WO2014094276A1 - 交互云化的无线接入网边缘区域用户的数据的方法及装置 - Google Patents

交互云化的无线接入网边缘区域用户的数据的方法及装置 Download PDF

Info

Publication number
WO2014094276A1
WO2014094276A1 PCT/CN2012/087022 CN2012087022W WO2014094276A1 WO 2014094276 A1 WO2014094276 A1 WO 2014094276A1 CN 2012087022 W CN2012087022 W CN 2012087022W WO 2014094276 A1 WO2014094276 A1 WO 2014094276A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
ran
site
channel
adjacent
Prior art date
Application number
PCT/CN2012/087022
Other languages
English (en)
French (fr)
Inventor
王珏平
王建春
张思
王少瑞
卢佐旻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002166.6A priority Critical patent/CN103250396B/zh
Priority to PCT/CN2012/087022 priority patent/WO2014094276A1/zh
Publication of WO2014094276A1 publication Critical patent/WO2014094276A1/zh
Priority to US14/322,468 priority patent/US9654559B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/289Intermediate processing functionally located close to the data consumer application, e.g. in same machine, in same home or in same sub-network

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and related apparatus for interacting with data of a user of an edge area of a wireless access network. Background technique
  • Cloud-based Radio Access Network is a new type of wireless access network. It is a green wireless access network architecture based on centralized processing, collaborative radio and real-time cloud computing architecture.
  • the C-RAN scheme compared to the single-station scheme, can provide features such as tidal resource pools, tight coupling coordination between stations, and centralized management to improve network performance.
  • users in the C-RAN edge area cannot obtain the same performance benefit from users in the C-RAN station. Summary of the invention
  • Embodiments of the present invention provide a method and related apparatus for interacting with data of a user of an edge area of a wireless access network, so as to obtain better gains and improve system performance for users in the C-RAN edge area.
  • a method for interacting with data of a C-RAN edge area user of a cloud access radio access network may include:
  • the interaction control data with the neighboring C-RAN collaboration site includes:
  • Control data is exchanged with the adjacent C-RAN collaboration site via a control channel of a Transmission Control Protocol/Internet Protocol TCP/IP channel or a high speed data interaction channel.
  • the data interaction channel for interacting with the first data is a high-speed data interaction channel, where the high speed Data interaction channels include: General wireless protocol interface CPRI channel, fast input and output RIO interface channel or Ethernet interface channel.
  • the method further includes:
  • the data specifically includes: data of the user, so that the neighboring C-RAN cooperative station acquires the first data from the neighboring C-RAN, and sends the second data to the edge area user according to the control data; with
  • a method for interacting with data of a C-RAN edge area user of a cloud access radio access network may include:
  • the C-RAN primary site interacts with the first data to interact with the edge region user based on the control data.
  • the interaction control data of the primary site to which the user of the C-RAN edge region belongs includes:
  • the control channel of the Transmission Control Protocol/Internet Protocol TCP/IP channel or the high-speed data interaction channel interacts with the C-RAN primary site to which the C-RAN edge area user belongs.
  • the data interaction channel for interacting with the first data is a high-speed data interaction channel, where
  • the high-speed data interaction channel includes: a universal wireless protocol interface CPRI channel, a fast input/output RIO interface channel or an Ethernet interface channel.
  • the method further includes:
  • the first data is exchanged with the C-RAN main site by the data interaction channel established by the C-RAN primary site according to the control data, so as to interact with the edge region user according to the control data.
  • the data specifically includes:
  • the first data is received from the C-RAN primary site through the data interaction channel.
  • a cloud-based radio access network C-RAN primary site is provided, where the method includes: a determining unit, configured to determine at least one collaboration site of at least one neighboring C-RAN for a C-RAN edge region user;
  • a first interaction unit configured to exchange control data with the neighboring C-RAN collaboration site
  • a channel establishment unit configured to establish, according to the control data, a first data for interacting with the adjacent C-RAN collaboration site Data interaction channel
  • a second interaction unit configured to exchange the first data with the neighboring C-RAN collaboration site by using the data interaction channel, so that the neighboring C-RAN collaboration site according to the control data and the edge
  • the regional user interacts with the second data.
  • the first interaction unit includes:
  • a third interaction unit configured to interact with the adjacent C-RAN collaboration site to control data through a control channel of a Transmission Control Protocol/Internet Protocol TCP/IP channel or a high-speed data interaction channel.
  • the data interaction channel for interacting with the first data is a high-speed data interaction channel, where the high speed Data interaction channels include: General wireless protocol interface CPRI channel, fast input and output RIO Interface channel or Ethernet interface channel.
  • the C-RAN primary site further includes: An aggregation unit, configured to aggregate the first data with data of an edge area user of another edge area user belonging to the same adjacent C-RAN of the edge area;
  • the second interaction unit specifically includes:
  • a first sending unit configured to send data of the aggregated edge area user to the neighboring C-RAN through the data interaction channel, so that the neighboring C-RAN collaboration station from the neighboring C - the RAN acquires the first data, and sends the second number sum to the edge area user according to the control data
  • the fourth aspect provides a neighboring clouded radio access network C-RAN collaboration site, which may include: a fourth interaction unit, configured to exchange control data with a C-RAN primary site to which the C-RAN edge area user belongs;
  • a fifth interaction unit configured to exchange, by using the data interaction channel established by the C-RAN primary site, the first data with the C-RAN primary site according to the control data, according to the control data and the edge
  • the regional user interacts with the second data.
  • the fourth interaction unit includes:
  • the sixth interaction unit is configured to exchange data with the C-RAN primary site to which the C-RAN edge area user belongs through the control channel of the Transmission Control Protocol/Internet Protocol TCP/IP channel or the high-speed data interaction channel.
  • the data interaction channel for interacting with the first data is a high-speed data interaction channel, where the high speed Data interaction channels include: General wireless protocol interface CPRI channel, fast input and output RIO interface channel or Ethernet interface channel.
  • the method further includes: a second aggregation unit, configured to belong to the first data and the edge area user
  • the data of the user in the edge area of the user of the other edge areas of the C-RAN is aggregated;
  • the fifth interaction unit specifically includes:
  • a second sending unit configured to send, by using the data interaction channel, the data of the user of the aggregated edge area to the C-RAN, so that the C-RAN primary station obtains the foregoing from the C-RAN One data; and the first data.
  • a system for interacting with a cloud-based wireless access network C-RAN edge area user data may include:
  • the C-RAN primary station determines a neighboring C-RAN collaboration site for the C-RAN edge area user
  • the C-RAN primary site interacts with the neighboring C-RAN collaboration site to control data
  • the C-RAN primary site is connected to the adjacent C-RAN collaboration site by a data interaction channel for interacting with the first data;
  • the C-RAN primary station interacts with the neighboring C-RAN collaboration site by the data interaction channel to enable the neighboring C-RAN collaboration site to perform the control data according to the edge
  • the regional user interacts with the second data.
  • the networking manner of the C-RAN to which the C-RAN primary site belongs and the C-RAN to which the adjacent C-RAN collaboration site belongs includes: a star, a chain, and a ring.
  • a device for interacting with data of a C-RAN edge area user of a cloud access radio access network may include: an input device, an output device, a memory, and a processor;
  • the processor performs the following steps:
  • a device for interacting with a data of a C-RAN edge area user of a cloud access radio access network may include: an input device, an output device, a memory, and a processor;
  • the processor performs the following steps:
  • the C-RAN primary site interacts with the first data to interact with the edge region user based on the control data.
  • the C-RAN primary site performs coupling cooperation with the adjacent C-RAN collaboration site by establishing a data interaction channel, so that the adjacent C-RAN collaboration site can also interact with the edge region user data, thereby facilitating the C-RAN.
  • Edge area users get better performance gains and improve system performance.
  • FIG. 1 is a flowchart of a method of an embodiment of a method for interacting data of a C-RAN edge area user according to the present invention
  • 2 is a schematic diagram of a C-RAN primary site coupling with a neighboring C-RAN collaboration site
  • FIG. 3 is a flowchart of another embodiment of a method for interacting data of a C-RAN edge region user
  • Figure 4 is a schematic diagram of the CPM ⁇ /Q channel for controlling the channel
  • FIG. 5 is a flowchart of a method of still another embodiment of a method for interacting data of a C-RAN edge area user according to the present invention
  • FIG. 6 is a flowchart of a method of still another embodiment of a method for interacting data of a C-RAN edge area user according to the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a C-RAN primary site according to the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a C-RAN primary site
  • FIG. 9 is a schematic structural diagram of an embodiment of an adjacent C-RAN collaboration site according to the present invention
  • FIG. 10 is a schematic structural diagram of another embodiment of an adjacent C-RAN collaboration site according to the present invention
  • a schematic structural diagram of an embodiment of an apparatus for interacting data of a C-RAN edge area user
  • FIG. 12 is a schematic structural diagram of another embodiment of an apparatus for interacting data of a C-RAN edge area user according to the present invention. detailed description
  • the embodiments of the present invention provide a method for interacting data of a C-RAN edge area user and related devices, so as to obtain better gains and improve system performance for users in the C-RAN edge area.
  • FIG. 1 is a flow chart of a method of an embodiment of a method for interacting data of a C-RAN edge area user according to the present invention. As shown in Figure 1, the method is applied to the C-RAN primary site and includes the following steps:
  • Step S101 Determine at least one collaboration site of at least one neighboring C-RAN for the C-RAN edge region user.
  • the edge area user belongs to a C-RAN site, and the site is referred to as the primary site of the edge area user, but the edge area user is located at the edge of the C-RAN and one or more adjacent C-RANs. Therefore, the received signal is weak and is susceptible to interference from signals of stations of adjacent C-RANs.
  • the C-RAN primary station obtains or receives the neighboring cell information of the neighboring C-RAN reported by the user in the edge area, determines the site list of the neighboring C-RAN according to the neighboring cell information, and determines at least one adjacent C from the C-RAN. At least one site of the RAN acts as a collaborative site for the C-RAN primary site of the edge zone user.
  • the primary site queries the collaboration site for the upper-level network element.
  • the upper-level network element returns the C-RAN where the collaboration site is located according to the configured network structure, and indicates the routing information.
  • Step S102 Interact control data with the adjacent C-RAN collaboration site.
  • the C-RAN primary station exchanges control data with the adjacent C-RAN collaboration site through the established channel, and is used for negotiation and message transmission between the sites.
  • the C-RAN primary station initiates a handshake signal to the adjacent C-RAN cooperative site according to the routing information provided by the upper-level network element, and after receiving the response of the adjacent C-RAN cooperative site, the communication route is established; Control data is provided for each subsequent step.
  • Step S103 Establish a data interaction channel with the adjacent C-RAN collaboration site for interacting with the first data according to the control data.
  • a channel between the C-RAN primary site and the adjacent C-RAN collaboration site specified by the control data is used as an interaction.
  • a data interaction channel of the data thereby establishing a data interaction channel for the data of the user of the interaction edge area of the C-RAN primary site and the adjacent C-RAN collaboration site.
  • Step S104 The first data is exchanged with the neighboring C-RAN collaboration site by using the data interaction channel, so that the neighboring C-RAN collaboration site interacts with the edge zone user according to the control data. Two data.
  • the C-RAN primary station interacts with the adjacent C-RAN collaboration site through the established data interaction channel, and then the adjacent C-RAN collaboration site parses the control data and interacts with the edge region user. Data, thereby completing the interaction of data of users in the edge area.
  • the C-RAN primary station sends the first data to the adjacent C-RAN collaboration site through the data interaction channel, and the adjacent C-RAN collaboration site parses the control data, where the first data may be in-phase orthogonal (In -phase/Quadrature, I/Q) data, also for fast input and output (Rapid 10, RIO) Data, after the adjacent C-RAN cooperative station receives the first data, processes the I/Q data into the second data, that is, the medium RF signal is sent to the edge area user or the RIO data is first processed into I/Q data, and then I/ The Q data processing is sent to the edge area user as the second data, that is, the medium RF signal.
  • I/Q in-phase orthogonal
  • RIO fast input and output
  • the C-RAN primary station instructs the neighboring C-RAN collaboration site to acquire the second data from the edge region user by using the control data, and then receives the first data sent by the neighboring C-RAN collaboration site, where the first data is received.
  • the second data is a medium RF signal
  • the adjacent C-RAN cooperative station receives the medium RF signal from the edge area user, and processes the middle RF signal as I/Q data to the C-RAN main station.
  • the intermediate RF signal is first processed into I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • FIG. 2 is a schematic diagram of coupling cooperation between a C-RAN primary site and an adjacent C-RAN collaboration site.
  • the C-RAN A primary site of the mobile terminal and the C-RAN B cooperative site adjacent to the C-RAN A are connected through a data interaction channel, and the C-RAN A primary site and the C-RAN B collaboration site perform Coupling cooperation, the C-RAN A primary site can interact with the C-RAN B collaboration site through the data interaction channel, and then the C-RAN B collaboration site interacts with the mobile terminal.
  • a method for interacting data of a C-RAN edge area user the C-RAN primary station performs coupling cooperation with an adjacent C-RAN cooperation station by establishing a data interaction channel, so that the adjacent C-RAN
  • the collaboration site can also interact with users in the edge zone to facilitate better gains for C-RAN edge zone users and improve system performance.
  • FIG. 3 is a flow chart of a method of another embodiment of a method of interacting with data of a user of a C-RAN edge region. As shown in FIG. 3, the method includes the following steps:
  • Step S201 Determine at least one collaboration site of at least one neighboring C-RAN for the C-RAN edge region user.
  • the edge area user belongs to a C-RAN site, and the site is referred to as the primary site of the edge area user, but the edge area user is located at the edge of the C-RAN and one or more adjacent C-RANs. Therefore, the received signal is weak and is susceptible to interference from signals of stations of adjacent C-RANs.
  • the C-RAN primary station obtains or receives the neighboring cell information of the neighboring C-RAN reported by the user in the edge area, determines the site list of the neighboring C-RAN according to the neighboring cell information, and determines at least one adjacent C from the C-RAN. At least one site of the RAN acts as a collaborative site for the C-RAN primary site of the edge zone user.
  • the primary site queries the collaboration site for the upper-level network element, and the upper-level network element returns according to the configured network structure. Go back to the C-RAN where the collaboration site is located and indicate the routing information.
  • Step S202 The control data is exchanged with the adjacent C-RAN collaboration site by a control channel of a Transmission Control Protocol/Internet Protocol TCP/IP channel or a high-speed data interaction channel.
  • the C-RAN primary station exchanges control data with the adjacent C-RAN collaboration site through the established channel, and is used for negotiation and message transmission between the sites.
  • the C-RAN primary station initiates a handshake signal to the adjacent C-RAN cooperative site according to the routing information provided by the upper-level network element, and after receiving the response of the adjacent C-RAN cooperative site, the communication route is established; Control data is provided for each subsequent step.
  • the control data can be exchanged using a separate Transmission Control Protocol/Internet Protocol (TCP/IP) channel for controlling data, for example, ⁇ 2 interface channel can be borrowed.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • ⁇ 2 interface channel can be borrowed.
  • 3GPP 3rd Generation Partnership Project
