WO2014093721A2 - Détection de fréquence d'horloge anormale dans des réseaux de capteurs d'imagerie - Google Patents

Détection de fréquence d'horloge anormale dans des réseaux de capteurs d'imagerie Download PDF

Info

Publication number
WO2014093721A2
WO2014093721A2 PCT/US2013/074828 US2013074828W WO2014093721A2 WO 2014093721 A2 WO2014093721 A2 WO 2014093721A2 US 2013074828 W US2013074828 W US 2013074828W WO 2014093721 A2 WO2014093721 A2 WO 2014093721A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
count value
infrared
clock
temperature
Prior art date
Application number
PCT/US2013/074828
Other languages
English (en)
Other versions
WO2014093721A3 (fr
Inventor
Brian Simolon
Eric A. Kurth
Jim Goodland
Mark NUSSMEIER
Nicholas HÖGASTEN
Theodore R. Hoelter
Katrin Strandemar
Pierre Boulanger
Barbara Sharp
Original Assignee
Flir Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flir Systems, Inc. filed Critical Flir Systems, Inc.
Priority to CN201380072541.9A priority Critical patent/CN104981905B/zh
Publication of WO2014093721A2 publication Critical patent/WO2014093721A2/fr
Publication of WO2014093721A3 publication Critical patent/WO2014093721A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources
    • H04N25/674Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources based on the scene itself, e.g. defocusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals

