WO2011120463A2 - 跨媒介网络中的qos协商方法和系统及网络设备 - Google Patents

跨媒介网络中的qos协商方法和系统及网络设备 Download PDF

Info

Publication number
WO2011120463A2
WO2011120463A2 PCT/CN2011/073763 CN2011073763W WO2011120463A2 WO 2011120463 A2 WO2011120463 A2 WO 2011120463A2 CN 2011073763 W CN2011073763 W CN 2011073763W WO 2011120463 A2 WO2011120463 A2 WO 2011120463A2
Authority
WO
WIPO (PCT)
Prior art keywords
network
physical layer
qos negotiation
layer
application layer
Prior art date
Application number
PCT/CN2011/073763
Other languages
English (en)
French (fr)
Other versions
WO2011120463A3 (zh
Inventor
欧阳伟龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000591.7A priority Critical patent/CN102204209B/zh
Priority to PCT/CN2011/073763 priority patent/WO2011120463A2/zh
Publication of WO2011120463A2 publication Critical patent/WO2011120463A2/zh
Publication of WO2011120463A3 publication Critical patent/WO2011120463A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present invention relates to network communication technologies, and in particular, to a Quality of Service (QoS) negotiation method and system and network device in a cross-media network.
  • QoS Quality of Service
  • the home network As the business on the Internet becomes more and more abundant, people can watch daily life activities such as watching videos, social shopping, transfer, auction, etc. through the network, making the combination of the network and people's daily life more and more close. These have prompted people to gradually build a network within the home that allows people to access the Internet anywhere in the home, called the home network.
  • the Wireless Fidelity (WIFI) network is the preferred choice for home network deployments because it does not require cabling and configuration.
  • the basic equipment for setting up a wireless network is a wireless network card and an access point (AP).
  • the AP mainly acts as a bridge between wireless workstations and wired local area networks in Media Access Control (MAC), and can be called a wireless access node or a bridge.
  • wired communication technologies such as power line communication and coaxial communication also adopt a similar network architecture, accessing the home gateway through a network adapter and a network coordinator, and connecting to the operator's broadband network. In this way, users can access the carrier's broadband network through wired, wireless or both networks.
  • IPTV Internet Protocol Television
  • the embodiments of the present invention provide a QoS negotiation method in a cross-media network, including: receiving a source address and a destination address from an application layer through an interface supporting multiple access modes; Obtaining optimal path information from the source address to the destination address by using network resource occupancy;
  • the best path information is mapped to a corresponding port according to a protocol corresponding to the access mode of the physical layer, so that the port performs QoS negotiation.
  • An embodiment of the present invention provides a network device, including: a flow mapping module, configured to receive a source address and a destination address from an application layer by using an interface that supports multiple access modes; and a path selection module, configured to use the network topology information according to the network topology information Obtaining the best path information from the source address to the destination address, and sending the optimal path information to the flow mapping module, so that the flow mapping module is connected to the physical layer.
  • the protocol corresponding to the incoming mode maps the best path information;
  • the flow establishment module is configured to perform QoS negotiation through the corresponding port of the physical layer.
  • the embodiment of the present invention provides a QoS negotiation system in a cross-media network, including an application layer, an intermediate layer, and a physical layer.
  • the application layer is configured to send a source to the intermediate layer by using an interface that supports multiple access modes.
  • an intermediate layer configured to acquire, according to the network topology information and the network resource occupation, the best path information from the source address to the destination address, according to the access mode of the physical layer.
  • the protocol maps the best path information to a corresponding port of the physical layer;
  • the physical layer is configured to perform QoS negotiation by using the port.
  • the embodiment of the present invention can speed up the process of QoS negotiation by simultaneously starting the physical layer QoS negotiation at the application layer QoS negotiation, and further performing QoS negotiation by performing physical layer QoS negotiation according to the path information of the optimal path. The process, which in turn increases the speed of the business.
  • FIG. 1 is a flow chart of a method according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a system architecture provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an endpoint in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a relay point according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of path information according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a network system corresponding to a second embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a network system corresponding to a third embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a network system corresponding to a fourth embodiment of the present invention. detailed description
  • a hybrid network there may be multiple access methods, such as WIFI, G.hn, or FE/GE.
  • WIFI wireless Fidelity
  • G.hn G.hn
  • FE/GE FE/GE
  • network devices need to implement multiple access methods. This type of network is called a cross-media network.
  • a network device In a cross-media network, a network device needs to set multiple interfaces between the application layer and the physical layer. In the physical layer, ports corresponding to multiple interfaces need to be separately set. For example, the network device must support WIFL G.hn or FE at the same time. For the network of the three access modes, the interface between the application layer and the physical layer needs to be configured with three interfaces, which respectively correspond to the above three access modes. Each interface also needs to be configured with a separate port at the physical layer. Waste.
  • FIG. 1 is a flowchart of a method according to a first embodiment of the present invention, where the method includes: Step 11: receiving a source address and a destination address from an application layer by using an interface supporting multiple access modes;
  • the WIFI terminal when a user places a video on demand, the WIFI terminal initiates service layer QoS negotiation, and after the service layer QoS negotiation, application layer QoS negotiation is initiated.
  • the application layer QoS negotiation and the physical layer QoS negotiation are started in parallel.
  • the embodiment of the present invention adds an intermediate layer between the application layer and the physical layer of the network device, and the middle layer acts as a proxy between the service layer and the physical layer, and the physics
  • the layer abstraction is used by one port for the service layer, the physical layer can be invisible to the service layer, and the middle layer agent physical layer interacts with the service layer.
  • the source address and the destination address are sent to the intermediate layer when the application layer QoS negotiation is started, and the physical layer QoS negotiation is started in parallel.
  • An interface supporting multiple access modes is configured between the middle layer and the application layer.
  • the source address and the destination address are sent to the intermediate layer through the interface during application layer QoS negotiation.
  • Step 13 Acquire optimal path information from the source address to the destination address according to pre-collected network topology information and network resource occupancy;
  • the intermediate layer obtains the best path information required for physical layer QoS negotiation according to the source address and the destination address, and initiates physical layer QoS negotiation to perform application layer QoS negotiation and physical layer QoS negotiation in parallel to speed up service connection.
  • the path is selected in an attempted manner. For example, the path 1 is first tried. If the path 1 does not meet the physical layer QoS requirements, the path 2 is tried until a certain path satisfies the physical Layer QoS requirements.
  • the optimal path information is directly obtained by the intermediate layer, and the optimal path can meet the physical layer QoS requirement, and the physical layer QoS negotiation can be accelerated with respect to the successive attempts. process.
  • Step 15 Map the best path information to a corresponding port according to a protocol corresponding to the access mode of the physical layer, so that the port performs QoS negotiation.
  • the intermediate layer needs to know the access mode of the physical layer. For example, when the access mode of the physical layer is GE/FE, if the information of the WIFI protocol is received from the interface, the information of the WIFI protocol needs to be mapped into The GE/FE protocol information is sent through the physical layer port.
  • the physical layer QoS negotiation is started in parallel at the application layer QoS negotiation, and the optimal path information is directly obtained during the physical layer QoS negotiation, so that the speed of QoS negotiation can be accelerated, and the service connection speed is accelerated.
  • the application layer is responsible for QoS negotiation and widely adopts two protocols: Session Initiation Protocol (SIP) and Universal Plug and Play (uPnP), both of which are based on IP. Protocol; Among them, SIP can be applied to the wide area network; uPnP can be applied to communication and service negotiation between terminals in the home network.
  • SIP Session Initiation Protocol
  • uPnP Universal Plug and Play
  • the cross-media network can include multiple access technologies such as WIFI technology, G.hn technology, home line-based interconnect technology (homePlug AV), and Multimedia over Coax Alliance (MOCA). Both have a time division multiplexing mechanism and corresponding protocols.
  • the following embodiments will describe how to combine application layer QoS negotiation with physical layer QoS negotiation mechanisms.
  • the embodiments of the present invention relate to three types of network elements: a terminal, a bridge device, and a home gateway. Each network element supports a topology management protocol, such as 802.1AB, uPnP, and the like.
  • FIG. 2 is a schematic diagram of a system architecture provided by an embodiment of the present invention.
  • an endpoint, a relay point, and an arbitration point may be included.
  • the endpoint may be a terminal device;
  • the relay point may be a bridge device, such as a WIFI repeater, a G.hn adapter, a G.hn bridge, etc.;
  • the arbitration point may be a home gateway or the like.
  • the relationship between the endpoint, the relay point, and the arbitration point may be: The endpoint communicates with the relay point wirelessly, and the relay point communicates with the arbitration point by wire; the endpoint communicates with the relay point by wire, and the relay point passes The wired mode communicates with the arbitration point; the endpoint directly communicates with the arbitration point wirelessly; or, the endpoint communicates directly with the arbitration point by wire.
  • a cross-media intermediate layer is added between the application layer and the physical layer of the network element.
  • the middle layer can abstract the networks corresponding to different physical layers into different ports to provide to the business layer to achieve cross-media.
  • the physical layer may be accessed by using an access mode such as WIFI, G.hn, or FE/GE.
  • an intermediate layer of an endpoint may include a flow mapping module 300, a path selection module 302, and a flow establishing module 304, and may also include an explicit stream resource reservation protocol.
  • the application layer and the physical layer of the endpoint communicating with the middle layer are also shown in FIG. 3, and the physical layer can be accessed by using WIFI, G.hn or FE/GE.
  • the flow mapping module 300 is configured to receive, by using an interface supporting multiple access modes, a flow establishment request message of an application layer, extract a destination address and a source address in the flow establishment request message, and notify the path selection module 302 to select a source address to a destination address. Best path;
  • the flow mapping module 300 is further configured to check whether the local link bandwidth is sufficient according to the optimal path, implement the flow mapping from the application layer to the physical layer, and notify the flow establishing module 304 to start the flow negotiation of the physical layer; after the flow is successfully established or failed, The result informs the application layer;
  • the path selection module 302 is configured to discover network topology information of the entire Layer 2 network through the 802.1AB, and calculate and maintain an optimal path from the source address to the destination address.