  • the control data interaction can also utilize the control channel of the established physical high-speed data interaction channel, for example, the transmission of the (Common Public Radio Interface, CPRI) data, and can utilize the control channel in the CPRi protocol.
  • CPRI Common Public Radio Interface
  • the J/Q channel of the CPRI shown in Figure 4 is used to map the control channel.
  • Step S203 Establish a data interaction channel with the neighboring C-RAN collaboration site for interacting with the first data according to the control data, where the data interaction channel for interacting with the first data is a high-speed data interaction channel.
  • the C-RAN primary station and the adjacent C-RAN cooperation station should be tightly coupled.
  • tightly coupled coordination refers to the fast and large bandwidth acquisition of other site collaborative data for processing.
  • loosely coupled coordination means that slow and low bandwidth data can be processed.
  • the current industry C-RAN scheme only defines the internal interface of the C-RAN, and does not define a tightly coupled interface between the C-RANs. But between traditional macro stations, The 3GPP defines an X2 interface. After adopting the C-RAN scheme, it is assumed that the interface is inherited by the C-RAN.
  • the X2 interface has a transmission network layer based on IP transmission, which is mainly used for signaling transmission, and has low bandwidth and large delay.
  • the loose coupling cooperative scheme is adopted at most, and the gain is lower than the tight coupling cooperation. Therefore, the user experience of the edge area user is worse than C-RAN. Cover users within the area. Disadvantages of this scheme: The loosely coupled synergy gain is not as high as the tight coupling; if the ⁇ 2 interface is used to pass the CPRI layer 1 (Layer 1 , L1) data, the delay and bandwidth are difficult to meet the requirements of the tightly coupled cooperative algorithm.
  • a physical high-speed data interaction channel exists between the C-RAN primary site and the adjacent C-RAN collaboration site, and a part of the high-speed data interaction channel has been defined as an interaction channel for controlling data in step S202.
  • another part of the high-speed data interaction channel is defined as a data interaction channel that interacts with the first data, or, in step S202, a TCP/IP channel is used as an interaction channel for controlling data, in this step.
  • the entire high-speed data interaction channel is defined as a data interaction channel that interacts with the first data, thereby establishing a data interaction channel for the data of the user of the interaction edge area of the C-RAN primary site and the adjacent C-RAN collaboration site.
  • the high speed data exchange channel includes: a CPRI interface channel, an RIO interface channel, and an Ethernet interface channel.
  • Step S204 Converging the first data with data of an edge area user of another edge area user belonging to the same adjacent C-RAN in the edge area.
  • the data of the edge area user is exchanged between the C-RAN primary site and the adjacent C-RAN collaboration site by using a high-speed data interaction channel, for example, for CPRI data interaction, such as using a CPRI channel, due to CPRI
  • the channel bandwidth is very large. If only one user of an edge area from the Radio Remote Unit (RRU) is transmitted at a time, data is wasted.
  • RRU Radio Remote Unit
  • the first data needs to belong to the edge of the user of the other edge region belonging to the same adjacent C-RAN as the edge region user belongs to the same C-RAN.
  • the data of the regional users is aggregated. For example, four 2.5G data are aggregated into 10G data, and the C-RAN and the same adjacent C-RAN are connected by one or more high-speed data interaction channels, such as a CPRI channel.
  • the CPRI channel has multiple channels inside, and the data of multiple aggregated edge area users are respectively carried in each channel according to the control data.
  • Step S205 the data of the aggregated edge area user is sent to the neighboring C-RAN through the data interaction channel, so that the neighboring C-RAN collaboration station obtains the first C-RAN from the neighboring C-RAN. And transmitting data to the edge area user according to the control data; and receiving, by the data interaction channel, the first data from the neighboring C-RAN collaboration site.
  • the C-RAN primary station sends the data of the user in the aggregated edge area to the neighboring C-RAN through the high-speed data interaction channel, and then the corresponding site from the neighboring C-RAN Acquiring, in the channel, the first data sent by the C-RAN primary station to the collaboration site, where the first data may be I/Q data or RIO data, and then, after the adjacent C-RAN collaboration site receives the first data,
  • the I/Q data processing is sent to the edge area user as the second data, that is, the intermediate RF signal is processed or the RIO data is first processed into I/Q data, and then the I/Q data is processed into the second data, that is, the medium RF signal is sent to the edge area user.
  • the C-RAN primary station instructs the neighboring C-RAN cooperative station to acquire the second data from the edge area user, and then receives the first data sent by the neighboring C-RAN cooperative station, where the first data is I/ Q data or RIO data, the second data is a medium RF signal, and the adjacent C-RAN cooperative station receives the medium RF signal from the edge area user, processes the medium RF signal as I/Q data and sends it to the C-RAN main station, or The medium RF signal is first processed as I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • a method for interacting data of a C-RAN edge area user the C-RAN main station performs tight coupling and cooperation with an adjacent C-RAN cooperation station by establishing a high-speed data interaction channel, so that the adjacent
  • the C-RAN collaboration site can also interact with users in the edge area with fast and large bandwidth data, which helps the C-RAN edge area users to obtain better gain and improve system performance.
  • FIG. 5 is a flow chart of a method of still another embodiment of a method for interacting data of a C-RAN edge area user according to the present invention. As shown in FIG. 5, the method is applied to an adjacent C-RAN collaboration site, and includes the following steps:
  • Step S301 The control data is exchanged with the C-RAN primary site to which the C-RAN edge area user belongs.
  • the adjacent C-RAN cooperative station exchanges control data with the C-RAN primary site to which the C-RAN edge area user belongs through the established channel, and is used for negotiation and message delivery between the sites.
  • the neighboring C-RAN cooperative station receives the handshake signal sent by the C-RAN primary station according to the routing information provided by the upper-level network element, and responds to the handshake signal, and the communication route with the C-RAN primary station is established; Then, control data is provided for each subsequent step.
  • Step S302 according to the control data, interact with the C-RAN main site through the data interaction channel established by the C-RAN primary site, to interact with the edge region user according to the control data. Two data.
  • the adjacent C-RAN collaboration site interacts with the C-RAN primary site through the data interaction channel established by the C-RAN primary site, and then the adjacent C-RAN collaboration site interacts with the edge region user. Two data, thereby completing the interaction of data of users in the edge area.
  • the neighboring C-RAN cooperative station receives the first data sent by the C-RAN primary station through the data interaction channel, where the first data may be I/Q data or RIO data, and adjacent C- After receiving the first data, the RAN cooperative station processes the I/Q data into the second data, that is, the medium-frequency signal is sent to the edge area user or the RIO data is first processed as I/Q data, and then the I/Q data is processed into the second. The data is sent to the edge area user.
  • the neighboring C-RAN cooperative station receives the control data of the C-RAN primary station indicating that the second data is obtained from the edge area user, and acquires the second data from the edge area user, where the first data is I/Q.
  • Data or RIO data the second data is a medium-frequency signal
  • the adjacent C-RAN cooperative station receives the medium-frequency signal from the edge area user, processes the medium-frequency signal as I/Q data, and sends it to the C-RAN main station, or
  • the RF signal is first processed as I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • a method for interacting data of a C-RAN edge area user where a neighboring C-RAN collaboration station is coupled with a C-RAN primary station through a data interaction channel established by a C-RAN primary station Collaboration, so that adjacent C-RAN collaboration sites can also interact with users in the edge region, thereby facilitating better gains for C-RAN edge region users and improving system performance.
  • FIG. 6 is a flow chart of a method of still another embodiment of a method for interacting data of a C-RAN edge area user according to the present invention. As shown in FIG. 6, the method is applied to an adjacent C-RAN collaboration site, and includes the following steps:
  • Step S401 The control channel of the TCP/IP channel or the high-speed data interaction channel interacts with the C-RAN main site to which the C-RAN edge area user belongs to control data.
  • the adjacent C-RAN cooperative station exchanges control data with the C-RAN primary site to which the C-RAN edge area user belongs through the established channel, and is used for negotiation and message delivery between the sites.
  • the neighboring C-RAN cooperative station receives the handshake signal sent by the C-RAN primary station according to the routing information provided by the upper-level network element, and responds to the handshake signal, and the communication route with the C-RAN primary site is established. Stand up; then, provide control data for each subsequent step.
  • the control data can be exchanged using a separate TCP/IP channel for carrying control data.
  • the X2 interface channel can be borrowed.
  • the 3GPP defines an X2 interface. After adopting the C-RAN scheme, Assume that the interface is inherited by C-RAN.
  • the X2 interface has its transport network layer based on IP transport.
  • the control data interaction can also utilize the control channel of the established physical high-speed data interaction channel.
  • the transmission of CPR1 data can utilize the reserved field of the control channel in the CPRI protocol for carrying the C-RAN primary site and the adjacent C.
  • - Control data between AN collaboration sites also in the CPRI I/Q channel, part of the definition, as a control channel, used to control the interaction of data, as shown in Figure 4 of the CPRI I / Q channel Schematic diagram of the control channel.
  • Step S402 Converging the first data with data of an edge area user of another edge area user belonging to the same C-RAN as the edge area user.
  • the first data needs to be the edge area user of the other edge area users belonging to the same C-RAN as the edge area user.
  • the data is aggregated, for example, four 2.5G data are aggregated into 10G data, and the C-RAN is connected to the same adjacent C-RAN by one CPRI channel, and one CPRI channel has multiple channels inside, and the convergence is large.
  • the data of the user in the edge area is respectively carried in each channel according to the control data.
  • the adjacent C-RAN collaboration site receives the second data from the edge region user
  • the second data may be a medium RF signal
  • the second data is processed into the first data
  • the first data and the edge region user are The data of the users of the edge areas belonging to other edge area users of the same C-RAN are aggregated.
  • the first data may be I/Q data
  • the second data is processed into the first data
  • the radio frequency signal is first processed into RIO data
  • the RIO data is processed into I/Q data
  • the first data may also be
  • the RIO data the second data is processed into the first data
  • the radio frequency signal is processed into RIO data.
  • the data interaction channel for interacting with the first data is a high-speed data interaction channel.
  • the neighboring C-RAN cooperative station sends the data of the user in the aggregated edge area to the C-RAN through the high-speed data interaction channel, and then the primary station obtains the corresponding channel from the C-RAN.
  • the neighboring C-RAN cooperative station receives the first data from the C-RAN primary site through the high speed data interaction channel, and sends the first data to the edge region user.
  • a method for interacting data of a C-RAN edge area user where a neighboring C-RAN collaboration station performs a high-speed data interaction channel established by a C-RAN primary station, performs with a C-RAN primary station. Tightly coupled and coordinated, so that adjacent C-RAN cooperative sites can also interact with users in the edge region with fast and large bandwidth data, thereby facilitating better gains for C-RAN edge region users and improving system performance.
  • FIG. 7 is a schematic structural diagram of an embodiment of a C-RAN primary site according to the present invention. As shown in Figure 7, the C-RAN primary site includes:
  • the determining unit 101 is configured to determine at least one collaboration site of the at least one neighboring C-RAN for the C-RAN edge region user.
  • the edge area user belongs to a C-RAN site, and the site is referred to as the primary site of the edge area user, but the edge area user is located at the edge of the C-RAN and one or more adjacent C-RANs. Therefore, the received signal is weak and is susceptible to interference from signals of stations of adjacent C-RANs.
  • the C-RAN primary site obtains or receives the neighboring cell information of the neighboring C-RAN reported by the user in the edge area, and the determining unit 101 determines the site list of the neighboring C-RAN according to the neighboring cell information, and determines at least one of the neighboring C-RANs. At least one site of the neighboring C-RAN serves as a collaborative site for the C-RAN primary site of the edge zone user.
  • the primary site queries the collaboration site for the upper-level network element.
  • the upper-level network element returns the C-RAN where the collaboration site is located according to the configured network structure, and indicates the routing information.
  • the first interaction unit 102 is configured to exchange control data with the neighboring C-RAN collaboration site.
  • the C-RAN primary station interacts with adjacent C-RAN collaboration sites to control data through established channels for negotiation and message delivery between sites.
  • the C-RAN primary station initiates a handshake signal to the adjacent C-RAN collaboration site according to the routing information provided by the upper-level network element, and receives the neighboring C-RAN collaboration site.
  • the communication route is established; then, control data is provided for other functional units.
  • the channel establishing unit 103 is configured to establish, according to the control data, a data interaction channel with the adjacent C-RAN collaboration site for interacting with the first data.
  • a channel between the C-RAN primary site and the adjacent C-RAN collaboration site specified by the control data is used as an interaction.
  • a data interaction channel of the data thereby establishing a data interaction channel for the data of the user of the interaction edge area of the C-RAN primary site and the adjacent C-RAN collaboration site.
  • a second interaction unit 104 configured to exchange the first data with the neighboring C-RAN collaboration site by using the data interaction channel, so that the neighboring C-RAN collaboration site according to the control data and the The edge area user interacts with the second data.
  • the second interaction unit 104 interacts with the adjacent C-RAN collaboration site through the established data interaction channel, and then the adjacent C-RAN collaboration site parses the control data and interacts with the edge region user to access the second data, thereby completing the edge.
  • the second interaction unit 104 sends the first data to the adjacent C-RAN collaboration site through the data interaction channel, and the adjacent C-RAN collaboration site parses the control data, where the first data may be I/Q data.
  • the I/Q data is processed into the second data, that is, the medium RF signal is sent to the edge area user or the RIO data is first processed into the I/Q data.
  • the I/Q data is processed into the second data, that is, the medium RF signal is sent to the edge area user.
  • the second interaction unit 104 instructs the neighboring C-RAN collaboration site to acquire the second data from the edge region user, and then receives the first data sent by the neighboring C-RAN collaboration site, where the first data is received.
  • the second data is a medium RF signal
  • the adjacent C-RAN cooperative station receives the medium RF signal from the edge area user, and processes the medium RF signal as I/Q data to the C-RAN main station.
  • the intermediate RF signal is first processed into I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • a C-RAN primary station performs coupling cooperation with an adjacent C-RAN collaboration site by establishing a data interaction channel, so that adjacent C-RAN collaboration sites can also be edged.
  • the regional user interacts with the data, which helps the C-RAN edge area users to obtain better gain and improve system performance.
  • FIG. 8 is a schematic structural diagram of another embodiment of a C-RAN primary site.
  • the C-RAN primary site includes:
  • the determining unit 201 is configured to determine at least one collaborative site of the at least one neighboring C-RAN for the C-RAN edge region user.
  • the C-RAN primary site obtains or receives the neighboring cell information of the neighboring C-RAN reported by the user in the edge area, and the determining unit 201 determines the site list of the neighboring C-RAN according to the neighboring cell information, and determines at least one of the neighboring C-RANs. At least one site of the neighboring C-RAN serves as a collaborative site for the C-RAN primary site of the edge zone user.
  • the primary site queries the collaboration site for the upper-level network element.
  • the upper-level network element returns the C-RAN where the collaboration site is located according to the configured network structure, and indicates the routing information.
  • the first interaction unit 202 includes a third interaction unit 203.
