WO2014092510A1 - Temperature and pressure swing moving bed adsorption process system using novel heat exchange system - Google Patents

Temperature and pressure swing moving bed adsorption process system using novel heat exchange system Download PDF

Info

Publication number
WO2014092510A1
WO2014092510A1 PCT/KR2013/011614 KR2013011614W WO2014092510A1 WO 2014092510 A1 WO2014092510 A1 WO 2014092510A1 KR 2013011614 W KR2013011614 W KR 2013011614W WO 2014092510 A1 WO2014092510 A1 WO 2014092510A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
adsorption
desorption
temperature
pressure
Prior art date
Application number
PCT/KR2013/011614
Other languages
French (fr)
Korean (ko)
Inventor
이광순
손용호
김기웅
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2014092510A1 publication Critical patent/WO2014092510A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • B01D53/12Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents according to the "fluidised technique"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants

Definitions

  • the present invention relates to a specific gas adsorption process system, and more particularly, to the adsorption and stepwise high temperature-low pressure desorption in a different temperature and pressure environment, and a heat exchange system that can improve the adsorption performance and economic optimization,
  • the invention relates to a mobile bed temperature pressure ⁇ copper adsorption process system for the separation and circulation of adsorbents into a mobile bed for selective gas separation.
  • the adsorption step is a step of separating the gas or liquid by equilibrium adsorption to the adsorbent for each component, and has been particularly applied to separation and purification of gas.
  • Typical examples include separation and concentration of air vaporization oxygen, high-purity hydrogen separation in petrochemical plants, separation of normal paraffins and isoguaraffins, separation of methane in anaerobic fermentation gases, and removal or separation of volatile organic compounds in industrial environments. Belongs.
  • the adsorption process has recently been studied for the purpose of recovering carbon dioxide, which is a major cause of global warming, from the combustion exhaust fl of large industrial processes such as power plants and steel mills.
  • Adsorbents used for gas separation include zeolite, molecular sieve, activated carbon, ' carbon molecular sieve, silica gel, activated alumina, etc., and the adsorption process is due to the many pores. (Van der Waals) Most of them use physical adsorption to attach force as a binding force. This is because physical adsorption may have a smaller amount of adsorption than chemical adsorption, but the bonding force is relatively low, so that desorption is easy.
  • FIG. 1 is a graph showing the relationship between the amount of gas adsorbed on an adsorbent and a partial pressure of one component of a general mixed gas by adsorption isotherm. As shown in Fig. 1, the physical adsorption amount of a gas component increases as the partial pressure of the gas component increases. The lower the temperature increases, the adsorptive separation process is constructed using this principle.
  • PSA pressure swing adsorption
  • TSA Tempo Swing Adsorption
  • PTSA Pressure Temperature Swing Adsorption
  • TSA temperature swing adsorption process
  • TSA temperature swing adsorption
  • the silver fluctuation adsorption process takes ⁇ beds and repeats the adsorption (glass at low temperature) and desorption (glass at high temperature) within one minute and at short intervals. It is very difficult to change the temperature in cycles. In addition, heating and cooling the temperature of a bed with a large thermal mass in a short time is expensive.
  • PSA pressure swing adsorption
  • P H , q ads low pressure
  • the method of desorption by depressurizing to (PL qdes) is pressure fluctuation adhesion.
  • the cycle time of pressure swing adsorption is usually short, up to a few minutes or seconds because of the rapid pressure reduction, and the basic steps constituting the pressure swing adsorption process are raw material pressurization, adsorption, decompression and washing (see FIG. 2).
  • the flow rate flowing into the bed is proportional to the difference between the pressure at the bed inlet and the pressure inside the bed.
  • the gas is pressurized by blowing gas into the bed for adsorption, the gas flows at a high flow rate because the pressure of the bed is low at first, but as the pressure of the bed increases over time, the flow of gas into the bed becomes smaller and smaller. You lose. This causes the operating conditions of the pump to be changed over time.
  • FIG. 3 is a process flow diagram of a conventional seven-component fluidized bed adsorption system.
  • the apparatus is composed of a chest part, a detachable part, an activated carbon conveyance part, a solvent separation part, and the like.
  • the adsorption part is a multi-stage porous plate, which is composed of a flow part and a bottom part of activated carbon. Activated carbon forms a fluidized bed on the porous plate by the solvent-containing gas rising from the bottom to adsorb the solvent. And activated carbon is removed from the lower part to the lower perforated plate in an amount equal to the circulation amount.
  • the detachable part mainly uses a multi-tube heat exchange system.
  • the activated carbon flowing down from the adsorption unit contacts the desorption gas underneath the tube being heated in the heat exchange system.
  • Desorption gas is discharged from the upper part of the desorption part containing the desorbed solvent to the solvent separation part.
  • the activated carbon from which the solvent has been desorbed is conveyed to the porous plate at the uppermost end of the adsorption unit through the air flow conveying pipe at the lower part of the desorbing unit.
  • the most feature of this device is that the adsorption unit and the desorption unit are separated in one bed, and because the indirect heating desorption method allows the selection of desorption gas such as water vapor, air, nitrogen, etc. There is a disadvantage of operating under the same pressure.
  • the conventional adsorption process system is required to increase the flow rate of the water flow into the adsorption bed is required to increase the flow rate, but to increase the flow rate, but in order to increase the economic efficiency or optimization, Since the temperature must be high, there is a problem in that the flow rate of the coolant flowing into the suction seed must be reduced.
  • the adsorption process is a continuous ' process, it is possible to operate continuously in a fixed condition of the gas pumps, each pump ⁇ to the operating conditions to the maximum efficiency It is possible to operate, and to achieve the operation and energy savings through this, secondly, to achieve higher productivity in the same size device, and thirdly, to the pressure fluctuation, temperature to the desired conditions Fourth, to increase the operating efficiency of the system and pump, to reduce operating costs, and to improve the separation and recovery of the mixed gas. It is to achieve the adsorption performance and economic optimization at the same time by enabling saving and low cost operation.
  • the first feature of the present invention for solving the above problems is an adsorption bed for selectively adsorbing the mixed gas introduced;
  • a blower mounted at a lower portion of the adsorptive bed to pressurize a mixed gas mixture;
  • a transporting device for transporting the adsorbent that has come out from the lower portion of the adsorption bed; Heating the adsorbent and flows are transported in the transport device, and to desorb the adsorbate primarily, a high temperature desorption ssedeu positioned upper than the adsorption bed;
  • a reflux tube for moving the adsorbent powder desorbed from the desorption bed to the hopsick bed; And injecting and removing water from the lower end of the adsorption bed, separating the water from the outlet, and separating the separated water from the lower part of the suction bed.
  • It includes a heat exchange system for heating the angle of exit from the lower ⁇ ⁇ to flow into the high temperature desorption bed to increase the temperature of the silver desorption bed, the high temperature desorption bed is equal to the pressure (P A ) of the adsorption bed, The desorption bed maintains a lower pressure (P D ) and a higher temperature (T D ) than the adsorption bed, and the size of the adsorbent particles, the size of the reflux tube. And by adjusting at least one of the lengths, to prevent backflow of some of the gases generated by the pressure difference in the reflux tube.
  • the heat exchange system the cooling water is hydraulically heated to the lower portion of the lower end of the adsorption bed, and the first fin angle which separates a portion of the outlet angle is separated into the upper portion of the lower end of the adsorption bed to remove the fourth fin.
  • Angle A first heat exchanger that heats and flows into the high temperature desorption bed to raise the temperature of the desorption bed; It is preferable that the second heat exchanger is configured to increase the temperature of the removable bed by introducing the removable bed.
  • the third cooling water and the fourth cooling water exiting from the adsorption bed and introduced into the high temperature desorption bed may be heated by at least one steam heater installed in each flow path, and heat the third cooling water.
  • the steam heater may include a steam heater using waste gas discharged on the upper end of the adsorption bed.
  • a second feature of the present invention is a compressor (compressor) is mounted to the lower portion of the adsorption bed to compress and inject the mixed gas;
  • a transfer device for transferring the adsorbent flowing out from the lower portion of the adsorption bed;
  • a high temperature desorption bed disposed on the upper side of the adsorptive bed to desorb the adsorbate first by heating the adsorbent adsorbed by the transfer device;
  • the degreaser a reflux tube for moving the adsorbent powder desorbed from the bed to the adsorption bed;
  • removing the coolant from the lower part of the adsorption bed by removing the coolant from the lower part of the adsorption bed and removing the cooling water from the lower part of the adsorption bed.
  • the "high temperature desorption bed comprising: a heat exchange system to increase the temperature of the high temperature desorption bed, the high temperature desorption bed is equal to the pressure (P a) of the adsorption bed and the desorption beds are the Maintain a low pressure (P D ) and a high temperature (T D ) relative to the adsorptive bed, which is caused by the pressure difference in the reflux tube through the adjustment of at least one of the size of the adsorbent particles, the diameter and the length of the reflux tube. Backflow of some of the gas being prevented.
  • the heat exchange system the first ⁇ angle water is introduced into the upper portion of the lower end of the adsorption bed to remove the cooling water flows into the lower portion of the lower end of the adsorption bed and separated from the cooling water, the fourth heat exchanger Angle
  • the first heat exchanger for heating and desorbing the high temperature desorption bed to increase the temperature of the desorption bed, and the low 12 cooling water which is partially separated from the water discharged from the lower end of the adsorption bed are discharged.
  • the second heat exchanger is configured to increase the temperature of the removable bed by introducing the removable bed.
  • the third cooling water and the fourth cooling water exiting from the adsorption bed and flowing into the high temperature desorption bed may be heated by at least one steam heater installed in each flow path, and heat the third cooling water.
  • the steam heater may include a steam heater using waste gas discharged from the upper end of the adsorption bed.
  • the invention it is possible to increase the operating efficiency of the system by using the stepwise desorption and to improve the separation and recovery efficiency of the gas mixture. And, since it is possible to operate under the fixed fixed condition and continuous operation, it is possible to obtain higher productivity than other size separators of the same size, and it is possible to operate the pressure fluctuation and temperature fluctuation with the desired operation.
  • heat exchange system energy saving in each stage is possible and low cost operation is possible so that efficient operation is possible to achieve energy saving and improve adsorption performance and economic efficiency.
  • the process of the present invention can replace and supplement the pressure swing adsorption process, which is currently widely used gas adhesion separation process, drying of gas, recovery of hydrogen from steam reforming gas, oxygen from air Separation of Nitrogen: in the separation of various gas mixtures such as recovery of argon from ammonia scrubbing gas, recovery of CO from steel mill exhaust gas, recovery of CH 4 and CO 2 from landfill gas, It is possible to operate and continuous operation, so that higher productivity and higher than other gas separators of the same standard Quality products can be obtained and pressure fluctuations and temperature fluctuations can be achieved under the desired conditions.
  • the pressure swing adsorption process which is currently widely used gas adhesion separation process, drying of gas, recovery of hydrogen from steam reforming gas, oxygen from air Separation of Nitrogen: in the separation of various gas mixtures such as recovery of argon from ammonia scrubbing gas, recovery of CO from steel mill exhaust gas, recovery of CH 4 and CO 2 from landfill gas, It is possible to operate and continuous operation, so that higher productivity and higher than other gas separators
  • the present invention provides an opportunity for research into a wide variety of studies, such as absorption technology, adsorption bed, membrane separation technology, etc., in the present study, which is mainly focused on absorption technology in relation to carbon dioxide reduction, separation, and recovery. Ultimately, this will be an opportunity to further develop the current ⁇ suction separation technology.
  • FIG. 3 is a process flow diagram of a conventional improved fluidized bed adsorption device
  • FIG. 4 is a view illustrating a configuration of a temperature pressure mobile phase swing adsorption process system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the cooling water flow of the new heat exchange method of the temperature pressure mobile phase fluctuation process system according to an embodiment of the present invention
  • FIG. 6 is a view showing a temperature gradient of the heat exchange system structure of the temperature pressure mobile phase variable adsorption process system according to the present invention and an embodiment
  • FIG. 7 is a view showing the temperature change of the cooling water through the heat exchange system design of the temperature pressure mobile phase fluctuation adsorption process system according to an embodiment of the present invention obtained through a computer simulation simulator, and the ⁇ angular temperature change of the conventional heat exchange system design,
  • FIG. 8 is a graph showing a curve of adsorption amount according to temperature and pressure fluctuations
  • FIG. 9 is a graph showing heat required for process angle / heating during heat exchange of a system according to the present invention.
  • FIG. 10 is a view illustrating a configuration of a temperature pressure mobile phase swing adsorption process system according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a gas mixture and an adsorbent in a mobile phase temperature pressure swing adsorption process in operation of the adsorption and desorption process system using the staged desorption illustrated in FIGS. 4 and 10.
  • FIG. 4 and 10 are views illustrating a configuration of a temperature pressure mobile phase variable adsorption process system according to an exemplary embodiment of the present invention
  • FIG. 4 illustrates an example of a process system for adsorbing at atmospheric pressure and desorption at low pressure
  • 10 illustrates a process system for adsorbing at high pressure and desorption at normal pressure.
  • a heat exchange system It is an example of a system having a heat exchange system in the same manner as in FIG. 4 and FIG. 10, but having internal water circulating in itself and supplying only necessary heat from the outside.
  • adsorption and desorption have to be made smoothly, and for this purpose, it has been conceived that the pressure during adsorption must be higher than the pressure during desorption.
  • the temperature pressure mobile phase variable adsorption process system comprises: an adsorption bed 4 for selectively adsorbing the mixed gas introduced therein; A blower (BlowerXlO) mounted below the adsorption bed 4 to inject the mixed gas; A transporting device (6) for transporting the adsorbent that has been removed from the lower portion of the adsorption bed (4); A high silver desorption bed (30) which desorbs adsorbate primarily by heating the adsorbent transferred and introduced from the conveying device (6), and positioned above the adsorbent bed; Desorption bed (5) to move the adsorbent powder desorbed in the high temperature desorption bed (30) to desorb the adsorbate secondary; A reflux tube (7) for moving the adsorbent powder desorbed from the desorption bed (5) to the adsorption bed (4); And after the cooling water flows into the lower portion of the lower end of the adsorption bed (4),
  • the detachable bed 5 has a lower pressure P D and a higher pressure than the adsorptive bed 4. Maintaining the temperature T D and preventing the backflow of some gas generated by the pressure difference in the reflux tube 7 by adjusting at least one of the diameter and the length of the reflux tube 7 of the adsorbent particles. It is characterized by.
  • FIG. 4 and 10 is a temperature pressure mobile phase swing adsorption process according to an embodiment of the present invention.
  • Figure 4 illustrates the configuration of the system
  • Figure 4 illustrates a process system for adsorbing all at normal pressure and desorption at low pressure
  • Figure 10 illustrates a process system for adsorbing at high pressure and desorption at normal pressure.
  • Heat ⁇ In the case of a ring system, it has a heat exchange system as shown in Figs. 4 and 10, but the cooling water itself is internal. In addition, only the necessary heat is supplied from the outside and the water is circulated . This is an example of a system for minimizing effluent. It is conceived that adsorption and desorption must be smoothly performed in order to separate materials with high purity, and for this purpose, the pressure at adsorption must be higher than the pressure at desorption.
  • the temperature pressure mobile phase fluctuation process system comprises an adsorption bed (4) for selectively adsorbing the incoming mixed gas; A blower (BlowerXlQ) mounted under the adsorption bed (4) to inject the mixed gas; (6) a device for conveying the adsorbent that has come out of the lower part of the adsorption bed (4); A high temperature desorption bed (30) which heats the adsorbent conveyed from the transfer device (6) and desorbs hop adhesion ⁇ primarily and is located above the adsorption bed; Desorption bed (5) to move the adsorbent powder desorbed in the high temperature desorption bed (30) to desorb the adsorbate secondary; A reflux tube (7) for moving the adsorbent powder desorbed from the desorption bed (5) to the adsorption bed (4); And removing the pentagonal water from the bottom of the adsorption bed (4) and separating the exiting angular water.
