WO2014094312A1 - Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis - Google Patents

Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis Download PDF

Info

Publication number
WO2014094312A1
WO2014094312A1 PCT/CN2012/087204 CN2012087204W WO2014094312A1 WO 2014094312 A1 WO2014094312 A1 WO 2014094312A1 CN 2012087204 W CN2012087204 W CN 2012087204W WO 2014094312 A1 WO2014094312 A1 WO 2014094312A1
Authority
WO
WIPO (PCT)
Prior art keywords
ester
reaction
serine
cysteine
lipase
Prior art date
Application number
PCT/CN2012/087204
Other languages
French (fr)
Chinese (zh)
Inventor
李金亮
张仙
赵楠
金圣芳
Original Assignee
上海迪赛诺化学制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海迪赛诺化学制药有限公司 filed Critical 上海迪赛诺化学制药有限公司
Priority to PCT/CN2012/087204 priority Critical patent/WO2014094312A1/en
Publication of WO2014094312A1 publication Critical patent/WO2014094312A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/18Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one nitrogen atom, e.g. guanine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides

Definitions

  • the invention belongs to the technical field of biocatalysis synthesis, and particularly relates to a method for enzymatically synthesizing a nucleoside amino acid derivative. Background technique
  • nucleoside drugs have received extensive attention for the treatment of viral diseases.
  • clinically used nucleoside drugs have problems such as toxic side effects and drug resistance.
  • Nucleoside prodrugs can improve the oral bioavailability and pharmacokinetics of nucleoside drugs, target drugs to specific lesions, prolong the action time, reduce toxic side effects, improve antiviral effect, expand antiviral spectrum, and modify nucleosides.
  • An important direction of drug-like structure For example, valacyclovir is acyclovir L-valine methyl ester, which can improve the malabsorption of acyclovir by oral administration. It can be well absorbed in the gastrointestinal tract after oral administration and completely hydrolyzed by enzyme.
  • Cytarabine is mainly used in the treatment of acute leukemia, including lung cancer, digestive tract cancer, head and neck cancer and malignant lymphoma. It is an anti-metabolic drug, which is improved by improving the molecular structure of the drug. An important way.
  • nucleoside drugs Modification of the molecular structure of nucleoside drugs by traditional chemical synthesis requires complex steps such as acylation and catalytic hydrogenolysis, and requires the use of special chemical catalysts, usually with low yield, poor selectivity, and contamination. And various disadvantages such as toxicity. Enzymatic synthesis has the characteristics of mild conditions and good selectivity, and is widely used in the derivatization of multi-functional drugs, especially nucleoside drugs. In recent years, many biocatalytic methods have been used to structurally modify nucleoside drugs. Reports such as Riva et al.
  • the present invention provides a method for synthesizing a nucleoside amino acid derivative by a protease or a lipase which is simple in operation, high in selectivity, mild in temperature, and low in solvent and low in pollution.
  • the first aspect of the present invention provides a method for enzymatically synthesizing a nucleoside amino acid derivative, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under a catalysis of a protease to obtain a nucleoside amino acid derivative;
  • the nucleoside compound is acyclovir, ganciclovir, inosine, guanosine, adenosine or cytarabine;
  • the L-amino acid ester is a liquid L-serine ester, a liquid L- Alanine ester, liquid L-cysteine ester or liquid L-phenylalanine ester;
  • the nucleoside amino acid derivative is acyclovir-L-serine ester, acyclovir-L-alanine ester, acyclovir-L-cysteine ester, acyclovir-L -phenylalaninate, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L-benzene Alanine ester, inosine-L-serine ester, inosine-L-alaninate, inosine-L-cysteine, inosine-L-phenylalaninate, guanosine-L- Serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-serine ester, adenosine-L-a
  • the proteinase is Bacillus subtilis alkaline protease, Bacillus licheniformis alkaline protease, alkaline protease 3. 0T, alkaline protease 2. 4L FG, Saiwei proteinase 8. 0T, Saiwei proteinase 16. 0 L, Yi Rui Protease 8. 0 L, Iverase 16. 0 L or thermolysin.
  • the protease is alkaline protease 3. 0T.
  • the L-serine ester is L-serine d- 4 ester; and/or the L-alanine ester is L-alanine d- 4 ester; and/or The L-cysteine ester is L-cysteine (and 4 ); and/or the L-phenylalanine ester is L-phenylalanine d- 4 ester.
  • the L-serine ester is L-serine methyl ester, L-serine ethyl ester, L-serine n-propyl ester or L-serine methyl ester.
  • the L-alanine ester is L-alanine methyl ester.
  • the L-cysteine ester is L-cysteine methyl ester.
  • the L-phenylalanine ester is L-phenylalanine methyl ester.
  • the second aspect of the present invention provides a method for enzymatically synthesizing a nucleoside amino acid derivative, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under the catalysis of a lipase to obtain a nucleoside amino acid derivative; ,
  • the nucleoside compound is acyclovir, ganciclovir, inosine, guanosine or adenosine;
  • the L-amino acid ester is a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine.
  • Acid ester is a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine.
  • the nucleoside amino acid derivatives are acyclovir-L-valine ester, acyclovir-L-serine ester, acyclovir-L-alaninate, acyclovir-L- Cysteine ester, acyclovir-L-phenylalanine ester, ganciclovir-L-valine ester, ganciclovir-L-serine ester, ganciclovir-L-alanine Acid ester, ganciclovir-L-cysteine ester, ganciclovir-L-phenylalanine ester, inosine-L-valine ester, inosine-L-serine ester, inosine- L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L-valine ester, guanosine-L-serine ester, guanosine-L-
  • the lipase is Libo lipase 100T, ⁇ 435 lipase, lipase PS Amano SD, lipase AS Amano, lipase AK Amano, lipase G, lipase AYS Amano, Candida antarctica lipase B (CALB) ) or alkaline lipase Greasex 50L.
  • the L-valine ester is an L-valine C1-4 ester; and/or the L-serine ester is an L-serine d- 4 ester; and/or The L-alanine ester is L-alanine d- 4 ester; and/or the L-cysteine ester is L-cysteine CH ester; and/or the L- The phenylalanine ester is L-phenylalanine d- 4 ester.
  • the L-valine ester is L-valine methyl ester or L-valine ethyl ester.
  • the L-serine ester is L-serine methyl ester, L-serine ethyl ester, L-serine n-propyl ester or L-serine methyl ester.
  • the L-alanine ester is L-alanine methyl ester.
  • the L-cysteine ester is L-cysteine methyl ester.
  • the L-phenylalanine ester is L-phenylalanine methyl ester.
  • the L-amino acid ester is L-valine methyl ester.
  • the lipase is Candida antartica lipase B.
  • the nucleoside compound is acyclovir or ganciclovir.
  • the concentration of the nucleoside compound in the reaction system is 10 to 50 g/L. In another preferred embodiment, the concentration of the nucleoside compound in the reaction system is 20 to 30. g/L o In another preferred embodiment, the protease or lipase is present in the reaction system at a concentration of 8 to 65 g/L. In another preferred embodiment, the concentration of the protease or lipase in the reaction system is 15 to 30 g/L. In another preferred embodiment, the reaction is carried out at 20 to 70 ° C; and / Or the reaction described is carried out 24 ⁇
  • reaction is carried out at 30 to 50 °C.
  • reaction is carried out for 72 to 96 hours.
  • reaction is carried out at a relative vacuum of from -100 to -500 mbar.
  • nucleoside amino acid derivative is prepared by a solventless reaction of a nucleoside compound with an L-amino acid ester which is liquid at a reaction temperature by using a protease or a lipase as a catalyst. Economical, environmentally friendly, mild reaction conditions, high conversion rate, simple product purification and high purity. On this basis, the inventors have completed the present invention.
  • the L-valine d- 4 ester is L-valine decyl ester, such as L-valine methyl ester, L-valine ethyl ester, L-valine n-propyl Ester, L-valine isopropyl ester, L-valine n-butyl ester, L-valine isobutyl ester, L-valine t-butyl ester, or the like.
  • L-valine decyl ester such as L-valine methyl ester, L-valine ethyl ester, L-valine n-propyl Ester, L-valine isopropyl ester, L-valine n-butyl ester, L-valine isobutyl ester, L-valine t-butyl ester, or the like.
  • the L-serine d- 4 ester is L-serine d- 4 decyl ester, such as L-serine methyl ester, L-serine Ethyl ester, n-propyl L-serine, isopropyl L-serine, n-butyl L-serine, isobutyl L-serine, tert-butyl L-serine, or the like.
  • the L-alanine d- 4 ester is L-alanine CH-ester, such as L-alanine methyl ester, L-alanine ethyl ester, L-alanine n-propyl ester, L - isopropyl alaninate, n-butyl L-alanine, isobutyl L-alanine, tert-butyl L-alanine, or the like.
  • the L-cysteine d- 4 ester is L-cysteine CH-ester, such as L-cysteine methyl ester, L-cysteine ethyl ester, L-cysteine N-propyl ester, L-cysteine isopropyl ester, L-cysteine n-butyl ester, L-cysteine isobutyl ester, L-cysteine tert-butyl ester, or the like.
  • L-cysteine CH-ester such as L-cysteine methyl ester, L-cysteine ethyl ester, L-cysteine N-propyl ester, L-cysteine isopropyl ester, L-cysteine n-butyl ester, L-cysteine isobutyl ester, L-cysteine tert-butyl ester, or the like.
  • the L-phenylalanine d- 4 ester is L-phenylalanine d- 4 decyl ester, such as L-phenylalanine methyl ester, L-phenylalanine ethyl ester, L-phenyl propyl N-propyl propyl ester, isopropyl L-phenylalanine, n-butyl L-phenylalanine, isobutyl L-phenylalanine, tert-butyl L-phenylalanine, or the like .
  • nucleoside amino acid derivative is a compound shown in Table 1.
  • the present invention provides a preferred method for enzymatically synthesizing a nucleoside amino acid derivative, which comprises the steps of: reacting a nucleoside compound with an L-amino acid ester under the catalysis of a protease to obtain a nucleoside amino acid derivative.
  • the nucleoside compound is preferably acyclovir, ganciclovir, inosine, guanosine, adenosine or cytarabine.
  • the L-amino acid ester is preferably a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine ester.
  • the L-serine ester is L-serine d- 4 ester; the L-alanine ester is L-alanine CH ester; and the L-cysteine ester is L- Cysteine d- 4 ester; the L-phenylalanine ester is L-phenylalanine ( ⁇ 4 ester).
  • the protease is preferably Bacillus subtilis alkaline protease, Bacillus licheniformis alkaline protease, Alcalase 3. 0T, Alcalase 2. 4L FG, Savinase protease 8. 0T , Savinase 16. 0 L, Esperase 8. 0 L, Eversase 16. 0 L or thermolys in; preferably, said Egg
  • the white enzyme is alkaline protease (Alcalase) 3. 0T, which has better catalytic effect and higher catalytic efficiency and selectivity.
