实施方式列举一些优选实施例: 实施例一 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码(OCC, Orthogonal Cover Code)复用。一个 ePHICH资源由索引对 ^111'"^10^ 确定, 其中 为 ePHICH组序号, "^HICH为组内 ePHICH索引即 0CC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 14是根据本发明优选实施例一的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 14所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 9和符号 10可用于 ePHICH映射, 共可映射 6个资源元素群, 其中每个资源元 素群由频域连续的 4个资源元素(RE, Resource Element)构成。 例如, 符号 9中的子 载波 0-3构成上述 ePHICH PRBs上的第 1个可用的资源元素群,符号 9中的子载波 4-7 构成上述 ePHICH PRBs上的第 2个可用的资源元素群, 符号 9中的子载波 8-11构成 上述 ePHICH PRBs上的第 3个资源元素群,符号 10中的子载波 0-3构成上述 ePHICH PRBs上的第 4个资源元素群,符号 10中的子载波 4-7构成上述 ePHICH PRBs上的第 5个资源元素群, 符号 10中的子载波 8-11构成上述 ePHICH PRBs上的第 6个资源元 素群。 优选地, 上述用于发送 ePHICH的子帧为非 CSI-RS子帧。 一个 ePHICH由 3个资源元素群构成, 共占用 12个 RE。 每个 ePHICH的 3个资 源元素群可以分布在相同 PRB或不同的 PRB上。 常规 CP下, 8个 ePHICH通过长度 为 4的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面 所描述的资源元素群为单位; 扩展 CP下, 4个 ePHICH通过长度为 2的 OCC码复用 为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面所描述的资源元素 群中每两个频域连续的 REs为单位。表 2是不同 ePHICH之间的 OCC配置表, 如表 2 所示。例如,用户 1的 ePHICH 1在某个 PRB上占用的资源元素群资源为如图 14所示 的第一个资源元素群,假如为常规 CP,且用户 1被分配到的 OCC码为 [+1 + 1 + 1 + 1], 那么用户 1 的 OCC码将按照频域从低到高的方式依次映射到第一个资源元素群的 4 个 REs上; 假如为扩展 CP, 且用户 1被分配到的 OCC码为 [+ 1 + 1], 那么用户 1的 OCC码将按照频域从低到高的方式依次顺序重复映射到第一个资源元素群的前 2个和 后 2个 REs上。
表 2 配置索引 OCC
"PHICH 常规 CP 扩展 CP
0 [+1 +1 +1 +1: [+1 +1
1 + 1 -1 +1 -1 + 1 -I
2 + 1 +1 -1 -1 +j +J
3 +1 -1 -1 +1 +j -J
4 +j +j +j +j -
5 [+j — j +j -j. -
6 [+j +j j -j. -
7 [+j -j -j +j. - ePHICH PRBs中的符号 9和符号 10上的资源元素 (RE) 仅用于发送 ePHICH, 除符号 9和符号 10之外的资源可用于发送 PDCCH、 公共参考信号 (CRS, Common Reference Signal ) 解调参考信号 (DMRS, Demodulation Reference Signal ) 定位参考 信号 (PRS, Positioning Reference Signal) 以及 PDSCH禾口 /或 ePDCCH等信号 /信道。 值得注意的是: 本优选实施例中所描述的方案 ePHICH的映射资源并不限于符号 9和符号 10, 典 型地, ePHICH的映射资源可以是 ePHICH PRBs中某一个或几个符号, 在这些符号上 仅发送 ePHICH,除这些符号之外的资源上可用于 PDCCH、 CRS、 DMRS、以及 PDSCH 和 /或 ePDCCH等其它信号 /信道; ePHICH在非 PBCH资源上映射; 优选地 ePHICH在非 CSI-RS资源上进行映射; 构成一个 ePHICH的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任 意整数, N的值为固定的或是由网络侧配置的。
实施例二 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 ("p H'"SneH)确定,其中 nepHICH 组序号, "^ICH为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 15是根据本发明优选实施例二的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 15所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 4-13都可以用于 ePHICH映射, 最多一共可以映射 12个资源元素群, 其中每 个资源元素群由时域连续的 4个资源元素 (RE, Resource Element) 构成。 例如符号 6-9上的子载波 2、 4、 7、 8分别构成上述 ePHICH PRBs的第 1-4个可用的资源元素群, 符号 8-11上的子载波 1、 5、 10、 11分别构成上述 ePHICH PRBs的第 5-8个可用的资 源元素群, 符号 10-13上的子载波 2、 4、 7、 8分别构成上述 ePHICH PRBs的第 9-12 个可用的资源元素群。上述用于映射 ePHICH的 RE资源为 ePHICH PRBs中除 PDCCH、 CRS、 DMRS等之外的剩余 RE, 优选地上述用于发送 ePHICH的子帧为非 CSI-RS子 帧。 一个 ePHICH由 3个资源元素群构成, 共占用 12个 RE。 每个 ePHICH的 3个资 源元素群可以分布在相同 PRB或不同的 PRB上。 常规 CP下, 8个 ePHICH通过长度 为 4的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面 所描述的资源元素群为单位; 扩展 CP下, 4个 ePHICH通过长度为 2的 OCC码复用 为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面所描述的资源元素 群中每两个时域连续的 REs为单位。 具体 OCC码如上述表 2所示。 例如, 用户 1的 ePHICH 1在某个 PRB上占用的资源元素群资源为如图 3所示的第一个资源元素群, 假如为常规 CP, 且用户 1被分配到的 OCC码为 [+ 1 + 1 + 1 + 1], 那么用户 1的 OCC 码将按照时域从前到后(或从后到前)的方式依次映射到第一个资源元素群的 4个 REs 上; 假如为扩展 CP, 且用户 1被分配到的 OCC码为 [+ 1 + 1], 那么用户 1的 OCC码 将按照时域从前到后 (或从后到前) 的方式依次顺序重复映射到第一个资源元素群的 前 2个和后 2个 REs上。 