  • the path selection module 302 can also directly negotiate with the arbitration point to obtain the best path information.
  • the flow establishing module 304 is configured to initiate physical layer QoS negotiation according to the best path information. It can also be used to notify the path when the network topology changes.
  • the selection module 302 recalculates the route and is able to switch to the alternate path;
  • the implicit SRP module 306 does not implement the SRP protocol and directly carries the information of the best path to initiate physical layer QoS negotiation.
  • the explicit SRP module 308 implements the SRP protocol and carries the information of the best path to initiate physical layer QoS negotiation.
  • the intermediate layer of the relay point includes a flow establishing module 400 and a path selecting module 402, and may further include an explicit SRP module 406 and an implicit SRP module. 404 and so on.
  • the physical layer in the relay point that communicates with the intermediate layer is also shown in FIG. 4, and the physical layer can be accessed by using WIFI, G.hn or FE/GE.
  • the flow establishing module 400 carries the information of the best path, initiates physical layer QoS negotiation; when the topology changes, the notification path selecting module 402 recalculates the route, and can switch to the computing standby path;
  • the implicit SRP module 404 does not implement the SRP protocol, directly carries the information of the best path, and initiates physical layer QoS negotiation;
  • the explicit SRP module 406 implements the SRP protocol, carries the information of the best path, and initiates physical layer QoS negotiation.
  • the arbitration point can be basically the same as the functional structure of the endpoint. The difference is that the path selection module of the arbitration point can count the resource occupancy of the entire home network according to all flows, so as to calculate the backup route more accurately.
  • FIG. 5 is a schematic structural diagram of path information according to an embodiment of the present invention, see FIG. 5, a complete path.
  • Information 500 has three main components: an application layer flow ID, an application layer flow QoS parameter, and a path list, where:
  • Application layer stream ID is the association identifier between the application layer and the middle layer. It can simplify the interface between the application layer and the middle layer. The identifier is also used as the index passed by the middle layer.
  • the QoS parameters of the application layer flow are: a set of parameters describing the application layer flow, the source MAC address, the destination MAC address, the service type, the priority, the receiving bandwidth requirement (maximum, minimum, and guaranteed bandwidth parameters, etc.), the transmission bandwidth requirement, etc.
  • Layer QoS parameters which can also support three layers of QoS parameters such as source IP address, destination IP address, and service type (TOS);
  • Path list Describes the device identification number, interface identification number, connection identification number (including the direction of connection), source node identifier, destination node identifier, and QoS negotiation success flag (including receiving and sending) of each hop that constitutes the forwarding path.
  • Information such as the link status, where the node identifier includes, but is not limited to, the MAC address of the device itself, the protocol supported by the interface of the device, the defined device ID, and the like.
  • FIG. 6 is a flowchart of a method according to a second embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a network system corresponding to a second embodiment of the present invention.
  • the WIFI terminal uses a wireless protocol to access the WIFI repeater
  • the WIFI repeater uses the G.hn mode to access the home gateway.
  • the user accesses the video on demand server located on the Internet by using the SIP client in the WIFI terminal.
  • the home network uses a private network address and needs to be translated at the home gateway, it is necessary to integrate the SIP repeater function in the home gateway to assist the SIP terminal located in the private network to connect to the Internet.
  • the SIP client in the WIFI terminal performs application layer QoS negotiation with the SIP repeater in the home gateway, and then the application layer QoS negotiation is performed by the SIP repeater in the home gateway and the video on demand server.
  • the SIP client initiates the physical layer QoS negotiation in the process of initiating the application layer QoS negotiation, so that the SIP client considers the service when both the application layer QoS negotiation and the physical layer QoS negotiation are successful.
  • the QoS negotiation is successful and can be connected to the service normally. Referring to FIG. 6, the method of this embodiment includes:
  • Step 601 The WIFI terminal and the home gateway perform topology collection.
  • the middle layer among them collects the network topology information, identifies the topology information of the entire home network, and monitors the topology information.
  • the path selection module of the middle layer starts the topology collection function, identifies topology information of the entire home network, and detects topology changes of the home network.
  • Step 602 The WIFI terminal and the home gateway initiate service layer QoS negotiation and SIP-based application layer QoS negotiation.
  • the SIP client of the WIFI terminal initiates service layer QoS negotiation, thereby triggering SIP-based application layer QoS negotiation with the home gateway, and triggering physical layer QoS negotiation.
  • the QoS negotiation of the service layer and the QoS negotiation of the application layer may be implemented by using the prior art, which is not described in detail in the embodiment of the present invention.
  • the physical layer QoS negotiation is triggered at the same time as the application layer QoS negotiation.
  • For the specific physical layer QoS negotiation process refer to the following steps.
  • Step 603 The WIFI terminal sends a physical layer connection establishment request message carrying the path information to the WIFI repeater.
  • the application layer of the WIFI terminal after receiving the request of the SIP client, the application layer of the WIFI terminal sends a flow establishment request to the middle layer, and the middle layer obtains the source address and the destination address in the flow establishment request, and calculates the slave source according to the network topology information and the resource occupation situation.
  • the best path information from the address to the destination address is selected from the physical layer according to the next hop node information in the best path information, and the physical layer connection establishment request message carrying the path information is sent to the WIFI repeater.
  • the processing process of the middle layer of the WIFI terminal may be specifically as follows:
  • the flow mapping module After receiving the flow establishment request, the flow mapping module identifies the source address and the destination address in the flow establishment request, and requests the path selection module to calculate the optimal path.
  • the path selection module calculates an optimal path of the flow according to the source address, the destination address, and the resource occupancy of the local interface and the network.
  • the flow mapping module notifies the flow establishment module together with the flow establishment request and the path list of the optimal path, the application layer flow ID, and the QoS parameters of the application layer flow.
  • the flow establishing module implements the conversion of the QoS parameters of the application layer stream to the QoS parameters of the physical layer according to the corresponding interface of the best path, such as a WIFI interface (how to convert, and those skilled in the art should know).
  • the physical layer QoS negotiation is initiated according to the physical layer QoS negotiation protocol of the interface, that is, the physical layer connection establishment request message carrying the best path is sent to the WIFI relay, and the physical layer connection establishment request message may be a request for adding a time slot. Message ( MIME — ADDTS. request ).
  • the carrying path information may be implemented by extending the existing field content.
  • the information element may be extended to carry the path information, where the path information includes the application layer stream ID and the QoS of the application layer stream.
  • the parameters and path list refer to Table 1-3 for the contents of the path information.
  • Table 1 shows the structure of the application layer flow ID.
  • Table 2 shows the structure of the application layer flow QoS parameters.
  • Table 3 shows the path list. Schematic diagram of the structure.
  • the physical layer of the WIFI repeater After receiving the physical layer connection establishment request message, the physical layer of the WIFI repeater completes the adding time slot processing according to the existing protocol, and then notifies the WIFI repeater of the path information carried by the message together with the result of the time slot addition.
  • the flow establishment module responds to the acknowledgment message according to the existing protocol, and the acknowledgment message may be a confirmation message for adding a time slot (MIME_ADDTS.Confirm).
  • Step 605 The WIFI repeater determines whether it is the last node of the path. If not, it executes step 606; if yes, it processes according to the processing flow after the home gateway determines that it is the last node of the path.
  • the stream establishment module of the WiFi repeater analyzes the path information to determine whether it is the last node located in the path.
  • Step 606 The WIFI repeater sends a connection connection request to the home gateway to carry the path information.
  • Step 607 The home gateway returns a connection establishment response message to the WIFI repeater.
  • Step 608 The WIFI repeater sends a connection admission request to the home gateway.
  • Step 609 The home gateway returns a connection admission response message to the WIFI repeater.
  • the WIFI repeater updates the corresponding information item of the path information corresponding to the WIFI repeater according to the flow identifier, the slot negotiation state, and the current link state (such as whether activation, line bandwidth, and the like) corresponding to the time slot, and
  • an interface such as a G.hn interface, initiates physical layer QOS negotiation, and may send a connection establishment request (FL_EuropeateFlow.req) and a connection admission request (FL) through the interface. — AdmitFlow.req ).
  • the content of the existing message may be extended to carry the path information as shown in step 603, or the message may be added to carry the path information.
  • the newly added management message may be a general message or a structure similar to the existing management message, to include a message structure content similar to the management message, for example, new
  • the added management message is similar to the connection establishment request message, and the newly added management message needs to include the message structure content included in the connection establishment request message.
  • the message structure must have a device identifier, Stream IDs and connection IDs, and maintain consistency with the corresponding connections to distinguish and locate problems.
  • Table 4 is a schematic diagram of the structure of the newly added message.
  • Table 5 is a schematic diagram of the structure of the QoS parameters characterization of the application layer flow in the newly added message.
  • Table 6 is a schematic diagram of the structure of the characterization path list in the newly added message, and
  • Table 7 is a schematic diagram of the characterization path list. Schematic diagram of the relevant parameters in the middle. Where "N" is the number of streams.
  • connection is bidirectional, send or end; and negotiated status link status 4 network work or failure
  • the home gateway simultaneously acts as the last node of the flow and the primary management device of the wired access mode G.hn, and processes the received message according to the existing G.9962 protocol, which may be the physical layer of the home gateway.
  • the path information carried by the message and the result of the connection establishment notify the flow establishment module of the home gateway and respond to the connection establishment confirmation message (FL_OriginateFlow.cnf) and the connection acceptance confirmation message (FL_AdmitFlow.cnf) according to the existing protocol; 610:
  • the home gateway determines whether to accept the connection according to the resource occupancy of the home network.
  • the middle layer processing process of the home network includes:
  • the flow establishing module analyzes the path information carried by the message or the new management message, and updates the corresponding information of the path information corresponding to the home gateway according to the flow identifier, the connection negotiation state, and the current link state (such as whether activation, line bandwidth, etc.) corresponding to the connection. Then, it is judged whether it is located at the last node of the path, and then informs the local flow mapping module to send a flow establishment response to the application layer, and notifies the path selection module to update the resource occupation of the network topology according to the flow establishment state. After receiving the connection admission request, the home gateway can determine whether to accept the connection according to the resource occupancy.