  • the nucleoside amino acid derivatives are: acyclovir-L-serine ester, acyclovir-L-alanine ester, acyclovir-L-cysteine ester, acyclovir- L-phenylalanine ester, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L- Phenylalanine ester, inosine-L-serine ester, inosine-L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L - Serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-serine ester
  • the present invention provides another preferred method for the enzyme-catalyzed synthesis of a nucleoside amino acid derivative, which comprises the steps of: reacting a nucleoside compound with an L-amino acid ester under the catalysis of a lipase to obtain a nucleoside amino acid derivative.
  • the nucleoside compound is preferably acyclovir, ganciclovir, inosine, guanosine or adenosine;
  • the L-amino acid ester is preferably a liquid L-valine ester, a liquid L-serine Ester, liquid L-alanine ester, liquid L-cysteine ester or liquid L-phenylalanine ester.
  • the L-amino acid ester is preferably a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L. - phenylalanine ester.
  • the L-valine ester is L-valine d- 4 ester
  • the L-serine ester is L-serine d- 4 ester
  • the L-alanine ester is L - alanine d- 4 ester
  • the L-cysteine ester is L-cysteine ester
  • the L-phenylalanine ester is L-phenylalanine d- 4 ester.
  • the lipase is Lipolas e 100T, Novo435 lipase, lipase PS Amano SD, Lipase AS Amano, Lipase AK Amano ), Lipase G, lipase AYS L ipase AYS Amano, Candida antarctica lipase B (CALB) or alkaline lipase Greasex 50L.
  • the lipase is Candida antarctica lipase B, which has better catalytic effect and higher catalytic efficiency and selectivity.
  • the nucleoside amino acid derivatives are: acyclovir-L-valine ester, acyclovir-L-serine ester, acyclovir-L-alaninate, acyclovir-L -cysteine ester, acyclovir-L-phenylalanine ester, ganciclovir-L-valine ester, ganciclovir-L-serine ester, ganciclovir-L-propyl Acid ester, ganciclovir-L-cysteine ester, ganciclovir-L-phenylalanine ester, inosine-L-valine ester, inosine-L-serine ester, inosine -L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L-valine ester, guanosine-L-serine ester, guanos
  • the above two methods of the present invention employ an L-amino acid ester (preferably L-amino acid- 4 ester) which is liquid at the reaction temperature, and can be enzymatically reacted without adding other solvents by utilizing its liquid state.
  • the liquid L-amino acid ester serves as both a reactant and a solvent, and an increase in the amount of the L-amino acid ester can increase the conversion efficiency of the product, and the excess L-amino acid ester can be recycled and reused. Therefore, the method has good selectivity, high conversion rate, high yield (yield exceeds 65%, preferably 65-95% or 70-90%), good quality, low cost, less environmental pollution, It is easy to operate and is suitable for industrialization.
  • the reaction system is composed of an L-amino acid ester and a nucleoside compound, and a protease or a lipase is added, and the enzyme is catalyzed at a certain temperature (for example, 20 to 70 ° C; preferably 30 to 50).
  • the reaction is carried out for a period of time (e.g., 24 to 120 hours; preferably 72 to 96 hours) to synthesize a series of nucleoside amino acid derivatives.
  • the reaction time refers to the time required until the conversion of the catalytic reaction is substantially constant, and the so-called "time at which the conversion rate is substantially constant" means a time when the conversion rate changes by 5% every 24 hours.
  • the concentration of the nucleoside compound in the reaction system is 10 to 50 g/L, preferably 20 to 30 g/Lo.
  • the present invention selects an appropriate amount of protease or lipase to facilitate the reaction.
  • the protease or lipase has a concentration in the reaction system of 8 to 65 g/L, preferably 15 to 30 g/L.
  • the protease or lipase is anhydrous or substantially anhydrous.
  • the enzyme used in the method is convenient in source, and can be used as a catalyst to catalyze the reaction of a nucleoside compound and an L-amino acid ester without a special treatment procedure, thereby producing a product with high optical purity and high yield.
  • the enzyme of the present invention has the characteristics of good selectivity and high conversion rate.
  • the L-amino acid ester in the method is a reactant and a solvent, and the reaction is carried out without adding other solvents, the reaction substrate concentration is high, the product conversion efficiency is high, the quality is good, and the excess L-amino acid ester can be recovered. Reuse, which reduces costs and reduces environmental pollution.
  • the method has mild reaction conditions, simple operation, simple post-treatment and wide industrial application prospects, and has important application value in the preparation and research of nucleoside prodrugs.
  • the invention will be further elucidated below in conjunction with specific implementations. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the experimental methods in the following examples that do not specify the specific conditions are usually According to conventional conditions, such as those described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or in accordance with the conditions recommended by the manufacturer. Percentages and parts are by weight unless otherwise stated.
  • Raw materials or reagents such as acyclovir, ganciclovir, inosine, guanosine, adenosine, cytarabine, L-amino acid ester hydrochloride, etc., which are used in the present invention, are commercially available products unless otherwise specified.
  • Example 1 Raw materials or reagents such as acyclovir, ganciclovir, inosine, guanosine, adenosine, cytarabine, L-amino acid ester hydrochloride, etc.
  • L-amino acid esters The preparation of the other L-amino acid esters is the same as this, except that different L-amino acid ester hydrochlorides are used instead of L-valine methyl ester hydrochloride.
  • Bacillus subtilis S01 Bacillus licheniformis S02 was purchased from the China General Microorganisms Collection and Management Center (CGMCC).
  • CGMCC China General Microorganisms Collection and Management Center
  • Bacillus subtilis S01 fermentation medium g/L: yeast extract 20, sucrose 10, Tween-80 5, magnesium sulfate 0 ⁇ 2, pH 9.
  • the above two kinds of medium were sterilized at 121 °C for 15 min, cooled, sterilized, inoculated with Bacillus subtilis S01 or Bacillus licheniformis S02, inoculated in 4%, fermented for 36 h at 37 ° C, 200 r/min.
  • the supernatant of the fermentation broth was collected by centrifugation at 7500 rcf for 10 min.
  • Conversion rate (%) product peak area / (product peak area + substrate peak area) * 100% content determination method - acyclovir and product acyclovir-L-alanine ester content using high-performance liquid phase
  • the chromatographic conditions were as follows: C18-XDB column (250 X 4. 6 mm, Agi lent), mobile phase methanol/water (volume ratio 20/80), column temperature 30 ° C; flow rate 0. 8 Ml/min, detection wavelength 254 nm, injection volume 5 ⁇ 1 .
  • the peak time of acyclovir standard was 3. 4 min, and the peak time of acyclovir-L-alanine standard was 5. 3 min.
  • Example 3-10 Enzymatic Reaction
  • the experimental method was the same as in Example 2, except that the reaction system was carried out under the conditions shown in Table 2, respectively.
  • alkaline protease Alcalase 3. 0T and Alcalase 2. 4L FG was selected as the catalyst to catalyze the highest catalytic activity of acyclovir for the synthesis of acyclovir-L-alanine ester, and lipase such as CALB. It exhibited a catalytic effect comparable to that of Alcalase 3. 0T and Alcalase 2. 4L FG.
  • Example 11 Enzyme catalytic reaction
  • the experimental procedure was the same as that of Example 11, except that the conversion of the above reaction was measured by liquid chromatography using a raw material or an enzyme catalyst as shown in Table 3, and the catalytic activity of the enzyme catalyst was evaluated.
  • the transesterification reaction can be used to structurally modify the polyfunctional nucleoside compound.
  • the lipase CALB is used to modify the acyclovir with L-valine methyl ester.
  • the catalytic activity is the highest, which is cytarabine 5 . Times around.
  • Inosine 200 mg (0.74 mmol) was added to a 50 ml round bottom flask, followed by L-alanine methyl ester 10 ml.
  • a reaction system having a substrate concentration of 20 g/L was formed, and Savinase 16.
  • OL O. 5 g was added, and the reaction was carried out under reduced pressure (vacuum degree - 700 mbar) at 60 ° C for 72 h.
  • the reaction rate of the reaction was determined to be 41.2%, and the reaction was continued for 24 hours.
  • the conversion of the reaction was determined to be 59.8%, and the reaction was continued for 24 hours.
  • the conversion of the reaction was 74.5%, and the reaction was continued for 24 hours. 8% ⁇
  • the conversion rate of the determination was 78.8%.
  • reaction was converted to a reaction rate of 75. 8 and the reaction was determined to be 75. 6% ⁇ The conversion of the reaction was determined to be 87.6%.
  • the reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from ethanol to obtain ganciclovir-L-valine ester hydrochloride 488. 0 mg (0. 98 mmol, molar yield 83.7%), optical purity 98. 5%.
  • Inosine 200 mg (0.74 mmol) was added to a 50 ml round bottom flask, and 10 ml of L-serine methyl ester was added to form a reaction system having a substrate concentration of 20 g/L, and lipase PS Amano SD 0. 2 was added. g, the reaction was carried out under reduced pressure (vacuum degree -300 mbar) at 50 ° C for 48 h, and the conversion of the reaction was determined by liquid chromatography to be 41. 5%, the reaction was continued for 24 h, and the conversion of the reaction was determined to be 73. 9% ⁇ The reaction rate was determined to be 85.9%.
  • Examples 34 and 35 indicate that the conversion rate is poor after the addition of an organic solvent such as dimethyl sulfoxide or water.
  • organic solvents or water have a greater influence on the activity of the enzyme in the reaction system, which is not conducive to the continuation of the reaction, and will have a greater impact on the post-treatment.
  • the protease or lipase used is commercially available or can be obtained by a simple fermentation method without going through some special treatment process. This method can obtain a product of high purity without additional solvent addition. Under the catalysis of the protease or lipase of the present invention, the method has high conversion rate, high selectivity, few by-products, and simple post-treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a method for synthesizing nucleoside amino acid derivatives through enzyme catalysis, which comprises the step of: under the catalysis of protease or lipase, nucleoside compounds and L-amino acid ester reacting to obtain nucleoside amino acid derivatives. This method does not require other solvents.