  • a blower BlowerXlQ
  • Heat exchange systems 40a and 40b for heating the angled water exiting the upper and lower portions and heating the negative-temperature beds to increase the temperature of the ⁇ -desorbable bed It includes, but the high temperature desorption bed (30) is the same as the pressure (P A ) of the adsorption bed (4), the desorption bed (5) is a lower pressure (P D ) and higher than the adsorption bed (4) Maintaining a temperature T D , and through the adjustment of at least one of the size of the adsorbent particles, the diameter and the length of the reflux tube 7, the reverse flow of some gas generated by the pressure difference in the reflux tube 7 It is characterized in that it is prevented.
  • the gas mixture is pressurized using a compressor (compressorXlO ') as well as the process by the process system illustrated in FIG. 10 as well as the process by the air system illustrated in FIG. vermiculite: by injecting the bed, it is possible to construct a process in a high-pressure state.
  • compressorXlO ' compressorXlO '
  • the gas mixture 1 is first supplied to the adsorption bed 4 through a blower BlowerXlO, passes through the adsorption bed 4, and a large amount of strong adsorbent is adsorbed on the adsorbent, and then the cyclone ( 11) and the bag filter 12 to remove the dust, it is discharged to the weak adsorbate gas (2).
  • the flow rate of the gas in the adsorption bed (4) is good to maintain the initial rate of fluidization, so that the adsorbent flows well under the adsorption bed (4), at the same time so that the adsorbent powder is not mixed too much.
  • the adsorbent that flowed out of the adsorption bed 4 in the state of adsorbing a lot of strongly adsorbents is transferred to the high temperature desorption bed 30 by using the sealed powder transfer device 6 and injected.
  • the high temperature desorption bed 30 is a device for desorption by applying heat to the adhesive, which is located between the adsorption bed 4 and the desorption bed 5, the cost of maintaining the desorption bed 5 in a vacuum or low pressure, It is a device for staged removal for a feeling of redness.
  • the pressure of the silver desorption bed 30 is equal to the pressure P A of the adsorption bed 4, and degassing: maintains the same or higher than the temperature T D of the bed 5.
  • Adsorption performance The adsorption performance is maximized when the desorption of the desorption through the angular water in the adsorption bed (4) is greatly affected by the desorption of the desorption from the adsorption seed (4). (Because the equilibrium adsorption amount is high at low temperature by adsorption isotherm. On the contrary, if the adsorption bed is operated at high temperature without being de-heated by ⁇ , angle, water, adsorption and performance is not good.)
  • the angle of water used for heat exchange is assumed to be in a liquid state, not evaporated at 100 ° C, by mixing materials with high boiling points.
  • the ⁇ is nyaeng gaksu be so introduced into the adsorption bed (4) it requires the flow rate is so large and to chumjjok the condition 2 is the outlet temperature of the wihaeseongneun nyaeng gaksu higher flows into the adsorption bed (4) must use less nyaeng gaksu flow rate . Therefore, the existing heat exchange method Conditions 1 and 2 at the same time can not be cheungjok and appropriately between the two conditions to determine the cooling, can flow.
  • the embodiment of the present invention reflects the structure that can control the cooling water flow flowing in the adsorption bed (4) as well as the ⁇ Kang existing oil variable to be held in the lower end of the adsorption bed (4).
  • the heat exchange system which is one of the configurations of the present invention, is a part in which adsorption occurs intensively by using killing that the adsorption occurs mostly in the lower part of the adsorption bed (4) due to the countercurrent characteristics of gases and solids in the adsorption bed (4).
  • the bottom of the bed flows a lot of angles: water is used to make a delicate heat removal, and only a part of the heat exchanged water flows from the bottom of the adsorption bed (4) to the top of the suction bed (4). Adjust the temperature to maximize the temperature. (At the same time to optimize adsorption performance and economic efficiency)
  • the present invention can realize the adsorption performance and economic volume through the heat exchange system configured to separate the cooling water from the adsorption bed (4) to the two heat ventilation (40a, 40b) (first heat exchanger (40W: bottom lower, 2nd heat exchanger (40a): lower end ⁇ upper part), without separating the angled water, and using the angled water flow control device in the middle of the I.
  • first heat exchanger (40W: bottom lower, 2nd heat exchanger (40a): lower end ⁇ upper part) first heat exchanger (40W: bottom lower, 2nd heat exchanger (40a): lower end ⁇ upper part
  • the flow rate of the fourth cooling water CRW4 which is discharged to the upper portion of the lower end of the adsorption bed 4 and exits again, reaches the operating temperature using the second steam heater HE2 (heated ⁇ ) and the third ⁇ K (CRW3) of the first heat exchanger heat exchanged to the same temperature is supplied to the high temperature desorption bed (30).
  • the heat exchanger in the previously determined angle water flow rate is exchanged in the adsorption bed sieve section, so that both conditions of the adsorption performance and economic optimization cannot be stratified at the same time.
  • the determined water flow rate (CW) is responsible only for the heat exchange at the bottom of the adsorption bed, and then the heat exchange from the bottom to the top of the adsorption bed is made through the adjusted channel angle flow rate, that is, the first cooling water (CWR1). .
  • the amount of the maximum power angle (CW) is a variable that controls the adsorption performance condition
  • the first angle angle (CWR1) is a variable that causes maximum heat exchange by controlling the temperature of the angle outlet.
  • the angle flow flowing into the lower part of the lower end of the adsorption bed 4 and exiting thereafter, followed by 5 minutes, and flowing into the high temperature desorption bed 30 is regarded as approximately 3 angles CWR3.
  • the residual angle remaining flow is represented by the second angle (CWR2).
  • the angle flow flowing into the upper portion of the lower end of the adsorption bed 4 and exiting 1 represents a crab angle 4 CWR4, and the third cooling water CWR3 and the fourth cooling water ( CWR4) combines and flows into and out of the high temperature desorption bed 30 at 15 ° C ⁇ (CWR 5 ).
  • FIG. 5 is a novel heat exchange method of a temperature pressure mobile phase variable adsorption process system according to an embodiment of the present invention. It is a schematic diagram of the power angle flow of. As shown in FIG. Likewise, the third coolant (CRW3) of the second heat exchanger is heat exchanged by the waste gas heat exchanger system U steam heater (HE1) and then heat exchanged with steam through the third steam heater (HE3) to enter the silver-removable bed. The heated water cooling fourth cooling water CWR4 is exchanged with only the second steam heater HE2 and flows into the high temperature desorption bed.
  • 6 is a view showing a temperature gradient of the heat exchange system structure of the temperature pressure mobile phase change adsorption process system according to an embodiment of the present invention. As shown in FIG.
  • the blue line is a higher temperature change in the adsorption bed (ADBX4) when compared with the existing heat exchange structure (black line) as the temperature change preheated when the heat exchange system proposed in the embodiment of the present invention is used. It can be predicted that the angle of temperature is obtained, thereby confirming that the amount of steam heating required before applying to the high temperature desorption bed (A-DEB) 30 is less than that of conventional heat; The temperature change of the third power angle CWR3 is shown. 7 is a view showing the temperature H, the change in temperature H of the angle through the heat exchange system design of the mobile phase fluctuation adsorption process system according to an embodiment of the present invention obtained through a computer simulation simulator and the temperature of the angle of change of the conventional heat exchange system design to be.
  • the horizontal axis indicates the height of the adsorbent bed (4) and the vertical axis heuphwat represents the temperature of the heat exchanger cooling water in the bed (4), the first adsorption bed 4 of nyaeng gaksu flow Chu left in the lower
  • the rest of the conditions, including the change of heat exchange system structure was kept constant and the results were obtained.
  • the two design structures have similar temperatures, but afterwards, the proposed design of the thermal bridge / ring system reduces the angle flow rate so that the adsorption bed (4) exits.
  • the temperature is obtained at 40 ⁇ 50 ° C higher than the conventional process.
  • 8 is a graph showing the adsorption amount curve of all on / off pressure change. Degree
  • ⁇ 0 represents the temperature and pressure at the outlet of the adsorption bed (4), and in the conventional process, the pressure is reduced from ⁇ ⁇ to P L using a low pressure pump in the desorption bed (5).
  • Low to obtain the desired desorption amount (H0-> H1 of FIG. 5) in the case of the process of adding the high silver desorption bed 30 according to the present invention by supplying a heat source in the high temperature desorption bed 30 to the temperature T After removing a certain amount by increasing from L to T H , use the low pressure pump in the detachable bed (5) to change the operating condition to low pressure and perform the final detachment.
  • the low pressure required to achieve the desired recovery rate is between P L and, which in turn can reduce the cost of the low pressure pump itself compared to conventional processes.
  • the adsorption bed, the high temperature desorption bed 30 and the desorption bed are newly proposed; By exchanging , it is possible to optimize the process economically by minimizing the supply heat source.
  • Table 1 shows in-process . This table shows the required heat 3 ⁇ 4 according to the heat capacity and the inlet temperature of each flow.
  • FIG. 9 shows the heat required for the ire angle to be 100 ° C. The maximum temperature of the angle is approx. to ioo ° c angle; Even considering the amount of heat required, the final heat required for cooling or heating
  • the heat required for cooling / heating is calculated to be 26,077,000 kJ / hr, and as shown in FIG.
  • the heat exchange as shown in Figure 4 for minimizing the required coolant flow rate is also possible, in this case, only heating or cooling is required at the local point, the other point can be supplied or removed by circulating inside the water.
  • This heat exchange method controls the temperature of the adsorption bed 4, the high temperature desorption bed 30 and the desorption bed 5, as shown in Figures 4 and 10, 6) or through a transfer pipe and the adsorbent is introduced into the high temperature desorption bed 30 by raising the silver by the steam heater (s . Team heater) of the heat exchange system.
  • the high temperature desorption bed (30) unlike the desorption bed (5), is not a rule through the temperature and pressure ⁇ , but a device that desorbs primarily by applying heat to the adsorbent, the pressure is the same pressure ( P A ) and the temperature is at least above the detachable bed temperature (T D ).
  • the resorbent is transferred to the desorption bed (5) through the reflux tube (7). Since the pressure of the high temperature desorption bed 30 is higher than the pressure of the desorption bed, it is possible to induce a natural movement according to the pressure difference, so that the position of the high silver desorption bed 30 is within the range of the pressure difference. You can adjust the height difference. That is, it is possible to selectively position the detachable bed 5 so as to overcome the force due to the gravity difference according to the height difference to move the adsorbent through the reflux pipe (7) with a pressure difference.
  • the desorption bed 5 maintains a relatively low pressure (P D ) and a high temperature (T D ) relative to the adsorption bed (4) so that a significant amount of strongly adsorbents (such as CO 2 ) in the adsorbent are desorbed.
  • the desorbed gas is removed through the cyclone 14 and the bag filter 15, and then discharged through the gas pump 13, and the desorbed adsorbent powder is gravity-adsorbed along the adsorbent reflux tube 7.
  • FIG. 11 is a flow chart of a gas mixture and an adsorbent in a mobile phase temperature pressure swing adsorption process during operation of the adsorption and desorption process system using the staged desorption illustrated in FIGS. 4 and 10.
  • the gas mixture is continuously supplied to the adsorption bed (atmospheric pressure or high pressure, low temperature) 4 through the blower 10 or the compressor 10 '(S100), and in the adsorption bed 4.
  • the gaseous mixture is selectively adsorbed to the adsorbent and the concentrated weak adsorbate gas is recovered (S110), and the adsorbent to which the selected gas is adsorbed is moved to the high temperature desorption bed 30 through the transfer device (S120),
  • the desorption bed (30) high pressure or high pressure ⁇ high temperature
  • the primary adsorbent is desorbed at a high temperature (S130), and the adsorbent of the desorption bed (30) is desorbed by the pressure difference.
  • the adsorbent is regenerated by separating the adsorbed secondary gas from the desorption bed (low pressure, high temperature) (5), and the concentrated strongly adsorbate gas (C0 2, etc.) is recovered (S150), The regenerated adsorbent is moved to the adsorption bed 4 through the adsorbent down pipe 7 and circulated. (S160)
  • the basic operating situation is very similar to the case of the uptake: adsorption-vacuum desorption of FIG. 4.
  • the gas mixture is injected into the desorption bed, it is supplied at a high pressure through a compressor. Is different.
  • the kinetic energy of the concentrated weak adsorbate is recovered through the expander 16 and the generator 17.
  • the size of the particles is approximately 0.1mm ⁇ 10mm.
  • the general flue gas is discharged to about 16C C, the temperature required for efficient desorption in the desorption bed (5) is about 50 ⁇ 70 ° C. Therefore, before injecting the flue gas into the adsorption bed 4, by heating the desorption bed 5 using the exhaust gas, energy required for maintaining the temperature of the desorption bed 5 can be saved.
  • effects through the process conditions of the process system illustrated in FIGS. 4 and 11 will be described.
  • the operating conditions of the process are classified into atmospheric adsorption-vacuum desorption operation, high pressure adsorption-atmospheric desorption operation, and high pressure adsorption-vacuum desorption according to the characteristics of the target gas mixture and the target adsorbent.
  • the pressure adsorption-progression / desorption operation was performed in a system composed of only an adsorption bed and a desorption bed, but the high temperature desorption bed 30 in the embodiment of the present invention to overcome the disadvantage that the operation cost of the low pressure pump for vacuum is high.
  • the high pressure adsorption-low pressure desorption operation can be performed by using the stepwise desorption, which can significantly reduce the pump operation cost.
  • Atmospheric pressure gas mixture (1) is supplied to the adsorption bed, the hobbed bed (4) is operated at atmospheric pressure (P A ), desorbs the strong adsorbate from the high temperature desorption bed (30) first, and recovers the strongly adsorbate second.
  • Desorption bend 5 is operated at low pressure (P D ⁇ P A ). From the detachable bed (5) Strong adsorbate enriched gas is recovered using a gas pump.
  • the gas mixture 1 of high pressure is supplied to the adsorption bed 4 so that the adsorption bed is operated at a high pressure P A ,
  • the desorption bed 5 is operated at atmospheric pressure ((P D ⁇ P A ).
  • the weak adsorbate enriched gas from the adsorption bed 4 is recovered through the diffuser 13 and the generator 16, so that the pressure difference across the diffuser is increased. The resulting mechanical energy is also recovered.
  • Adsorption heat generated during the adsorption is recovered through the adsorption bed (4) heat exchange system and supplied to the desorption bed to be used as heat energy required for desorption.
  • the temperature of the gas mixture is reduced to the temperature (T A ) of the adsorptive bed through a heat exchange system before raw material supply to recover thermal energy from the raw material, and the recovered thermal energy is a high temperature desorption bed through a heat exchange system. (30) and the desorption bed (5) to maintain the desorption temperature (T D ).
  • the heat of the hopping occurs and the bed temperature rises. It will lower the temperature of 4).
  • the adsorbent regenerated in the desorption bed (5) is transferred to the adsorption seed (4) by gravity along the adsorbent reflux tube (7).
  • the adsorbent brought out into the lower part of the adsorption bed 4 is transferred to the high temperature desorption bed 30X5 by using a closed powder transport device 6, and the powder is transported to a bucket elevator or a bucket elevator. Bucket conveyor is used.
  • the adsorbent of the high temperature desorption bed 30 is moved back to the desorption bed through the reflux tube (7), the high temperature desorption bed (30) is the pressure of the suction bed and Since it is the same, it is higher than the detachable bed 5 so that a natural movement can be induced by the pressure difference.
  • the normal flue gas applied to the adsorption process system according to the present invention is composed of 10% carbon dioxide (C0 2 ) and 90% nitrogen (N 2 ), and in the case of carbon dioxide (C02), high purity of about 99% after separation. Since it is not possible to recover all of them in one step, the carbon dioxide is separated and recovered by operating the PSA process in at least two steps. Among these, the first stage PSA process accounts for a large part of the total operating cost.
  • the mobile phase pressure fluctuation adsorption process of the present invention can replace the first stage PSA process, and the staged desorption compared to the first stage PSA process.
  • the system of the present invention uses heat and steam in the utility to maintain the temperature change occurring in the adsorption bed and the desorption bed at the optimum operating point temperature in the mobile bed pressure fluctuation adsorption hole which enables the continuous process.
  • the utility cost is a big expense in the overall operating cost, so the system according to the invention, which makes it possible to minimize this cost, is of great industrial significance. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims.
  • the present invention relates to a specific gas adsorption process system, and ⁇ in detail from the adsorbent by applying a heat exchange system that can increase the adsorption and stepwise high temperature-low pressure desorption and optimization of the adsorption performance and economics in different temperature and pressure environment
  • a heat exchange system that can increase the adsorption and stepwise high temperature-low pressure desorption and optimization of the adsorption performance and economics in different temperature and pressure environment
  • a mobile bed temperature pressure swing adsorption process system for separating gases and circulating adsorbents into a mobile bed and for selective gas separation.