  • Step 611 The home gateway sends a connection establishment prompt message to the WIFI repeater, carrying the path information from
  • Step 612 The WIFI repeater determines whether it is the last node of the path. If not, step 613 is performed. If yes, the WIFI terminal determines that the processing process is the last node of the path.
  • the physical layer of the WIFI repeater After receiving the connection establishment and connection acknowledgement message of the G.hn interface, the physical layer of the WIFI repeater notifies the flow establishment module of the WIFI repeater along with the path information carried by the message; The flow establishing module analyzes whether it is located at the last node of the path. Step 613: The WIFI repeater sends a time slot prompt to the WIFI terminal to carry the updated path information.
  • the WIFI repeater updates the path information according to the latest interface state of the node and according to the road
  • the next hop of the path information informs the physical layer to send a status prompt (MIME_ADDTS. Indication) to the WIFI terminal.
  • MIME_ADDTS. Indication a status prompt
  • Step 614 The WIFI terminal and the home gateway start or end the service connection process according to the QoS negotiation result.
  • the physical layer of the WIFI terminal after receiving the status prompt message of adding the time slot, notifies the flow establishment module of the WIFI terminal with the path information carried in the message together with the latest result of adding the time slot; the flow establishment module analyzes whether it is located or not The source node of the path, the notification flow mapping module sends a flow establishment response to the application layer, and the notification path selection module updates the resource occupation of the network topology according to the flow establishment state.
  • the WIFI terminal can learn the physical layer QoS negotiation result.
  • the home gateway can learn the physical layer QoS negotiation result.
  • the WIFI terminal and the home gateway can learn the application layer QoS negotiation result according to the application layer QoS negotiation process.
  • the SIP terminal of the WIFI terminal and the SIP repeater on the home gateway know the result of the QoS negotiation; then, it is judged whether the QoS negotiation result is successful, and if successful, the connection process of the service session is started, and if it is unsuccessful, the service connection is terminated. That is, the WIFI terminal and the home gateway connect or disconnect the service session according to the QoS negotiation result.
  • FIG. 8 is a schematic flowchart of a method according to a third embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a network system corresponding to a third embodiment of the present invention.
  • the wireless part is used as a WIFI terminal to access the WIFI repeater
  • the wired part is a WIFI repeater
  • the G.hn mode is used to access the home gateway
  • the computer is wired to access the home gateway through the G.hn adapter as an example.
  • the WIFI terminal obtains data from the computer as an example, and thus the two endpoints are: a WIFI terminal and a computer.
  • a user uses a handheld smart device, such as a smart phone, to play a video stored on a computer.
  • the smart device discovers and negotiates the QoS channel from the smart device to the computer through the uPnP protocol, and then continuously plays the corresponding video content.
  • Step 801 The WIFI terminal, the computer, and the home gateway perform topology collection.
  • the path selection module among them starts the topology collection function, identifies the topology of the entire home network, and detects the topology change of the network;
  • Step 802 The WIFI terminal and the computer start the service QoS negotiation and the application layer QoS negotiation based on uPnP.
  • the uPnP of the terminal initiates the service layer QoS negotiation, thereby triggering the application layer QoS negotiation with the uPnP of the computer, and triggering the QoS negotiation of the physical layer;
  • QoS negotiation and application layer QoS negotiation can be implemented by using the prior art, and details are not described herein again.
  • the flow mapping module of the WIFI terminal receives the flow establishment request sent by the application layer, and the flow mapping module identifies the source address of the WiFi terminal and the destination address of the computer to request the path selection module to calculate the optimal path.
  • the path selection module calculates an optimal path of the flow according to the source address of the WIFI terminal and the destination address of the computer and the resource occupancy of the local interface and the network; the flow mapping module combines the flow establishment request with the path information, the application layer flow ID, and Applying the QoS parameters of the layer flow together, notifying the flow establishing module;
  • the physical layer QoS negotiation process is similar to that of the second embodiment. The difference is that the computer and the G.hn adapter are directly connected to the network.
  • the SRP protocol is used for resource negotiation and the 802.11 extension mode is used to carry the path information.
  • the WiFi terminal and the computer both know the result of the physical layer QoS negotiation, and the WIFI terminal directly informs the path information of the home gateway. For example, through the SRP protocol resource reservation prompt message, the home gateway can recalculate the resource occupancy of the home network according to the path information. Then, the WIFI terminal and the computer determine whether the QoS negotiation result of the physical layer is successful. If the application layer QoS negotiation succeeds at the same time, the service QoS negotiation function starts the connection process of the service session.
  • Steps 803-805 Corresponding to steps 603-605.
  • Step 806 The WIFI repeater sends a connection establishment request to the G.hn adapter, where the path is carried. Information.
  • Step 807 The G.hn adapter returns a connection establishment response to the WIFI repeater.
  • Step 808 The WIFI repeater sends a connection admission request to the home gateway.
  • Step 809 The home gateway returns a connection admission response to the WIFI repeater.
  • Step 810 The G.hn adapter determines whether it is the last node of the path. If not, perform the steps.
  • the G.hn adapter determines the processing flow when it is the last node according to the home gateway.
  • Step 811 The G.hn adapter sends a physical layer connection establishment request message (for example, a resource reservation request message) of the G.hn adapter to the computer, where the path information is carried.
  • a physical layer connection establishment request message for example, a resource reservation request message
  • Step 812 The computer sends a resource reservation response message to the G.hn adapter.
  • Step 813 The computer determines whether it is the last node of the path. If yes, step 814 is executed, and no, it is determined by the WIFI repeater that the processing flow is not the last node.
  • Step 814 The computer returns a resource reservation prompt to the G.hn adapter, carrying the update path information.
  • Step 815 The G.hn adapter determines whether it is the last node of the path. If not, go to step 816. Otherwise, follow the process flow when the home gateway determines that it is the last node.
  • Step 816 The G.hn adapter returns a connection prompt to the WIFI repeater, carrying the path information.
  • Step 818 The WIFI repeater sends a time slot prompt to the WIFI terminal to carry the updated path information.
  • Step 819 The WIFI terminal sends a resource reservation prompt message to the home gateway, and carries the updated path information.
  • Step 820 According to the QoS negotiation result, the WIFI terminal and the computer start or end the service connection process.
  • FIG. 10 is a schematic flowchart of a method according to a fourth embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a network system corresponding to a fourth embodiment of the present invention.
  • the wireless part is connected to the WIFI terminal.
  • a WIFI repeater, and the WIFI terminal wirelessly accesses the home gateway, and the wired part is a WIFI repeater that uses the G.hn mode to access the home gateway as an example.
  • the home network integrated AP function can provide wireless coverage for the terminal of the entire home, but only the wireless interference caused by the wall of the room has a large fading and the wireless interference caused by the neighbor can only provide Limited bandwidth to a limited number of users.
  • WIFI repeaters utilize G.hn wired interconnects to provide better wireless connectivity. Therefore, the WIFI terminal can access the home gateway through the WIFI repeater and the wired mode as a preferred path, and the WIFI terminal directly accesses the home gateway as an alternative path by wireless. This embodiment describes switching from a preferred path to an alternate path.
  • this embodiment includes:
  • Step 1001 The WIFI terminal and the home gateway initiate a service connection process according to the QoS negotiation result.
  • the WIFI terminal and the home gateway initiate a service connection process according to the result of the QoS negotiation, and the physical layer forwards the corresponding flow according to the path information.
  • Step 1002 After the wired interconnection channel between the WIFI repeater and the home gateway fails, the WIFI repeater sends a time slot prompt message to the WIFI terminal, where the indication information of the update path information is carried. Also, the WIFI repeater and the home gateway buffer the message.
  • the WIFI repeater when the WIFI repeater detects that the G.hn wired interconnection channel is faulty, the WIFI repeater changes the link state in the next hop path item of the device in the path information to a fault, by adding a time slot.
  • the prompt sends the indication information of the update path information to the WIFI terminal and caches the packet that fails to be forwarded; at the same time, the home gateway detects the same fault and caches the failed packet.
  • Step 1003 The WIFI terminal recalculates the best path.
  • the physical layer of the WIFI terminal receives the indication information of the update path information, and sends the indication information to the flow establishment module, and the flow establishment module determines the path failure module after the path failure of the WIFI repeater and the home gateway according to the indication information of the update path information;
  • the path selection module recalculates the best path, if If yes, the notification flow establishing module re-establishes the path according to the new path information, otherwise the notification flow establishing module cannot find the backup path, and the flow establishing module notifies the flow mapping module that the path is faulty, and the flow mapping module notifies the application layer, so that the application layer It can be known that the path exception informs the business layer to do the corresponding processing.
  • the new optimal path can be performed with reference to the foregoing embodiment.
  • Step 1004 The WIFI terminal sends an add slot request message to the home gateway, and carries the updated path information.
  • Step 1005 The home gateway returns a time slot response message to the WIFI terminal, and carries the updated path information.
  • Step 1006 The WIFI terminal and the home gateway switch to the new path according to the QoS negotiation result, and connect the service session according to the new path.
  • Step 1007 The WIFI terminal sends a delete time slot request message to the WIFI repeater, and carries the updated path information.
  • Step 1008 The WIFI repeater sends a delete time slot response message to the WIFI terminal.
  • Step 1009 The WIFI repeater and the home gateway forward the buffered packet according to the new path.
  • the WIFI terminal After the new path is established, the WIFI terminal notifies the WIFI repeater that the new path has been established by deleting the time slot request (MIME_DELTS.request), and the WIFI repeater uses the opposite message to cache the packet.
  • the direction is sent to the nearest node.
  • the nearest node is a WIFI terminal; and the WIFI terminal re-transfers the 4 ⁇ message.
  • the WIFI terminal can know the change of the network status through the timed topology collection or the active topology change message of the network node, actively re-find the best path, and then heavy Repeat steps 1003 to 1009 of the above process to achieve the effect of fault recovery.
  • the physical layer QoS negotiation is started at the application layer QoS negotiation, and the optimal path information is directly obtained during the physical layer QoS negotiation, so that the speed of QoS negotiation can be accelerated, and the service connection speed is accelerated.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