Description

一种酶催化合成核苷氨基酸衍生物的方法  Method for catalyzing the synthesis of nucleoside amino acid derivatives by enzyme
技术领域  Technical field
本发明属于生物催化合成技术领域,具体涉及一种酶催化合成核苷氨基酸衍生 物的方法。 背景技术  The invention belongs to the technical field of biocatalysis synthesis, and particularly relates to a method for enzymatically synthesizing a nucleoside amino acid derivative. Background technique
近年来, 核苷类药物用于治疗病毒类疾病受到了广泛的关注。然而, 临床上使 用的核苷类药物存在毒副作用大、耐药性等问题。核苷类前药可改善核苷类药物口 服生物利用度及药动学,靶向药物到特定病变部位,延长作用时间,降低毒副作用, 提高抗病毒效果, 扩大抗病毒谱, 是修饰核苷类药物结构的一个重要方向。如伐昔 洛韦为阿昔洛韦 L-缬氨酸甲酯, 能改善阿昔洛韦口服给药吸收不良的缺点, 口服 后能在胃肠道极好地吸收, 并通过酶的水解完全转变为阿昔洛韦,这可使阿昔洛韦 的生物利用度增加 3〜5倍, 达到 65%。 泰诺福韦的氨基酸酯前药衍生物的抗病毒 活性和抗 HIV活性都较泰诺福韦显著提高。而阿糖胞昔 (Cytarabine)主要用于急性 白血病治疗, 包括肺癌、 消化道癌、 头颈部癌及恶性淋巴瘤等, 是一种抗代谢的药 物, 通过药物分子结构修饰是改善提高其功能的重要途径。  In recent years, nucleoside drugs have received extensive attention for the treatment of viral diseases. However, clinically used nucleoside drugs have problems such as toxic side effects and drug resistance. Nucleoside prodrugs can improve the oral bioavailability and pharmacokinetics of nucleoside drugs, target drugs to specific lesions, prolong the action time, reduce toxic side effects, improve antiviral effect, expand antiviral spectrum, and modify nucleosides. An important direction of drug-like structure. For example, valacyclovir is acyclovir L-valine methyl ester, which can improve the malabsorption of acyclovir by oral administration. It can be well absorbed in the gastrointestinal tract after oral administration and completely hydrolyzed by enzyme. Conversion to acyclovir, which can increase the bioavailability of acyclovir by 3 to 5 times, reaching 65%. The antiviral activity and anti-HIV activity of the amino acid ester prodrug derivatives of tenofovir are significantly higher than that of tenofovir. Cytarabine is mainly used in the treatment of acute leukemia, including lung cancer, digestive tract cancer, head and neck cancer and malignant lymphoma. It is an anti-metabolic drug, which is improved by improving the molecular structure of the drug. An important way.
通过传统的化学合成法对核苷类药物分子结构进行修饰, 需要经过酰化、催化 氢解等复杂的步骤, 并需要使用特殊的化学催化剂, 通常产率不高、 选择性较差、 存在污染和毒性等种种缺点。酶促合成具有条件温和、选择性好等特点, 被广泛应 用于多官能团药物特别是核苷类药物的衍生化反应,近年来已出现了许多有关生物 催化的方法对核苷类药物进行结构修饰的报道,如 Riva等 (J Am Chem Soc , 1988, 110 : 584)首次报导了用枯草杆菌蛋白酶在 DMF中选择性酯化腺苷和尿苷的伯羟基, 该方法反应周期长(需 7〜8天),反应选择性较差,有多种产物。 Hanson等 (Bioorg. Med. Chem. , 2000, 8 : 2681)报道了用 ChiroCLECTM- BL 和来源于洋葱假单胞菌 {Pseudomonas ce ^ci^的固定化脂肪酶在丙酮和 DMF 中催化制备洛布卡韦 (Lobucavir, BMS 180194)的缬氨酸前药, 此药可用于治疗疱疹病毒和乙型肝炎。 但该反应底物浓度较低(10g/l), 反应副产物较多, 选择性较低, 后处理复杂。 Tamarez 等(Org Process Res Dev, 2003 , 7 : 951)揭示了一种 CAL 脂肪酶在无水 四氢映喃中催化合成利巴韦林氨基酸衍生物的方法,该方法需要大量无水四氢呋喃 作为溶剂, 不利于环保, 且后处理烦琐。 Kathleen McClean 等人(Tetrahedron Letters , 2011, 52 : 215)报道了利用商品化枯草杆菌蛋白酶的固定化酶 (ChiroCLEC-BL)催化 L_缬氨酸甲酯与阿昔洛韦发生酯交换反应合成了伐昔洛韦, 而该反应规模较小, 且酶源 ChiroCLEC-BL不能通过简单商业途径获得, 增加了此 工艺工业化应用的难度。 林贤福等(Bioorg Med Chem Lett , 2005, 15 : 4064)报道 了用枯草杆菌碱性蛋白酶在有机介质中催化合成阿糖胞苷前药, 该方法选择性差, 生成了包括可聚合 5' -0-酰基阿糖胞苷衍生物和 4-N-酰基阿糖胞苷衍生物等多种 产物; 还报道了用南极假丝酵母脂肪酶 B (CALB)为催化剂在有机介质中催化合成阿 糖胞苷前药, 仅选择性酯化阿糖胞苷的 5' -0羟基位, 然而该反应转化率很低。 Modification of the molecular structure of nucleoside drugs by traditional chemical synthesis requires complex steps such as acylation and catalytic hydrogenolysis, and requires the use of special chemical catalysts, usually with low yield, poor selectivity, and contamination. And various disadvantages such as toxicity. Enzymatic synthesis has the characteristics of mild conditions and good selectivity, and is widely used in the derivatization of multi-functional drugs, especially nucleoside drugs. In recent years, many biocatalytic methods have been used to structurally modify nucleoside drugs. Reports such as Riva et al. (J Am Chem Soc, 1988, 110: 584) first reported the selective esterification of adenosine and uridine primary hydroxyl groups in DMF with subtilisin, which has a long reaction period (requires 7~) 8 days), the reaction selectivity is poor, and there are many products. Hanson et al. (Bioorg. Med. Chem., 2000, 8: 2681) reported the preparation of lobe in acetone and DMF using ChiroCLECTM-BL and immobilized lipase derived from Pseudomonas cepacii {Pseudomonas ce ^ci^ A proline prodrug of Lobucavir (BMS 180194), which is used to treat herpes virus and hepatitis B. However, the concentration of the reaction substrate is low (10 g/l), the reaction by-products are more, the selectivity is lower, and the post-treatment is complicated. Tamarez et al. (Org Process Res Dev, 2003, 7: 951) discloses a method for the catalytic synthesis of ribavirin amino acid derivatives by CAL lipase in anhydrous tetrahydrofuran, which requires a large amount of anhydrous tetrahydrofuran as a solvent. It is not conducive to environmental protection, and post-processing is cumbersome. Kathleen McClean et al. (Tetrahedron Letters, 2011, 52: 215) report the use of immobilized enzymes of commercial subtilisin (ChiroCLEC-BL) catalyzes the transesterification of L_proline methyl ester with acyclovir to synthesize valacyclovir, and the reaction is small in scale, and the enzyme source ChiroCLEC-BL cannot be obtained by simple commercial means. The difficulty of industrial application of this process. Lin et al. (Bioorg Med Chem Lett, 2005, 15 : 4064) reported the catalytic synthesis of cytarabine prodrugs in an organic medium using Bacillus subtilis alkaline protease, which is poorly selective and produces a polymerizable 5'-0- Various products such as acyl cytarabine derivatives and 4-N-acyl cytarabine derivatives; catalyzed synthesis of cytarabine in organic medium by using Candida antarctica lipase B (CALB) as a catalyst The prodrug only selectively esterifies the 5'-O-hydroxyl position of cytarabine, however the conversion of this reaction is very low.
现有的酶催化合成核苷类前药的方法通常具有需要采用大量的有机溶剂,选择 性低或者需选用特定的蛋白酶等问题, 从而导致存在环境不友好、转化率低、后处 理复杂、 工艺繁琐、 原料或试剂不易得、 经济成本高等问题。 因此, 研发一种转化 率高、工艺简单、环境友好的酶催化合成核苷类前药的方法是抗病毒药物研究的重 要方向。 发明内容  Existing enzyme-catalyzed methods for synthesizing nucleoside prodrugs generally have the problem of requiring a large amount of organic solvent, low selectivity or the need to select a specific protease, resulting in environmentally unfriendly, low conversion rate, complicated post-treatment, and process. It is cumbersome, raw materials or reagents are not easy to obtain, and economic costs are high. Therefore, the development of a high-conversion, simple, and environmentally friendly enzyme-catalyzed synthesis of nucleoside prodrugs is an important direction for antiviral drug research. Summary of the invention
为解决现有技术存在的缺陷, 本发明提供了一种操作简单、选择性高、条件温 和、 无溶剂低污染的蛋白酶或脂肪酶催化合成核苷氨基酸衍生物的方法。  In order to solve the defects of the prior art, the present invention provides a method for synthesizing a nucleoside amino acid derivative by a protease or a lipase which is simple in operation, high in selectivity, mild in temperature, and low in solvent and low in pollution.
本发明第一方面提供了一种酶催化合成核苷氨基酸衍生物的方法, 包括步骤: 在蛋白酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基 酸衍生物; 其中,  The first aspect of the present invention provides a method for enzymatically synthesizing a nucleoside amino acid derivative, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under a catalysis of a protease to obtain a nucleoside amino acid derivative;
所述的核苷化合物为阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷、 腺苷或阿糖胞苷; 所述的 L-氨基酸酯为液态的 L-丝氨酸酯、液态的 L-丙氨酸酯、液态的 L-半胱 氨酸酯或液态的 L-苯丙氨酸酯;  The nucleoside compound is acyclovir, ganciclovir, inosine, guanosine, adenosine or cytarabine; the L-amino acid ester is a liquid L-serine ester, a liquid L- Alanine ester, liquid L-cysteine ester or liquid L-phenylalanine ester;
所述的核苷氨基酸衍生物为阿昔洛韦 -L-丝氨酸酯、 阿昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔洛韦 -L-丝氨酸酯、 更昔 洛韦 -L-丙氨酸酯、 更昔洛韦 -L-半胱氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L- 丝氨酸酯、 肌苷 -L-丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L- 丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺苷 -L- 丝氨酸酯、 腺苷 -L-丙氨酸酯、 腺苷 -L-半胱氨酸酯、 腺苷 -L-苯丙氨酸酯、 阿糖胞 苷 -L-丝氨酸酯、 阿糖胞苷 -L-丙氨酸酯、 阿糖胞苷 -L-半胱氨酸酯或阿糖胞苷 -L- 苯丙氨酸酯;  The nucleoside amino acid derivative is acyclovir-L-serine ester, acyclovir-L-alanine ester, acyclovir-L-cysteine ester, acyclovir-L -phenylalaninate, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L-benzene Alanine ester, inosine-L-serine ester, inosine-L-alaninate, inosine-L-cysteine, inosine-L-phenylalaninate, guanosine-L- Serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-serine ester, adenosine-L-alanine Acid ester, adenosine-L-cysteine ester, adenosine-L-phenylalanine ester, cytarabine-L-serine ester, cytarabine-L-alanine ester, arsenic Glycosyl-L-cysteine ester or cytarabine-L-phenylalanine ester;
所述的蛋白酶为枯草芽孢杆菌碱性蛋白酶、 地衣芽孢杆菌碱性蛋白酶、 碱性 蛋白酶 3. 0T、 碱性蛋白酶 2. 4L FG、 赛威蛋白酶 8. 0T、 赛威蛋白酶 16. 0 L、 益瑞 蛋白酶 8. 0 L、 艾威蛋白酶 16. 0 L或嗜热菌蛋白酶。 The proteinase is Bacillus subtilis alkaline protease, Bacillus licheniformis alkaline protease, alkaline protease 3. 0T, alkaline protease 2. 4L FG, Saiwei proteinase 8. 0T, Saiwei proteinase 16. 0 L, Yi Rui Protease 8. 0 L, Iverase 16. 0 L or thermolysin.
在另一优选例中, 所述的蛋白酶为碱性蛋白酶 3. 0T。  In another preferred embodiment, the protease is alkaline protease 3. 0T.
在另一优选例中, 所述的 L-丝氨酸酯为 L-丝氨酸 d-4酯; 和 /或所述的 L-丙氨 酸酯为 L-丙氨酸 d-4酯;和 /或所述的 L-半胱氨酸酯为 L-半胱氨酸(^4酯;和 /或所 述的 L-苯丙氨酸酯为 L-苯丙氨酸 d-4酯。 In another preferred embodiment, the L-serine ester is L-serine d- 4 ester; and/or the L-alanine ester is L-alanine d- 4 ester; and/or The L-cysteine ester is L-cysteine (and 4 ); and/or the L-phenylalanine ester is L-phenylalanine d- 4 ester.
在另一优选例中, 所述的 L-丝氨酸酯为 L-丝氨酸甲酯、 L-丝氨酸乙酯、 L-丝 氨酸正丙酯或 L-丝氨酸甲酯。  In another preferred embodiment, the L-serine ester is L-serine methyl ester, L-serine ethyl ester, L-serine n-propyl ester or L-serine methyl ester.
在另一优选例中, 所述的 L-丙氨酸酯为 L-丙氨酸甲酯。  In another preferred embodiment, the L-alanine ester is L-alanine methyl ester.
在另一优选例中, 所述的 L-半胱氨酸酯为 L-半胱氨酸甲酯。  In another preferred embodiment, the L-cysteine ester is L-cysteine methyl ester.
在另一优选例中, 所述的 L-苯丙氨酸酯为 L-苯丙氨酸甲酯。  In another preferred embodiment, the L-phenylalanine ester is L-phenylalanine methyl ester.
本发明第二方面提供了一种酶催化合成核苷氨基酸衍生物的方法, 包括步骤: 在脂肪酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基 酸衍生物; 其中,  The second aspect of the present invention provides a method for enzymatically synthesizing a nucleoside amino acid derivative, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under the catalysis of a lipase to obtain a nucleoside amino acid derivative; ,
所述的核苷化合物为阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷或腺苷;  The nucleoside compound is acyclovir, ganciclovir, inosine, guanosine or adenosine;
所述的 L-氨基酸酯为液态的 L-缬氨酸酯、液态的 L-丝氨酸酯、液态的 L-丙氨 酸酯、 液态的 L-半胱氨酸酯或液态的 L-苯丙氨酸酯;  The L-amino acid ester is a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine. Acid ester
所述的核苷氨基酸衍生物为阿昔洛韦 -L-缬氨酸酯、阿昔洛韦 -L-丝氨酸酯、阿 昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔洛 韦 -L-缬氨酸酯、 更昔洛韦 -L-丝氨酸酯、更昔洛韦 -L-丙氨酸酯、更昔洛韦 -L-半胱 氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L-缬氨酸酯、 肌苷 -L-丝氨酸酯、 肌苷 -L- 丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L-缬氨酸酯、 鸟苷 -L- 丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺苷 -L- 缬氨酸酯、 腺苷 -L-丝氨酸酯、 腺苷 -L-丙氨酸酯、 腺苷 -L-半胱氨酸酯或腺苷 -L- 苯丙氨酸酯;  The nucleoside amino acid derivatives are acyclovir-L-valine ester, acyclovir-L-serine ester, acyclovir-L-alaninate, acyclovir-L- Cysteine ester, acyclovir-L-phenylalanine ester, ganciclovir-L-valine ester, ganciclovir-L-serine ester, ganciclovir-L-alanine Acid ester, ganciclovir-L-cysteine ester, ganciclovir-L-phenylalanine ester, inosine-L-valine ester, inosine-L-serine ester, inosine- L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L-valine ester, guanosine-L-serine ester, guanosine- L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-valine ester, adenosine-L-serine ester, adenosine- L-alanine ester, adenosine-L-cysteine ester or adenosine-L-phenylalanine ester;
