JP2010012367A - Oxygen-producing method and oxygen-producing apparatus according to pressure swing adsorption method that employs oxygen-selective adsorbent - Google Patents

Oxygen-producing method and oxygen-producing apparatus according to pressure swing adsorption method that employs oxygen-selective adsorbent Download PDF

Info

Publication number
JP2010012367A
JP2010012367A JP2008171935A JP2008171935A JP2010012367A JP 2010012367 A JP2010012367 A JP 2010012367A JP 2008171935 A JP2008171935 A JP 2008171935A JP 2008171935 A JP2008171935 A JP 2008171935A JP 2010012367 A JP2010012367 A JP 2010012367A
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen
adsorption
temperature
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008171935A
Other languages
Japanese (ja)
Other versions
JP5298291B2 (en
Inventor
Jun Izumi
順 泉
Norio Miura
則雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Adsorption Technology Industries Co Ltd
Original Assignee
Kyushu University NUC
Adsorption Technology Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Adsorption Technology Industries Co Ltd filed Critical Kyushu University NUC
Priority to JP2008171935A priority Critical patent/JP5298291B2/en
Publication of JP2010012367A publication Critical patent/JP2010012367A/en
Application granted granted Critical
Publication of JP5298291B2 publication Critical patent/JP5298291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-producing method and an oxygen-producing apparatus according to a pressure swing adsorption method that employs an oxygen-selective adsorbent. <P>SOLUTION: The oxygen-producing method and the oxygen-producing apparatus for practicing the method employ a Perovskite-type oxide i.e., BaFeO<SB>3-δ</SB>with Y or In doped therein as its adsorbent, in which oxygen-producing process and oxygen-producing apparatus, oxygen is adsorbed by the adsorbent at an adsorption temperature of 200 to 350°C which is the lowest adsorption temperature for a Perovskite-type oxide, heat is recovered from high-temperature nitrogen upon causing nitrogen to flow through the adsorbent, and heat is also recovered from high temperature oxygen upon desorbing oxygen from the adsorbent. By virtue of the highly efficient heat recovery, electricity consumption can be minimized and oxygen can economically be produced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気中の酸素を分離、除去、又は濃縮するための酸素選択的吸着剤を使用しての酸素と窒素との分離方法及び装置に関する。   The present invention relates to a method and apparatus for separating oxygen and nitrogen using an oxygen selective adsorbent for separating, removing or concentrating oxygen in the air.

空気からの酸素の分離、除去、又は濃縮プロセスにおける最大の問題点は、通常原料を空気に求めるため原料コストは存せず、酸素に付加される価格が
(a)分離、濃縮に設けられる設備費
(b)装置を稼動させるに必要な諸動力費
(c)分離媒体が必要な場合、その価格及び補充費用
等に依存することである。
The biggest problem in the separation, removal, or concentration process of oxygen from air is that the raw material cost is usually required for air, and there is no raw material cost. (A) Equipment provided for separation and concentration Cost (b) Various power costs required to operate the device (c) When a separation medium is required, it depends on its price and replenishment cost.

酸素の分離、濃縮、除去に関しては、装置を稼動させるのに必要な諸動力費の内、電力原単位の面からは、従来、製造しようとする酸素の純度が高い程、空気の極低温冷却による深冷分離プロセスが省電力で効率的な酸素製造が可能なことから採用され、他方、純度が比較的低い酸素を製造する場合には、モレキュラーシーブスを吸着剤として用いた圧力スイング吸着(PSA)プロセスが、省電力で効率的な酸素製造が可能なことから、採用されてきた。   Regarding the separation, concentration, and removal of oxygen, from the standpoint of power consumption among the various power costs required to operate the equipment, conventionally, the higher the purity of oxygen to be produced, the more cryogenic cooling of the air is. The cryogenic separation process is used because it enables energy-saving and efficient oxygen production. On the other hand, when producing oxygen with relatively low purity, pressure swing adsorption (PSA) using molecular sieves as adsorbent is used. ) The process has been adopted because it allows energy efficient and efficient oxygen production.

PSAプロセスは、深冷分離プロセスに比べて、用いる装置がコンパクトであることから、容易に設置でき、しかも保守も比較的容易であることから、近年広い分野に普及している。しかし、PSAプロセスは、深冷分離プロセスに比べて、製品回収率が低く、生産コストの面で不利である。そのため、PSAプロセスの一層の普及を図るには、吸着性能の高い吸着剤を見出すことが当分野で望まれている。   The PSA process has become widespread in a wide range of fields in recent years because the apparatus used is more compact than the cryogenic separation process, and can be easily installed and is relatively easy to maintain. However, the PSA process has a lower product recovery rate than the cryogenic separation process, which is disadvantageous in terms of production cost. Therefore, in order to further spread the PSA process, it is desired in the art to find an adsorbent with high adsorption performance.

本発明者等は、構造式LaSr1−xCoFe1−y3−δによって表される立方晶ペロブスカイト型酸化物に各種金属をドーピングして得られる酸素選択型吸着剤性能について検討した(例えば特許文献1を参照)。吸着温度400℃におけるLSCF1991(La:Sr:Co:Fe=1:9:9:1)の可逆酸素吸着量qrevは、9mlN/gであり、これは既存酸素選択型吸着剤で最も酸素吸着量の大きな活性炭系酸素選択型吸着剤MSC−3Aの25℃、21vol%の可逆酸素吸着量の30倍になる。更に、MSC−3Aを酸素−窒素2成分系からの酸素選択型吸着剤に使用する場合には、酸素分離係数α(同一酸素、窒素分圧における酸素、窒素吸着量比(qo/Co)/(qn/Cn))が3程度と、窒素の共吸着による性能低下が避けられなかったが、Y、InドープしたBaFeO3−δでは殆ど窒素を吸着しないのでα>100以上と完全な酸素吸着性を示すことを見出し、優れたPSA用吸着剤になることを開示した。 The present inventors have, for structural formula La x Sr 1-x Co y Fe 1-y O 3-δ oxygen-selective adsorbent performance obtained by doping various metals in cubic perovskite oxide represented by It examined (for example, refer patent document 1). The reversible oxygen adsorption amount q rev of LSCF1991 (La: Sr: Co: Fe = 1: 9: 9: 1) at an adsorption temperature of 400 ° C. is 9 ml N / g, which is the most oxygen adsorption type of existing oxygen selective adsorbents. It becomes 30 times the reversible oxygen adsorption amount of 25 vol. C and 21 vol% of the large amount of activated carbon-based oxygen selective adsorbent MSC-3A. Further, when MSC-3A is used as an oxygen-selective adsorbent from an oxygen-nitrogen binary system, the oxygen separation coefficient α (the same oxygen, the oxygen at the nitrogen partial pressure, the nitrogen adsorption amount ratio (qo 2 / Co 2 ) / (Qn 2 / Cn 2 )) is about 3 and performance degradation due to co-adsorption of nitrogen is inevitable, but Y and In-doped BaFeO 3-δ hardly adsorbs nitrogen, so α> 100 or more It has been found that it exhibits complete oxygen adsorptivity, and has been disclosed to be an excellent adsorbent for PSA.

高温条件下、酸素を選択的に吸着するペロブスカイト型酸化物を吸着剤として使用したPSAによる空気からの酸素、窒素分離方法では、酸素製造時の電力原単位は現行酸素製造法の中で最小値を示す深冷分離法の0.31kWh/mNを下回る0.2kWh/mNが予想されている。 In the method of separating oxygen and air from air by PSA using perovskite type oxide that adsorbs oxygen selectively as an adsorbent under high temperature conditions, the power unit for oxygen production is the smallest value in the current oxygen production method 0.2 kWh / m 3 N is expected to be lower than 0.31 kWh / m 3 N of the cryogenic separation method.

しかし、実際にペロブスカイト型酸素選択型吸着剤を使用する場合、従来はこの吸着剤は、酸素の可逆吸着量が温度約300℃以上で増大する傾向にあることから、約400℃以上の高温で使用する必要があり、吸着剤への有効な熱移動、分離後の酸素、窒素からの熱の回収、高温での流路変更のための耐熱、耐酸素性バルブ、原料空気からの露点−40℃以下の脱湿の課題を解決する必要がある。   However, when a perovskite type oxygen selective adsorbent is actually used, this adsorbent has conventionally had a tendency to increase the amount of reversible adsorption of oxygen at a temperature of about 300 ° C. or higher. Must be used, effective heat transfer to the adsorbent, recovery of oxygen after separation, heat from nitrogen, heat resistance to change the flow path at high temperature, oxygen resistant valve, dew point from raw air -40 ° C It is necessary to solve the following dehumidification issues.

この為、現在の公知の知見のみで装置を構成すると空気からの酸素/窒素分離以外の周辺技術の点で非常に大きな負担が生じ、上記の電力原単位の達成は困難であり、また安定した酸素・窒素分離も困難となる。
特開平2005−087941号公報
For this reason, if the apparatus is configured only with the currently known knowledge, a very large burden is caused in terms of peripheral technologies other than oxygen / nitrogen separation from air, and it is difficult to achieve the above-mentioned power consumption rate and it is stable. Oxygen / nitrogen separation is also difficult.
Japanese Unexamined Patent Publication No. 2005-079441

本発明は、上述したペロブスカイト型酸素選択型吸着剤の欠点を改善し、比較的低い温度で酸素選択型吸着剤の酸素吸着能を最大に発揮させ、比較的低い温度で酸素選択型吸着剤が有する熱を効率的に利用することによって、酸素選択性の優れた酸素選択型吸着剤を提供し、かつ該吸着剤を用いて少ない動力原単位で酸素を容易に製造することができる酸素・窒素を分離するプロセス及び装置を提供するものである。   The present invention improves the above-described drawbacks of the perovskite type oxygen selective adsorbent, maximizes the oxygen adsorption capacity of the oxygen selective type adsorbent at a relatively low temperature, and allows the oxygen selective adsorbent to be used at a relatively low temperature. Oxygen / nitrogen that provides an oxygen-selective adsorbent with excellent oxygen selectivity by efficiently utilizing the heat it has, and that can easily produce oxygen with a small amount of power unit using the adsorbent A process and an apparatus for separating the components are provided.