ePHICH 所在的物理资源块 (ePHICH PRBs) 上的资源元素 (RE) 不用于发送 PDSCH或 PDCCH等其它信道。 值得注意的是, 本优选实施例中所描述的方案 ePHICH的映射资源并不限于这一 种映射方式, 只要保证 ePHICH的资源元素群所属的 4个 REs时域是连续的, 且与其 它信号或信道不冲突即可。 本优选实施例中所描述的方案 ePHICH的映射资源也不限 于符号 4~13,例如在新载波类型中符号 0~13都是 ePHICH的可映射资源。 ePHICH在 非 PBCH资源上映射,优选地 ePHICH在非 CSI-RS资源上进行映射。构成一个 ePHICH 的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定 的或是由网络侧配置的。 实施例三 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 ("^11'^^11)确定,其中 为 ePHICH 组序号, "^HICH为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 16是根据本发明优选实施例三的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 16所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 4-13都可以用于 ePHICH映射, 最多一共可以映射 14个资源元素群, 其中每 个资源元素群由连续两个符号上的连续两个子载波构成。例如符号 5、 6上的子载波 3、 4构成上述 ePHICH PRBs上的第 1个可用的资源元素群, 符号 5、 6上的子载波 7、 8 构成第 2个可用的资源元素群, 符号 7、 8上的子载波 1、 2构成第 3个可用的资源元 素群, 符号 7、 8上的子载波 4、 5构成第 4个可用的资源元素群, 符号 7、 8上的子载 波 7、 8构成第 5个可用的资源元素群, 符号 7、 8上的子载波 10、 11构成第 6个可用 的资源元素群, 符号 9、 10上的子载波 0、 1构成第 7个可用的资源元素群, 符号 9、 10上的子载波 2、 3构成第 8个可用的资源元素群, 符号 9、 10上的子载波 4、 5构成 第 9个可用的资源元素群, 符号 9、 10上的子载波 6、 7构成第 10个可用的资源元素 群, 符号 9、 10上的子载波 8、 9构成第 11个可用的资源元素群, 符号 9、 10上的子 载波 10、 11构成第 12个可用的资源元素群, 符号 12、 13上的子载波 3、 4构成第 13 个可用的资源元素群, 符号 12、 13上的子载波 7、 8构成第 14个可用的资源元素群。 上述用于映射 ePHICH的 RE资源为 ePHICH PRBs中除 PDCCH、 CRS、 DMRS等之 外的剩余 RE, 优选地上述用于发送 ePHICH的子帧为非 CSI-RS子帧。 一个 ePHICH由 3个资源元素群构成, 共占用 12个 RE。 每个 ePHICH的 3个资 源元素群可以分布在相同或不同的 PRB上。 常规 CP下, 8个 ePHICH通过长度为 4 的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面所描 述的资源元素群为单位; 扩展 CP下, 4个 ePHICH通过长度为 2的 OCC码复用为一 组 ePHICH, 映射到相同的 ePHICH资源上, OCC映射以上面所描述的资源元素群中 每两个时域连续 (或每两个频域连续) 的 REs为单位。 具体 OCC码如表 2所示。 例 如,用户 1的 ePHICH 1在某个 PRB上占用的资源元素群资源为如图 14所示的第一个 资源元素群, 假如为常规 CP, 且用户 1被分配到的 OCC码为 [+ 1 + 1 + 1 + 1], 那么 用户 1的 OCC码将从该资源元素群中固定某一个 RE开始顺时针或逆时针映射到资源 元素群的四个 REs上; 加入为扩展 CP, 且用户 1被分配到的 OCC码为 [+ 1 + 1], 那么 用户 1的 OCC码将按照时域从前到后(或从后到前)的方式依次顺序重复映射到该资 源元素群的两个子载波上或按照频域从低到高的方式依次顺序重复映射到该资源元素 群的两个符号上。 ePHICH 所在的物理资源块 (ePHICH PRBs) 上的资源元素 (RE) 不用于发送 PDSCH或 PDCCH等其它信道。 值得注意的是, 本实施例中所描述的方案 ePHICH的映射资源并不限于这一种映 射方式, 只要保证 ePHICH的资源元素群所属的 4个 REs中任意两个 REs是时域连续 的或是频域连续的, 且与其它信号或信道不冲突即可。 ePHICH在非 PBCH资源上映 射,优选地 ePHICH在非 CSI-RS资源上进行映射。构成一个 ePHICH的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或是由网络侧 配置的。
实施例四 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 ("fp°HTeH'" ;qHieH)确定,其中 nepHICH 组序号, 为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 17是根据本发明优选实施例四的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 17所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 4-13都可以用于 ePHICH映射, 最多一共可以映射 36个资源元素群, 其中每 个资源元素群由频域上连续的两个子载波构成。 例如符号 4的子载波 1和 2、 4和 5、 7和 8、 10和 11上分别映射 ePHICH PRBs上的第 1~4个资源元素群, 符号 5上的子 载波 2和 3、 7和 8上分别映射 ePHICH PRBs上的第 5、 6个资源元素群, 符号 6上的 子载波 2和 3、 7和 8上分别映射 ePHICH PRBs上的第 7、 8个资源元素群, 符号 7 上的子载波 1和 2、 4和 5、 7和 8、 10和 11上分别映射第 9~12个资源元素群, 符号 8上的子载波 1和 2、 4和 5、 7和 8、 10和 11上分别映射第 13~16个资源元素群, 符 号 9上的子载波 0和 1、 2禾 B 3、 4禾 B 5、 6禾 B 7、 8和 9、 10禾 B 11分别映射第 17~22 个资源元素群, 符号 10上的子载波 0和 1、 2禾 B 3、 4禾 B 5、 6禾 B 7、 8禾 B 9、 10和 11 分别映射第 23~28个资源元素群, 符号 11上的子载波 1和 2、 4和 5、 7和 8、 10和 11分别映射第 29~32个资源元素群,符号 12上的子载波 2和 3、7和 8分别映射第 33、 34个资源元素群, 符号 13上的子载波 2和 3、 7和 8分别映射第 35、 36个资源元素 群。 