跨媒介网络中的 QoS协商方法和系统及网络设备 技术领域
本发明涉及网络通信技术, 尤其涉及一种跨媒介网络中的服务质量 ( Quality of Service , QoS )协商方法和系统及网络设备。 背景技术
随着网络上开展的业务越来越丰富, 人们可以通过网络进行看视频、 社 交购物、 转账、 拍卖等日常生活行为, 使得网络与人的日常生活的结合越来 越紧密。 这些推动人们逐步在家庭内部构建一个网络, 方便人们在家庭内随 处可以接入到因特网上, 称之为家庭网络。
无线保真( Wireless Fidelity, WIFI ) 网络由于它不需要布线以及配置简 单, 成为家庭网络部署的首选。 一般架设无线网络的基本配备就是无线网卡 及一台接入点 (Access Point, AP ), 如此便能以无线的模式, 配合既有的有 线架构来分享网络资源, 架设费用和复杂程度远远低于传统的有线网络。 AP 主要在媒体访问控制 (Media Access Control, MAC ) 中扮演无线工作站及有 线局域网络的桥梁, 可以称为无线访问节点或者桥接器。 除了无线技术, 电 力线通信、 同轴通信等有线通信技术也采用类似的网络架构, 通过网络适配 器和网络协调器接入家庭网关中, 连接到运营商的宽带网络中。 这样, 用户 可以通过有线、 无线或者两者的网络接入到运营商的宽带网络中。
随着网络电视 ( Internet Protocol Television , IPTV )技术的成熟, 运营商 正在尝试把视频传送也承载到国际互联网之上, 这样家庭网络作为 IP的最后 一段, 也要具备承载视频的能力。 视频业务相对于其他互联网业务的最大不 同之处在于 QoS, 其要求带宽大、 持续时间长、 可靠性要求高。 但是, 由于 家庭网络将是无线网络和有线网络的结合体, 网络拓朴复杂而其具备不确定 性, 因此跨媒介的 QoS协商是一个十分复杂和困难的问题。 发明内容 本发明实施例提供了一种跨媒介网络中的 QoS协商方法, 包括: 通过支持多种接入方式的接口接收来自应用层的源地址和目的地址; 根据预先收集的网络拓朴信息以及网络资源占用情况获取从所述源地址 到所述目的地址的最佳路径信息;
按照与物理层的接入方式相对应的协议将所述最佳路径信息映射到相应 的端口, 以使得所述端口进行 QoS协商。 本发明实施例提供了一种网络设备, 包括: 流映射模块, 用于通过支持多种接入方式的接口接收来自应用层的源地 址和目的地址; 路径选择模块, 用于根据网络拓朴信息以及网络资源占用情况获取从所 述源地址到所述目的地址的最佳路径信息 , 将所述最佳路径信息发送给所述 流映射模块, 以使得所述流映射模块按照与物理层的接入方式相对应的协议 对所述最佳路径信息进行映射;
流建立模块, 用于通过物理层相应的端口进行 Λ良务质量 QoS协商。 本发明实施例提供了一种跨媒介网络中的 QoS协商系统, 包括应用层、 中间层和物理层; 所述应用层, 用于通过支持多种接入方式的接口向所述中间层发送源地 址和目的地址; 所述中间层, 用于根据网络拓朴信息以及网络资源占用情况获取从所述 源地址到所述目的地址的最佳路径信息, 按照与物理层的接入方式相对应的 协议将所述最佳路径信息映射到物理层相应的端口;
所述物理层, 用于通过所述端口进行 QoS协商。 由上述技术方案可知, 本发明实施例通过在应用层 QoS协商时同时启动 物理层 QoS协商, 可以加快 QoS协商的进程, 并且, 根据最佳路径的路径信 息进行物理层 QoS协商可以进一步加快 QoS协商的进程,进而提高业务的接 续速度。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例所提供的方法的流程图;
图 2为本发明实施例所提供的系统架构的示意图;
图 3为本发明实施例中的端点的结构示意图;
图 4为本发明实施例中的中继点的结构示意图;
图 5为本发明实施例中路径信息的结构示意图;
图 6为本发明第二实施例所提供的方法的流程图;
图 7为本发明第二实施例对应的网络系统结构示意图。
图 8为本发明第三实施例所提供的方法流程示意图;
图 9为本发明第三实施例对应的网络系统结构示意图;
图 10为本发明第四实施例所提供的方法流程示意图;
图 1 1为本发明第四实施例对应的网络系统结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
对于混合组网的网络, 接入方式可能会有多种, 比如 WIFI、 G.hn或者 FE/GE等, 这样网络设备为了能在混合网络中兼容, 就需要实现多种接入方 式, 下面将这种网络称之为跨媒介网络。
在跨媒介网络中, 网络设备就需要在应用层与物理层之间设置多种接口, 在物理层也需要分别设置与多种接口对应的端口, 比如网络设备要同时支持 WIFL G.hn或者 FE/GE三种接入方式的网络,则应用层和物理层之间就需要 设置三种接口, 分别对应上述三种接入方式, 每种接口还需要在物理层单独 设置端口, 这样会导致资源的浪费。
图 1为本发明第一实施例所提供的方法的流程图, 该方法包括: 步骤 11 : 通过支持多种接入方式的接口接收来自应用层的源地址和目的 地址;
例如, 当用户点播视频时, WIFI终端会启动业务层 QoS协商, 在业务层 QoS协商之后, 会启动应用层 QoS协商。
现有技术中, 在应用层 QoS协商之后会再进行物理层 QoS协商。
而在本发明实施例中, 在业务层 QoS协商后, 并列启动应用层 QoS协商 和物理层 QoS协商。
为达到并列启动应用层 QoS协商和物理层 QoS协商的目的,本发明实施 例在网络设备的应用层和物理层中间增加一个中间层, 中间层充当业务层和 物理层之间的代理, 将物理层抽象为一个端口供业务层使用, 物理层可以对 业务层不可见, 由中间层代理物理层与业务层进行交互。
本发明实施例在启动应用层 QoS协商时将源地址和目的地址发送给中间 层, 以并列启动物理层 QoS协商。
中间层和应用层之间设置有支持多种接入方式的接口, 在应用层 QoS协 商时将源地址和目的地址通过该接口发送给中间层。 步骤 13: 根据预先收集的网络拓朴信息以及网络资源占用情况获取从所 述源地址到所述目的地址的最佳路径信息;
中间层根据源地址和目的地址获取物理层 QoS协商时所需的最佳路径信 息并启动物理层 QoS协商, 以并列进行应用层 QoS协商和物理层 QoS协商, 加快业务接续速度。
另外, 现有技术中在物理层 QoS协商时, 会采用尝试的方式选择路径, 例如, 首先尝试路径 1 , 如果该路径 1不满足物理层 QoS要求, 则尝试路径 2, 直至某条路径满足物理层 QoS要求。
而在本发明实施例中, 在物理层 QoS协商时, 直接由中间层获取最佳路 径信息, 该最佳路径可以满足物理层 QoS要求, 相对于逐次尝试的方式, 可 以加速物理层 QoS协商的过程。
步骤 15: 按照与物理层的接入方式相对应的协议将所述最佳路径信息映 射到相应的端口, 以使得所述端口进行 QoS协商。
本实施例中, 中间层需要知道物理层的接入方式, 如物理层的接入方式 为 GE/FE时,如果从接口收到的是 WIFI协议的信息时, 需要将 WIFI协议的 信息映射成 GE/FE协议的信息, 通过物理层的端口发送。
本实施例通过在应用层 QoS协商的并列启动物理层 QoS协商,并且在物 理层 QoS协商时直接获取最佳路径信息, 可以加快 QoS协商的速度, 进而实 现业务接续速度的加快。
本发明实施例中, 应用层负责 QoS协商广泛采用两种协议: 会话建立协 议 ( Session Initiation Protocol, SIP )和即插即用协议 ( Universal Plug and Play, uPnP ) , 这两种协议都是基于 IP协议的; 其中, SIP可以应用在广域网上; uPnP可以应用在家庭网络的终端之间通信和业务协商等。
跨媒介网络可以包括多种接入技术, 例如 WIFI技术、 G.hn技术、 基于 电力线的互连技术(homePlug AV ) 、 基于同轴的互连技术( Multimedia over Coax Alliance, MOCA )等, 这些技术都具备时分复用的机制及相应的协议。 以下实施例将描述如何将应用层 QoS协商与物理层 QoS协商机制结合起 来。 本发明实施例涉及到终端、 桥设备和家庭网关三种网元, 每种网元都支 持拓朴管理协议, 例如 802.1AB、 uPnP等。
图 2为本发明实施例所提供的系统架构的示意图, 参见图 2, 可以包括 端点、 中继点和仲裁点。 其中, 端点可以是终端设备; 中继点可以是桥设备, 如 WIFI中继器、 G.hn适配器、 G.hn桥接器等; 仲裁点可以是家庭网关等。
端点、 中继点、 仲裁点之间的关系可以是: 端点通过无线方式与中继点 通信, 中继点通过有线方式与仲裁点通信; 端点通过有线方式与中继点通信, 中继点通过有线方式与仲裁点通信; 端点直接通过无线方式与仲裁点通信; 或者, 端点直接通过有线方式与仲裁点通信。
本发明实施例提供的 QoS协商方法, 在网元的应用层和物理层之间增设 了一个跨媒介的中间层。 中间层可以将不同的物理层对应的网络抽象为不同 的端口以提供给业务层, 以实现跨媒介。