本発明者等は、上記の課題を達成するために、鋭意研究した結果、特定のペロブスカイト型酸素選択型吸着剤が、驚くべきことに酸素を200〜350℃の比較的低い温度において可逆吸着によって多量に吸着しかつ吸着速度も大きいことを見出し、単に圧力を増減させることによって酸素の吸着及び脱着を容易に行うことを見出した。しかも、比較的高い温度の製品酸素及び窒素の有する熱を有効利用して回収することにより、酸素製造電力原単位を低減させて、極めて低い動力原単位で高純度の酸素を容易に製造することができることを見出して、本発明をなすに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a specific perovskite oxygen selective adsorbent surprisingly absorbs oxygen by reversible adsorption at a relatively low temperature of 200 to 350 ° C. It was found that a large amount was adsorbed and the adsorption rate was high, and that oxygen was easily adsorbed and desorbed by simply increasing or decreasing the pressure. In addition, by efficiently utilizing the heat of the relatively high temperature product oxygen and nitrogen, it is possible to reduce the oxygen production power intensity and easily produce high-purity oxygen with a very low power intensity. As a result, the present invention has been made.

本発明において、ペロブスカイト型酸化物とは、立方晶、六方晶及び斜方晶ペロブスカイト型酸化物構造を有する酸化物、ブラウンミラライト構造を有する酸化物、及び2H−BaNiO3構造を有する酸化物を総称して言う。 In the present invention, the perovskite oxide includes an oxide having a cubic, hexagonal and orthorhombic perovskite oxide structure, an oxide having a brown mirrorlite structure, and an oxide having a 2H—BaNiO 3 structure. Collectively say.

かくして、本発明によれば、下記の1〜11の発明を提供する:
1.酸素、窒素を主成分とする混合ガスを蓄熱材、混合ガス−窒素熱交換器、混合ガス加熱器、高温酸素選択的吸着剤として使用するBaFeO3−δにYまたはInをドーピングしたペロブスカイト型酸化物の充填された吸着塔に相対的高圧条件下で供給して、混合ガスと蓄熱材とを接触させて混合ガスを昇温し、次いで混合ガスを混合ガス−窒素熱交換器で塔出口窒素と熱交換して昇温し、次いで混合ガスを混合ガス加熱器と接触させて吸着温度に設定した後に、酸素選択型吸着剤と接触させて酸素を吸着させて、窒素と分離した後に、酸素を吸着した酸素選択型吸着剤を相対的低圧条件に導いて酸素を脱着させ、酸素と蓄熱材との接触により高温酸素からの熱回収を行う、酸素と窒素との圧力スイング吸着法(PSA)による分離方法。
2.酸素、窒素を主成分とする混合ガスを酸素選択型吸着剤と接触させて相対的高圧条件下で酸素を吸着させて窒素と分離した後に、酸素を吸着した酸素選択型吸着剤を、製品窒素をパージガスとして大気圧ないし減圧条件下でパージして酸素を更に脱着させる、上記1記載の酸素と窒素とのPSAによる分離方法。
3.混合ガスの流れ方向に向かって、蓄熱材の上流に水分吸着剤を装架し、相対的高圧条件下で水分を吸着して乾燥混合ガスを調製して、酸素選択型吸着剤に供給して酸素を吸着させ、相対的減圧条件下で脱着された高温酸素を蓄熱材と接触させて酸素から熱を回収して降温した濃縮酸素から吸着水分を離脱させる、上記1、2のいずれかに記載の酸素と窒素のPSAによる分離方法。
4.吸着工程終了後の吸着塔と脱着工程終了後の吸着塔とを塔後方で連絡させ、吸着工程終了後の吸着塔に残留する酸素を脱着工程終了後の吸着塔に供給して回収する、上記1〜3のいずれかに記載の酸素と窒素のPSAによる分離方法。
5.酸素、窒素を主成分とする混合ガスを相対的高圧条件下で供給して酸素と窒素とを分離する圧力スイング吸着装置であって、混合ガスの流れ方向に、順に、
(1)吸着された高温酸素から熱を回収し、回収した熱を混合ガスに付与するための蓄熱材、
(2)分離蓄熱材を通った混合ガスが熱交換器の一方の側を流れ、充填塔を流出する高温の窒素製品ガスが熱交換器の他方の側を流れ、高温の窒素製品ガスから混合ガスに熱を回収して熱交換器を流出する混合ガスを昇温させる混合ガス−窒素熱交換器、
(3)窒素との熱交換器を通って昇温した混合ガスを加熱して吸着温度にするための加熱器、
(4)混合ガス−窒素熱交換器を通った混合ガスを通して酸素を選択的に吸着した後に窒素を通過させて酸素を選択的に吸着する吸着剤床
を内部に装着した充填塔を並列に2塔以上含み、充填塔を保温するために保温庫内に収容される酸素と窒素とを分離する圧力スイング吸着装置。
6.酸素選択型吸着剤としてBaFeO3−δにYをY/Feモル比で0.001以上ドーピングするかまたはInをIn/Feモル比で0.002以上ドーピングしたペロブスカイト型酸化物を使用し、200〜350℃の吸着温度で実施する請求項1〜5のいずれか記載の酸素と窒素のPSAによる分離方法。
Thus, according to the present invention, the following inventions 1 to 11 are provided:
1. Perovskite-type oxidation in which BaFeO 3-δ used as a heat storage material, mixed gas-nitrogen heat exchanger, mixed gas heater, or high temperature oxygen selective adsorbent is doped with Y or In. The mixture gas is supplied to the adsorption tower filled with the material under a relatively high pressure condition, the mixed gas and the heat storage material are brought into contact with each other to raise the temperature of the mixed gas, and then the mixed gas is mixed with a mixed gas-nitrogen heat exchanger at the tower outlet nitrogen. The temperature is raised by exchanging heat with the gas, and then the mixed gas is brought into contact with the mixed gas heater to set the adsorption temperature, and then brought into contact with the oxygen selective adsorbent to adsorb oxygen and separated from nitrogen. Pressure-adsorption method (PSA) of oxygen and nitrogen, in which oxygen-selective adsorbent that adsorbs oxygen is introduced to a relatively low pressure condition, oxygen is desorbed, and heat is recovered from high-temperature oxygen by contact with oxygen and a heat storage material Separation method by.
2. Oxygen-adsorbed adsorbent that has adsorbed oxygen is mixed with oxygen-selective adsorbent, which is brought into contact with oxygen-selective adsorbent to adsorb oxygen under relative high-pressure conditions and separate from nitrogen. 2. The method for separating oxygen and nitrogen by PSA as described in 1 above, wherein oxygen is further desorbed by purging at a atmospheric pressure or under reduced pressure as a purge gas.
3. A moisture adsorbent is installed upstream of the heat storage material in the flow direction of the mixed gas, and moisture is adsorbed under a relatively high pressure condition to prepare a dry mixed gas, which is then supplied to the oxygen selective adsorbent. The high-temperature oxygen adsorbed by oxygen and brought into contact with the heat storage material by contacting the high-temperature oxygen desorbed under a relative reduced pressure condition, recovering heat from the oxygen, and desorbing the adsorbed moisture from the concentrated oxygen lowered, Of oxygen and nitrogen by PSA.
4). The adsorption tower after completion of the adsorption process and the adsorption tower after completion of the desorption process are connected at the rear of the tower, and oxygen remaining in the adsorption tower after completion of the adsorption process is supplied to the adsorption tower after completion of the desorption process and recovered. The method for separating oxygen and nitrogen according to any one of 1 to 3 by PSA.
5). A pressure swing adsorption device for supplying a mixed gas mainly composed of oxygen and nitrogen under a relatively high pressure condition to separate oxygen and nitrogen, in the flow direction of the mixed gas,
(1) A heat storage material for recovering heat from the adsorbed high-temperature oxygen and imparting the recovered heat to the mixed gas;
(2) The mixed gas that has passed through the separated heat storage material flows on one side of the heat exchanger, and the high-temperature nitrogen product gas that flows out of the packed tower flows on the other side of the heat exchanger and is mixed from the high-temperature nitrogen product gas. A mixed gas-nitrogen heat exchanger that recovers heat to the gas and raises the temperature of the mixed gas flowing out of the heat exchanger,
(3) A heater for heating the mixed gas heated through a heat exchanger with nitrogen to an adsorption temperature,
(4) 2 parallel packed towers equipped with an adsorbent bed that selectively adsorbs oxygen by allowing nitrogen to pass through after selectively adsorbing oxygen through the mixed gas-nitrogen heat exchanger. A pressure swing adsorption device that includes more than a tower and separates oxygen and nitrogen contained in a heat insulation chamber to keep the packed tower warm.
6). As the oxygen selective adsorbent, a perovskite oxide in which BaFeO 3-δ is doped with Y in a Y / Fe molar ratio of 0.001 or more or In is doped in In / Fe with a molar ratio of 0.002 or more is used. The method for separating oxygen and nitrogen by PSA according to any one of claims 1 to 5, which is carried out at an adsorption temperature of ~ 350 ° C.

ペロブスカイト型酸化物使用温度としては最低温の200〜350℃において、酸素を可逆吸着によって多量に吸着し、かつ可逆的吸着速度も大きく、単に圧力を増減させることによって酸素の吸着及び脱着を容易に行うことができる。しかも、高温の製品酸素及び窒素の有する熱を有効利用して回収することにより、酸素製造電力原単位を低減させて、極めて低い動力原単位で高純度の酸素を容易に製造することができる。   Perovskite-type oxide is used at the lowest temperature of 200 to 350 ° C, oxygen is adsorbed in a large amount by reversible adsorption, and the reversible adsorption rate is large, making it easy to adsorb and desorb oxygen by simply increasing or decreasing the pressure. It can be carried out. Moreover, by efficiently utilizing the heat of the high-temperature product oxygen and nitrogen, the oxygen production power intensity can be reduced, and high-purity oxygen can be easily produced with an extremely low power intensity.

更に、蓄熱材の前方部に水分吸着剤を装架することにより、原料空気中の水分除去を酸素と窒素の分離において同時に実施することが出来ることから、高効率かつ低コストで高純度の酸素を容易に製造することができる。   Furthermore, by installing a moisture adsorbent on the front part of the heat storage material, it is possible to simultaneously remove moisture in the raw material air in the separation of oxygen and nitrogen. Can be easily manufactured.

高い熱回収率と、高温部での動作の困難な自動弁、現空ブロワー、真空ポンプ等の駆動部を有するユニットを低温部に設置すること、高効率で信頼性の高い空気からの酸素と窒素の分離方法を提供することができる。   Install a unit with a high heat recovery rate, an automatic valve that is difficult to operate in the high temperature part, a current blower, a vacuum pump, etc. in the low temperature part, and highly efficient and reliable oxygen from the air. A method for separating nitrogen can be provided.

