WO2014092129A1 - Thick steel plate having excellent cryogenic toughness - Google Patents

Thick steel plate having excellent cryogenic toughness Download PDF

Info

Publication number
WO2014092129A1
WO2014092129A1 PCT/JP2013/083239 JP2013083239W WO2014092129A1 WO 2014092129 A1 WO2014092129 A1 WO 2014092129A1 JP 2013083239 W JP2013083239 W JP 2013083239W WO 2014092129 A1 WO2014092129 A1 WO 2014092129A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual
less
parameter
steel
treatment
Prior art date
Application number
PCT/JP2013/083239
Other languages
French (fr)
Japanese (ja)
Inventor
朗 伊庭野
秀徳 名古
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012272184A external-priority patent/JP5973902B2/en
Priority claimed from JP2012285916A external-priority patent/JP5973907B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP13861920.0A priority Critical patent/EP2933347A4/en
Priority to KR1020157015524A priority patent/KR101711774B1/en
Priority to CN201380062597.6A priority patent/CN104854252B/en
Publication of WO2014092129A1 publication Critical patent/WO2014092129A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a thick steel plate having excellent cryogenic toughness. Specifically, according to the present invention, even when the Ni content is reduced to about 5.0 to 7.5%, toughness at an extremely low temperature of ⁇ 196 ° C. or less [particularly, toughness in the plate width direction (C direction)] Relates to a good thick steel plate.
  • the explanation will focus on thick steel plates (typically storage tanks, transport ships, etc.) for liquefied natural gas (LNG) exposed to the above-mentioned cryogenic temperatures.
  • LNG liquefied natural gas
  • the present invention is not intended to be limited, and is applied to all thick steel plates used for applications exposed to extremely low temperatures of ⁇ 196 ° C. or less.
  • LNG tank steel plates used in LNG storage tanks are required to have high strength and high toughness that can withstand extremely low temperatures of -196 ° C.
  • Ni improves the hardness-toughness balance particularly at low temperatures.
  • thick steel plates containing about 9% Ni (9% Ni steel) have been used as the thick steel plates used in the above applications.
  • the cost of Ni has increased in recent years, the development of a thick steel plate excellent in cryogenic toughness even with a low Ni content of less than 9% has been underway.
  • Non-Patent Document 1 describes the effect of ⁇ - ⁇ 2 phase coexistence heat treatment on the low temperature toughness of 6% Ni steel. More specifically, by applying heat treatment (L treatment) in the ⁇ - ⁇ 2 phase coexistence region (between A c1 and A c3 ) before tempering treatment, a large amount of fine and extremely low temperature impact loads are applied. Further, it is described that stable retained austenite is generated, and cryogenic toughness at ⁇ 196 ° C. which is equal to or higher than that of 9% Ni steel subjected to normal quenching and tempering treatment can be secured. However, although the cryogenic toughness in the rolling direction (L direction) is excellent, the cryogenic toughness in the sheet width direction (C direction) generally tends to be inferior to that in the L direction. There is no description of the brittle fracture surface ratio.
  • Patent Document 1 discloses that steel containing 4.0 to 10% Ni and whose austenite grain size is controlled within a predetermined range is hot-rolled and then heated between A c1 and A c3.
  • a method is described in which a cooling treatment (corresponding to the L treatment described in Non-Patent Document 1 above) is repeated once or twice or more and then tempered at a temperature not higher than the Ac1 transformation point.
  • Patent Document 2 discloses that the steel containing 4.0 to 10% Ni and the size of AlN before hot rolling is 1 ⁇ m or less is similar to the heat treatment (L treatment ⁇ firing) described above.
  • a method for performing the return processing is described.
  • Non-Patent Document 2 describes the development of 6% Ni steel for LNG tanks combining the above-mentioned L treatment (two-phase quenching treatment) and TMCP. According to this document, although it is described that the toughness in the rolling direction (L direction) shows a high value, the toughness value in the sheet width direction (C direction) is not described.
  • Patent Document 3 a steel sheet having a yield strength at room temperature of 590 MPa or more in a Ni steel of more than 5.0% and less than 8.0% is assumed to be as resistant as 9% Ni steel even in a use environment. It describes a Ni-reduced steel plate for low temperature with excellent fracture safety and a method for producing the same.
  • the yield point in the low temperature environment which is use temperature can be raised reliably, fracture safety will be improved (that is, high toughness can be obtained in a low temperature environment).
  • the steel ingot is heated at a low temperature in a short time, and in the rolling process, the thickness of the steel ingot at the end of the rough rolling is the product thickness (thickness after finish rolling).
  • the steel sheet is reduced to 3 to 8 times the thickness of the steel sheet. Further, in the examples, rolling is performed from a slab thickness of 300 mm to a finishing thickness of 50 mm or less (mostly to a finishing thickness of less than 50 mm). Thus, by securing a relatively high reduction ratio, the residual ⁇ fraction and the fineness are reduced. Combined with a matrix structure, it achieves low temperature toughness comparable to 9% Ni steel. However, the TS at room temperature of the thick steel plate of Patent Document 3 is 741 MPa at the maximum.
  • Patent Document 3 although the absorbed energy in the C direction is described, there is no description of the brittle fracture surface ratio. Moreover, TS at room temperature in Patent Document 3 is about 741 MPa at the maximum.
  • Japanese Unexamined Patent Publication No. 49-13581 Japanese Laid-Open Patent Publication No. 51-13308 Japanese Unexamined Patent Publication No. 2011-241419
  • the brittle fracture surface ratio indicates the ratio of brittle fracture that occurs when a load is applied in the Charpy impact test. At the site where brittle fracture occurs, the energy absorbed by the steel material until the fracture is significantly reduced, and the fracture proceeds easily. Therefore, in the cryogenic toughness improvement technology, the general-purpose Charpy impact value (vE In addition to the improvement of -196 ), the brittle fracture surface ratio should be 10% or less, which is an extremely important requirement.
  • vE general-purpose Charpy impact value
  • the brittle fracture surface ratio should be 10% or less, which is an extremely important requirement.
  • a technique that satisfies the above requirement for the brittle fracture surface ratio in a high-strength thick steel plate having a high base metal strength as described above has not yet been proposed.
  • the present invention has been made in view of the above circumstances, and its purpose is to achieve cryogenic toughness at ⁇ 196 ° C. (particularly in the C direction) in Ni steel having a Ni content of about 5.0 to 7.5%.
  • An object of the present invention is to provide a high-strength thick steel plate that is excellent in low-temperature toughness and can realize a brittle fracture surface ratio ⁇ 10%, and a method for producing the same.
  • the thick steel plate having excellent cryogenic toughness according to the present invention that can solve the above problems is mass%, C: 0.02 to 0.10%, Si: 0.40% or less (excluding 0%) Mn: 0.50 to 2.0%, P: 0.007% or less (not including 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0.
  • Di value ([C] / 10) 0.5 ⁇ (1 + 0.7 ⁇ [Si]) ⁇ (1 + 3.33 ⁇ [Mn]) ⁇ (1 + 0.35 ⁇ [Cu]) ⁇ (1 + 0.36 ⁇ [ Ni]) ⁇ (1 + 2.16 ⁇ [Cr]) ⁇ (1 + 3 ⁇ [Mo]) ⁇ (1 + 1.75 ⁇ [V]) ⁇ 1.115
  • [] means the content (% by mass) of each component in the steel)
  • Residual ⁇ stabilization parameter (365 ⁇ ⁇ C> + 39 ⁇ ⁇ Mn> + 30 ⁇ ⁇ Al> + 10 ⁇ ⁇ Cu> + 17 ⁇ ⁇ Ni> + 20 ⁇ ⁇ Cr> + 5 ⁇ ⁇ Mo> + 35 ⁇ ⁇ V>) / 100 (2) (In the formula, ⁇ > means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
  • the volume fraction of the residual ⁇ phase and the residual ⁇ stability calculated based on the following equation (3) composed of the volume fraction of the residual ⁇ phase and the residual ⁇ stabilization parameter:
  • the activation parameter is 40 or less.
  • Volume fraction of residual ⁇ / residual ⁇ stabilization parameter 10 / (volume fraction of residual ⁇ phase ⁇ residual ⁇ stabilization parameter) 1/2 (3)
  • the Mn concentration in the residual ⁇ is controlled in place of the residual ⁇ stabilization parameter after defining the element content, Di value, and residual ⁇ volume fraction in the above-mentioned thick steel plate within a more limited range.
  • This is also a preferred embodiment of the present invention because it is possible to exhibit extremely low temperature toughness after obtaining a higher base metal strength.
  • C 0.02 to 0.10%, Si: 0.40% or less (not including 0%), Mn: 0.6 to 2.0%, P: 0.0. 007% or less (excluding 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0.050%, Ni: 5.0 to 7.5%, N: Contains 0.010% or less (excluding 0%), Mo: 0.30 to 1.0%, Cr: 1.20% or less (excluding 0%), the balance being iron and inevitable impurities
  • a thick steel plate The Di value determined on the basis of the formula (1) composed of components in steel is more than 5.0, The residual austenite phase (residual ⁇ ) present at ⁇ 196 ° C.
  • the steel sheet further contains Cu: 1.0% or less (excluding 0%).
  • the steel sheet further includes Ti: 0.025% or less (excluding 0%), Nb: 0.100% or less (not including 0%), and V: 0.50. % Or less (not including 0%).
  • the steel sheet further contains B: 0.0050% or less (excluding 0%).
  • the steel sheet is further selected from the group consisting of Ca: 0.0030% or less (excluding 0%) and REM: 0.0050% or less (excluding 0%). Containing at least one kind.
  • the steel plate further contains Zr: 0.005% or less (excluding 0%).
  • the method for producing a thick steel plate according to the present invention according to claim 1 or 2 that has solved the above-described problem is a heat treatment (L treatment) in an ⁇ - ⁇ 2 phase coexistence region (between A c1 and A c3 ).
  • the L parameter calculated based on the following formula (5) composed of the temperature (L treatment temperature) and A c1 and A c3 in the steel is 0.25 or more and 0.45 or less, and Adjusting the L treatment temperature and the steel component so that the ⁇ L parameter calculated based on the following formula (6) composed of the L parameter and the steel component is 7 or less: , L treatment, water cooling to room temperature, and tempering treatment (T treatment) are carried out for 10 to 60 minutes at a temperature of Ac1 or lower.
  • the L parameter calculated based on the formula (5) is 0.6 or more and 1.1 or less.
  • the L treatment temperature and the steel components are adjusted so that the ⁇ L parameter calculated based on the equation (6) is 0 or less.
  • Ni steel having a Ni content of about 5.0 to 7.5% even if the base metal strength is high (specifically, tensile strength TS> 741 MPa, yield strength YS> 590 MPa, preferably TS ⁇ 830 MPa, YS ⁇ 690 MPa), excellent in cryogenic toughness at ⁇ 196 ° C. or less (particularly, cryogenic toughness in the C direction), brittle fracture surface ratio at ⁇ 196 ° C. ⁇ 10% (preferably ⁇ It was possible to provide a high-strength thick steel plate that satisfies the brittle fracture surface ratio ⁇ 50% at 233 ° C.
  • the inventors of the present invention have a Ni content of 7.5% or less, and when performing a Charpy impact absorption test in the C direction, the brittle fracture surface ratio at ⁇ 196 ° C. is 10% or less, the tensile strength TS> 741 MPa, In order to provide a thick steel plate that satisfies the yield strength YS> 590 MPa, investigations were made.
  • the residual ⁇ form the following (A), (b), and lambda L Parameters following (c)], by the following control, in Charpy impact absorption test, not transformed into martensite It was found that a stable residual ⁇ that is plastically deformed can be ensured, and that excellent cryogenic toughness can be obtained.
  • A From the viewpoint of plastic deformation without being transformed into martensite during impact at extremely low temperature, and securing stable residual ⁇ useful for improving toughness (enhancing the stability of residual ⁇ ), The Di value [see the above formula (1)] is controlled by an appropriate balance of the above.
  • Controlling (preferably, the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter [refer to the above equation (3)] composed of the volume fraction of residual ⁇ and the above-mentioned residual ⁇ stabilization parameter are set to 40 or less.
  • C Control the ⁇ l parameter determined by the component (Mn, Cr, Mo) and the L processing temperature as shown in the above equation (5).
  • the thick steel plate of the present invention is, by mass%, C: 0.02 to 0.10%, Si: 0.40% or less (excluding 0%), Mn: 0.50 to 2.0%, P: 0.007% or less (not including 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0.050%, Ni: 5.0 to 7.5 %, N: 0.010% or less (not including 0%), Cr: 1.20% or less (not including 0%), and Mo: 1.0% or less (not including 0%) )
  • C 0.02 to 0.10%
  • C is an element essential for securing strength and retained austenite.
  • the lower limit of the C amount is set to 0.02% or more.
  • the minimum with the preferable amount of C is 0.03% or more, More preferably, it is 0.04% or more.
  • the upper limit is made 0.10%.
  • the upper limit with preferable C amount is 0.08% or less, More preferably, it is 0.06% or less.
  • Si 0.40% or less (excluding 0%) Si is an element useful as a deoxidizer. However, if added in excess, the formation of a hard island-like martensite phase is promoted and the cryogenic toughness decreases, so the upper limit is made 0.40% or less.
  • the upper limit with the preferable amount of Si is 0.35% or less, More preferably, it is 0.20% or less.
  • Mn 0.50 to 2.0%
  • Mn is an austenite ( ⁇ ) stabilizing element and is an element contributing to an increase in the amount of residual ⁇ .
  • the lower limit of the amount of Mn is set to 0.50%.
  • the minimum with the preferable amount of Mn is 0.6% or more, More preferably, it is 0.7% or more.
  • the upper limit is made 2.0% or less.
  • the upper limit with the preferable amount of Mn is 1.5% or less, More preferably, it is 1.3% or less.
  • P 0.007% or less (excluding 0%)
  • P is an impurity element causing grain boundary fracture, and its upper limit is made 0.007% or less in order to secure the desired cryogenic toughness.