Definitions

  • clock signals may often be provided to imaging sensor devices by external sources (e.g., from a clock generator on a host device) , the clock signals can be
  • Fig. 3 illustrates an exploded view of an infrared imaging module juxtaposed over a socket in accordance with an embodiment of the disclosure.
  • Fig. 4 illustrates a block diagram of an infrared sensor assembly including an array of infrared sensors in accordance with an embodiment of the disclosure.
  • Fig. 15 illustrates a schematic diagram of a circuit to detect an abnormal clock rate provided to an infrared sensor assembly in accordance with an embodiment of the disclosure.
  • infrared imaging module 100 may be implemented with flip chip technology which may be used to mount components directly to circuit boards without the additional clearances typically needed for wire bond
  • shutter 105 may be made from various materials such as, for example, polymers, glass, aluminum (e.g., painted or anodized) or other materials.
  • shutter 105 may include one or more coatings to selectively filter electromagnetic radiation and/or adjust various optical properties of shutter 105 (e.g., a uniform blackbody coating or a reflective gold coating) .
  • Fig. 5 illustrates a flow diagram of various operations to determine NUC terms in accordance with an embodiment of the disclosure.
  • the operations of Fig. 5 may be performed by processing module 160 or processor 195 (both also generally referred to as a processor) operating on image frames captured by infrared sensors 132.
  • one or more actuators 199 may be used to adjust, move, or otherwise translate optical element 180, infrared sensor assembly 128, and/or other components of infrared imaging module 100 to cause infrared sensors 132 to capture a blurred (e.g., unfocused) image frame of the scene.
  • Other non-actuator based techniques are also contemplated for intentionally defocusing infrared image frames such as, for example, manual (e.g., user- initiated) defocusing .
  • the scene may appear blurred in the image frame,
  • the updated row and column FPN terms determined in block 550 are stored (block 552) and applied (block 555) to the blurred image frame provided in block 545. After these terms are applied, some of the spatial row and column FPN in the blurred image frame may be reduced. However, because such terms are applied generally to rows and columns, additional FPN may remain such as spatially
  • a NUC term may be determined for each pixel 710 of the blurred image frame using the values of its neighboring pixels 712 to 726.
  • several gradients may be determined based on the absolute difference between the values of various adjacent pixels. For example, absolute value differences may be determined between: pixels 712 and 714 (a left to right diagonal gradient) , pixels 716 and 718 (a top to bottom vertical gradient) , pixels 720 and 722 (a right to left diagonal gradient) , and pixels 724 and 726 (a left to right horizontal gradient) . These absolute differences may be summed to provide a summed gradient for pixel 710.
  • a weight value may be
  • Fig. 11 illustrates spatially correlated FPN in a neighborhood of pixels in accordance with an embodiment of the disclosure.
  • a neighborhood of pixels 1110 may exhibit spatially correlated FPN that is not precisely correlated to individual rows and columns and is distributed over a neighborhood of several pixels (e.g., a neighborhood of approximately 4 by 4 pixels in this example) .
  • Sample image frame 1100 also includes a set of pixels 1120 exhibiting substantially uniform response that are not used in filtering calculations, and a set of pixels 1130 that are used to estimate a low pass value for the
  • neighborhoods 803a and 803b may indicate that changes have occurred within the scene (e.g., due to motion) and pixels 802a and 802b may be appropriately
  • infrared sensor assembly 128 permits infrared sensor assembly 128 to exhibit significantly reduced power consumption in comparison with conventional infrared imaging devices.
  • the power consumption of each infrared sensor 132 is reduced by the square of the bias voltage.
  • a reduction from, for example, 1.0 volt to 0.5 volts provides a significant reduction in power, especially when applied to many infrared sensors 132 in an infrared sensor array. This reduction in power may also result in reduced self-heating of infrared sensor assembly 128.
  • various techniques are provided for reducing the effects of noise in image frames provided by infrared imaging devices operating at low voltages.
  • noise, self -heating, and/or other phenomena may, if uncorrected, become more pronounced in image frames provided by infrared sensor assembly 128.
  • Clock rate detection circuit 1500 may include, in some embodiments, a sample-and-hold circuit 1454A implemented in a similar manner as sample-and-hold circuit 1454, but adapted to receive a reference signal 1580.
  • Reference signal 1580 may be provided by a reference signal generator 1520, which in some embodiments may be adapted to generate, regulate, and/or maintain (e.g., hold at a substantially stable level) a specified voltage to be utilized as reference signal 1580.
  • reference signal generator 1520 may be adapted to provide reference signal 1580 using a regulated voltage provided from LDO 1420.
  • the current count value of counter 1460 may be selected when the ramp signal matches (e.g., is at substantially the same level as) reference signal 1580 as described.
  • a temperature reading from temperature sensor 1468 may also be multiplexed into digital output signal 1411A as described above.
  • Comparator 1756 receives temperature-dependent analog signal 1705 from temperature sensitive element 1702, and also receives the ramp signal from ramp generator 1458.
  • Switches 1762 receive the count value from counter 1460 and may be triggered to capture the current count value as a temperature count 1469 at capacitors 1763 for storage in latches 1764.
  • comparator 1756 may trigger switches 1762 when the ramp signal substantially matches temperature-dependent analog signal 1705.
  • comparator 1456A (Fig. 15) and comparator 1756 (Fig. 17) may receive count values from counter 1460 and the ramp signal from ramp generator 1456, comparators 1456A and 1756 may trigger at different times and thus store different count values. For example, as discussed, comparator 1456A triggers switches 1462A to store the current count value as reference voltage count 1566 when the ramp signal
  • threshold values for the acceptable range of reference voltage count 1566 may be greater (e.g., increased) in the case of high temperature readings, and may be lesser (e.g., reduced) in the case of low temperature readings .
  • temperature count 1469 may generally correlate to the temperature at temperature sensitive element 1702, it may also be affected by variations in clock signal 1470 and/or other factors. For example, as discussed, counter 1460 may increment or decrement a count value in response to clock signal 1470, and thus the rate at which the count value is incremented or decremented may vary as the clock rate of clock signal 1470 varies.
  • Non-transitory machine readable mediums can be stored on one or more non-transitory machine readable mediums. It is also contemplated that software identified herein can be implemented using one or more general purpose or specific purpose computers and/or computer systems, networked and/or otherwise. Where applicable > the ordering of various steps described herein can be changed, combined into composite steps, and/or separated into sub- steps to provide features described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

La présente invention se rapporte à des techniques permettant de détecter des fréquences d'horloge anormales dans des dispositifs tels que des dispositifs de capteur d'imagerie (par exemple, des dispositifs d'imagerie à lumière visible ou infrarouge). Selon un exemple, un dispositif peut comprendre un circuit de détection de fréquence d'horloge qui peut être facilement intégré en faisant partie du dispositif pour fournir une détection efficace d'une fréquence d'horloge anormale. Le dispositif peut comprendre un générateur de signal rampe, un compteur et/ou d'autres composants. Le générateur de signal rampe peut générer un signal rampe indépendant d'un signal d'horloge transmis au dispositif tandis que le compteur peut incrémenter/décrémenter une valeur de comptage en réponse au signal d'horloge. Le dispositif peut comprendre un comparateur destiné à sélectionner la valeur de comptage actuelle du compteur lorsque le signal de rampe atteint un signal de référence. Un processeur du dispositif peut être destiné à déterminer si le signal d'horloge fonctionne dans une plage de fréquences acceptable sur la base de la valeur de comptage sélectionnée.
PCT/US2013/074828 2012-12-14 2013-12-12 Détection de fréquence d'horloge anormale dans des réseaux de capteurs d'imagerie WO2014093721A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380072541.9A CN104981905B (zh) 2012-12-14 2013-12-12 成像传感器阵列中的异常时钟频率检测