以下に、本発明を実施するための形態を、添付図面を参照しながら説明する。
発明を実施するための装置の例を図1及び2に示す。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated, referring an accompanying drawing.
An example of an apparatus for carrying out the invention is shown in FIGS.

図1及び2において、本発明を実施するための酸素と窒素とを分離する圧力スイング吸着装置を示す。圧力スイング吸着装置は、充填塔4a、bが保温庫24内に収容されてなる。   1 and 2 show a pressure swing adsorption device for separating oxygen and nitrogen for carrying out the present invention. The pressure swing adsorption device is configured such that packed towers 4 a and 4 b are accommodated in a heat insulation chamber 24.

充填塔4a、bは、混合ガスの流れ方向に、順に、
(1)吸着された高温酸素から熱を回収し、回収した熱を混合ガスに付与するための蓄熱材19a、b、
(2)蓄熱材を通った混合ガスが熱交換器の一方の側を流れ、充填塔を流出する高温の窒素製品ガスが熱交換器の他方の側を流れ、高温の窒素製品ガスから混合ガスに熱を回収して熱交換器を流出する混合ガスを昇温させる混合ガス−窒素熱交換器20a、b、
(3)窒素との熱交換器を通って昇温した混合ガスを加熱して吸着温度にするための加熱器21a、b、
(4)混合ガス−窒素熱交換器を通った混合ガスを通して酸素を選択的に吸着して窒素を通過させる酸素を選択的に吸着する吸着剤床5a、b
を内部に収容する。
The packed towers 4a and 4b are sequentially arranged in the flow direction of the mixed gas.
(1) Heat storage materials 19a, 19b for recovering heat from the adsorbed high-temperature oxygen and applying the recovered heat to the mixed gas
(2) The mixed gas that has passed through the heat storage material flows on one side of the heat exchanger, and the high-temperature nitrogen product gas that flows out of the packed tower flows on the other side of the heat exchanger. A mixed gas-nitrogen heat exchanger 20a, b, which raises the temperature of the mixed gas flowing out of the heat exchanger by recovering heat
(3) Heaters 21a, 21b for heating the mixed gas heated through the heat exchanger with nitrogen to an adsorption temperature,
(4) Adsorbent beds 5a and 5b that selectively adsorb oxygen by selectively adsorbing oxygen through a mixed gas that has passed through a mixed gas-nitrogen heat exchanger.
Is housed inside.

蓄熱材19a、bは、一般に市販されている任意のものを使用してよいが、ガスが通過する際の圧損が最少になりかつ蓄熱量の大きなものを使用するのが好ましい。このような蓄熱材として、例えばライナー間ピッチ2mm程度、平板厚さ0.5mm程度のステンレス製蓄熱材ハニカムを挙げることができる。   As the heat storage materials 19a and 19b, any commercially available materials may be used, but it is preferable to use a material that minimizes the pressure loss when the gas passes and has a large heat storage amount. An example of such a heat storage material is a stainless steel heat storage material honeycomb having a liner pitch of about 2 mm and a flat plate thickness of about 0.5 mm.

混合ガス−窒素熱交換器20a、bは、一般に市販されている任意のものを使用してよいが、ガスが通過する際の圧損が最少になりかつ熱交換率の高いものを使用するのが好ましい。このような熱交換器として、例えば内部を高温窒素が流過するフィン付きチューブ管群を挙げることができる。外部を流過する混合ガスは、フィン付きチューブ管群を流過するため、高い温度に接触する面積が大きくなり、熱交換率が増大する。   As the mixed gas-nitrogen heat exchangers 20a and 20b, any commercially available one may be used. However, it is preferable to use one having a minimum pressure loss when the gas passes and a high heat exchange rate. preferable. An example of such a heat exchanger is a group of tube tubes with fins through which high-temperature nitrogen flows. Since the mixed gas flowing outside flows through the finned tube tube group, the area in contact with the high temperature increases, and the heat exchange rate increases.

加熱器21a、bは、吸着剤が最適の吸着能を発揮する温度にまで混合ガスを昇温するためのものであり、一般に市販されている任意のものを使用してよいが、ガスが通過する際の圧損が最少になりかつ熱交換率の高いものを使用するのが好ましい。このような加熱器として、例えば電気ヒータを挿入したフィン付きチューブを挙げることができる。吸着剤床に熱電対を設置して、熱電対により検知される温度に応じて加熱器からの熱を制御して設定温度を維持する制御システムにするのが好ましい。   The heaters 21a and 21b are for raising the temperature of the mixed gas to a temperature at which the adsorbent exhibits optimum adsorption ability, and any commercially available one may be used, but the gas passes through. It is preferable to use a material that minimizes the pressure loss and has a high heat exchange rate. An example of such a heater is a finned tube into which an electric heater is inserted. It is preferable to install a thermocouple in the adsorbent bed and control the heat from the heater according to the temperature detected by the thermocouple so as to maintain a set temperature.

本発明において用いる吸着剤床5a、bは、酸素を比較的高い温度において可逆吸着によって多量に吸着しかつ可逆的吸着速度も大きいものである。このような吸着剤として、ペロブスカイト型酸化物を用いるのが好ましい。   The adsorbent beds 5a and 5b used in the present invention adsorb a large amount of oxygen by reversible adsorption at a relatively high temperature and have a high reversible adsorption rate. It is preferable to use a perovskite oxide as such an adsorbent.

本発明において用いるのに好適な吸着剤は、構造式BaFe3−zにInをIn/Feモル比で0.002以上ドーピングしたペロブスカイト型酸化物であり、特許文献1に開示されている製造法でInをドープしたBaFeO3−δを製造することができる。(調製法は実施例合成法1に記載。) An adsorbent suitable for use in the present invention is a perovskite oxide in which In is doped with a structural formula of BaFe y O 3-z in an In / Fe molar ratio of 0.002 or more, and is disclosed in Patent Document 1. BaFeO 3-δ doped with In can be produced by the production method. (The preparation method is described in Example Synthesis Method 1.)

同じく、構造式BaFeO3−δにYをY/Feモル比で0.02以上ドーピングしたペロブスカイト型酸化物であり、特許文献1に開示されている製造法でYをドープした、BaFeO3−δを製造することができる。(調製法は実施例合成法2に記載。) Also, a perovskite oxide of Y in the formula BaFeO 3-δ-doped 0.02 or more Y / Fe molar ratio, doped with Y in the production method disclosed in Patent Document 1, BaFeO 3-δ Can be manufactured. (The preparation method is described in Example Synthesis Method 2.)

混合ガスとして空気を使用する本発明の第一の実施態様を図1に、シーケンスを表1に示す。   FIG. 1 shows a first embodiment of the present invention using air as a mixed gas, and Table 1 shows a sequence.

Figure 2010012367
Figure 2010012367

第1ステップ〔充填塔4a、充填塔4b−塔間均圧工程〕
図1に於いて、吸着工程の終了した吸着圧力100〜200kPAの充填塔4aと再生工程の終了した再生圧力2〜20kPaの充填塔4bを塔後方のバルブ8a、6aを開くと充填塔4a後方に残留する窒素が充填塔4bに移行して脱着工程に移行する充填塔4aの酸素濃度が著しく上昇する。又充填塔4a、充填塔4bとも塔内圧力は均圧化されるため、吸着工程にとっては円滑な昇圧、減圧工程にとっては円滑な減圧が進行する。
First step [packing tower 4a, packed tower 4b-pressure equalizing step between towers]
In FIG. 1, when the packed column 4a with an adsorption pressure of 100 to 200 kPa after completion of the adsorption step and the packed column 4b with a regeneration pressure of 2 to 20 kPa after completion of the regeneration step are opened, the valves 8a and 6a are opened behind the packed column 4a. The nitrogen concentration remaining in the packed column 4b moves to the packed column 4b, and the oxygen concentration in the packed column 4a, which shifts to the desorption step, increases significantly. In addition, since the pressure in the packed tower 4a and packed tower 4b is equalized, smooth pressure increase for the adsorption process and smooth pressure decrease for the pressure reduction process proceed.

第2ステップ〔充填塔4a−昇圧工程、充填塔4b−減圧工程〕
均圧化により昇圧した充填塔4aと製品タンク12の間をバルブ8bで結ぶと、充填塔4aの後方から製品窒素が、流路17a、空気−窒素熱交換器20a、流路22aを通じて吸着温度まで昇温して供給され、充填塔4aの吸着圧力は100〜200kPAに近いところまで昇圧する。均圧程度に減圧した充填塔4bをバルブ9bを通じて真空ポンプと結ぶと塔内圧力は減圧して吸着酸素が脱着する。この時、前述したように、蓄熱材ハニカム19bと接触し、蓄熱材は昇温し、脱着酸素は降温して脱着酸素の持つ熱は効率良く回収される。
Second step [packed tower 4a-pressurizing process, packed tower 4b-depressurizing process]
When the packed tower 4a increased in pressure equalization and the product tank 12 are connected by a valve 8b, product nitrogen is adsorbed from the rear of the packed tower 4a through the flow path 17a, the air-nitrogen heat exchanger 20a, and the flow path 22a. The adsorption pressure of the packed tower 4a is increased to a place close to 100 to 200 kPA. When the packed tower 4b, which has been decompressed to about equal pressure, is connected to a vacuum pump through a valve 9b, the pressure in the tower is reduced and adsorbed oxygen is desorbed. At this time, as described above, the heat storage material is in contact with the honeycomb 19b, the temperature of the heat storage material is increased, the desorption oxygen is decreased, and the heat of the desorption oxygen is efficiently recovered.