Abstract

The present invention relates to an adsorption system for selective gas isolation, which uses a phased desorption and a novel heat exchange system. The adsorption system comprises: an adsorption bed; a blower for injecting a mixture gas; a transfer device for transferring an adsorbent; a high-temperature desorption bed which desorbs adsorbates a first time and which is arranged above the adsorption bed; a desorption bed for desorbing adsorbates a second time; a reflux pipe for moving adsorbent powder to the adsorption bed; and a heat exchange system for raising the temperature of the high-temperature desorption bed, wherein the temperature of the high-temperature desorption bed is the same as the pressure (PA) of the adsorption bed, the pressure (PD) of the desorption bed is maintained lower than that of the adsorption bed and the temperature (TD) of the desorption bed is maintained higher than that of the adsorption bed, and backflow of a portion of the gas caused by the pressure difference in the reflux pipe is prevented by adjusting the size of the particle of the adsorbent and/or the diameter and length of the reflex pipe.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
새로운 열교환 시스템을 이용한 온도 압력 변동 이동상 흡착 공정 시스템  Temperature Pressure Fluctuation Mobile Phase Adsorption Process System Using New Heat Exchanger System
【기술분야】 Technical Field
본 발명은 특정한 기체의 흡착 공정 시스템에 관한 것으로, 보다 상세하게는 서로 다른 온도 및 압력 환경에서 흡착 및 단계적 고온 -저압 탈착과 흡착성능과 경제성 최적화를 높일 수 있는 열교환 시스템을 적용해 흡착제로부터 기체를 분리하고 이동상으로 흡착제를 순환시켜, 선택적인 기체분리를 위한 이동상 온도 압력 ^동 흡착공정 시스템에 관한 발명이다.  The present invention relates to a specific gas adsorption process system, and more particularly, to the adsorption and stepwise high temperature-low pressure desorption in a different temperature and pressure environment, and a heat exchange system that can improve the adsorption performance and economic optimization, The invention relates to a mobile bed temperature pressure ^ copper adsorption process system for the separation and circulation of adsorbents into a mobile bed for selective gas separation.
【배경기술】 Background Art
흡착 공정은 흡착제에 대한 기체 혹은 액체의 평형 흡착량이 성분마다 다른 것을 이용하여, 분리를 행하는 공정으로 특별히 기체의 분리 정제에 많이 응용되어 왔다. 공기 증 산소의 분리 농축, 석유화학 공장에서 고순도 수소분리, 노르말 파라핀과 이소 과라핀의 분리, 혐기성 발효 기체 중에 함유된 메탄의 분리, 산업 환경에서 휘발성 유기물 성분의 제거 혹은 분리 등이 대표적인 웅용 예에 속한다. 특히 최근에는 지구 온난화의 주범인 이산화탄소를 발전소, 제철소 등 대규모 산업공정의 연소 배출 기fl로부터 회수하기 위한 목적으로 흡착 공정이 연구되기도 한다.  The adsorption step is a step of separating the gas or liquid by equilibrium adsorption to the adsorbent for each component, and has been particularly applied to separation and purification of gas. Typical examples include separation and concentration of air vaporization oxygen, high-purity hydrogen separation in petrochemical plants, separation of normal paraffins and isoguaraffins, separation of methane in anaerobic fermentation gases, and removal or separation of volatile organic compounds in industrial environments. Belongs. In particular, the adsorption process has recently been studied for the purpose of recovering carbon dioxide, which is a major cause of global warming, from the combustion exhaust fl of large industrial processes such as power plants and steel mills.
기체분리에 사용되는 흡착제에는 제을라이트, 분자체 (molecular sieve), 활성탄, '탄소 분자체, 실리카겔, 활성알루미나 등이 있으며, 흡착 공정은 많은 기공으로 인해 넓은 표면적을 가진 흡착제 표면에 반데르 바알스 (Van der Waals) 힘을 결합력으로 부착되는 물리 흡착을 웅용하는 것이 대부분이다. 이는 물리 흡착이 화학 흡착에 비해 흡착량이 적을 수 있으나 결합력이 상대적으로 낮아 탈착이 용이하기 때문이다. Adsorbents used for gas separation include zeolite, molecular sieve, activated carbon, ' carbon molecular sieve, silica gel, activated alumina, etc., and the adsorption process is due to the many pores. (Van der Waals) Most of them use physical adsorption to attach force as a binding force. This is because physical adsorption may have a smaller amount of adsorption than chemical adsorption, but the bonding force is relatively low, so that desorption is easy.
도 1은 일반적인 흔합가스 중 한 성분에 대한 흡착제에 흡착된 기체의 양과 분압의 관계를 흡착등온선으로 표시한 그래프이다. 도 1에 나타낸 바와 같이, 어떤 기체 성분의 물리 흡착량은 해당 성분의 부분 압력이 상승할수록, 온도가 낮을수록 증가하며, 이 원리를 이용하여 흡착 분리공정이 구성된다. 1 is a graph showing the relationship between the amount of gas adsorbed on an adsorbent and a partial pressure of one component of a general mixed gas by adsorption isotherm. As shown in Fig. 1, the physical adsorption amount of a gas component increases as the partial pressure of the gas component increases. The lower the temperature increases, the adsorptive separation process is constructed using this principle.
흡착을 이용한 기체분리는 전통적으로 압력 변동 흡착 (PSA, Pressure Swing Adsorption) 방법이 가장 많이 사용되어왔다. 이 공정은 기본적으로 하나꾀 흡착베드에서 가압, 고압흡착, 감압배출, 감압세정 혹은 이를 변형한 운전이 짧은 시간을 주기로 전환되며 분리정제를 수행하는 것이다. 한편 평형 흡착량이 온도에 따라 변하는 것을 울용한 온도 변동 흡착 (TSA, Temperature Swing Adsorption) 방법이 사용되기도 하며, 이 둘을 흔합한 압력 온도 변동 롭착 (PTSA, Pressure Temperature Swing Adsorption) 방법이 人 ]·용되기도 한다, 이들은 모두 흡착단계와 탈착단계가 주기적으로 반복되는 방법으로 운전되며, 탈착된 성.분은 필요에 따라 탈착된 성분이 회수되어 제품화된다. Gas separation using adsorption has traditionally been the most commonly used pressure swing adsorption (PSA) method. Basically, this process is to separate and purify the pressurization, high pressure adsorption, depressurization discharge, decompression washing, or modified operation in a single cycle in a single cycle. On the other hand, TSA (Temperature Swing Adsorption) method, which is used to balance the adsorption of equilibrium adsorption, is often used, and the combined Pressure Temperature Swing Adsorption (PTSA) method is used. They are all operated in such a way that the adsorption and desorption steps are repeated periodically, and the desorbed components and components are recovered and commercialized as necessary.
V0C회수시 이동상을 이용한 온도 변동 흡착공정 (TSA)을 많이 쓴다 (도 2 참조). 이동상이라는 개념에서 본 발명의 이동상 온도 압력 변동 흡착공정과 비슷하나, 한 개의 베드를 사용함으로 인해 흡착부와 탈착부의 압력이 동일하게 되며, 이로 인해 흡착과 탈착의 효율이 ^어지는 단점을 지닌다.  In the recovery of V0C, a lot of temperature swing adsorption process (TSA) using a mobile phase is used (see FIG. 2). It is similar to the mobile bed temperature pressure fluctuation adsorption process of the present invention in the concept of a mobile phase, but the pressure of the adsorption unit and the desorption unit is the same by using one bed, which has the disadvantage of receiving the efficiency of adsorption and desorption.
온도 변동 흡착공정 (TSA; Temperature swing adsorption)을 살펴보면, 도 1에 나타낸 바와 같이, 압력이 일정한 상태에서 온도 (TL, qads)에서 흡착.베드을 가열하여 온도를 (TH, qdes)로 하여 탈착하는 방법이 온도 변동 흡卸이다. 온도변동흡착 공정에서 온도를 높이는 가장 편리한 방법은 예열된 기체로 흡착제를 정화히 f 주는 것이나 흡착제의 온도를 단시간에 상승 혹은 하잤시키는 것이 용이하지 않기 때문에 온도변동흡착은 이동상 흡착장치를 이용하기도 하며, 활성탄소를 이용하여 휘발성 유기물 성분 제거 등에서 이러한 방법.이 채택되기도 한다. Looking at the temperature swing adsorption (TSA) process, as shown in Figure 1, the adsorption at the temperature (T L , q ads ) at a constant pressure, heating the bed to (T H , q des ) The method of desorption by means of temperature variation absorption. In the variable temperature adsorption process, the most convenient way to increase the temperature is to purify the adsorbent with preheated gas or to increase or decrease the temperature of the adsorbent in a short time. This method is also employed in the removal of volatile organic components using carbon.
그리고, 은도 변동 흡착공정은 베드 (bed) ί개를 가지고, 1분 내외와 짧은 주기로 흡착 (저온에서 유리)과 탈착 (고온에서 유리)올 반복 운전하는데, 흡착제의 thermal ipass로 인해 이처럼 짧은 시간을 주기로 온도를 변화시키는 것이 매우 힘들다. 또한 thermal mass가 큰 베드의 온도를 짧은 시간을 주기로 가열과 냉각:시키늘데 많은 비용이 소모되는 단점이 있다.  And, the silver fluctuation adsorption process takes ί beds and repeats the adsorption (glass at low temperature) and desorption (glass at high temperature) within one minute and at short intervals. It is very difficult to change the temperature in cycles. In addition, heating and cooling the temperature of a bed with a large thermal mass in a short time is expensive.
압력 변동 롭착공정 (PSA; Pressure swing adsorption)을 살펴보면, 도 1에서 나타낸 바와 같이, 같이 열은 가하지 않고 압력을 (PH, qads)에서 저압인 (PL qdes)로 감압시킴으로써 탈착하는 방법이 압력 변동 홉착이다. 온도 변동 흡착에 비해 압력 변동 흡착의 주기시간은 신속한 압력 감소가 가능하기 때문에 보통 수분 또는 수초까지로 짧으며 압력변동흡착 공정을 구성하는 기본적인 단계들은 원료가압, 흡착, 감압 그리고 세정단계 (도 2 참조)로 이루어져 있다. 이후 공정의 효율을 증대시키기 위하여 생성물 가압, 병류 감압, 압력 균등화, 진공탈착, 강흡착질 정화단계 등과 같은 새로운 단계들이 추가되었으며 현재 대부분의 압력변동흡착 공정은 이러한 단계들의 조합으로 구성된다. 그러나, 압력 변동 흡착은 여러 모드의 운전이 직렬적으로 전환되기 때문에 지속적인 동적 상태에 놓이게 되며 이에 따라 기체유량변화가 심하게 일어난다. 그 결과 송풍기, 압축기, 진공펌프 등 기체 펌프들의 운전점이 고효율 영역에 고정될 수 없 저효율과 고효율 영역 사이를 이동하기 때문에 발전소 배출기체에서 이산화탄소를 분리하는 ¾과 같이 대용량 기체 처리의 경우, 부가가치가 낮은 공정의 경우 등에서 운전비용에 큰 부담으로 작용될 수 있다. Looking at the pressure swing adsorption (PSA) process, as shown in Figure 1, as shown in Figure 1, the pressure is applied at low pressure (P H , q ads ) without applying heat, The method of desorption by depressurizing to (PL qdes) is pressure fluctuation adhesion. Compared to temperature swing adsorption, the cycle time of pressure swing adsorption is usually short, up to a few minutes or seconds because of the rapid pressure reduction, and the basic steps constituting the pressure swing adsorption process are raw material pressurization, adsorption, decompression and washing (see FIG. 2). ) To increase the efficiency of the process, new steps such as product pressurization, cocurrent depressurization, pressure equalization, vacuum desorption, and strong adsorbate purification steps were added, and most pressure swing adsorption processes now consist of a combination of these steps. However, the pressure swing adsorption is in a constant dynamic state because several modes of operation are switched in series, resulting in severe gas flow changes. As a result, the operating points of gas pumps such as blowers, compressors and vacuum pumps cannot be fixed in the high-efficiency area and move between low-efficiency and high-efficiency areas. In the case of a process, it can be a big burden on the operating cost.
또한, 종래의 압력 변동 흡착공정은 베드 (Bed)에 유입되는 유량은 베드 입구에서의 압력과 베드 내부에서의 압력의 차이에 비례한다. 흡착을 위해 베드에 기체를 불어넣어 가압시킬 때, 처음에는 베드의 압력이 낮으므로 많은 유량의 기체가 흘러 들어가지만, 시간이 지나고 베드의 압력이 점점 높아짐에 따라 베드로 유입되는 기체의 유량이 점점 작아지게 된다. 이로 인해 펌프가 운전되는 운전조건이 시간에 따라 달라지게 된다.  In the conventional pressure swing adsorption process, the flow rate flowing into the bed is proportional to the difference between the pressure at the bed inlet and the pressure inside the bed. When the gas is pressurized by blowing gas into the bed for adsorption, the gas flows at a high flow rate because the pressure of the bed is low at first, but as the pressure of the bed increases over time, the flow of gas into the bed becomes smaller and smaller. You lose. This causes the operating conditions of the pump to be changed over time.
탈착을 위해 진국펌프를 통해 베드에서 기체를 빼내어 감압시킬 때 처웁에는 기체가 많은 . 량으로 홀러나오지만, 시간이 지나고 베드의 압력이 점점 낮아짐에 따라 베드로부터 유출되는 기체의 유량이 점점 작아지게 된다. 이로' 인해: 펌프가 운전되는 운전조건이 시간에 따라 달라지게 된다. 또한, 펌프는 운전조건에 따라 그 효율이 달라진다. 따라서, 상기에서 설명한 흡착과 탈착과정.에서와 같이 운전조건이 변화할 경우, 펌프를 항상 최대효율로 운전하는 것이' 어렵게 되며, 이로 .인해 많은 운전비용을 소비하게 된다. When degassing the gas from the bed through the Jingu pump for desorption, there is a lot of gas. The amount of gas flowing out of the bed decreases as time passes and the pressure of the bed decreases. Therefore, due to: the pump becomes the driving conditions depending on the time driving. In addition, the efficiency of the pump varies depending on the operating conditions. Therefore, when the operating conditions are changed as in the adsorption and desorption process described above, it is difficult to always operate the pump at maximum efficiency, which consumes a lot of operating costs.
흡칙;공정의 운전비용에서 가입: (또는 감압)에 필요한 펌프 소요 전력이 대부분을 차지,하므로, 상기에서 설명한 것과 같은 단점은 결과적으로 많은 운전비용을 초래한다. 도 3은 종래의 7 량형 유동층 흡착장치의 공정 흐름도 (Process Flow Diagram)이다. 장치는 흉착부, 탈착부, 활성탄 반송부 및 용제분리부 등으로 구성되어 있다. 흡착부는 다단의 다공판으로 활성탄의 유동부와 유하부로 구성되어 있다. 활성탄은 하부로부터 상승하는 용제함유 가스에 의해 다공판상에서 유동층을 형성하여 용제를 흡착한다. 그리고 활성탄은 순환량과 일치하는 양이 유하부로부터 하단의 다공판으로 홀러내려 간다. 탈착부는 다관식 열교환 시스템를 주로 이용하고 있다. In the operating cost of the process, the pump power required for the joining (or depressurization) takes up the majority, so the disadvantages described above result in high operating costs. 3 is a process flow diagram of a conventional seven-component fluidized bed adsorption system. The apparatus is composed of a chest part, a detachable part, an activated carbon conveyance part, a solvent separation part, and the like. The adsorption part is a multi-stage porous plate, which is composed of a flow part and a bottom part of activated carbon. Activated carbon forms a fluidized bed on the porous plate by the solvent-containing gas rising from the bottom to adsorb the solvent. And activated carbon is removed from the lower part to the lower perforated plate in an amount equal to the circulation amount. The detachable part mainly uses a multi-tube heat exchange system.
흡착부로부터 흘러내려 가는 활성탄은 열교환 시스템에서 가열되어지는 관와 하^에서 탈착가스와 접촉한다. 탈착가스는 탈착된 용제를 함유하고 있는 탈착부 상부로부터 용제 분리부로 배출된다. 한편, 용제가 탈착된 활성탄은 탈착부 최하부에서 기류반송관을 통해 흡착부 최상단의 다공판으로 반송된다. 아와 · 같은 과정을 통해 활성탄은 연속순환을 하껸서 흡착과 탈착을 반복하게 된다.  The activated carbon flowing down from the adsorption unit contacts the desorption gas underneath the tube being heated in the heat exchange system. Desorption gas is discharged from the upper part of the desorption part containing the desorbed solvent to the solvent separation part. On the other hand, the activated carbon from which the solvent has been desorbed is conveyed to the porous plate at the uppermost end of the adsorption unit through the air flow conveying pipe at the lower part of the desorbing unit. Through the same process, activated carbon undergoes continuous circulation and repeats adsorption and desorption.
이 장치의 가장 f 특징은 흡착부와 탈착부가 하나의 베드에서 분리되어 있고, 간접가열 탈착방식이기 때문에 수증기, 공기, 질소 등과 같은 탈착가스의 선택이 자유로운 점이 있지만, 상기 공정은 흡착부와 탈착부가 동일 압력하에서 운전되는 단점이 있다.  The most feature of this device is that the adsorption unit and the desorption unit are separated in one bed, and because the indirect heating desorption method allows the selection of desorption gas such as water vapor, air, nitrogen, etc. There is a disadvantage of operating under the same pressure.
또한, 종래의 흡착공정 시스템은 흡착성능을 높이기 위해서 층분한 제.열;이 ^구되므로 흡착베드로 유입되는 넁각수는 유량을 증가시켜 사용하지만, 경제성을 높이거나 최적,화 하기 위해서는 넁각수의 출구온도가 높아야 하므로 흡 쎄드로 유입되는 냉각수 유량을 적게 사용해야 한다는 문제점이 있다.  In addition, the conventional adsorption process system is required to increase the flow rate of the water flow into the adsorption bed is required to increase the flow rate, but to increase the flow rate, but in order to increase the economic efficiency or optimization, Since the temperature must be high, there is a problem in that the flow rate of the coolant flowing into the suction seed must be reduced.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기:술적 과제】  [Ki: artistic problem]
상술한 문제를 해,결하기 위한 본 발명의 과제는 첫째, 흡착공정은 연속'공정으로, 기체 펌프들이 고정된 조건에서 연속운전하는 것이 가능하여, 각긱^의 펌프를 최대효율이 되는 운전조건으로 운전 가능하며, 이를 통해 운전.에너지 절감을 성취할ᅳ 수 있도록 하는 것이고, 둘째, 동일 규모의 장치에서 더 높은 생산성을 얻을 수 있도록 하고, 셋째, 원하는 조건으로 압력 변동, 온도 변동 운전을 수행할 수 있게 하는 것이고, 넷째, 시스템 및 펌프의 운전효율 높여 운전비용을 절감하고, 흔합기체의 분리 및 회수 효 을 높이고자 함이며 다섯째, 열교환 시스템을 이용해 각 단에 소요되는 에너지를 절감하고 저비용 운전이 가능하도록 하여 흡착성능과 경제성 최적화를 동시에 이루기 위함이다. The problem of the present invention for solving and solving the above problems is first, the adsorption process is a continuous ' process, it is possible to operate continuously in a fixed condition of the gas pumps, each pump ^ to the operating conditions to the maximum efficiency It is possible to operate, and to achieve the operation and energy savings through this, secondly, to achieve higher productivity in the same size device, and thirdly, to the pressure fluctuation, temperature to the desired conditions Fourth, to increase the operating efficiency of the system and pump, to reduce operating costs, and to improve the separation and recovery of the mixed gas. It is to achieve the adsorption performance and economic optimization at the same time by enabling saving and low cost operation.