  • the upper limit with preferable P amount is 0.005% or less. The smaller the amount of P, the better. However, it is difficult to make the amount of P 0% industrially.
  • S 0.007% or less (excluding 0%) S, like P, is an impurity element causing grain boundary fracture, and its upper limit is made 0.007% or less in order to ensure the desired cryogenic toughness.
  • the upper limit with the preferable amount of S is 0.005% or less. The smaller the amount of S, the better. However, it is difficult to make the amount of S 0% industrially.
  • Al 0.005 to 0.050%
  • Al is an element that promotes desulfurization and fixes nitrogen. If the Al content is insufficient, the concentration of solute sulfur, solute nitrogen, etc. in the steel increases and the cryogenic toughness decreases, so the lower limit is made 0.005% or more.
  • the minimum with the preferable amount of Al is 0.010% or more, More preferably, it is 0.015% or more. However, if added excessively, oxides, nitrides, and the like are coarsened and the cryogenic toughness is also lowered, so the upper limit is made 0.050% or less.
  • the upper limit with the preferable amount of Al is 0.045% or less, More preferably, it is 0.04% or less.
  • Ni 5.0 to 7.5%
  • Ni is an essential element for securing retained austenite (residual ⁇ ) useful for improving cryogenic toughness.
  • the lower limit of the Ni amount is set to 5.0% or more.
  • a preferable lower limit of the Ni amount is 5.2% or more, and more preferably 5.4% or more.
  • the upper limit is made 7.5% or less.
  • the upper limit of the Ni content is preferably 7.0% or less, more preferably 6.5% or less, still more preferably 6.2% or less, and even more preferably 6.0% or less.
  • N 0.010% or less (excluding 0%) N lowers the cryogenic toughness by strain aging, so the upper limit is made 0.010% or less.
  • the upper limit with preferable N amount is 0.006% or less, More preferably, it is 0.004% or less.
  • Cr at least one selected from the group consisting of 1.20% or less (not including 0%) and Mo: 1.0% or less (not including 0%) Cr and Mo are both strength-enhancing elements. is there. These elements may be added alone or in combination of two kinds. In order to effectively exhibit the above action, the Cr content is 0.05% or more and the Mo content is 0.01% or more. However, if excessively added, the strength is excessively increased and the desired cryogenic toughness cannot be ensured, so the upper limit of the Cr content is 1.20% or less (preferably 1.1% or less, more preferably 0). 0.9% or less, more preferably 0.5% or less) and the upper limit of the Mo amount is 1.0% or less (preferably 0.8% or less, more preferably 0.6% or less).
  • the thick steel plate of the present invention contains the above components as basic components, the balance: iron and unavoidable impurities.
  • Cu 1.0% or less (excluding 0%)
  • Cu is a ⁇ -stabilizing element and is an element that contributes to an increase in the amount of residual ⁇ .
  • the upper limit is preferably made 1.0% or less.
  • a more preferable upper limit of the amount of Cu is 0.8% or less, and even more preferably 0.7% or less.
  • Ti 0.025% or less (not including 0%), Nb: 0.100% or less (not including 0%), and V: 0.50% or less (not including 0%)
  • At least one of Ti, Nb, and V is an element that precipitates as carbonitride and increases strength. These elements may be added alone or in combination of two or more. In order to effectively exhibit the above action, it is preferable that the Ti amount is 0.005% or more, the Nb amount is 0.005% or more, and the V amount is 0.005% or more. However, if excessively added, the strength is excessively improved, and the desired cryogenic toughness cannot be ensured.
  • the preferable upper limit of Ti amount is 0.025% or less (more preferably 0.018% or less, More preferably 0.015% or less), a preferable upper limit of Nb amount is 0.100% or less (more preferably 0.05% or less, further preferably 0.02% or less), and a preferable upper limit of V amount is 0. .50% or less (more preferably 0.3% or less, and still more preferably 0.2% or less).
  • B 0.0050% or less (excluding 0%)
  • B is an element that contributes to improving strength by improving hardenability.
  • the B content is preferably 0.0005% or more.
  • the preferable upper limit of the B amount is 0.0050% or less (more preferably 0.0030% or less, more preferably Is 0.0020% or less).
  • Ca 0.0030% or less (excluding 0%) and REM (rare earth element): at least one selected from the group consisting of 0.0050% or less (excluding 0%)
  • Ca and REM are solid It is an element that fixes dissolved sulfur and renders sulfides harmless. These elements may be added alone or in combination of two or more. If these contents are insufficient, the solid solution sulfur concentration in the steel increases and the toughness decreases, so the Ca content is 0.0005% or more, the REM content (when the REM described below is contained alone) It is a single content, and when it contains two or more kinds, it is the total amount thereof. However, if excessively added, sulfides, oxides, nitrides, etc.
  • the preferable upper limit of Ca content is 0.0030% or less (more preferably 0.0025% or less)
  • REM A preferable upper limit of the amount is 0.0050% or less (more preferably 0.0040% or less).
  • REM rare earth element
  • Sc scandium
  • Y yttrium
  • a lanthanoid element 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table. These elements can be used alone or in combination of two or more.
  • Preferred rare earth elements are Ce and La.
  • the addition form of REM is not particularly limited, and may be added in the form of a misch metal mainly containing Ce and La (for example, Ce: about 70%, La: about 20-30%), or Ce, La alone may be added.
  • Zr 0.005% or less (excluding 0%)
  • Zr is an element that fixes nitrogen. If the Zr content is insufficient, the solid solution N concentration in the steel increases and the toughness decreases, so the Zr content is preferably 0.0005% or more. However, if added excessively, oxides, nitrides, etc. become coarse and the toughness also decreases, so the preferable upper limit of the amount of Zr is made 0.005% or less (more preferably 0.0040% or less).
  • volume fraction of residual austenite phase is 2.0 to 12.0% (preferably 4.0 to 12%). 0.0%).
  • the volume fraction of the residual ⁇ phase in the entire structure existing at ⁇ 196 ° C. is set to 2.0% or more.
  • the residual ⁇ is relatively soft compared to the matrix phase, and if the residual ⁇ amount becomes excessive, YS cannot secure a predetermined value, so the upper limit is made 12.0%.
  • the preferable lower limit is 4.0% or more, the more preferable lower limit is 6.0% or more, the preferable upper limit is 11.5% or less, and the more preferable upper limit is 11.0% or less.
  • the structure other than the residual ⁇ is not limited at all. Any material that normally exists in thick steel plates may be used. Examples of the structure other than the residual ⁇ include carbides such as bainite, martensite, and cementite.
  • Di value ([C] / 10) 0.5 ⁇ (1 + 0.7 ⁇ [Si]) ⁇ (1 + 3.33 ⁇ [Mn]) ⁇ (1 + 0.35 ⁇ [Cu]) ⁇ (1 + 0.36 ⁇ [ Ni]) ⁇ (1 + 2.16 ⁇ [Cr]) ⁇ (1 + 3 ⁇ [Mo]) ⁇ (1 + 1.75 ⁇ [V]) ⁇ 1.115 (1)
  • [] means content (mass%) of each component in steel.)
  • the above formula (1) relating to the hardenability Di value is described as the Grossmann formula (Trans. Metal. Soc. AIME, 150 (1942), p. 227).
  • the larger the amount of the alloy element that constitutes the Di value the easier the firing (the Di value increases) and the finer the structure becomes.
  • the greater the Di value the higher the strength, and it becomes easier to ensure the desired strength.
  • the Di value is 2.5. It turned out that it should have done above.
  • the Di value is such that a fine rolled structure can be obtained even when the rolling reduction of the amorphous region is small, and a sufficient volume fraction of residual ⁇ useful for improving the cryogenic toughness is ensured by the subsequent heat treatment, and the stable residual
  • This parameter is useful as a guideline for securing ⁇ .
  • the manufacturing conditions described in Patent Document 3 [reduction of reduction rate at low temperature (non-recrystallized region), time limit until the start of cooling, etc.] are relaxed to ensure good characteristics even if the process load is reduced. This is an effective parameter.
  • the Di value is set to 2.5 or more.
  • the Di value is less than 2.5, a fine structure cannot be sufficiently obtained after rolling, and thus a predetermined amount of residual ⁇ cannot be obtained.
  • the residual ⁇ stabilization parameters, volume fraction of residual ⁇ and residual ⁇ stabilization parameters described later cannot be controlled to a predetermined level, a stable residual ⁇ structure cannot be obtained, and the desired cryogenic toughness is ensured.
  • a preferable range of the Di value is 3.0 or more.
  • the upper limit of the Di value is not particularly limited from the above viewpoint, but considering the viewpoint of cost and the like, and the strength standard range of the current LNG tank steel is 830 MPa or less, it is generally 5.0 or less. Preferably there is.
  • Residual ⁇ stabilization parameter (365 ⁇ ⁇ C> + 39 ⁇ ⁇ Mn> + 30 ⁇ ⁇ Al> + 10 ⁇ ⁇ Cu> + 17 ⁇ ⁇ Ni> + 20 ⁇ ⁇ Cr> + 5 ⁇ ⁇ Mo> + 35 ⁇ ⁇ V>) / 100 (2) (In the formula, ⁇ > means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
  • the cryogenic toughness As described above, to improve the cryogenic toughness, it is effective to secure a stable residual ⁇ that undergoes plastic deformation without being transformed into martensite during the impact test.
  • the residual ⁇ fraction before the impact test and to increase the stability of the residual ⁇ so that it can be plastically deformed without being transformed into martensite even when subjected to an impact.
  • the volume fraction of residual ⁇ is defined in the above range.
  • the stability of the residual ⁇ existing at ⁇ 196 ° C. was determined by the component in the residual ⁇ existing at ⁇ 196 ° C., and the parameter represented by the above equation (2) It was found effective to control.
  • the hardenability generally decreases, so the structure after rolling becomes coarse and the volume fraction of residual ⁇ obtained after heat treatment or the above-mentioned Di value is ensured.
  • these requirements are also appropriately controlled by appropriately controlling the residual ⁇ stabilization parameter determined in consideration of the component balance in the residual ⁇ . This residual ⁇ stabilization parameter is derived with reference to the Ms point equation.
  • the lower limit of the residual ⁇ stabilization parameter is set to 3.1 or more. Preferably it is 3.3 or more, More preferably, it is 3.5 or more, More preferably, it is 3.7 or more.
  • the upper limit of the residual ⁇ stabilization parameter is not particularly limited from the viewpoint of improving cryogenic toughness.
  • the above parameters are composed of a residual ⁇ volume fraction and a residual ⁇ stabilization parameter.
  • the inventors of the present invention have determined the above parameters, considering that the improvement of the cryogenic toughness is due to the plastic deformation during the cryogenic impact test, and that the distribution of residual ⁇ effective for the improvement of the toughness greatly affects. That is, those having a high volume fraction of residual ⁇ and a large residual ⁇ stabilization parameter are those in which the distance between each residual ⁇ is short and finely dispersed, and they are martensite even at low temperatures. Since it is not transformed into a material and is responsible for plastic deformation, it exhibits good cryogenic toughness.
  • the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter are preferably 35 or less, and more preferably 30 or less. From the viewpoint of improving the cryogenic toughness, the lower the parameter, the better.
  • the lower limit of the above parameter is not particularly limited in relation to the cryogenic toughness, but is generally 10 or more in consideration of the component system of the present invention.
  • the brittle fracture surface ratio can be maintained at a favorable level of 50% or less. Specifically, by reducing the upper limit of the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter as much as possible (generally, 30 or less), the brittle fracture surface ratio at ⁇ 233 ° C. is reduced to 50% or less. Can do.
  • the content of the element in the thick steel plate, the Di value, and the limitation to the more limited range of the residual ⁇ volume fraction are: (A) The lower limit of the Mn content is 0.6%. (B) Both Cr and Mo elements are essential additions, and the lower limit of Mo is 0.30%. (C) The Di value is more than 5.0. (D) The upper limit of the residual ⁇ volume fraction existing at ⁇ 196 ° C. is 5.0%. (E) Properly control the balance of the Mn—Ni content in the steel represented by the following formula (4): [Mn] ⁇ 0.31 ⁇ (7.20 ⁇ [Ni]) + 0.50 ⁇ (4) (In the formula, [] means the content (mass%) of each component in the steel.) Means that.
  • a steel plate according to the present invention that has already been described, that is, a steel plate that satisfies the brittle fracture surface ratio ⁇ 10% at ⁇ 196 ° C., TS> 741 MPa, and YS> 590 MPa in the C direction Charpy impact absorption test.
  • the above (a) to (f) having different configurations will be described.
  • the volume fraction of the residual ⁇ phase is preferably high, but the residual ⁇ is relatively soft compared to the matrix phase, and when the residual ⁇ amount is excessive, a predetermined YS and Since TS may not be secured, the upper limit is set to 5.0%.
  • a preferred upper limit for the volume fraction of the residual ⁇ phase is 4.8%.
  • a preferred lower limit is 3.0%, and a more preferred lower limit is 3.5%.
  • the MA size formed at the time of impact has a correlation with the structure size as it is rolled and correlates with the amounts of Ni and Mn in the steel.
  • the above formula (4) was specified as the Ni—Mn balance in steel that can ensure the desired strength-toughness balance at extremely low temperatures.
  • the preferable Mn concentration in the residual ⁇ existing at ⁇ 196 ° C. is 1.40% or more, more preferably 1.75% or more.
  • the preferable upper limit of the Mn concentration in the residual ⁇ is not particularly limited from the relationship with the above action, but considering the range of the amount of Mn in steel and the like, the upper limit is preferably 2.50% or less.
  • At least one of (i) the volume fraction of residual ⁇ , (ii) the Mn concentration in residual ⁇ , and (iii) ⁇ L parameter is more appropriate.
  • the brittle fracture surface ratio can be maintained at a favorable level of 50% or less even at ⁇ 233 ° C., which is lower than ⁇ 196 ° C. described above.