  • the third interaction unit 203 is configured to exchange control data with the adjacent C-RAN collaboration site through a control channel of a TCP/IP channel or a high-speed data interaction channel.
  • the third interaction unit 203 interacts with the adjacent C-RAN collaboration site through the established channel to control data for negotiation and message delivery between the sites.
  • the third interaction unit 203 initiates a handshake signal to the adjacent C-RAN collaboration site according to the routing information provided by the upper-level network element, and after receiving the response of the adjacent C-RAN collaboration site, the communication route is established; Provide control data for other functional units.
  • the control data can be exchanged using a separate TCP/IP channel for carrying control data.
  • the X2 interface channel can be borrowed.
  • the 3GPP defines an X2 interface. After adopting the C-RAN scheme, Assume that the interface is inherited by C-RAN.
  • the X2 interface has its transport network layer based on IP transport.
  • Control data interaction can also utilize the control channel of the established physical high-speed data interaction channel.
  • the reserved field of the control channel in the CPRi protocol can be utilized to carry the C-RAN primary site.
  • Control data between the phase and C-RAN cooperative sites; part of the bit data can also be defined in the I/Q channel of CPR1 as a control channel for controlling the interaction of data.
  • the CPRI ⁇ /Q channel shown in Figure 4. A schematic diagram for controlling the channel.
  • the channel establishing unit 204 is configured to establish, according to the control data, a data interaction channel with the neighboring C-RAN collaboration site for interacting with the first data, where the data interaction channel for interacting with the first data is high-speed data. Interactive channel.
  • the C-RAN primary station and the adjacent C-RAN cooperative station The point should be tightly coupled and coordinated.
  • the so-called tightly coupled coordination means that the other nodes can be processed quickly and with large bandwidth.
  • loosely coupled coordination means that slow and low bandwidth data can be processed.
  • the current industry C-RAN scheme only defines the internal interface of the C-RAN, and does not define a tightly coupled interface between the C-RANs.
  • 3GPP defines an X2 interface. After adopting the C-RAN scheme, it is assumed that the interface is inherited by C-RAN.
  • the X2 interface has a transmission network layer based on IP transmission, which is mainly used for signaling transmission, and has low bandwidth and large delay.
  • the loose coupling cooperative scheme is adopted at most, and the gain is lower than the tight coupling cooperation. Therefore, the user experience of the edge area user is worse than C-RAN. Cover users within the area. Disadvantages of this scheme: The loosely coupled synergy gain is not as high as the tight coupling; if the ⁇ 2 interface is used to pass CPRI L1 data, the delay and bandwidth are difficult to meet the requirements of the tightly coupled cooperative algorithm.
  • a physical high-speed data interaction channel exists between the C-RAN primary site and the adjacent C-RAN collaboration site, and a part of the high-speed data interaction channel has been defined as an interaction channel for controlling data in step S202.
  • another part of the high-speed data interaction channel is defined as a data interaction channel that interacts with the first data, or, in step S202, a TCP/IP channel is used as an interaction channel for controlling data, in this step.
  • the entire high-speed data interaction channel is defined as a data interaction channel that interacts with the first data, thereby establishing a data interaction channel for the data of the user of the interaction edge area of the C-RAN primary site and the adjacent C-RAN collaboration site.
  • the high speed data exchange channel includes: a CPRI interface channel, an RIO interface channel, and an Ethernet interface channel.
  • the first aggregation unit 205 is configured to aggregate the first data with data of an edge area user of another edge area user belonging to the same adjacent C-RAN of the edge area.
  • the first data needs to belong to the edge of the user of the other edge region belonging to the same adjacent C-RAN as the edge region user belongs to the same C-RAN.
  • the data of the regional users is aggregated. For example, four 2.5G data are aggregated into 10G data, and the C-RAN and the same adjacent C-RAN are connected by one or more high-speed data interaction channels, such as a CPRI channel.
  • the CPRI channel has multiple channels inside, and the data of multiple aggregated edge area users are respectively carried in each channel according to the control data.
  • the second interaction unit 206 includes a first sending unit 207 and a first receiving unit.
  • a first sending unit 207 configured to send data of the aggregated edge area user to the neighboring C-RAN through the data interaction channel, so that the neighboring C-RAN collaboration station is from the neighboring
  • the C-RAN acquires the first data, and transmits the second data to the edge area user according to the control data.
  • the first sending unit 207 sends the data of the user of the aggregated edge area to the neighboring C-RAN through the high-speed data interaction channel, and then the cooperative station acquires the C-RAN primary station from the corresponding channel of the neighboring C-RAN.
  • the first data is sent to the collaboration site, and then the neighboring C-RAN collaboration site parses the control data.
  • the first data may be I/Q data or RIO data, and the neighboring C-RAN collaboration site receives the first data.
  • the I/Q data is processed into the second data, that is, the medium-frequency signal is sent to the edge area user or the RIO data is first processed as I/Q data, and then the I/Q data is processed into the second data, that is, the medium-frequency signal is sent to the edge.
  • Regional user is used to process the second data, that is, the medium-frequency signal is sent to the edge.
  • the first receiving unit 208 is configured to receive, by using the data interaction channel, the first data from the neighboring C-RAN cooperative site.
  • the first receiving unit 208 instructs the neighboring C-RAN cooperative station to acquire the second data from the edge area user, and then receives the first data sent by the neighboring C-RAN cooperative station, where the first data is I/Q.
  • Data or RIO data the second data is a medium-frequency signal
  • the adjacent C-RAN cooperative station receives the medium-frequency signal from the edge area user, processes the medium-frequency signal as I/Q data, and sends it to the C-RAN main station, or
  • the RF signal is first processed as I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • a C-RAN primary site performs tight coupling and cooperation with an adjacent C-RAN collaboration site by establishing a high-speed data interaction channel, so that adjacent The C-RAN collaboration site can also interact with users in the edge area with fast and large bandwidth data, which helps the C-RAN edge area users to obtain better gain and improve system performance.
  • FIG. 9 is a schematic structural diagram of an embodiment of an adjacent C-RAN collaboration site according to the present invention. As shown in FIG. 9, the adjacent C-RAN collaboration site includes:
  • the fourth interaction unit 301 is configured to exchange control data with the C-RAN primary station to which the C-RAN edge area user belongs.
  • the fourth interaction unit 301 exchanges control data with the C-RAN primary site to which the C-RAN edge area user belongs through the established channel, and is used for negotiation and message delivery between the sites.
  • the neighboring C-RAN cooperative station receives the handshake signal sent by the C-RAN primary station according to the routing information provided by the upper-level network element, and responds to the handshake signal, and the communication route with the C-RAN primary station is established; Then, provide control data for other functional units.
  • the fifth interaction unit 302 is configured to exchange, by using the data interaction channel established by the C-RAN primary site, the first data with the C-RAN primary site according to the control data, according to the control data and the The edge area user interacts with the second data.
  • the fifth interaction unit 302 exchanges the first data with the C-RAN primary site through the data interaction channel established by the C-RAN primary site, and then the adjacent C-RAN collaboration site parses the control data and interacts with the edge region user for the second data. , thereby completing the interaction of the data of the users in the edge area.
  • the neighboring C-RAN cooperative station receives the first data sent by the C-RAN primary station through the data interaction channel, and the adjacent C-RAN cooperative station parses the control data, where the first data may be I/Q data.
  • the RIO data may also be used.
  • the I/Q data is processed into the second data, that is, the radio frequency signal is sent to the edge region user or the RIO data is first processed as I/Q data.
  • the I/Q data is processed into the second data, that is, the medium-frequency signal is sent to the edge area user.
  • the neighboring C-RAN cooperative station receives the control data of the C-RAN primary station indicating that the second data is obtained from the edge area user, and acquires the second data from the edge area user, where the first data is I/Q.
  • Data or RIO data the second data is a medium-frequency signal
  • the adjacent C-RAN cooperative station receives the medium-frequency signal from the edge area user, processes the medium-frequency signal as I/Q data, and sends it to the C-RAN main station, or
  • the RF signal is first processed as I/Q data, then the I/Q data is processed into RIO data, and the RIO data is sent to the C-RAN main site.
  • a neighboring C-RAN cooperative station performs a coupling with a C-RAN primary site through a data interaction channel established by a C-RAN primary site.
  • the adjacent C-RAN cooperative site can also interact with the edge region user data, thereby facilitating the C-RAN edge region user to obtain better gain and improve system performance.
  • FIG. 10 is a schematic structural diagram of another embodiment of a neighboring C-RAN collaboration site according to the present invention. As shown in FIG. 10, the adjacent C-RAN collaboration site includes:
  • the fourth interaction unit 401, the fourth interaction unit 401 includes a sixth interaction unit 402.
  • the sixth interaction unit 402 is configured to exchange control data with the C-RAN primary site to which the C-RAN edge area user belongs through the control channel of the TCP/IP channel or the high-speed data interaction channel.
  • the sixth interaction unit 402 interacts with the C-RAN primary site to which the user of the C-RAN edge region belongs by using the established channel, and uses the C-RAN primary site to control data for negotiation and message delivery between the sites.
  • the neighboring C-RAN cooperative station receives the handshake signal sent by the C-RAN primary station according to the routing information provided by the upper-level network element, and responds to the handshake signal, and the communication route with the C-RAN primary station is established; Then, control data is provided for other functional units.
  • the control data can be exchanged using a separate TCP/IP channel for carrying control data.
  • the X2 interface channel can be borrowed.
  • the 3GPP defines an X2 interface. After adopting the C-RAN scheme, Assume that the interface is inherited by C-RAN.
  • the X2 interface has its transport network layer based on IP transport.
  • Control data interaction can also utilize the control channel of the established physical high-speed data interaction channel.
  • the reserved field of the control channel in the CPRi protocol can be utilized to carry the C-RAN primary site.
  • Control data between the phase and C-RAN cooperative sites; part of the bit data can also be defined in the I/Q channel of CPR1 as a control channel for controlling the interaction of data.
  • the CPRI ⁇ /Q channel shown in Figure 4. A schematic diagram for controlling the channel.
  • the second aggregation unit 403 is configured to aggregate the first data with data of an edge area user of another edge area user belonging to the same C-RAN as the edge area user.
  • the first data needs to be associated with the edge region user of the other edge region users belonging to the same C-RAN as the edge region user.
  • the data is aggregated. For example, four 2.5G data are aggregated into 10G data, and the C-RAN is connected to the same adjacent C-RAN by one CPRI channel.
  • One CPRI channel has multiple channels inside, and multiple channels are aggregated.
  • the data of the users in the edge area are respectively carried in the respective channels according to the control data.
  • the adjacent C-RAN collaboration site receives the second data from the edge region user
  • the second data may be a medium RF signal
  • the second data is processed into the first data
  • the first data and the edge region user are The data of the users of the edge areas belonging to other edge area users of the same C-RAN are aggregated.
  • the first data may be I/Q data
  • the second data is processed into the first data
  • the radio frequency signal is first processed into RIO data
  • the RIO data is processed into I/Q data
  • the first data may also be
  • the RIO data the second data is processed into the first data
  • the radio frequency signal is processed into RIO data.
  • the fifth interaction unit 404 includes a second sending unit 405 and a second receiving unit.
  • a second sending unit 405, configured to send, by using the data interaction channel, the data of the aggregated edge area user to the C-RAN, so that the C-RAN primary station acquires the information from the C-RAN First data.
  • the neighboring C-RAN collaboration site sends the data of the user of the aggregated edge region to the C-RAN through the high-speed data interaction channel, and then the primary site acquires the neighboring C-RAN collaboration site from the corresponding channel of the C-RAN.
  • the first data, the data interaction channel for interacting with the first data is a high-speed data interaction channel.
  • the adjacent C-RAN cooperative station receives the first data from the C-RAN primary station through the high speed data interaction channel, and transmits the first data to the edge area user.
  • a neighboring C-RAN cooperative station performs a tight coupling with a C-RAN primary site through a high-speed data interaction channel established by a C-RAN primary site. This makes it possible for adjacent C-RAN cooperative sites to interact with the edge region users with fast and large bandwidth data, thereby facilitating the C-RAN edge region users to obtain better gain and improve system performance.
  • the present invention also provides a system for interacting data of a C-RAN edge area user, the system comprising the C-RAN primary station and the neighboring C-RAN collaboration site of the foregoing embodiment, wherein the C-RAN primary site determines Adjacent C-RAN collaboration sites of C-RAN edge area users;
  • the C-RAN primary site interacts with the adjacent C-RAN collaboration site to control data;
  • the C-RAN primary site is connected to the adjacent C-RAN collaboration site by a data interaction channel for interacting with the first data;
  • the C-RAN primary station interacts with the neighboring C-RAN collaboration site by the data interaction channel to enable the neighboring C-RAN collaboration site to perform the control data according to the edge
  • the regional user interacts with the second data.
  • the networking modes of the C-RAN and the adjacent C-RAN include: a star, a chain, and a ring.
  • FIG. 11 is a schematic structural diagram of an embodiment of an apparatus for interacting data of a C-RAN edge area user according to the present invention. As shown in FIG. 11, the device 1000 can include:
  • the input device 501, the output device 502, the memory 503, and the processor 504 (the number of processors 504 in the network device may be one or more, and one processor in Fig. 11 is taken as an example).
  • the input device 501, the output device 502, the memory 503, and the processor 504 may be connected by a bus or other means, wherein FIG. 11 is exemplified by a bus connection.
  • the processor 504 performs the following steps: determining at least one coordinated site of the at least one neighboring C-RAN for the C-RAN edge region user, and interacting control data with the neighboring C-RAN collaboration site, according to the control data Establishing a data interaction channel with the neighboring C-RAN collaboration site for interacting with the first data, and interacting with the neighboring C-RAN collaboration site by the data interaction channel to enable the The neighboring C-RAN collaboration site interacts with the edge region user for the second data according to the control data.
  • FIG. 12 is a schematic structural diagram of another embodiment of an apparatus for interacting data of a C-RAN edge area user according to the present invention.
  • the device 2000 can include:
  • the input device 601, the output device 602, the memory 603, and the processor 604 (the number of processors 604 in the network device may be one or more, and one processor in Fig. 12 is taken as an example).
  • the input device 601, the output device 602, the memory 603, and the processor 604 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 604 performs the following steps: determining at least one coordinated site of the at least one neighboring C-RAN for the C-RAN edge region user, and interacting control data with the neighboring C-RAN collaboration site, according to the control data Establishing with the adjacent C-RAN collaboration site for interacting with the first data a data interaction channel, the first data is exchanged with the neighboring C-RAN collaboration site by the data interaction channel, so that the neighboring C-RAN collaboration site interacts with the edge region user according to the control data Second data.
  • the program may be stored in a computer readable storage medium, for example, the storage medium may include : Read only memory, random access memory, disk or optical disk, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种交互云化的无线接入网C-RAN边缘区域用户的数据的方法及相关装置。在本发明一些可行的实施方式中,确定针对C-RAN边缘区域用户的至少一个相邻C-RAN的至少一个协作站点;与所述相邻C-RAN协作站点交互控制数据;根据所述控制数据建立与所述相邻C-RAN协作站点的用于交互第一数据的数据交互通道;通过所述数据交互通道与所述相邻C-RAN协作站点交互所述第一数据,以使所述相邻C-RAN协作站点根据所述控制数据与所述边缘区域用户交互第二数据,基于上述创新机制,C-RAN主站点通过建立数据交互通道与相邻C-RAN协作站点进行耦合协同,使得相邻C-RAN协作站点也可以与边缘区域用户交互数据,从而有利于使C-RAN边缘区域用户获得更好的增益,提升系统性能。