上述用于映射 ePHICH的 RE资源为 ePHICH PRBs中除 PDCCH、 CRS、 DMRS 等之外的剩余 RE, 优选地上述用于发送 ePHICH的子帧为非 CSI-RS子帧。 一个 ePHICH由 3个资源元素群构成, 共占用 6个 RE。每个 ePHICH的 3个资源 元素群可以分布在相同或不同的 PRB上。 4个 ePHICH通过长度为 2的 OCC码复用 为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC码按照频域从低频到高频的方 式映射到每个资源元素群上。 表 3是不同 ePHICH之间的 OCC配置表, 如表 3所示。 优选地: 常规 CP和扩展 CP下的 ePHICH资源映射均采用与现有标准中 PHICH在扩 展 CP下相同的资源映射方式, 其中 ePHICH中的一个资源元素组由两个资源元素群 构成。 如图 17所示, 在每个 ePHICH PRBs中按照从频域到时域, 频域从低频到高频 的方式每连续的两个资源元素群构成一个增强的资源元素组。 ePHICH在映射的时候, 先补零再映射, 例如:
[d(2i) d(2i + l) 0 Oj «P¾7H mod 2 = 0
[d(0) (4i) d(0) (4i + l) d(0) (4i + 2) d(0) (4i + 3)
[0 0 (2i) (2i + l)] O od 2 = l 其中, 表示上行 ACK/NACK信息经过信道编码、调制以及扩频加扰之后的数 据信息。 表 3
Figure imgf000032_0001
ePHICH 所在的物理资源块 (ePHICH PRBs ) 上的资源元素 (RE ) 不用于发送 PDSCH或 PDCCH等其它信道。 值得注意的是, 本实施例中所描述的方案 ePHICH的映射资源并不限于这一种映 射方式, 只要保证 ePHICH的资源元素群所属的 2个 REs是频域连续的, 且与其它信 号或信道不冲突即可; 本实施例中所描述的方案 ePHICH 的映射资源也不限于符号 4~13,例如在新载波类型中符号 0~13都是 ePHICH的可映射资源。 ePHICH在非 PBCH 资源上映射,优选地 ePHICH在非 CSI-RS资源上进行映射。构成一个 ePHICH的资源 元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或是 由网络侧配置的。
实施例五 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 (" p H'" SneH)确定,其中 nepHICH 组序号, " HI™为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 18是根据本发明优选实施例五的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 18所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 4-13都可以用于 ePHICH映射, 一共最多可以映射 40个资源元素群, 其中每 个资源元素群由两个时域或频域连续的 RE构成。具体映射规则为:一个 ePHICH PRBs 中所有 CRS所在子载波上的 OCC按照每两个连续 RE映射一次, 所有 DMRS所在的 符号上的 OCC按照每个子载波每两个连续 RE映射一次, 其余资源上 OCC都按照每 个符号上从低频到高频每两个连续 RE映射一次。上述用于映射 ePHICH的 RE资源为 ePHICH PRBs中除 PDCCH、 CRS、 DMRS等之外的剩余 RE, 优选地上述用于发送 ePHICH的子帧为非 CSI-RS子帧。 一个 ePHICH由 3个资源元素群构成, 共占用 6个 RE。每个 ePHICH的 3个资源 元素群可以分布在相同或不同的 PRB上。 4个 ePHICH通过长度为 2的 OCC码复用 为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC码按照频域从低频到高频或时 域从前到后的方式映射到每个资源元素群上。具体 OCC码如表 3所示。优选地: 常规 CP和扩展 CP下的 ePHICH资源映射均采用与现有标准中 PHICH在扩展 CP下相同的 资源映射方式, 其中 ePHICH中的一个资源元素组由两个资源元素群构成。如图 18所 示, 在每个 ePHICH PRBs中按照从频域到时域,频域从低频到高频的方式每连续的两 个资源元素群构成一个增强的资源元素组。 ePHICH在映射的时候, 先补零再映射, 例如: [„) „ + l) „ + 2) d^ (4l + 3)J = ^(2l d(2' + l) 。 。【 "p8HOicP H mod 2 = 0
L J [0 0 d(2i) d(2i + l)]T O od 2 = l 其中, 表示上行 ACK/NACK信息经过信道编码、调制以及扩频加扰之后的数 据信息。 ePHICH 所在的物理资源块 (ePHICH PRBs) 上的资源元素 (RE) 不用于发送 PDSCH或 PDCCH等其它信道。 值得注意的是, 本实施例中所描述的方案 ePHICH的映射资源并不限于这一种映 射方式, 只要保证 ePHICH的资源元素群所属的 2个 REs是频域连续的, 且与其它信 号或信道不冲突即可。 本实施例中所描述的方案 ePHICH 的映射资源也不限于符号 4~13,例如在新载波类型中符号 0~13都是 ePHICH的可映射资源。 ePHICH在非 PBCH 资源上映射,优选地 ePHICH在非 CSI-RS资源上进行映射。构成一个 ePHICH的资源 元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或是
实施例六 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过一个 ZC序 列的 N个不同循环移位序列复用。 一个 ePHICH资源由索引对 ( ρ Η'":; Η)确定, 其 中 "HH为 ePHICH组序号, SncH为组内 ePHICH索引即循环移位序列配置索弓 I。 N 是固定的或由网络侧通过信令配置的, 当由网络侧配置时 N的值可以通过设置循环移 位间隔来间接确定。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 19是根据本发明优选实施例六的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 19所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 0~13都可以用于 ePHICH映射, 一共最多可以映射 12个资源元素群。 其中每 个资源元素群由 ePHICH PRBs中每个子载波上的 14个 RE构成。 当发送 ePHICH的 RE上同时发送了其它信号或信道例如 PDCCH、 CRS、 DMRS等时, 则 ePHICH在该 RE上采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 N个 ePHICH通过一个 ZC序列的 N个循环移位序列复用在 相同的 ePHICH资源上。 上述 ZC序列的长度为 14, 在每个子载波上按照时域从前到 后的方式顺序映射。 值得注意的是, 本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH物理资源块对中部分子载波被用于 ePHICH发送, 这时优选地 ePHICH PRBs 中的剩余资源(子载波)也可用于发送 ePDCCH或 PDSCH。另夕卜, ePHICH在非 PBCH 资源上映射, 构成 ePHICH的每个资源元素群也可由多个子载波构成。 本发明实施例中用于 ePHICH组内不同 ePHICH之间复用的序列也不限于 ZC序 列,只要满足用于不同 ePHICH之间复用的序列是正交的即可。典型地也可以 7组 OCC 序列顺序重复排列获得, 例如表 4所示: 表 4