  • the residual ⁇ fraction is approximately 3.5 to 4.8%
  • the Mn concentration in the residual ⁇ is approximately 1.40 to 2.5%
  • (iii) ⁇ By controlling the L parameter within a range of approximately ⁇ 10 or less, toughness at ⁇ 233 ° C. can be improved.
  • the toughness at ⁇ 233 ° C. is further improved. Can do.
  • the thick steel plate of the present invention has been described above.
  • the method for producing a thick steel plate according to the present invention as defined in claim 1 or 2 of the present invention is the temperature (L treatment temperature) in the heat treatment (L treatment) in the ⁇ - ⁇ 2 phase coexistence region (between A c1 and A c3 ).
  • the L parameter calculated based on the following formula (5) composed of A c1 and A c3 in the steel is 0.25 or more and 0.45 or less, and the L parameter and the steel
  • the manufacturing method of the present invention described above is for manufacturing a thick steel plate that satisfies the above requirements by appropriately controlling the rolling step and the subsequent tempering treatment (T treatment), and the steel making step is not particularly limited.
  • the method used can be employed.
  • the heating temperature is preferable to control the heating temperature to about 900 to 1100 ° C., the FRT (finish rolling temperature) to about 700 to 900 ° C., and the SCT (cooling start temperature) to about 650 to 800 ° C.
  • the SCT is preferably controlled within the above-mentioned range within 60 seconds after finish rolling, whereby a microstructure useful for improving toughness can be obtained after rolling ⁇ cooling.
  • the temperature range from 800 ° C. to 500 ° C. is cooled at an average cooling rate of about 10 ° C./s or more.
  • the average cooling rate in the above temperature range is particularly controlled in order to obtain a fine structure after cooling.
  • the upper limit is not particularly limited.
  • the stop temperature at the above average cooling rate is preferably 200 ° C. or less.
  • the L treatment temperature after hot rolling is preferably controlled within the range of A c1 to (A c1 + A c3 ) / 2.
  • alloy elements such as Ni are concentrated in the generated ⁇ phase, and a part thereof becomes a metastable residual ⁇ phase that exists metastable at room temperature.
  • the L treatment temperature is less than the A c1 point or more than [(A c1 + A c3 ) / 2]
  • the residual ⁇ fraction at ⁇ 196 ° C. or the stability of the residual ⁇ cannot be secured sufficiently as a result (described later). (See Nos. 29 and 30 in Table 2B of Example 1).
  • a preferable L treatment temperature is approximately 620 to 650 ° C.
  • the Ac1 point and the Ac3 point are calculated based on the following formulas ("Lecture / Modern Metallurgy Materials 4 Steel Materials", Japan Institute of Metals).
  • a c1 point 723-10.7 ⁇ [Mn] ⁇ 16.9 ⁇ [Ni] + 29.1 ⁇ [Si] + 16.9 ⁇ [Cr] + 290 ⁇ [As] + 6.38 ⁇ [W]
  • a c3 point 910 ⁇ 203 ⁇ [C] 1/2 ⁇ 15.2 ⁇ [Ni] + 44.7 ⁇ [Si] + 104 ⁇ [V] + 31.5 ⁇ [Mo] + ⁇ 30 ⁇ [Mn] + 11 ⁇ [Cr] + 20 ⁇ [Cu]
  • [] means the concentration (mass%) of the alloying element in the steel material.
  • As and W are not included as components in the steel, and in the above formula, [As] and [W] are both calculated as 0%.
  • the heating time (holding time) at the above two-phase region temperature is preferably about 10 to 50 minutes. If it is less than 10 minutes, the alloy element concentration to the ⁇ phase does not proceed sufficiently, whereas if it exceeds 50 minutes, the ⁇ phase is annealed and the strength decreases.
  • the upper limit of the preferred heating time is 30 minutes.
  • the L parameter represented by the above formula (5) is set to 0.25 or more and 0.45 or less for each component.
  • the L parameter is a parameter set in order to efficiently use the alloy concentration during the L treatment in order to finally have both the volume fraction of the residual ⁇ and the stability of the residual ⁇ .
  • the desired residual ⁇ fraction and / or the stability of the residual ⁇ cannot be sufficiently obtained.
  • they are 0.28 or more and 0.42 or less, More preferably, they are 0.30 or more and 0.40 or less.
  • the ⁇ L parameter determined by the respective contents of Mn, Cr and Mo and the L parameter is controlled to be 7 or less.
  • This ⁇ L parameter is set to suppress the adverse effect of temper embrittlement that occurs in the concentrated part when P is segregated to the old ⁇ grain boundary during L treatment and Mn and Cr are excessively concentrated. It is. Since it is difficult to directly measure the amount of P segregated at the old ⁇ grain boundary, the ⁇ L parameter can be regarded as an alternative parameter for the amount of P segregated at the old ⁇ grain boundary. Those having a small segregation of P to the former ⁇ grain boundary have a small ⁇ L parameter.
  • the lower limit is not particularly limited, but it is preferable to suppress the amount of addition of Mo as much as possible from the viewpoint of cost.
  • the content and the preferable range of the L parameter approximately ⁇ 30 or more It is preferable that
  • tempering T treatment
  • the tempering process is performed at a temperature of Ac1 or lower for 10 to 60 minutes.
  • C is concentrated in the metastable residual ⁇ and the stability of the metastable residual ⁇ phase is increased, so that a residual ⁇ phase that exists stably even at ⁇ 196 ° C. is obtained.
  • a low Ms point can be secured by the low temperature tempering.
  • the tempering temperature exceeds the Ac1 temperature
  • the metastable residual ⁇ phase generated while maintaining the two-phase coexistence region is decomposed into an ⁇ phase and a cementite phase, and a sufficient residual ⁇ phase at ⁇ 196 ° C. cannot be secured.
  • the tempering temperature is less than 540 ° C. or when the tempering time is less than 10 minutes
  • C concentration into the metastable residual ⁇ phase does not proceed sufficiently, and the desired residual ⁇ at ⁇ 196 ° C. The amount cannot be secured.
  • the tempering time exceeds 60 minutes, the dislocation density of the ⁇ phase is excessively reduced, and a predetermined strength (TS and YS) cannot be secured (No. 33 in Table 2B of Example 1 described later is set. reference).
  • Preferred tempering conditions are tempering temperature: 540 to 560 ° C., tempering time: 15 minutes or more and 45 minutes or less (more preferably 35 minutes or less, more preferably 25 minutes or less).
  • the cooling method after tempering is not water cooling but air cooling. This is because carbon concentrates in the residual ⁇ during air cooling, so that the residual ⁇ stabilization parameter is larger in air cooling than in water cooling.
  • regulated to this-application Claim 3 is demonstrated.
  • the L parameter calculated based on the formula (5) is 0.6 or more and 1.1 or less
  • the step of adjusting the L treatment temperature and steel components so that the ⁇ L parameter calculated based on the equation is 0 or less, and the L treatment, followed by water cooling to room temperature and tempering treatment (T treatment) is characterized in that it is performed at a temperature of Ac 1 or lower for 10 to 60 minutes.
  • the L parameter represented by the formula (5) is set to 0.6 or more and 1.1 or less.
  • the L parameter is a parameter set to finally combine the volume fraction of residual ⁇ and the stability of residual ⁇ (particularly expressed by the Di value and the Mn concentration in the residual).
  • the upper limit (1.1 or less) was specified from the viewpoint of the components of the thick steel plate and the desired structure conditions. Note that increasing the stability of the residual ⁇ by the L treatment (that is, concentrating Mn into the residual ⁇ ) means that the Mn concentration of the parent phase (in the steel) is diluted when reversed.
  • the lower limit of L parameter (0.6 or more) is set in the present invention.
  • a preferable L parameter is 0.7 or more and 1.0 or less.
  • the contents of Mn, Cr and Mo in the steel and the ⁇ L parameter determined by the L parameter are controlled to be 0 or less.
  • this ⁇ L parameter is used to suppress the adverse effect of temper embrittlement that occurs in the concentrated portion when P is segregated to the old ⁇ grain boundary during L treatment and Mn and Cr are excessively concentrated. It is set. Since the amount of P segregating at the old grain boundary cannot be directly measured, the ⁇ L parameter can be regarded as an alternative parameter for the amount of P segregating at the old ⁇ grain boundary. Those having a small segregation of P to the former ⁇ grain boundary have a small ⁇ L parameter. Preferably it is -10.0 or less.
  • the lower limit is not particularly limited, but it is preferable to suppress the amount of addition of Mo as much as possible from the viewpoint of cost. In addition, generally considering the content and the preferable range of the L parameter, approximately ⁇ 30 or more It is preferable that
  • tempering T treatment
  • the tempering process is performed at a temperature of Ac1 or lower for 10 to 60 minutes. As described above, C is concentrated in the metastable residual ⁇ by such low temperature tempering, and the stability of the metastable residual ⁇ phase is increased. Therefore, a residual ⁇ phase that exists stably even at ⁇ 196 ° C. is obtained. Moreover, a low Ms point can be secured by the low temperature tempering.
  • the tempering temperature exceeds A c1
  • the metastable residual ⁇ phase generated while maintaining the two-phase coexistence region is decomposed into an ⁇ phase and a cementite phase, and a sufficient residual ⁇ phase at ⁇ 196 ° C. cannot be secured.
  • the tempering time is less than 10 minutes, the C concentration in the metastable residual ⁇ phase does not proceed sufficiently, and the desired residual ⁇ amount at ⁇ 196 ° C. cannot be ensured.
  • the tempering time exceeds 60 minutes, the dislocation density of the ⁇ phase is excessively reduced, and a predetermined strength (TS) cannot be secured (see No. 7 in Table 2B of Example 3 described later).
  • a preferable tempering time is 15 minutes or more and 45 minutes or less, more preferably 20 minutes or more and 35 minutes or less.
  • the tempering temperature is a temperature of A c1 or less, and the preferable tempering temperature is 510 ° C. to 520 ° C.
  • the cooling method after tempering is not water cooling but air cooling. This is because carbon is concentrated in the residual ⁇ during air cooling, so that the stability of the residual ⁇ is higher in air cooling than in water cooling.
  • Example 1 Example relating to a thick steel plate satisfying a brittle fracture surface ratio ⁇ 10% at ⁇ 196 ° C., a tensile strength TS> 741 MPa, and a yield strength YS> 590 MPa.
  • a test steel having a component composition (remainder: iron and inevitable impurities, the unit is mass%) was melted and cast, and then a 150 mm ⁇ 150 mm ⁇ 600 mm ingot was produced by hot forging.
  • misch metal containing about 50% Ce and about 25% La was used as REM.
  • the finish rolling temperature is 700 ° C.
  • SCT within 60 seconds after FRT is 650 ° C.
  • the average cooling rate from 800 to 500 ° C. was 19 ° C./s, and cold rolling was performed to a stop temperature of 200 ° C. or lower.
  • the steel plate thus obtained was subjected to L treatment at the L treatment temperature shown in Table 2, and heated and held for 30 minutes, and then cooled with water. Further, T treatment (tempering) was performed at the temperature (T treatment temperature) and time (T time) shown in Table 2, and then cooled to room temperature.
  • the amount of residual ⁇ phase (volume fraction) present at ⁇ 196 ° C., the residual ⁇ stabilization parameter, tensile properties (tensile strength TS, yield strength YS) are as follows. ), And cryogenic toughness (the brittle fracture surface ratio in the C direction at ⁇ 196 ° C. or ⁇ 233 ° C.).
  • the peaks of the lattice planes (110), (200), (211), and (220) of the ferrite phase and the lattices of (111), (200), (220), and (311) of the residual ⁇ phase For the peak of the surface, based on the integrated intensity ratio of each peak, calculate the volume fraction of (111), (200), (220), (311) of the residual ⁇ phase, and obtain the average value of these, Was defined as “volume fraction of residual ⁇ ”.
  • each of the residual ⁇ existing at ⁇ 196 ° C. constituting the above equation (2) Components, that is, C content ⁇ C>, Mn content ⁇ Mn>, Al content ⁇ Al>, Cu content ⁇ Cu>, Ni content ⁇ Ni>, Cr content ⁇ Cr>, Mo content ⁇ Mo>, V content ⁇ V > was measured as follows.
  • Ni concentration during each heat treatment of L treatment and T treatment is expressed by the following equation. (Constant during each heat treatment) x (Driving force of ⁇ reverse transformation) x (Diffusion coefficient of each alloy element)
  • (driving force of ⁇ reverse transformation) in the above formula was calculated by commercially available calculation software (thermocalc) based on the temperature during each heat treatment.
  • the (diffusion coefficient of each alloy element) in the above formula was calculated based on the temperature and holding time during each heat treatment using the value of “DiffusionDin Solid Metals and Alloys” (H. Mehrer, 1990).
  • the measured Ni concentration after L treatment ⁇ T treatment is ⁇ (constant during L treatment) ⁇ (driving force of ⁇ reverse transformation) ⁇ (diffusion coefficient of Ni during L treatment) ⁇ ⁇ (Constant at the time of T treatment) ⁇ (driving force for ⁇ reverse transformation) ⁇ (diffusion coefficient of Ni at the time of L treatment) ⁇ . That is, the measured Ni concentration after L treatment ⁇ T treatment includes both (constant for L treatment) and (constant for T treatment), and (constant for T treatment) is (constant for L treatment).
  • cryogenic toughness brittle fracture surface ratio in the C direction
  • t / 4 position t: plate thickness
  • W / 4 position W: plate width
  • t / 4 position and W of each steel plate / 3 position three Charpy impact test pieces (V-notch test piece of JIS Z 2242) were taken in parallel with the C direction, and the brittle fracture surface rate at -196 ° C (%) was measured by the method described in JIS Z2242. Were measured and the average value of each was calculated. Of the two average values calculated in this way, the average value that is inferior in characteristics (that is, the brittle fracture surface ratio is large) is adopted, and this value is 10% or less. Then, it evaluated that it was excellent in cryogenic toughness.
  • Examples 1 to 25 are examples that satisfy all of the requirements of the present invention. Even if the base metal strength is high, the cryogenic toughness at ⁇ 196 ° C. (specifically, the average value of the brittle fracture surface ratio in the C direction ⁇ 10 %), An excellent thick steel plate could be provided.