第3ステップ〔充填塔4a−吸着工程、充填塔4b−再生工程〕
乾燥空気を流路1からブロワー2、バルブ3aを通じて酸素選択型吸着剤充填塔4aに供給する。充填塔4aに、供給する乾燥空気の流れ方向に、順に、蓄熱材ハニカム19a、空気−窒素熱交換器20a、空気加熱器21a、酸素選択型吸着剤ハニカム5aが充填されている。充填塔4aの最前方部には、蓄熱材ハニカム19aが充填されており、空気との接触で空気は昇温し、蓄熱材ハニカム19aは降温して脱着酸素の持つ熱量が回収されて空気が昇温する。次いで、昇温された空気は、内部を高温窒素が流過する混合ガス−窒素熱交換器20aと接触し、空気は昇温し、管群20a内の窒素は降温して流過する窒素の持つ熱量が回収されて空気が昇温する。これで、吸着剤の適した吸着温度に達しない場合には、空気加熱器21aと空気が接触して、適した吸着温度に達する。加熱器21aを流過し、次いで酸素選択型吸着剤ハニカム床5aと接触した空気は、酸素が吸着されて、床から流過した窒素は、次いで充填塔4a後方から流出する。流出する窒素は吸着剤床設定温度の高温のため、流路22aから空気−窒素熱交換器20aに供給され、昇温中の空気と接触して、熱回収が計られる。ここで酸素選択型吸着剤ハニカム5aの酸素吸着帯は塔前方から後方に移動し、充填塔4a後方から酸素が流過する直前に空気の供給を停止する。充填塔4bは塔後方まで酸素吸着帯が移動した状態であり、流路17aから供給される製品窒素を減圧弁18、バルブ8bを通じて充填塔4bは塔後方から供給し、酸素選択型吸着剤ハニカム5bと向流接触することで酸素が脱着する。脱着した酸素は空気加熱器21b、空気−窒素熱交換器を通過して、(ここまでは脱着酸素の熱回収は殆ど計られない。)蓄熱材ハニカム19bと接触し、蓄熱材は昇温し、脱着酸素は降温して脱着酸素の持つ熱は効率良く回収される。なお脱着した酸素濃度は約50vol%以上に濃縮されている。
Third step [packed tower 4a-adsorption process, packed tower 4b-regeneration process]
Dry air is supplied from the channel 1 to the oxygen selective adsorbent packed tower 4a through the blower 2 and the valve 3a. The packed tower 4a is sequentially filled with a heat storage material honeycomb 19a, an air-nitrogen heat exchanger 20a, an air heater 21a, and an oxygen selective adsorbent honeycomb 5a in the flow direction of the supplied dry air. The frontmost part of the packed tower 4a is filled with a heat storage material honeycomb 19a. The temperature of the heat storage material honeycomb 19a is increased by contact with air, and the heat storage material honeycomb 19a is cooled to recover the heat quantity of the desorbed oxygen. Raise the temperature. Next, the heated air is brought into contact with the mixed gas-nitrogen heat exchanger 20a through which high-temperature nitrogen flows, the air is heated, and the nitrogen in the tube group 20a is cooled to flow through the nitrogen. The amount of heat is recovered and the temperature of the air rises. If the adsorbent does not reach a suitable adsorption temperature, the air heater 21a comes into contact with air and reaches a suitable adsorption temperature. The air that has passed through the heater 21a and then contacted with the oxygen-selective adsorbent honeycomb floor 5a adsorbs oxygen, and the nitrogen that has passed through the bed then flows out from the back of the packed tower 4a. Since the flowing out nitrogen is high at the adsorbent bed set temperature, it is supplied from the flow path 22a to the air-nitrogen heat exchanger 20a, and is brought into contact with the air being heated to recover heat. Here, the oxygen adsorption zone of the oxygen selective adsorbent honeycomb 5a moves from the front of the tower to the rear, and the supply of air is stopped immediately before oxygen flows from the rear of the packed tower 4a. The packed tower 4b is in a state in which the oxygen adsorption zone has moved to the rear of the tower, and the product nitrogen supplied from the flow path 17a is supplied from the rear of the tower through the pressure reducing valve 18 and the valve 8b, and the oxygen selective adsorbent honeycomb. Oxygen is desorbed by countercurrent contact with 5b. The desorbed oxygen passes through the air heater 21b and the air-nitrogen heat exchanger (so far, heat recovery of the desorbed oxygen is hardly measured) and comes into contact with the heat storage material honeycomb 19b, and the heat storage material is heated. The desorbed oxygen is cooled and the heat of the desorbed oxygen is recovered efficiently. The desorbed oxygen concentration is concentrated to about 50 vol% or more.

本酸素−窒素分離は200〜800℃の高温で操作されるため、酸素選択型吸着剤充填塔4a、4bは左記温度に保持する必要があり、本実施例では充填塔4a、4bを保温庫24に設置して熱損失を最小にとどめている。   Since this oxygen-nitrogen separation is operated at a high temperature of 200 to 800 ° C., the oxygen-selective adsorbent packed towers 4a and 4b need to be maintained at the temperature shown on the left. 24 to minimize heat loss.

ここで第1〜3ステップと同じ操作を充填塔4aと充填塔4bを変更して、第4〜6ステップの操作を実施する。   Here, the same operations as those in the first to third steps are changed in the packed tower 4a and the packed tower 4b, and the operations in the fourth to sixth steps are performed.

次に、混合ガスとして空気を使用する本発明の第二の実施態様を説明する。   Next, a second embodiment of the present invention using air as a mixed gas will be described.

第一実施例においては、「吸着工程」では塔間均圧−昇圧−吸着、「再生工程」では塔間均圧−減圧−向流パージで酸素回収を行ったが、第二実施例においては、向流パージにおけるパージガスとして製品窒素を使用し、又吸着工程終了後の吸着塔に窒素が残留するため、99vol%程度の高濃度酸素回収は困難である。回収酸素からの窒素の除去を行う方法としては、「再生工程」において吸着工程終了後の吸着塔に塔前方から回収した酸素をパージすると吸着塔に残留する窒素が酸素と置換して、塔後方から窒素が流過し、脱着工程に於ける酸素濃度が著しく上昇する。   In the first embodiment, oxygen recovery was performed by the inter-column pressure-pressure-adsorption-adsorption in the “adsorption step”, and the column pressure-reduction-counter-current purge was performed in the “regeneration step”. Further, since product nitrogen is used as a purge gas in the countercurrent purge, and nitrogen remains in the adsorption tower after completion of the adsorption process, it is difficult to recover high concentration oxygen of about 99 vol%. As a method of removing nitrogen from the recovered oxygen, when the oxygen recovered from the front of the tower is purged into the adsorption tower after completion of the adsorption process in the “regeneration process”, the nitrogen remaining in the adsorption tower is replaced with oxygen, and the rear of the tower Nitrogen flows from the catalyst, and the oxygen concentration in the desorption process increases remarkably.

この時の装置のフローシートを図2に、装置フローシ−トを表2に示す。図中、図1と同一の番号は同一の部品を示す。図2において吸着工程終了後の充填塔4bにガスタンク26から真空ポンプ11をブロワーとして使用し、バルブ27、28、3b、6bを開くと、塔に残留する窒素が流過して流路29から流路1に還流して回収される。   FIG. 2 shows the flow sheet of the apparatus at this time, and Table 2 shows the apparatus flow sheet. In the figure, the same reference numerals as those in FIG. 1 denote the same components. In FIG. 2, when the vacuum pump 11 is used as a blower from the gas tank 26 to the packed tower 4 b after the adsorption step and the valves 27, 28, 3 b, 6 b are opened, nitrogen remaining in the tower flows and flows from the flow path 29. It is returned to the flow path 1 and collected.

Figure 2010012367
Figure 2010012367

この操作を並流パージと呼ぶが、脱着ガス量をG2(mN/h)、並流パージガス流量をG4(mN/h)とすると、並流パージ率Kを、
K=G4/G2
で定義する。なお脱着ガス量G3は、G3=G2−G4である。
以下に、実施例を例示して本発明を具体的に説明するが、これらは、本発明を制限するものではない。
This operation is called a cocurrent purge. When the desorption gas amount is G2 (m 3 N / h) and the cocurrent purge gas flow rate is G4 (m 3 N / h), the cocurrent purge rate K is
K = G4 / G2
Define in. The desorption gas amount G3 is G3 = G2-G4.
Hereinafter, the present invention will be described specifically by way of examples, but these are not intended to limit the present invention.

合成例1 In/Fe比0.02のInをドープしたBaFeO3−δの合成
硝酸バリウム、硝酸インジウム、硝酸鉄の粉末を、モル比で100:98:2に混合し、純水にて溶解した後、空気中で350℃に昇温して蒸発乾固した後、空気中で800℃,2h仮焼し、さらに1200℃で6h本焼成して、BaFe0.98In0.023−δペロブスカイト型酸化物粉末を調製した。酸化物粉末がペロブスカイト型構造を有することは、CuKα線を用いたX線回折分析(XRD)によって確認した。この粉末16gにカオリン4g、セルロース4g、純水2gを加えてペロブスカイト系酸化物原料ケーキを調製し、これを押し出し成形機に荷重100kgを加えて直径1.6mmφのペレットを得た。このペレットを空気中200℃/時で800℃に昇温して1時間保持して活性化したペロブスカイト型酸化物ペレットを調製した。
Synthesis Example 1 Synthesis of InFe - doped BaFeO 3-δ with an In / Fe ratio of 0.02 Powders of barium nitrate, indium nitrate and iron nitrate were mixed at a molar ratio of 100: 98: 2 and dissolved in pure water. After heating to 350 ° C. in air and evaporating to dryness, calcining in air at 800 ° C. for 2 hours and further firing at 1200 ° C. for 6 hours to obtain BaFe 0.98 In 0.02 O 3 the perovskite oxide powder was prepared. It was confirmed by X-ray diffraction analysis (XRD) using CuKα rays that the oxide powder had a perovskite structure. A perovskite oxide raw material cake was prepared by adding 4 g of kaolin, 4 g of cellulose, and 2 g of pure water to 16 g of this powder, and a load of 100 kg was applied to an extruder to obtain pellets having a diameter of 1.6 mmφ. The pellets were heated to 800 ° C. at 200 ° C./hour in the air and held for 1 hour to prepare activated perovskite oxide pellets.

実施例1
充填塔4a、bの酸素選択型吸着剤ハニカム5a、bとして、合成例1で調製したIn/Fe比0.02のInをドープしたBaFeO3−δを使用して、本発明の第一の実施態様を実施した。空気からの酸素、窒素分離におけるPSA操作条件と分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)の関係を評価した。
Example 1
As the oxygen-selective adsorbent honeycombs 5a and 5b of the packed towers 4a and 4b, the InFe - doped BaFeO 3-δ having an In / Fe ratio of 0.02 prepared in Synthesis Example 1 is used. An embodiment was implemented. PSA operating conditions and separation performance in separation of oxygen and nitrogen from air (product oxygen concentration, power intensity during production of oxygen (kWh / m 3 N—O 2 ), oxygen adsorption load (m 3 N—O 2 / h / ton) was evaluated.