Figure imgf000035_0001
构成一个 ePHICH的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任 意整数, N的值为固定的或是由网络侧配置的。
实施例七 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过一个 ZC序 列的 N个不同循环移位序列复用。 一个 ePHICH资源由索引对 ( ρ Η'":; Η)确定, 其 中 "HH为 ePHICH组序号, "^HICH为组内 ePHICH索引即循环移位序列配置索弓 I。 N 是固定的或由网络侧通过信令配置的, 当由网络侧配置时 N的值可以通过设置循环移 位间隔来间接确定。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。图 20是根据本发明优选实施例七的增强物理混合自动重传请求指示信道的资源 映射图样示意图,如图 20所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中符号 4~13都可以用于 ePHICH映射, 一共最多可以映射 8个资源元素群。其中每个 资源元素群由 ePHICH PRBs中每个符号上的 12个 RE构成。当发送 ePHICH的 RE上 同时发送了其它信号或信道例如 PDCCH、 CRS、 DMRS等时, 则 ePHICH在该 RE上 采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 N个 ePHICH通过一个 ZC序列的 N个循环移位序列复用在 相同的 ePHICH资源上。 上述 ZC序列的长度为 12, 在每个符号上按照频域从低到高 的方式顺序映射。 值得注意的是, 本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH 物理资源块对中其它符号配置, 例如在新载波类型中所有符号都可用于 ePHICH 发送, 或者符号 4~13 中只有部分部分被用于 ePHICH 发送, 这时优选地 ePHICH PRBs中的剩余资源也可用于发送 ePDCCH或 PDSCH。 另夕卜, ePHICH在非 PBCH资源上映射, 构成 ePHICH的每个资源元素群也可由多个符号组成。 本发明实施例中用于 ePHICH组内不同 ePHICH之间复用的序列也不限于 ZC序 列,只要满足用于不同 ePHICH之间复用的序列是正交的即可,典型地也可以 7组 OCC 序列顺序重复排列获得, 例如表 4所示。 构成一个 ePHICH的资源元素群为 N个, N 不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或是由网络侧配置的。
实施例八 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 (" p H'" SneH)确定,其中 为 epHICH 组序号, 为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。 如图 19所示, 每个 ePHICH所在的物理资源块 (简称为 ePHICH PRBs) 中符 号 0~13都可以用于 ePHICH映射, 一共最多可以映射 12个资源元素群。 其中每个资 源元素群由 ePHICH PRBs中每个子载波上的 14个 RE构成。当发送 ePHICH的 RE上 同时发送了其它信号或信道例如 PDCCH、 CRS、 DMRS等时, 则 ePHICH在该 RE以 及与该 RE共用同一组 OCC的 RE上采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 4个 ePHICH通过长度为 2的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC码按照在每个子载波上以时域每两个连续 RE为 —组从前到后的方式依次顺序重复映射。 值得注意的是, 本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH物理资源块对中的部分子载波,这时优选地该物理资源块对中的剩余资源(子 载波)也可用于发送 ePDCCH或 PDSCH。 另夕卜, ePHICH在非 PBCH资源上映射, 构 成 ePHICH的资源元素群也可以由多个子载波组成。 构成一个 ePHICH的资源元素群 为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或是由网络 侧配置的。
实施例九 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 (" p H'" SneH)确定,其中 nepHICH 组序号, "^HICH为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。 如图 20所示, 每个 ePHICH所在的物理资源块 (简称为 ePHICH PRBs) 中符 号 4~13都可以用于 ePHICH映射, 一共最多可以映射 8个资源元素群。其中每个资源 元素群由 ePHICH PRBs中每个符号上的 12个 RE构成。当发送 ePHICH的 RE上同时 发送了其它信号或信道例如 PDCCH、 CRS、 DMRS等时, 则 ePHICH在该 RE以及与 该 RE共用同一组 OCC的 RE上采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 4个 ePHICH通过长度为 2的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC码按照在每个符号上以频域每两个连续 RE为一 组从低频到高频的方式依次顺序重复映射。 值得注意的是, 本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH 物理资源块对中其它符号配置, 例如在新载波类型中所有符号都可用于 ePHICH发送,或者符号 4~13中只有部部分被用于 ePHICH发送,这时优选地 ePHICH PRBs中的剩余资源也可用于发送 ePDCCH或 PDSCH。 另外, ePHICH在非 PBCH资 源上映射, 构成 ePHICH的资源元素群也可由多个符号组成。 构成一个 ePHICH的资 源元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定的或 是由网络侧配置的。