  • No. in Table 2B. Nos. 26 to 45 are comparative examples that do not satisfy the requirements of the present invention because they do not satisfy any of the components in the steel and the preferred production conditions of the present invention, and the desired characteristics cannot be obtained.
  • No. No. 26 is an example in which the Di value does not satisfy the requirements of the present invention, and the desired volume fraction of residual ⁇ cannot be obtained, and the residual ⁇ stabilization parameter also decreases. Furthermore, the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter also exceeded the predetermined range. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C. Moreover, since Di value was low, TS also fell.
  • No. No. 28 is No. in Table 1B with a large amount of P.
  • the desired volume fraction of residual ⁇ was not obtained, and the residual ⁇ stabilization parameter was also reduced.
  • the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
  • No. No. 30 is No. in Table 1B with a large amount of Si. 30 and heating at a temperature exceeding the two-phase region temperature (L treatment temperature), and the L parameter and the ⁇ L parameter are high. Therefore, the amount of residual ⁇ was insufficient and the residual ⁇ stabilization parameter was also reduced. Furthermore, the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
  • No. No. 32 is No. in Table 1B with a large amount of Mn. 32, and the ⁇ L parameter is high. As a result, the cryogenic toughness decreased.
  • No. No. 34 in Table 1B has a small amount of Mn and a small Di value.
  • the desired volume fraction of residual ⁇ was not obtained, and the residual ⁇ stabilization parameter was also reduced.
  • the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter also exceeded the predetermined range.
  • the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C.
  • TS also fell.
  • No. No. 37 in Table 1B has a small amount of C, a large amount of Al, and a small amount of Ni. Since 37 was used, the amount of residual ⁇ was insufficient and the residual ⁇ stabilization parameter was also reduced. Furthermore, the volume fraction of residual ⁇ and the residual ⁇ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased. TS also decreased.
  • No. No. 38 in Table 1B has a small amount of Al and a large amount of N. Since 38 was used, the cryogenic toughness decreased.
  • No. No. 42 in Table 1B has a large amount of Mo as a selection component and a large Di value. Since 42 was used, the cryogenic toughness decreased.
  • Example 2 In this example, the brittle fracture surface rate at ⁇ 233 ° C. was evaluated for some of the data used in Example 1 (all of the examples of the present invention).
  • the brittle fracture surface ratio ⁇ 50% was evaluated as being excellent in the brittle fracture surface ratio at ⁇ 233 ° C.
  • Example 3 Example relating to a thick steel plate satisfying a brittle fracture surface ratio ⁇ 10% at ⁇ 196 ° C., a tensile strength TS> 830 MPa, and a yield strength YS> 690 MPa.
  • a test steel having a component composition (remainder: iron and inevitable impurities, the unit is mass%) was melted and cast, and then a 150 mm ⁇ 150 mm ⁇ 600 mm ingot was produced by hot forging.
  • misch metal containing about 50% Ce and about 25% La was used as REM.
  • the finish rolling temperature is 700 ° C.
  • SCT within 60 seconds after FRT is 650 ° C.
  • the average cooling rate from 800 to 500 ° C. was 19 ° C./s, and cold rolling was performed to a stop temperature of 200 ° C. or lower.
  • the steel plate thus obtained was subjected to L treatment at the L treatment temperature shown in Table 5, heated and held for 30 minutes, and then cooled with water. Further, T treatment (tempering) was performed at the temperature (T treatment temperature) and time (T time) shown in Table 2, and then cooled to room temperature.
  • the amount of residual ⁇ phase (volume fraction) present at ⁇ 196 ° C., the amount of Mn in the residual ⁇ phase, tensile properties (tensile strength TS, yield strength YS), cryogenic temperature Toughness (the brittle fracture surface ratio in the C direction at -196 ° C or -233 ° C) was evaluated.
  • the average amount of Mn in the residual ⁇ phase was measured with TEM-EDX and calculated according to the following procedure. In the calculation, it was assumed that the component in the residual ⁇ phase was Fe—Mn—Ni. Actual components may include, for example, C, Si and the like in addition to Fe, Mn, and Ni, but these elements are in a small amount and can be substantially ignored in this embodiment.
  • a 10 mm ⁇ 10 mm ⁇ 55 mm test piece was taken from the t / 4 position of each steel plate, held at a liquid nitrogen temperature ( ⁇ 196 ° C.) for 5 minutes, and then the test piece was made into a size of 10 mm ⁇ 10 mm ⁇ 2 mm. After cutting and mechanically polishing the thickness t from 2 mm to 0.1 mm, it was punched out to a size of 3 mm ⁇ to prepare a thin film sample by electrolytic polishing.
  • the thin film sample thus obtained was identified with a transmission image and a reciprocal lattice using a transmission electron microscope H-800 manufactured by Hitachi, Ltd., and then the above-mentioned ⁇ was detected using an EDX analyzer EMAX7000 manufactured by Horiba.
  • the Mn concentration in the phase was measured.
  • Measurement by EDX was performed under the conditions of an acceleration voltage of 200 kV and an observation magnification of 75000 times, and each sample was measured at five points, and the average value was taken as the amount of Mn in the residual ⁇ .
  • Example 3 unlike Example 1, TS> 830 MPa and YS> 690 MPa were evaluated as having excellent base material strength.
  • No. in Table 5A Nos. 1 to 21 are No. 1 in Table 4A in which the components in the steel satisfy the requirements of the present invention.
  • 1 to 21 is an example prepared under the production conditions of the present invention, and the cryogenic toughness at ⁇ 196 ° C. (specifically, the average value of the brittle fracture surface ratio in the C direction) even if the base metal strength is high It was possible to provide a thick steel plate excellent in ⁇ 10%.
  • No. in Table 5B. Nos. 1 to 21 are comparative examples not satisfying any of the components in the steel and the production conditions of the present invention, and the desired characteristics were not obtained.
  • No. in Table 5B No. 10 in Table 4B has a small amount of C, a large amount of Al, a small amount of Ni, and the Ni—Mn balance of the above formula (2) is below the preferred range. 10 is an example. Since the amount of C and Ni useful for securing the amount of residual ⁇ is small, the volume ratio of residual ⁇ is small. As a result, the cryogenic toughness decreased and YS was good. However, since the amount of C and Ni effective for strength improvement are small, TS decreased.
  • Table 5BNo. 11 has less amount of Al and Mo content, the number is N quantity, lambda L parameter is high Table 4B No. Since 11 was used, the cryogenic toughness decreased.
  • No. 21 in Table 4B has a small Mo amount and a high L parameter and a high ⁇ L parameter. 21 is an example. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C.
  • Example 4 In this example, the brittle fracture surface rate at ⁇ 233 ° C. was evaluated for the inventive examples of Table 5A used in Example 3 above.
  • No. 1 described in Table 6 was obtained. (No. in Table 6 corresponds to Nos. In Table 4A and Table 5A described above) Three test pieces were collected from the t / 4 position and the W / 4 position, and -233 was obtained by the method described below. A Charpy impact test at °C was conducted to evaluate the average brittle fracture surface ratio. In this example, the brittle fracture surface ratio ⁇ 50% was evaluated as being excellent in the brittle fracture surface ratio at ⁇ 233 ° C. "High pressure gas", Vol. 24, page 181, "Cryogenic impact test of austenitic cast stainless steel"
  • No. in Table 6 Nos. 1 to 3, 5 to 14, and 17 to 20 are all No. 1 in Table 5A that satisfy at least one of the above (i) to (iii). Examples 1 to 3, 5 to 14, and 17 to 20 were used, and the brittle fracture surface ratio at ⁇ 233 ° C. was good at 50% or less.
  • no. Nos. 4, 15, 16, and 21 satisfy No. 1 in Table 5A that do not satisfy any of the requirements (i) to (iii) above. In this example, 4, 15, 16, and 21 were used, and the desired toughness could not be obtained at -233 ° C.
  • No. in Table 6 No. 21 in Table 5A does not have any of the requirements (i) to (iii) above. Since No. 21 was used, the desired toughness could not be obtained at -233 ° C.
  • the steel plate of the present invention is useful as a steel plate that comes into contact with a cryogenic substance, such as a storage tank for liquefied natural gas.

Abstract

This thick steel sheet contains prescribed steel components, the Di value composed of the steel components is 2.5 or greater, the residual austenite phase (residual (γ)) remaining at -196°C is 2.0 to 12.0% by volume fraction, and the residual (γ) stability parameter composed of the components contained in the residual austenite at -196°C satisfies the condition of 3.1 or greater.

Description

極低温靭性に優れた厚鋼板Thick steel plate with excellent cryogenic toughness
 本発明は、極低温靭性に優れた厚鋼板に関する。詳細には、本発明は、Ni含有量が5.0~7.5%程度に低減されても、-196℃以下の極低温下における靱性[特に、板幅方向(C方向)の靱性]が良好な厚鋼板に関するものである。以下では、上記の極低温下に曝される液化天然ガス(LNG)向けの厚鋼板(代表的には、貯蔵タンク、輸送船など)を中心に説明するが、本発明の厚鋼板はこれに限定する趣旨ではなく、-196℃以下の極低温下に曝される用途に用いられる厚鋼板全般に適用される。 The present invention relates to a thick steel plate having excellent cryogenic toughness. Specifically, according to the present invention, even when the Ni content is reduced to about 5.0 to 7.5%, toughness at an extremely low temperature of −196 ° C. or less [particularly, toughness in the plate width direction (C direction)] Relates to a good thick steel plate. In the following, the explanation will focus on thick steel plates (typically storage tanks, transport ships, etc.) for liquefied natural gas (LNG) exposed to the above-mentioned cryogenic temperatures. The present invention is not intended to be limited, and is applied to all thick steel plates used for applications exposed to extremely low temperatures of −196 ° C. or less.
 液化天然ガス(LNG)の貯蔵タンクに用いられるLNGタンク用厚鋼板は、高い強度に加え、-196℃の極低温に耐えられる高い靭性が求められる。一般に、鋼材はNi添加により、特に低温での硬度-靱性バランスが向上することが知られている。そこで、これまで、上記用途に用いられる厚鋼板としては、9%程度のNi(9%Ni鋼)を含む厚鋼板が使用されてきた。しかし、近年、Niのコストが上昇しているため、9%未満の、少ないNi含有量であっても、極低温靭性に優れた厚鋼板の開発が進められている。 LNG tank steel plates used in LNG storage tanks are required to have high strength and high toughness that can withstand extremely low temperatures of -196 ° C. In general, it is known that the addition of Ni improves the hardness-toughness balance particularly at low temperatures. So far, thick steel plates containing about 9% Ni (9% Ni steel) have been used as the thick steel plates used in the above applications. However, since the cost of Ni has increased in recent years, the development of a thick steel plate excellent in cryogenic toughness even with a low Ni content of less than 9% has been underway.
 例えば非特許文献1には、6%Ni鋼の低温靱性に及ぼすα-γ2相共存域熱処理の影響について記載されている。詳細には、焼戻処理の前に、α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)を加えることにより、多量の微細かつ極低温での衝撃荷重に対しても安定な残留オーステナイトが生成し、通常の焼入れ焼戻処理を受けた9%Ni鋼と同等以上の-196℃での極低温靱性を確保できることなどが記載されている。しかしながら、圧延方向(L方向)の極低温靱性は優れているものの、一般に板幅方向(C方向)の極低温靱性は、L方向に比べて劣る傾向にある。また、脆性破面率の記載はない。 For example, Non-Patent Document 1 describes the effect of α-γ2 phase coexistence heat treatment on the low temperature toughness of 6% Ni steel. More specifically, by applying heat treatment (L treatment) in the α-γ2 phase coexistence region (between A c1 and A c3 ) before tempering treatment, a large amount of fine and extremely low temperature impact loads are applied. Further, it is described that stable retained austenite is generated, and cryogenic toughness at −196 ° C. which is equal to or higher than that of 9% Ni steel subjected to normal quenching and tempering treatment can be secured. However, although the cryogenic toughness in the rolling direction (L direction) is excellent, the cryogenic toughness in the sheet width direction (C direction) generally tends to be inferior to that in the L direction. There is no description of the brittle fracture surface ratio.
 上記非特許文献1と同様の技術が、特許文献1および特許文献2に記載されている。これらのうち、特許文献1には、Niを4.0~10%含有し、オーステナイト粒度などが所定範囲に制御された鋼を熱間圧延してからAc1~Ac3間に加熱し、次いで冷却する処理(上記非特許文献1に記載のL処理に相当)を1回または2回以上繰り返した後、Ac1変態点以下の温度で焼戻す方法が記載されている。また、特許文献2には、Niを4.0~10%含有し、熱間圧延前のAlNの大きさを1μm以下にした鋼に対し、上記特許文献1と同様の熱処理(L処理→焼戻処理)を行なう方法が記載されている。これらの方法に記載の-196℃での衝撃値(vE-196)は、おそらく、L方向のものと推察され、C方向の上記靭性値は不明である。また、これらの方法では強度について考慮されておらず、脆性破面率の記載はない。 A technique similar to that of Non-Patent Document 1 is described in Patent Document 1 and Patent Document 2. Of these, Patent Document 1 discloses that steel containing 4.0 to 10% Ni and whose austenite grain size is controlled within a predetermined range is hot-rolled and then heated between A c1 and A c3. A method is described in which a cooling treatment (corresponding to the L treatment described in Non-Patent Document 1 above) is repeated once or twice or more and then tempered at a temperature not higher than the Ac1 transformation point. Patent Document 2 discloses that the steel containing 4.0 to 10% Ni and the size of AlN before hot rolling is 1 μm or less is similar to the heat treatment (L treatment → firing) described above. A method for performing the return processing) is described. The impact value at −196 ° C. (vE −196 ) described in these methods is presumed to be probably in the L direction, and the toughness value in the C direction is unknown. In these methods, strength is not taken into consideration, and there is no description of the brittle fracture surface ratio.