Description

交互云化的无线接入网边缘区域用户的数据的方法及装置 技术领域
本发明涉及通信领域, 尤其涉及一种交互云化的无线接入网边缘区域用户 的数据的方法及相关装置。 背景技术
云化的无线接入网 (Cloud Radio Access Network, C-RAN)是一种新型的 无线接入网, 是基于集中化处理、 协作式无线电和实时云计算构架的绿色无 线接入网构架。 C-RAN方案, 相比单站方案, 可以提供潮汐资源池、 站间紧 耦合协同和集中管理等特性, 从而改善网络性能。 但对处于 C-RAN边缘区域的 用户, 无法获得 C-RAN站间用户相同的性能收益。 发明内容
本发明实施例提供一种交互云化的无线接入网边缘区域用户的数据的方法 及相关装置, 以期使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
第一方面,提供一种交互云化的无线接入网 C-RAN边缘区域用户的数据的 方法, 可包括:
确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少一个协作站 点;
与所述相邻 C-RAN协作站点交互控制数据;
根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道;
通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数据, 以 使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互第二数 据。
在第一种可能的实现方式中, 所述与所述相邻 C-RAN协作站点交互控制数 据包括:
通过传输控制协议 /因特网互联协议 TCP/IP通道或高速数据交互通道的控 制通道与所述相邻 C-RAN协作站点交互控制数据。 结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述用于交互第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO 接口通道或以太网接口通道。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可 能的实现方式, 在第三种可能的实现方式中, 所述通过所述数据交互通道与所 述相邻 C-RAN协作站点交互所述第一数据, 以使所述相邻 C-RAN协作站点根 据所述控制数据与所述边缘区域用户交互第二数据之前, 还包括:
将所述第一数据与和所述边缘区域用户属于同一个相邻 C-RAN的其它边缘 区域用户的边缘区域用户的数据进行汇聚;
所述通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数 据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互 第二数据, 具体包括: 户的数据, 以使所述相邻 C-RAN协作站点从所述相邻 C-RAN获取第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数据; 和
通过所述数据交互通道从所述相邻 C-RAN协作站点接收第一数据。 第二方面,提供一种交互云化的无线接入网 C-RAN边缘区域用户的数据的 方法, 可包括:
与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据;
根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与所述
C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交互第 二数据。
在第一种可能的实现方式中, 所述与 C-RAN边缘区域用户所属的主站点交 互控制数据包括:
通过传输控制协议 /因特网互联协议 TCP/IP通道或高速数据交互通道的控 制通道与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述用于交互第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO 接口通道或以太网接口通道。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可 能的实现方式, 在第三种可能的实现方式中, 所述根据所述控制数据, 通过所 述 C-RAN主站点建立的数据交互通道, 与所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交互第二数据之前, 还包括:
将所述第一数据与和所述边缘区域用户属于同一个 C-RAN的其它边缘区域 用户的边缘区域用户的数据进行汇聚;
所述根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与 所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交 互第二数据, 具体包括:
通过所述数据交互通道从所述 C-RAN主站点接收所述第一数据。 第三方面, 提供一种云化的无线接入网 C-RAN主站点, 可包括: 确定单元, 用于确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的 至少一个协作站点;
第一交互单元, 用于与所述相邻 C-RAN协作站点交互控制数据; 通道建立单元, 用于根据所述控制数据建立与所述相邻 C-RAN协作站点的 用于交互第一数据的数据交互通道;
第二交互单元, 用于通过所述数据交互通道与所述相邻 C-RAN协作站点交 互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘 区域用户交互第二数据。
在第一种可能的实现方式中, 所述第一交互单元包括:
第三交互单元,用于通过传输控制协议 /因特网互联协议 TCP/IP通道或高速 数据交互通道的控制通道与所述相邻 C-RAN协作站点交互控制数据。
结合第三方面或第三方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述用于交互第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO 接口通道或以太网接口通道。 结合第三方面或第三方面的第一种可能的实现方式或第三方面的第二种可 能的实现方式, 在第三种可能的实现方式中, 所述 C-RAN主站点还包括: 第一汇聚单元, 用于将所述第一数据与和所述边缘区域用户属于同一个相 邻 C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚;
所述第二交互单元具体包括:
第一发送单元, 用于通过所述数据交互通道向所述相邻 C-RAN发送所述经 过汇聚的边缘区域用户的数据, 以使所述相邻 C-RAN 协作站点从所述相邻 C-RAN获取第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数 和
第一接收单元, 用于通过所述数据交互通道从所述相邻 C-RAN协作站点接 收第一数据。 第四方面, 提供一种相邻云化的无线接入网 C-RAN协作站点, 可包括: 第四交互单元, 用于与 C-RAN边缘区域用户所属的 C-RAN主站点交互控 制数据;
第五交互单元, 用于根据所述控制数据, 通过所述 C-RAN主站点建立的数 据交互通道, 与所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述 边缘区域用户交互第二数据。
在第一种可能的实现方式中, 所述第四交互单元包括:
第六交互单元,用于通过传输控制协议 /因特网互联协议 TCP/IP通道或高速 数据交互通道的控制通道与 C-RAN边缘区域用户所属的 C-RAN主站点交互控 制数据。
结合第四方面或第四方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述用于交互第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO 接口通道或以太网接口通道。
结合第四方面或第四方面的第一种可能的实现方式或第四方面的第二种可 能的实现方式, 在第三种可能的实现方式中, 还包括: 第二汇聚单元, 用于将所述第一数据与和所述边缘区域用户属于同一个
C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚;
所述第五交互单元具体包括:
第二发送单元, 用于通过所述数据交互通道向所述 C-RAN发送所述经过汇 聚的边缘区域用户的数据, 以使所述 C-RAN主站点从所述 C-RAN获取所述第 一数据; 和 第一数据。 第五方面,提供一种交互云化的无线接入网 C-RAN边缘区域用户的数据的 系统, 可包括:
第三方面或第三方面的第一种可能的实现方式或第三方面的第二种可能的 实现方式或第三方面的第三种可能的实现方式所述的 C-RAN主站点和第四方面 或第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式或第 四方面的第三种可能的实现方式所述的相邻 C-RAN协作站点;
其中,所述 C-RAN主站点确定针对 C-RAN边缘区域用户的相邻 C-RAN协 作站点;
所述 C-RAN主站点与所述相邻 C-RAN协作站点交互控制数据;
所述 C-RAN 主站点通过用于交互第一数据的数据交互通道与所述相邻 C-RAN协作站点相连;
所述 C-RAN主站点通过所述数据交互通道与所述相邻 C-RAN协作站点交 互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘 区域用户交互第二数据。
在第一种可能的实现方式中, 所述 C-RAN主站点所属 C-RAN与所述相邻 C-RAN协作站点所属 C-RAN的组网方式包括: 星型, 链型和环形。 第六方面,提供一种交互云化的无线接入网 C-RAN边缘区域用户的数据的 设备, 可包括: 输入装置、 输出装置、 存储器和处理器;
其中所述处理器执行如下步骤:
确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少一个协作站 点;
与所述相邻 C-RAN协作站点交互控制数据;
根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道;
通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数据, 以 使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互第二数 据。 第七方面,提供一种交互云化的无线接入网 C-RAN边缘区域用户的数据的 设备, 可包括: 输入装置、 输出装置、 存储器和处理器;
其中所述处理器执行如下步骤:
与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据;
根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与所述
C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交互第 二数据。
通过上述方案, C-RAN主站点通过建立数据交互通道与相邻 C-RAN协作 站点进行耦合协同,使得相邻 C-RAN协作站点也可以与边缘区域用户交互数据, 从而有利于使 C-RAN边缘区域用户获得更好的性能增益, 提升系统性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一种交互 C-RAN边缘区域用户的数据的方法的一个实施例的 方法流程图; 图 2为 C-RAN主站点与相邻 C-RAN协作站点耦合协同的示意图; 图 3为一种交互 C-RAN边缘区域用户的数据的方法的另一个实施例的方法 流程图;
图 4为 CPM的 ί/Q通道用于控制通道的示意图;
图 5为本发明一种交互 C-RAN边缘区域用户的数据的方法的又一个实施例 的方法流程图;
图 6为本发明一种交互 C-RAN边缘区域用户的数据的方法的再一个实施例 的方法流程图;
图 7为本发明一种 C-RAN主站点的一个实施例结构示意图;
图 8为一种 C-RAN主站点的另一个实施例的结构示意图;
图 9为本发明一种相邻 C-RAN协作站点的一个实施例的结构示意图; 图 10为本发明一种相邻 C-RAN协作站点的另一个实施例的结构示意图; 图 11为本发明一种交互 C-RAN边缘区域用户的数据的设备的一个实施例 的结构示意图;
图 12为本发明一种交互 C-RAN边缘区域用户的数据的设备的另一个实施 例的结构示意图。 具体实施方式
本发明实施例提供一种交互 C-RAN 边缘区域用户的数据的方法及相关装 置, 以期使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
为使本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结合 本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面通过具体实施例, 分别进行详细的说明。
图 1为本发明一种交互 C-RAN边缘区域用户的数据的方法的一个实施例的 方法流程图。 如图 1所示, 该方法应用于 C-RAN主站点, 包括以下步骤:
步骤 S101 , 确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少 一个协作站点。 本实施例中, 边缘区域用户属于一个 C-RAN的站点, 该站点称为该边缘区 域用户的主站点, 但边缘区域用户位于该 C-RAN和一个或多个相邻 C-RAN的 边缘, 因此接收到的信号弱, 且容易受到相邻 C-RAN的站点的信号的干扰。
C-RAN主站点向核心网获取或者接收边缘区域用户上报的相邻 C-RAN的 邻区信息, 根据该邻区信息确定相邻 C-RAN的站点列表, 并从中确定其中至少 一个相邻 C-RAN的至少一个站点作为该边缘区域用户的 C-RAN主站点的协作 站点。
主站点向上级网元查询该协作站点, 上级网元根据配置的网络结构, 将返 回该协作站点所在的 C-RAN, 并指示路由信息。
步骤 S102, 与所述相邻 C-RAN协作站点交互控制数据。
本步骤中, C-RAN主站点通过已建立好的通道与相邻 C-RAN协作站点交 互控制数据, 用于站点之间进行协商和消息传递。 首先, C-RAN主站点根据上 级网元提供的路由信息向相邻 C-RAN协作站点发起握手信号,收到相邻 C-RAN 协作站点的响应后, 则通讯路由就建立起来了; 然后, 为之后的每一个步骤提 供控制数据。
步骤 S103,根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互 第一数据的数据交互通道。
本实施例中, 由于边缘区域用户的数据为快速且占用大带宽的数据, 如基 带数据, 根据控制数据规定的 C-RAN主站点与相邻 C-RAN协作站点间的某通 道用作交互第一数据的数据交互通道,从而建立起 C-RAN主站点与相邻 C-RAN 协作站点的交互边缘区域用户的数据的数据交互通道。
步骤 S104,通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第 一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户 交互第二数据。
在本步骤中, C-RAN主站点通过建立的数据交互通道与相邻 C-RAN协作 站点交互第一数据, 然后, 相邻 C-RAN协作站点解析控制数据, 并与边缘区域 用户交互第二数据, 从而完成边缘区域用户的数据的交互。
具体地, 第一方面, C-RAN主站点通过数据交互通道向相邻 C-RAN协作 站点发送第一数据, 相邻 C-RAN协作站点解析控制数据, 第一数据可以为同相 正交 (In-phase/Quadrature, I/Q)数据, 也可以为快速输入输出(Rapid 10, RIO) 数据, 相邻 C-RAN协作站点接收第一数据后, 将 I/Q数据处理为第二数据即中 射频信号发送给边缘区域用户或将 RIO数据先处理为 I/Q数据,再将 I/Q数据处 理为第二数据即中射频信号发送给边缘区域用户。