所述的脂肪酶为丽波脂肪酶 100T、 Νονο435脂肪酶、 脂肪酶 PS 天野 SD、 脂肪 酶 AS 天野、 脂肪酶 AK 天野、 脂肪酶 G、 脂肪酶 AYS天野、 南极假丝酵母脂肪酶 B (CALB)或碱性脂肪酶 Greasex 50L。  The lipase is Libo lipase 100T, Νονο435 lipase, lipase PS Amano SD, lipase AS Amano, lipase AK Amano, lipase G, lipase AYS Amano, Candida antarctica lipase B (CALB) ) or alkaline lipase Greasex 50L.
在另一优选例中, 所述的 L-缬氨酸酯为 L-缬氨酸 C1-4酯; 和 /或所述的 L-丝 氨酸酯为 L-丝氨酸 d-4酯;和 /或所述的 L-丙氨酸酯为 L-丙氨酸 d-4酯;和 /或所述 的 L-半胱氨酸酯为 L-半胱氨酸 CH酯; 和 /或所述的 L-苯丙氨酸酯为 L-苯丙氨酸 d— 4酯。 In another preferred embodiment, the L-valine ester is an L-valine C1-4 ester; and/or the L-serine ester is an L-serine d- 4 ester; and/or The L-alanine ester is L-alanine d- 4 ester; and/or the L-cysteine ester is L-cysteine CH ester; and/or the L- The phenylalanine ester is L-phenylalanine d- 4 ester.
在另一优选例中, 所述的 L-缬氨酸酯为 L-缬氨酸甲酯或 L-缬氨酸乙酯。 在另一优选例中, 所述的 L-丝氨酸酯为 L-丝氨酸甲酯、 L-丝氨酸乙酯、 L-丝 氨酸正丙酯或 L-丝氨酸甲酯。 In another preferred embodiment, the L-valine ester is L-valine methyl ester or L-valine ethyl ester. In another preferred embodiment, the L-serine ester is L-serine methyl ester, L-serine ethyl ester, L-serine n-propyl ester or L-serine methyl ester.
在另一优选例中, 所述的 L-丙氨酸酯为 L-丙氨酸甲酯。  In another preferred embodiment, the L-alanine ester is L-alanine methyl ester.
在另一优选例中, 所述的 L-半胱氨酸酯为 L-半胱氨酸甲酯。  In another preferred embodiment, the L-cysteine ester is L-cysteine methyl ester.
在另一优选例中, 所述的 L-苯丙氨酸酯为 L-苯丙氨酸甲酯。  In another preferred embodiment, the L-phenylalanine ester is L-phenylalanine methyl ester.
在另一优选例中, 所述的 L-氨基酸酯为 L-缬氨酸甲酯。  In another preferred embodiment, the L-amino acid ester is L-valine methyl ester.
在另一优选例中, 所述的脂肪酶为南极假丝酵母脂肪酶 B。  In another preferred embodiment, the lipase is Candida antartica lipase B.
在另一优选例中, 所述的核苷化合物为阿昔洛韦或更昔洛韦。  In another preferred embodiment, the nucleoside compound is acyclovir or ganciclovir.
在另一优选例中, 所述的核苷化合物在反应体系中的浓度为 10〜50 g/L o 在另一优选例中, 所述的核苷化合物在反应体系中的浓度为 20〜30 g/L o 在另一优选例中, 所述的蛋白酶或脂肪酶在反应体系中的浓度为 8〜65g/L。 在另一优选例中, 所述的蛋白酶或脂肪酶在反应体系中的浓度为 15〜30 g/L o 在另一优选例中,所述的反应在 20〜70 °C下进行;和 /或 所述的反应进行 24〜 In another preferred embodiment, the concentration of the nucleoside compound in the reaction system is 10 to 50 g/L. In another preferred embodiment, the concentration of the nucleoside compound in the reaction system is 20 to 30. g/L o In another preferred embodiment, the protease or lipase is present in the reaction system at a concentration of 8 to 65 g/L. In another preferred embodiment, the concentration of the protease or lipase in the reaction system is 15 to 30 g/L. In another preferred embodiment, the reaction is carried out at 20 to 70 ° C; and / Or the reaction described is carried out 24~
120 小时。 120 hours.
在另一优选例中, 所述的反应在 30〜50 °C下进行。  In another preferred embodiment, the reaction is carried out at 30 to 50 °C.
在另一优选例中, 所述的反应进行 72〜96 小时。  In another preferred embodiment, the reaction is carried out for 72 to 96 hours.
在另一优选例中, 所述的反应在相对真空度为 -100〜- 500mbar下进行。  In another preferred embodiment, the reaction is carried out at a relative vacuum of from -100 to -500 mbar.
应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文(如实施例) 中具体描述的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方案。 限于篇幅, 在此不再一一累述。 具体实施例  It is to be understood that within the scope of the present invention, the various technical features of the present invention and the technical features specifically described hereinafter (as in the embodiments) may be combined with each other to constitute a new or preferred technical solution. Due to space limitations, we will not repeat them here. Specific embodiment
本发明人经过广泛而深入的研究,意外地发现以蛋白酶或脂肪酶为催化剂,将 核苷化合物与在反应温度下呈液态的 L-氨基酸酯进行无溶剂反应制备核苷氨基酸 衍生物, 该反应经济、 环保、 反应条件温和、 转化率高、 产物纯化简单、 纯度高。 在此基础上, 发明人完成了本发明。 术语  The inventors have extensively and intensively studied and unexpectedly discovered that a nucleoside amino acid derivative is prepared by a solventless reaction of a nucleoside compound with an L-amino acid ester which is liquid at a reaction temperature by using a protease or a lipase as a catalyst. Economical, environmentally friendly, mild reaction conditions, high conversion rate, simple product purification and high purity. On this basis, the inventors have completed the present invention. the term
如本文所用,所述的 L-缬氨酸 d-4酯为 L-缬氨酸 垸基酯,例如 L-缬氨酸甲 酯、 L-缬氨酸乙酯、 L-缬氨酸正丙酯、 L-缬氨酸异丙酯、 L-缬氨酸正丁酯、 L-缬氨 酸异丁酯、 L-缬氨酸叔丁酯、 或其类似物。 As used herein, the L-valine d- 4 ester is L-valine decyl ester, such as L-valine methyl ester, L-valine ethyl ester, L-valine n-propyl Ester, L-valine isopropyl ester, L-valine n-butyl ester, L-valine isobutyl ester, L-valine t-butyl ester, or the like.
所述的 L-丝氨酸 d-4酯为 L-丝氨酸 d-4垸基酯,例如 L-丝氨酸甲酯、 L-丝氨酸 乙酯、 L-丝氨酸正丙酯、 L-丝氨酸异丙酯、 L-丝氨酸正丁酯、 L-丝氨酸异丁酯、 L- 丝氨酸叔丁酯、 或其类似物。 The L-serine d- 4 ester is L-serine d- 4 decyl ester, such as L-serine methyl ester, L-serine Ethyl ester, n-propyl L-serine, isopropyl L-serine, n-butyl L-serine, isobutyl L-serine, tert-butyl L-serine, or the like.
所述的 L-丙氨酸 d-4酯为 L-丙氨酸 CH垸基酯,例如 L-丙氨酸甲酯、 L-丙氨酸 乙酯、 L-丙氨酸正丙酯、 L-丙氨酸异丙酯、 L-丙氨酸正丁酯、 L-丙氨酸异丁酯、 L- 丙氨酸叔丁酯、 或其类似物。 The L-alanine d- 4 ester is L-alanine CH-ester, such as L-alanine methyl ester, L-alanine ethyl ester, L-alanine n-propyl ester, L - isopropyl alaninate, n-butyl L-alanine, isobutyl L-alanine, tert-butyl L-alanine, or the like.
所述的 L-半胱氨酸 d-4酯为 L-半胱氨酸 CH垸基酯,例如 L-半胱氨酸甲酯、 L- 半胱氨酸乙酯、 L-半胱氨酸正丙酯、 L-半胱氨酸异丙酯、 L-半胱氨酸正丁酯、 L- 半胱氨酸异丁酯、 L-半胱氨酸叔丁酯、 或其类似物。 The L-cysteine d- 4 ester is L-cysteine CH-ester, such as L-cysteine methyl ester, L-cysteine ethyl ester, L-cysteine N-propyl ester, L-cysteine isopropyl ester, L-cysteine n-butyl ester, L-cysteine isobutyl ester, L-cysteine tert-butyl ester, or the like.
所述的 L-苯丙氨酸 d-4酯为 L-苯丙氨酸 d-4垸基酯,例如 L-苯丙氨酸甲酯、 L- 苯丙氨酸乙酯、 L-苯丙氨酸正丙酯、 L-苯丙氨酸异丙酯、 L-苯丙氨酸正丁酯、 L- 苯丙氨酸异丁酯、 L-苯丙氨酸叔丁酯、 或其类似物。 The L-phenylalanine d- 4 ester is L-phenylalanine d- 4 decyl ester, such as L-phenylalanine methyl ester, L-phenylalanine ethyl ester, L-phenyl propyl N-propyl propyl ester, isopropyl L-phenylalanine, n-butyl L-phenylalanine, isobutyl L-phenylalanine, tert-butyl L-phenylalanine, or the like .
如本文所用, 所述的 "核苷氨基酸衍生物"为表 1所示的化合物。  As used herein, the "nucleoside amino acid derivative" is a compound shown in Table 1.
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000009_0001
阿糖胞苷 -L-丝氨酸酯
Figure imgf000009_0001
Cytarabine-L-serine ester
阿糖胞苷 -L-丙氨酸酯 Cytarabine-L-alanine ester
阿糖胞苷 -L-半胱氨酸酯 Cytarabine-L-cysteine ester
阿糖胞苷 -L-苯丙氨酸酯
Figure imgf000010_0001
酶催化反应
Cytarabine-L-phenylalanine ester
Figure imgf000010_0001
Enzyme catalyzed reaction
本发明提供了一种酶催化合成核苷氨基酸衍生物的优选方法,其包括步骤:在 蛋白酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基酸衍生 物。  The present invention provides a preferred method for enzymatically synthesizing a nucleoside amino acid derivative, which comprises the steps of: reacting a nucleoside compound with an L-amino acid ester under the catalysis of a protease to obtain a nucleoside amino acid derivative.
所述的核苷化合物优选为阿昔洛韦、更昔洛韦、肌苷、鸟苷、腺苷或阿糖胞苷。 所述的 L-氨基酸酯优选为液态的 L-丝氨酸酯、液态的 L-丙氨酸酯、液态的 L- 半胱氨酸酯或液态的 L-苯丙氨酸酯。 优选地, 所述的 L-丝氨酸酯为 L-丝氨酸 d-4 酯;所述的 L-丙氨酸酯为 L-丙氨酸 CH酯;所述的 L-半胱氨酸酯为 L-半胱氨酸 d-4 酯; 所述的 L-苯丙氨酸酯为 L-苯丙氨酸(^4酯。 The nucleoside compound is preferably acyclovir, ganciclovir, inosine, guanosine, adenosine or cytarabine. The L-amino acid ester is preferably a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine ester. Preferably, the L-serine ester is L-serine d- 4 ester; the L-alanine ester is L-alanine CH ester; and the L-cysteine ester is L- Cysteine d- 4 ester; the L-phenylalanine ester is L-phenylalanine (^ 4 ester).
所述的蛋白酶优选为枯草芽孢杆菌碱性蛋白酶、地衣芽孢杆菌碱性蛋白酶、碱 性蛋白酶(Alcalase) 3. 0T、 碱性蛋白酶(Alcalase) 2. 4L FG、 赛威(Savinase)蛋 白酶 8. 0T、 赛威蛋白酶 ( Savinase ) 16. 0 L、 益瑞蛋白酶 ( Esperase ) 8. 0 L、 艾 威蛋白酶 ( Everlase ) 16. 0 L或嗜热菌蛋白酶(thermolys in); 较佳地, 所述的蛋 白酶为碱性蛋白酶 (Alcalase) 3. 0T, 其催化效果更佳, 催化效率、 选择性都更高。 所述的核苷氨基酸衍生物为: 阿昔洛韦 -L-丝氨酸酯、 阿昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔洛韦 -L-丝氨酸酯、 更昔 洛韦 -L-丙氨酸酯、 更昔洛韦 -L-半胱氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L- 丝氨酸酯、 肌苷 -L-丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L- 丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺苷 -L- 丝氨酸酯、 腺苷 -L-丙氨酸酯、 腺苷 -L-半胱氨酸酯、 腺苷 -L-苯丙氨酸酯、 阿糖胞 苷 -L-丝氨酸酯、 阿糖胞苷 -L-丙氨酸酯、 阿糖胞苷 -L-半胱氨酸酯或阿糖胞苷 -L- 苯丙氨酸酯。 The protease is preferably Bacillus subtilis alkaline protease, Bacillus licheniformis alkaline protease, Alcalase 3. 0T, Alcalase 2. 4L FG, Savinase protease 8. 0T , Savinase 16. 0 L, Esperase 8. 0 L, Eversase 16. 0 L or thermolys in; preferably, said Egg The white enzyme is alkaline protease (Alcalase) 3. 0T, which has better catalytic effect and higher catalytic efficiency and selectivity. The nucleoside amino acid derivatives are: acyclovir-L-serine ester, acyclovir-L-alanine ester, acyclovir-L-cysteine ester, acyclovir- L-phenylalanine ester, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L- Phenylalanine ester, inosine-L-serine ester, inosine-L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L - Serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-serine ester, adenosine-L-propyl Acid ester, adenosine-L-cysteine ester, adenosine-L-phenylalanine ester, cytarabine-L-serine ester, cytarabine-L-alanine ester, arabinose Cytidine-L-cysteine ester or cytarabine-L-phenylalanine ester.
本发明提供了另一种酶催化合成核苷氨基酸衍生物的优选方法, 其包括步骤: 在脂肪酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基酸衍 生物。  The present invention provides another preferred method for the enzyme-catalyzed synthesis of a nucleoside amino acid derivative, which comprises the steps of: reacting a nucleoside compound with an L-amino acid ester under the catalysis of a lipase to obtain a nucleoside amino acid derivative.
所述的核苷化合物优选为阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷或腺苷; 所述的 L-氨基酸酯优选为液态的 L-缬氨酸酯、液态的 L-丝氨酸酯、液态的 L- 丙氨酸酯、 液态的 L-半胱氨酸酯或液态的 L-苯丙氨酸酯。 优选地, 所述的 L-氨基 酸酯优选为液态的 L-缬氨酸酯、 液态的 L-丝氨酸酯、 液态的 L-丙氨酸酯、 液态的 L-半胱氨酸酯或液态的 L-苯丙氨酸酯。优选地,所述的 L-缬氨酸酯为 L-缬氨酸 d-4 酯、 所述的 L-丝氨酸酯为 L-丝氨酸 d-4酯; 所述的 L-丙氨酸酯为 L-丙氨酸 d-4酯; 所述的 L-半胱氨酸酯为 L-半胱氨酸 酯;所述的 L-苯丙氨酸酯为 L-苯丙氨酸 d-4 酯。 The nucleoside compound is preferably acyclovir, ganciclovir, inosine, guanosine or adenosine; the L-amino acid ester is preferably a liquid L-valine ester, a liquid L-serine Ester, liquid L-alanine ester, liquid L-cysteine ester or liquid L-phenylalanine ester. Preferably, the L-amino acid ester is preferably a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L. - phenylalanine ester. Preferably, the L-valine ester is L-valine d- 4 ester, the L-serine ester is L-serine d- 4 ester; and the L-alanine ester is L - alanine d- 4 ester; the L-cysteine ester is L-cysteine ester; and the L-phenylalanine ester is L-phenylalanine d- 4 ester.
所述的脂肪酶为丽波脂肪酶 (Lipolas e) 100T、 Novo435脂肪酶、 脂肪酶 PS 天 野 SD ( Lipase PS Amano SD ) , 脂肪酶 AS 天野 (Lipase AS Amano)、 脂肪酶 AK 天 野(Lipase AK Amano ) ,脂肪酶 G ( Lipase G)、脂肪酶 AYS 天野(L ipase AYS Amano ) , 南极假丝酵母脂肪酶 B (CALB)或碱性脂肪酶 Greasex 50L。 优选为所述的脂肪酶为 南极假丝酵母脂肪酶 B, 其催化效果更佳, 催化效率、 选择性都更高。  The lipase is Lipolas e 100T, Novo435 lipase, lipase PS Amano SD, Lipase AS Amano, Lipase AK Amano ), Lipase G, lipase AYS L ipase AYS Amano, Candida antarctica lipase B (CALB) or alkaline lipase Greasex 50L. Preferably, the lipase is Candida antarctica lipase B, which has better catalytic effect and higher catalytic efficiency and selectivity.