 また、非特許文献2には、上記のL処理(二相域焼入れ処理)とTMCPを組合わせたLNGタンク用6%Ni鋼の開発について記載されている。この文献によれば、圧延方向(L方向)の靭性が高い値を示すことは記載されているものの、板幅方向(C方向)の靭性値は記載されていない。 Further, Non-Patent Document 2 describes the development of 6% Ni steel for LNG tanks combining the above-mentioned L treatment (two-phase quenching treatment) and TMCP. According to this document, although it is described that the toughness in the rolling direction (L direction) shows a high value, the toughness value in the sheet width direction (C direction) is not described.
 一方、特許文献3には、5.0%超8.0%未満のNi鋼において、常温での降伏強度が590MPa以上である鋼鈑を前提にし、使用環境下でも9%Ni鋼並みの耐破壊安全性に優れたNi低減型の低温用厚鋼板およびその製造方法について記載されている。特許文献3では、使用温度である低温環境下での降伏点を確実に高めることができれば、破壊安全性を向上させること(すなわち、低温環境下で高い靱性を得ることができる)との知見に基づき、加熱工程では、鋼塊を低温且つ短時間で加熱すると共に、圧延工程では、加熱した鋼塊に対する粗圧延につき、粗圧延終了時の鋼塊厚さが成品厚さ(仕上げ圧延後の厚鋼板厚さ)の3~8倍になるまで圧下している。また、実施例では、スラブ厚300mmから仕上げ厚50mm以下まで(殆どは仕上げ厚50mm未満まで)圧延しており、このように比較的高い圧下率を確保することにより、残留γ分率と微細な母相組織を兼備し、9%Ni鋼並みの低温靭性を実現している。しかしながら、特許文献3の厚鋼板の常温でのTSは、最大でも741MPaである。 On the other hand, in Patent Document 3, a steel sheet having a yield strength at room temperature of 590 MPa or more in a Ni steel of more than 5.0% and less than 8.0% is assumed to be as resistant as 9% Ni steel even in a use environment. It describes a Ni-reduced steel plate for low temperature with excellent fracture safety and a method for producing the same. In patent document 3, if the yield point in the low temperature environment which is use temperature can be raised reliably, fracture safety will be improved (that is, high toughness can be obtained in a low temperature environment). In the heating process, the steel ingot is heated at a low temperature in a short time, and in the rolling process, the thickness of the steel ingot at the end of the rough rolling is the product thickness (thickness after finish rolling). The steel sheet is reduced to 3 to 8 times the thickness of the steel sheet. Further, in the examples, rolling is performed from a slab thickness of 300 mm to a finishing thickness of 50 mm or less (mostly to a finishing thickness of less than 50 mm). Thus, by securing a relatively high reduction ratio, the residual γ fraction and the fineness are reduced. Combined with a matrix structure, it achieves low temperature toughness comparable to 9% Ni steel. However, the TS at room temperature of the thick steel plate of Patent Document 3 is 741 MPa at the maximum.
 また、特許文献3では、C方向の吸収エネルギーについて記載されているが、脆性破面率の記載はない。また、特許文献3における常温でのTSは最大でも741MPa程度である。 In Patent Document 3, although the absorbed energy in the C direction is described, there is no description of the brittle fracture surface ratio. Moreover, TS at room temperature in Patent Document 3 is about 741 MPa at the maximum.
日本国特開昭49-135813号公報Japanese Unexamined Patent Publication No. 49-13581 日本国特開昭51-13308号公報Japanese Laid-Open Patent Publication No. 51-13308 日本国特開2011-241419号公報Japanese Unexamined Patent Publication No. 2011-241419
 上述したように、これまで、Ni含有量が5.0~7.5%程度のNi鋼において-196℃での極低温靱性に優れた技術は提案されているものの、C方向での極低温靱性は、十分に検討されていない。また、高強度化できれば設計上の余裕を大きくすることができるなどの点で有用であるが、高強度且つ極低温靱性に優れた技術は提供されていない。 As described above, until now, a technology excellent in cryogenic toughness at −196 ° C. has been proposed for Ni steel having a Ni content of about 5.0 to 7.5%, but the cryogenic temperature in the C direction has been proposed. Toughness has not been fully studied. In addition, if it is possible to increase the strength, it is useful in that the design margin can be increased, but a technology that has high strength and excellent cryogenic toughness has not been provided.
 また、上述した文献には、脆性破面率について検討されたものはない。脆性破面率は、シャルピー衝撃試験において荷重が加わった際に生じる脆性破壊の割合を示したものである。脆性破壊が発生した部位では、破壊に至るまでに鋼材に吸収されるエネルギーが著しく小さくなり、容易に破壊が進行するようになるため、極低温靱性向上技術においては、汎用のシャルピー衝撃値(vE-196)の向上のみならず、脆性破面率を10%以下とすることも極めて重要な要件となっている。しかしながら、上記のように母材強度が高い高強度厚鋼板において、脆性破面率の上記要件を満足する技術は、未だ提案されていない。 In addition, none of the above-mentioned documents has been studied on the brittle fracture surface ratio. The brittle fracture surface ratio indicates the ratio of brittle fracture that occurs when a load is applied in the Charpy impact test. At the site where brittle fracture occurs, the energy absorbed by the steel material until the fracture is significantly reduced, and the fracture proceeds easily. Therefore, in the cryogenic toughness improvement technology, the general-purpose Charpy impact value (vE In addition to the improvement of -196 ), the brittle fracture surface ratio should be 10% or less, which is an extremely important requirement. However, a technique that satisfies the above requirement for the brittle fracture surface ratio in a high-strength thick steel plate having a high base metal strength as described above has not yet been proposed.
 本発明は上記事情に鑑みてなされたものであって、その目的は、Ni含有量が5.0~7.5%程度のNi鋼において-196℃での極低温靱性(特にC方向の極低温靱性)に優れており、脆性破面率≦10%を実現できる高強度厚鋼板、およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to achieve cryogenic toughness at −196 ° C. (particularly in the C direction) in Ni steel having a Ni content of about 5.0 to 7.5%. An object of the present invention is to provide a high-strength thick steel plate that is excellent in low-temperature toughness and can realize a brittle fracture surface ratio ≦ 10%, and a method for producing the same.
 上記課題を解決し得た本発明に係る極低温靭性に優れた厚鋼板は、質量%で、C:0.02~0.10%、Si:0.40%以下(0%を含まない)、Mn:0.50~2.0%、P:0.007%以下(0%を含まない)、S:0.007%以下(0%を含まない)、Al:0.005~0.050%、Ni:5.0~7.5%、N:0.010%以下(0%を含まない)を含有すると共に、Cr:1.20%以下(0%を含まない)、およびMo:1.0%以下(0%を含まない)よりなる群から選択される少なくとも一種の元素を含有し、残部が鉄および不可避不純物である厚鋼板であって、鋼中成分で構成される下記(1)式に基づいて決定されるDi値が2.5以上であり、
 Di値=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×1.115  ・・・  (1)
(式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する、)
 -196℃において存在する残留オーステナイト相(残留γ)が体積分率にて2.0~12.0%であり、且つ、
 残留オーステナイト中に含まれる成分で構成される下記(2)式に基づいて決定される残留γ安定化パラメータが3.1以上であるところに要旨を有するものである。
 残留γ安定化パラメータ=
   (365×<C>+39×<Mn>+30×<Al>+10×<Cu>+17×<Ni>+20×<Cr>+5×<Mo>+35×<V>)/100  ・・・  (2)
(式中、< >は、-196℃において存在する残留オーステナイト中に含まれる各成分の含有量(質量%)を意味する。)
The thick steel plate having excellent cryogenic toughness according to the present invention that can solve the above problems is mass%, C: 0.02 to 0.10%, Si: 0.40% or less (excluding 0%) Mn: 0.50 to 2.0%, P: 0.007% or less (not including 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0. 050%, Ni: 5.0 to 7.5%, N: 0.010% or less (not including 0%), Cr: 1.20% or less (not including 0%), and Mo : 1.0% or less (excluding 0%), containing at least one element selected from the group consisting of steel and inevitable impurities, and the remainder is a thick steel plate composed of steel components (1) The Di value determined based on the formula is 2.5 or more,
Di value = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [ Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × 1.115 (1)
(In the formula, [] means the content (% by mass) of each component in the steel)
The residual austenite phase (residual γ) present at −196 ° C. is 2.0 to 12.0% in volume fraction, and
The gist is that the residual γ stabilization parameter determined based on the following formula (2) composed of the components contained in the retained austenite is 3.1 or more.
Residual γ stabilization parameter =
(365 × <C> + 39 × <Mn> + 30 × <Al> + 10 × <Cu> + 17 × <Ni> + 20 × <Cr> + 5 × <Mo> + 35 × <V>) / 100 (2)
(In the formula, <> means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
 本発明の好ましい実施形態において、前記残留γ相の体積分率と前記残留γ安定化パラメータとで構成される下記式(3)に基づいて算出される残留γ相の体積分率・残留γ安定化パラメータが40以下である。
 残留γの体積分率・残留γ安定化パラメータ
  =10/(残留γ相の体積分率×残留γ安定化パラメータ)1/2・・・(3)
In a preferred embodiment of the present invention, the volume fraction of the residual γ phase and the residual γ stability calculated based on the following equation (3) composed of the volume fraction of the residual γ phase and the residual γ stabilization parameter: The activation parameter is 40 or less.
Volume fraction of residual γ / residual γ stabilization parameter = 10 / (volume fraction of residual γ phase × residual γ stabilization parameter) 1/2 (3)
 また、前記した厚鋼板中の元素の含有量、Di値、残留γ体積分率をより限定された範囲に規定した上で、前記残留γ安定化パラメータの代わりに残留γ中のMn濃度を制御することも、一層高い母材強度を得た上で極低温靭性も発揮することが出来るようになり、本発明の好ましい実施形態である。 In addition, the Mn concentration in the residual γ is controlled in place of the residual γ stabilization parameter after defining the element content, Di value, and residual γ volume fraction in the above-mentioned thick steel plate within a more limited range. This is also a preferred embodiment of the present invention because it is possible to exhibit extremely low temperature toughness after obtaining a higher base metal strength.
 具体的には、質量%で、C:0.02~0.10%、Si:0.40%以下(0%を含まない)、Mn:0.6~2.0%、P:0.007%以下(0%を含まない)、S  :0.007%以下(0%を含まない)、Al:0.005~0.050%、Ni:5.0~7.5%、N:0.010%以下(0%を含まない)、Mo:0.30~1.0%、Cr:1.20%以下(0%を含まない)を含有し、残部が鉄および不可避不純物である厚鋼板であって、
 鋼中成分で構成される前記(1)式に基づいて決定されるDi値が5.0超であり、
 -196℃において存在する残留オーステナイト相(残留γ)が体積分率にて2.0~5.0%であり、
 -196℃において存在する残留オーステナイト相(残留γ)中のMn濃度が1.05%以上であり、且つ
 鋼中のMnおよびNiの含有量(質量%)が、下記(4)式を満たすことを特徴とする極低温靱性に優れた厚鋼板である。
 [Mn]≧0.31×(7.20-[Ni])+0.50・・・(4)
(式中、[ ]は鋼中の各成分の含有量(質量%)を意味する。)
Specifically, in terms of mass%, C: 0.02 to 0.10%, Si: 0.40% or less (not including 0%), Mn: 0.6 to 2.0%, P: 0.0. 007% or less (excluding 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0.050%, Ni: 5.0 to 7.5%, N: Contains 0.010% or less (excluding 0%), Mo: 0.30 to 1.0%, Cr: 1.20% or less (excluding 0%), the balance being iron and inevitable impurities A thick steel plate,
The Di value determined on the basis of the formula (1) composed of components in steel is more than 5.0,
The residual austenite phase (residual γ) present at −196 ° C. is 2.0 to 5.0% in volume fraction,
The Mn concentration in the residual austenite phase (residual γ) existing at −196 ° C. is 1.05% or more, and the Mn and Ni contents (mass%) in the steel satisfy the following formula (4). Is a thick steel plate with excellent cryogenic toughness.
[Mn] ≧ 0.31 × (7.20− [Ni]) + 0.50 (4)
(In the formula, [] means the content (mass%) of each component in the steel.)
 本発明の好ましい実施形態において、上記鋼板は、更に、Cu:1.0%以下(0%を含まない)を含有する。 In a preferred embodiment of the present invention, the steel sheet further contains Cu: 1.0% or less (excluding 0%).
 本発明の好ましい実施形態において、上記鋼板は、更に、Ti:0.025%以下(0%を含まない)、Nb:0.100%以下(0%を含まない)、およびV:0.50%以下(0%を含まない)よりなる群から選択される少なくとも一種を含有する。 In a preferred embodiment of the present invention, the steel sheet further includes Ti: 0.025% or less (excluding 0%), Nb: 0.100% or less (not including 0%), and V: 0.50. % Or less (not including 0%).
 本発明の好ましい実施形態において、上記鋼板は、更に、B:0.0050%以下(0%を含まない)を含有する。 In a preferred embodiment of the present invention, the steel sheet further contains B: 0.0050% or less (excluding 0%).
 本発明の好ましい実施形態において、上記鋼板は、更に、Ca:0.0030%以下(0%を含まない)、およびREM:0.0050%以下(0%を含まない)よりなる群から選択される少なくとも一種を含有する。 In a preferred embodiment of the present invention, the steel sheet is further selected from the group consisting of Ca: 0.0030% or less (excluding 0%) and REM: 0.0050% or less (excluding 0%). Containing at least one kind.
 本発明の好ましい実施形態において、上記鋼鈑は、更にZr:0.005%以下(0%を含まない)を含有する。 In a preferred embodiment of the present invention, the steel plate further contains Zr: 0.005% or less (excluding 0%).