在本发明实施例中, 物理层可以采用 WIFI、 G.hn或者 FE/GE等接入方 式接入。
图 3为本发明实施例中的端点的结构示意图, 参见图 3, 端点的中间层 可以包括流映射模块 300、路径选择模块 302和流建立模块 304, 还可以包括 显式流资源预留协议( Stream Reservation Protocol, SRP )模块 308和隐式 SRP 模块 306等。 图 3中还示出了端点中与中间层通信的应用层及物理层, 物理 层可以采用 WIFI、 G.hn或者 FE/GE方式接入。
流映射模块 300, 用于通过支持多种接入方式的接口接收应用层的流建 立请求消息, 提取流建立请求消息中的目的地址和源地址, 通知路径选择模 块 302选择从源地址到目的地址的最佳路径;
流映射模块 300还用于根据最佳路径检查本地链路带宽是否足够, 实现 应用层到物理层的流映射, 通知流建立模块 304启动物理层的流协商; 在流 建立成功或失败后, 将结果通知应用层; 路径选择模块 302, 用于通过 802.1AB发现整个二层网络的网络拓朴信 息, 计算并维护从源地址到目的地址之间的最佳路径;
路径选择模块 302也可以直接和仲裁点进行协商获取最佳路径信息; 流建立模块 304, 用于根据最佳路径信息发起物理层 QoS协商; 还可以 用于在网络拓朴发生变化时, 通知路径选择模块 302重新计算路由, 并能够 切换到备用路径;
隐式 SRP模块 306, 不实现 SRP协议, 直接携带最佳路径的信息, 发起 物理层 QoS协商;
显式 SRP模块 308, 实现 SRP协议, 同时携带最佳路径的信息, 发起物 理层 QoS协商。
图 4为本发明实施例中的中继点的结构示意图, 参见图 4, 中继点的中 间层包含流建立模块 400、路径选择模块 402, 还可以包括显式 SRP模块 406 和隐式 SRP模块 404等。 另外, 图 4中还示出了中继点中与中间层通信的物 理层, 物理层可以采用 WIFI、 G.hn或者 FE/GE方式接入。
流建立模块 400: 携带最佳路径的信息, 发起物理层 QoS协商; 当拓朴 发生变化时, 通知路径选择模块 402重新计算路由, 并能够切换到计算备用 路径;
隐式 SRP模块 404: 不实现 SRP协议, 直接携带最佳路径的信息, 发起 物理层 QoS协商;
显式 SRP模块 406: 实现 SRP协议, 同时携带最佳路径的信息, 发起物 理层 QoS协商。
仲裁点在结构上可以与端点的功能结构基本一样, 不同之处在于仲裁点 的路径选择模块能够根据所有流统计整个家庭网络的资源占用情况, 以便更 准确地计算备份路由。
路径信息的定义:
图 5为本发明实施例中路径信息的结构示意图, 参见图 5 , 完整的路径 信息 500有三个主要部分: 应用层流 ID、 应用层流的 QoS参数和路径列表, 其中:
应用层流 ID: 是应用层和中间层之间的关联标识符, 可以简化应用层和 中间层的接口, 该标识符也同时作为中间层传递的索引;
应用层流的 QoS参数: 是描述应用层流的一组参数, 源 MAC地址、 目 的 MAC地址、 业务类型、 优先级、 接收带宽需求(最大、 最小和保证带宽 参数等) , 发送带宽需求等二层 QoS参数, 还可以支持源 IP地址、 目的 IP 地址、 服务类型 (TOS )等三层 QoS参数;
路径列表: 描述了组成转发路径的每一跳的设备标识号、 接口标识号、 连接标识号 (包含连接的方向) 、 源节点标识、 目的节点标识、 QoS协商成 功标志 (包含接收和发送) 、 链路状态等信息; 其中, 节点标识, 包含但不 限于设备本身的 MAC地址,该设备的接口所支持的协议、定义的设备 ID等。
基于上述的描述, 结合不同的应用场景, 可以实现如下的实施例。
图 6为本发明第二实施例所提供的方法的流程图, 图 7为本发明第二实 施例对应的网络系统结构示意图。 本实施例中 WIFI 终端采用无线协议接入 WIFI中继器, WIFI中继器采用 G.hn方式接入家庭网关。 以基于 SIP协议的 视频点播为例, 用户利用 WIFI终端中的 SIP客户端访问位于国际互联网的 视频点播服务器。 因为家庭网络使用的是私网地址, 需要在家庭网关做地址 转换, 因此需要在家庭网关中集成 SIP中继器功能, 协助位于私网的 SIP终 端连接到国际互联网中。
本发明实施例中, WIFI终端中的 SIP客户端与家庭网关中的 SIP中继器 进行应用层 QoS协商, 再由家庭网关中的 SIP中继器与视频点播服务器进行 应用层 QoS协商。
为了减少 QoS协商的时延, 本发明实施例中 SIP客户端发起应用层 QoS 协商的过程中同时发起物理层 QoS协商,这样 SIP客户端在应用层 QoS协商 和物理层 QoS协商都成功时认为业务 QoS协商是成功的,可以正常接续业务。 参见图 6, 本实施例方法包括:
步骤 601 : WIFI终端和家庭网关进行拓朴收集。
当 WIFI终端和家庭网关启动后, 它们中的中间层收集网络拓朴信息,识 别整个家庭网络的拓朴信息并对该拓朴信息进行监控。
具体地, 中间层的路径选择模块启动拓朴收集功能, 识别整个家庭网络 的拓朴信息并侦测该家庭网络的拓朴变化。
步骤 602: WIFI终端和家庭网关启动业务层 QoS协商及基于 SIP的应用 层 QoS协商。
具体地, 当用户点播视频时, WIFI终端的 SIP客户端启动业务层 QoS 协商, 从而触发与家庭网关的基于 SIP的应用层 QoS协商, 同时触发物理层 QoS协商。其中,业务层 QoS协商和应用层 QoS协商可以采用现有技术实现, 本发明实施例不再赘述。
在应用层 QoS协商的同时, 触发物理层 QoS协商, 具体的物理层 QoS 协商过程可以参见如下步骤。
步骤 603: WIFI终端向 WIFI中继器发送携带路径信息的物理层连接建 立请求消息。
具体地, WIFI终端的应用层在接收到 SIP客户端的请求后向中间层发送 流建立请求, 中间层获取流建立请求中的源地址和目的地址, 根据网络拓朴 信息以及资源占用情况计算从源地址到目的地址的最佳路径信息, 根据最佳 路径信息中的下一跳节点信息从物理层选择对应接口,向 WIFI中继器发送携 带路径信息的物理层连接建立请求消息。
WIFI终端的中间层的处理过程可以具体为:
流映射模块收到流建立请求后, 识别出流建立请求中的源地址和目的地 址, 请求路径选择模块计算最佳路径。
路径选择模块根据该源地址、 目的地址以及本地接口和网络的资源占用 情况, 计算出该流的最佳路径。 流映射模块将流建立请求及最佳路径的路径列表、应用层流 ID和应用层 流的 QoS参数一起, 通知流建立模块。
流建立模块根据最佳路径的下一跳占用对应的接口,如 WIFI接口等, 实 现应用层流的 QoS参数到物理层 QoS参数的转换 (具体如何转换, 本领域普 通技术人员都应知悉) , 并根据该接口的物理层 QoS协商协议发起物理层的 QoS协商,即,向 WIFI中继器发送携带最佳路径的物理层连接建立请求消息, 物 理层 连接建立请求 消 息 可 以 是添加 时 隙 的 请求 消 息 ( MIME— ADDTS. request ) 。
其中, 携带路径信息可以通过扩展现有字段内容实现, 例如, 在 802.11 现有协议的基础上可以扩展信息项 ( Information Elements )来携带路径信息, 路径信息包括应用层流 ID、应用层流的 QoS参数和路径列表,路径信息中各 项的内容可以参见表 1-3所示, 表 1为应用层流 ID的结构示意图, 表 2为应 用层流的 QoS参数的结构示意图, 表 3为路径列表的结构示意图。
表 1
类型号 #1 长度 应用层流 ID 表 2
类型 长度 源 目的 业务 优先 接收 发送
号 #2 MAC MAC 类型 级 带宽 带宽
地址 地址 需求 需求 表 3
类型 长度 设备标 接口标 连接标 源标识 终标识 QoS协 链路 号 #3 识 识 识 商成功 状态 标识 步骤 604: WIFI中继器向 WIFI终端返回确认消息。
具体地, WIFI中继器的物理层收到物理层连接建立请求消息后, 按照现 有协议完成添加时隙处理, 之后, 将该消息携带的路径信息连同时隙添加的 结果通知 WIFI中继器的流建立模块并按照现有的协议回应确认消息,确认消 息可以是添加时隙的确认消息 ( MIME— ADDTS .Confirm ) 。
步骤 605: WIFI中继器判断自身是否是路径的末节点, 如果不是, 则执 行步骤 606; 如果是, 则按照如下家庭网关判断出自身为路径的末节点后的 处理流程进行处理。
具体地, WiFi中继器的流建立模块分析路径信息判断自己是否是位于路 径的最后一个节点。
步骤 606: WIFI中继器向家庭网关发送携带路径信息的建立连接请求消 自
步骤 607: 家庭网关向 WIFI中继器返回建立连接响应消息。
步骤 608: WIFI中继器向家庭网关发送连接接纳请求。
步骤 609: 家庭网关向 WIFI中继器返回连接接纳响应消息。