实施例十 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH)对应的 ACK/NACK信息。至多一个 ePHICH映射到一个 ePHICH 资源上。 不同 ePHICH所占用的资源相互不重叠或覆盖。 一个 ePHICH资源可以通过 网络侧信令通知的方式确定, 也可以通过资源索引 来确定。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。 图 21-24是根据本发明优选实施例的增强物理混合自动重传请求指示信道的资 源映射图样示意图,如图 21-24所示,每个 ePHICH所在的物理资源块(简称为 ePHICH PRBs) 中被划分为最多四个资源元素群, 其中每个资源群均占用上述物理资源块中的 四分之一的资源, 且相互不重叠或覆盖。 四个资源元素群的划分方法存在多种, 例如: 图 21 是根据本发明优选实施例的按照每个物理资源块对中每三个连续子载波构成一 个资源元素群的资源映射图样示意图, 如图 21所示, 子载波 0~2上的所有 RE构成第 一个资源元素群, 子载波 3~5上的所有 RE构成第二个资源元素群, 子载波 6~8上的 所有 RE构成第三个资源元素群, 子载波 9~11上的所有 RE构成第四个资源元素群; 图 22 是根据本发明优选实施例的按照每个物理资源块对中时域每七个连续符号且频 域每六个连续子载波的资源映射图样示意图, 如图 22所示, 符号 0~6上的子载波 0~5 构成第一个资源元素群, 符号 7~13上的子载波 0~5构成第二个资源元素群, 符号 0~6 上的子载波 6~11构成第三个资源元素群,符号 7~13上的子载波 6~11构成第四个资源 元素群;图 23是根据本发明优选实施例的按照每个物理资源块对中每三个离散子载波 构成一个资源元素群的资源映射图样示意图, 如图 23所示; 图 24是根据本发明优选 实施例的按照每个物理资源块对中时域每七个连续符号且频域每六个离散子载波的资 源映射图样示意图, 如图 24所示。 当发送 ePHICH的 RE上同时发送了其它信号或信 道例如 PDCCH、 CRS、 DMRS等时,则 ePHICH在该 RE上采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 值得注意的是, ePHICH在非 PBCH资源上映射。本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH物理资源块对中部分资源或资源元素群, 这时优选 地 ePHICH PRBs中的剩余资源也可用于发送 ePDCCH或 PDSCH。 构成一个 ePHICH 的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定 的或是由网络侧配置的。
实施例 ^一 增强物理混合自动重传请求指示信道(ePHICH)携带与上行数据传输(例如物理 上行共享信道 PUSCH) 对应的 ACK/NACK信息。 多个 ePHICH映射到相同的一组资 源上构成一个 ePHICH组, 其中属于一个 ePHICH组的 ePHICH之间通过不同的正交 掩码 OCC复用。一个 ePHICH资源由索引对 ("^11'^^11)确定,其中 为 ePHICH 组序号, "^ICH为组内 ePHICH索引即 OCC配置索引。 ePHICH所在的物理资源块 (后简称为 ePHICH PRBs) 是由网络侧配置或预先约 定的。 如图 21-24所示, 每个 ePHICH所在的物理资源块 (简称为 ePHICH PRBs) 中 被划分为最多四个资源元素群, 其中每个资源群均占用上述物理资源块中的四分之一 的资源, 且相互不重叠或覆盖。 四个资源元素群的划分方法存在多种, 例如: 按照每 个物理资源块对中每三个连续子载波构成一个资源元素群, 如图 21所示, 子载波 0~2 上的所有 RE构成第一个资源元素群, 子载波 3~5上的所有 RE构成第二个资源元素 群, 子载波 6~8上的所有 RE构成第三个资源元素群, 子载波 9~11上的所有 RE构成 第四个资源元素群; 按照每个物理资源块对中时域每七个连续符号且频域每六个连续 子载波的划分方式, 如图 22所示, 符号 0~6上的子载波 0~5构成第一个资源元素群, 符号 7~13上的子载波 0~5构成第二个资源元素群, 符号 0~6上的子载波 6~11构成第 三个资源元素群, 符号 7~13上的子载波 6~11构成第四个资源元素群; 按照每个物理 资源块对中每三个离散子载波构成一个资源元素群, 如图 23所示; 按照每个物理资源 块对中时域每七个连续符号且频域每六个离散子载波的划分方式, 如图 24所示。当发 送 ePHICH的 RE上同时发送了其它信号或信道例如 PDCCH、 CRS、 DMRS等时, 则 ePHICH在该 RE上采用打孔的方式进行解调。 一个 ePHICH由 3个资源元素群构成。 每个 ePHICH的 3个资源元素群可以分布 在相同或不同的 PRB上。 4个 ePHICH通过长度为 2的 OCC码复用为一组 ePHICH, 映射到相同的 ePHICH资源上, OCC码按照在每个符号上以频域每两个连续 RE为一 组从低频到高频的方式依次顺序重复映射或者按照在每个子载波上以时域每两个连续 RE为一组从低频到高频的方式依次顺序重复映射。 值得注意的是, ePHICH在非 PBCH资源上映射。本实施例中所描述的方案 ePHICH 的映射资源也可以是一个 ePHICH物理资源块对中部分资源或资源元素群, 这时优选 地 ePHICH PRBs中的剩余资源也可用于发送 ePDCCH或 PDSCH。 构成一个 ePHICH 的资源元素群为 N个, N不限于等于 3, N为大于等于 1的任意整数, N的值为固定 的或是由网络侧配置的。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种增强物理混合自动重传请求指示信道 ePHICH传输方法, 包括:
网络侧确定映射于所述 ePHICH的 ePHICH资源, 其中, 所述 ePHICH资 源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素 群中的所有资源元素位于同一个物理资源块对中, 所述物理资源块对由网络侧 配置给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M、 N均为 大于等于 1的整数;
所述网络侧根据确定的所述 ePHICH资源向终端侧传输信息。
2. 根据权利要求 1所述的方法, 其中, 所述每个资源元素群所包括的 M个资源元 素为以下至少之一:
时域固定一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mXn, m、 n均为大于 1的整数;