所述的核苷氨基酸衍生物为: 阿昔洛韦 -L-缬氨酸酯、 阿昔洛韦 -L-丝氨酸酯、 阿昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔 洛韦 -L-缬氨酸酯、 更昔洛韦 -L-丝氨酸酯、 更昔洛韦 -L-丙氨酸酯、 更昔洛韦 -L- 半胱氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L-缬氨酸酯、 肌苷 -L-丝氨酸酯、 肌 苷 -L-丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L-缬氨酸酯、 鸟 苷 -L-丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺 苷 -L-缬氨酸酯、 腺苷 -L-丝氨酸酯、腺苷 -L-丙氨酸酯、腺苷 -L-半胱氨酸酯或腺苷 -L-苯丙氨酸酯。 The nucleoside amino acid derivatives are: acyclovir-L-valine ester, acyclovir-L-serine ester, acyclovir-L-alaninate, acyclovir-L -cysteine ester, acyclovir-L-phenylalanine ester, ganciclovir-L-valine ester, ganciclovir-L-serine ester, ganciclovir-L-propyl Acid ester, ganciclovir-L-cysteine ester, ganciclovir-L-phenylalanine ester, inosine-L-valine ester, inosine-L-serine ester, inosine -L-alanine ester, inosine-L-cysteine ester, inosine-L-phenylalanine ester, guanosine-L-valine ester, guanosine-L-serine ester, guanosine -L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-valine ester, adenosine-L-serine ester, adenosine -L-alanine ester, adenosine-L-cysteine or adenosine -L-phenylalanine ester.
本发明上述的两种方法采用在反应温度下为液态的 L-氨基酸酯 (优选 L-氨基 酸 —4酯), 利用其呈液态的特性, 可以在不添加其它溶剂的情况下进行酶促反应, 液态的 L-氨基酸酯既作为反应物又作为溶剂, L-氨基酸酯投料量的提高, 可以提 高产物的转化效率, 而且过量的 L-氨基酸酯可以回收再利用。 因此, 该方法具有 选择性好、转化率高、收率高(收率均超过了 65 %,较佳地为 65-95 %或 70-90% )、 质量好、 成本低、 环境污染少、 操作简单等特点, 适合工业化。 The above two methods of the present invention employ an L-amino acid ester (preferably L-amino acid- 4 ester) which is liquid at the reaction temperature, and can be enzymatically reacted without adding other solvents by utilizing its liquid state. The liquid L-amino acid ester serves as both a reactant and a solvent, and an increase in the amount of the L-amino acid ester can increase the conversion efficiency of the product, and the excess L-amino acid ester can be recycled and reused. Therefore, the method has good selectivity, high conversion rate, high yield (yield exceeds 65%, preferably 65-95% or 70-90%), good quality, low cost, less environmental pollution, It is easy to operate and is suitable for industrialization.
本发明所述方法中, 由 L-氨基酸酯和核苷化合物构成反应体系, 加入蛋白酶 或脂肪酶, 在酶的催化下, 于一定温度(如 20〜70°C ; 较佳地为 30〜50°C)下反应 一段时间(如 24〜120小时; 较佳地为 72〜96小时), 合成了一系列核苷氨基酸衍 生物。所述的反应时间是指至催化反应转化率基本上不变所需要的时间,所谓的 "转 化率基本上不变的时间"是指每 24小时转化率变化 5%的时间。 所述的核苷化合 物在反应体系中的浓度为 10〜50 g/L, 优选 20〜30 g/Lo  In the method of the present invention, the reaction system is composed of an L-amino acid ester and a nucleoside compound, and a protease or a lipase is added, and the enzyme is catalyzed at a certain temperature (for example, 20 to 70 ° C; preferably 30 to 50). The reaction is carried out for a period of time (e.g., 24 to 120 hours; preferably 72 to 96 hours) to synthesize a series of nucleoside amino acid derivatives. The reaction time refers to the time required until the conversion of the catalytic reaction is substantially constant, and the so-called "time at which the conversion rate is substantially constant" means a time when the conversion rate changes by 5% every 24 hours. The concentration of the nucleoside compound in the reaction system is 10 to 50 g/L, preferably 20 to 30 g/Lo.
增加蛋白酶或脂肪酶的用量可提高催化效果,但使用过多的酶易影响酶在反应 体系中的分散, 不利于底物在酶催化位点的进出, 从而阻碍反应的发生。 因此, 本 发明选用合适的蛋白酶或脂肪酶的用量, 以利于反应的进行。所述的蛋白酶或脂肪 酶在反应体系中的浓度为 8〜65 g/L, 优选 15〜30 g/L。 较佳地, 所述的蛋白酶或 脂肪酶为无水的或基本无水的。 与现有技术相比, 本发明采用酶促合成核苷氨基酸化合物的方法主要以下优 占.  Increasing the amount of protease or lipase can increase the catalytic effect, but the use of too much enzyme easily affects the dispersion of the enzyme in the reaction system, which is not conducive to the entry and exit of the substrate at the enzyme catalytic site, thereby hindering the reaction. Therefore, the present invention selects an appropriate amount of protease or lipase to facilitate the reaction. The protease or lipase has a concentration in the reaction system of 8 to 65 g/L, preferably 15 to 30 g/L. Preferably, the protease or lipase is anhydrous or substantially anhydrous. Compared with the prior art, the method of enzymatically synthesizing nucleoside amino acid compounds is mainly used in the present invention.
1、 该方法所用的酶来源方便、 无需经过特殊的处理程序, 就能作为催化剂催 化核苷化合物和 L一氨基酸酯的反应, 从而制得高光学纯度、 高收率的产物。 本发 明的酶具有选择性好、 转化率高的特性。  1. The enzyme used in the method is convenient in source, and can be used as a catalyst to catalyze the reaction of a nucleoside compound and an L-amino acid ester without a special treatment procedure, thereby producing a product with high optical purity and high yield. The enzyme of the present invention has the characteristics of good selectivity and high conversion rate.
2、 该方法中 L-氨基酸酯既是反应物又是溶剂, 在不添加其它溶剂的情况下进 行反应, 反应底物浓度高、 产物转化效率高、 质量好, 并且过量的 L-氨基酸酯可 以回收再利用, 既降低了成本, 又减少了环境污染。  2. The L-amino acid ester in the method is a reactant and a solvent, and the reaction is carried out without adding other solvents, the reaction substrate concentration is high, the product conversion efficiency is high, the quality is good, and the excess L-amino acid ester can be recovered. Reuse, which reduces costs and reduces environmental pollution.
3、 该方法反应条件温和, 操作简单, 后处理简便、 工业应用前景广泛, 在核 苷前药的制备及研究中具有重要的应用价值。 下面结合具体实施, 进一步阐述本发明。应理解, 这些实施例仅用于说明本发 明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按 照常规条件, 例如 Sambrook等人, 分子克隆: 实验室手册(New York : Cold Spring Harbor Laboratory Press , 1989)中所述的条件, 或按照制造厂商所建议的条件。 除非另外说明, 否则百分比和份数按重量计算。 3. The method has mild reaction conditions, simple operation, simple post-treatment and wide industrial application prospects, and has important application value in the preparation and research of nucleoside prodrugs. The invention will be further elucidated below in conjunction with specific implementations. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention. The experimental methods in the following examples that do not specify the specific conditions are usually According to conventional conditions, such as those described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or in accordance with the conditions recommended by the manufacturer. Percentages and parts are by weight unless otherwise stated.
本发明所用阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷、 腺苷、 阿糖胞苷、 L-氨基酸酯 盐酸盐等原料或试剂, 若无特别说明, 均为市售产品。 实施例 1  Raw materials or reagents such as acyclovir, ganciclovir, inosine, guanosine, adenosine, cytarabine, L-amino acid ester hydrochloride, etc., which are used in the present invention, are commercially available products unless otherwise specified. Example 1
1. 1 L-缬氨酸甲酯的制备  1. Preparation of 1 L-valine methyl ester
往 500ml 具塞三角瓶中加入 L-缬氨酸甲酯盐酸盐(30g, 178. 9mmol)加入水 (50ml)和二氯甲垸 (30ml), 磁力搅拌溶解 L_缬氨酸甲酯盐酸盐, 待其完全溶解后, 向三角瓶中加入碳酸氢钠(18g, 214. 2匪01, 1. 2倍当量), 快速搅拌反应至无气泡 生成。 转移至分液漏斗, 分出二氯甲垸层, 水层用二氯甲垸 (30ml X 2)萃取, 合并 有机层, 用无水硫酸钠干燥, 过滤后减压浓缩, 即得淡黄色透明液体 (L-缬氨酸甲 酯 22g, 93. 7%) o Add L-valine methyl ester hydrochloride (30 g, 178.9 mmol) to a 500 ml stoppered flask, add water (50 ml) and dichloromethane (30 ml), and dissolve the L_valine methyl ester salt with magnetic stirring. salt, wait until completely dissolved, sodium hydrogen carbonate (18g, 214. 2 bandit 01, 1.2 equivalents) was added to the flask, reaction was rapidly stirred until no bubble generation. The mixture was transferred to a separatory funnel, and the methylene chloride layer was separated. The aqueous layer was extracted with methylene chloride (30 ml). The organic layer was combined and dried over anhydrous sodium sulfate. Liquid (L-valine methyl ester 22g, 93.7%) o
其它的 L-氨基酸酯的制备同此法, 不同的是采用不同的 L-氨基酸酯盐酸盐代 替 L-缬氨酸甲酯盐酸盐。  The preparation of the other L-amino acid esters is the same as this, except that different L-amino acid ester hydrochlorides are used instead of L-valine methyl ester hydrochloride.
1. 2枯草芽孢杆菌、 地衣芽孢杆菌碱性蛋白酶的制备 1. 2 Preparation of Bacillus subtilis and Bacillus licheniformis alkaline protease
1) 枯草芽孢杆菌 SO 地衣芽孢杆菌 S02的发酵培养  1) Fermentation culture of Bacillus subtilis SO Bacillus licheniformis S02
枯草芽孢杆菌 S01, 地衣芽孢杆菌 S02 从中国普通微生物菌种保藏管理中心 (CGMCC) 购买获得。  Bacillus subtilis S01, Bacillus licheniformis S02 was purchased from the China General Microorganisms Collection and Management Center (CGMCC).
枯草芽孢杆菌 S01发酵培养基 (g/L) :酵母浸粉 20, 蔗糖 10, 吐温 -80 5, 硫酸 镁 0· 2 , pH 9。  Bacillus subtilis S01 fermentation medium (g/L): yeast extract 20, sucrose 10, Tween-80 5, magnesium sulfate 0·2, pH 9.
地衣芽孢杆菌 S02发酵培养基(g/L) : 蔗糖 50, 酵母膏 20, NaCl 5, 磷酸氢二 钾 5. 3, 磷酸二氢钠 0. 3, 碳酸钠 0. 56, 硫酸锰 0. 02, pH 8. 7。  2, Sodium citrate 0. 3, Sodium citrate 0. 02, Manganese sulphate 0. 02, Sodium sulphate 50. , pH 8. 7.
上述 2种培养基 121 °C灭菌 15 min, 灭菌后冷却、 接种枯草芽孢杆菌 S01或地 衣芽孢杆菌 S02, 接种量 4%, 在 37°C, 转速 200 r/min条件下发酵培养 36 h, 7500 rcf离心 10 min, 收集发酵液上清。  The above two kinds of medium were sterilized at 121 °C for 15 min, cooled, sterilized, inoculated with Bacillus subtilis S01 or Bacillus licheniformis S02, inoculated in 4%, fermented for 36 h at 37 ° C, 200 r/min. The supernatant of the fermentation broth was collected by centrifugation at 7500 rcf for 10 min.
2) 枯草芽孢杆菌, 地衣芽孢杆菌的碱性蛋白酶提取  2) Alkaline protease extraction from Bacillus subtilis, Bacillus licheniformis
取 100 mL发酵液上清, 在冰浴条件下, 缓慢滴入 2倍体积的冷冻丙酮, 持续 搅拌 1〜2 h后, 在 4°C、 7500 rcf离心 10 min获得蛋白沉淀, 将沉淀在室温下晾 干, 所得蛋白分别为枯草芽孢杆菌碱性蛋白酶和地衣芽孢杆菌碱性蛋白酶。 用于后 续实施例中。 实施例 2 酶催化反应 Take 100 mL of the fermentation broth supernatant, slowly add 2 volumes of frozen acetone under ice bath conditions, continue to stir for 1~2 h, and then centrifuge at 10 °C for 7 min at 4 °C to obtain protein precipitate. The precipitate will be at room temperature. The cells were dried under air, and the obtained proteins were Bacillus subtilis alkaline protease and Bacillus licheniformis alkaline protease, respectively. Used after Continued in the examples. Example 2 Enzyme catalytic reaction
向反应体系中加入阿昔洛韦 40 mg、 碱性蛋白酶 Alcalase 3. 0T 20 mg, 再加 入 L-丙氨酸甲酯 2 ml, 混匀之后加入 4A分子筛 0. 1 g, 放入 50°C恒温振荡培养箱 中反应 24h, 转速 250 rpm/min o 通过液相色谱测定上述反应的转化率, 评估酶催 化剂的催化活力(见表 2)。  To the reaction system, add acyclovir 40 mg, alkaline protease Alcalase 3. 0T 20 mg, then add L-alanine methyl ester 2 ml, mix and add 4A molecular sieve 0. 1 g, put in 50 ° C The reaction was carried out in a constant temperature shaking incubator for 24 h at a speed of 250 rpm/min. The conversion of the above reaction was determined by liquid chromatography to evaluate the catalytic activity of the enzyme catalyst (see Table 2).
转化率 (%) =产物峰面积 / (产物峰面积 +底物峰面积) *100% 含量测定方法- 阿昔洛韦和产物阿昔洛韦 -L-丙氨酸酯的含量使用高效液相色谱测定, 分析条 件如下: 采用 C18— XDB色谱柱(250 X 4. 6 mm, Agi lent) , 流动相为甲醇 /水(体 积比为 20/80), 柱温 30°C ; 流速 0. 8 ml/min, 检测波长 254 nm, 进样量 5 μ 1。 阿昔洛韦标准品出峰时间为 3. 4min, 阿昔洛韦 -L-丙氨酸酯标准品出峰时间为 5. 3 min。 实施例 3-10 酶催化反应  Conversion rate (%) = product peak area / (product peak area + substrate peak area) * 100% content determination method - acyclovir and product acyclovir-L-alanine ester content using high-performance liquid phase The chromatographic conditions were as follows: C18-XDB column (250 X 4. 6 mm, Agi lent), mobile phase methanol/water (volume ratio 20/80), column temperature 30 ° C; flow rate 0. 8 Ml/min, detection wavelength 254 nm, injection volume 5 μ 1 . The peak time of acyclovir standard was 3. 4 min, and the peak time of acyclovir-L-alanine standard was 5. 3 min. Example 3-10 Enzymatic Reaction