더하여, 다양한 종류의 기체 흔합물 분리에 웅용될 수 있도록 하는 것으로, 예를 들어 연소 배출 기체로부터 이산화탄소 회수 등 대량으로 기체를 분리하기 위한 1 단계 농축 공정에 특별히 유용하도록 하는 공정 시스템을 제공하기 위함이다.  In addition, it is intended to be used for the separation of various kinds of gas mixtures, and to provide a process system that is particularly useful for one-stage concentration processes for separating gases in large quantities, such as carbon dioxide recovery from combustion exhaust gases. .
【기술적 해결방법】 Technical Solution
상술한 과제를 해결하기 위한 본 발명의 계 1 특징은, 유입된 흔합가스를 선택적으로 흡착하는 흡착베드; 상기 흡착베드 하부에 장착되어 상가흔합가스를 주밉시키는 블로워 (Blower); 상기 흡착베드 하부에서 홀러나온 흡착제를 이송시키는 이송장치; 상기 이송장치에서 이송되어 유입되는 상기 흡착제를 가열'하여 흡착질을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고온탈착쎄드; 상기 고온탈착베드에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착시키는 탈착베드; 상기 탈착베드에서 탈착된 흡착제 분체를 상기 홉칙베드로 이동시키는 환류관; 및 상기 흡착베드 하단 하부에 넁각수를 유입^켜 제열하고, 출구되는 넁각수를 분리 시킨 후, 상기 분리된 일부 넁각수를 다시: 상기 홉착베드의 하단 상부에 유입시켜 제열시고, 상기 하단 상부 및 하 ^에서 출구되는 넁각수를 가열시키고 상기 고온탈착베드에 유입시켜 상기 고은탈착베드의 온도를 높이는 열 교환시스템을 포함하되, 상기 고온탈착베드는 상기 흡착베드의 압력 (PA)과 동일하고, 상기 탈착베드는 상기 흡착베드에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하고, 상기 흡착제 입자의 크기, 환류관의 직 . 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관에서 압력차에 의ᅳ해 발생:되는 일부 가스의 역류가 방지되는 것이다. The first feature of the present invention for solving the above problems is an adsorption bed for selectively adsorbing the mixed gas introduced; A blower mounted at a lower portion of the adsorptive bed to pressurize a mixed gas mixture; A transporting device for transporting the adsorbent that has come out from the lower portion of the adsorption bed; Heating the adsorbent and flows are transported in the transport device, and to desorb the adsorbate primarily, a high temperature desorption ssedeu positioned upper than the adsorption bed; A desorption bed to which the adsorbent powder desorbed from the high temperature desorption bed is moved to desorb the adsorbate secondly; A reflux tube for moving the adsorbent powder desorbed from the desorption bed to the hopsick bed; And injecting and removing water from the lower end of the adsorption bed, separating the water from the outlet, and separating the separated water from the lower part of the suction bed. It includes a heat exchange system for heating the angle of exit from the lower ^ ^ to flow into the high temperature desorption bed to increase the temperature of the silver desorption bed, the high temperature desorption bed is equal to the pressure (P A ) of the adsorption bed, The desorption bed maintains a lower pressure (P D ) and a higher temperature (T D ) than the adsorption bed, and the size of the adsorbent particles, the size of the reflux tube. And by adjusting at least one of the lengths, to prevent backflow of some of the gases generated by the pressure difference in the reflux tube.
여기서, 상기 열교환 시스템은, 상기 흡착베드 하단 하부에 냉각수를 유압시켜 제열하고 출구되는 넁각수 일부를 분리시킨 제 1 넁각수를 상기 흡착베드의 하단 상부에 유입시켜 제열시킨 후, 출구되는 제 4 넁각수를 가열시키고 상기 고온탈착베드에 유입시켜 탈착베드 온도를 높이는 제 1 열교환기와, 상기 흡착베드 한단 하부에서 출구된 넁각수를 일부 분리한 거 12 냉각수는 배출시키고, 나머지 계 3 냉각수는 가열시킨 후 상기 고온탈착베드 유입시켜 탈착베드 온도를 높이는 제 2 열교환기로 구성된 것이 바람직하다. Here, the heat exchange system, the cooling water is hydraulically heated to the lower portion of the lower end of the adsorption bed, and the first fin angle which separates a portion of the outlet angle is separated into the upper portion of the lower end of the adsorption bed to remove the fourth fin. Angle A first heat exchanger that heats and flows into the high temperature desorption bed to raise the temperature of the desorption bed; It is preferable that the second heat exchanger is configured to increase the temperature of the removable bed by introducing the removable bed.
또한, 바람직하게는 상기 흡착베드에서 출구되어 상기 고온탈착베드로 유입되는 상기 제 3 냉각수 및 제 4 냉각수는 각각의 유로에 설치된 적어도 하나의 스팀 히터에 의해 가열되는 것일 수 있고, 제 3 냉각수를 가열하는 스팀 히터는 상기 흡착베드 상단에사배출된 폐가스를 사용하는 스팀 히터를 포함하는 것일 수 있다. 그리고 본 발명의 제 2 특징은 상기 흡착베드 하부에 장착되어 상기 흔합가스를 압축하여 주입,시키는 압축기 (compressor); 상기 흡착베드 하부에서 흘러나온 흡착제를 이송시키는 이송장치; 상기 이송장치에서 이송되어 유입되는 상가흡착제를 가열하여 흡착질을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고온탈착베드; 상기 고온탈착베드에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착시키고, 상기 흡착베드보다 상부에 위치하는 탈착베드; 상기 탈칙;베드에서 탈착된 흡착제 분체를 상기 흡착베드로 이동시키는 환류관; 및 상기 흡착베드 하단 하부에 넁각수를 유입시켜 제열하고 출구되는 냉각수를 분리 시킨 후, 상기 분리된 일부 냉각수를 다시 상기 흡착베드의 하단 상부에 유입시켜 제열시고, 상기 하단 상부 및 하부에서 출구되는 넁각수를 가열시키고 상기' 고온탈착베드에 유입시켜 상기 고온탈착베드의 온도를 높이는 열 교환시스템을 포함하되, 상기 고온탈착베드는 상기 흡착베드의 압력 (PA)과 동일하고, 상기 탈착베드는 상기 흡착베드에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하^, 상기 흡착제 입자의 크기, 환류관의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관에서 압력차에 의해 발생되는 일부 가스의 역류가 방지되는 것이다. In addition, preferably, the third cooling water and the fourth cooling water exiting from the adsorption bed and introduced into the high temperature desorption bed may be heated by at least one steam heater installed in each flow path, and heat the third cooling water. The steam heater may include a steam heater using waste gas discharged on the upper end of the adsorption bed. And a second feature of the present invention is a compressor (compressor) is mounted to the lower portion of the adsorption bed to compress and inject the mixed gas; A transfer device for transferring the adsorbent flowing out from the lower portion of the adsorption bed; A high temperature desorption bed disposed on the upper side of the adsorptive bed to desorb the adsorbate first by heating the adsorbent adsorbed by the transfer device; An adsorbent powder desorbed from the high temperature desorption bed to desorb the adsorbent secondary, and a desorption bed positioned above the adsorption bed; The degreaser; a reflux tube for moving the adsorbent powder desorbed from the bed to the adsorption bed; And removing the coolant from the lower part of the adsorption bed by removing the coolant from the lower part of the adsorption bed and removing the cooling water from the lower part of the adsorption bed. by heating the gaksu and entering the "high temperature desorption bed comprising: a heat exchange system to increase the temperature of the high temperature desorption bed, the high temperature desorption bed is equal to the pressure (P a) of the adsorption bed and the desorption beds are the Maintain a low pressure (P D ) and a high temperature (T D ) relative to the adsorptive bed, which is caused by the pressure difference in the reflux tube through the adjustment of at least one of the size of the adsorbent particles, the diameter and the length of the reflux tube. Backflow of some of the gas being prevented.
여기서, 상기 열교환 시스템은, 상기 흡착베드 하단 하부에 넁각수를 유입시켜 제열하고 출구되는 냉각수 일부를 분리시킨 제 1 넁각수를 상기 흡착베드의 하단 상부에 유입시켜 제열시킨 후, 출구되는 제 4 넁각수를 가열시키고 상기 고온탈착베드에 유 시켜 탈착베드 온도를 높이는 제 1 열교환기와, 상기 흡착베드 한단 하부에서 출구된 넁각수를 일부 분리한 저 12 냉각수는 배출시키고, 나머지 제 3 냉각수는 가열시킨 후 상기 고온탈착베드 유입시켜 탈착베드 온도를 높이는 제 2 열교환기로 구성된 것이 바람직하다. Here, the heat exchange system, the first 넁 angle water is introduced into the upper portion of the lower end of the adsorption bed to remove the cooling water flows into the lower portion of the lower end of the adsorption bed and separated from the cooling water, the fourth heat exchanger Angle The first heat exchanger for heating and desorbing the high temperature desorption bed to increase the temperature of the desorption bed, and the low 12 cooling water which is partially separated from the water discharged from the lower end of the adsorption bed are discharged. It is preferable that the second heat exchanger is configured to increase the temperature of the removable bed by introducing the removable bed.
또한, 바람직하게는 상기 흡착베드에서 출구되어 상기 고온탈착베드로 유입되는 상기 제 3 냉각수 및 제 4 냉각수는 각각의 유로에 설치된 적어도 하나의 스팀 히터에 의해 가열되는 것일 수 있고, 제 3 냉각수를 가열하는 스팀 히터는 상기 흡착베드 상단에서 배출된 폐가스를 사용하는 스팀 히터를 포함하는 것일 수 있다.  In addition, preferably, the third cooling water and the fourth cooling water exiting from the adsorption bed and flowing into the high temperature desorption bed may be heated by at least one steam heater installed in each flow path, and heat the third cooling water. The steam heater may include a steam heater using waste gas discharged from the upper end of the adsorption bed.
【유리한 효과】 Advantageous Effects
이와 같은 휸: 발명을 제공하면, 단계적 탈착을 이용하여 시스템의 운전 효율을 높이고, 기체흔합물의 분리 및 회수 효율을 높일 수 있다. 그리고, 효 :적인 고정된 조건에서 운전하는 것이 가능하고 연속 조업이 가능하므로 동일 규모의 타 기쳬 분리장치에 비해 더 높은 생산성을 얻을 수 있으며, 원하는 조¾으로 압력변동, 온도 변동 운전이 가능하고, 열교환 시스템을 이용해 각 단에 소요되는 에너지를 절감하고 저비용 운전이 가능하므로 효율적인 운전이 가능하여 에너지 절감을 성취할 수 있도록 하여 흡착성능 및 경제성을 개선할 수 있다,.  In this manner, by providing the invention, it is possible to increase the operating efficiency of the system by using the stepwise desorption and to improve the separation and recovery efficiency of the gas mixture. And, since it is possible to operate under the fixed fixed condition and continuous operation, it is possible to obtain higher productivity than other size separators of the same size, and it is possible to operate the pressure fluctuation and temperature fluctuation with the desired operation. By using heat exchange system, energy saving in each stage is possible and low cost operation is possible so that efficient operation is possible to achieve energy saving and improve adsorption performance and economic efficiency.
또한, 다양한 종류의 기체 흔합물 분리에 웅용될 수 있으며, 예를 들어 연 배출 기체로부터 아;산화탄소 회수 등 대량으로 기체를 분리하기 위한 1 단계 농축 공정에 흑별히 유용하다.  In addition, it can be used for the separation of various kinds of gas mixtures, and is particularly useful in the one-stage concentration process for separating gases in large quantities such as, for example, recovering carbon oxides from a flue gas.
그리고, 본 발명의 공정은 현재 상업적으로 널리 사용되고 있는 기체홉착분리 공정인 압력 변동 흡착공정을 대체, 보완할 수 있는 공정으로, 기체ᅳ의 건조, 수증기 개질 가스로부터 수소의 회수, 공기로부터 산소와 질소의 분리:, 암모니아 세정기체로부터 아르곤의 회수, 제철소 배출기체로부터 CO회수, 매립지 기체로부터 CH4와 C02 회수 등 다양한 기체흔합물을 분리, 회수하는데 있어'서 효율성을 ¾려한 고정된 조건에서 운전하는 것이 가능하고, 연속 조업이 가능하여 동일 규 의 타 기체 분리장치에 비해 더 높은 생산성과 더 높은 품질의 생산물을 얻을 수 있으며, 원하는 조건으로 압력변동, 온도 변동 운전이 가능하다. In addition, the process of the present invention can replace and supplement the pressure swing adsorption process, which is currently widely used gas adhesion separation process, drying of gas, recovery of hydrogen from steam reforming gas, oxygen from air Separation of Nitrogen: in the separation of various gas mixtures such as recovery of argon from ammonia scrubbing gas, recovery of CO from steel mill exhaust gas, recovery of CH 4 and CO 2 from landfill gas, It is possible to operate and continuous operation, so that higher productivity and higher than other gas separators of the same standard Quality products can be obtained and pressure fluctuations and temperature fluctuations can be achieved under the desired conditions.
특히, 이산화탄소의 분압이 낮은 배가스로부터 이산화탄소를 분리, 회수하기 위해 사용되는 기존의 2단계 압력변동률착 공정에서, 에너지소비의 70%를 차지하는 1단계 이;산확탄소 농축공정에 특별히 유용하다고 할 수 있다. 이와 같이, 본 발명은 이산화탄소 저감 및 분리, 회수와 관련하여 주로 흡수기술에 많이 치중해 있는 현재의 연구에서 흡수기술, 흡착베드술, 막분리 기술 등의 다양하고 폭넓은 학문으로의 연구 기회를 제공할 것이며, 궁극적으로는 현재^ 흡참분리기술을 한층 발전시키는 계기가 될 것이다.  In particular, in the conventional two-stage pressure fluctuation deposition process used to separate and recover carbon dioxide from a flue gas having a low partial pressure of carbon dioxide, it can be said to be particularly useful for the one-stage diffusion carbon enrichment process, which accounts for 70% of the energy consumption. . As such, the present invention provides an opportunity for research into a wide variety of studies, such as absorption technology, adsorption bed, membrane separation technology, etc., in the present study, which is mainly focused on absorption technology in relation to carbon dioxide reduction, separation, and recovery. Ultimately, this will be an opportunity to further develop the current ^ suction separation technology.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 한 기체성분의 분압과 흡착된 양 사이의 관계를 나타내는 흡착등온선을 도시할 그 프, ᅳ  1 shows an adsorption isotherm showing the relationship between the partial pressure of a gas component and the amount adsorbed.
도 2는 종래의 압력 ;변동 흡착공정의 공정 흐름도이고, 2 is a conventional pressure ; Process flow chart of variable adsorption process,
도 3는 종래의 개량췽 유동층 흡착장치의 공정 흐름도이고,  3 is a process flow diagram of a conventional improved fluidized bed adsorption device,
도 4는 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착 공정 시스템의 구성을 예시한 도면이고,  4 is a view illustrating a configuration of a temperature pressure mobile phase swing adsorption process system according to an embodiment of the present invention,
도 5는 본 발명의 실시예에 따른 온도 압력 이동상 변동 홉착공정 시스템의 새로운 열교환 '방식의 냉각수 흐름 모식도이고,  Figure 5 is a schematic diagram of the cooling water flow of the new heat exchange method of the temperature pressure mobile phase fluctuation process system according to an embodiment of the present invention,
도 6은 본 발명와 실시예에 따른 온도 압력 이동상 변동 흡착공정 시스템의 열교환 시스템 구조에 대한 온도 구배를 나타낸 도면이고,  6 is a view showing a temperature gradient of the heat exchange system structure of the temperature pressure mobile phase variable adsorption process system according to the present invention and an embodiment,
도 7은 전산모사 사뮬레이터를 통하여 얻은 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착공정 시스템의 열교환 시스템 설계를 통한 냉각수의 온도 변화와 종래의 열교환 시스템 설계의 넁각수 온도변화를 나타낸 도면이고,  7 is a view showing the temperature change of the cooling water through the heat exchange system design of the temperature pressure mobile phase fluctuation adsorption process system according to an embodiment of the present invention obtained through a computer simulation simulator, and the 넁 angular temperature change of the conventional heat exchange system design,
도 8은 온도 압력 변동에 따른 흡착량 곡선을 나타내는 그래프이고, 도 9는 본 할명에 따른 시스템의 열교환 시 공정의 넁각 /가열에 필요한 열 : 나타낸 도면이고,  8 is a graph showing a curve of adsorption amount according to temperature and pressure fluctuations, and FIG. 9 is a graph showing heat required for process angle / heating during heat exchange of a system according to the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 온도 압력 이동상 변동 흡착 공정 시스템의 구성을 예서한 도면이고, 도 11은 도 4 및 도 10에 도시된 단계적 탈착을 이용한 흡ᅳ탈착 공정 시스템의 운전시, 이동상 온도 압력 변동 흡착공정에서 기체흔합물 및 흡착제의 흐름도이다. 10 is a view illustrating a configuration of a temperature pressure mobile phase swing adsorption process system according to another embodiment of the present invention. FIG. 11 is a flowchart of a gas mixture and an adsorbent in a mobile phase temperature pressure swing adsorption process in operation of the adsorption and desorption process system using the staged desorption illustrated in FIGS. 4 and 10.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
도 4 및 도 10은 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착 공정 시스템의 구성을 예시한 도면으로, 도 4는 상압에서 흡착을 진행하며 저압에서 탈착을 진행하는 공정 시스템을 예사한 것이며 도 10은 고압에서 흡착을 진행하며 상압에서 탈착을 진행하는 공정 시스템을 예시한 것이다. 열교환 시스템의 경우에는.도 4 및 도 10와 같은 방식의 열교환 시스템을 갖되 내부에서 넁각수가 자체적으로 순환하며 필요한 열만 외부에서 공급하여 넁각수 유량을 최소화하기 위한 시스템의 예시이다. 이는 고순도로 물질을 분리하기 위해서는 흡착과 탈착이 원활하게 이루어져야 하며, 이를 위해 흡착시의 압력이 탈착시의 압력보다 높아야 하는 것에 착안 되었다.  4 and 10 are views illustrating a configuration of a temperature pressure mobile phase variable adsorption process system according to an exemplary embodiment of the present invention, and FIG. 4 illustrates an example of a process system for adsorbing at atmospheric pressure and desorption at low pressure. 10 illustrates a process system for adsorbing at high pressure and desorption at normal pressure. In the case of a heat exchange system. It is an example of a system having a heat exchange system in the same manner as in FIG. 4 and FIG. 10, but having internal water circulating in itself and supplying only necessary heat from the outside. In order to separate the material with high purity, adsorption and desorption have to be made smoothly, and for this purpose, it has been conceived that the pressure during adsorption must be higher than the pressure during desorption.