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261737678P 2012-12-14 2012-12-14
US61/737,678 2012-12-14
US201261748018P 2012-12-31 2012-12-31
US61/748,018 2012-12-31
US201361793181P 2013-03-15 2013-03-15
US61/793,181 2013-03-15

Publications (2)

Publication Number Publication Date
WO2014093721A2 true WO2014093721A2 (fr) 2014-06-19
WO2014093721A3 WO2014093721A3 (fr) 2014-08-07

Family

ID=49943514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/074828 WO2014093721A2 (fr) 2012-12-14 2013-12-12 Détection de fréquence d'horloge anormale dans des réseaux de capteurs d'imagerie

Country Status (2)

Country Link
CN (1) CN104981905B (fr)
WO (1) WO2014093721A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083501B2 (en) 2015-10-23 2018-09-25 Fluke Corporation Imaging tool for vibration and/or misalignment analysis
US10271020B2 (en) 2014-10-24 2019-04-23 Fluke Corporation Imaging system employing fixed, modular mobile, and portable infrared cameras with ability to receive, communicate, and display data and images with proximity detection
US10530977B2 (en) 2015-09-16 2020-01-07 Fluke Corporation Systems and methods for placing an imaging tool in a test and measurement tool
US10602082B2 (en) 2014-09-17 2020-03-24 Fluke Corporation Triggered operation and/or recording of test and measurement or imaging tools

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180091290A1 (en) * 2016-09-26 2018-03-29 Mediatek Inc. Method for performing sensor clock estimation of one or more sensors in electronic device, and associated apparatus
CN113162587B (zh) * 2021-02-28 2022-03-29 珠海巨晟科技股份有限公司 时钟频率异常偏差检测电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028309A (en) 1997-02-11 2000-02-22 Indigo Systems Corporation Methods and circuitry for correcting temperature-induced errors in microbolometer focal plane array
US6812465B2 (en) 2002-02-27 2004-11-02 Indigo Systems Corporation Microbolometer focal plane array methods and circuitry
US7034301B2 (en) 2002-02-27 2006-04-25 Indigo Systems Corporation Microbolometer focal plane array systems and methods
US7470904B1 (en) 2006-03-20 2008-12-30 Flir Systems, Inc. Infrared camera packaging
US7470902B1 (en) 2006-03-20 2008-12-30 Flir Systems, Inc. Infrared camera electronic architectures
US7679048B1 (en) 2008-04-18 2010-03-16 Flir Systems, Inc. Systems and methods for selecting microbolometers within microbolometer focal plane arrays
US11486508B2 (en) 2017-06-08 2022-11-01 Superior Energy Services, Llc Deep set safety valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906944A (en) * 1988-08-17 1990-03-06 Rockwell International Corporation Integrator controlled time compensated clock oscillator
US5124597A (en) * 1991-04-01 1992-06-23 Tektronix, Inc. Timer circuit including an analog ramp generator and a CMOS counter
US5982318A (en) * 1997-10-10 1999-11-09 Lucent Technologies Inc. Linearizing offset cancelling white balancing and gamma correcting analog to digital converter for active pixel sensor imagers with self calibrating and self adjusting properties
US6452425B1 (en) * 2001-02-13 2002-09-17 Exar Corporation Automatic frequency rate switch
JP3983521B2 (ja) * 2001-11-14 2007-09-26 シャープ株式会社 半導体装置およびicカード
KR100833177B1 (ko) * 2002-05-14 2008-05-28 삼성전자주식회사 자동적으로 오프 셋을 조정할 수 있는 신호변환회로 및 그방법
JP4136958B2 (ja) * 2004-02-05 2008-08-20 富士フイルム株式会社 デジタルカメラ及びデジタルカメラの制御方法
US7369002B2 (en) * 2005-07-28 2008-05-06 Zarlink Semiconductor, Inc. Phase locked loop fast lock method
KR100790969B1 (ko) * 2005-08-23 2008-01-02 삼성전자주식회사 화질 개선을 위하여 자동 교정된 램프 신호를 이용한이미지 센서 및 방법
KR100952398B1 (ko) * 2008-02-14 2010-04-14 (주)유우일렉트로닉스 SoC기반 공간 감지용 적외선 센서