第1ステップ〔充填塔4a、充填塔4b−塔間均圧工程〕
吸着工程の終了した充填塔4aの吸着圧力120kPA、再生工程の終了した再生圧力5kPaにした。充填塔4a、充填塔4bの均圧化後の塔内圧力は60kPaであった。
First step [packing tower 4a, packed tower 4b-pressure equalizing step between towers]
The adsorption pressure of the packed tower 4a after the adsorption process was 120 kPa, and the regeneration pressure after the regeneration process was 5 kPa. The pressure inside the packed tower 4a and packed tower 4b after pressure equalization was 60 kPa.

第2ステップ〔充填塔4a−昇圧工程、充填塔4b−減圧工程〕
60kPa程度に昇圧した充填塔4aと製品タンク12の間をバルブ8bで結ぶと、充填塔4aの後方から製品窒素が、吸着温度まで昇温して供給され、充填塔4aの吸着圧力は120kPAに近いところまで昇圧した。60kPa程度に減圧した充填塔4bをバルブ9bを通じて真空ポンプと結ぶと塔内圧力は10kPA以下に減圧して吸着酸素が脱着した。
Second step [packed tower 4a-pressurizing process, packed tower 4b-depressurizing process]
When the packed column 4a and the product tank 12 which are pressurized to about 60 kPa are connected by the valve 8b, the product nitrogen is heated up to the adsorption temperature from the back of the packed column 4a and supplied, and the adsorption pressure of the packed column 4a is 120 kPa. Boosted to a close range. When the packed tower 4b decompressed to about 60 kPa was connected to a vacuum pump through the valve 9b, the pressure in the tower was reduced to 10 kPa or less and the adsorbed oxygen was desorbed.

第3ステップ〔充填塔4a−吸着工程、充填塔4b−再生工程〕
乾燥空気100mN/hを流路1から酸素選択型吸着剤充填塔4aに供給した。充填塔4aは直径30cm、高さ150cmの大きさである。ここに20リットルの蓄熱材ハニカム19a、空気−窒素熱交換器20a、空気加熱器21a、80リットルの酸素選択型吸着剤ハニカム5aが充填されている。(空塔速度は0.5m/sec、吸着負荷は650mN/h/tonである。)充填塔4aの最前方部には、ライナー間ピッチ2mm、平板厚さ0.5mmのステンレス製蓄熱材ハニカム19aが直径30cm、層高20cmの形状で充填されており、空気との接触で空気は昇温し、蓄熱材ハニカム19aは降温して脱着酸素の持つ熱量が回収されて空気が昇温する。次いで内部を高温窒素が流過するフィン付きチューブ管群20aと接触し、空気は昇温し、管群20a内の窒素は降温して流過する窒素の持つ熱量が回収されて空気が昇温する。これで吸着塔設定温度の250℃の90%、225℃までは昇温するが、最高温部の250℃には達しないため、電気ヒータを挿入したフィン付きチューブ21aと空気が接触して、250℃に達する。80リットルの酸素選択型吸着剤ハニカム5と接触した空気中の酸素は吸着されて、塔後方から窒素が流過する。流過する窒素は250℃の高温のため、流路22aから空気−窒素熱交換器20aに供給され、昇温中の空気と接触して、熱回収が計られる。ここで、酸素選択型吸着剤ハニカム5aの酸素吸着帯は塔前方から後方に移動し、充填塔4a後方から酸素が流過する直前に空気の供給を停止する。充填塔4bは塔後方まで酸素吸着帯が移動した状態であり、流路17から供給される4mN/hの製品窒素を減圧弁18、バルブ8bを通じて供給し、酸素選択型吸着剤ハニカム5bと向流接触することで酸素が脱着する。脱着した酸素は空気加熱器21b、空気−窒素熱交換器を通過して、(ここまでは脱着酸素の熱回収は殆ど計られない。)蓄熱材ハニカム19bと接触し、蓄熱材は昇温し脱着酸素は降温して脱着酸素の持つ熱は効率良く回収される。なお脱着した酸素濃度は50vol%以上に濃縮されている。
Third step [packed tower 4a-adsorption process, packed tower 4b-regeneration process]
100 m 3 N / h of dry air was supplied from the channel 1 to the oxygen selective adsorbent packed column 4a. The packed tower 4a has a diameter of 30 cm and a height of 150 cm. This is filled with a 20-liter heat storage material honeycomb 19a, an air-nitrogen heat exchanger 20a, an air heater 21a, and an 80-liter oxygen selective adsorbent honeycomb 5a. (The superficial velocity is 0.5 m / sec and the adsorption load is 650 m 3 N / h / ton.) In the forefront portion of the packed tower 4a, a stainless steel heat storage with a liner pitch of 2 mm and a flat plate thickness of 0.5 mm is provided. The material honeycomb 19a is filled in a shape with a diameter of 30 cm and a layer height of 20 cm, the temperature of the air rises by contact with air, the temperature of the heat storage material honeycomb 19a drops and the amount of heat of desorbed oxygen is recovered, and the temperature of the air rises To do. Next, the inside is brought into contact with the finned tube group 20a through which high-temperature nitrogen flows, the temperature of the air rises, the temperature of the nitrogen in the group 20a drops, and the amount of heat of the flowing nitrogen is recovered to raise the temperature of the air. To do. This raises the temperature up to 90% of the adsorption tower set temperature of 250 ° C., 225 ° C., but does not reach the highest temperature of 250 ° C., so the finned tube 21a with the electric heater inserted is in contact with the air, Reach 250 ° C. Oxygen in the air in contact with the 80 liter oxygen selective adsorbent honeycomb 5 is adsorbed, and nitrogen flows from the rear of the tower. Since the flowing nitrogen is at a high temperature of 250 ° C., it is supplied from the flow path 22a to the air-nitrogen heat exchanger 20a and comes into contact with the air being heated to recover heat. Here, the oxygen adsorption zone of the oxygen selective adsorbent honeycomb 5a moves from the front of the tower to the rear, and the supply of air is stopped immediately before oxygen flows from the rear of the packed tower 4a. The packed tower 4b is in a state in which the oxygen adsorption zone has moved to the rear of the tower, and 4 m 3 N / h of product nitrogen supplied from the flow path 17 is supplied through the pressure reducing valve 18 and the valve 8b, and the oxygen selective adsorbent honeycomb 5b. Oxygen is desorbed by countercurrent contact with. The desorbed oxygen passes through the air heater 21b and the air-nitrogen heat exchanger (so far, heat recovery of the desorbed oxygen is hardly measured) and comes into contact with the heat storage material honeycomb 19b, and the heat storage material is heated. The desorbed oxygen is cooled and the heat of the desorbed oxygen is recovered efficiently. The desorbed oxygen concentration is concentrated to 50 vol% or more.

本酸素−窒素分離は200〜350℃の高温で操作されるため、酸素選択型吸着剤充填塔4a、4bは左記温度に保持する必要があり、本実施例では充填塔4a、4bを保温庫24に設置して熱損失を最小にとどめている。   Since this oxygen-nitrogen separation is operated at a high temperature of 200 to 350 ° C., it is necessary to keep the oxygen selective adsorbent packed towers 4a and 4b at the temperature described on the left. 24 to minimize heat loss.

ここで第1〜3ステップと同じ操作を充填塔4aと充填塔4bを変更して、第4〜6ステップで実施する。   Here, the same operation as the first to third steps is performed in the fourth to sixth steps by changing the packed tower 4a and the packed tower 4b.

表3に吸着圧力、再生圧力、サイクルタイム、吸着温度を変更した時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton))を示す。 Table 3 shows separation performance when the adsorption pressure, regeneration pressure, cycle time, and adsorption temperature are changed (product oxygen concentration, power intensity during oxygen production (kWh / m 3 N—O 2 ), oxygen adsorption load (m 3 N—O 2 / h / ton)).

表3でRun1、2、3、4は再生圧力5kPa、サイクルタイム2分、吸着温度523K(250℃)に設定し、吸着圧力を110〜200kPaに変更した時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)である。製品酸素濃度は96vol%と高値を示し、圧力の上昇に伴い酸素吸着負荷は上昇し、電力原単位も上昇する。このため電力原単位を低値に保つためには低吸着圧力を採用すべきであり、吸着剤使用量を削減するためには高吸着圧力を採用すべき事が判る。 In Table 3, Run 1, 2, 3, and 4 are set at a regeneration pressure of 5 kPa, a cycle time of 2 minutes, an adsorption temperature of 523 K (250 ° C.), and the separation performance when changing the adsorption pressure to 110 to 200 kPa (product oxygen concentration, oxygen Electric power consumption at the time of manufacture (kWh / m 3 N—O 2 ), oxygen adsorption load (m 3 N—O 2 / h / ton) Product oxygen concentration shows a high value of 96 vol%, increasing the pressure As a result, the oxygen adsorption load increases and the power consumption rate also rises, so a low adsorption pressure should be adopted to keep the power consumption rate low, and a high adsorption rate to reduce the amount of adsorbent used. It turns out that pressure should be adopted.

Run5、6は吸着圧力120kPa、サイクルタイム2分、吸着温度523K(250℃)に設定し、再生圧力を5〜15kPaに変更した時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)である。再生圧力の上昇に伴い製品酸素濃度、酸素吸着負荷、電力原単位とも低下する。このため電力原単位を低値に保つためには高再生圧力を採用すべきであるが、吸着剤使用量を削減し、製品酸素濃度を高濃度に保つためには低再生圧力を採用すべき事が判る。 Runs 5 and 6 are set to an adsorption pressure of 120 kPa, a cycle time of 2 minutes, an adsorption temperature of 523 K (250 ° C.), and a separation performance when the regeneration pressure is changed to 5 to 15 kPa (product oxygen concentration, unit of electric power during oxygen production ( kWh / m 3 N—O 2 ) and oxygen adsorption load (m 3 N—O 2 / h / ton) As the regeneration pressure increases, the product oxygen concentration, oxygen adsorption load, and power intensity also decrease. Therefore, a high regeneration pressure should be adopted to keep the power consumption rate low, but a low regeneration pressure should be adopted to reduce the amount of adsorbent used and keep the product oxygen concentration high. I understand.