도 4에 나 Ε·낸 바와 같이, 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착 공정 시스템은 유입된 흔합가스를 선택적으로 흡착하는 흡착베드 (4); 상기 흡착베드 (4) 하부에 장착되어 상기 흔합가스를 주입시키는 블로워 (BlowerXlO); 상기 흡착베드 (4) 하부에서 홀러나온 흡착제를 이송시키는 이송장치 (6); 상기 이송장치 (6)에서 이송되어 유입되는 상기 흡착제를 가열하여 흡착질을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고은탈착베드 (30); 상기 고온탈착베드 (30)에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착시키는 탈착베드 (5); 상기 탈착베드 (5)에서 탈착된 흡착제 분체를 상기 흡착베드 (4)로 이동시키는 환류관 (7); 및 상기 흡착베드 (4) 하단 하분에 냉각수를 유입시켜 제열하고, 출구되는 넁각수를 분리 시킨 후, 상기 분리된 일부 넁각수를 다시 상기 흡착베드의 하단 상부에 유입시켜 제열시고, 상기 하단 상부 및 하부에서 출구되는 넁각수를 가열시키고 상기 고온탈착베드에 유 시켜 상기 고온탈착베드의 온도를 높이는 열 교환시스템 (40a, 40b)을 포함하되, 상기 고온탈착베드 (30)는 상기 흡착베드 (4)의 압력 (PA)과 동일하고, 상기 탈착베드 (5)는 상기 흡착베드 (4)에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하고, 상기 흡착제 입자의 크기 환류관 (7)의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관 (7)에서 압력차에 의해 발생되는 일부 가스의 역류가 방지되는 것을 특징으로 한다. As shown in Fig. 4, the temperature pressure mobile phase variable adsorption process system according to the embodiment of the present invention comprises: an adsorption bed 4 for selectively adsorbing the mixed gas introduced therein; A blower (BlowerXlO) mounted below the adsorption bed 4 to inject the mixed gas; A transporting device (6) for transporting the adsorbent that has been removed from the lower portion of the adsorption bed (4); A high silver desorption bed (30) which desorbs adsorbate primarily by heating the adsorbent transferred and introduced from the conveying device (6), and positioned above the adsorbent bed; Desorption bed (5) to move the adsorbent powder desorbed in the high temperature desorption bed (30) to desorb the adsorbate secondary; A reflux tube (7) for moving the adsorbent powder desorbed from the desorption bed (5) to the adsorption bed (4); And after the cooling water flows into the lower portion of the lower end of the adsorption bed (4), and after separating the pentagonal water discharged, the separated part of the pentagonal water is introduced into the lower upper portion of the adsorption bed, and the upper and lower A heat exchange system (40a, 40b) for heating the pentagonal water exiting from the lower portion and heating it to the high temperature desorption bed to raise the temperature of the high temperature desorption bed, wherein the high temperature desorption bed (30) is the adsorption bed (4). Is equal to the pressure P A , and the detachable bed 5 has a lower pressure P D and a higher pressure than the adsorptive bed 4. Maintaining the temperature T D and preventing the backflow of some gas generated by the pressure difference in the reflux tube 7 by adjusting at least one of the diameter and the length of the reflux tube 7 of the adsorbent particles. It is characterized by.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하 본 발명에 따른 바람직한 실시예를 도면을 참조하여 상세히 설명하기로 한다.  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
도 4 및 도 10은 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착 공정. 시스템의 구성을 예시한 도면으로, 도 4는 상압에서 흡착올 진행하며 저압에서 탈착을 행하는 공정 시스템을 예시 것이며 도 10은 고압에서 흡착을 진행하며 상압에서 탈착을 진행하는 공정 시스템을 예시한 것이다. 열^!환 시스템의 경우에는 도 4 및 도 10와 같은 방식의 열교환 시스템을 갖되 내부에서 냉각수가 자체적.,으로 순환하며 필요한 열만 외부에서 공급하여 넁각수 유.홧을 최소화하기 위한 시스템의 예시이다, 이는 고순도로 물질을 분리하기 위해서는 흡착과 탈착이 원활하게 이루어져야 하며, 이를 위해 흡착시의 압력이 탈착시의 압력보다 높아야 하는 것에 착안 되었다. 4 and 10 is a temperature pressure mobile phase swing adsorption process according to an embodiment of the present invention. Figure 4 illustrates the configuration of the system, Figure 4 illustrates a process system for adsorbing all at normal pressure and desorption at low pressure and Figure 10 illustrates a process system for adsorbing at high pressure and desorption at normal pressure. Heat ^! In the case of a ring system, it has a heat exchange system as shown in Figs. 4 and 10, but the cooling water itself is internal. In addition, only the necessary heat is supplied from the outside and the water is circulated . This is an example of a system for minimizing effluent. It is conceived that adsorption and desorption must be smoothly performed in order to separate materials with high purity, and for this purpose, the pressure at adsorption must be higher than the pressure at desorption.
도 4에 나타낸 바와 같이, 본 발명의 실시예에 따른 온도 압력 이동상 변동 홉착 공정 시스템은 유입된 흔합가스를 선택적으로 흡착하는 흡착베드 (4); 상기 흡착베드 (4) 하부에 장착되어 상기 흔합가스를 주입시키는 블 ^워 (BlowerXlQ); 상기 흡착베드 (4) 하부에서 홀러나온 흡착제를 이송시키는 이 장치, (6); 상기 이송장치 (6)에서 이송되어 유입되는 상기 흡착제를 가열하여 홉착^을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고온탈착베드 (30); 상기 고온탈착베드 (30)에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착시키는 탈착베드 (5); 상기 탈착베드 (5)에서 탈착된 흡착제 분체를 상기 흡착베드 (4)로 이동시키는 환류관 (7); 및 상기 흡착베드 (4) 하단 하 께 넁각수를 유입시켜 제열하고, 출구되는 넁각수를 분리 시킨 후, 상기 분리:된 일부 넁각수를 다시 상기 흡착베드의 하단 상부에 유입시켜 제열시고ᅳ 상기 하단 상부 및 하부에서 출구되는 넁각수를 가열시키고 상기 고온탈착베드에 유 시켜 상기 ^온탈착베드의 온도를 높이는 열 교환시스템 (40a,40b)을 포함하되, 상기 고온탈착베드 (30)는 상기 흡착베드 (4)의 압력 (PA)과 동일하고, 상기 탈착베드 (5)는 상기 흡착베드 (4)에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하고, 상기 흡착제 입자의 크기, 환류관 (7)의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관 (7)에서 압력차에 의해 발생되는 일부 가스의 역류가 방지되는 것을 특징으로 한다. As shown in Figure 4, the temperature pressure mobile phase fluctuation process system according to an embodiment of the present invention comprises an adsorption bed (4) for selectively adsorbing the incoming mixed gas; A blower (BlowerXlQ) mounted under the adsorption bed (4) to inject the mixed gas; (6) a device for conveying the adsorbent that has come out of the lower part of the adsorption bed (4); A high temperature desorption bed (30) which heats the adsorbent conveyed from the transfer device (6) and desorbs hop adhesion ^ primarily and is located above the adsorption bed; Desorption bed (5) to move the adsorbent powder desorbed in the high temperature desorption bed (30) to desorb the adsorbate secondary; A reflux tube (7) for moving the adsorbent powder desorbed from the desorption bed (5) to the adsorption bed (4); And removing the pentagonal water from the bottom of the adsorption bed (4) and separating the exiting angular water. Heat exchange systems 40a and 40b for heating the angled water exiting the upper and lower portions and heating the negative-temperature beds to increase the temperature of the ^ -desorbable bed It includes, but the high temperature desorption bed (30) is the same as the pressure (P A ) of the adsorption bed (4), the desorption bed (5) is a lower pressure (P D ) and higher than the adsorption bed (4) Maintaining a temperature T D , and through the adjustment of at least one of the size of the adsorbent particles, the diameter and the length of the reflux tube 7, the reverse flow of some gas generated by the pressure difference in the reflux tube 7 It is characterized in that it is prevented.
여기서, 공장의 배가스와 같이 기체흔합물의 유량이 큰 경우, 이를 모두 가압하여 흡착베드 (4)에 주입하는 것은 굉장히 어렵기 때문에, 도 4에서 나타낸 바와 같이 송풍기 (blowerXlO)를 통해 상압에서 기체흔합물을 흡착베드로 주입하고, 동일한 압력의 고온탈착베드 (30)에서 1차 회수하고, 상기 흡착쎄드 (4)와 상대적으로 저압인 탈착베드 (5)로부터 강흡착질 기체를 회수하는 운전 방법을 선택해야 한다.  Here, when the flow rate of the gas mixture, such as the flue gas of the factory, it is very difficult to pressurize all of them and inject it into the adsorption bed (4), as shown in Figure 4 through the blower (blowerXlO) at atmospheric pressure gas mixture Is injected into the adsorption bed, the first recovery in the high temperature desorption bed 30 of the same pressure, and the operation method of recovering the strong adsorbate gas from the desorption bed (5) which is relatively low pressure with the adsorption seed (4) should be selected. .
만약 처리해야 하는 기체흔합물의 유량이 크지 않다면, 도 4에서 예시된 공 시스템에 의한 공정뿐만 아니라 도 10에서 예시된 공정 시스템에 의한 공정;과 같이 기체흔합물을 압축기 (compressorXlO')를 이용하여 가압하여 흡착 :베드에 주입함으로써, 고압의 상태에서 공정을 구성할 수 있다. If the flow rate of the gas mixture to be treated is not large, the gas mixture is pressurized using a compressor (compressorXlO ') as well as the process by the process system illustrated in FIG. 10 as well as the process by the air system illustrated in FIG. vermiculite: by injecting the bed, it is possible to construct a process in a high-pressure state.
도 4를 참초하면, 기체 흔합물 (1)은 먼저 송풍기 (BlowerXlO)를 통하여 흡착떼드 (4)에 공급되고, 흡착베드 (4)를 통과하며 강흡착질이 흡착제에 다량 흡착된 후, 싸이클론 (11)과 백필터 (12)를 거쳐 분진이 제거된 후, 약흡착질 농축기체 (2)로 배출된다.  Referring to FIG. 4, the gas mixture 1 is first supplied to the adsorption bed 4 through a blower BlowerXlO, passes through the adsorption bed 4, and a large amount of strong adsorbent is adsorbed on the adsorbent, and then the cyclone ( 11) and the bag filter 12 to remove the dust, it is discharged to the weak adsorbate gas (2).
이때 흡착베드 (4)에서 기체의 유속은 흡착제가 흡착베드 (4) 하부로 잘 흐튜며, 동시에 흡착제 분체가 지나치게 섞이지 않도톡, 유동화 초기 속도를 유지.하는 것이 바랍직하다!. 강흡착질올 많이 흡착한 상태로 흡착베드 (4) 하부로 흘러나온 흡착제는 밀폐된 분체 이송장치 (6)를 이용하여 고온탈착베드 (30)로 이송되어 주입된다.  At this time, the flow rate of the gas in the adsorption bed (4) is good to maintain the initial rate of fluidization, so that the adsorbent flows well under the adsorption bed (4), at the same time so that the adsorbent powder is not mixed too much. The adsorbent that flowed out of the adsorption bed 4 in the state of adsorbing a lot of strongly adsorbents is transferred to the high temperature desorption bed 30 by using the sealed powder transfer device 6 and injected.
여기서 고온탈착베드 (30)는 홉착제에 열을 가하여 탈착하는 장치로, 흡착베드 (4)와 탈착베드 (5) 사이에 위치하여, 탈착베드 (5)를 진공 또는 저압으로 유지해야하는 비용의 ,¾감을 위한 단계적 탈착을 위한 장치이다. 상기 고은탈착베드 (30)의 압력은 상기 흡착베드 (4)의 압력 (PA)과 동일하고, 탈춰:;베드 ,(5)의 온도 (TD)와 동일하거나 높은 상태를 유지시킨다. 이와 같은 고온탈착베드 (30)를 통솬 1차적 탈착공정을 통해, 종래의 탈착베드에서 저압 또는 진공을 위한 펌& 가동에 소모되는 비용을 줄일 수 있게 되고, 단계적 탈착을 통해 C02 회수율을 높일 수 있게 된다. Here, the high temperature desorption bed 30 is a device for desorption by applying heat to the adhesive, which is located between the adsorption bed 4 and the desorption bed 5, the cost of maintaining the desorption bed 5 in a vacuum or low pressure, It is a device for staged removal for a feeling of redness. The pressure of the silver desorption bed 30 is equal to the pressure P A of the adsorption bed 4, and degassing: maintains the same or higher than the temperature T D of the bed 5. Through this high temperature desorption bed (30) through the primary desorption process, it is possible to reduce the cost of pumping and operation for low pressure or vacuum in the conventional desorption bed, it is possible to increase the C0 2 recovery rate through the step-by-step desorption Will be.
즉, 고온탈착베드 (30)에서 온도 변동 탈착을 통해 C02 등의 기체를 1차 회수 후 2차로 탈착베드 (5)에서 회수하는 공정을 수행하는 장치로서, 저압 펌프의 동력은 모두 외부 에너지를 통해 얻을 수 있는데 반해 고온탈착베드 (30)에서 필요한 열원은 공정 내부에서 자체적으로 열교환 시스템 (40)을 통해 얻을 수 있고 필요한 열원만큼 추가 공급하는 효율적 시스템을 제공할 수 있게 된다. That is, as a device for performing a process of recovering the gas such as C02 in the desorption bed (5) after the first recovery through the temperature fluctuation desorption in the high temperature desorption bed (30), all the power of the low pressure pump through the external energy Whereas the heat source required in the high temperature desorption bed 30 can be obtained through the heat exchange system 40 itself in the process, it is possible to provide an efficient system for supplying additional heat source as needed.
이하, 보다 구체적으로 본 발명의 실시예에 따른 기체 분리를 위한 홉착ᅳ공정 시스템의 구성으로서, 열교환 시스템의 구성 및 작용을 도 4 및 도 10을 참조하여 살펴보기 S 한다.  Hereinafter, more specifically, as a configuration of the adhesion bonding process system for gas separation according to an embodiment of the present invention, the configuration and operation of the heat exchange system will be described with reference to FIGS. 4 and 10.
흡착공정의 ①흡착성능과 ②경제성 최적화를 동시에 층족시키기 위하여 본 발명의: 실시예에서는 흡착베드 (4)에서 넁각수의 열 교환 방식을 다음과 같이 제안한다.  In order to simultaneously satisfy the ① adsorption performance and ② economic optimization of the adsorption process of the present invention: In the embodiment of the present invention, the heat exchange of the angles in the adsorption bed (4) is proposed as follows.
① 흡착성능 : 흡착쎄드 (4)에서 층분한 제열이 되었는지에 큰 영향을 받기 때&에, 흡착베드 (4)에서 넁각수를 통하여 층분한 제열이 되었을 때 흡착성능이 최 가 된ᅳ다. (흡착등온선에 의해 낮은 온도에서 평형 흡착량이 높으므로. 반대로 넁,각、수를 통해 층^한 제열이 되지 않고 흡착베드이 높은 온도에서 운전된다면 흡착.성능이 좋지 않다.)  (1) Adsorption performance: The adsorption performance is maximized when the desorption of the desorption through the angular water in the adsorption bed (4) is greatly affected by the desorption of the desorption from the adsorption seed (4). (Because the equilibrium adsorption amount is high at low temperature by adsorption isotherm. On the contrary, if the adsorption bed is operated at high temperature without being de-heated by 넁, angle, water, adsorption and performance is not good.)
②경제성 최적화 : 상술한 흡착베드 (4) 출구에서 얻어지는 '가열된 넁각:수를 통한 열 H환 효율'이 최대가 되기 위해서는 흡착베드 (4)에서 냉각수가 최^한 높은 온도로 가열되어야 하기 때문에, 넁각수 출구온도가 최대가 되도록 해야. 한다. (이때 앞에서 가정한 것과는 달리 열 교환에 사용되는 넁각수는 끓는;점이 높은 물질을 흔합해주는 방식을 통하여 100°C에서 증발되지 않고 액체 상태로 존재한다고 가정한다.) 상기 조건 ①을 충족시키기 위해서는 충분한 제^이 요구되므로 흡착베드 (4)로 유입되는 넁각수는 유량이 커야하고 조건 ②를 춤쪽시키기 위해성는 넁각수의 출구온도가 높아야 하므로 흡착베드 (4)로 유입 :되는 넁각수 유량을 적게 사용해야 한다. 따라서 기존의 열교환 방식으로는 조건 ①과 ②를 동시에 층족시킬 수 없으므로, 두 조건들 사이에서 적정하게 냉각'수 유량을 결정해야 한다. ② Economic optimization: Since the cooling water in the adsorption bed 4 must be heated to the highest temperature in order to maximize the 'heating angle: heat H ring efficiency through water' obtained at the outlet of the adsorption bed 4 described above. , Make sure the outlet water temperature is maximum. do. (At this time, unlike the assumptions above, the angle of water used for heat exchange is assumed to be in a liquid state, not evaporated at 100 ° C, by mixing materials with high boiling points.) the ^ is nyaeng gaksu be so introduced into the adsorption bed (4) it requires the flow rate is so large and to chumjjok the condition ② is the outlet temperature of the wihaeseongneun nyaeng gaksu higher flows into the adsorption bed (4) must use less nyaeng gaksu flow rate . Therefore, the existing heat exchange method Conditions ① and ② at the same time can not be cheungjok and appropriately between the two conditions to determine the cooling, can flow.
즉, 근본적으로 2개의 조건을 조절하기 위하여 본 발명에서는 1가지의 (흡착베드로 홀려주는 넁각수 유량)의 변수만 조절해 주어야 하는 구조적인 문제로 발생하므로, 본 발명에서는 기존의 변수에 하나의 변수를 추가할 수 있는 새로운 공정 설계를 도입하여 2가지의 조건을 동시에 층족시킬 수 있는 열교환 시스템 및 그 방법을 제안한다.  That is, in order to fundamentally control two conditions, in the present invention, it occurs as a structural problem in which only one variable of the angular water flow rate to be sucked into the adsorption bed is generated. We propose a new heat exchange system and method that can stir two conditions at the same time by introducing a new process design that can add.
그라고 본 발명의 실시예에서는 흡착베드 (4) 하단에서 홀려주는 넁각수 유 기존 변수)뿐 아니라 흡착베드 (4) 내부에서 흐르는 냉각수 유량도 조절할 수 있게 하는 구조를 쩔교환 시스템에 반영한 것이다. However, in the embodiment of the present invention reflects the structure that can control the cooling water flow flowing in the adsorption bed (4) as well as the 넁 Kang existing oil variable to be held in the lower end of the adsorption bed (4).