第二方面, C-RAN主站点通过控制数据指示相邻 C-RAN协作站点从边缘 区域用户获取第二数据,然后接收相邻 C-RAN协作站点发送的第一数据,在此, 第一数据为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协作站 点从边缘区域用户接收中射频信号,将中射频信号处理为 I/Q数据发送给 C-RAN 主站点,或者将中射频信号先处理为 I/Q数据,然后将 I/Q数据处理为 RIO数据, 再将 RIO数据发送给 C-RAN主站点。
图 2为 C-RAN主站点与相邻 C-RAN协作站点耦合协同的示意图。 如图 2 所示, 手机终端的 C-RAN A主站点和与 C-RAN A相邻的 C-RAN B协作站点通 过数据交互通道相连, C-RAN A主站点和 C-RAN B协作站点进行耦合协同, C-RAN A主站点能通过数据交互通道与 C-RAN B协作站点交互数据, 然后, C-RAN B协作站点再与手机终端交互数据。
根据本发明一个实施例提供的一种交互 C-RAN 边缘区域用户的数据的方 法, C-RAN主站点通过建立数据交互通道与相邻 C-RAN协作站点进行耦合协 同, 使得相邻 C-RAN协作站点也可以与边缘区域用户交互数据, 从而有利于使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
图 3为一种交互 C-RAN边缘区域用户的数据的方法的另一个实施例的方法 流程图。 如图 3所示, 该方法包括以下步骤:
步骤 S201 , 确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少 一个协作站点。
本实施例中, 边缘区域用户属于一个 C-RAN的站点, 该站点称为该边缘区 域用户的主站点, 但边缘区域用户位于该 C-RAN和一个或多个相邻 C-RAN的 边缘, 因此接收到的信号弱, 且容易受到相邻 C-RAN的站点的信号的干扰。
C-RAN主站点向核心网获取或者接收边缘区域用户上报的相邻 C-RAN的 邻区信息, 根据该邻区信息确定相邻 C-RAN的站点列表, 并从中确定其中至少 一个相邻 C-RAN的至少一个站点作为该边缘区域用户的 C-RAN主站点的协作 站点。
主站点向上级网元查询该协作站点, 上级网元根据配置的网络结构, 将返 回该协作站点所在的 C-RAN, 并指示路由信息。
步骤 S202, 通过传输控制协议 /因特网互联协议 TCP/IP通道或高速数据交 互通道的控制通道与所述相邻 C-RAN协作站点交互控制数据。
本步骤中, C-RAN主站点通过已建立好的通道与相邻 C-RAN协作站点交 互控制数据, 用于站点之间进行协商和消息传递。 首先, C-RAN主站点根据上 级网元提供的路由信息向相邻 C-RAN协作站点发起握手信号,收到相邻 C-RAN 协作站点的响应后, 则通讯路由就建立起来了; 然后, 为之后的每一个步骤提 供控制数据。
控制数据的交互可以采用已建立好的单独的传输控制协议 /因特网互联协 议 (Tramission Control Protocol/Internet Protocol, TCP/IP)通道, 用于 ? 载控制数 据, 例如可以借用 Χ2接口通道 (Χ2 Interface) , 在传统宏站之间, 第三代合作伙 伴计划 (The 3rd Generation Partnership Project , 3GPP)定义有 X2接口, 采用 C-RAN方案后,假定该接口被 C-RAN继承。 Χ2接口其传输网络层基于 IP传输。
控制数据的交互也可以利用已建立好的物理的高速数据交互通道的控制通 道 例如 对于 (通用 ^^共无线接口 The Common Public Radio Interface , CPRI) 数据的传输, 可以利用 CPRi协议里的控制通道的保留字段, 用于承载 RAN 主站点和相邻 C-RAN协作站点之间的控制数据;也可以在 CPR1的 I/Q通道中, 定义部分比特数据, 作为控制通道, 用于控制数据的交互, 如图 4所示的 CPRI 的 J/Q通道用于控制通道的示意图。
步骤 S203 ,根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互 第一数据的数据交互通道, 所述用于交互第一数据的数据交互通道为高速数据 交互通道。
由于本发明的边缘区域用户的数据为快速且占用大带宽的数据, 如基带数 据, 边缘区域用户如需获得好的增益, 则 C-RAN主站点与相邻 C-RAN协作站 点应该进行紧耦合协同, 所谓紧耦合协同是指可以快速大带宽的获取其它站点 协同数据进行处理, 相应地, 松耦合协同是指可以获得慢速低带宽的数据进行 处理。
当前业界的 C-RAN之间, 没有紧耦合数据的互传通道, 对处于 C-RAN边 缘区域用户, 无法获得紧耦合协同增益。 当前业界的 C-RAN 方案, 仅定义了 C-RAN的内部接口, 没有定义 C-RAN之间的紧耦合接口。 但在传统宏站之间, 3GPP定义有 X2接口, 采用 C-RAN方案后, 假定该接口被 C-RAN继承。 X2 接口其传输网絡层基于 IP传输, 主要用于信令传输, 其带宽低、 时延大。 如果 C-RAN之间采用传统的 Χ2接口, 对于 C-RAN边缘区域用户, 最多采用松耦合 协同方案, 其增益比紧耦合协同要低, 因此该边缘区域用户的用户体验会差于 C-RAN覆盖区域内的用户。 该方案的缺点: 松耦合协同的增益不如紧耦合来得 高; 如果采用 Χ2接口, 传递 CPRI层 l(Layer 1 , L1)数据, 时延和带宽都难以 满足紧耦合协同算法需求。
在本实施例中, C-RAN主站点与相邻 C-RAN协作站点之间已有物理的高速 数据交互通道, 该高速数据交互通道的一部分已在步骤 S202中被定义为控制数 据的交互通道, 在本步骤中, 将该高速数据交互通道的另一部分定义为交互第 一数据的数据交互通道, 或者, 在步骤 S202中, 采用 TCP/IP通道作为控制数 据的交互通道, 则在本步骤中, 将整个高速数据交互通道定义为交互第一数据 的数据交互通道, 从而建立起 C-RAN主站点与相邻 C-RAN协作站点的交互边 缘区域用户的数据的数据交互通道。该高速数据交换通道包括: CPRI接口通道, RIO接口通道和以太网接口通道。
采用本实施例的高速数据交互通道, C-RAN主站点与相邻 C-RAN协作站 点之间可以实现紧耦合协同, 从而使 C-RAN边缘区域用户获得更好的增益, 提 升系统性能。
步骤 S204,将所述第一数据与和所述边缘区域用户属于同一个相邻 C-RAN 的其它边缘区域用户的边缘区域用户的数据进行汇聚。
在本实施例中, 由于在 C-RAN主站点与相邻 C-RAN协作站点之间采用高 速数据交互通道交互边缘区域用户的数据, 例如, 对于 CPRI数据的交互, 如采 用 CPRI通道, 由于 CPRI通道带宽很大, 如果一次仅传输来自射频拉远模块 (Radio Remote Unit, RRU)的一个边缘区域用户的数据会造成资源的浪费。
在本步骤中, 当 C-RAN主站点向相邻 C-RAN协作站点发送第一数据时, 需要将第一数据与和边缘区域用户属于同一个相邻 C-RAN的其它边缘区域用户 的边缘区域用户的数据进行汇聚,比如,将 4个 2.5G的数据汇聚成 10G的数据, 而 C-RAN与同一个相邻 C-RAN由一条或多条高速数据交互通道, 如 CPRI通 道相连, 一条 CPRI通道内部具有多条信道, 汇聚的多个边缘区域用户的数据根 据控制数据分别承载在各条信道中。 步骤 S205,通过所述数据交互通道向所述相邻 C-RAN发送所述经过汇聚的 边缘区域用户的数据, 以使所述相邻 C-RAN协作站点从所述相邻 C-RAN获取 第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数据; 和通过 所述数据交互通道从所述相邻 C-RAN协作站点接收第一数据。
在本步骤中, 第一方面, C-RAN主站点将经过汇聚的边缘区域用户的数据 通过高速数据交互通道发送至相邻 C-RAN, 然后, 该协作站点从该相邻 C-RAN 的相应信道中获取 C-RAN主站点发送给该协作站点的第一数据, 第一数据可以 为 I/Q数据,也可以为 RIO数据,然后,相邻 C-RAN协作站点接收第一数据后, 将 I/Q数据处理为第二数据即中射频信号发送给边缘区域用户或将 RIO数据先 处理为 I/Q数据,再将 I/Q数据处理为第二数据即中射频信号发送给边缘区域用 户。
第二方面, C-RAN主站点指示相邻 C-RAN协作站点从边缘区域用户获取 第二数据, 然后接收相邻 C-RAN协作站点发送的第一数据, 在此, 第一数据为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协作站点从边缘区 域用户接收中射频信号, 将中射频信号处理为 I/Q数据发送给 C-RAN主站点, 或者将中射频信号先处理为 I/Q数据, 然后将 I/Q数据处理为 RIO数据, 再将 RIO数据发送给 C-RAN主站点。
根据本发明另一个实施例提供的一种交互 C-RAN边缘区域用户的数据的方 法, C-RAN主站点通过建立高速数据交互通道与相邻 C-RAN协作站点进行紧 耦合协同,使得相邻 C-RAN协作站点也可以与边缘区域用户交互快速而大带宽 的数据, 从而有利于使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
图 5为本发明一种交互 C-RAN边缘区域用户的数据的方法的又一个实施例 的方法流程图。 如图 5所示, 该方法应用于相邻 C-RAN协作站点, 包括以下步 骤:
步骤 S301 , 与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据。 在本步骤中, 相邻 C-RAN协作站点通过已建立好的通道与 C-RAN边缘区 域用户所属的 C-RAN主站点交互控制数据,用于站点之间进行协商和消息传递。 首先, 相邻 C-RAN协作站点接收 C-RAN主站点根据上级网元提供的路由信息 发出的握手信号, 对该握手信号进行响应, 则与 C-RAN主站点的通讯路由就建 立起来了; 然后, 为之后的每一个步骤提供控制数据。 步骤 S302,根据所述控制数据,通过所述 C-RAN主站点建立的数据交互通 道, 与所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域 用户交互第二数据。
在本步骤中, 相邻 C-RAN协作站点通过 C-RAN主站点建立的数据交互通 道, 与 C-RAN主站点交互第一数据, 然后, 相邻 C-RAN协作站点与边缘区域 用户交互第二数据, 从而完成边缘区域用户的数据的交互。
具体地, 第一方面, 相邻 C-RAN协作站点接收 C-RAN主站点通过数据交 互通道发送的第一数据, 第一数据可以为 I/Q数据, 也可以为 RIO数据, 相邻 C-RAN协作站点接收第一数据后, 将 I/Q数据处理为第二数据即中射频信号发 送给边缘区域用户或将 RIO数据先处理为 I/Q数据,再将 I/Q数据处理为第二数 据即中射频信号发送给边缘区域用户。
第二方面, 相邻 C-RAN协作站点接收 C-RAN主站点指示从边缘区域用户 获取第二数据的控制数据, 并从边缘区域用户获取第二数据, 在此, 第一数据 为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协作站点从边缘 区域用户接收中射频信号,将中射频信号处理为 I/Q数据发送给 C-RAN主站点, 或者将中射频信号先处理为 I/Q数据, 然后将 I/Q数据处理为 RIO数据, 再将 RIO数据发送给 C-RAN主站点。
根据本发明又一个实施例提供的一种交互 C-RAN边缘区域用户的数据的方 法, 相邻 C-RAN协作站点通过 C-RAN主站点建立的数据交互通道, 与 C-RAN 主站点进行耦合协同,使得使得相邻 C-RAN协作站点也可以与边缘区域用户交 互数据, 从而有利于使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
图 6为本发明一种交互 C-RAN边缘区域用户的数据的方法的再一个实施例 的方法流程图。 如图 6所示, 该方法应用于相邻 C-RAN协作站点, 包括以下步 骤:
步骤 S401 , 通过 TCP/IP通道或高速数据交互通道的控制通道与 C-RAN边 缘区域用户所属的 C-RAN主站点交互控制数据。
在本步骤中, 相邻 C-RAN协作站点通过已建立好的通道与 C-RAN边缘区 域用户所属的 C-RAN主站点交互控制数据,用于站点之间进行协商和消息传递。 首先, 相邻 C-RAN协作站点接收 C-RAN主站点根据上级网元提供的路由信息 发出的握手信号, 对该握手信号进行响应, 则与 C-RAN主站点的通讯路由就建 立起来了; 然后, 为之后的每一个步骤提供控制数据。
控制数据的交互可以采用已建立好的单独的 TCP/IP通道, 用于承载控制数 据, 例如可以借用 X2接口通道, 在传统宏站之间, 3GPP定义有 X2接口, 采 用 C-RAN方案后, 假定该接口被 C-RAN继承。 X2接口其传输网络层基于 IP 传输。
控制数据的交互也可以利用已建立好的物理的高速数据交互通道的控制通 道 例如 对于 CPR1数据的传输 可以利用 CPRI协议里的控制通道的保留字 段, 用于承载 C-RAN主站点和相邻 C- AN协作站点之间的控制数据; 也可以 在 CPRI的 I/Q通道中, 定义部分 ΒΓΓ, 作为控制通道, 用于控制数据的交互, 如图 4所示的 CPRI的 I/Q通道周于控制通道的示意图。
步骤 S402,将所述第一数据与和所述边缘区域用户属于同一个 C-RAN的其 它边缘区域用户的边缘区域用户的数据进行汇聚。
在本实施例中, 由于在相邻 C-RAN协作站点与 C-RAN主站点之间采用高 速数据交互通道交互边缘区域用户的数据, 例如, 对于 CPRI数据的交互, 如采 用 CPRI通道, 该通道具有固定的速率, 而来自 RRU的一个边缘区域用户的数 据可能达不到该固定的速率, 如果一次仅传输一个边缘区域用户的数据会造成 资源的浪费。
在本步骤中, 当相邻 C-RAN协作站点向 C-RAN主站点发送第一数据时, 需要将第一数据与和边缘区域用户属于同一个 C-RAN的其它边缘区域用户的边 缘区域用户的数据进行汇聚, 比如, 将 4个 2.5G的数据汇聚成 10G的数据, 而 C-RAN与同一个相邻 C-RAN由一条 CPRI通道相连, 一条 CPRI通道内部具有 多条信道, 汇聚的多个边缘区域用户的数据根据控制数据分别承载在各条信道 中。
在进行汇聚前, 相邻 C-RAN协作站点从边缘区域用户接收第二数据, 第二 数据可以为中射频信号, 将第二数据处理为第一数据, 然后将第一数据与和边 缘区域用户属于同一个 C-RAN的其它边缘区域用户的边缘区域用户的数据进行 汇聚。 在此, 第一数据可以为 I/Q数据, 将第二数据处理为第一数据即将中射频 信号先处理为 RIO数据, 再将 RIO数据处理为 I/Q数据; 或者, 第一数据也可 以为 RIO数据, 将第二数据处理为第一数据即将中射频信号处理为 RIO数据。 区域用户的数据, 以使所述 C-RAN主站点从所述 C-RAN获取所述第一数据; 和通过所述数据交互通道从所述 C-RAN主站点接收所述第一数据, 所述用于交 互第一数据的数据交互通道为高速数据交互通道。
在本步骤中, 第一方面, 相邻 C-RAN协作站点将经过汇聚的边缘区域用户 的数据通过高速数据交互通道发送至 C-RAN, 然后, 该主站点从 C-RAN的相 应信道中获取相邻 C-RAN协作站点发送给该主站点的第一数据。
第二方面, 相邻 C-RAN协作站点通过高速数据交互通道从 C-RAN主站点 接收第一数据, 并将第一数据发送至边缘区域用户。
根据本发明再一个实施例提供的一种交互 C-RAN边缘区域用户的数据的方 法, 相邻 C-RAN协作站点通过 C-RAN 主站点建立的高速数据交互通道, 与 C-RAN主站点进行紧耦合协同, 使得使得相邻 C-RAN协作站点也可以与边缘 区域用户交互快速而大带宽的数据,从而有利于使 C-RAN边缘区域用户获得更 好的增益, 提升系统性能。
图 7为本发明一种 C-RAN主站点的一个实施例结构示意图。 如图 7所示, 该 C-RAN主站点包括:
确定单元 101 ,用于确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN 的至少一个协作站点。
本实施例中, 边缘区域用户属于一个 C-RAN的站点, 该站点称为该边缘区 域用户的主站点, 但边缘区域用户位于该 C-RAN和一个或多个相邻 C-RAN的 边缘, 因此接收到的信号弱, 且容易受到相邻 C-RAN的站点的信号的干扰。