Run7、8は吸着圧力120kPa、再生圧力5kPa、吸着温度523K(250℃)に設定し、サイクルタイムを3〜5分に変更した時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)である。サイクルタイムの増加に伴い製品酸素濃度、電力原単位は変化しないものの酸素吸着負荷は低下する。この為、吸着剤使用量を削減するためにはサイクルタイムを短縮すべき事が判る。但し、本装置の酸素吸着性能は酸素脱着速度で規定されており、In/Fe比0.02のInをドープしたBaFeO3−δではサイクルタイムは2分程度(脱着時間1分程度)が下限と考えられる。 Runs 7 and 8 are set to adsorption pressure of 120 kPa, regeneration pressure of 5 kPa, adsorption temperature of 523 K (250 ° C.), and separation performance when changing the cycle time to 3 to 5 minutes (product oxygen concentration, power intensity during oxygen production ( kWh / m 3 N—O 2 ) and oxygen adsorption load (m 3 N—O 2 / h / ton) Although the product oxygen concentration and the power consumption rate do not change as the cycle time increases, the oxygen adsorption load decreases. For this reason, it can be seen that the cycle time should be shortened in order to reduce the amount of adsorbent used, provided that the oxygen adsorption performance of this apparatus is defined by the oxygen desorption rate, and the In / Fe ratio is 0.02. In the case of BaFeO 3-δ doped with In, the cycle time is considered to be about 2 minutes (desorption time is about 1 minute).

Run9、10は吸着圧力120kPa、再生圧力5kPa、サイクルタイム2分に設定し、吸着温度を473〜673Kに変更した時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)である。吸着温度の上昇に伴い製品酸素濃度は上昇し523Kで最高濃度を示した後、製品酸素濃度は減少し、電力原単位の上昇、酸素吸着負荷の低減が進行する。この為本PSAでは473〜623K(200〜350℃)での操作が望ましいことが判る。従来の900Kを越える高温操作では、吸着装置の構成材料としてNi、Cr等の高温用高級材料が必要となり、経済性が低下していたが、本装置ではステンレススティール等の通常の耐熱性材料が使用できる。また熱回収ユニットについても80%を越える熱回収が容易に達成できる。 Runs 9 and 10 are set to an adsorption pressure of 120 kPa, a regeneration pressure of 5 kPa, and a cycle time of 2 minutes, and the separation performance when the adsorption temperature is changed to 473 to 673 K (product oxygen concentration, unit of electric power during oxygen production (kWh / m 3) N-O 2), oxygen adsorption load (m 3 N-O 2 / h / ton). after the highest concentration in the product oxygen concentration with increasing adsorption temperature rises 523K, product oxygen concentration decreases As a result, the power consumption increases and the oxygen adsorption load decreases, so it is clear that the operation at 473 to 623 K (200 to 350 ° C.) is desirable for this PSA. A high-temperature material such as Ni or Cr is required as a constituent material of the apparatus, and the economy has been lowered. However, in this apparatus, a normal heat-resistant material such as stainless steel can be used. Also heat recovery more than 80% for the heat recovery unit can be easily achieved.

Run11は吸着圧力120kPa、再生圧力5kPa、サイクルタイム2分、吸着温度673Kに設定し、塔間均圧は実施しなかった時の分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)である。塔間均圧を実施しないことにより電力原単位が上昇し、酸素吸着負荷も上昇する。このため本PSAでは基本的には塔間均圧を実施する方が電力原単位を低減できることが判る。 Run 11 is set to an adsorption pressure of 120 kPa, a regeneration pressure of 5 kPa, a cycle time of 2 minutes, an adsorption temperature of 673 K, and the separation performance when the pressure equalization between the columns is not performed (product oxygen concentration, power intensity during oxygen production (kWh / m 3 N—O 2 ) and oxygen adsorption load (m 3 N—O 2 / h / ton) By not performing the inter-tower pressure equalization, the power intensity increases and the oxygen adsorption load also increases. Therefore, it can be seen that, in this PSA, the basic unit of power between the towers can basically reduce the electric power consumption.

Figure 2010012367
Figure 2010012367

実施例2
充填塔4a、bの酸素選択型吸着剤ハニカム5a、bとして合成例1で調製したIn/Fe比0.02のInをドープしたBaFeO3−δを使用して本発明の第一の実施態様を実施した。
ここで並流パージ率と製品酸素濃度の関係を表4に示す。
Example 2
First embodiment of the present invention using InFe - doped BaFeO 3-δ having an In / Fe ratio of 0.02 prepared in Synthesis Example 1 as the oxygen-selective adsorbent honeycombs 5a and b of the packed towers 4a and b Carried out.
Table 4 shows the relationship between the cocurrent purge rate and the product oxygen concentration.

Figure 2010012367
Figure 2010012367

並流パージ率の増加に伴い、製品酸素濃度は上昇し、並流パージ率70%で酸素濃度は99%に達し、並流パージ率80%では酸素濃度は99.5%に達する。   As the cocurrent purge rate increases, the product oxygen concentration rises, reaching an oxygen concentration of 99% at a cocurrent purge rate of 70%, and reaching an oxygen concentration of 99.5% at a cocurrent purge rate of 80%.

合成例2 Y/Fe比0.01のYをドープしたBaFeO3−δの合成法。
硝酸バリウム、硝酸イットリウム、硝酸鉄の粉末を、モル比100:99:1になるように混合し、純水にて溶解した後、空気中、350℃で蒸発乾固した後、空気中で800℃,2h仮焼し、さらに1200℃で6h本焼成してBaFe0.990.013−δペロブスカイト型酸化物粉末を調製した。酸化物粉末がペロブスカイト型構造を有することは、CuKα線を用いたX線回折分析(XRD)によって確認した。この粉末16gにカオリン4g、セルロース4g、純水2gを加えてペロブスカイト系酸化物原料ケーキを調製し、これを押し出し成形機に荷重100kgを加えて直径1.6mmφのペレットを得た。このペレットを空気中200℃/時で800℃に昇温して1時間保持して活性化したペロブスカイト型酸化物ペレットを調製した。
Synthesis Example 2 Synthesis method of BaFeO 3-δ doped with Y having a Y / Fe ratio of 0.01.
Powders of barium nitrate, yttrium nitrate and iron nitrate were mixed at a molar ratio of 100: 99: 1, dissolved in pure water, evaporated to dryness at 350 ° C. in air, and then 800 in air. Ba2 0.99 Y 0.01 O 3-δ perovskite type oxide powder was prepared by calcining at 1200 ° C. for 2 hours and further firing at 1200 ° C. for 6 hours. It was confirmed by X-ray diffraction analysis (XRD) using CuKα rays that the oxide powder had a perovskite structure. A perovskite oxide raw material cake was prepared by adding 4 g of kaolin, 4 g of cellulose, and 2 g of pure water to 16 g of this powder, and a load of 100 kg was applied to an extruder to obtain pellets having a diameter of 1.6 mmφ. The pellets were heated to 800 ° C. at 200 ° C./hour in the air and held for 1 hour to prepare activated perovskite oxide pellets.

実施例3
充填塔4a、bの酸素選択型吸着剤ハニカム5a、bとして合成例2で調製したY/Fe比0.01のYをドープしたBaFeO3−δを使用して本発明の第一の実施態様を実施例1と同様にして実施した。空気からの酸素、窒素分離におけるPSA操作条件と分離性能(製品酸素濃度、酸素製造時の電力原単位(kWh/mN−O)、酸素吸着負荷(mN−O/h/ton)の関係を評価した。
その結果を下記の表5に示す。
Example 3
Packed column 4a, a first embodiment of the present invention using the BaFeO 3-δ where oxygen-selective adsorbent honeycomb 5a, a Y of Y / Fe ratio 0.01 prepared in Synthesis Example 2 as b doped of b Was carried out in the same manner as in Example 1. PSA operating conditions and separation performance in separation of oxygen and nitrogen from air (product oxygen concentration, power intensity during production of oxygen (kWh / m 3 N—O 2 ), oxygen adsorption load (m 3 N—O 2 / h / ton) was evaluated.
The results are shown in Table 5 below.

Figure 2010012367
Figure 2010012367

La−Sr−Co−Fe−O系試料では、低温で可逆的酸素吸着速度の低下が顕著に表れるが、SrFeO3−δを基本として種々の物質を置換した結果、Baを一定量置換することにより低温での可逆的酸素吸着速度を改善することができ、更にYおよびInをドープすると300℃以下の低温でも安定した酸素吸着量及び酸素吸着速度が確保できる。図3には、酸素濃度21vol%、測定温度100から600℃におけるY/Fe比0.01のYをドープしたBaFeO3−δの(以下、BFY0.01と略す。)可逆的酸素吸着量を、図4には酸素吸着速度を示す。図3に示すように酸素吸着量は最も高い8mlN/gと、従来のLa0.1Sr0.9Co0.9Fe0.13−δ試料(LSCF1991と略す)の2倍の酸素吸着量を示している。又、図4に示すように、酸素吸着速度においては、250℃において2.5倍の酸素吸着速度を示しており、Yドープが酸素吸着最適温度の低温へのシフトに有効なことがわかる。
以上のことから、実用的な空気からの酸素分離に適用可能な可逆的酸素吸着量及び酸素吸着速度の改善が達成されたことがわかる。
In the La-Sr-Co-Fe-O-based sample, the reversible decrease in the oxygen adsorption rate appears remarkably at low temperatures, but as a result of replacing various substances based on SrFeO 3-δ , a certain amount of Ba is replaced. Thus, the reversible oxygen adsorption rate at a low temperature can be improved, and when Y and In are doped, a stable oxygen adsorption amount and oxygen adsorption rate can be secured even at a low temperature of 300 ° C. or lower. FIG. 3 shows the reversible oxygen adsorption amount of BaFeO 3-δ (hereinafter abbreviated as BFY0.01) doped with Y having a Y / Fe ratio of 0.01 at an oxygen concentration of 21 vol% and a measurement temperature of 100 to 600 ° C. FIG. 4 shows the oxygen adsorption rate. As shown in FIG. 3, the oxygen adsorption amount is 8 ml N / g, which is the highest, and twice as much oxygen as the conventional La 0.1 Sr 0.9 Co 0.9 Fe 0.1 O 3-δ sample (abbreviated as LSCF1991). The amount of adsorption is shown. Further, as shown in FIG. 4, the oxygen adsorption rate is 2.5 times as high as the oxygen adsorption rate at 250 ° C., and it can be seen that Y-doping is effective for shifting the optimum oxygen adsorption temperature to a low temperature.
From the above, practical applicable to oxygen separation from air, improvement of reversible oxygen adsorption amount and oxygen adsorption rate is seen to have been achieved.