时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素, 其中, M = aXb, a、 b均为大于 1的整数;
时域离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xXy, x、 y均为大于 1的整数。
3. 根据权利要求 1或 2所述的方法, 其中,
不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或,
多个 ePHICH通过使用不同的正交码映射到同一个 ePHICH资源上。
4. 根据权利要求 3所述的方法, 其中,
所述正交码为正交掩码 OCC或者恒包络零自相关序列 CAZAC。
5. 根据权利要求 3所述的方法, 其中, 在所述正交码的长度为 M的情况下,按照频域从低到高或时域从前到后的 顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或,
在所述正交码的长度小于 M的情况下,按照频域从低到高或时域从前到后 的顺序以正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素 上。
6. 根据权利要求 1所述的方法, 其中,
在映射 ePHICH的物理资源块对中只有部分资源用于 ePHICH资源的情况 下, 剩余资源用于映射物理下行共享信道 PDSCH、 增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射, 其中, 所述剩余资源为除所述 ePHICH 资源、 用于承载 CRS的资源、 用于承载 DMRS的资源、 用于映射 PDCCH的 资源、 用于承载 CSI-RS的资源之外的资源。
7. 根据权利要求 1所述的方法, 其中, 在所述网络侧确定映射于所述 ePHICH的 ePHICH资源之前, 还包括:
所述网络侧通过以下方式至少之一确定用于映射所述 ePHICH的物理资源 块对: 映射所述 ePHICH的物理资源块对不为发送物理广播信道的物理资源块 对、 映射所述 ePHICH的物理资源块对不为用于承载信道状态信息参考信号的 物理资源块对。
8. 根据权利要求 1所述的方法, 其中, 在所述网络侧确定映射于所述 ePHICH的 ePHICH 资源之后, 还包括: 所述网络侧通过以下方式至少之一将确定的所述 ePHICH资源通知给所述终端侧:
通过新增无线资源控制 RRC信令将所述 ePHICH资源通知给所述终端侧; 通过重用零功率信道状态信息参考信号 ZP-CSI-RS或非零功率信道状态信 息参考信号 NZP-CSI-RS的资源的通知信令将所述 ePHICH资源通知给所述终 /iml
顺侧。
9. 一种增强物理混合自动重传请求指示信道 ePHICH传输方法, 包括:
终端侧确定映射于所述 ePHICH的 ePHICH资源, 其中, 所述 ePHICH资 源包括 N个资源元素群, 每个资源元素群包括 M个资源元素, 一个资源元素 群中的所有资源元素位于同一个物理资源块对中, 所述物理资源块对由网络侧 配置给终端侧和 /或由网络侧与终端侧按照预先约定好的方式确定, M N均为 大于等于 1的整数; 所述终端侧根据确定的所述 ePHICH资源接收来自网络侧的传输信息。
10. 根据权利要求 9所述的方法, 其中, 所述每个资源元素群所包括的 M个资源元 素为以下至少之一:
时域固定一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mXn, m、 n均为大于 1的整数;
时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素, 其中, M = aXb, a、 b均为大于 1的整数;
时域离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xXy, x、 y均为大于 1的整数。
11. 根据权利要求 9或 10所述的方法, 其中,
不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或,
多个 ePHICH通过使用不同的正交码复用映射到同一个 ePHICH资源上。
12. 根据权利要求 11所述的方法, 其中,
在所述正交码的长度为 M的情况下,按照频域从低到高或时域从前到后的 顺序映射到所属 ePHICH的每个资源元素群的资源元素上; 和 /或,
在所述正交码的长度小于 M的情况下,按照频域从低到高或时域从前到后 的顺序以正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素 上。
13. 根据权利要求 9所述的方法, 其中, 在所述终端侧根据确定的所述 ePHICH资 源接收来自网络侧的传输信息之后, 还包括:
在所述 M个资源元素不仅用于映射所述 ePHICH的情况下,所述终端侧采 用打孔的方式对所述 ePHICH进行解调。
14. 一种增强物理混合自动重传请求指示信道 ePHICH传输装置, 包括: 第一确定模块, 设置为网络侧确定映射于所述 ePHICH的 ePHICH资源, 其中, 所述 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资 源元素, 一个资源元素群中的所有资源元素位于同一个物理资源块对中, 所述 物理资源块对由网络侧配置给终端侧和 /或由网络侧与终端侧按照预先约定好 的方式确定, M、 N均为大于等于 1的整数;
第一传输模块, 设置为所述网络侧根据确定的所述 ePHICH资源向终端侧 传输信息。
15. 根据权利要求 14所述的装置, 其中, 所述第一确定模块, 设置为通过以下方式 至少之一确定所述每个资源元素群所包括的 M个资源元素:
时域固定一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mXn, m、 n均为大于 1的整数;
时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素, 其中, M = aXb, a、 b均为大于 1的整数;
时域离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xXy, x、 y均为大于 1的整数。
16. 根据权利要求 14或 15所述的装置, 其中, 所述第一确定模块包括:
第一映射单元, 设置为将不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或,
第二映射单元, 设置为将多个 ePHICH通过使用不同的正交码映射到同一 个 ePHICH资源上。
17. 根据权利要求 16所述的装置, 其中,
所述第一确定模块, 还设置为确定所述正交码为正交掩码 OCC 或者恒包 络零自相关序列 CAZAC。
18. 根据权利要求 16所述的装置, 其中, 所述第一确定模块还包括: 第三映射单元, 设置为在所述正交码的长度为 M的情况下, 将所述正交码 按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素 群的资源元素上; 和 /或,