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028309A (en) 1997-02-11 2000-02-22 Indigo Systems Corporation Methods and circuitry for correcting temperature-induced errors in microbolometer focal plane array
US6812465B2 (en) 2002-02-27 2004-11-02 Indigo Systems Corporation Microbolometer focal plane array methods and circuitry
US7034301B2 (en) 2002-02-27 2006-04-25 Indigo Systems Corporation Microbolometer focal plane array systems and methods
US7470904B1 (en) 2006-03-20 2008-12-30 Flir Systems, Inc. Infrared camera packaging
US7470902B1 (en) 2006-03-20 2008-12-30 Flir Systems, Inc. Infrared camera electronic architectures
US7679048B1 (en) 2008-04-18 2010-03-16 Flir Systems, Inc. Systems and methods for selecting microbolometers within microbolometer focal plane arrays
US11486508B2 (en) 2017-06-08 2022-11-01 Superior Energy Services, Llc Deep set safety valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602082B2 (en) 2014-09-17 2020-03-24 Fluke Corporation Triggered operation and/or recording of test and measurement or imaging tools
US10271020B2 (en) 2014-10-24 2019-04-23 Fluke Corporation Imaging system employing fixed, modular mobile, and portable infrared cameras with ability to receive, communicate, and display data and images with proximity detection
US10530977B2 (en) 2015-09-16 2020-01-07 Fluke Corporation Systems and methods for placing an imaging tool in a test and measurement tool
US10083501B2 (en) 2015-10-23 2018-09-25 Fluke Corporation Imaging tool for vibration and/or misalignment analysis
US10586319B2 (en) 2015-10-23 2020-03-10 Fluke Corporation Imaging tool for vibration and/or misalignment analysis
US11210776B2 (en) 2015-10-23 2021-12-28 Fluke Corporation Imaging tool for vibration and/or misalignment analysis

Also Published As

Publication number Publication date
CN104981905A (zh) 2015-10-14
CN104981905B (zh) 2018-09-25
WO2014093721A3 (fr) 2014-08-07

Similar Documents

Publication Publication Date Title
US9948878B2 (en) Abnormal clock rate detection in imaging sensor arrays
US10122944B2 (en) Low power and small form factor infrared imaging
US9900526B2 (en) Techniques to compensate for calibration drifts in infrared imaging devices
US11070747B2 (en) Segmented focal plane array architecture
US10051210B2 (en) Infrared detector array with selectable pixel binning systems and methods
EP2719165B1 (fr) Techniques de correction de non-uniformité pour dispositifs d'imagerie infrarouge
US9207708B2 (en) Abnormal clock rate detection in imaging sensor arrays
EP2939413B1 (fr) Techniques pour compenser des déviations d'étalonnage dans dispositifs d'imagerie infrarouge
US10079982B2 (en) Determination of an absolute radiometric value using blocked infrared sensors
US9961277B2 (en) Infrared focal plane array heat spreaders
WO2014093721A2 (fr) Détection de fréquence d'horloge anormale dans des réseaux de capteurs d'imagerie
EP2932529B1 (fr) Architecture de matrice en plan focal segmentée
WO2013052196A1 (fr) Détermination d'une valeur radiométrique absolue à l'aide de capteurs infrarouges bloqués
WO2014105904A1 (fr) Dissipateurs thermiques à réseau plan-focale infrarouge (ir)
WO2014085699A1 (fr) Imageur infrarouge ayant des couches métalliques intégrées
US9848134B2 (en) Infrared imager with integrated metal layers
WO2014105897A1 (fr) Réseau de détecteurs infrarouges ayant des systèmes de classification de pixel aptes à être sélectionnés et des procédés associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818879

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13818879

Country of ref document: EP

Kind code of ref document: A2