次に吸着温度250℃においてYドープ量をY/Fe比0〜0.3まで変更したときの、酸素濃度21vol%における可逆的酸素吸着量を図5に、酸素吸着速度を図6に示す。図5に示すように酸素吸着量は吸着温度250℃で最大値8mlN/gを示しており、Y/Fe比0.001以上で未処理のBaFeO3−δに比較して酸素吸着速度は約5倍の吸着速度を示している。 Next, FIG. 5 shows the reversible oxygen adsorption amount at an oxygen concentration of 21 vol% and FIG. 6 shows the oxygen adsorption rate when the Y doping amount is changed from 0 to 0.3 at an adsorption temperature of 250 ° C. Oxygen adsorption amount as shown in FIG. 5 shows the maximum value 8mlN / g at adsorption temperature 250 ° C., the oxygen adsorption rate is about as compared to the untreated BaFeO 3-δ at Y / Fe ratio 0.001 5 times the adsorption rate.

図7には、酸素濃度21vol%、測定温度100から600℃におけるIn/Fe比0.02のInをドープしたBaFeO3−δ(以下BFI0.02と略する。)の可逆的酸素吸着量を、図8には酸素吸着速度を示す。図7に示すように酸素吸着量は9mlN/gと、従来のLSCF1991試料の2.2倍の酸素吸着量を示しており、酸素吸着速度においては5倍の吸着速度を示しており、Inドープが酸素吸着最適温度の低温へのシフトに有効なことがわかる。 FIG. 7 shows the reversible oxygen adsorption amount of BaFeO 3-δ (hereinafter abbreviated as BFI 0.02) doped with In having an In / Fe ratio of 0.02 at an oxygen concentration of 21 vol% and a measurement temperature of 100 to 600 ° C. FIG. 8 shows the oxygen adsorption rate. As shown in FIG. 7, the oxygen adsorption amount is 9 ml N / g, which is 2.2 times the oxygen adsorption amount of the conventional LSCF1991 sample, and the oxygen adsorption rate is 5 times the adsorption rate. Is effective in shifting the optimum oxygen adsorption temperature to a low temperature.

次に吸着温度250℃においてInドープ量をIn/Fe比0〜0.1まで変更したときの、酸素濃度21vol%における可逆的酸素吸着量を図8に、酸素吸着速度を図9に示す。図8に示すように酸素吸着量は、In/Fe=0.02で最大値9mlN/gを示しており、In/Fe比0.002以上で、未ドープのBaFeO3−δと比較して酸素吸着速度も6倍の酸素吸着速度を示している。 Next, FIG. 8 shows the reversible oxygen adsorption amount at an oxygen concentration of 21 vol% and FIG. 9 shows the oxygen adsorption rate when the In doping amount is changed from the In / Fe ratio of 0 to 0.1 at an adsorption temperature of 250.degree. As shown in FIG. 8, the oxygen adsorption amount is In / Fe = 0.02 and the maximum value is 9 ml N / g, and the In / Fe ratio is 0.002 or more, compared with undoped BaFeO 3-δ. The oxygen adsorption rate is also 6 times the oxygen adsorption rate.

本発明の酸素選択型吸着剤は、その適用する範囲が極めて広く、例えば酸素選択型吸着剤を利用した酸素分離・濃縮装置に適用する場合、PSAへの適用可能であり、従来のN2吸着型モレキュラーシーブスの吸着性能をはるかに凌駕し装置の小型化、酸素分離・濃縮の低廉化への道を開くものである。
また、本発明の酸素選択型吸着剤を酸素除去に利用するならば極めて安価な窒素製造を提供することとなる。
The oxygen-selective adsorbent of the present invention has a very wide range of application. For example, when applied to an oxygen separation / concentration apparatus using an oxygen-selective adsorbent, it can be applied to PSA, and the conventional N 2 adsorption This far surpasses the adsorption performance of the type molecular sieves and opens the way to downsizing the equipment and reducing the cost of oxygen separation and concentration.
In addition, if the oxygen-selective adsorbent of the present invention is used for oxygen removal, extremely inexpensive nitrogen production can be provided.

本発明の第一の実施態様を実施するために使用した装置の概略説明図である。It is a schematic explanatory drawing of the apparatus used in order to implement the 1st embodiment of this invention. 本発明の第二の実施態様を実施するために使用した装置の概略説明図である。It is a schematic explanatory drawing of the apparatus used in order to implement the 2nd embodiment of this invention. 酸素濃度21vol%、吸着温度100〜600℃におけるY/Fe比0.01でYをドープしたBaFeO3−δの可逆酸素吸着量を示す。Oxygen concentration 21 vol%, showing a reversible oxygen adsorption amount of BaFeO 3-δ doped with Y in Y / Fe ratio 0.01 in the adsorption temperature 100 to 600 ° C.. 酸素濃度21vol%、吸着温度100〜600℃におけるY/Fe比0.01でYをドープしたBaFeO3−δの酸素吸着速度を示す。The oxygen adsorption rate of BaFeO 3-δ doped with Y at a Y / Fe ratio of 0.01 at an oxygen concentration of 21 vol% and an adsorption temperature of 100 to 600 ° C. is shown. 吸着温度250℃におけるYドープ量をY/Fe比0〜0.3で変更したときのBaFeO3−δの可逆酸素吸着量を示す。Exhibits a reversible oxygen adsorption amount of BaFeO 3-δ when the Y doping amount in the adsorption temperature 250 ° C. was changed in Y / Fe ratio to 0.3. 吸着温度250℃におけるYドープ量をY/Fe比0〜0.3で変更したときのBaFeO3−δの酸素吸着速度を示す。The oxygen adsorption rate of BaFeO 3-δ when the Y doping amount at an adsorption temperature of 250 ° C. is changed with a Y / Fe ratio of 0 to 0.3 is shown. 酸素濃度21vol%、吸着温度100〜600℃におけるIn/Fe比0.02でInをドープしたBaFeO3−δの可逆酸素吸着量を示す。The reversible oxygen adsorption amount of BaFeO 3-δ doped with In at an In / Fe ratio of 0.02 at an oxygen concentration of 21 vol% and an adsorption temperature of 100 to 600 ° C. is shown. 酸素濃度21vol%、吸着温度100〜600℃におけるIn/Fe比0.02でInをドープしたBaFeO3−δの酸素吸着速度を示す。Oxygen concentration 21 vol%, an oxygen adsorption rate of BaFeO 3-δ doped with In by In / Fe ratio of 0.02 in the adsorption temperature 100 to 600 ° C.. 吸着温度250℃におけるInドープ量をIn/Fe比0〜0.1で変更したときのBaFeO3−δの可逆酸素吸着量を示す。The reversible oxygen adsorption amount of BaFeO 3-δ when the In doping amount at an adsorption temperature of 250 ° C. is changed with an In / Fe ratio of 0 to 0.1 is shown. 吸着温度250℃におけるInドープ量をIn/Fe比0〜0.1で変更したときのBaFeO3−δの酸素吸着速度を示す。The oxygen adsorption rate of BaFeO 3-δ when the In doping amount at an adsorption temperature of 250 ° C. is changed with an In / Fe ratio of 0 to 0.1 is shown.

符号の説明Explanation of symbols

4a、b 充填塔
5a、b 吸着剤
12 製品タンク
19a、19b 蓄熱材
20a、20b 混合ガス−窒素熱交換器
21a、21b 混合ガス加熱器
26 脱着ガスタンク
4a, b Packing tower 5a, b Adsorbent 12 Product tank 19a, 19b Heat storage material 20a, 20b Mixed gas-nitrogen heat exchanger 21a, 21b Mixed gas heater 26 Desorption gas tank

Claims (6)