C-RAN主站点向核心网获取或者接收边缘区域用户上报的相邻 C-RAN的 邻区信息, 确定单元 101根据该邻区信息确定相邻 C-RAN的站点列表, 并从中 确定其中至少一个相邻 C-RAN的至少一个站点作为该边缘区域用户的 C-RAN 主站点的协作站点。
主站点向上级网元查询该协作站点, 上级网元根据配置的网络结构, 将返 回该协作站点所在的 C-RAN, 并指示路由信息。
第一交互单元 102, 用于与所述相邻 C-RAN协作站点交互控制数据。
C-RAN主站点通过已建立好的通道与相邻 C-RAN协作站点交互控制数据, 用于站点之间进行协商和消息传递。 首先, C-RAN主站点根据上级网元提供的 路由信息向相邻 C-RAN协作站点发起握手信号, 收到相邻 C-RAN协作站点的 响应后, 则通讯路由就建立起来了; 然后, 为其它功能单元提供控制数据。 通道建立单元 103, 用于根据所述控制数据建立与所述相邻 C-RAN协作站 点的用于交互第一数据的数据交互通道。
本实施例中, 由于边缘区域用户的数据为快速且占用大带宽的数据, 如基 带数据, 根据控制数据规定的 C-RAN主站点与相邻 C-RAN协作站点间的某通 道用作交互第一数据的数据交互通道,从而建立起 C-RAN主站点与相邻 C-RAN 协作站点的交互边缘区域用户的数据的数据交互通道。
第二交互单元 104, 用于通过所述数据交互通道与所述相邻 C-RAN协作站 点交互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述 边缘区域用户交互第二数据。
第二交互单元 104通过建立的数据交互通道与相邻 C-RAN协作站点交互第 一数据, 然后, 相邻 C-RAN协作站点解析控制数据, 并与边缘区域用户交互第 二数据, 从而完成边缘区域用户的数据的交互。
具体地, 第一方面, 第二交互单元 104通过数据交互通道向相邻 C-RAN协 作站点发送第一数据,相邻 C-RAN协作站点解析控制数据,第一数据可以为 I/Q 数据, 也可以为 RIO数据, 相邻 C-RAN协作站点接收第一数据后, 将 I/Q数据 处理为第二数据即中射频信号发送给边缘区域用户或将 RIO数据先处理为 I/Q 数据, 再将 I/Q数据处理为第二数据即中射频信号发送给边缘区域用户。
第二方面, 第二交互单元 104通过控制数据指示相邻 C-RAN协作站点从边 缘区域用户获取第二数据, 然后接收相邻 C-RAN协作站点发送的第一数据, 在 此, 第一数据为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协 作站点从边缘区域用户接收中射频信号, 将中射频信号处理为 I/Q数据发送给 C-RAN主站点, 或者将中射频信号先处理为 I/Q数据, 然后将 I/Q数据处理为 RIO数据, 再将 RIO数据发送给 C-RAN主站点。
根据本发明一个实施例提供的一种 C-RAN主站点, C-RAN主站点通过建 立数据交互通道与相邻 C-RAN协作站点进行耦合协同, 使得相邻 C-RAN协作 站点也可以与边缘区域用户交互数据,从而有利于使 C-RAN边缘区域用户获得 更好的增益, 提升系统性能。
图 8为一种 C-RAN主站点的另一个实施例的结构示意图。 如图 8所示, 该 C-RAN主站点包括: 确定单元 201 ,用于确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN 的至少一个协作站点。
C-RAN主站点向核心网获取或者接收边缘区域用户上报的相邻 C-RAN的 邻区信息, 确定单元 201根据该邻区信息确定相邻 C-RAN的站点列表, 并从中 确定其中至少一个相邻 C-RAN的至少一个站点作为该边缘区域用户的 C-RAN 主站点的协作站点。
主站点向上级网元查询该协作站点, 上级网元根据配置的网络结构, 将返 回该协作站点所在的 C-RAN, 并指示路由信息。
在本实施例中, 第一交互单元 202包括第三交互单元 203。
第三交互单元 203 , 用于通过 TCP/IP通道或高速数据交互通道的控制通道 与所述相邻 C-RAN协作站点交互控制数据。
本步骤中, 第三交互单元 203通过已建立好的通道与相邻 C-RAN协作站点 交互控制数据, 用于站点之间进行协商和消息传递。 首先, 第三交互单元 203 根据上级网元提供的路由信息向相邻 C-RAN协作站点发起握手信号, 收到相邻 C-RAN协作站点的响应后, 则通讯路由就建立起来了; 然后, 为其它功能单元 提供控制数据。
控制数据的交互可以采用已建立好的单独的 TCP/IP通道, 用于承载控制数 据, 例如可以借用 X2接口通道, 在传统宏站之间, 3GPP定义有 X2接口, 采 用 C-RAN方案后, 假定该接口被 C-RAN继承。 X2接口其传输网絡层基于 IP 传输。
控制数据的交互也可以利用已建立好的物理的高速数据交互通道的控制通 道, 例如, 对于 CPRJ [数据的传输, 可以利用 CPRi协议里的控制通道的保留字 段, 用于承载 C-RAN主站点和相部 C- RAN协作站点之间的控制数据; 也可以 在 CPR1的 I/Q通道中 定义部分比特数据, 作为控制通道 用于控制数据的交 互 如图 4所示的 CPRI的 ί/Q通道.用于控制通道的示意图。
通道建立单元 204, 用于根据所述控制数据建立与所述相邻 C-RAN协作站 点的用于交互第一数据的数据交互通道, 所述用于交互第一数据的数据交互通 道为高速数据交互通道。
由于本发明的边缘区域用户的数据为快速且占用大带宽的数据, 如基带数 据, 边缘区域用户如需获得好的增益, 则 C-RAN主站点与相邻 C-RAN协作站 点应该进行紧耦合协同, 所谓紧耦合协同是指可以快速大带宽的获取其它站点 协同数据进行处理, 相应地, 松耦合协同是指可以获得慢速低带宽的数据进行 处理。
当前业界的 C-RAN之间, 没有紧耦合数据的互传通道, 对处于 C-RAN边 缘区域用户, 无法获得紧耦合协同增益。 当前业界的 C-RAN 方案, 仅定义了 C-RAN的内部接口, 没有定义 C-RAN之间的紧耦合接口。 但在传统宏站之间, 3GPP定义有 X2接口, 采用 C-RAN方案后, 假定该接口被 C-RAN继承。 X2 接口其传输网絡层基于 IP传输, 主要用于信令传输, 其带宽低、 时延大。 如果 C-RAN之间采用传统的 Χ2接口, 对于 C-RAN边缘区域用户, 最多采用松耦合 协同方案, 其增益比紧耦合协同要低, 因此该边缘区域用户的用户体验会差于 C-RAN覆盖区域内的用户。 该方案的缺点: 松耦合协同的增益不如紧耦合来得 高; 如果采用 Χ2接口, 传递 CPRI L1数据, 时延和带宽都难以满足紧耦合协同 算法需求。
在本实施例中, C-RAN主站点与相邻 C-RAN协作站点之间已有物理的高速 数据交互通道, 该高速数据交互通道的一部分已在步骤 S202中被定义为控制数 据的交互通道, 在本步骤中, 将该高速数据交互通道的另一部分定义为交互第 一数据的数据交互通道, 或者, 在步骤 S202中, 采用 TCP/IP通道作为控制数 据的交互通道, 则在本步骤中, 将整个高速数据交互通道定义为交互第一数据 的数据交互通道, 从而建立起 C-RAN主站点与相邻 C-RAN协作站点的交互边 缘区域用户的数据的数据交互通道。该高速数据交换通道包括: CPRI接口通道, RIO接口通道和以太网接口通道。
采用本实施例的高速数据交互通道, C-RAN主站点与相邻 C-RAN协作站 点之间可以实现紧耦合协同, 从而使 C-RAN边缘区域用户获得更好的增益, 提 升系统性能。
第一汇聚单元 205,用于将所述第一数据与和所述边缘区域用户属于同一个 相邻 C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚。
在本实施例中, 由于在 C-RAN主站点与相邻 C-RAN协作站点之间采用高 速数据交互通道交互边缘区域用户的数据, 例如, 对于 CPRI数据的交互, 如采 用 CPRI通道, 该通道具有固定的速率, 而来自 RRU的一个边缘区域用户的数 据可能达不到该固定的速率, 如果一次仅传输一个边缘区域用户的数据会造成 资源的浪费。
在本步骤中, 当 C-RAN主站点向相邻 C-RAN协作站点发送第一数据时, 需要将第一数据与和边缘区域用户属于同一个相邻 C-RAN的其它边缘区域用户 的边缘区域用户的数据进行汇聚,比如,将 4个 2.5G的数据汇聚成 10G的数据, 而 C-RAN与同一个相邻 C-RAN由一条或多条高速数据交互通道, 如 CPRI通 道相连, 一条 CPRI通道内部具有多条信道, 汇聚的多个边缘区域用户的数据根 据控制数据分别承载在各条信道中。
在本实施例中, 第二交互单元 206包括第一发送单元 207和第一接收单元
208。
第一发送单元 207, 用于通过所述数据交互通道向所述相邻 C-RAN发送所 述经过汇聚的边缘区域用户的数据, 以使所述相邻 C-RAN协作站点从所述相邻 C-RAN获取第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数 据。
第一发送单元 207将经过汇聚的边缘区域用户的数据通过高速数据交互通 道发送至相邻 C-RAN, 然后, 该协作站点从该相邻 C-RAN的相应信道中获取 C-RAN主站点发送给该协作站点的第一数据, 然后, 相邻 C-RAN协作站点解 析控制数据, 第一数据可以为 I/Q数据, 也可以为 RIO数据, 相邻 C-RAN协作 站点接收第一数据后,将 I/Q数据处理为第二数据即中射频信号发送给边缘区域 用户或将 RIO数据先处理为 I/Q数据,再将 I/Q数据处理为第二数据即中射频信 号发送给边缘区域用户。
第一接收单元 208, 用于通过所述数据交互通道从所述相邻 C-RAN协作站 点接收第一数据。
第一接收单元 208通过控制数据指示相邻 C-RAN协作站点从边缘区域用户 获取第二数据, 然后接收相邻 C-RAN协作站点发送的第一数据, 在此, 第一数 据为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协作站点从边 缘区域用户接收中射频信号, 将中射频信号处理为 I/Q数据发送给 C-RAN主站 点, 或者将中射频信号先处理为 I/Q数据, 然后将 I/Q数据处理为 RIO数据, 再 将 RIO数据发送给 C-RAN主站点。
根据本发明另一个实施例提供的一种 C-RAN主站点, C-RAN主站点通过 建立高速数据交互通道与相邻 C-RAN 协作站点进行紧耦合协同, 使得相邻 C-RAN协作站点也可以与边缘区域用户交互快速而大带宽的数据, 从而有利于 使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
图 9为本发明一种相邻 C-RAN协作站点的一个实施例的结构示意图。如图 9所示, 该相邻 C-RAN协作站点包括:
第四交互单元 301 , 用于与 C-RAN边缘区域用户所属的 C-RAN主站点交 互控制数据。
第四交互单元 301 通过已建立好的通道与 C-RAN 边缘区域用户所属的 C-RAN主站点交互控制数据, 用于站点之间进行协商和消息传递。 首先, 相邻 C-RAN协作站点接收 C-RAN主站点根据上级网元提供的路由信息发出的握手 信号, 对该握手信号进行响应, 则与 C-RAN主站点的通讯路由就建立起来了; 然后, 为其他功能单元提供控制数据。
第五交互单元 302, 用于根据所述控制数据, 通过所述 C-RAN主站点建立 的数据交互通道, 与所述 C-RAN主站点交互第一数据, 以根据所述控制数据与 所述边缘区域用户交互第二数据。
第五交互单元 302通过 C-RAN主站点建立的数据交互通道, 与 C-RAN主 站点交互第一数据, 然后, 相邻 C-RAN协作站点解析控制数据, 并与边缘区域 用户交互第二数据, 从而完成边缘区域用户的数据的交互。
具体地, 第一方面, 相邻 C-RAN协作站点接收 C-RAN主站点通过数据交 互通道发送的第一数据, 相邻 C-RAN协作站点解析控制数据, 第一数据可以为 I/Q数据, 也可以为 RIO数据, 相邻 C-RAN协作站点接收第一数据后, 将 I/Q 数据处理为第二数据即中射频信号发送给边缘区域用户或将 RIO数据先处理为 I/Q数据, 再将 I/Q数据处理为第二数据即中射频信号发送给边缘区域用户。
第二方面, 相邻 C-RAN协作站点接收 C-RAN主站点指示从边缘区域用户 获取第二数据的控制数据, 并从边缘区域用户获取第二数据, 在此, 第一数据 为 I/Q数据或 RIO数据, 第二数据为中射频信号, 相邻 C-RAN协作站点从边缘 区域用户接收中射频信号,将中射频信号处理为 I/Q数据发送给 C-RAN主站点, 或者将中射频信号先处理为 I/Q数据, 然后将 I/Q数据处理为 RIO数据, 再将 RIO数据发送给 C-RAN主站点。
根据本发明一个实施例提供的一种相邻 C-RAN协作站点, 相邻 C-RAN协 作站点通过 C-RAN主站点建立的数据交互通道, 与 C-RAN主站点进行耦合协 同, 使得使得相邻 C-RAN协作站点也可以与边缘区域用户交互数据, 从而有利 于使 C-RAN边缘区域用户获得更好的增益, 提升系统性能。
图 10为本发明一种相邻 C-RAN协作站点的另一个实施例的结构示意图。 如图 10所示, 该相邻 C-RAN协作站点包括:
第四交互单元 401 , 第四交互单元 401包括第六交互单元 402。
第六交互单元 402, 用于通过 TCP/IP通道或高速数据交互通道的控制通道 与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据。
第六交互单元 402 通过已建立好的通道与 C-RAN 边缘区域用户所属的 C-RAN主站点交互控制数据, 用于站点之间进行协商和消息传递。 首先, 相邻 C-RAN协作站点接收 C-RAN主站点根据上级网元提供的路由信息发出的握手 信号, 对该握手信号进行响应, 则与 C-RAN主站点的通讯路由就建立起来了; 然后, 为其它功能单元提供控制数据。
控制数据的交互可以采用已建立好的单独的 TCP/IP通道, 用于承载控制数 据, 例如可以借用 X2接口通道, 在传统宏站之间, 3GPP定义有 X2接口, 采 用 C-RAN方案后, 假定该接口被 C-RAN继承。 X2接口其传输网絡层基于 IP 传输。
控制数据的交互也可以利用已建立好的物理的高速数据交互通道的控制通 道, 例如, 对于 CPRJ [数据的传输, 可以利用 CPRi协议里的控制通道的保留字 段, 用于承载 C-RAN主站点和相部 C- RAN协作站点之间的控制数据; 也可以 在 CPR1的 I/Q通道中 定义部分比特数据, 作为控制通道 用于控制数据的交 互 如图 4所示的 CPRI的 ί/Q通道.用于控制通道的示意图。
第二汇聚单元 403 ,用于将所述第一数据与和所述边缘区域用户属于同一个 C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚。
在本实施例中, 由于在相邻 C-RAN协作站点与 C-RAN主站点之间采用高 速数据交互通道交互边缘区域用户的数据, 例如, 对于 CPRI数据的交互, 如采 用 CPRI通道, 该通道具有固定的速率, 而来自 RRU的一个边缘区域用户的数 据可能达不到该固定的速率, 如果一次仅传输一个边缘区域用户的数据会造成 资源的浪费。
当相邻 C-RAN协作站点向 C-RAN主站点发送第一数据时, 需要将第一数 据与和边缘区域用户属于同一个 C-RAN的其它边缘区域用户的边缘区域用户的 数据进行汇聚, 比如, 将 4个 2.5G的数据汇聚成 10G的数据, 而 C-RAN与同 一个相邻 C-RAN由一条 CPRI通道相连, 一条 CPRI通道内部具有多条信道, 汇聚的多个边缘区域用户的数据根据控制数据分别承载在各条信道中。
在进行汇聚前, 相邻 C-RAN协作站点从边缘区域用户接收第二数据, 第二 数据可以为中射频信号, 将第二数据处理为第一数据, 然后将第一数据与和边 缘区域用户属于同一个 C-RAN的其它边缘区域用户的边缘区域用户的数据进行 汇聚。 在此, 第一数据可以为 I/Q数据, 将第二数据处理为第一数据即将中射频 信号先处理为 RIO数据, 再将 RIO数据处理为 I/Q数据; 或者, 第一数据也可 以为 RIO数据, 将第二数据处理为第一数据即将中射频信号处理为 RIO数据。
在本实施例中, 第五交互单元 404包括第二发送单元 405和第二接收单元
406。
第二发送单元 405, 用于通过所述数据交互通道向所述 C-RAN发送所述经 过汇聚的边缘区域用户的数据, 以使所述 C-RAN主站点从所述 C-RAN获取所 述第一数据。