즉 본 발명의 구성 중 하나인 열교환 시스템은 흡착베드 (4) 내의 기체와 고체의 향류방향 특성으로 인해 흡착은 대부분 흡착베드 (4) 하부에서 일어난다는 사살을 이용하여 흡착이 집중적으로 일어나는 부분 (흡착베드 하단)은 많은 넁각:수를 흘려주어 층분한 제열을 해주고 흡착베드 (4) 중간에서 상단까지는 흡칙 ^베드 )하단에서 열교환된 넁각수 중 일부분만올 흘려주게 하여 흡착베드 (4) 상부에서 유출되는 넁각숙의 온도가 최대가 되도록 조절하게 한다. (흡착성능, 경제성 최적화를 동시에 춤족)  That is, the heat exchange system, which is one of the configurations of the present invention, is a part in which adsorption occurs intensively by using killing that the adsorption occurs mostly in the lower part of the adsorption bed (4) due to the countercurrent characteristics of gases and solids in the adsorption bed (4). The bottom of the bed) flows a lot of angles: water is used to make a delicate heat removal, and only a part of the heat exchanged water flows from the bottom of the adsorption bed (4) to the top of the suction bed (4). Adjust the temperature to maximize the temperature. (At the same time to optimize adsorption performance and economic efficiency)
이처럼 본 발명은 흡착베드 (4)에서 냉각수를 분리하여 2개의 열 환기 (40a,40b)쫓 구성된 열교환 시스템을 통하여 흡착성능 및 경제성 체적화를 실현할 수 있고 (제 1 열교환기 (40W : 하단 하부, 제 2 열교환기 (40a) : 하단 < 상분), 또한 넁각수를 분리하지 않고, 중간에 넁각수 유량 조절장치를 사. I:하여 흡착베드 중간 이후부터는 하단에 사용했던 냉각수 유량보다 적은 양을 흘려:주는 방법을 사용하는 것도 가능함은 물론이다ᅳ Thus, the present invention can realize the adsorption performance and economic volume through the heat exchange system configured to separate the cooling water from the adsorption bed (4) to the two heat ventilation (40a, 40b) (first heat exchanger (40W: bottom lower, 2nd heat exchanger (40a): lower end < upper part), without separating the angled water, and using the angled water flow control device in the middle of the I. Of course, it is possible to use the giving method.
그리고, 도 4 및 도 10에 나타낸 바와 같이, 고온탈착베드 (30)에 들어끼ᅳ기 전 사용되는 가열된 냉각수를 열 교환해주는 방식으로, 고온탈착베드에 사. 되는 가열된 냉각수는 층분한 열 탈착을 위하여 운전범위에 상응하는 온도를 가져야 하기 때문에, 흡착베드에서 열교환 되어진 넁각수는 열역학적으로 운전온도에 상웅하는 온도를 가질 수 없으므로 부가적인 히터 시스템을 구비하여 해당 .운전온도를 실현한다. 즉, 제 2 열교환기 ('40b)로서, 흡칙:베드 (4) 하단 하부에 유입되어 출구된 넁각수가 2개의 냉각수 흐름으로 분리되는데, 제 3 넁각수 (CWR3)는 흡착베드 (4) 상단의 싸이클론 (U) 및 백필터 (12)에서 열교환 되고 나오는 고온의 폐가스에 의하여 열교환 한 후에 제 1 스팀 히터 (HE1)를 이용하여 운전온도까지 가열되고, 나머지 하나의 흐름인 제 2 냉각수 (CRW2)는 내부 열교환에 사용하지 않고 배출된다. And, as shown in Figure 4 and 10, in the manner of heat-exchanging the heated cooling water used before entering the high-temperature desorption bed 30, g. Since the heated cooling water must have a temperature corresponding to the operating range for the satisfactory thermal desorption, the angle of heat exchanged in the adsorption bed cannot be thermodynamically matched to the operating temperature. Realize the operating temperature. That is, as the second heat exchanger ('40b), the suction: the angle of inflow into the lower portion of the bottom of the bed (4) is separated into two cooling water streams, and the third angle of water (CWR3) is the top of the adsorption bed (4). After heat exchange by hot waste gas that has been heat-exchanged by the cyclone U and the bag filter 12, it is heated to an operating temperature using the first steam heater HE1, and the second cooling water CRW2, which is the other flow. Is discharged without use for internal heat exchange.
제 1 열교기 (40a)로서, 흡착베드 (4) 하단 상부에 유¾되어 다시 출구된 제 4 냉각수 (CRW4) 유량은 제 2 스팀 히터 (HE2)를 이용하여 운전온도까지 가 된 후 (가열된 넁각수), 같은 온도로 열교환된 제 1 열교환기의 제 3 넁각수 (CRW3)과 할쳐져 고온탈착베드 (30)에 공급 된다.  As the first heat bridge 40a, the flow rate of the fourth cooling water CRW4, which is discharged to the upper portion of the lower end of the adsorption bed 4 and exits again, reaches the operating temperature using the second steam heater HE2 (heated 넁) and the third 넁 K (CRW3) of the first heat exchanger heat exchanged to the same temperature is supplied to the high temperature desorption bed (30).
도 4 및 도 10에. 나타낸 바와 같이, 기존에는 최초에 결정된 넁각수 유 ^ᅵ 흡착베드 체 구간에서 열교환을 하고 있어 흡착성능과 경제성 최적화 두 가지 조건을 동시에 층족시킬 수 없지만, 본 발명의 실시에에서 제안한 열교환 시스템은 최초에 결정된 넁각수 유량 (CW)은 흡착베드 하단에서의 열^환만을 담당하게 되고 그 이후, 흡착베드 하단 하부부터 상부까지의 열 환은 조절된 넬각수 유량 즉, 제 1 냉각수 (CWR1)를 통하여 이루어 진다. 즉 최^의 넁각수 (CW)의 양은 흡착성능 조건을 조절해주는 변수가 되고, 계 1 넁각수 (CWR1)는 ^각수 출구 온도를 조절하여 최대의 열교환이 일어나게 해 주는 변수가 된다.  4 and 10. As shown in the figure, the heat exchanger in the previously determined angle water flow rate is exchanged in the adsorption bed sieve section, so that both conditions of the adsorption performance and economic optimization cannot be stratified at the same time. The determined water flow rate (CW) is responsible only for the heat exchange at the bottom of the adsorption bed, and then the heat exchange from the bottom to the top of the adsorption bed is made through the adjusted channel angle flow rate, that is, the first cooling water (CWR1). . In other words, the amount of the maximum power angle (CW) is a variable that controls the adsorption performance condition, and the first angle angle (CWR1) is a variable that causes maximum heat exchange by controlling the temperature of the angle outlet.
여기서, 제 열 H환기 (40b)로서, 흡착베드 (4) 하단 하부에 유입되어 출구되어 후 분 5되고 고온탈착베드 (30)로 유입되는 넁각수 흐름은 거】 3 넁각수 (CWR3)로 흣시하고, ^리된 넁각수 나머지 흐름은 제 2 넁각수 (CWR2)로 표시:된다. 또한 제 2 열교환기 (40a)로서, 흡착베드 (4) 하단 상부로 다시 유입되어 출^1된 넁각수 흐름은 게 4 넁각수 (CWR4) 나타내고, 상기 제 3 냉각수 (CWR3)와 제 4 냉각수 (CWR4)가 합쳐져 고온탈착베드 (30)에 유입되어 출구되는 흐름을 거 15 넁각^ (CWR5)로 낭타낸다, 도 5는 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착공정 시스템의 새로운 열교환 방식의 넁각수 흐름 모식도이다. 도 5에 나타낸 바와 같이, 제 2 열교환기의 분리된 게 3 냉각수 (CRW3).은 폐가스 열교환 시스템 거 U 스팀 히터 (HE1)에 의하여 열교환 된 후에 제 3 스팀 히터 (HE3)를 통해 스팀과 열교환이 되어 고은탈착베드로 들어가고 가열된 넁각수 제 4 냉각수 (CWR4)는 제 2 스팀 히터 (HE2)만을 통해 열교환이 되어 고온탈착베드로 유입된다. 도 6은 본 발명의 실시예에 따른 온도 압력 이동상 변동 흡착공정 시스템의 열교환 시스템 구조에 대한 온도 구배를 나타낸 도면이다. 도 6에 나타낸 바와 같이, 파란색 선은 본 발명의 실시예에서 제안된 열교환 시스템이 사용되었을 때 예춥되는 온도 변화로써 기존의 열교환 구조 (검은색선)와 비교해 보았을 때, 흡착베드 (ADBX4)에서 더 높은 온도의 넁각수가 얻어지는 것을 예측할 수 있고, 이로 인해 고온탈착베드 (A-DEB)(30)에 가하기 전에 필요한 스팀 가열량이 종래의 열;:교환 시스템 ÷조보다 더 적은것을 확인할 수 있다ᅳ 빨간색 선은 제 3 넁각수 (CWR3)의 온도 변화를 나타낸다. 도 7은 전산모사 시뮬레이터를 통하여 얻은 본 발명의 실시예에 따른 온도 압력, 이동상 변동 흡착공정 시스템의 열교환 시스템 설계를 통한 넁각수의 온 H 변화와 종래의 열교환 시스템 설계의 넁각수 온도변화를 나타낸 도면이다. 도 7에 나타낸 바'와 같이, 가로축은 흡착베드 (4)의 높이를 나타내고 세로축은 흡홧베드 (4)에서 열교환된 냉각수의 온도를 나타내고, 처음 흡착베드 (4) 하부에서 넣어추는 넁각수의 유량을 포함하여 나머지 조건은 일정하게 유지한 채 열교환 사스템 구조만 변경한 후 결과를 도출하였다. 흡착베드 (4)의 길이가 약 50cm 정 H가 될 때까지는 두 설계구조가 비슷한 온도를 가지지만 그 이후에 제안된 열교.환 시스템 설계에서 넁각수 유량을 적게 조절해 주므로 흡착베드 (4) 출 에서 얻어지는 온도가 제안된 공정의 경우 기존의 공정보다 약 40~50°C 높게 ί얻어지는 것을 확인할 수 있다. 도 8은 온¾ 압력 변동에 따른 흡착량 곡선올 나타내는 그래프이다. 도Here, as the heat H ventilation 40b, the angle flow flowing into the lower part of the lower end of the adsorption bed 4 and exiting thereafter, followed by 5 minutes, and flowing into the high temperature desorption bed 30 is regarded as approximately 3 angles CWR3. And the residual angle remaining flow is represented by the second angle (CWR2). In addition, as the second heat exchanger 40a, the angle flow flowing into the upper portion of the lower end of the adsorption bed 4 and exiting 1 represents a crab angle 4 CWR4, and the third cooling water CWR3 and the fourth cooling water ( CWR4) combines and flows into and out of the high temperature desorption bed 30 at 15 ° C ^ (CWR 5 ). FIG. 5 is a novel heat exchange method of a temperature pressure mobile phase variable adsorption process system according to an embodiment of the present invention. It is a schematic diagram of the power angle flow of. As shown in FIG. Likewise, the third coolant (CRW3) of the second heat exchanger is heat exchanged by the waste gas heat exchanger system U steam heater (HE1) and then heat exchanged with steam through the third steam heater (HE3) to enter the silver-removable bed. The heated water cooling fourth cooling water CWR4 is exchanged with only the second steam heater HE2 and flows into the high temperature desorption bed. 6 is a view showing a temperature gradient of the heat exchange system structure of the temperature pressure mobile phase change adsorption process system according to an embodiment of the present invention. As shown in FIG. 6, the blue line is a higher temperature change in the adsorption bed (ADBX4) when compared with the existing heat exchange structure (black line) as the temperature change preheated when the heat exchange system proposed in the embodiment of the present invention is used. It can be predicted that the angle of temperature is obtained, thereby confirming that the amount of steam heating required before applying to the high temperature desorption bed (A-DEB) 30 is less than that of conventional heat; The temperature change of the third power angle CWR3 is shown. 7 is a view showing the temperature H, the change in temperature H of the angle through the heat exchange system design of the mobile phase fluctuation adsorption process system according to an embodiment of the present invention obtained through a computer simulation simulator and the temperature of the angle of change of the conventional heat exchange system design to be. Bar "shown in Fig. 7 and the like, the horizontal axis indicates the height of the adsorbent bed (4) and the vertical axis heuphwat represents the temperature of the heat exchanger cooling water in the bed (4), the first adsorption bed 4 of nyaeng gaksu flow Chu left in the lower The rest of the conditions, including the change of heat exchange system structure was kept constant and the results were obtained. Until the length of the adsorption bed (4) is about 50 cm H, the two design structures have similar temperatures, but afterwards, the proposed design of the thermal bridge / ring system reduces the angle flow rate so that the adsorption bed (4) exits. In the case of the proposed process, the temperature is obtained at 40 ~ 50 ° C higher than the conventional process. 8 is a graph showing the adsorption amount curve of all on / off pressure change. Degree
8에 나타낸 바와 같이, Η0는 흡착베드 (4) 출구의 온도 및 압력을 나타내고, 종래의 공정의 경우 탈착베드 (5)에서 저압 펌프를 이용해 압력을 ΡΗ에서 PL으로 낮 어 원하는 탈착량을 획득 (도 5의 H0->H1)하는데 반하여, 본 발명에 따른 고은탈착베드 (30)를 추가한 공정의 경우에는 고온탈착베드 (30)에서 열원을 공급하여 온도를 TL에서 TH으로 높여 일정량을 탈착한 후 탈착베드 (5)에서 저압 펌프를 이용해 저압으로 운전 조건을 변화시켜 마지막 탈착을 시킨다. 이 경우 원하는 회수율을 얻기 위해 필요한 저압은 PL과 의 사이에 존재하며 결국 종래의 공정에 비해 저압 펌프의 비용 자체를 감소시킬 수 있게 된다. (도 5의의 Η0->ΗΓ>Η2) 또한 도 4에 나타낸 바와 같이 상기 흡착베드, 고온탈착베드 (30) 및 탈:착베드를 새롭게 제안;된 열교환 시스템를 통해 연결하여, 공정 내에서 자체적으로 열 교환 함으로써 공급 열원을 최소화하여 공정의 경제적 최적화가 가,능하다. As shown in Fig. 8, Η0 represents the temperature and pressure at the outlet of the adsorption bed (4), and in the conventional process, the pressure is reduced from Ρ Η to P L using a low pressure pump in the desorption bed (5). Low to obtain the desired desorption amount (H0-> H1 of FIG. 5), in the case of the process of adding the high silver desorption bed 30 according to the present invention by supplying a heat source in the high temperature desorption bed 30 to the temperature T After removing a certain amount by increasing from L to T H , use the low pressure pump in the detachable bed (5) to change the operating condition to low pressure and perform the final detachment. In this case, the low pressure required to achieve the desired recovery rate is between P L and, which in turn can reduce the cost of the low pressure pump itself compared to conventional processes. (Η0->ΗΓ> Η2 in FIG. 5) Also, as shown in FIG. 4, the adsorption bed, the high temperature desorption bed 30 and the desorption bed are newly proposed; By exchanging , it is possible to optimize the process economically by minimizing the supply heat source.
[표 1]은 공정 내. 각 흐름의 열용량 및 출입구 온도에 따라 요구되는 열 ¾을 난타낸 표이다. Table 1 shows in-process . This table shows the required heat ¾ according to the heat capacity and the inlet temperature of each flow.
Figure imgf000017_0002
Figure imgf000017_0002
Figure imgf000017_0001
Figure imgf000017_0001
(AXmin=15°C, 흡착제 비열: 0.924J/gK, 120°C 배가스 ((Χ>2:Ν2=0.13:0.87)의 비열 (: 1.0299J/gK, 26 °C 배가스 (C02:N2O.13:0.87)의 비열: 1.0112J/gK, 배기스의 질량 흐름 : 167.79ton/hr(120°C 101.3kPa, CO2:N2=0.13:0.87), 홉 IT제 질량흐름: 360ton/hr) HI은 탈착베드 (5)에서 흡착베드 (4.)로 유입하는 흡착제에 해당하며, H2는 홉착베드 (4)로 윱입하^ 배가스, 그리고 C1은 흡착베드 (4)에서 고온탈착베드 (30)로 유입하는 흡착제에 각각 해당한다. 열교환을 하지 않을 경우, 냉각과 가열에 필요한 총 열량은 85,282,000kJ/hr에 해당하고, 도 5에서와 같이 각 흐름의 넁각 혹은 가열에 필요한 열량은 열 교환기 (20)를 통해 효과적으로 상호 교환할 수 있다. 열교환 시 공정의 냉각 /가열에 필요한 열은 도 9와 같이 나타낸다. 도 9는 ire의 넁각수가 100°C로 되는 데 필요한 열은 제외하고 도시한 것으로서, 넁각수의 최고 온도는 ¾발 온도인 locrc로 가¾한다. ioo°c 넁각수가 되는 데에; 필요한 열량을 고려하여도 최종적으로 냉각 혹은 가열에 필요한 열은(AXmin = 15 ° C, adsorbent specific heat: 0.924J / gK, 120 ° C exhaust gas ((Χ> 2: Ν 2 = 0.13: 0.87), specific heat (: 1.0299J / gK, 26 ° C exhaust gas (C0 2 : N Specific heat of 2 O.13: 0.87): 1.0112J / gK, mass flow of exhaust gas: 167.79ton / hr (120 ° C 101.3kPa, CO 2 : N 2 = 0.13: 0.87), Hop IT mass flow: 360ton / hr) HI corresponds to the adsorbent entering the adsorption bed (4.) from the desorption bed (5), H2 is introduced into the adhesion bed (4) ^ exhaust gas, and C1 is the high temperature desorption bed (30) from the adsorption bed (4) Corresponds to each adsorbent flowing into the. Without heat exchange, the total amount of heat required for cooling and heating corresponds to 85,282,000 kJ / hr, and as shown in FIG. 5, the amount of heat required for each flow or heating can be effectively exchanged through the heat exchanger 20. . Heat required for cooling / heating of the process during heat exchange is shown in FIG. 9. FIG. 9 shows the heat required for the ire angle to be 100 ° C. The maximum temperature of the angle is approx. to ioo ° c angle; Even considering the amount of heat required, the final heat required for cooling or heating
62,098,000kJ/hr로써 열 교환하지 않을 경우인 85,282,000kJ/hr에 비해 감소된다는 것을 수치적으로 알 수 있다. It can be seen numerically that 62,098,000 kJ / hr is reduced compared to 85,282,000 kJ / hr without heat exchange.
고체 간 열 교 에 어려움이 존재하긴 하나 흡착제간 열 교환이 효¾적으로 이루어:질 경우 냉각 /가열에 필요한 열은 26,077,000kJ/hr로 계산되고, 도 4에 나타낸 바와 같이, 냉각수의 내부 순환을 통해 필요 냉각수 유량을 최소화하기 위한 도 4와 같은 열 교환 또한 가능한데, 이의 경우 필요한 국소 지점에서만 가열 혹은 냉각을 하며 이외 지점은 넁각수가 내부에서 순환하여 필요 열을 공급 혹은 제거할 수 있다.  Although there is a difficulty in the heat exchange between the solids, when the heat exchange between the adsorbents is effective: the heat required for cooling / heating is calculated to be 26,077,000 kJ / hr, and as shown in FIG. Through the heat exchange as shown in Figure 4 for minimizing the required coolant flow rate is also possible, in this case, only heating or cooling is required at the local point, the other point can be supplied or removed by circulating inside the water.
이와 같은 열교환 방식을 상기 흡착베드 (4), 고온탈착베드 (30) 및 탈착베드 (5)의 온도를 제어하게 되는데, 도 4 및 도 10에에 나타낸 바와 같이, 흡착베드 (4)에서 이송장치 (6) 또는 이송관을 통해 이송시키고 흡착제는 열교환 시스템의 스팀 히터, (s.team heater)에 의해 은도를 상승시켜 상기 고온탈착베드 (30)로 유입된다. This heat exchange method controls the temperature of the adsorption bed 4, the high temperature desorption bed 30 and the desorption bed 5, as shown in Figures 4 and 10, 6) or through a transfer pipe and the adsorbent is introduced into the high temperature desorption bed 30 by raising the silver by the steam heater (s . Team heater) of the heat exchange system.