第四映射单元, 设置为在所述正交码的长度小于 M的情况下, 将所述正交 码按照频域从低到高或时域从前到后的顺序以正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素上。
19. 根据权利要求 14所述的装置, 其中,
所述第一确定模块, 还设置为在映射 ePHICH的物理资源块对中只有部分 资源用于 ePHICH资源的情况下, 确定将剩余资源用于映射物理下行共享信道 PDSCH、 增强物理下行控制信道 ePDCCH、 或不进行任何信道的映射, 其中, 所述剩余资源为除所述 ePHICH资源、用于承载 CRS的资源、用于承载 DMRS 的资源、 用于映射 PDCCH的资源、 用于承载 CSI-RS的资源之外的资源。
20. 根据权利要求 14所述的装置, 其中, 还包括: 第二确定模块, 设置为所述网络侧通过以下方式至少之一确定用于映射所 述 ePHICH的物理资源块对: 映射所述 ePHICH的物理资源块对不为发送物理 广播信道的物理资源块对、 映射所述 ePHICH的物理资源块对不为用于承载信 道状态信息参考信号的物理资源块对。
21. 根据权利要求 14所述的装置, 其中, 还包括:
通知模块, 设置为所述网络侧通过以下方式至少之一将确定的所述 ePHICH 资源通知给所述终端侧: 通过新增无线资源控制 RRC 信令将所述 ePHICH 资源通知给所述终端侧; 通过重用零功率信道状态信息参考信号 ZP-CSI-RS或非零功率信道状态信息参考信号 NZP-CSI-RS的资源的通知信令 将所述 ePHICH资源通知给所述终端侧。
22. 一种增强物理混合自动重传请求指示信道 ePHICH传输装置, 包括:
第三确定模块, 设置为终端侧确定映射于所述 ePHICH的 ePHICH资源, 其中, 所述 ePHICH资源包括 N个资源元素群, 每个资源元素群包括 M个资 源元素, 一个资源元素群中的所有资源元素位于同一个物理资源块对中, 所述 物理资源块对由网络侧配置给终端侧和 /或由网络侧与终端侧预先协商确定,所 述物理资源块对由网络侧配置给终端侧和 /或由网络侧与终端侧按照预先约定 好的方式确定, M、 N均为大于等于 1的整数; 第一接收模块, 设置为所述终端侧根据确定的所述 ePHICH资源接收来自 网络侧的传输信息。
23. 根据权利要求 22所述的装置, 其中, 所述第三确定模块, 设置为通过以下方式 至少之一确定所述每个资源元素群所包括的 M个资源元素:
时域固定一个符号和频域连续 M个子载波上的 M个资源元素; 频域固定一个子载波和时域连续 M个符号上的 M个资源元素; 时域固定一个符号和频域离散的 M个子载波上的 M个资源元素; 频域固定一个子载波和时域离散的 M个符号上的 M个资源元素; 时域连续 m个符号和频域连续 n个子载波上的 M个资源元素, 其中, M = mXn, m、 n均为大于 1的整数;
时域连续 a个符号和频域离散的 b个子载波上的 M个资源元素, 其中, M = aXb, a、 b均为大于 1的整数;
时域离散的 X个符号和频域连续的 y个子载波上的 M个资源元素, 其中, M = xXy, x、 y均为大于 1的整数。
24. 根据权利要求 22或 23所述的装置, 其中, 所述第三确定模块包括:
第五映射单元, 设置为将不同的 ePHICH映射到不同的 ePHICH资源上; 和 /或,
第六映射单元, 设置为将多个 ePHICH通过使用不同的正交码复用映射到 同一个 ePHICH资源上。
25. 根据权利要求 24所述的装置, 其中, 所述第三确定模块还包括:
第七映射单元, 设置为在所述正交码的长度为 M的情况下, 将所述正交码 按照频域从低到高或时域从前到后的顺序映射到所属 ePHICH的每个资源元素 群的资源元素上; 和 /或,
第八映射单元, 设置为在所述正交码的长度小于 M的情况下, 将所述正交 码按照频域从低到高或时域从前到后的顺序以正交码为单位重复映射到所属 ePHICH的每个资源元素群的资源元素上。 根据权利要求 22所述的装置, 其中, 还包括: 解调模块,设置为在所述 M个资源元素不仅用于映射所述 ePHICH的情况 所述终端侧采用打孔的方式对所述 ePHICH进行解调。
PCT/CN2013/084220 2012-12-17 2013-09-25 增强物理混合自动重传请求指示信道传输方法及装置 WO2014094477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210548120.6 2012-12-17
CN201210548120.6A CN103873215B (zh) 2012-12-17 2012-12-17 增强物理混合自动重传请求指示信道传输方法及装置

Publications (1)

Publication Number Publication Date
WO2014094477A1 true WO2014094477A1 (zh) 2014-06-26

Family

ID=50911368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084220 WO2014094477A1 (zh) 2012-12-17 2013-09-25 增强物理混合自动重传请求指示信道传输方法及装置

Country Status (2)

Country Link
CN (1) CN103873215B (zh)
WO (1) WO2014094477A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196368A1 (en) * 2014-06-24 2015-12-30 Panasonic Intellectual Property Corporation Of America Terminal, base station, transmission method, and reception method
CN106385712B (zh) * 2015-07-27 2021-07-23 中兴通讯股份有限公司 一种数据传输方法及系统
US11398851B2 (en) * 2016-02-08 2022-07-26 Sony Group Corporation Operating a cellular MIMO system
CN107370534A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 信道状态信息的测量方法及装置
WO2018058543A1 (en) * 2016-09-30 2018-04-05 Lenovo Innovations Limited (Hong Kong) Retransmission indication
EP3461174A4 (en) * 2016-10-20 2019-08-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR SENDING UPLINK DATA, NETWORK-SIDED DEVICE AND DEVICE DEVICE
WO2018113045A1 (zh) * 2016-12-19 2018-06-28 华为技术有限公司 一种上行信息传输方法及设备