酸素、窒素を主成分とする混合ガスを、蓄熱材、混合ガス−窒素熱交換器、混合ガス加熱器、酸素選択型吸着剤として使用するBaFeO3−δにYまたはInをドーピングしたペロブスカイト型酸化物の充填された吸着塔に、相対的高圧条件下で供給して、混合ガスと蓄熱材とを接触させて混合ガスを昇温し、次いで混合ガスを混合ガス−窒素熱交換器で塔出口窒素と熱交換して昇温し、次いで混合ガスを混合ガス加熱器と接触させて吸着温度に設定した後に、酸素選択型吸着剤と接触させて酸素を吸着させて窒素と分離した後に、酸素を吸着した酸素選択型吸着剤を相対的低圧条件に導いて酸素を脱着させ、酸素と蓄熱材との接触により高温酸素からの熱回収を行う、酸素と窒素との圧力スイング吸着法(PSA)による分離方法。 Perovskite type oxidation in which Y or In is doped into BaFeO 3-δ used as a heat storage material, mixed gas-nitrogen heat exchanger, mixed gas heater, oxygen selective adsorbent, mixed gas mainly composed of oxygen and nitrogen The mixture gas is supplied to the adsorption tower filled with the material under a relatively high pressure condition, the mixed gas and the heat storage material are brought into contact with each other to raise the temperature of the mixed gas, and then the mixed gas is discharged from the tower with a mixed gas-nitrogen heat exchanger. The temperature is raised by exchanging heat with nitrogen, and then the mixed gas is brought into contact with a mixed gas heater to set the adsorption temperature, and then brought into contact with an oxygen-selective adsorbent to adsorb oxygen and separate from nitrogen, Pressure-adsorption method (PSA) of oxygen and nitrogen, in which oxygen-selective adsorbent that adsorbs oxygen is introduced to a relatively low pressure condition, oxygen is desorbed, and heat is recovered from high-temperature oxygen by contact with oxygen and a heat storage material Separation method by. 酸素、窒素を主成分とする混合ガスを高温酸素選択型吸着剤として使用するBaFeO3−δにYまたはInをドーピングしたペロブスカイト型酸化物と接触させて相対的高圧条件下で酸素を吸着させて窒素と分離した後に、酸素を吸着した酸素選択型吸着剤を、製品窒素をパージガスとして大気圧ないし減圧条件下でパージして酸素を更に脱着させる、請求項1記載の酸素と窒素とのPSAによる分離方法。 A mixed gas composed mainly of oxygen and nitrogen is used as a high-temperature oxygen selective adsorbent, and BaFeO 3-δ is contacted with a perovskite oxide doped with Y or In to adsorb oxygen under relatively high pressure conditions. The oxygen-selective adsorbent that has adsorbed oxygen after being separated from nitrogen is purged under atmospheric pressure or reduced pressure conditions using product nitrogen as a purge gas to further desorb oxygen, according to the PSA of oxygen and nitrogen according to claim 1 Separation method. 混合ガスの流れ方向に向かって、蓄熱材の上流に水分吸着剤を装架し、相対的高圧条件下で水分を吸着して乾燥混合ガスを調製して、高温酸素吸着剤として使用するBaFeO3−δにYまたはInをドーピングしたペロブスカイト型酸化物に供給して酸素を吸着させ、相対的減圧条件下で脱着された高温酸素を蓄熱材と接触させて酸素から熱を回収して降温した濃縮酸素から吸着水分を離脱させる、請求項1〜2のいずれか記載の酸素と窒素のPSAによる分離方法。 BaFeO 3 used as a high-temperature oxygen adsorbent by installing a moisture adsorbent upstream of the heat storage material in the direction of the flow of the mixed gas, adsorbing moisture under a relatively high pressure condition to prepare a dry mixed gas Concentrated by supplying oxygen to the perovskite oxide doped with Y or In at , adsorbing oxygen, bringing high-temperature oxygen desorbed under relative reduced pressure conditions into contact with the heat storage material, and recovering heat from oxygen The method for separating oxygen and nitrogen by PSA according to any one of claims 1 to 2, wherein adsorbed moisture is released from oxygen. 吸着工程終了後の吸着塔と脱着工程終了後の吸着塔とを塔後方で連絡させ、吸着工程終了後の吸着塔に残留する酸素を脱着工程終了後の吸着塔に供給して回収する、請求項1〜3のいずれか記載の酸素と窒素のPSAによる分離方法。   The adsorption tower after completion of the adsorption process and the adsorption tower after completion of the desorption process are connected at the rear of the tower, and oxygen remaining in the adsorption tower after completion of the adsorption process is supplied to the adsorption tower after completion of the desorption process and recovered. Item 4. A method for separating oxygen and nitrogen according to any one of Items 1 to 3 by PSA. 酸素、窒素を主成分とする混合ガスを相対的高圧条件下で供給して酸素と窒素とを分離する圧力スイング吸着装置であって、混合ガスの流れ方向に、順に、
(1)吸着された高温酸素から熱を回収し、回収した熱を混合ガスに付与するための蓄熱材、
(2)分離蓄熱材を通った混合ガスが熱交換器の一方の側を流れ、充填塔を流出する高温の窒素製品ガスが熱交換器の他方の側を流れ、高温の窒素製品ガスから混合ガスに熱を回収して熱交換器を流出する混合ガスを昇温させる混合ガス−窒素熱交換器、
(3)窒素との熱交換器を通って昇温した混合ガスを加熱して吸着温度にするための加熱器、
(4)混合ガス−窒素熱交換器を通った混合ガスを通して酸素を選択的に吸着した後に窒素を通過させて酸素を選択的に吸着する吸着剤床を内部に装着した充填塔を並列に2塔以上含み、充填塔が保温するために保温庫内に収容される酸素と窒素とを分離する圧力スイング吸着装置。
A pressure swing adsorption device for supplying a mixed gas mainly composed of oxygen and nitrogen under a relatively high pressure condition to separate oxygen and nitrogen, in the flow direction of the mixed gas,
(1) A heat storage material for recovering heat from the adsorbed high-temperature oxygen and imparting the recovered heat to the mixed gas;
(2) The mixed gas that has passed through the separated heat storage material flows on one side of the heat exchanger, and the high-temperature nitrogen product gas that flows out of the packed tower flows on the other side of the heat exchanger and is mixed from the high-temperature nitrogen product gas. A mixed gas-nitrogen heat exchanger that recovers heat to the gas and raises the temperature of the mixed gas flowing out of the heat exchanger,
(3) A heater for heating the mixed gas heated through a heat exchanger with nitrogen to an adsorption temperature,
(4) 2 parallel packed towers equipped with an adsorbent bed that selectively adsorbs oxygen by allowing nitrogen to pass through after selectively adsorbing oxygen through the mixed gas-nitrogen heat exchanger. A pressure swing adsorption device that includes more than a tower and separates oxygen and nitrogen that are contained in a heat insulation chamber to keep the packed tower warm.
酸素選択型吸着剤としてBaFeO3−δにYをY/Feモル比で0.001以上ドーピングするかまたはInをIn/Feモル比で0.002以上ドーピングしたペロブスカイト型酸化物を使用し、200〜350℃の吸着温度で実施する請求項1〜5のいずれかに記載の酸素と窒素のPSAによる分離方法。 As the oxygen selective adsorbent, a perovskite oxide in which BaFeO 3-δ is doped with Y in a Y / Fe molar ratio of 0.001 or more or In is doped in In / Fe with a molar ratio of 0.002 or more is used. The method for separating oxygen and nitrogen by PSA according to any one of claims 1 to 5, which is carried out at an adsorption temperature of ~ 350 ° C.
JP2008171935A 2008-07-01 2008-07-01 Oxygen production method and apparatus by pressure swing adsorption method using oxygen selective adsorbent Active JP5298291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171935A JP5298291B2 (en) 2008-07-01 2008-07-01 Oxygen production method and apparatus by pressure swing adsorption method using oxygen selective adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171935A JP5298291B2 (en) 2008-07-01 2008-07-01 Oxygen production method and apparatus by pressure swing adsorption method using oxygen selective adsorbent

Publications (2)

Publication Number Publication Date
JP2010012367A true JP2010012367A (en) 2010-01-21
JP5298291B2 JP5298291B2 (en) 2013-09-25

Family

ID=41699015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171935A Active JP5298291B2 (en) 2008-07-01 2008-07-01 Oxygen production method and apparatus by pressure swing adsorption method using oxygen selective adsorbent

Country Status (1)

Country Link
JP (1) JP5298291B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141487A1 (en) * 2012-03-21 2013-09-26 한국에너지기술연구원 Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
WO2013191098A1 (en) * 2012-06-19 2013-12-27 東京瓦斯株式会社 Gas separation device
JP2014000531A (en) * 2012-06-19 2014-01-09 Tokyo Gas Co Ltd Gas separation device and gas separation method
JP2015163392A (en) * 2014-01-30 2015-09-10 Jfeスチール株式会社 Method and equipment for oxygen separation
JP2015163393A (en) * 2014-01-30 2015-09-10 Jfeスチール株式会社 Method and equipment for oxygen separation
CN112850650A (en) * 2019-11-27 2021-05-28 德真有限责任公司 Oxygen generating apparatus capable of simultaneously performing oxygen generation and cleaning
JP2022009583A (en) * 2016-07-01 2022-01-14 三菱ケミカル株式会社 Oxygen excess type metal oxide, manufacturing method and recycling method therefor, oxygen condensation device and oxygen adsorption and desorption device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012439A (en) * 2006-07-06 2008-01-24 Kyuchaku Gijutsu Kogyo Kk Oxygen producing method and apparatus by pressure swing method using high temperature oxygen adsorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012439A (en) * 2006-07-06 2008-01-24 Kyuchaku Gijutsu Kogyo Kk Oxygen producing method and apparatus by pressure swing method using high temperature oxygen adsorbent

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141487A1 (en) * 2012-03-21 2013-09-26 한국에너지기술연구원 Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
US9149758B2 (en) 2012-03-21 2015-10-06 Korea Institute Of Energy Research Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
WO2013191098A1 (en) * 2012-06-19 2013-12-27 東京瓦斯株式会社 Gas separation device
JP2014000531A (en) * 2012-06-19 2014-01-09 Tokyo Gas Co Ltd Gas separation device and gas separation method
US9144767B2 (en) 2012-06-19 2015-09-29 Tokyo Gas Co., Ltd. Gas separation device
JP2015163392A (en) * 2014-01-30 2015-09-10 Jfeスチール株式会社 Method and equipment for oxygen separation
JP2015163393A (en) * 2014-01-30 2015-09-10 Jfeスチール株式会社 Method and equipment for oxygen separation
JP2022009583A (en) * 2016-07-01 2022-01-14 三菱ケミカル株式会社 Oxygen excess type metal oxide, manufacturing method and recycling method therefor, oxygen condensation device and oxygen adsorption and desorption device
JP7235261B2 (en) 2016-07-01 2023-03-08 三菱ケミカル株式会社 Oxygen-excess metal oxide, method for producing and regenerating the same, and oxygen concentrator and oxygen adsorption/desorption device
CN112850650A (en) * 2019-11-27 2021-05-28 德真有限责任公司 Oxygen generating apparatus capable of simultaneously performing oxygen generation and cleaning

Also Published As

Publication number Publication date
JP5298291B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4721967B2 (en) Oxygen production method and apparatus by pressure swing method using high temperature oxygen adsorbent
JP5298291B2 (en) Oxygen production method and apparatus by pressure swing adsorption method using oxygen selective adsorbent
CA2688551C (en) Process for removing a target gas from a mixture of gases by thermal swing adsorption
CN102439123B (en) There is the application of zeolite character crystalline microporous material in natural gas processing process of RHO structure
CN104096475B (en) Removal of hydrogen and carbon monoxide impurities from gas streams
JP3699822B2 (en) Multi-layer adsorption bed for PSA gas separation
AU2008254961B2 (en) Temperature swing adsorption of CO2 from flue gas utilizing heat from compression
TWI382956B (en) Gas purification process
CN102351147B (en) Moderate temperature pressure swing adsorption method for CO2, H2S and H2 mixed gas separation
JP4745299B2 (en) Adsorption / desorption material of ammonia using a combination of specific metal halides, separation method and storage method
JP2014509556A (en) Rapid temperature swing adsorption contactor for separating gases
US10029205B2 (en) Two stage adsorbent and process cycle for fluid separations
US11707707B2 (en) CO2 capture from dilute sources
CN110813022A (en) Multi-bed rapid cycle dynamics PSA
CN211799895U (en) Process system for separating mixed gas containing hydrogen chloride and hydrogen
CN114425233A (en) Removal of hydrogen impurities from gas streams
CN103466546B (en) Intermediate temperate pressure swing adsorption method for using bifunctional adsorbent in adsorption enhanced type vapor reforming and water-vapor transformation reactions
TWI549740B (en) Purifying method and purifying apparatus for argon gas
CN102311103B (en) Helium purifying method and purifying device thereof
JP2005087941A (en) Oxygen adsorbent and oxygen/nitrogen separating method using the same
JP5748272B2 (en) Helium gas purification method and purification apparatus
KR20020007068A (en) Multi Purpose Oxygen Generator using Pressure Swing Adsorption and Method
TW201136654A (en) Purifying method and purifying apparatus for argon gas
EP0737646B1 (en) Process for operating equilibrium-controlled reactions
CN115804999A (en) Gas purification device, glove box and regeneration method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Ref document number: 5298291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250