相邻 C-RAN协作站点将经过汇聚的边缘区域用户的数据通过高速数据交互 通道发送至 C-RAN, 然后, 该主站点从 C-RAN的相应信道中获取相邻 C-RAN 协作站点发送给该主站点的第一数据。 所述第一数据, 所述用于交互第一数据的数据交互通道为高速数据交互通道。
相邻 C-RAN协作站点通过高速数据交互通道从 C-RAN主站点接收第一数 据, 并将第一数据发送至边缘区域用户。
根据本发明另一个实施例提供的一种相邻 C-RAN协作站点, 相邻 C-RAN 协作站点通过 C-RAN主站点建立的高速数据交互通道, 与 C-RAN主站点进行 紧耦合协同,使得使得相邻 C-RAN协作站点也可以与边缘区域用户交互快速而 大带宽的数据, 从而有利于使 C-RAN边缘区域用户获得更好的增益, 提升系统 性能。
本发明还提供一种交互 C-RAN边缘区域用户的数据的系统, 该系统包括前 述实施例的 C-RAN主站点和相邻 C-RAN协作站点,其中,所述 C-RAN主站点 确定针对 C-RAN边缘区域用户的相邻 C-RAN协作站点;
所述 C-RAN主站点与所述相邻 C-RAN协作站点交互控制数据; 所述 C-RAN 主站点通过用于交互第一数据的数据交互通道与所述相邻 C-RAN协作站点相连;
所述 C-RAN主站点通过所述数据交互通道与所述相邻 C-RAN协作站点交 互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘 区域用户交互第二数据。
其中, C-RAN和相邻 C-RAN的组网方式包括: 星型, 链型和环形。
图 11为本发明一种交互 C-RAN边缘区域用户的数据的设备的一个实施例 的结构示意图。 如图 11所示, 该设备 1000可包括:
输入装置 501、 输出装置 502、 存储器 503和处理器 504(网络设备中的处理 器 504的数量可以一个或多个, 图 11中以一个处理器为例)。在本发明的一些实 施例中, 输入装置 501、 输出装置 502、 存储器 503和处理器 504可通过总线或 其它方式连接, 其中, 图 11中以通过总线连接为例。
其中, 处理器 504执行以下步骤: 确定针对 C-RAN边缘区域用户的至少一 个相邻 C-RAN的至少一个协作站点, 与所述相邻 C-RAN协作站点交互控制数 据,根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道,通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第 一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户 交互第二数据。
可以理解的是, 本实施例的设备 1000的各功能模块的功能可根据上述方法 述, 此处不再赘述。
图 12为本发明一种交互 C-RAN边缘区域用户的数据的设备的另一个实施 例的结构示意图。 如图 12所示, 该设备 2000可包括:
输入装置 601、 输出装置 602、 存储器 603和处理器 604(网络设备中的处理 器 604的数量可以一个或多个, 图 12中以一个处理器为例)。在本发明的一些实 施例中, 输入装置 601、 输出装置 602、 存储器 603和处理器 604可通过总线或 其它方式连接, 其中, 图 12中以通过总线连接为例。
其中, 处理器 604执行以下步骤: 确定针对 C-RAN边缘区域用户的至少一 个相邻 C-RAN的至少一个协作站点, 与所述相邻 C-RAN协作站点交互控制数 据,根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道,通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第 一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户 交互第二数据。
可以理解的是, 本实施例的设备 2000的各功能模块的功能可根据上述方法 述, 此处不再赘述。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都表述 为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描述的 动作顺序的限制, 因为根据本发明, 某些步骤可以采用其他顺序或者同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属于优选实施 例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可读存 储介质中, 存储介质例如可以包括: 只读存储器、 随机存储器、 磁盘或光盘等。
以上对本发明实施例所提供的一种交互 C-RAN边缘区域用户的数据的方法 式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施例及 应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种交互云化的无线接入网 C-RAN边缘区域用户的数据的方法, 其 特征在于, 包括:
确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少一个协作站 点;
与所述相邻 C-RAN协作站点交互控制数据;
根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道;
通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数据, 以 使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互第二数 据。
2、 如权利要求 1所述的方法, 其特征在于, 所述与所述相邻 C-RAN协作 站点交互控制数据包括:
通过传输控制协议 /因特网互联协议 TCP/IP通道或高速数据交互通道的控 制通道与所述相邻 C-RAN协作站点交互控制数据。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述用于交互第一数据的 数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用 无线协议接口 CPRI通道, 快速输入输出 RIO接口通道或以太网接口通道。
4、 如权利要求 1-3任意一项所述的方法, 其特征在于, 所述通过所述数据 交互通道与所述相邻 C-RAN协作站点交互所述第一数据,以使所述相邻 C-RAN 协作站点根据所述控制数据与所述边缘区域用户交互第二数据之前, 还包括: 将所述第一数据与和所述边缘区域用户属于同一个相邻 C-RAN的其它边缘 区域用户的边缘区域用户的数据进行汇聚;
所述通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数 据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互 第二数据, 具体包括: 户的数据, 以使所述相邻 C-RAN协作站点从所述相邻 C-RAN获取第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数据; 和
通过所述数据交互通道从所述相邻 C-RAN协作站点接收第一数据。
5、 一种交互云化的无线接入网 C-RAN边缘区域用户的数据的方法, 其特 征在于, 包括:
与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据;
根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与所述
C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交互第 二数据。
6、 如权利要求 5所述的方法, 其特征在于, 所述与 C-RAN边缘区域用户 所属的主站点交互控制数据包括:
通过传输控制协议 /因特网互联协议 TCP/IP通道或高速数据交互通道的控 制通道与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据。
7、 如权利要求 5或 6所述的方法, 其特征在于, 所述用于交互第一数据的 数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道包括: 通用 无线协议接口 CPRI通道, 快速输入输出 RIO接口通道或以太网接口通道。
8、 如权利要求 5-7任意一项所述的方法, 其特征在于, 所述根据所述控制 数据, 通过所述 C-RAN主站点建立的数据交互通道, 与所述 C-RAN主站点交 互第一数据, 以根据所述控制数据与所述边缘区域用户交互第二数据之前, 还 包括:
将所述第一数据与和所述边缘区域用户属于同一个 C-RAN的其它边缘区域 用户的边缘区域用户的数据进行汇聚;
所述根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与 所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交 互第二数据, 具体包括: 通过所述数据交互通道从所述 C-RAN主站点接收所述第一数据。
9、 一种云化的无线接入网 C-RAN主站点, 其特征在于, 包括:
确定单元, 用于确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的 至少一个协作站点;
第一交互单元, 用于与所述相邻 C-RAN协作站点交互控制数据;
通道建立单元, 用于根据所述控制数据建立与所述相邻 C-RAN协作站点的 用于交互第一数据的数据交互通道;
第二交互单元, 用于通过所述数据交互通道与所述相邻 C-RAN协作站点交 互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘 区域用户交互第二数据。
10、 如权利要求 9所述的 C-RAN主站点, 其特征在于, 所述第一交互单元 包括:
第三交互单元,用于通过传输控制协议 /因特网互联协议 TCP/IP通道或高速 数据交互通道的控制通道与所述相邻 C-RAN协作站点交互控制数据。
11、 如权利要求 8或 9所述的 C-RAN主站点, 其特征在于, 所述用于交互 第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据交互通道 包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO接口通道或以太网接
Π通道。
12、如权利要求 8-11任意一项所述的 C-RAN主站点,其特征在于,还包括: 第一汇聚单元, 用于将所述第一数据与和所述边缘区域用户属于同一个相 邻 C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚;
所述第二交互单元具体包括:
第一发送单元, 用于通过所述数据交互通道向所述相邻 C-RAN发送所述经 过汇聚的边缘区域用户的数据, 以使所述相邻 C-RAN 协作站点从所述相邻 C-RAN获取第一数据, 以及根据所述控制数据向所述边缘区域用户发送第二数 和
第一接收单元, 用于通过所述数据交互通道从所述相邻 C-RAN协作站点接 收第一数据。
13、 一种相邻云化的无线接入网 C-RAN协作站点, 其特征在于, 包括: 第四交互单元, 用于与 C-RAN边缘区域用户所属的 C-RAN主站点交互控 制数据;
第五交互单元, 用于根据所述控制数据, 通过所述 C-RAN主站点建立的数 据交互通道, 与所述 C-RAN主站点交互第一数据, 以根据所述控制数据与所述 边缘区域用户交互第二数据。
14、 如权利要求 13所述的相邻 C-RAN协作站点, 其特征在于, 所述第四 交互单元包括:
第六交互单元,用于通过传输控制协议 /因特网互联协议 TCP/IP通道或高速 数据交互通道的控制通道与 C-RAN边缘区域用户所属的 C-RAN主站点交互控 制数据。
15、 如权利要求 13或 14所述的相邻 C-RAN协作站点, 其特征在于, 所述 用于交互第一数据的数据交互通道为高速数据交互通道, 其中, 所述高速数据 交互通道包括: 通用无线协议接口 CPRI通道, 快速输入输出 RIO接口通道或 以太网接口通道。
16、如权利要求 13-15任意一项所述的相邻 C-RAN协作站点,其特征在于, 还包括:
第二汇聚单元, 用于将所述第一数据与和所述边缘区域用户属于同一个 C-RAN的其它边缘区域用户的边缘区域用户的数据进行汇聚;
所述第五交互单元具体包括:
第二发送单元, 用于通过所述数据交互通道向所述 C-RAN发送所述经过汇 聚的边缘区域用户的数据, 以使所述 C-RAN主站点从所述 C-RAN获取所述第 一数据; 和 第一数据。
17、 一种交互云化的无线接入网 C-RAN边缘区域用户的数据的系统, 其特 征在于, 包括:
权利要求 9-12所述的 C-RAN主站点和权利要求 13-16所述的相邻 C-RAN 协作站点;
其中,所述 C-RAN主站点确定针对 C-RAN边缘区域用户的相邻 C-RAN协 作站点;
所述 C-RAN主站点与所述相邻 C-RAN协作站点交互控制数据;
所述 C-RAN 主站点通过用于交互第一数据的数据交互通道与所述相邻
C-RAN协作站点相连;
所述 C-RAN主站点通过所述数据交互通道与所述相邻 C-RAN协作站点交 互所述第一数据, 以使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘 区域用户交互第二数据。
18、如权利要求 17所述的系统,其特征在于,所述 C-RAN主站点所属 C-RAN 与所述相邻 C-RAN协作站点所属 C-RAN的组网方式包括: 星型, 链型和环形。
19、 一种交互云化的无线接入网 C-RAN边缘区域用户的数据的设备, 其特 征在于, 包括: 输入装置、 输出装置、 存储器和处理器;
其中所述处理器执行如下步骤:
确定针对 C-RAN边缘区域用户的至少一个相邻 C-RAN的至少一个协作站 点;
与所述相邻 C-RAN协作站点交互控制数据;
根据所述控制数据建立与所述相邻 C-RAN协作站点的用于交互第一数据的 数据交互通道;
通过所述数据交互通道与所述相邻 C-RAN协作站点交互所述第一数据, 以 使所述相邻 C-RAN协作站点根据所述控制数据与所述边缘区域用户交互第二数 据。
20、 一种交互云化的无线接入网 C-RAN边缘区域用户的数据的设备, 其特 征在于, 包括: 输入装置、 输出装置、 存储器和处理器;
其中所述处理器执行如下步骤:
与 C-RAN边缘区域用户所属的 C-RAN主站点交互控制数据;
根据所述控制数据, 通过所述 C-RAN主站点建立的数据交互通道, 与所述
C-RAN主站点交互第一数据, 以根据所述控制数据与所述边缘区域用户交互第 二数据。
PCT/CN2012/087022 2012-12-20 2012-12-20 交互云化的无线接入网边缘区域用户的数据的方法及装置 WO2014094276A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280002166.6A CN103250396B (zh) 2012-12-20 2012-12-20 交互云化的无线接入网边缘区域用户的数据的方法及装置
PCT/CN2012/087022 WO2014094276A1 (zh) 2012-12-20 2012-12-20 交互云化的无线接入网边缘区域用户的数据的方法及装置
US14/322,468 US9654559B2 (en) 2012-12-20 2014-07-02 Method, apparatus, and system for exchanging data of edge area user on cloud radio access network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087022 WO2014094276A1 (zh) 2012-12-20 2012-12-20 交互云化的无线接入网边缘区域用户的数据的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/322,468 Continuation US9654559B2 (en) 2012-12-20 2014-07-02 Method, apparatus, and system for exchanging data of edge area user on cloud radio access network