实验方法同实施例 2, 不同点在于, 反应体系分别采用如表 2所示的条件进行  The experimental method was the same as in Example 2, except that the reaction system was carried out under the conditions shown in Table 2, respectively.
Figure imgf000014_0001
9 枯草芽孢杆菌碱性蛋白酶 按实施例 1步骤 1. 2制备 65 +
Figure imgf000014_0001
9 Bacillus subtilis alkaline protease according to Example 1. Step 1. 2 Preparation 65 +
10 地衣芽孢杆菌碱性蛋白酶 按实施例 1步骤 1. 2制备 65 + + 注: 当转化率低于 5%时, 催化活力标记为 " + "; 当转化率在 5〜10%时, 催化 活力标记为" ++"; 当转化率在 10〜15%时,催化活力标记为" +++";当转化率在 15〜 20%时, 催化活力标记为 "++++"。 10 Bacillus licheniformis alkaline protease according to the procedure of Example 1. 1. Preparation of 65 + + Note: When the conversion rate is less than 5%, the catalytic activity is marked as "+"; when the conversion rate is 5~10%, the catalytic activity Marked as "++"; when the conversion rate is 10~15%, the catalytic activity is marked as "+++"; when the conversion rate is 15~20%, the catalytic activity is labeled "++++".
结果表明: 选择碱性蛋白酶 (Alcalase 3. 0T和 Alcalase 2. 4L FG)为催化剂, 催化阿昔洛韦合成阿昔洛韦 -L-丙氨酸酯的催化活力最高, 而 CALB等脂肪酶也表现 出了与 Alcalase 3. 0T和 Alcalase 2. 4L FG相当的催化效果。 实施例 11 酶催化反应  The results showed that alkaline protease (Alcalase 3. 0T and Alcalase 2. 4L FG) was selected as the catalyst to catalyze the highest catalytic activity of acyclovir for the synthesis of acyclovir-L-alanine ester, and lipase such as CALB. It exhibited a catalytic effect comparable to that of Alcalase 3. 0T and Alcalase 2. 4L FG. Example 11 Enzyme catalytic reaction
向反应体系中加入肌苷 40 mg, 再加入 L-丙氨酸甲酯 2 ml, 形成底物浓度为 20 g/L的反应体系, 加入 Savinase 8. 0 T 40 mg和 4A分子筛 0. 1 g, 放入 50°C 恒温振荡培养箱中反应 48 h, 转速 250 rpm, 通过液相色谱测定上述反应 48小时 时的转化率, 评估酶催化剂的催化活力, 其中, 将肌苷与 L-丙氨酸酯进行酯交换 反应 48h时的反应活力定为 100%。 结果如表 3所示。 实施例 12— 21 酶催化反应  To the reaction system, 40 mg of inosine was added, and then 2 ml of L-alanine methyl ester was added to form a reaction system having a substrate concentration of 20 g/L, and Savinase 8. 0 T 40 mg and 4A molecular sieves were added. The reaction was carried out in a 50 ° C constant temperature shaking incubator for 48 h at a speed of 250 rpm. The conversion rate of the above reaction was measured by liquid chromatography for 48 hours, and the catalytic activity of the enzyme catalyst was evaluated, wherein inosine and L-alanine were evaluated. The reaction activity of the acid ester at the end of the transesterification reaction was determined to be 100%. The results are shown in Table 3. Example 12-21 Enzymatic Reaction
实验方法同实施例 11, 不同点在于, 采用如表 3所示的原料或酶催化剂, 通 过液相色谱测定上述反应的转化率, 评估酶催化剂的催化活力。  The experimental procedure was the same as that of Example 11, except that the conversion of the above reaction was measured by liquid chromatography using a raw material or an enzyme catalyst as shown in Table 3, and the catalytic activity of the enzyme catalyst was evaluated.
结果如表 3所示。  The results are shown in Table 3.
表 3 商品化酶合成几种核苷氨基酸衍生物  Table 3 Commercialization of enzymes to synthesize several nucleoside amino acid derivatives
Figure imgf000015_0001
Figure imgf000015_0001
结果表明: 选择碱性蛋白酶或脂肪酶为催化剂, 能催化多种核苷化合物选择 性进行酯交换反应,可对含有多官能团的核苷化合物进行结构修饰,其中利用脂肪 酶 CALB对阿昔洛韦进行 L-缬氨酸甲酯修饰, 催化活力最大, 为阿糖胞苷的 5倍左右。 实施例 22 The results show that the choice of alkaline protease or lipase as a catalyst can catalyze the selection of various nucleoside compounds. The transesterification reaction can be used to structurally modify the polyfunctional nucleoside compound. The lipase CALB is used to modify the acyclovir with L-valine methyl ester. The catalytic activity is the highest, which is cytarabine 5 . Times around. Example 22
向 50 ml圆底烧瓶中加入阿昔洛韦 200 mg (0. 89mmol) , 再加入 L-丝氨酸甲酯 20 ml , 形成底物浓度为 10 g/L的反应体系, 加入嗜热菌蛋白酶 0. 8g, 在 70°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 72h, 通过液相色谱测定反应的转 化率为 45. 3%, 继续反应 24h, 测定反应的转化率为 68. 3%, 继续反应 24h, 测定反 应的转化率为 78. 2%。 继续反应 24h, 测定反应的转化率为 81. 9%。 反应结束, 经 过盐酸酸化,过滤、浓缩、 50%乙醇重结晶得到阿昔洛韦 -L-丝氨酸酯盐酸盐 240. 7mg (0. 69腿 ol,摩尔收率 77. 5%) ,光学纯度 99. 2%。 实施例 23  Add acyclovir 200 mg (0.89 mmol) to a 50 ml round bottom flask, and add 20 ml of L-serine methyl ester to form a reaction system with a substrate concentration of 10 g/L, and add thermolysin. 8度。 The reaction was carried out at 70 ° C under a magnetic stirring condition (vacuum degree -300 mbar) for 72 h, the conversion of the reaction was determined by liquid chromatography to be 45.3%, the reaction was continued for 24 h, and the conversion of the reaction was 68. 2%。 3%, the reaction was continued for 24h, the conversion rate of the determination was 78.2%. 9%。 The conversion was determined to be 81.9%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to obtain acyclovir-L-serine ester hydrochloride 240. 7 mg (0. 69 leg ol, molar yield 77.5%), optical purity 99. 2%. Example 23
向 50 ml圆底烧瓶中加入阿昔洛韦 200 mg (0. 89mmol) , 再加入 L-半胱氨酸甲 酯 10 ml, 形成底物浓度为 20 g/L的反应体系, 加入碱性蛋白酶 (Alcalase) 2. 4L FG 0. 2 g, 在 50°C、 磁力搅拌条件下减压(真空度 -700 mbar)反应 72h, 通过液相 色谱测定反应的转化率为 43. 3%, 继续反应 24h, 测定反应的转化率为 61. 3%, 再 继续反应 24h, 测定反应的转化率为 76. 5%, 再继续反应 24h, 测定反应的转化率 为 79. 6%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到阿昔洛韦 -L-半胱氨酸酯盐酸盐 251. 7mg (0. 69mmol,摩尔收率 77. 5%) ,光学纯度 99. 1%。 实施例 24  Add acyclovir 200 mg (0.89 mmol) to a 50 ml round bottom flask, and add 10 ml of L-cysteine methyl ester to form a reaction system with a substrate concentration of 20 g/L. Add alkaline protease. (3), Continued reaction. The reaction was determined by liquid chromatography. The conversion was 43.3%, and the reaction was continued at 50 ° C under a magnetic stirring condition (vacuum degree - 700 mbar). 6%。 The conversion rate of the reaction was determined to be 61. 6%, and the conversion of the reaction was continued for 24 hours, the conversion of the reaction was determined to be 76. 5%, and the reaction was continued for another 24 hours, the conversion of the reaction was determined to be 79.6%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to obtain acyclovir-L-cysteine ester hydrochloride 251.7 mg (0. 69 mmol, molar yield 77.5%), optical 1%。 Purity 99.1%. Example 24
向 50 ml圆底烧瓶中加入更昔洛韦 100 mg (0. 39mmol) , 再加入 L-丝氨酸甲酯 10 ml , 形成底物浓度为 10 g/L的反应体系, 加入碱性蛋白酶 (Alcalase) 3. 0T 0. 2 g, 在 50°C、 磁力搅拌条件下减压(真空度 -500 mbar)反应 72h, 通过液相色谱测定 反应的转化率为 46. 2%, 继续反应 24h, 测定反应的转化率为 69. 3%, 再继续反应 24h, 测定反应的转化率为 81. 3%, 再继续反应 24h, 测定反应的转化率为 86. 1%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到更昔洛韦 -L-丝氨酸酯 盐酸盐 149. Omg (0. 32腿 ol,摩尔收率 82. 0%) ,光学纯度 99. 5%。 实施例 25  Add 50 mg (0. 39 mmol) of ganciclovir to a 50 ml round bottom flask, add 10 ml of L-serine methyl ester to form a reaction system with a substrate concentration of 10 g/L, and add alkaline protease (Alcalase). The reaction conversion rate is 46.2%, the reaction is continued for 24 hours, and the reaction is determined. The reaction is carried out at a temperature of 50 ° C under a magnetic stirring condition (vacuum degree - 500 mbar) for 72 h. The conversion rate was 86.1%. The conversion rate of the reaction was 86.1%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to obtain ganciclovir-L-serine ester hydrochloride 149. Omg (0. 32 leg ol, molar yield 82.0%), optical purity 99. 5%. Example 25
向 50 ml圆底烧瓶中加入肌苷 200 mg (0. 74mmol),再加入 L-丙氨酸甲酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入赛威蛋白酶 (Savinase ) 16. O L O. 5 g, 在 60°C、 磁力搅拌条件下减压(真空度 -700 mbar)反应 72h, 通过液相色谱测定反 应的转化率为 41. 2%,继续反应 24h,测定反应的转化率为 59. 8%,再继续反应 24h, 测定反应的转化率为 74. 5%, 再继续反应 24h, 测定反应的转化率为 78. 8%。 反应 结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到肌苷 -L-丙氨酸酯盐酸盐 214. 2mg (0. 57mmol,摩尔收率 77. 0%) ,光学纯度 99. 6%。 实施例 26 Inosine 200 mg (0.74 mmol) was added to a 50 ml round bottom flask, followed by L-alanine methyl ester 10 ml. A reaction system having a substrate concentration of 20 g/L was formed, and Savinase 16. OL O. 5 g was added, and the reaction was carried out under reduced pressure (vacuum degree - 700 mbar) at 60 ° C for 72 h. The reaction rate of the reaction was determined to be 41.2%, and the reaction was continued for 24 hours. The conversion of the reaction was determined to be 59.8%, and the reaction was continued for 24 hours. The conversion of the reaction was 74.5%, and the reaction was continued for 24 hours. 8%。 The conversion rate of the determination was 78.8%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to give inosine-L-alanine ester hydrochloride 214. 2 mg (0. 57 mmol, molar yield 77.0%), optical purity 99. 6%. Example 26
向 50 ml圆底烧瓶中加入阿糖胞苷 200 mg (0. 82mmol) , 再加入 L-苯丙氨酸甲 酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入艾威蛋白酶(Everlase ) 16. 0 L 0. 3 g, 在 50°C、 磁力搅拌条件下减压(真空度 -700 mbar)反应 72h, 通过液相色 谱测定反应的转化率为 40. 1%, 继续反应 24h, 测定反应的转化率为 58. 3%, 再继 续反应 24h, 测定反应的转化率为 73. 5%, 再继续反应 24h, 测定反应的转化率为 78. 2%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到阿糖胞苷 - L- 苯丙氨酸酯盐酸盐 269. Omg (0. 61腿 ol,摩尔收率 74. 4%) ,光学纯度 99. 2%。 实施例 27  Add cytarabine 200 mg (0. 82 mmol) to a 50 ml round bottom flask, and add 10 ml of L-phenylalanine methyl ester to form a reaction system with a substrate concentration of 20 g/L. Add ivermase. (1), Continue the reaction. The conversion of the reaction was determined by liquid chromatography. The reaction was determined to be 40.1% by continuous liquid reaction. 2%。 The reaction conversion rate was 78.2%. The conversion of the reaction was 78.2%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to give cytarabine-L-phenylalanine hydrochloride 269. Omg (0. 61 leg ol, molar yield 74.4%) 2质量。 Optical purity 99.2%. Example 27
向 50 ml圆底烧瓶中加入鸟苷 200 mg (0. 70mmol),再加入 L-丝氨酸甲酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入实施例 1制得的地衣芽孢杆菌碱性蛋白 酶 0. 6 g, 在 50°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液 相色谱测定反应的转化率为 33. 8%, 继续反应 24h, 测定反应的转化率为 51. 7%, 再继续反应 24h, 测定反应的转化率为 64. 7%。 再继续反应 24h, 测定反应的转化 率为 74. 3%。 再继续反应 24h, 测定反应的转化率为 80. 6%, 再继续反应 24h, 测定 反应的转化率为 84. 5%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 乙醇重结晶得到 鸟苷 -L-丝氨酸酯盐酸盐 227. 8mg (0. 56腿 ol,摩尔收率 80. 0%) ,光学纯度 99. 7%。 实施例 28  To a 50 ml round bottom flask, guanosine 200 mg (0.70 mmol) was added, and then 10 ml of L-serine methyl ester was added to form a reaction system having a substrate concentration of 20 g/L. The lichens spore prepared in Example 1 was added. 8%, continued reaction for 24 hours, the reaction was carried out by liquid chromatography at a pressure of 30 ° C under a magnetic stirring condition (vacuum degree of -300 mbar) for 48 h. 7%。 The conversion of the reaction was determined to be 51. 7%, and the reaction was continued for another 24h, the conversion of the reaction was determined to be 64.7%. The reaction rate was 74.3%. The reaction conversion rate was 84.5%. The conversion rate was determined to be 84.5%. After the end of the reaction, the acid is acidified, filtered, concentrated, and recrystallized from ethanol to give guanosine-L-serine ester hydrochloride 227. 8 mg (0. 56 leg ol, molar yield 80. 0%), optical purity 99.7% . Example 28