 また、上記課題を解決し得た請求項1または2に記載の本発明に係る厚鋼板の製造方法は、α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)における温度(L処理温度)と、鋼中のAc1およびAc3とで構成される下記式(5)に基づいて算出されるLパラメータが0.25以上、0.45以下であり、且つ、前記Lパラメータと、鋼中成分とで構成される下記式(6)に基づいて算出されるλパラメータが7以下であることを満足するように、L処理温度および鋼中成分を調整する工程と、L処理の後、室温まで水冷し、焼戻処理(T処理)するに当たり、Ac1以下の温度で10~60分間行なう工程と、を行なうところに特徴がある。
 Lパラメータ=(L処理温度-Ac1)/(Ac3-Ac1)+0.25  ・・・(5)
 λパラメータ=9.05×(0.90×[Lパラメータ]+0.14)×[Mn]+1.46×(0.37×[Lパラメータ]+0.67)×[Cr]-41.5×(0.26×[Lパラメータ]+0.79)×[Mo]  ・・・(6)
(式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する。)
In addition, the method for producing a thick steel plate according to the present invention according to claim 1 or 2 that has solved the above-described problem is a heat treatment (L treatment) in an α-γ2 phase coexistence region (between A c1 and A c3 ). The L parameter calculated based on the following formula (5) composed of the temperature (L treatment temperature) and A c1 and A c3 in the steel is 0.25 or more and 0.45 or less, and Adjusting the L treatment temperature and the steel component so that the λ L parameter calculated based on the following formula (6) composed of the L parameter and the steel component is 7 or less: , L treatment, water cooling to room temperature, and tempering treatment (T treatment) are carried out for 10 to 60 minutes at a temperature of Ac1 or lower.
L parameter = (L treatment temperature−A c1 ) / (A c3 −A c1 ) +0.25 (5)
λ L parameter = 9.05 × (0.90 × [L parameter] +0.14) × [Mn] + 1.46 × (0.37 × [L parameter] +0.67) × [Cr] −41.5 × (0.26 × [L parameter] +0.79) × [Mo] (6)
(In formula, [] means content (mass%) of each component in steel.)
 更に、上記課題を解決し得た請求項3に記載の本発明に係る厚鋼板の製造方法は、前記(5)式に基づいて算出されるLパラメータが0.6以上、1.1以下であり、且つ、前記(6)式に基づいて算出されるλパラメータが0以下であることを満足するように、L処理温度および鋼中成分を調整するところに特徴がある。 Furthermore, in the method for producing a thick steel plate according to the present invention according to claim 3, which has solved the above problem, the L parameter calculated based on the formula (5) is 0.6 or more and 1.1 or less. In addition, there is a feature in that the L treatment temperature and the steel components are adjusted so that the λ L parameter calculated based on the equation (6) is 0 or less.
 本発明によれば、Ni含有量が5.0~7.5%程度のNi鋼において、母材強度が高くても(詳細には、引張り強度TS>741MPa、降伏強度YS>590MPa、好ましくは、TS≧830MPa、YS≧690MPa)、-196℃以下での極低温靱性(特にC方向の極低温靱性)に優れており、-196℃での脆性破面率≦10%(好ましくは、-233℃での脆性破面率≦50%)を満足する高強度厚鋼板を提供することができた。 According to the present invention, in Ni steel having a Ni content of about 5.0 to 7.5%, even if the base metal strength is high (specifically, tensile strength TS> 741 MPa, yield strength YS> 590 MPa, preferably TS ≧ 830 MPa, YS ≧ 690 MPa), excellent in cryogenic toughness at −196 ° C. or less (particularly, cryogenic toughness in the C direction), brittle fracture surface ratio at −196 ° C. ≦ 10% (preferably − It was possible to provide a high-strength thick steel plate that satisfies the brittle fracture surface ratio ≦ 50% at 233 ° C.
 本発明者らは、Ni含有量が7.5%以下であって、C方向のシャルピー衝撃吸収試験を実施したとき、-196℃での脆性破面率10%以下、引張り強度TS>741MPa、降伏強度YS>590MPaを満足する厚鋼板を提供するため、検討を行なった。 The inventors of the present invention have a Ni content of 7.5% or less, and when performing a Charpy impact absorption test in the C direction, the brittle fracture surface ratio at −196 ° C. is 10% or less, the tensile strength TS> 741 MPa, In order to provide a thick steel plate that satisfies the yield strength YS> 590 MPa, investigations were made.
 特に本発明では、以下の点に留意して、検討を行なった。 In particular, in the present invention, the following points were examined.
 まず、製造方法に関し、本発明では、特許文献1および3のように、圧延およびT処理後の冷却などの管理を厳格化しなくても、9%Ni鋼と同程度の極低温靱性を達成することを前提とした。具体的には、特許文献3ほどの圧下率を確保できない場合を考えて成分設計を行い、圧延については、830℃以上の圧下率をおおよそ50%以下程度、700℃以上の圧下率をおおよそ85%以下程度に抑えると共に、熱間圧延後の焼戻処理(T処理)後の水冷はしない(すなわち、T処理後、空冷を行なう)ことを前提とした。なお、圧下率(%)は、100×(圧延前の厚さ-圧延後の厚さ)/(圧延前の厚さ)で算出した。 First, regarding the manufacturing method, in the present invention, as in Patent Documents 1 and 3, cryogenic toughness similar to that of 9% Ni steel is achieved without strict management such as cooling after rolling and T treatment. It was assumed that. Specifically, component design is performed in consideration of the case where the rolling reduction as high as that of Patent Document 3 cannot be ensured. For rolling, a rolling reduction of 830 ° C. or higher is approximately 50% or lower, and a rolling reduction of 700 ° C. or higher is approximately 85. It was presupposed that the water cooling after tempering (T treatment) after hot rolling was not performed (that is, air cooling was performed after T treatment). The reduction ratio (%) was calculated by 100 × (thickness before rolling−thickness after rolling) / (thickness before rolling).
 また、極低温靭性は、L方向よりも靭性確保が難しい傾向にあるC方向の評価を採用し、且つ、靭性保証の観点から、吸収エネルギーでなく破面率での評価を行なうことにした。また、引張り強度(TS)について、極低温用圧力容器の設計においては、安全性を考慮すると、規格範囲内であればTSは高いほうが良いとの観点から、本発明ではTS>741MPaを前提にした。 Also, for cryogenic toughness, evaluation in the C direction, which tends to be more difficult to secure toughness than in the L direction, was adopted, and from the viewpoint of ensuring toughness, the evaluation was based on the fracture surface ratio instead of absorbed energy. Further, regarding the tensile strength (TS), in the design of a cryogenic pressure vessel, in consideration of safety, from the viewpoint that TS should be higher if it is within the standard range, in the present invention, TS> 741 MPa is assumed. did.
 具体的には、上記の製造条件を前提にして、C方向のシャルピー衝撃吸収試験において、-196℃での脆性破面率≦10%、引張り強度TS>741MPa、降伏強度YS>590MPaを満足する厚鋼板を提供するため、検討を重ねてきた。 Specifically, based on the above manufacturing conditions, in the Charpy impact absorption test in the C direction, the brittle fracture surface ratio at −196 ° C. ≦ 10%, the tensile strength TS> 741 MPa, and the yield strength YS> 590 MPa are satisfied. Consideration has been repeated to provide a thick steel plate.
 その結果、残留γ形態[下記(ア)、(イ)]、およびλパラメータ[下記(ウ)]を、次のように制御すれば、シャルピー衝撃吸収試験中に、マルテンサイトに変態せずに塑性変形する安定な残留γを確保することができ、優れた極低温靭性が得られることを見出した。
(A)極低温で衝撃中にマルテンサイトに変態せずに塑性変形し、靱性の向上に有用な安定な残留γを確保する(残留γの安定性を高める)との観点から、鋼中成分の適切なバランスによってDi値[前記(1)式を参照]を制御すること。
(B)鋼中成分と、α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)における温度(L処理温度)をLパラメータ[前記(5)式を参照]でバランスさせ、L処理の後、室温まで水冷し、所定条件の焼戻処理(T処理)を行なった後、空冷することにより、-196℃において存在する残留オーステナイト(残留γ)の体積分率を2.0~12.0%の範囲内に制御し、かつ-196℃において存在する残留γ中の成分で決定される残留γ安定化パラメータ[前記(2)式を参照]を3.1以上に制御すること(好ましくは、残留γの体積分率と上記残留γ安定化パラメータとで構成される残留γの体積分率・残留γ安定化パラメータ[前記(3)式を参照]を40以下に制御すること)。
(C)成分(Mn、Cr、Mo)とL処理温度により決定されるΛパラメータを前記(5)式のとおり制御すること。
As a result, the residual γ form the following (A), (b), and lambda L Parameters following (c)], by the following control, in Charpy impact absorption test, not transformed into martensite It was found that a stable residual γ that is plastically deformed can be ensured, and that excellent cryogenic toughness can be obtained.
(A) From the viewpoint of plastic deformation without being transformed into martensite during impact at extremely low temperature, and securing stable residual γ useful for improving toughness (enhancing the stability of residual γ), The Di value [see the above formula (1)] is controlled by an appropriate balance of the above.
(B) Balance between the steel components and the temperature (L treatment temperature) in the heat treatment (L treatment) in the α-γ2 phase coexistence region (between A c1 and A c3 ) by the L parameter [see the above formula (5)] After the L treatment, water cooling to room temperature, tempering treatment (T treatment) under predetermined conditions, followed by air cooling, the volume fraction of residual austenite (residual γ) existing at −196 ° C. is 2 The residual γ stabilization parameter [see the above formula (2)], which is controlled within the range of 0 to 12.0% and is determined by the components in the residual γ existing at −196 ° C., is set to 3.1 or more. Controlling (preferably, the volume fraction of residual γ and the residual γ stabilization parameter [refer to the above equation (3)] composed of the volume fraction of residual γ and the above-mentioned residual γ stabilization parameter are set to 40 or less. To control).
(C) Control the Λ l parameter determined by the component (Mn, Cr, Mo) and the L processing temperature as shown in the above equation (5).
 すなわち、本発明の厚鋼板は、質量%で、C:0.02~0.10%、Si:0.40%以下(0%を含まない)、Mn:0.50~2.0%、P:0.007%以下(0%を含まない)、S:0.007%以下(0%を含まない)、Al:0.005~0.050%、Ni:5.0~7.5%、N:0.010%以下(0%を含まない)を含有すると共に、Cr:1.20%以下(0%を含まない)、およびMo:1.0%以下(0%を含まない)よりなる群から選択される少なくとも一種の元素を含有し、残部が鉄および不可避不純物である厚鋼板であって、鋼中成分で構成される下記(1)式に基づいて決定されるDi値が2.5以上であり、-196℃において存在する残留オーステナイト相(残留γ)が体積分率にて2.0~12.0%であり、且つ、残留オーステナイト中に含まれる成分で構成される下記(2)式に基づいて決定される残留γ安定化パラメータが3.1以上であるところに特徴がある。
 Di値=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×1.115  ・・・  (1)
(式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する、)
 残留γ安定化パラメータ=
   (365×<C>+39×<Mn>+30×<Al>+10×<Cu>+17×<Ni>+20×<Cr>+5×<Mo>+35×<V>)/100  ・・・  (2)
(式中、< >は、-196℃において存在する残留オーステナイト中に含まれる各成分の含有量(質量%)を意味する。)
That is, the thick steel plate of the present invention is, by mass%, C: 0.02 to 0.10%, Si: 0.40% or less (excluding 0%), Mn: 0.50 to 2.0%, P: 0.007% or less (not including 0%), S: 0.007% or less (not including 0%), Al: 0.005 to 0.050%, Ni: 5.0 to 7.5 %, N: 0.010% or less (not including 0%), Cr: 1.20% or less (not including 0%), and Mo: 1.0% or less (not including 0%) ) Is a thick steel plate containing at least one element selected from the group consisting of iron and inevitable impurities, and the Di value determined on the basis of the following formula (1) composed of steel components Is a residual austenite phase (residual γ) present at −196 ° C. in a volume fraction of 2.0 to 12 0% and, is characterized in residual γ stabilization parameter determined based on the following equation (2) consists of components contained in the residual austenite is 3.1 or more.
Di value = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [ Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × 1.115 (1)
(In the formula, [] means the content (% by mass) of each component in the steel)
Residual γ stabilization parameter =
(365 × <C> + 39 × <Mn> + 30 × <Al> + 10 × <Cu> + 17 × <Ni> + 20 × <Cr> + 5 × <Mo> + 35 × <V>) / 100 (2)
(In the formula, <> means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
1.鋼中成分
 まず、鋼中成分について説明する。
1. Components in steel First, components in steel will be described.
C:0.02~0.10%
 Cは、強度および残留オーステナイトの確保に必須の元素である。このような作用を有効に発揮させるため、C量の下限を0.02%以上とする。C量の好ましい下限は0.03%以上であり、より好ましくは0.04%以上である。但し、過剰に添加すると、強度の過大な上昇により極低温靭性が低下するため、その上限を0.10%とする。C量の好ましい上限は0.08%以下であり、より好ましくは0.06%以下である。
C: 0.02 to 0.10%
C is an element essential for securing strength and retained austenite. In order to effectively exhibit such an action, the lower limit of the C amount is set to 0.02% or more. The minimum with the preferable amount of C is 0.03% or more, More preferably, it is 0.04% or more. However, if added excessively, the cryogenic toughness decreases due to an excessive increase in strength, so the upper limit is made 0.10%. The upper limit with preferable C amount is 0.08% or less, More preferably, it is 0.06% or less.
Si:0.40%以下(0%を含まない)
 Siは、脱酸材として有用な元素である。但し、過剰に添加すると、硬質の島状マルテンサイト相の生成が促進され、極低温靭性が低下するため、その上限を0.40%以下とする。Si量の好ましい上限は0.35%以下であり、より好ましくは0.20%以下である。
Si: 0.40% or less (excluding 0%)
Si is an element useful as a deoxidizer. However, if added in excess, the formation of a hard island-like martensite phase is promoted and the cryogenic toughness decreases, so the upper limit is made 0.40% or less. The upper limit with the preferable amount of Si is 0.35% or less, More preferably, it is 0.20% or less.