具体地, WIFI中继器根据该时隙对应的流标识、 时隙协商状态以及当前 的链路状态(如是否激活, 线路带宽等 )更新 WIFI中继器对应的路径信息的 相应信息项, 并根据路径信息的下一跳的设备标识和接口标识找到接口, 如 G.hn接口, 发起物理层 QOS 协商, 可以是通过该接口发送连接建立请求 ( FL— OriginateFlow.req )和连接接纳请求( FL— AdmitFlow.req ) 。
要携带路径信息可以如步骤 603所示对现有消息的内容进行扩展以携带 路径信息, 也可以增加消息以携带路径信息。 以新增的管理消息为例, 新增 的管理消息可以是一个通用的消息, 也可以采用与现有的管理消息类似的结 构, 以包含与之类似的管理消息的消息结构内容, 例如, 新增的管理消息与 连接建立请求消息类似, 则该新增的管理消息中需包含连接建立请求消息中 包含的消息结构内容。 无论哪种类型的管理消息, 消息结构都要有设备标识、 流标识和连接标识 , 并且要保持与相应连接的一致性 , 以便区分和定位问题。 表 4为新增的消息结构示意图,表 5为新增的消息中表征应用层流的 QoS 参数的结构示意图, 表 6为新增的消息中表征路径列表的结构示意图, 表 7 为表征路径列表中相关参数的结构示意图。 其中, "N" 为流的个数。
表 4
信息项 字节数 比特数 描述
设备标识符 0 [7:0] 流发起设备标识符 流标识符 1 [7:0] 由发起节点指定 流参数 2〜( N+1 ) [8*N-1:0] 见表 5
流的方向 变长 [7:0] 1 : 双向
0: 单向
目的 MAC地址 变长 [47:0] 双向流的反向的目的
MAC地址 流参数 2 变长 同流参数 双向流的反向的流参 数
流分类标识 变长 见表 7 双向流的反向的流分 类标识
隧道标识 变长 [7:0] 0x00: 直接流建立
0x01 : 通过中继点建立 目的标识 变长 [7:0] 隐藏的设备标识 路由表 变长 见表 6 到目的节点的路由表 应用层流 ID 变长 [7:0] 见表 5
应用层流的 QoS 变长 [7:0] 见表 6
参数
路径列表 变长 [7:0] 表 5
Figure imgf000015_0001
表 6
Figure imgf000015_0002
表 7
信息项 字节数 比特数 描述
设备标识 4 网
流标识 4 网
连接标识 4 网
源标识 1 1
终标识 1 1
QoS协商状态 4 [7:0] 连接是双向, 发送或结束; 及协商状态 链路状态 4 网 工作或故障 具体地, 家庭网关同时作为流的最后一个节点以及有线接入方式 G.hn的 主管理设备, 按照现有 G.9962协议规定对所接收到的消息进行处理, 可以是 家庭网关的物理层将该消息携带的路径信息和连接建立的结果通知家庭网关 的流建立模块并按照现有的协议回应连接建立的确认消 息 ( FL_OriginateFlow.cnf )和连接接纳的确认消息 ( FL— AdmitFlow.cnf ) ; 步骤 610: 家庭网关根据家庭网络的资源占用情况, 判断是否接纳该连 接。
具体的, 家庭网络的中间层处理过程包括:
流建立模块分析该消息或新管理消息携带的路径信息, 根据连接对应的 流标识、 连接协商状态以及当前的链路状态 (如是否激活, 线路带宽等) 更 新家庭网关对应的路径信息的相应信息项; 然后判断自己是否位于路径的最 后一个节点, 是则通知本地流映射模块向应用层发送流建立响应, 以及通知 路径选择模块根据流建立状态更新网络拓朴的资源占用情况。 在接收到连接 接纳请求后, 家庭网关可以根据资源占用情况, 判断是否接纳该连接。
步骤 611 : 家庭网关向 WIFI中继器发送建立连接提示消息, 携带路径信 自
步骤 612: WIFI中继器判断是否是路径的末节点, 如果不是, 执行步骤 613 , 如果是, 则按照如下 WIFI终端判断出自身为路径的末节点后的处理流 程进行处理。
具体地, WIFI中继器的物理层收到 G.hn接口的连接建立和连接接纳的 确认消息后,将该消息携带的路径信息连同时隙添加的结果通知 WIFI中继器 的流建立模块; 流建立模块分析判断自己是否位于路径的最后一个节点; 步骤 613: WIFI中继器向 WIFI终端发送添加时隙提示, 携带更新的路 径信息。
具体地, WIFI中继器根据本节点的最新接口状态更新路径信息并根据路 径信息的下一跳通知物理层向 WIFI 终端发送添加时隙的状态提示 ( MIME— ADDTS. Indication ) ;
步骤 614: WIFI终端和家庭网关根据 QoS协商结果, 启动或结束业务接 续过程。
具体地, WIFI终端的物理层在收到添加时隙的状态提示消息后, 将该消 息携带的路径信息连同添加时隙的最新结果通知 WIFI终端的流建立模块;流 建立模块分析判断自己是否位于路径的源节点, 是则通知流映射模块向应用 层发送流建立响应, 以及通知路径选择模块根据流建立状态更新网络拓朴的 资源占用情况。 至此, WIFI终端可以获知物理层 QoS协商结果。
而在步骤 607中家庭网关可以获知物理层 QoS协商结果。
同时, WIFI终端和家庭网关可以根据应用层 QoS协商的过程获知应用层 QoS协商结果。
这样, WIFI终端的 SIP终端和家庭网关上的 SIP中继器都知道 QoS协商 的结果; 然后判断 QoS协商结果是否成功, 如果成功则启动业务会话的接续 过程, 如果不成功则结束业务接续。 即 WIFI终端和家庭网关根据 QoS协商 结果接续或者断开业务会话。
图 8为本发明第三实施例所提供的方法流程示意图, 图 9为本发明第三 实施例对应的网络系统结构示意图。 本实施例以无线部分为 WIFI 终端接入 WIFI中继器,有线部分为 WIFI中继器采用 G.hn方式接入家庭网关, 且电脑 采用有线方式通过 G.hn适配器接入家庭网关为例。
本实施例是以 WIFI终端从电脑中获取数据为例, 因此两个端点分别为: WIFI终端和电脑。
参见图 9, 本实施例中, 用户利用手持的智能设备, 例如智能手机等点 播存储在电脑上的视频。智能设备通过 uPnP协议发现并协商建立从智能设备 到电脑的 QoS通道, 然后持续播放相应的视频内容。
参见图 8, 本实施例包括: 步骤 801 : WIFI终端、 电脑和家庭网关进行拓朴收集。
具体地, 当 WIFI终端、 电脑和家庭网关启动后, 它们中的路径选择模块 启动拓朴收集功能, 识别整个家庭网络的拓朴并侦测网络的拓朴变化;
步骤 802: WIFI终端和电脑启动业务 QoS协商及基于 uPnP的应用层 QoS 协商。
具体地,当用户利用 uPnP找到位于电脑上的视频并播放时,终端的 uPnP 启动业务层 QoS协商, 从而触发与电脑的 uPnP的应用层 QoS协商, 同时触 发物理层的 QoS协商; 其中, 业务层 QoS协商和应用层 QoS协商可以采用 现有技术实现, 本发明实施例不再赘述。
在 WIFI终端的物理层 QoS协商时, WIFI终端的流映射模块收到应用层 发送的流建立请求,流映射模块识别出 WiFi终端的源地址和电脑的目的地址 向路径选择模块请求计算最佳路径;路径选择模块根据 WIFI终端的源地址和 电脑的目的地址以及本地接口和网络的资源占用情况, 计算出该流的最佳路 径; 流映射模块将流建立请求连同路径信息、应用层流 ID和应用层流的 QoS 参数一起, 通知流建立模块;
之后的物理层 QoS协商过程与第二实施例类似, 不同的是, 电脑和 G.hn 适配器是以太网直连的方式, 采用 SRP协议直接进行资源协商并采用 802.11 的扩展方式携带路径信息。
这样, WiFi终端和电脑都知道物理层 QoS协商的结果, WIFI终端直接 通知家庭网关的路径信息, 例如, 通过 SRP协议资源预留提示消息, 家庭网 关根据路径信息可重新计算家庭网络的资源占用情况;然后 WIFI终端和电脑 判断物理层 QoS协商结果是否成功,如果成功同时应用层 QoS协商成功那么 认为业务 QoS协商功能启动业务会话的接续过程。
具体流程如下:
步骤 803-805: 与步骤 603-605对应相同。
步骤 806: WIFI中继器向 G.hn适配器发送建立连接请求,其中携带路径 信息。
步骤 807: G.hn适配器向 WIFI中继器返回建立连接响应。
步骤 808: WIFI中继器向家庭网关发送连接接纳请求。
步骤 809: 家庭网关向 WIFI中继器返回连接接纳响应。
步骤 810: G.hn适配器判断是否是路径的末节点, 如果不是, 执行步骤
811 , 否则, G.hn适配器按照家庭网关确定出自身为末节点时的处理流程处 理。
步骤 811 : G.hn适配器向电脑发送 G.hn适配器的物理层连接建立请求消 息 (如, 资源预留请求消息) , 其中携带路径信息。
步骤 812: 电脑向 G.hn适配器发送资源预留响应消息。
步骤 813: 电脑判断是否为路径的末节点,如果是,执行步骤 814, 否贝' J , 按照 WIFI中继器确定出自身不是末节点的处理流程处理。
步骤 814: 电脑向 G.hn适配器返回资源预留提示, 携带更新路径信息。 步骤 815: G.hn适配器判断是否是路径的末节点, 如果不是, 执行步骤 816, 否则, 按照家庭网关确定出自身为末节点时的处理流程处理。