向 50 ml圆底烧瓶中加入阿昔洛韦 200 mg (0. 89mmol) , 再加入 L-缬氨酸甲酯 10 ml , 形成底物浓度为 20 g/L 的反应体系, 加入南极假丝酵母脂肪酶 B (CALB) 0. 3g, 在 50°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色 谱测定反应的转化率为 38. 1%, 继续反应 24h, 测定反应的转化率为 79. 8%, 再继 续反应 24h, 测定反应的转化率为 86. 6%, 再继续反应 24h, 测定反应的转化率为 91. 3%, 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到伐昔洛韦盐酸 盐 285. Omg (0. 79mmol,摩尔收率 88. 8%) ,光学纯度 99. 4%。 实施例 29 Add 50 mg (0. 89 mmol) of acyclovir to a 50 ml round bottom flask, add 10 ml of L-valine methyl ester to form a reaction system with a substrate concentration of 20 g/L, and add Candida antarctica. The reaction rate was determined to be 38.1%, and the reaction was continued for 24 hours. The reaction was carried out by liquid chromatography at a temperature of 50 ° C under a magnetic stirring condition (vacuum degree of -300 mbar) for 48 h. The conversion rate of the reaction was determined to be 79.8%, and the reaction was continued for another 24 hours. The conversion of the reaction was 86.6%, and the reaction was continued for another 24 hours. 91. 3%, the end of the reaction, acidified by hydrochloric acid, filtered, concentrated, 50% ethanol recrystallization to obtain valacyclovir hydrochloride 285. Omg (0. 79mmol, molar yield 88.8%), optical purity of 99. 4%. Example 29
向 50 ml圆底烧瓶中加入阿昔洛韦 700 mg (3. 11 mmol), 再加入 L_缬氨酸甲酯 20 ml , 形成底物浓度为 35 g/L的反应体系, 加入丽波脂肪酶(Lipolase) 100T 0. 5 g, 在 55°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测 定反应的转化率为 40. 8%, 继续反应 24h, 测定反应的转化率为 78. 6%, 再继续反 应 24h,测定反应的转化率为 89. 6%,再继续反应 24h,测定反应的转化率为 90. 7%。 反应结束,经过盐酸酸化,过滤、浓缩、 50%乙醇重结晶得到伐昔洛韦盐酸盐 970. 6mg ( 2. 69腿 ol,摩尔收率 86. 5%) ,光学纯度 99. 6%。 实施例 30  Add acyclovir 700 mg (3.11 mmol) to a 50 ml round bottom flask, and add 20 ml of L_valine methyl ester to form a reaction system with a substrate concentration of 35 g/L. Add Libo fat. 8%, Continue reaction 24h, the reaction was determined by liquid chromatography. The reaction was determined by liquid chromatography to determine the conversion rate of 40. 8%, continue to react for 24 hours. The reaction was carried out at a temperature of 55 ° C under a magnetic stirring condition (vacuum degree of -300 mbar) for 48 h. 7%。 The conversion of the reaction was determined to be 78. 6%, the reaction was continued for 24h, the conversion of the reaction was determined to be 89.6%, and the reaction was continued for another 24h, the conversion of the reaction was determined to be 90.7%. 6%。 The reaction was completed, acidified by hydrochloric acid, filtered, concentrated, 50% ethanol recrystallized to give valacyclovir hydrochloride 970. 6mg ( 2. 69 leg ol, molar yield 86. 5%), optical purity 99.6%. Example 30
向 50ml圆底烧瓶中加入更昔洛韦 300mg (l. 17mmol), 再加入 L-缬氨酸乙酯 20 ml , 形成底物浓度为 15g/L的反应体系, 加入 Novo435脂肪酶 0. 3g, 在 37°C、 磁 力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应的转化 率为 37. 7%, 继续反应 24h, 测定反应的转化率为 75. 8%, 再继续反应 24h, 测定反 应的转化率为 87. 6%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 乙醇重结晶得到更 昔洛韦 -L-缬氨酸酯盐酸盐 488. 0mg(0. 98mmol,摩尔收率 83. 7%),光学纯度 98. 5%。 实施例 31  5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The reaction was converted to a reaction rate of 75. 8 and the reaction was determined to be 75. 6%。 The conversion of the reaction was determined to be 87.6%. The reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from ethanol to obtain ganciclovir-L-valine ester hydrochloride 488. 0 mg (0. 98 mmol, molar yield 83.7%), optical purity 98. 5%. Example 31
向 50 ml圆底烧瓶中加入肌苷 200 mg (0. 74mmol),再加入 L-丝氨酸甲酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入脂肪酶 PS 天野 SD 0. 2 g, 在 50°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应的转 化率为 41. 5%, 继续反应 24h, 测定反应的转化率为 73. 7%, 再继续反应 24h, 测定 反应的转化率为 85. 9%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 乙醇重结晶得到 肌苷 -L-丝氨酸酯盐酸盐 239. Omg (0. 61腿 ol,摩尔收率 82. 4%) ,光学纯度 99. 0%。 实施例 32  Inosine 200 mg (0.74 mmol) was added to a 50 ml round bottom flask, and 10 ml of L-serine methyl ester was added to form a reaction system having a substrate concentration of 20 g/L, and lipase PS Amano SD 0. 2 was added. g, the reaction was carried out under reduced pressure (vacuum degree -300 mbar) at 50 ° C for 48 h, and the conversion of the reaction was determined by liquid chromatography to be 41. 5%, the reaction was continued for 24 h, and the conversion of the reaction was determined to be 73. 9%。 The reaction rate was determined to be 85.9%. 0%。 The end of the reaction, the acidification of hydrochloric acid, filtration, concentration, ethanol recrystallization to obtain inosine-L-serine ester hydrochloride 239. Omg (0. 61 leg ol, molar yield 82.4%), optical purity of 99.0% . Example 32
向 50 ml圆底烧瓶中加入鸟苷 200 mg (0. 70mmol), 再加入 L_半胱氨酸甲酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入脂肪酶 AK 天野 0. 4 g, 在 30°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应的转 化率为 35. 1%, 继续反应 24h, 测定反应的转化率为 51. 3%, 再继续反应 24h, 测定 反应的转化率为 65. 6%。 再继续反应 24h, 测定反应的转化率为 73. 6%。 再继续反 应 24h,测定反应的转化率为 79. 6%,再继续反应 24h,测定反应的转化率为 82. 9%。 反应结束, 经过盐酸酸化, 过滤、 浓缩、 乙醇重结晶得到鸟苷 -L-半胱氨酸酯盐酸 盐 232. 6mg (0. 55mmol,摩尔收率 78. 6%) ,光学纯度 99. 5%。 实施例 33 Add guanosine 200 mg (0.70 mmol) to a 50 ml round bottom flask, and add 10 ml of L-cysteine methyl ester to form a reaction system with a substrate concentration of 20 g/L. Add lipase AK Amano 0 4 g, reacted under reduced pressure (vacuum degree -300 mbar) at 30 ° C for 48 h, and the reaction was measured by liquid chromatography. 6%。 The conversion rate was 35.1%, the reaction was continued for 24h, the conversion of the reaction was determined to be 51.3%, and the reaction was continued for another 24h, the conversion rate of the determination was 65.6%. The reaction conversion rate was 73.6%. 9%。 The conversion of the reaction was continued for 24h, the conversion of the reaction was determined to be 79. 6%, and the reaction was continued for another 24h, the conversion rate of the reaction was determined to be 82.9%. After the end of the reaction, the acid is acidified, filtered, concentrated, and recrystallized from ethanol to give guanosine-L-cysteine ester hydrochloride 232. 6 mg (0. 55 mmol, molar yield 78.6%), optical purity 99. 5 %. Example 33
向 50 ml圆底烧瓶中加入腺苷 200 mg (0. 75mmol),再加入 L-丙氨酸甲酯 10 ml , 形成底物浓度为 20 g/L的反应体系, 加入碱性脂肪酶 Greasex 50L 0. 3g, 在 40 V、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应 的转化率为 41. 1%, 继续反应 24h, 测定反应的转化率为 78. 8%, 再继续反应 24h, 测定反应的转化率为 85. 9%, 再继续反应 24h, 测定反应的转化率为 90. 1%, 反应 结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得到腺苷 -L-丙氨酸酯盐酸盐 175. 3mg (0. 65mmol,摩尔收率 86. 7%) ,光学纯度 99. 4%。 实施例 34 (对比例 1)  Add adenosine 200 mg (0.75 mmol) to a 50 ml round bottom flask, and add 10 ml of L-alanine methyl ester to form a reaction system with a substrate concentration of 20 g/L. Add alkaline lipase Greasex 50L. 0%。 After the reaction under reduced pressure (vacuum degree -300 mbar) for 40h, the conversion rate of the reaction was determined by liquid chromatography to be 41.1%, the reaction was continued for 24h, the conversion rate of the reaction was determined. 78%。 After the reaction was continued for 24h, the conversion of the reaction was determined to be 85.9%, and the reaction was continued for another 24h, the conversion of the reaction was determined to be 90.1%, the reaction was completed, acidified by hydrochloric acid, filtered, concentrated, 50% 4%。 The ethanol was recrystallized to give adenosine-L-alanine ester hydrochloride 175. 3mg (0. 65mmol, a molar yield of 86.7%), optical purity of 99.4%. Example 34 (Comparative Example 1)
向 50 ml圆底烧瓶中加入阿昔洛韦 400 mg (l. 78mmol), 再加入 L_缬氨酸甲酯 10 ml和二甲基亚砜 (DMSO) 10ml, 形成底物浓度为 20 g/L的反应体系, 加入南 极假丝酵母脂肪酶 B (CALB) 0. 3g, 在 50°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应的转化率为 31. 2%, 继续反应 24h, 测定反 应的转化率为 55. 8%, 再继续反应 24h, 测定反应的转化率为 63. 6%, 再继续反应 24h, 测定反应的转化率为 66. 7%, 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙 醇重结晶得到伐昔洛韦盐酸盐 389. 7mg ( 1. 08mmol,摩尔收率 60. 7%)。 实施例 35 (对比例 2 )  Add acyclovir 400 mg (1.78 mmol) to a 50 ml round bottom flask, and add 10 ml of L_valine methyl ester and 10 ml of dimethyl sulfoxide (DMSO) to form a substrate concentration of 20 g/ The reaction system of L was added with Candida antarctica lipase B (CALB) 0.3 g, and the reaction was carried out under reduced pressure (vacuum degree -300 mbar) at 50 ° C for 48 h. The conversion of the reaction was determined by liquid chromatography. The rate of conversion was 31. 2%, and the reaction was continued for 24 hours. The conversion of the reaction was determined to be 55.8%. The reaction was further continued for 24 hours. The conversion of the reaction was determined to be 63.6%. The reaction was continued for another 24 hours. 7%, the reaction was completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to give valzallovir hydrochloride 389. 7 mg (1. 08 mmol, molar yield 60.7%). Example 35 (Comparative Example 2)
向 50 ml圆底烧瓶中加入阿昔洛韦 400 mg (l. 78mmol), 再加入 L_缬氨酸甲酯 ^!^和去离子水?!^, 形成底物浓度为 33. 3 g/L的反应体系, 加入南极假丝酵母 脂肪酶 B (CALB) 0. 3g, 在 50°C、 磁力搅拌条件下减压(真空度为 -300 mbar)反应 48h, 通过液相色谱测定反应的转化率为 16. 7%, 继续反应 24h, 测定反应的转化率 为 25. 6%, 再继续反应 24h, 测定反应的转化率为 29. 7%, 再继续反应 24h, 测定反 应的转化率为 34. 3%, 反应结束, 经过盐酸酸化, 过滤、 浓缩、 50%乙醇重结晶得 到伐昔洛韦盐酸盐 182. 5mg (0. 51mmol,摩尔收率 28. 7%)。 实施例 34和 35实验结果表明在添加有机溶剂例如二甲基亚砜或水后,转化率 较差。 实验证明, 有机溶剂或水在反应体系当中对酶的活性有较大的影响, 不利于 反应的继续进行, 对后处理也会产生较大影响。 可见,本发明所述的制备方法中,采用的蛋白酶或脂肪酶市售获得或者通过简 单的发酵方法即可获得,无需经过一些特殊的处理过程。该方法无需另外添加溶剂, 即可获得高纯度的产物。 在本发明的蛋白酶或脂肪酶的催化下, 该方法转化率高、 选择性高、 副产物少、 后处理更简便。 因此, 该方法更简便、 更经济、 更环保, 十 分适合工业化。 在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单 独引用作为参考那样。此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域 技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利 要求书所限定的范围。 Add acyclovir 400 mg (1.78 mmol) to a 50 ml round bottom flask and add L_valine methyl ester ^! ^ and deionized water? !^, a reaction system having a substrate concentration of 33. 3 g / L, adding Candida antarctica lipase B (CALB) 0. 3g, decompression at 50 ° C, magnetic stirring conditions (vacuum degree -300 7%。 The reaction rate was determined by the liquid chromatography, the reaction was determined to be 16.7%, the reaction was continued for 24h, the conversion of the reaction was determined to be 25.6%, and the reaction was continued for 24h, the conversion rate of the reaction was 29.7% And the reaction is carried out for 24 hours, the conversion of the reaction is determined to be 34.3%, and the reaction is completed, acidified by hydrochloric acid, filtered, concentrated, and recrystallized from 50% ethanol to obtain valacyclovir hydrochloride 182. 5 mg (0. 51 mmol, mol Yield 28.7%). The experimental results of Examples 34 and 35 indicate that the conversion rate is poor after the addition of an organic solvent such as dimethyl sulfoxide or water. Experiments have shown that organic solvents or water have a greater influence on the activity of the enzyme in the reaction system, which is not conducive to the continuation of the reaction, and will have a greater impact on the post-treatment. It can be seen that in the preparation method of the present invention, the protease or lipase used is commercially available or can be obtained by a simple fermentation method without going through some special treatment process. This method can obtain a product of high purity without additional solvent addition. Under the catalysis of the protease or lipase of the present invention, the method has high conversion rate, high selectivity, few by-products, and simple post-treatment. Therefore, the method is simpler, more economical and more environmentally friendly, and is very suitable for industrialization. All documents mentioned in the present application are hereby incorporated by reference in their entirety in their entireties in the the the the the the the the In addition, it should be understood that various modifications and changes may be made by those skilled in the art after the above-described teachings of the present invention.