여기서 고온탈착베드 (30)는 탈착베드 (5)와는 달리, 온도 및 압력을 통한 탈칙^ᅵ 아니라, 흡착제에 열을 가하여 게 1차로 탈착시키는 장치로, 압력은 흡칙베드 (4)와 동일한 압력 (PA)을 가지고, 온도는 적어도 상기 탈착베드 온도 (TD) 이상이면 층분하닥. 고온탈착베드 (30)에서 1차로 C02 등의 강흡착질을 탈 시키고 난 후, 다시肩착제는 환류관 (7)을 통해 탈착베드 (5)로 이동된다. 고온탈착베드 (30)의 압력이 탈착베드의 압력보다 높기 때문에, 압력차에 따른 자연스러운 이동을 유도 ¾ 수 있어서 고은탈착베드 (30)의 위치는 상기 압력차의 범위내에서 상기 탈착베드 (5)와 높이차를 조절할 수 있다. 즉, 높이차에 따른 중력에 의한 힘을 극복하여 압력차로 상기 흡착제를 환류관 (7)을 통해 이동될 수 있도록 선택적으로 상기 탈착베드 (5)의 위치를 정할 수 있게 된다. Here, the high temperature desorption bed (30), unlike the desorption bed (5), is not a rule through the temperature and pressure ^, but a device that desorbs primarily by applying heat to the adsorbent, the pressure is the same pressure ( P A ) and the temperature is at least above the detachable bed temperature (T D ). After desorbing the strong adsorbate such as C0 2 primarily from the high temperature desorption bed (30), the resorbent is transferred to the desorption bed (5) through the reflux tube (7). Since the pressure of the high temperature desorption bed 30 is higher than the pressure of the desorption bed, it is possible to induce a natural movement according to the pressure difference, so that the position of the high silver desorption bed 30 is within the range of the pressure difference. You can adjust the height difference. That is, it is possible to selectively position the detachable bed 5 so as to overcome the force due to the gravity difference according to the height difference to move the adsorbent through the reflux pipe (7) with a pressure difference.
탈착베드 (5)는 흡착베드 (4)에 비하여 상대적으로 낮은 압력 (PD)과 높은 온도 (TD)를 유지하여 2차로 흡착제 내의 강흡착질 (C02 등)의 상당량이 탈착 되도록 한다. 탈착된 기체는 싸이클론 (14)과 백 필터 (15)를 거쳐 분진이 제거된 후, 기체 펌프 (13) 통쳬 배출되고, 탈착된 흡착제 분체는 흡착제 환류관 (7)을 따라 중력에 의해 흡착베드 (4)로 되돌아 간다. 도 11은 도 4 및 도 10에 도시된 단계적 탈착을 이용한 흡 '탈착 공정 시스템의 운전시, 이동상 온도 압력 변동 흡착공정에서 기체흔합물 및 흡착제의 흐름도이다. 도 8에 나타낸 바와 같이, 송풍기 (10) 또는 압축기 (10')를 통해 기체 흔합물이 흡착베드 (상압 또는 고압, 저온) (4)에 연속적으로 공급되고 (S100), 흡착베드 (4)에서 기체흔합물이 흡착제에 선택적으로 흡착되며 농축된 약흡착질 기체가 회수되고 (S110), 선택된 기체가 흡착된 흡착제가 이송장치 (6)를 통해 고온탈착베드 (30)로 이동하고 (S120), 고온탈착베드 (30) (상압 또는 고압ᅳ 고온) (5)에서 1차로 강흡착질을 고온탈착 시키고 (S130), 고온탈착베드 (30)의 흡착제가 압력차에 의해 탈착베드 (저압, 고온) (5)로 이동하고 (S140), 탈착베드 (저압, 고온) (5)에서 2차로 흡착된 기체가 분리되어 흡착제가 재생되며, 농축된 강흡착질 기체 (C02 등)가 회수된 후 (S150), 이 재생된 흡착제가 흡착제 환륙관 (7)을 통해 흡착베드 (4)로 이동하여 순환하게 된다. (S160) The desorption bed 5 maintains a relatively low pressure (P D ) and a high temperature (T D ) relative to the adsorption bed (4) so that a significant amount of strongly adsorbents (such as CO 2 ) in the adsorbent are desorbed. The desorbed gas is removed through the cyclone 14 and the bag filter 15, and then discharged through the gas pump 13, and the desorbed adsorbent powder is gravity-adsorbed along the adsorbent reflux tube 7. Return to (4). FIG. 11 is a flow chart of a gas mixture and an adsorbent in a mobile phase temperature pressure swing adsorption process during operation of the adsorption and desorption process system using the staged desorption illustrated in FIGS. 4 and 10. As shown in FIG. 8, the gas mixture is continuously supplied to the adsorption bed (atmospheric pressure or high pressure, low temperature) 4 through the blower 10 or the compressor 10 '(S100), and in the adsorption bed 4. The gaseous mixture is selectively adsorbed to the adsorbent and the concentrated weak adsorbate gas is recovered (S110), and the adsorbent to which the selected gas is adsorbed is moved to the high temperature desorption bed 30 through the transfer device (S120), In the desorption bed (30) (high pressure or high pressure ᅳ high temperature) (5), the primary adsorbent is desorbed at a high temperature (S130), and the adsorbent of the desorption bed (30) is desorbed by the pressure difference. (S140), the adsorbent is regenerated by separating the adsorbed secondary gas from the desorption bed (low pressure, high temperature) (5), and the concentrated strongly adsorbate gas (C0 2, etc.) is recovered (S150), The regenerated adsorbent is moved to the adsorption bed 4 through the adsorbent down pipe 7 and circulated. (S160)
도 10에 나타난 흡착공정 시스템은 기본적인 운전 상황은 도 4의 상입:흡착 -진공탈착의 경우와 매우 유사하나, 탈착베드에 기체흔합물을 주입할 때 압축기 (compressor)를 통해 고압의 상태로 공급한다는 것이 다르다. 또한, 농축된 약흡착질이 갖는 운동에너지를 확산기 (Expander)(16) 와 발전기 (17)를 통해 회수한다는 점이 다르다.  In the adsorption process system shown in FIG. 10, the basic operating situation is very similar to the case of the uptake: adsorption-vacuum desorption of FIG. 4. However, when the gas mixture is injected into the desorption bed, it is supplied at a high pressure through a compressor. Is different. Also, the kinetic energy of the concentrated weak adsorbate is recovered through the expander 16 and the generator 17.
한편 도 4와 도 10과 같은 본 발명에 따른 이동상 온도 압력 변동 흡착공정 시스템에 의한 공정에서 흡착베드 (4)의 압력이 탈착베드 (5)의 압력보다 높기 때문에, 흡착제 환류관 (7)올 따라 일부 기체흔합물이 흡착베드에서 탈착베드로 역류하여 새는 (leak) 현상이 발생할 수 있다. 이러한 새는 현상은 흡착베드 (4)와 탈착베드 (5)의 압력차에 의해 발생한 것으로써, 그 유량은 흡착베드 (4)와 탈착베드 (5)의 압력차에 비례한다. Meanwhile, mobile phase temperature pressure fluctuations according to the present invention as shown in FIGS. 4 and 10. Since the pressure of the adsorption bed 4 is higher than the pressure of the desorption bed 5 in the process by the adsorption process system, some gaseous mixture flows from the adsorption bed to the desorption bed and leaks along the adsorbent reflux tube 7. Symptoms may occur. This leak occurs due to the pressure difference between the adsorption bed 4 and the desorption bed 5, and the flow rate thereof is proportional to the pressure difference between the adsorption bed 4 and the desorption bed 5.
이때 흡착제 입자의 크기, 환류관 (7)의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관 (7)에서 압력차에 의해 발생되는 일부 가스의 역류를 방지할 수 있는데, 역류시 흡착제 환류관 (7)을 통한 압력강하를 조절할 수 있으며, 결국 문제가 되지 않을 정도로 새는 유 ¾;을 줄일 수 있다. At this time, by controlling at least one of the size of the adsorbent particles, the diameter and the length of the reflux tube 7, it is possible to prevent the backflow of some gas generated by the pressure difference in the reflux tube (7), Pressure drop through tube (7) can be adjusted, leaking enough to not cause problems ; Can be reduced.
이때 입자의 크기는 대략 0.1mm ~ 10mm 정도가 된다. 또한ᅳ 보통 배가스의 경우 16C C정도로 배출되며, 탈착베드 (5)에서 탈착이 효율적으로 일어나기 위해 필요한 온도는 약 50~70°C정도이다. 따라서 배가스를 흡착베드 (4)로 주입하기 전, 배가스를 이용하여 탈착베드 (5)를 가열함으로써 탈착베드 (5)의 온도 유지를 위해 필요한 에너지를 절약할 수 있다. 이하에서는 도 4 및 도 11에서 예시된 공정 시스템의 공정 조건을 통한 효과를 설명하기로 한다. At this time, the size of the particles is approximately 0.1mm ~ 10mm. In addition, the general flue gas is discharged to about 16C C, the temperature required for efficient desorption in the desorption bed (5) is about 50 ~ 70 ° C. Therefore, before injecting the flue gas into the adsorption bed 4, by heating the desorption bed 5 using the exhaust gas, energy required for maintaining the temperature of the desorption bed 5 can be saved. Hereinafter, effects through the process conditions of the process system illustrated in FIGS. 4 and 11 will be described.
대상 기체 합물과 대상 흡착제의 특성에 따라 공정의 운전조건은 상압흡착-진공탈착 운전과 고압흡착-상압탈착 운전, 고압흡착-진공탈착등으로 구분된다. 종래에는 흡착베드와 탈착베드만으로 구성된 시스템에서 상압흡착- 진^탈착 운전이 시행 되었으나, 진공올 위한 저압 펌프의 운용비용이 많이 든다는 단점을 극복하기 위해 본 발명의 실시예에서는 고온탈착베드 (30)의 추가적 구성으로 단계적 탈착을 이용해 고압흡착-저압탈착 운전을 시현 가능하여 펌프 운용비용을 상당부분 줄일 수 있게 된다. The operating conditions of the process are classified into atmospheric adsorption-vacuum desorption operation, high pressure adsorption-atmospheric desorption operation, and high pressure adsorption-vacuum desorption according to the characteristics of the target gas mixture and the target adsorbent. Conventionally, the pressure adsorption-progression / desorption operation was performed in a system composed of only an adsorption bed and a desorption bed, but the high temperature desorption bed 30 in the embodiment of the present invention to overcome the disadvantage that the operation cost of the low pressure pump for vacuum is high. In addition, the high pressure adsorption-low pressure desorption operation can be performed by using the stepwise desorption, which can significantly reduce the pump operation cost.
상압의 기체흔합물 (1)이 흡착베드에 공급되어 홉착베드 (4)는 상압 (PA)에서 운전되고, 강흡착질을 1차로 고온탈착베드 (30)에서 탈착시키고, 2차로 강흡착질 회수를 위한 탈착벵드 (5)는 저압 (PD<PA)에서 운전된다. 탈착베드 (5)에서 나오는 강흡착질 농축기체는 기체펌프을 이용하여 회수한다. Atmospheric pressure gas mixture (1) is supplied to the adsorption bed, the hobbed bed (4) is operated at atmospheric pressure (P A ), desorbs the strong adsorbate from the high temperature desorption bed (30) first, and recovers the strongly adsorbate second. Desorption bend 5 is operated at low pressure (P D <P A ). From the detachable bed (5) Strong adsorbate enriched gas is recovered using a gas pump.
도 9에서 나타낸 바와 같이, 고압흡착-상압탈착 운전의 경우, 고압의 기체흔합물 (1)이 흡착베드 (4)에 공급되어 흡착베드는 고압 (PA)에서 운전되고, 강홉착질 희수를 위한 탈착베드 (5)는 상압 ((PD<PA)에서 운전된다. 흡착베드 (4)에서 나오는 약흡착질 농축기체는 확산기 (13)와 발전기 (16)를 통해 회수함으로써, 확산기 양단의 압력차로 인해 발생하는 기계적 에너지도 함께 회수하게 된다. 온도 As shown in FIG. 9, in the case of the high pressure adsorption-atmospheric desorption operation, the gas mixture 1 of high pressure is supplied to the adsorption bed 4 so that the adsorption bed is operated at a high pressure P A , The desorption bed 5 is operated at atmospheric pressure ((P D <P A ). The weak adsorbate enriched gas from the adsorption bed 4 is recovered through the diffuser 13 and the generator 16, so that the pressure difference across the diffuser is increased. The resulting mechanical energy is also recovered.
흡착시 발생하는 흡착열은 흡착베드 (4) 열교환 시스템를 통해 회수하여 탈착베드 에 공급함으로써 탈착시 필요한 열에너지로 사용한다. 원료 기체흔합물 (1)이 고온일 경우에는 원료 공급 전 열교환 시스템를 통해 기체흔합물의 온도를 흡착베드의 온도 (TA)로 낮추어 원료로부터 열에너지를 회수하고, 회수된 열에너지는 열교환 시스템를 통해 고온탈착베드 (30) 및 탈착베드 (5)에 공급하여, 탈착온도 (TD)를 유지하도록 한다. Adsorption heat generated during the adsorption is recovered through the adsorption bed (4) heat exchange system and supplied to the desorption bed to be used as heat energy required for desorption. When the raw material gas mixture (1) has a high temperature, the temperature of the gas mixture is reduced to the temperature (T A ) of the adsorptive bed through a heat exchange system before raw material supply to recover thermal energy from the raw material, and the recovered thermal energy is a high temperature desorption bed through a heat exchange system. (30) and the desorption bed (5) to maintain the desorption temperature (T D ).
여기서 온도가 낮을수록 기체가 흡착제에 잘 흡착되는데, 기체 흔합물이 흡착베드 (4)에서 흡착제에 흡착될 때 홉착열이 발생하여 베드 온도가 상승하기 때문에, 넁각기 (cooler)를 통해 흡착베드 (4)의 온도를 낮추어 주게 된다.  Here, the lower the temperature, the better the gas is adsorbed to the adsorbent. When the gas mixture is adsorbed on the adsorbent in the adsorbent bed (4), the heat of the hopping occurs and the bed temperature rises. It will lower the temperature of 4).
그리고 온도가 높을수록 기체가 흡착제로부터 잘 탈착되는데, 기체가 흡 |[제로부터 탈착될 때 탈착으로 인해 베드 온도가 하강하기 때문에, 가열기 (heater)(8)를 통해 흡착베드 (4)의 온도를 높여 주게 된다. 분체 이송 The higher the temperature, the better the gas desorbs from the adsorbent. When the gas desorbs from the adsorbent, the temperature of the adsorption bed (4) is increased through a heater (8) because the bed temperature drops due to desorption. It will increase. Powder transfer
탈착베드 (5)에서 재생된 흡착제는 흡착제 환류관 (7)을 따라 중력에 의해 흡^쎄드 (4)로 이송된다. 흡착베드 (4) 하부로 홀러나온 흡착제는 밀폐된 분체 이송 장치 (6)를 이용하여, 고온탈착베드 (30X5)로 이송되어 주입되며, 이때 분체 이 장치 (6)는 버켓엘레베이터 (Bucket Elevator) 또는 버켓 컨베이어 (Bucket co veyor)를 이용한다. 그리고, 고온탈착베드 (30)의 흡착제는 다시 탈착베드로 환류관 (7)을 통해 이동하게 되는데, 고온탈착베드 (30)는 홉착베드와 압력이 동일하기 때문에, 상기 탈착베드 (5)보다 높아 압력차에 의해 자연적인 이동을 유도할 수 있다. 이처럼, 본 발명에 따른 흡착공정 시스템에 적용되는 보통 배가스는 10%의 이산화탄소 (C02)와 90%의 질소 (N2)로 이루어져있으며, 이산화탄소 (C02)의 경우 분리 후 99% 정도의 고순도를 요구하므로, 1단계의 공정으로 모두 회수할 수 없기 때문에, 적어도 2단계 이상의 공정으로 PSA공정을 운전함으로써 이산화탄소를 분리, 회수하게 된다. 이 중 첫 번째 단계의 PSA공정이 전체 운전비용의 상당부분을 차지하는데, 본 발명의 이동상 온도 압력 변동 흡착공정은 이러한 첫 번째 단계^ PSA공정을 대체할 수 있고, 1단계 PSA공정에 비해 단계적 탈착공정을 이용해 더 높은 순도로 분리가능하기 때문에, 결과적으로 1단계 이동상 온도 압력 변동 흡착공정를 통해 생산된 이산화탄소를 2단 분리 f공정에 주입하여 순도를 높일 때, 2단계 분리공정의 순도에 대한 부담이 줄어 전체적인 운전비용이 절감되는 효과가 있다. The adsorbent regenerated in the desorption bed (5) is transferred to the adsorption seed (4) by gravity along the adsorbent reflux tube (7). The adsorbent brought out into the lower part of the adsorption bed 4 is transferred to the high temperature desorption bed 30X5 by using a closed powder transport device 6, and the powder is transported to a bucket elevator or a bucket elevator. Bucket conveyor is used. Then, the adsorbent of the high temperature desorption bed 30 is moved back to the desorption bed through the reflux tube (7), the high temperature desorption bed (30) is the pressure of the suction bed and Since it is the same, it is higher than the detachable bed 5 so that a natural movement can be induced by the pressure difference. As such, the normal flue gas applied to the adsorption process system according to the present invention is composed of 10% carbon dioxide (C0 2 ) and 90% nitrogen (N 2 ), and in the case of carbon dioxide (C02), high purity of about 99% after separation. Since it is not possible to recover all of them in one step, the carbon dioxide is separated and recovered by operating the PSA process in at least two steps. Among these, the first stage PSA process accounts for a large part of the total operating cost. The mobile phase pressure fluctuation adsorption process of the present invention can replace the first stage PSA process, and the staged desorption compared to the first stage PSA process. As it is possible to separate to higher purity by using the process, as a result, when the carbon dioxide produced through the one-stage mobile phase pressure fluctuation adsorption process is injected into the two-stage separation f process to increase the purity, the burden on the purity of the two-stage separation process is increased. This reduces the overall operating cost.
또한, 본 발명의 시스템은 연속적인 공정을 가능하게 하는 이동상 온도 압력 변동 흡착공 에서 흡착베드과 탈착베드에서 발생하는 온도 변화를 운전 최적점 온도로 유지하도록, 유틸리티에 있는 넁각수와 스팀을 이용해 열교환을 하게.된다. utility 비용은 전체 운전 비용에서 큰 비용을 차지하므로 이 비용을 최소화하는 것이 가능한 본 발명에 따른 시스템은 산업적인 측면에서 큰 의미가 있다. 이상의 설¾에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당 업계에서 통솬의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.  In addition, the system of the present invention uses heat and steam in the utility to maintain the temperature change occurring in the adsorption bed and the desorption bed at the optimum operating point temperature in the mobile bed pressure fluctuation adsorption hole which enables the continuous process. Be. The utility cost is a big expense in the overall operating cost, so the system according to the invention, which makes it possible to minimize this cost, is of great industrial significance. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Anyone who has a can easily know.
[부호의 설명] [Description of the code]
4: 흡착베드, 5: 탈착베드, 6: 흡착제 이송장치, 7: 홉착제 환류관  4: adsorption bed, 5: desorption bed, 6: adsorber feeder, 7: hops reflux tube
8a, 8b: 넁각기, 9: 가열기 10: 송풍기 (blower), 10': 압축기 (compressor), 11,14: 싸이클론 (cyclone), 12,15: 백필터 (bag filter), 16: 확대기 (expander), 17: 발전기, 30:고 ^탈착베드 8a, 8b: Each, 9: Heater 10: Blower, 10 ': Compressor, 11,14: cyclone, 12,15: bag filter, 16: expander, 17: generator, 30: high
【산업상 이용가능성】 Industrial Applicability
본 발명은 특정한 기체의 흡착 공정 시스템에 관한 것으로, ≤Γ다 상세하게는 서로 다른 온도 및 압력 환경에서 흡착 및 단계적 고온 -저압 탈착과 흡착성능과 경제성 최적화를 높일 수 있는 열교환 시스템을 적용해 흡착제로부터 기체를 분리하고 이동상으로 흡착제를 순환시켜, 선택적인 기체분리를 위한 이동상 온도 압력 변동 흡착공정 시스템에 관한것이어서 산업상 이용가능성이 있다.  The present invention relates to a specific gas adsorption process system, and ≤Γ in detail from the adsorbent by applying a heat exchange system that can increase the adsorption and stepwise high temperature-low pressure desorption and optimization of the adsorption performance and economics in different temperature and pressure environment There is industrial applicability as it relates to a mobile bed temperature pressure swing adsorption process system for separating gases and circulating adsorbents into a mobile bed and for selective gas separation.