Publications (1)

Publication Number Publication Date
WO2014094276A1 true WO2014094276A1 (zh) 2014-06-26

Family

ID=48928429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087022 WO2014094276A1 (zh) 2012-12-20 2012-12-20 交互云化的无线接入网边缘区域用户的数据的方法及装置

Country Status (3)

Country Link
US (1) US9654559B2 (zh)
CN (1) CN103250396B (zh)
WO (1) WO2014094276A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591564B2 (en) 2014-03-31 2017-03-07 Huawei Technologies Co., Ltd. Methods for dynamic traffic offloading and transmit point (TP) muting for energy efficiency in virtual radio access network (V-RAN)
EP3133870B1 (en) * 2014-05-06 2019-09-18 Huawei Technologies Co., Ltd. Apparatus and method for realizing collaborative work of cells
US9516521B2 (en) * 2014-07-28 2016-12-06 Intel IP Corporation Apparatus, system and method of transferring control of a remote radio head between base-band unit (BBU) processing pools
CN109067859B (zh) * 2018-07-20 2021-03-16 北京航空航天大学 一种面向跨域协同服务的双层云架构系统及实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895940A (zh) * 2010-07-26 2010-11-24 北京邮电大学 主服务小区和协作小区之间资源分配的方法
CN102546080A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
CN102595429A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 上行无线协作多点传输通信网络及其传输方法
CN102638297A (zh) * 2011-04-22 2012-08-15 北京邮电大学 协作传输节点和配对用户的选择方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290555A1 (en) * 2008-05-21 2009-11-26 Comsys Communication & Signal Processing Ltd. Autonomous anonymous association between a mobile station and multiple network elements in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895940A (zh) * 2010-07-26 2010-11-24 北京邮电大学 主服务小区和协作小区之间资源分配的方法
CN102546080A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
CN102595429A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 上行无线协作多点传输通信网络及其传输方法
CN102638297A (zh) * 2011-04-22 2012-08-15 北京邮电大学 协作传输节点和配对用户的选择方法

Also Published As

Publication number Publication date
US20140317232A1 (en) 2014-10-23
US9654559B2 (en) 2017-05-16
CN103250396A (zh) 2013-08-14
CN103250396B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
US10798702B2 (en) Periodic frames for control plane data to manage multi-band wireless networking system
EP3011775B1 (en) Lte and external wifi bandwidth aggregation
EP2954713B1 (en) Method and apparatus for reconfiguring a virtual home gateway
EP2803244B1 (en) Methods and apparatus for establishing a tunneled direct link setup (tdls) session between devices in a wireless network
Pyattaev et al. Network-assisted D2D communications: Implementing a technology prototype for cellular traffic offloading
US20130201847A1 (en) Method and apparatus to enable ad hoc networks
CN105578513B (zh) 一种通信方法、设备及系统
US10506497B2 (en) Service processing method and apparatus
US10652340B2 (en) Quick relay interface and transport selection
WO2012103779A1 (zh) 一种无线承载的建立方法、接入点设备、用户设备及系统
TW201141298A (en) Method and apparatus for implementing a blanket wireless local area network control plane
JP7324285B2 (ja) サービス承認の方法、端末機器及びネットワーク機器
KR20200019044A (ko) 5G Ethernet service를 제공하는 방법 및 장치
CA3143823A1 (en) Wi-fi access point coordinated transmission of data
CN102625346B (zh) 一种长期演进局域网lte-lan系统和接入设备及终端
Nowak et al. Towards a convergent digital home network infrastructure
CN102958197A (zh) 建立x2业务信令连接的方法及基站、蜂窝节点网关
CN102281533B (zh) 基于rt建立lsp的方法、系统和路由器
WO2014094276A1 (zh) 交互云化的无线接入网边缘区域用户的数据的方法及装置
WO2015131407A1 (zh) 一种中继节点RN、宿主基站DeNB及一种通信方法
WO2011120463A2 (zh) 跨媒介网络中的qos协商方法和系统及网络设备
CN103384365A (zh) 一种网络接入方法、业务处理方法、系统及设备
US20140330905A1 (en) Apparatus and method for setting up active networking of smart devices for providing converged service
WO2022193086A1 (zh) 一种通信方法、通信装置和通信系统
EP4145906A1 (en) Non-ip type data transmission processing method, device and apparatus, and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890384

Country of ref document: EP

Kind code of ref document: A1