Mn:0.50~2.0%
 Mnはオーステナイト(γ)安定化元素であり、残留γ量の増加に寄与する元素である。このような作用を有効に発揮させるため、Mn量の下限を0.50%とする。Mn量の好ましい下限は0.6%以上であり、より好ましくは0.7%以上である。但し、過剰に添加すると、焼戻脆化をもたらし、所望の極低温靭性を確保できなくなるため、その上限を2.0%以下とする。Mn量の好ましい上限は1.5%以下であり、より好ましくは1.3%以下である。
Mn: 0.50 to 2.0%
Mn is an austenite (γ) stabilizing element and is an element contributing to an increase in the amount of residual γ. In order to effectively exhibit such an action, the lower limit of the amount of Mn is set to 0.50%. The minimum with the preferable amount of Mn is 0.6% or more, More preferably, it is 0.7% or more. However, if added excessively, temper embrittlement occurs and the desired cryogenic toughness cannot be secured, so the upper limit is made 2.0% or less. The upper limit with the preferable amount of Mn is 1.5% or less, More preferably, it is 1.3% or less.
P:0.007%以下(0%を含まない)
 Pは、粒界破壊の原因となる不純物元素であり、所望とする極低温靭性確保のため、その上限を0.007%以下とする。P量の好ましい上限は0.005%以下である。P量は少なければ少ない程良いが、工業的にP量を0%とすることは困難である。
P: 0.007% or less (excluding 0%)
P is an impurity element causing grain boundary fracture, and its upper limit is made 0.007% or less in order to secure the desired cryogenic toughness. The upper limit with preferable P amount is 0.005% or less. The smaller the amount of P, the better. However, it is difficult to make the amount of P 0% industrially.
S:0.007%以下(0%を含まない)
 Sも、上記Pと同様、粒界破壊の原因となる不純物元素であり、所望とする極低温靭性確保のため、その上限を0.007%以下とする。後記する実施例に示すように、S量が多くなると、脆性破面率は増加し、所望とする極低温靱性(-196℃での脆性破面率≦10%)を実現できない。S量の好ましい上限は0.005%以下である。S量は少なければ少ない程良いが、工業的にS量を0%とすることは困難である。
S: 0.007% or less (excluding 0%)
S, like P, is an impurity element causing grain boundary fracture, and its upper limit is made 0.007% or less in order to ensure the desired cryogenic toughness. As shown in the examples described later, when the amount of S increases, the brittle fracture surface ratio increases and the desired cryogenic toughness (the brittle fracture surface ratio at −196 ° C. ≦ 10%) cannot be realized. The upper limit with the preferable amount of S is 0.005% or less. The smaller the amount of S, the better. However, it is difficult to make the amount of S 0% industrially.
Al:0.005~0.050%
 Alは脱硫を促進し、窒素を固定する元素である。Alの含有量が不足すると、鋼中の固溶硫黄、固溶窒素などの濃度が上昇し、極低温靱性が低下するため、その下限を0.005%以上とする。Al量の好ましい下限は0.010%以上であり、より好ましくは0.015%以上である。但し、過剰に添加すると、酸化物や窒化物などが粗大化し、やはり極低温靱性が低下するため、その上限を0.050%以下とする。Al量の好ましい上限は0.045%以下であり、より好ましくは0.04%以下である。
Al: 0.005 to 0.050%
Al is an element that promotes desulfurization and fixes nitrogen. If the Al content is insufficient, the concentration of solute sulfur, solute nitrogen, etc. in the steel increases and the cryogenic toughness decreases, so the lower limit is made 0.005% or more. The minimum with the preferable amount of Al is 0.010% or more, More preferably, it is 0.015% or more. However, if added excessively, oxides, nitrides, and the like are coarsened and the cryogenic toughness is also lowered, so the upper limit is made 0.050% or less. The upper limit with the preferable amount of Al is 0.045% or less, More preferably, it is 0.04% or less.
Ni:5.0~7.5%
 Niは、極低温靱性の向上に有用な残留オーステナイト(残留γ)を確保するのに必須の元素である。このような作用を有効に発揮させるため、Ni量の下限を5.0%以上とする。Ni量の好ましい下限は5.2%以上であり、より好ましくは5.4%以上である。但し、過剰に添加すると、原料のコスト高を招くため、その上限を7.5%以下とする。Ni量の好ましい上限は7.0%以下であり、より好ましくは6.5%以下、更に好ましくは6.2%以下、更により好ましくは6.0%以下である。
Ni: 5.0 to 7.5%
Ni is an essential element for securing retained austenite (residual γ) useful for improving cryogenic toughness. In order to effectively exhibit such an action, the lower limit of the Ni amount is set to 5.0% or more. A preferable lower limit of the Ni amount is 5.2% or more, and more preferably 5.4% or more. However, if added excessively, the cost of the raw material is increased, so the upper limit is made 7.5% or less. The upper limit of the Ni content is preferably 7.0% or less, more preferably 6.5% or less, still more preferably 6.2% or less, and even more preferably 6.0% or less.
N:0.010%以下(0%を含まない)
 Nは、歪時効により極低温靭性を低下させるため、その上限を0.010%以下とする。N量の好ましい上限は0.006%以下であり、より好ましくは0.004%以下である。
N: 0.010% or less (excluding 0%)
N lowers the cryogenic toughness by strain aging, so the upper limit is made 0.010% or less. The upper limit with preferable N amount is 0.006% or less, More preferably, it is 0.004% or less.
Cr:1.20%以下(0%を含まない)、およびMo:1.0%以下(0%を含まない)よりなる群から選択される少なくとも一種
 CrおよびMoは、いずれも強度向上元素である。これらの元素は単独で添加しても良いし、二種類を併用しても良い。上記作用を有効に発揮させるためには、Cr量を0.05%以上、Mo量を0.01%以上とする。但し、過剰に添加すると、強度の過度な向上を招き、所望とする極低温靭性を確保できなくなるため、Cr量の上限を1.20%以下(好ましくは1.1%以下、より好ましくは0.9%以下、更に好ましくは0.5%以下)、Mo量の上限を1.0%以下(好ましくは0.8%以下、より好ましくは0.6%以下)とする。
Cr: at least one selected from the group consisting of 1.20% or less (not including 0%) and Mo: 1.0% or less (not including 0%) Cr and Mo are both strength-enhancing elements. is there. These elements may be added alone or in combination of two kinds. In order to effectively exhibit the above action, the Cr content is 0.05% or more and the Mo content is 0.01% or more. However, if excessively added, the strength is excessively increased and the desired cryogenic toughness cannot be ensured, so the upper limit of the Cr content is 1.20% or less (preferably 1.1% or less, more preferably 0). 0.9% or less, more preferably 0.5% or less) and the upper limit of the Mo amount is 1.0% or less (preferably 0.8% or less, more preferably 0.6% or less).
 本発明の厚鋼板は上記成分を基本成分として含み、残部:鉄および不可避的不純物である。 The thick steel plate of the present invention contains the above components as basic components, the balance: iron and unavoidable impurities.
 本発明では、更なる特性の付与を目的として、以下の選択成分を含有することができる。 In the present invention, the following selective components can be contained for the purpose of imparting further properties.
Cu:1.0%以下(0%を含まない)
 Cuは、γ安定化元素であり、残留γ量の増加に寄与する元素である。このような作用を有効に発揮させるためには、Cuを0.05%以上含有することが好ましい。但し、過剰に添加すると、強度の過度な向上をもたらし、所望とする極低温靭性効果が得られないため、その上限を1.0%以下とすることが好ましい。Cu量の更に好ましい上限は0.8%以下であり、更により好ましくは0.7%以下である。
Cu: 1.0% or less (excluding 0%)
Cu is a γ-stabilizing element and is an element that contributes to an increase in the amount of residual γ. In order to exhibit such an action effectively, it is preferable to contain 0.05% or more of Cu. However, if added excessively, the strength is excessively improved and the desired cryogenic toughness effect cannot be obtained. Therefore, the upper limit is preferably made 1.0% or less. A more preferable upper limit of the amount of Cu is 0.8% or less, and even more preferably 0.7% or less.
 Ti:0.025%以下(0%を含まない)、Nb:0.100%以下(0%を含まない)、およびV:0.50%以下(0%を含まない)よりなる群から選択される少なくとも一種
  Ti、Nb、およびVは、いずれも炭窒化物として析出し、強度を上昇させる元素である。これらの元素は単独で添加しても良いし、二種以上を併用しても良い。上記作用を有効に発揮させるためには、Ti量を0.005%以上、Nb量を0.005%以上、V量を0.005%以上とすることが好ましい。但し、過剰に添加すると、強度の過度な向上を招き、所望とする極低温靭性を確保できなくなるため、Ti量の好ましい上限を0.025%以下(より好ましくは0.018%以下であり、更に好ましくは0.015%以下)、Nb量の好ましい上限を0.100%以下(より好ましくは0.05%以下であり、更に好ましくは0.02%以下)、V量の好ましい上限を0.50%以下(より好ましくは0.3%以下であり、更に好ましくは0.2%以下)とする。
Selected from the group consisting of Ti: 0.025% or less (not including 0%), Nb: 0.100% or less (not including 0%), and V: 0.50% or less (not including 0%) At least one of Ti, Nb, and V is an element that precipitates as carbonitride and increases strength. These elements may be added alone or in combination of two or more. In order to effectively exhibit the above action, it is preferable that the Ti amount is 0.005% or more, the Nb amount is 0.005% or more, and the V amount is 0.005% or more. However, if excessively added, the strength is excessively improved, and the desired cryogenic toughness cannot be ensured. Therefore, the preferable upper limit of Ti amount is 0.025% or less (more preferably 0.018% or less, More preferably 0.015% or less), a preferable upper limit of Nb amount is 0.100% or less (more preferably 0.05% or less, further preferably 0.02% or less), and a preferable upper limit of V amount is 0. .50% or less (more preferably 0.3% or less, and still more preferably 0.2% or less).
B:0.0050%以下(0%を含まない)
 Bは、焼入れ性向上により強度向上に寄与する元素である。上記作用を有効に発揮させるためには、B量を0.0005%以上とすることが好ましい。但し、過剰に添加すると、強度の過度な向上をもたらし、所望とする極低温靭性を確保できなくなるため、B量の好ましい上限を0.0050%以下(より好ましくは0.0030%以下、更に好ましくは0.0020%以下)とする。
B: 0.0050% or less (excluding 0%)
B is an element that contributes to improving strength by improving hardenability. In order to effectively exhibit the above action, the B content is preferably 0.0005% or more. However, if added excessively, the strength is excessively improved and the desired cryogenic toughness cannot be ensured, so the preferable upper limit of the B amount is 0.0050% or less (more preferably 0.0030% or less, more preferably Is 0.0020% or less).
Ca:0.0030%以下(0%を含まない)、およびREM(希土類元素):0.0050%以下(0%を含まない)よりなる群から選択される少なくとも一種
 Ca、およびREMは、固溶硫黄を固定し、さらに硫化物を無害化する元素である。これらの元素は単独で添加しても良いし、二種以上を併用しても良い。これらの含有量が不足すると、鋼中の固溶硫黄濃度が上昇し、靱性が低下するため、Ca量を0.0005%以上、REM量(以下に記載のREMを、単独で含有するときは単独の含有量であり、二種以上を含有するときは、それらの合計量である。以下、REM量について同じ。)を0.0005%以上とすることが好ましい。但し、過剰に添加すると、硫化物、酸化物や窒化物などが粗大化し、やはり靱性が低下するため、Ca量の好ましい上限を0.0030%以下(より好ましくは0.0025%以下)、REM量の好ましい上限を0.0050%以下(より好ましくは0.0040%以下)とする。
Ca: 0.0030% or less (excluding 0%) and REM (rare earth element): at least one selected from the group consisting of 0.0050% or less (excluding 0%) Ca and REM are solid It is an element that fixes dissolved sulfur and renders sulfides harmless. These elements may be added alone or in combination of two or more. If these contents are insufficient, the solid solution sulfur concentration in the steel increases and the toughness decreases, so the Ca content is 0.0005% or more, the REM content (when the REM described below is contained alone) It is a single content, and when it contains two or more kinds, it is the total amount thereof. However, if excessively added, sulfides, oxides, nitrides, etc. become coarse and the toughness is also lowered, so the preferable upper limit of Ca content is 0.0030% or less (more preferably 0.0025% or less), REM A preferable upper limit of the amount is 0.0050% or less (more preferably 0.0040% or less).
 本明細書において、REM(希土類元素)とは、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群であり、これらを単独で、または二種以上を併用することができる。好ましい希土類元素はCe、Laである。REMの添加形態は特に限定されず、CeおよびLaを主として含むミッシュメタル(例えばCe:約70%程度、La:約20~30%程度)の形態で添加しても良いし、或いは、Ce、Laなどの単体で添加して良い。 In this specification, REM (rare earth element) means addition of Sc (scandium) and Y (yttrium) to a lanthanoid element (15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table). These elements can be used alone or in combination of two or more. Preferred rare earth elements are Ce and La. The addition form of REM is not particularly limited, and may be added in the form of a misch metal mainly containing Ce and La (for example, Ce: about 70%, La: about 20-30%), or Ce, La alone may be added.
Zr:0.005%以下(0%を含まない)
 Zrは、窒素を固定する元素である。Zrの含有量が不足すると、鋼中の固溶N濃度が上昇し、靭性が低下するため、Zr量を0.0005%以上とすることが好ましい。但し、過剰に添加すると、酸化物や窒化物などが粗大化し、やはり靭性が低下するため、Zr量の好ましい上限を0.005%以下(より好ましくは0.0040%以下)とする。
Zr: 0.005% or less (excluding 0%)
Zr is an element that fixes nitrogen. If the Zr content is insufficient, the solid solution N concentration in the steel increases and the toughness decreases, so the Zr content is preferably 0.0005% or more. However, if added excessively, oxides, nitrides, etc. become coarse and the toughness also decreases, so the preferable upper limit of the amount of Zr is made 0.005% or less (more preferably 0.0040% or less).
 以上、本発明の鋼中成分について説明した。 As above, the components in the steel of the present invention have been described.