Claims

【청구의 범위】 [Range of request]
【청구항 1】 [Claim 1]
유입된 흔합가스를 선택적으로 흡착하는 흡착베드;  An adsorption bed for selectively adsorbing the introduced mixed gas;
상기 흡착베드 하부에 장착되어 상기 흔합가스를 주입시키는 블로워 (Blower);  A blower mounted under the adsorption bed to inject the mixed gas;
상기 흡착베드 하부에서 홀러나온 흡착제를 이송시키는 이송장치;  A transporting device for transporting the adsorbent that has come out from the lower portion of the adsorption bed;
상기 이송장치에서 이송되어 유입되는 상기 흡착제를 가열하여 흡착질을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고온탈착베드;  A high temperature desorption bed for heating and adsorbing the adsorbent transferred from the transfer device to desorb adsorbate first and positioned above the adsorption bed;
상기 고온탈착베드에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착시키는 탈착베도;  A desorption bedo for desorbing adsorbents by moving the adsorbent powder desorbed from the high temperature desorption bed;
상기 탈착베드에서 탈착된 흡착제 분체를 상기 흡착베드로 이동시키는 환류관; 및  A reflux tube for moving the adsorbent powder desorbed from the desorption bed to the adsorption bed; And
상기 흡착베드 하단 하부에 넁각수를 유입시켜 제열하고, 출구되는 넁각수를 분리 시킨 후, 상기 분리된 일부 넁각수를 다시 상기 흡착베드의 하단 상부에 유입시켜 제열시고, 상기 하단 상부 및 하부에서 출구되는 냉각수를 가열시키고 상기 고온탈착베드에 유입시켜 상기 고온탈착베드의 온도를 높이는 열 교환시스템을 포함하되,  After removing the pentagonal water from the bottom of the adsorption bed and separating the exiting pentagonal water, the separated partial angular water is introduced into the upper and lower ends of the adsorption bed, and the heat is removed. It includes a heat exchange system for heating the cooling water to be introduced into the high temperature desorption bed to increase the temperature of the high temperature desorption bed,
상기 고은탈착베드는 상기 흡착베드의 압력 (PA)과 동일하고, 상기 탈착쎄드는 상기 흡착베드에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하고, 상기 흡착제 입자의 크기, 환류관의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관에서 압괵차에 의해 발생되는 일부 가스의 역류가 방지되는 것 ; 특징으로 하는 온도 압력 변동 이동상 흡착공정 시스템, The high silver desorption bed is equal to the pressure of the adsorption bed (P A ), the desorption seed is maintained at a low pressure (P D ) and high temperature (T D ) compared to the adsorption bed, the size of the adsorbent particles, By controlling at least one of the diameter and the length of the reflux tube to prevent backflow of some gases generated by the pressure difference in the reflux tube;
. .
【 구항 2] 【Old Port 2】
거 U항에 있어서,  In U,
상기 열교환 시스템은,  The heat exchange system,
상기 흡착베드 하단 하부에 넁각수를 유입시켜 제열하고 출구되는 넁각수 일부를 분리시킨 제 1 넁각수를 상기 흡착베드의 하단 상부에 유입시켜 제열시킨 후, 출구되는 제 4 넁각수를 가열시키고 상기 고은탈착베드에 유입시켜 탈착베드 온도를 높이는 제 1 열교활기와, 상기 흡착베드 한단 하부에서 출구된 넁각수를 일부 분리한 게 2 넁각수는 배출시키고, 나머지 제 3 넁각수는 가열시킨 후 상기 고온탈착베드 유입시켜 탈착베드 온도를 높이는 제 2 열교환기로 구성된 것을 특징으로 하는 온도 압력 변동 이동상 흡착공정 시스템. The first angled water separated from the lower portion of the adsorption bed is heated by inflowing and removing the angled water into the lower portion of the lower end of the adsorption bed. Afterwards, the first heat interchanger which heats the outlet fourth discharge water and inflows into the silver desorbing bed to increase the temperature of the desorbing bed; And a second heat exchanger configured to increase the temperature of the desorption bed by heating the remaining third exponent water after introducing the high temperature desorption bed.
【청구항 3】 [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 흡착베드에서 출구되어 상기 고온탈착베드로 휴입되는 상기 제 3 넁각수 및 제 4 넁각수는 각각의 유로에 설치된 적어도 하나의 스팀 히터에 의해 가열:되는 것을 특징으로ᅳ하는 온도 압력 변동 이동상 흡착공정 시스템.  The third and fourth angles, which are discharged from the adsorption bed and closed to the high temperature desorption bed, are heated by at least one steam heater installed in each flow path. .
【 구항 4】 【Old Port 4】
거 13항에 있어서,  According to claim 13,
제 3 넁각수 # 기열하^ 스팀 히터는 상기 흡착베드 상단에서 배출된 폐가ᅳ스를 사용하는 스팀 히터를 포함하는 것을 특징으로 하는 온도 압력 변동 이¾상 흡착공정 시스템.  The third pressure # steam-heated steam heater is a temperature and pressure fluctuations two-phase adsorption process system, characterized in that it comprises a steam heater using the waste gas discharged from the upper end of the adsorption bed.
【¾구항 5】 [¾ port 5]
유입된 흔합가스를 선택적으로 흡착하는 흡착베드;  An adsorption bed for selectively adsorbing the introduced mixed gas;
상기 흡착베드 하부에 장착되어 상기 흔합가스를 압축하여 주입시키는 압 기 (compressor);  A compressor installed under the adsorption bed to compress and inject the mixed gas;
상기 흡착베드 하부에서 홀러나온 흡착제를 이송시키는 이송장치;  A transporting device for transporting the adsorbent that has come out from the lower portion of the adsorption bed;
상기 이송장치에서 이송되어 유입되는 상기 흡착제를 가열하여 흡착질을 1차로 탈착시키고, 상기 흡착베드 보다 상부에 위치하는 고온탈착베드;  A high temperature desorption bed for heating and adsorbing the adsorbent transferred from the transfer device to desorb adsorbate first and positioned above the adsorption bed;
상기 고온탈착베드에서 탈착된 흡착제 분체가 이동되어 2차로 흡착질을 탈착:서키고, 상기 흡착베드보다 상부에 위치하는 탈착베드;  Adsorbent powder desorbed from the high temperature desorption bed is moved to desorb the adsorbate secondary: a desorption bed positioned above the adsorption bed;
상기 탈착베 ^에서 탈착된 흡착제 분체를 상기 흡착베드로 이동시키는 환류관; 및 상기 흡착베드 하단 하부에 각수를 유입시켜 제열하고, 출구되는 넁각수를 분리 시킨 후, 상기 분리된 일부 넁각수를 다시 상기 흡착베드의 하단 상부에 유입시켜 제열시고, 상기 하단 상부 및 하부에서 출구되는 넁각수를 가열시키고 상기 고온탈착베드에 유입시켜 상기 고온탈착베드의 온도를 높이는 열 교환시스템을 포함하되, A reflux tube for moving the adsorbent powder desorbed from the desorption vessel ^ to the adsorption bed; And The water is introduced into the lower portion of the lower end of the adsorption bed, and the water is separated, and the separated water angle is separated. A heat exchange system for heating the angled water and introducing the high temperature desorption bed to increase the temperature of the high temperature desorption bed,
상기 고온탈착베드는 상기 홉착베드의 압력 (PA)과 동일하고, 상기 탈착베드는 상기 흡착베드에 비하여 낮은 압력 (PD) 및 높은 온도 (TD)를 유지하고, 상기 흡착제 입자의 크기, 환류관의 직경 및 길이 중 적어도 어느 하나의 조절을 통해 상기 환류관에서 압력차에 의해 발생되는 일부 가스의 역류가 방지되는 것을 특징으로 하는 온도 압력 변동 이동상 흡착공정 시스템. The high temperature desorption bed is equal to the pressure P A of the hopping bed, and the desorption bed maintains a lower pressure (P D ) and a higher temperature (T D ) than the adsorption bed, and the size of the adsorbent particles; A temperature pressure fluctuation mobile bed adsorption process system, characterized in that by controlling at least one of the diameter and the length of the reflux tube back flow of some gas generated by the pressure difference in the reflux tube.
【청구항 6】 [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 열교환 시스템은,  The heat exchange system,
상기 흡착베드 하단 하부에 넁각수를 유입시켜 제열하고 출구되는 넁각수 일부를 분리시킨 제 1 넁각수를 상기 흡착베드의 하단 상부에 유입시켜 제열시킨 후, 출구되는 제 4 넁각수를 가열시키고 상기 고온탈착베드에 유입시켜 탈착베드 온도를 높이는 게 1 열교환기와, 상기 흡착베드 한단 하부에서 출구된 넁각수를 일부 분리한 제 2 넁각수는 배출시키고, 나머지 제 3 넁각수는 가열시킨 후 상기 고온탈착베드 유입시켜 탈착베드 온도를 높이는 제 2 열교환기로 구성된 것을 특징으로 하는 온도 압력 변동 이동상 흡착공정 시스템.  The first angle of the water is introduced into the lower portion of the adsorptive bed, and the first angle is separated from the lower portion of the adsorption bed. In order to increase the temperature of the desorption bed by flowing into the desorption bed, the heat exchanger is discharged from the lower end of the adsorption bed, and the second condensate is partially discharged from the lower end of the adsorption bed. A temperature pressure fluctuation mobile bed adsorption process system, characterized in that consisting of a second heat exchanger to increase the temperature of the desorption bed by flowing.
【청구항 7】 [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 흡착베드에서 출구되어 상기 고온탈착베드로 유입되는 상기 거] 3 넁각수 및 제 4 넁각수는 각각의 유로에 설치된 적어도 하나의 스팀 히터에 의해 가열되는 것을 특징으로 하는 온도 압력 변동 이동상 흡착공정 시스템. 【청구항 8】 And said third angle and the fourth angle, which are discharged from said adsorption bed and introduced into said high temperature desorption bed, are heated by at least one steam heater installed in each flow path. [Claim 8]
제 7항에 있어서,  The method of claim 7,
제 3 넁각수를 가열하는 스팀 히터는 상기 흡착베드 상단에서 폐가스를 사용하는 스팀 히터를 포함하는 것을 특징으로 하는 온도 압
Figure imgf000027_0001
이동상 흡착공정 시스템.
The steam heater for heating the third water is characterized in that it comprises a steam heater using the waste gas at the upper end of the adsorption bed
Figure imgf000027_0001
Mobile phase adsorption process system.
PCT/KR2013/011614 2012-12-14 2013-12-13 Temperature and pressure swing moving bed adsorption process system using novel heat exchange system WO2014092510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120146308A KR101442673B1 (en) 2012-12-14 2012-12-14 Temperature and pressure swing moving bed adsorption system integrated with new heat exchanger
KR10-2012-0146308 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014092510A1 true WO2014092510A1 (en) 2014-06-19

Family

ID=50934694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011614 WO2014092510A1 (en) 2012-12-14 2013-12-13 Temperature and pressure swing moving bed adsorption process system using novel heat exchange system

Country Status (2)

Country Link
KR (1) KR101442673B1 (en)
WO (1) WO2014092510A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970904A (en) * 2018-01-26 2018-05-01 索红卫 A kind of regenerating active carbon system and application method
CN114247262A (en) * 2021-11-30 2022-03-29 合肥中亚环保科技有限公司 Molecular sieve adsorption method CO2Removal system and removal process
CN116020237A (en) * 2023-03-23 2023-04-28 苏州杰宸环境科技有限公司 Cooling adsorption box and method based on carbon neutralization and adsorption tower with box
CN116371142A (en) * 2023-06-01 2023-07-04 中国华能集团清洁能源技术研究院有限公司 Flue gas low-temperature adsorption regeneration system and adsorbent heating and conveying device
CN116492809A (en) * 2023-05-22 2023-07-28 华澄(江门)环保装备科技有限公司 Waste gas fixed bed desorption energy-saving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080148935A1 (en) * 2004-12-20 2008-06-26 Idatech, Llc Temperature-based breakthrough detection and pressure swing adsorption systems and fuel processing systems including the same
KR100949525B1 (en) * 2009-05-20 2010-03-25 서강대학교산학협력단 Moving bed adsorption system for gas separation
KR100966481B1 (en) * 2008-01-29 2010-06-29 한국에너지기술연구원 Continuous concentrating system and method of volatile organic compounds using moving-bed reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064453A (en) * 2009-12-08 2011-06-15 서강대학교산학협력단 Semi-continual adsorption system for gas separation and thereof process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080148935A1 (en) * 2004-12-20 2008-06-26 Idatech, Llc Temperature-based breakthrough detection and pressure swing adsorption systems and fuel processing systems including the same
KR100966481B1 (en) * 2008-01-29 2010-06-29 한국에너지기술연구원 Continuous concentrating system and method of volatile organic compounds using moving-bed reactor
KR100949525B1 (en) * 2009-05-20 2010-03-25 서강대학교산학협력단 Moving bed adsorption system for gas separation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970904A (en) * 2018-01-26 2018-05-01 索红卫 A kind of regenerating active carbon system and application method
CN107970904B (en) * 2018-01-26 2023-06-20 索红卫 Activated carbon regeneration system and use method
CN114247262A (en) * 2021-11-30 2022-03-29 合肥中亚环保科技有限公司 Molecular sieve adsorption method CO2Removal system and removal process
CN116020237A (en) * 2023-03-23 2023-04-28 苏州杰宸环境科技有限公司 Cooling adsorption box and method based on carbon neutralization and adsorption tower with box
CN116020237B (en) * 2023-03-23 2023-08-18 苏州杰宸环境科技有限公司 Cooling adsorption box and method based on carbon neutralization and adsorption tower with box
CN116492809A (en) * 2023-05-22 2023-07-28 华澄(江门)环保装备科技有限公司 Waste gas fixed bed desorption energy-saving device
CN116492809B (en) * 2023-05-22 2023-12-22 华澄(江门)环保装备科技有限公司 Waste gas fixed bed desorption energy-saving device
CN116371142A (en) * 2023-06-01 2023-07-04 中国华能集团清洁能源技术研究院有限公司 Flue gas low-temperature adsorption regeneration system and adsorbent heating and conveying device
CN116371142B (en) * 2023-06-01 2023-10-03 中国华能集团清洁能源技术研究院有限公司 Flue gas low-temperature adsorption regeneration system and adsorbent heating and conveying device

Also Published As

Publication number Publication date
KR20140077465A (en) 2014-06-24
KR101442673B1 (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6622302B2 (en) Steam assisted vacuum desorption process for carbon dioxide recovery
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
US20180243680A1 (en) Carbon dioxide recovery method and recovery apparatus
WO2014092510A1 (en) Temperature and pressure swing moving bed adsorption process system using novel heat exchange system
JP2011529848A (en) Recovery of carbon dioxide from flue gas
JP2012503593A (en) Multi-stage process for purifying carbon dioxide to produce sulfuric acid and nitric acid
JP2012511491A (en) Production of hydrogen from reformed gas and simultaneous capture of by-product CO2
JP2007307558A (en) Adsorption/desorption agent, process for separation, and storage method for ammonia using combination of specific metal halides
JP2008012439A (en) Oxygen producing method and apparatus by pressure swing method using high temperature oxygen adsorbent
CN211799895U (en) Process system for separating mixed gas containing hydrogen chloride and hydrogen
KR100949525B1 (en) Moving bed adsorption system for gas separation
JP2011104489A (en) Adsorption tower
JP2010012367A (en) Oxygen-producing method and oxygen-producing apparatus according to pressure swing adsorption method that employs oxygen-selective adsorbent
US20170087503A1 (en) Two stage adsorbent and process cycle for fluid separations
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP5319476B2 (en) Separation and recovery system
JP5729765B2 (en) Helium gas purification method and purification apparatus
KR101720799B1 (en) Purifying method and purifying apparatus for argon gas
KR101263363B1 (en) Temperature and pressure swing moving bed adsorption system
KR100351621B1 (en) Multi Purpose Oxygen Generator using Pressure Swing Adsorption and Method
KR101263361B1 (en) Temperature and pressure swing moving bed adsorption system integrated with high temperature desorber and heat exchanger
JP2020527455A (en) Use of V-type adsorbents and gas concentrates for CO2 adsorption and capture
KR20110064453A (en) Semi-continual adsorption system for gas separation and thereof process
KR101433036B1 (en) Temperature and pressure swing moving bed adsorption system
JP3694343B2 (en) PSA for low concentration oxygen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862894

Country of ref document: EP

Kind code of ref document: A1