步骤 816: G.hn适配器向 WIFI中继器返回建立连接提示,携带路径信息。 步骤 817: WIFI中继器判断是否为路径的末节点, 如果不是, 执行步骤 818, 否则, 按照家庭网关确定出自身为末节点时的处理流程处理。
步骤 818: WIFI中继器向 WIFI终端发送添加时隙提示, 携带更新的路 径信息。
步骤 819: WIFI终端向家庭网关发送资源预留提示消息, 携带更新后的 路径信息。
步骤 820: 根据 QoS协商结果, WIFI终端和电脑启动或结束业务接续过 程。
图 10为本发明第四实施例所提供的方法流程示意图, 图 11为本发明第 四实施例对应的网络系统结构示意图。本实施例以无线部分为 WIFI终端接入 WIFI 中继器, 且 WIFI 终端之间采用无线方式接入家庭网关, 有线部分为 WIFI中继器采用 G.hn方式接入家庭网关为例。
参见图 11 , 本实施例中, 家庭网络集成 AP功能可为整个家庭的终端提 供无线覆盖, 但由于房间的墙对无线信号存在较大的衰落而且会有邻居带来 的无线干扰, 只能提供有限的带宽给有限的用户。 WIFI中继器利用 G.hn有 线互连可以提供更好的无线连接通道。 因此, 可以将 WIFI终端通过 WIFI中 继器及有线方式接入家庭网关作为优选路径,而将 WIFI终端通过无线方式直 接接入家庭网关作为备选路径。 本实施例描述从优选路径切换到备选路径。
参见图 10, 本实施例包括:
步骤 1001 : WIFI终端和家庭网关根据 QoS协商结果, 启动业务接续过 程。
具体地 WIFI终端和家庭网关进行业务会话接续的流程实现可以参见图 6 或图 8所示的实施例。
WIFI终端和家庭网关根据 QoS协商的结果启动业务接续过程,物理层根 据路径信息转发对应的流。
步骤 1002: WIFI 中继器与家庭网关之间的有线互连通道故障后, WIFI 中继器向 WIFI终端发送添加时隙提示消息,其中携带更新路径信息的指示信 息。 并且, WIFI中继器和家庭网关緩存报文。
具体地, 当 WIFI 中继器检测到 G.hn有线互连通道故障的时候, WIFI 中继器将路径信息中本设备的下一跳路径项中的链路状态改为故障, 通过添 加时隙提示把更新路径信息的指示信息发送给 WIFI 终端并緩存转发失败的 报文; 同时家庭网关也检测到同样的故障并緩存失败的报文。
步骤 1003: WIFI终端重新计算最佳路径。
具体地, WIFI终端的物理层收到更新路径信息的指示信息后发送给流建 立模块,流建立模块根据更新路径信息的指示信息确定 WIFI中继器和家庭网 关的路径故障后通知路径选择模块; 路径选择模块重新计算最佳路径, 如果 可以找到则通知流建立模块根据新的路径信息重新建立路径, 否则通知流建 立模块无法找到备份路径, 流建立模块则通知流映射模块路径故障, 并由流 映射模块通知给应用层, 这样应用层就可以知道路径异常通知业务层做相应 的处理。
在获取新的最佳路径后, 可以参照前述实施例根据该新的最佳路径进行
QoS协商, 当新的 QoS协商完成后, WIFI终端和家庭网关切换到新的路径 上。
在新的 QoS协商过程中, 例如包括如下步骤:
步骤 1004: WIFI终端向家庭网关发送添加时隙请求消息,携带更新的路 径信息。
步骤 1005: 家庭网关向 WIFI终端返回添加时隙回应消息, 携带更新的 路径信息。
步骤 1006: WIFI终端和家庭网关根据 QoS协商结果, 切换到新的路径, 依据新的路径接续业务会话。
步骤 1007: WIFI终端向 WIFI中继器发送删除时隙请求消息, 携带更新 的路径信息。
步骤 1008: WIFI中继器向 WIFI终端发送删除时隙响应消息。
步骤 1009: WIFI中继器和家庭网关根据新的路径转发緩存的报文。
具体地, WIFI终端在新路径建立起来后将新的路径信息通过删除时隙请 求( MIME— DELTS.request )通知 WIFI 中继器新路径已经建立起来, WIFI 中继器将緩存的报文用相反的方向发给最近的节点, 本实施例中最近的节点 为 WIFI终端; 再由 WIFI终端重新转发该 4艮文。
这样, 由于在物理层 QoS协商时进行了路径切换, 应用层就感觉不到路 径切换, 业务正常, 做到对用户的影响最小。
此后,如果故障恢复,则 WIFI终端可以通过定时的拓朴收集或网络节点 主动的拓朴变更消息知道网络状态发生变化, 主动重新寻找最佳路径, 再重 复上述过程的步骤 1003到 1009, 即可达到故障恢复的效果。
本实施例通过在应用层 QoS协商的同时启动物理层 QoS协商,并且在物 理层 QoS协商时直接获取最佳路径信息, 可以加快 QoS协商的速度, 进而实 现业务接续速度的加快。
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上 述实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实 施例的优劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取 存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种跨媒介网络中的服务质量 QoS协商方法, 其特征在于, 包括: 通过支持多种接入方式的接口接收来自应用层的源地址和目的地址; 根据预先收集的网络拓朴信息以及网络资源占用情况获取从所述源地址 到所述目的地址的最佳路径信息; 按照与物理层的接入方式相对应的协议将所述最佳路径信息映射到相应 的端口, 以使得所述端口进行 QoS协商。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过支持多种接入方 式的接口接收来自应用层的源地址和目的地址包括: 通过所述接口接收来自应用层的流建立请求消息, 获取所述流建立请求 消息中的源地址和目的地址。
3、 根据权利要求 1所述的方法, 其特征在于, 所述最佳路径信息包括应 用层流 ID、 应用层流的 QoS参数以及表征途经节点的路径列表。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述物理层的接入方 式包括无线保真 WIFI、 电力线、 千兆以太网 GE或者快速以太网 FE。
5、 一种网络设备, 其特征在于, 包括: 流映射模块, 用于通过支持多种接入方式的接口接收来自应用层的源地 址和目的地址; 路径选择模块, 用于根据网络拓朴信息以及网络资源占用情况获取从所 述源地址到所述目的地址的最佳路径信息 , 将所述最佳路径信息发送给所述 流映射模块, 以使得所述流映射模块按照与物理层的接入方式相对应的协议 对所述最佳路径信息进行映射; 流建立模块, 用于通过物理层相应的端口进行服务质量 QoS协商。
6、 根据权利要求 5所述的网络设备, 其特征在于, 所述路径选择模块还 用于收集所述网络拓朴信息和网络资源占用情况, 对所述网络拓朴信息和资 源占用信息进行监控。
7、 根据权利要求 5所述的网络设备, 其特征在于, 所述流映射模块还用 于通过所述支持多种接入方式的接口向所述应用层发送 QoS协商结果。
8、 一种跨媒介网络中的服务质量 QoS协商系统, 其特征在于, 包括应 用层、 中间层和物理层; 所述应用层, 用于通过支持多种接入方式的接口向所述中间层发送源地 址和目的地址; 所述中间层, 用于根据网络拓朴信息以及网络资源占用情况获取从所述 源地址到所述目的地址的最佳路径信息, 按照与物理层的接入方式相对应的 协议将所述最佳路径信息映射到物理层相应的端口; 所述物理层, 用于通过所述端口进行 QoS协商。
9、 根据权利要求 8所述的系统, 其特征在于, 所述中间层还用于根据所述最佳路径信息判断自己是否是最后一个节 点, 如果为是, 则根据网络的资源占用情况, 判断是否接纳物理层收到的资 源请求。
10、 根据权利要求 8所述的系统, 其特征在于, 所述中间层还用于将所 述端口收到的 QoS协商结果通过所述支持多种接入方式的接口发送给所述应 用层。
PCT/CN2011/073763 2011-05-06 2011-05-06 跨媒介网络中的qos协商方法和系统及网络设备 WO2011120463A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000591.7A CN102204209B (zh) 2011-05-06 2011-05-06 跨媒介网络中的QoS协商方法和系统及网络设备
PCT/CN2011/073763 WO2011120463A2 (zh) 2011-05-06 2011-05-06 跨媒介网络中的qos协商方法和系统及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073763 WO2011120463A2 (zh) 2011-05-06 2011-05-06 跨媒介网络中的qos协商方法和系统及网络设备