CN108282305B (zh) 2017-01-06 2021-09-14 华为技术有限公司 参考信号的传输方法和设备
WO2019134096A1 (zh) * 2018-01-04 2019-07-11 Oppo广东移动通信有限公司 车联网中用于传输数据的方法、终端设备和网络设备
US20200266943A1 (en) * 2019-02-14 2020-08-20 Mediatek Inc. Data transmission from multiple transmission points
CN110289939B (zh) * 2019-06-24 2021-09-28 成都中科微信息技术研究院有限公司 一种rb级重传的基站及系统
CN110225551B (zh) * 2019-06-24 2021-09-24 成都中科微信息技术研究院有限公司 一种rb级重传的终端及系统
CN110225552B (zh) * 2019-06-24 2021-09-24 成都中科微信息技术研究院有限公司 一种rb级重传的方法及系统
CN112332962B (zh) * 2020-10-29 2023-03-21 上海擎昆信息科技有限公司 资源映射、解资源映射的方法及其控制方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938793A (zh) * 2009-07-02 2011-01-05 华为技术有限公司 一种phich信道分配的方法及设备
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN102546134A (zh) * 2011-12-29 2012-07-04 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置
WO2012090028A1 (en) * 2010-12-31 2012-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of acknowledgment channels to channel groups having variable transmit energies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787097B1 (ko) * 2009-11-18 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 harq 수행 방법 및 장치
CN102638892B (zh) * 2012-03-26 2014-07-09 电信科学技术研究院 一种对e-pdcch进行资源映射的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938793A (zh) * 2009-07-02 2011-01-05 华为技术有限公司 一种phich信道分配的方法及设备
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
WO2012090028A1 (en) * 2010-12-31 2012-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of acknowledgment channels to channel groups having variable transmit energies
CN102546134A (zh) * 2011-12-29 2012-07-04 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置

Also Published As

Publication number Publication date
CN103873215A (zh) 2014-06-18
CN103873215B (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2014094477A1 (zh) 增强物理混合自动重传请求指示信道传输方法及装置
KR102020005B1 (ko) 무선통신시스템에서 하향링크 제어 채널 전송을 위한 방법 및 장치
US10205575B2 (en) Methods for sending and receiving ACK/NACK information, base station, and terminal
EP2045952B1 (en) Allocation of resources to a control channel in a multicarrier mobile communication system
KR101770174B1 (ko) 다중 계층 빔포밍을 위한 방법 및 시스템
CN105049168B (zh) 在通信系统中发送和接收参考信号的方法和装置
JP5856810B2 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
KR100925439B1 (ko) 물리 하이브리드 arq 지시 채널 매핑 방법
EP3051908B1 (en) Terminal, base station, and communication method
WO2018143174A1 (ja) 基地局装置、端末装置およびその通信方法
CN113228549A (zh) 在无线通信系统中生成harq-ack码本的方法以及使用该方法的装置
JP6417614B2 (ja) 端末装置、基地局装置、および、通信方法
CN104009832A (zh) 用于增强上行链路参考信号的特征的装置和方法
WO2013097497A1 (zh) 基于增强phich传输反馈信息的方法及装置
WO2011098037A1 (zh) 一种生成参考信号的方法、基站及终端
EP3051899B1 (en) Terminal, base station, and communication method
WO2014110921A1 (zh) ePHICH的发送方法及装置、接收方法及装置
WO2014161495A1 (zh) 下行数据的传输、传输处理方法及装置
WO2014114113A1 (zh) Dmrs处理方法及装置
JP2010004499A (ja) 移動通信システムにおけるユーザ装置、基地局装置及び通信方法
WO2011160473A1 (zh) 信道测量导频发送方法及装置
WO2014135002A1 (zh) Pmch传输方法和设备
WO2014183475A1 (zh) ePHICH的发送和接收方法及系统
WO2011000290A1 (zh) 指示信道配置的方法和接收数据的方法及设备
WO2014183472A1 (zh) 增强物理混合自动重传请求指示信道的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864123

Country of ref document: EP

Kind code of ref document: A1