Claims

权 利 要 求 Rights request
1 . 一种酶催化合成核苷氨基酸衍生物的方法, 其特征在于, 包括步骤: 在蛋白酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基 酸衍生物; 其中, A method for catalyzing the synthesis of a nucleoside amino acid derivative by an enzyme, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under a catalysis of a protease to obtain a nucleoside amino acid derivative;
所述的核苷化合物为阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷、 腺苷或阿糖胞苷; 所述的 L-氨基酸酯为液态的 L-丝氨酸酯、液态的 L-丙氨酸酯、液态的 L-半胱 氨酸酯或液态的 L-苯丙氨酸酯;  The nucleoside compound is acyclovir, ganciclovir, inosine, guanosine, adenosine or cytarabine; the L-amino acid ester is a liquid L-serine ester, a liquid L- Alanine ester, liquid L-cysteine ester or liquid L-phenylalanine ester;
所述的核苷氨基酸衍生物为阿昔洛韦 -L-丝氨酸酯、 阿昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔洛韦 -L-丝氨酸酯、 更昔 洛韦 -L-丙氨酸酯、 更昔洛韦 -L-半胱氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L- 丝氨酸酯、 肌苷 -L-丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L- 丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺苷 -L- 丝氨酸酯、 腺苷 -L-丙氨酸酯、 腺苷 -L-半胱氨酸酯、 腺苷 -L-苯丙氨酸酯、 阿糖胞 苷 -L-丝氨酸酯、 阿糖胞苷 -L-丙氨酸酯、 阿糖胞苷 -L-半胱氨酸酯或阿糖胞苷 -L- 苯丙氨酸酯;  The nucleoside amino acid derivative is acyclovir-L-serine ester, acyclovir-L-alanine ester, acyclovir-L-cysteine ester, acyclovir-L -phenylalaninate, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L-benzene Alanine ester, inosine-L-serine ester, inosine-L-alaninate, inosine-L-cysteine, inosine-L-phenylalaninate, guanosine-L- Serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L-phenylalanine ester, adenosine-L-serine ester, adenosine-L-alanine Acid ester, adenosine-L-cysteine ester, adenosine-L-phenylalanine ester, cytarabine-L-serine ester, cytarabine-L-alanine ester, arsenic Glycosyl-L-cysteine ester or cytarabine-L-phenylalanine ester;
所述的蛋白酶为枯草芽孢杆菌碱性蛋白酶、 地衣芽孢杆菌碱性蛋白酶、 碱性 蛋白酶 3. 0T、 碱性蛋白酶 2. 4L FG、 赛威蛋白酶 8. 0T、 赛威蛋白酶 16. 0 L、 益瑞 蛋白酶 8. 0 L、 艾威蛋白酶 16. 0 L或嗜热菌蛋白酶。  The proteinase is Bacillus subtilis alkaline protease, Bacillus licheniformis alkaline protease, alkaline protease 3. 0T, alkaline protease 2. 4L FG, Saiwei proteinase 8. 0T, Saiwei proteinase 16. 0 L, Yi瑞酶 8. 0 L, avidin 16. 0 L or thermolysin.
2. 如权利要求 1所述的方法, 其特征在于,  2. The method of claim 1 wherein
所述的 L-丝氨酸酯为 L-丝氨酸 d-4酯; 和 /或 The L-serine ester is L-serine d- 4 ester; and/or
所述的 L-丙氨酸酯为 L-丙氨酸 d-4酯; 和 /或 The L-alanine ester is L-alanine d- 4 ester; and/or
所述的 L-半胱氨酸酯为 L-半胱氨酸(^4酯; 和 /或 The L-cysteine ester is L-cysteine (^ 4 ester; and/or
所述的 L-苯丙氨酸酯为 L-苯丙氨酸 CH酯。  The L-phenylalanine ester is L-phenylalanine CH ester.
3. 一种酶催化合成核苷氨基酸衍生物的方法, 其特征在于, 包括步骤: 在脂肪酶的催化下, 核苷化合物和 L-氨基酸酯进行反应, 从而得到核苷氨基 酸衍生物; 其中,  A method for catalyzing the synthesis of a nucleoside amino acid derivative by an enzyme, comprising the steps of: reacting a nucleoside compound and an L-amino acid ester under a catalysis of a lipase to obtain a nucleoside amino acid derivative;
所述的核苷化合物为阿昔洛韦、 更昔洛韦、 肌苷、 鸟苷或腺苷;  The nucleoside compound is acyclovir, ganciclovir, inosine, guanosine or adenosine;
所述的 L-氨基酸酯为液态的 L-缬氨酸酯、液态的 L-丝氨酸酯、液态的 L-丙氨 酸酯、 液态的 L-半胱氨酸酯或液态的 L-苯丙氨酸酯;  The L-amino acid ester is a liquid L-valine ester, a liquid L-serine ester, a liquid L-alanine ester, a liquid L-cysteine ester or a liquid L-phenylalanine. Acid ester
所述的核苷氨基酸衍生物为阿昔洛韦 -L-缬氨酸酯、阿昔洛韦 -L-丝氨酸酯、阿 昔洛韦 -L-丙氨酸酯、 阿昔洛韦 -L-半胱氨酸酯、 阿昔洛韦 -L-苯丙氨酸酯、 更昔洛 韦 -L-缬氨酸酯、 更昔洛韦 -L-丝氨酸酯、更昔洛韦 -L-丙氨酸酯、更昔洛韦 -L-半胱 氨酸酯、 更昔洛韦 -L-苯丙氨酸酯、 肌苷 -L-缬氨酸酯、 肌苷 -L-丝氨酸酯、 肌苷 -L- 丙氨酸酯、 肌苷 -L-半胱氨酸酯、 肌苷 -L-苯丙氨酸酯、 鸟苷 -L-缬氨酸酯、 鸟苷 -L- 丝氨酸酯、 鸟苷 -L-丙氨酸酯、 鸟苷 -L-半胱氨酸酯、 鸟苷 -L-苯丙氨酸酯、 腺苷 -L- 缬氨酸酯、 腺苷 -L-丝氨酸酯、 腺苷 -L-丙氨酸酯、 腺苷 -L-半胱氨酸酯或腺苷 -L- 苯丙氨酸酯; The nucleoside amino acid derivatives are acyclovir-L-valine ester, acyclovir-L-serine ester, acyclovir-L-alaninate, acyclovir-L- Cysteine ester, acyclovir-L-phenylalanine, ganciclovir Wei-L-valine ester, ganciclovir-L-serine ester, ganciclovir-L-alaninate, ganciclovir-L-cysteine, ganciclovir-L -phenylalanine ester, inosine-L-valine ester, inosine-L-serine ester, inosine-L-alanine ester, inosine-L-cysteine ester, inosine-L -phenylalanine ester, guanosine-L-valine ester, guanosine-L-serine ester, guanosine-L-alanine ester, guanosine-L-cysteine ester, guanosine-L -phenylalanine ester, adenosine-L-valine ester, adenosine-L-serine ester, adenosine-L-alanine ester, adenosine-L-cysteine ester or adenosine-L - phenylalanine ester;
所述的脂肪酶为丽波脂肪酶 100T、 Νονο435脂肪酶、 脂肪酶 PS 天野 SD、 脂肪 酶 AS 天野、 脂肪酶 AK 天野、 脂肪酶 G、 脂肪酶 AYS天野、 南极假丝酵母脂肪酶 B或碱性脂肪酶 Greasex 50L。  The lipase is Libo lipase 100T, Νονο435 lipase, lipase PS Amano SD, lipase AS Amano, lipase AK Amano, lipase G, lipase AYS Amano, Candida antarctica lipase B or alkali Sex lipase Greasex 50L.
4. 如权利要求 3所述的方法, 其特征在于,  4. The method of claim 3, wherein
所述的 L-缬氨酸酯为 L-缬氨酸 C1-4酯; 和 /或  The L-valine ester is L-valine C1-4 ester; and/or
所述的 L-丝氨酸酯为 L-丝氨酸 d-4酯; 和 /或 The L-serine ester is L-serine d- 4 ester; and/or
所述的 L-丙氨酸酯为 L-丙氨酸 d-4酯; 和 /或 The L-alanine ester is L-alanine d- 4 ester; and/or
所述的 L-半胱氨酸酯为 L-半胱氨酸(^4酯; 和 /或 The L-cysteine ester is L-cysteine (^ 4 ester; and/or
所述的 L-苯丙氨酸酯为 L-苯丙氨酸 CH酯。  The L-phenylalanine ester is L-phenylalanine CH ester.
5. 如权利要求 3所述的方法, 其特征在于, 所述的脂肪酶为南极假丝酵母脂 肪酶 B。  The method according to claim 3, wherein the lipase is Candida antarctica lipase B.
6. 如权利要求 1或 3所述的方法, 其特征在于, 所述的核苷化合物为阿昔洛 韦或更昔洛韦。  6. The method according to claim 1 or 3, wherein the nucleoside compound is acyclovir or ganciclovir.
7. 如权利要求 1或 3所述的方法, 其特征在于, 所述的核苷化合物在反应体 系中的浓度为 10〜50 g/L o  The method according to claim 1 or 3, wherein the concentration of the nucleoside compound in the reaction system is 10 to 50 g/L.
8. 如权利要求 1或 3所述的方法, 其特征在于, 所述的蛋白酶或脂肪酶在反 应体系中的浓度为 8〜65g/L。  The method according to claim 1 or 3, wherein the protease or lipase has a concentration in the reaction system of 8 to 65 g/L.
9. 如权利要求 1或 3所述的方法, 其特征在于, 所述的反应在 20〜70°C下进 行; 和 /或 所述的反应进行 24〜120 小时。  The method according to claim 1 or 3, wherein the reaction is carried out at 20 to 70 ° C; and / or the reaction is carried out for 24 to 120 hours.
10. 如权利要求 1或 3所述的方法, 其特征在于, 所述的反应在相对真空度为 -100〜- 500mbar下进行。  10. Process according to claim 1 or 3, characterized in that the reaction is carried out at a relative vacuum of from -100 to -500 mbar.
PCT/CN2012/087204 2012-12-21 2012-12-21 Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis WO2014094312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087204 WO2014094312A1 (en) 2012-12-21 2012-12-21 Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087204 WO2014094312A1 (en) 2012-12-21 2012-12-21 Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis

Publications (1)

Publication Number Publication Date
WO2014094312A1 true WO2014094312A1 (en) 2014-06-26

Family

ID=50977586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087204 WO2014094312A1 (en) 2012-12-21 2012-12-21 Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis

Country Status (1)

Country Link
WO (1) WO2014094312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745997A (en) * 2022-11-30 2023-03-07 湖北省宏源药业科技股份有限公司 Preparation method of high-purity valaciclovir impurity H

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812105A (en) * 2009-02-25 2010-08-25 沈阳药科大学 Cytarabine 5'-O-amino-acid ester, salts thereof and preparation method thereof
WO2011009539A1 (en) * 2009-07-20 2011-01-27 Merck Patent Gmbh ε-POLYLYSINE CONJUGATES AND USE THEREOF

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812105A (en) * 2009-02-25 2010-08-25 沈阳药科大学 Cytarabine 5'-O-amino-acid ester, salts thereof and preparation method thereof
WO2011009539A1 (en) * 2009-07-20 2011-01-27 Merck Patent Gmbh ε-POLYLYSINE CONJUGATES AND USE THEREOF

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAMAREZ, M. ET AL.: "Pilot-Scale Lipase-Catalyzed Regioselective Acylation of Ribavirin in Anhydrous Media in the Synthesis of a Novel Prodrug Intermediate.", ORGANIC PROCESS RESEARCH & DEVELOPMENT., vol. 7, no. 6, 2003, pages 951 - 953, XP002309939 *
ZHANG, MING ET AL.: "Regioselective enzymatic synthesis of cytarabine aminoacyl derivatives", JOURNAL OF ZHEJIANG UNIVERSITY ( SCIENCE EDITION, vol. 36, no. 4, July 2009 (2009-07-01), pages 450 - 453 *
ZHANG, MING: "Study on enzymatic synthesis and selective regulation of drugs aminoacyl derivatives", CHINA MASTER'S THESES FULL-TEXT DATABASE ( SCIENCE -ENGINEERING (A)) , CNKI, 15 November 2008 (2008-11-15), pages 1 - 105, Retrieved from the Internet <URL:http://www.cnki.net> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745997A (en) * 2022-11-30 2023-03-07 湖北省宏源药业科技股份有限公司 Preparation method of high-purity valaciclovir impurity H

Similar Documents

Publication Publication Date Title
CN102304131B (en) Triprenyl phenol compound and its preparing method, and thrombolysis enhancer
JP5096435B2 (en) Process for producing optically active α-methylcysteine derivative
US7727751B2 (en) Method for the preparation of mycophenolate mofetil by enzyme tranesterification
US20110166347A1 (en) Process for preparation of mycophenolic acid, its salt and ester derivatives
WO2014094312A1 (en) Method for synthesizing nucleoside amino acid derivatives through enzyme catalysis
Ohishi et al. Enantioselective synthesis of D-and L-α-methylcysteine with hydantoinase
CN103882074A (en) Method for synthesizing nucleoside amino acid derivative through enzyme catalysis
JP5093248B2 (en) Process for producing optically active indoline-2-carboxylic acids or derivatives thereof
JP3155448B2 (en) Method for producing L-amino acid or salt thereof
US20130041178A1 (en) Method for preparing optically active n-methylamino acids and optically active n-methylamino acid amides
CN111118073B (en) Method for synthesizing intermediate of ezetimivir by enzyme method
CN106520857A (en) Method for synthesizing aztreonam through enzyme method
CN117363667B (en) Use of imine reductase in preparation of dapoxetine intermediate and/or dapoxetine
Parry et al. The biosynthesis of sparsomycin. Further investigations of the biosynthesis of the uracil acrylic acid moiety
JP2001055397A (en) Production of 2&#39;-deoxyuridine
JP2007117034A (en) Method for producing optically active nipecotic acid compound
EP0279832A1 (en) Enzymatic process
JP3345551B2 (en) Method for producing S-phenyl-L-cysteine
US20060223152A1 (en) Optically active 2-allylcarboxylic acid derivative and process for producing the same
JP2005278401A (en) Method for producing optically active erythro-3-cyclohexylserine
US20050106690A1 (en) Process for producing optically active octahydro-1H-indole-2-carboxylic acid
JP2006288242A (en) Method for producing s-allyl-l-cysteine
WO2007039079A1 (en) Process for the synthesis of beta amino acids
JP2001190298A (en) Method for producing optically active n-methylamino acid
JP2003180390A (en) Method for producing optically active phenoxypropane derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890161

Country of ref document: EP

Kind code of ref document: A1