Publications (2)

Publication Number Publication Date
WO2011120463A2 true WO2011120463A2 (zh) 2011-10-06
WO2011120463A3 WO2011120463A3 (zh) 2012-05-10

Family

ID=44662818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073763 WO2011120463A2 (zh) 2011-05-06 2011-05-06 跨媒介网络中的qos协商方法和系统及网络设备

Country Status (2)

Country Link
CN (1) CN102204209B (zh)
WO (1) WO2011120463A2 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248512B (zh) * 2012-02-14 2015-12-16 腾讯科技(深圳)有限公司 通信网络中应用层拓扑结构的生成方法和系统
US9031084B2 (en) * 2012-07-20 2015-05-12 Harman International Industries, Incorporated Quality of service for streams over multiple audio video bridging networks
CN105099837A (zh) * 2014-05-23 2015-11-25 中兴通讯股份有限公司 家庭网络的有线通用介质联网技术组网方法及装置
US10541937B2 (en) * 2017-07-18 2020-01-21 Cisco Technology, Inc. Multi-level resource reservation
KR102381758B1 (ko) * 2017-08-22 2022-04-04 현대자동차주식회사 차량의 헤드 유닛, 이를 포함하는 차량 및 차량의 제어 방법
CN110198271A (zh) * 2019-05-30 2019-09-03 广东九联科技股份有限公司 一种兼容多种网络协议的网络连接方法及其路由器
CN112152925B (zh) * 2019-06-27 2021-12-17 华为技术有限公司 一种数据传输的方法、终端及通信系统
CN110430236B (zh) * 2019-06-29 2020-11-03 华为技术有限公司 一种部署业务的方法以及调度装置
CN110519665B (zh) * 2019-08-09 2024-10-01 广东九联科技股份有限公司 一种基于同轴线通信的pon智能家庭组网系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035243A1 (en) * 1999-11-08 2001-05-17 Megaxess, Inc. QUALITY OF SERVICE (QoS) NEGOTIATION PROCEDURE FOR MULTI-TRANSPORT PROTOCOL ACCESS FOR SUPPORTING MULTI-MEDIA APPLICATIONS WITH QoS ASSURANCE
CN101119308A (zh) * 2007-08-21 2008-02-06 北京航空航天大学 动态保证服务质量的无线移动自组织网络的路由装置及方法
CN101827027A (zh) * 2009-12-25 2010-09-08 中国科学院声学研究所 一种基于层间协作的家庭网络QoS保障方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030093526A1 (en) * 2001-11-13 2003-05-15 Koninklijke Philips Electronics N. V. Apparatus and method for providing quality of service signaling for wireless mac layer
US9030934B2 (en) * 2007-09-07 2015-05-12 Qualcomm Incorporated Host-based quality of service for wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035243A1 (en) * 1999-11-08 2001-05-17 Megaxess, Inc. QUALITY OF SERVICE (QoS) NEGOTIATION PROCEDURE FOR MULTI-TRANSPORT PROTOCOL ACCESS FOR SUPPORTING MULTI-MEDIA APPLICATIONS WITH QoS ASSURANCE
CN101119308A (zh) * 2007-08-21 2008-02-06 北京航空航天大学 动态保证服务质量的无线移动自组织网络的路由装置及方法
CN101827027A (zh) * 2009-12-25 2010-09-08 中国科学院声学研究所 一种基于层间协作的家庭网络QoS保障方法

Also Published As

Publication number Publication date
CN102204209A (zh) 2011-09-28
CN102204209B (zh) 2014-01-22
WO2011120463A3 (zh) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2011120463A2 (zh) 跨媒介网络中的qos协商方法和系统及网络设备
US8593996B2 (en) Method and an apparatus for session routing in home network system
US8971335B2 (en) System and method for creating a transitive optimized flow path
US20150237525A1 (en) Traffic Shaping and Steering for a Multipath Transmission Control Protocol Connection
WO2013182059A1 (zh) 多协议标签交换流量工程隧道建立方法及设备
WO2007066766A1 (ja) ネットワークシステムおよび中継装置
US9876733B2 (en) Resource reservation method and system, and convergence device
WO2018086144A1 (zh) 基于SDN的WIA-PA现场网络/IPv6回程网络联合调度方法
US20160072641A1 (en) Data transmission method, apparatus, and computer storage medium
KR20150033681A (ko) 연결 실패 시에 홈 네트워크에 대한 재라우팅을 인에이블시키는 방법 및 시스템
WO2017031947A1 (zh) 向网络中发送和从网络中获取目标数据的方法和装置
US9787607B2 (en) End-to-end provisioning of Ethernet Virtual Circuits
WO2011041970A1 (zh) 一种支持数据报文主动推送能力的实现方法及系统
TW200417195A (en) Communication system and its terminal
WO2011127849A2 (zh) 一种数据流传送方法及网络设备
US10187926B2 (en) Apparatus and method for setting up active networking of smart devices for providing converged service
WO2022193086A1 (zh) 一种通信方法、通信装置和通信系统
JP6802530B2 (ja) 通信方法
WO2009103192A1 (zh) 资源分配方法及资源释放方法
WO2011057570A1 (zh) 虚拟局域网的数据传输方法、设备与系统
WO2011047610A1 (zh) 客户边缘设备自动管理方法及pe设备
CN105812909A (zh) 一种视频传输方法及装置
WO2011041969A1 (zh) 一种支持数据报文主动推送能力的实现方法及系统
JP2000224216A (ja) 中継装置、通信端末装置及び通信方法
WO2009086764A1 (zh) 在网络上提供服务的方法、网络服务实体和网络系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000591.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762037

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762037

Country of ref document: EP

Kind code of ref document: A2