2.残留オーステナイト相(残留γ)の体積分率
 更に本発明の厚鋼板は、-196℃において存在する残留γ相が体積分率にて2.0~12.0%(好ましくは4.0~12.0%)を満足するものである。
2. Volume fraction of residual austenite phase (residual γ) Further, in the thick steel plate of the present invention, the residual γ phase present at −196 ° C. is 2.0 to 12.0% (preferably 4.0 to 12%). 0.0%).
 極低温靱性の改善には、低温での衝撃試験中に塑性変形し易い残留γを確保することが有効である。所望とする極低温靱性を得るため、-196℃で存在する全組織に占める残留γ相の体積分率を2.0%以上とする。但し、残留γは、マトリクス相に比べて比較的軟質であり、残留γ量が過剰になると、YSが所定の値を確保できなくなるため、その上限を12.0%とする。残留γ相の体積分率について、好ましい下限は4.0%以上、より好ましい下限は6.0%以上であり、好ましい上限は11.5%以下、より好ましい上限は11.0%以下である。 In order to improve the cryogenic toughness, it is effective to secure a residual γ that is easily plastically deformed during an impact test at a low temperature. In order to obtain the desired cryogenic toughness, the volume fraction of the residual γ phase in the entire structure existing at −196 ° C. is set to 2.0% or more. However, the residual γ is relatively soft compared to the matrix phase, and if the residual γ amount becomes excessive, YS cannot secure a predetermined value, so the upper limit is made 12.0%. Regarding the volume fraction of the residual γ phase, the preferable lower limit is 4.0% or more, the more preferable lower limit is 6.0% or more, the preferable upper limit is 11.5% or less, and the more preferable upper limit is 11.0% or less. .
 なお、本発明の厚鋼板では、-196℃で存在する組織のうち、残留γ相の体積分率の制御が重要であって、残留γ以外の他の組織については、何ら限定するものではなく、厚鋼板に通常存在するものであれば良い。残留γ以外の組織としては、例えば、ベイナイト、マルテンサイト、セメンタイト等の炭化物などが挙げられる。 In the thick steel sheet of the present invention, it is important to control the volume fraction of the residual γ phase among the structures existing at −196 ° C., and the structure other than the residual γ is not limited at all. Any material that normally exists in thick steel plates may be used. Examples of the structure other than the residual γ include carbides such as bainite, martensite, and cementite.
3.Di値について
 更に本発明では、鋼中成分で構成される下記(1)式に基づいて決定されるDi値が2.5以上を満足するものである。
 Di値=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×1.115  ・・・  (1)
(式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する。)
3. About Di Value Furthermore, in the present invention, the Di value determined based on the following formula (1) composed of steel components satisfies 2.5 or more.
Di value = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [ Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × 1.115 (1)
(In formula, [] means content (mass%) of each component in steel.)
 焼入れ性Di値に関する上式(1)は、Grossmannの式(Trans.Metall.Soc.AIME,150(1942)、227頁)として記載されているものである。Di値を構成する上記合金元素の添加量が多いほど、焼きが入りやすく(Di値が大きくなり)、組織が微細化しやすくなる。また、Di値が大きい程、強度が高くなり、所望の強度を確保しやすくなる。本発明者らの検討結果によれば、Di値と、圧延後の組織サイズとは相関があり、圧延後組織を微細にし、所望とする高い強度を確保するには、Di値を2.5以上にすれば良いことが判明した。詳細にはDi値は、未結晶域の圧下率が小さくても微細な圧延組織が得られ、その後の熱処理で極低温靱性向上に有用な残留γの体積分率を十分確保し、安定した残留γを確保するための指針として有用なパラメータである。また、特許文献3に記載の製造条件[低温(未再結晶域)での圧下率低減、冷却開始までの時間制限など]を緩和して、工程負荷を低減しても良好な特性を確保するのに有効なパラメータである。 The above formula (1) relating to the hardenability Di value is described as the Grossmann formula (Trans. Metal. Soc. AIME, 150 (1942), p. 227). The larger the amount of the alloy element that constitutes the Di value, the easier the firing (the Di value increases) and the finer the structure becomes. Also, the greater the Di value, the higher the strength, and it becomes easier to ensure the desired strength. According to the examination results of the present inventors, there is a correlation between the Di value and the structure size after rolling, and in order to make the structure after rolling fine and secure a desired high strength, the Di value is 2.5. It turned out that it should have done above. In detail, the Di value is such that a fine rolled structure can be obtained even when the rolling reduction of the amorphous region is small, and a sufficient volume fraction of residual γ useful for improving the cryogenic toughness is ensured by the subsequent heat treatment, and the stable residual This parameter is useful as a guideline for securing γ. In addition, the manufacturing conditions described in Patent Document 3 [reduction of reduction rate at low temperature (non-recrystallized region), time limit until the start of cooling, etc.] are relaxed to ensure good characteristics even if the process load is reduced. This is an effective parameter.
 このような作用を有効に発揮させるため、Di値を2.5以上とする。Di値が2.5未満では、圧延後に微細な組織が十分得られないため、所定量の残留γが得られない。更には、後記する残留γ安定化パラメータや、残留γの体積分率・残留γ安定化パラメータを所定レベルに制御できないため、安定した残留γ組織が得られず、所望とする極低温靱性を確保できない。Di値の好ましい範囲は3.0以上である。一方、Di値の上限は、上記観点からは特に限定されないが、コストなどの観点や、現行LNGタンク用鋼の強度規格範囲が830MPa以下であることなどを考慮すると、おおむね、5.0以下であることが好ましい。 In order to effectively exhibit such an action, the Di value is set to 2.5 or more. When the Di value is less than 2.5, a fine structure cannot be sufficiently obtained after rolling, and thus a predetermined amount of residual γ cannot be obtained. Furthermore, since the residual γ stabilization parameters, volume fraction of residual γ and residual γ stabilization parameters described later cannot be controlled to a predetermined level, a stable residual γ structure cannot be obtained, and the desired cryogenic toughness is ensured. Can not. A preferable range of the Di value is 3.0 or more. On the other hand, the upper limit of the Di value is not particularly limited from the above viewpoint, but considering the viewpoint of cost and the like, and the strength standard range of the current LNG tank steel is 830 MPa or less, it is generally 5.0 or less. Preferably there is.
4.残留γ安定化パラメータについて
 更に本発明では、下記(2)式に基づいて決定される残留γ安定化パラメータを3.1以上に制御する。これにより、所望とする極低温靱性が得られる。
 残留γ安定化パラメータ=
  (365×<C>+39×<Mn>+30×<Al>+10×<Cu>+17×<Ni>+20×<Cr>+5×<Mo>+35×<V>)/100  ・・・  (2)
(式中、< >は、-196℃において存在する残留オーステナイト中に含まれる各成分の含有量(質量%)を意味する。)
4). Residual γ stabilization parameter Further, in the present invention, the residual γ stabilization parameter determined based on the following equation (2) is controlled to 3.1 or more. Thereby, desired cryogenic toughness is obtained.
Residual γ stabilization parameter =
(365 × <C> + 39 × <Mn> + 30 × <Al> + 10 × <Cu> + 17 × <Ni> + 20 × <Cr> + 5 × <Mo> + 35 × <V>) / 100 (2)
(In the formula, <> means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
 前述したとおり、極低温靭性の改善には、衝撃試験中にマルテンサイトに変態せずに塑性変形する安定な残留γを確保することが有効である。そのためには、衝撃試験前に残留γ分率を確保することと、衝撃を受けてもマルテンサイトに変態せずに塑性変形できるように残留γの安定性を高めることが考えられる。本発明では、前者の観点から、残留γの体積分率を上記範囲に規定した。更に、後者の観点からも実験を行ったところ、-196℃において存在する残留γの安定性は、-196℃において存在する残留γ中の成分で決定され、上記(2)式で表わされるパラメータを制御することが有効であることが判明した。本発明のようにNi量が7.5%以下に低減すると、一般に焼入れ性が低下するため、圧延後の組織が粗大になって熱処理後に得られる残留γの体積分率または上記Di値を確保できなくなってしまうが、本発明では、残留γ中の成分バランスを考慮して決定された残留γ安定化パラメータを適切に制御することで、これらの要件も適切に制御される。この残留γ安定化パラメータは、Ms点の式を参考にして導出されたものである。 As described above, to improve the cryogenic toughness, it is effective to secure a stable residual γ that undergoes plastic deformation without being transformed into martensite during the impact test. For this purpose, it is conceivable to secure the residual γ fraction before the impact test and to increase the stability of the residual γ so that it can be plastically deformed without being transformed into martensite even when subjected to an impact. In the present invention, from the former viewpoint, the volume fraction of residual γ is defined in the above range. Furthermore, when the experiment was conducted also from the latter viewpoint, the stability of the residual γ existing at −196 ° C. was determined by the component in the residual γ existing at −196 ° C., and the parameter represented by the above equation (2) It was found effective to control. When the amount of Ni is reduced to 7.5% or less as in the present invention, the hardenability generally decreases, so the structure after rolling becomes coarse and the volume fraction of residual γ obtained after heat treatment or the above-mentioned Di value is ensured. In the present invention, these requirements are also appropriately controlled by appropriately controlling the residual γ stabilization parameter determined in consideration of the component balance in the residual γ. This residual γ stabilization parameter is derived with reference to the Ms point equation.
 所望とする極低温靱性を確保するため、上記残留γ安定化パラメータの下限を3.1以上とする。好ましくは3.3以上、より好ましくは3.5以上、更に好ましくは3.7以上である。なお、残留γ安定化パラメータの上限は、極低温靱性向上の観点からは特に限定されない。 In order to ensure the desired cryogenic toughness, the lower limit of the residual γ stabilization parameter is set to 3.1 or more. Preferably it is 3.3 or more, More preferably, it is 3.5 or more, More preferably, it is 3.7 or more. The upper limit of the residual γ stabilization parameter is not particularly limited from the viewpoint of improving cryogenic toughness.
5.残留γの体積分率・残留γ安定化パラメータについて
 更に本発明では、一層優れた極低温靱性を確保する目的で、下記式(3)に基づいて算出される残留γの体積分率・残留γ安定化パラメータを40以下に制御することが好ましい。
 残留γの体積分率・残留γ安定化パラメータ
    =10/(残留γ相の体積分率×残留γ安定化パラメータ)1/2  ・・・(3)
5. Residual γ volume fraction / residual γ stabilization parameter Further, in the present invention, for the purpose of securing a further excellent cryogenic toughness, the volume fraction of residual γ and the residual γ calculated based on the following formula (3): It is preferable to control the stabilization parameter to 40 or less.
Volume fraction of residual γ / residual γ stabilization parameter = 10 / (volume fraction of residual γ phase × residual γ stabilization parameter) 1/2 (3)
 上式(3)に示すとおり、上記パラメータは、残留γの体積分率と残留γ安定化パラメータとで構成されている。本発明者らは、極低温靱性の向上には、極低温衝撃試験中に塑性変形を担い、靭性向上に有効な残留γの分布が大きく影響すると考え、上記パラメータを定めた。すなわち、残留γの体積分率が高く、且つ、残留γ安定化パラメータが大きいものは、一つ一つの残留γ同士の間の距離が短く微細に分散し、且つ、それらが、低温でもマルテンサイトに変態せず、塑性変形を担うことから、良好な極低温靭性を発揮するようになる。 As shown in the above equation (3), the above parameters are composed of a residual γ volume fraction and a residual γ stabilization parameter. The inventors of the present invention have determined the above parameters, considering that the improvement of the cryogenic toughness is due to the plastic deformation during the cryogenic impact test, and that the distribution of residual γ effective for the improvement of the toughness greatly affects. That is, those having a high volume fraction of residual γ and a large residual γ stabilization parameter are those in which the distance between each residual γ is short and finely dispersed, and they are martensite even at low temperatures. Since it is not transformed into a material and is responsible for plastic deformation, it exhibits good cryogenic toughness.
 上記残留γの体積分率・残留γ安定化パラメータは、好ましくは35以下であり、より好ましくは30以下である。極低温靭性向上の観点からすると、上記パラメータは低いほど良い。上記パラメータの下限は、極低温靭性との関係では特に限定されないが、本発明の成分系を考慮すると、おおむね、10以上である。 The volume fraction of residual γ and the residual γ stabilization parameter are preferably 35 or less, and more preferably 30 or less. From the viewpoint of improving the cryogenic toughness, the lower the parameter, the better. The lower limit of the above parameter is not particularly limited in relation to the cryogenic toughness, but is generally 10 or more in consideration of the component system of the present invention.
 更に、後記する実施例2で実証したように、残留γの体積分率・残留γの安定化パラメータをより適切な範囲に制御することにより、上述した-196℃より更に低温の-233℃においても、脆性破面率を50%以下の良好な水準に保つことができる。具体的には、残留γの体積分率・残留γ安定化パラメータの上限を出来るだけ小さくする(おおむね、30以下)ことにより、-233℃での脆性破面率を50%以下に低減することができる。 Furthermore, as demonstrated in Example 2 to be described later, by controlling the volume fraction of residual γ and the stabilization parameter of residual γ to a more appropriate range, at a temperature of −233 ° C., which is lower than −196 ° C. described above. However, the brittle fracture surface ratio can be maintained at a favorable level of 50% or less. Specifically, by reducing the upper limit of the volume fraction of residual γ and the residual γ stabilization parameter as much as possible (generally, 30 or less), the brittle fracture surface ratio at −233 ° C. is reduced to 50% or less. Can do.
 上記した本発明の構成によって、C方向のシャルピー衝撃吸収試験において、-196℃での脆性破面率≦10%、引張り強度TS>741MPa、降伏強度YS>590MPaを満足する厚鋼板を得ることが出来るが、本発明者らは更に高い母材強度を発揮しつつ、極低温靭性も満足する厚鋼板を得ることが出来ないか、更に検討を行なった。 With the above-described configuration of the present invention, it is possible to obtain a thick steel plate satisfying the brittle fracture surface ratio ≦ −10% at −196 ° C., tensile strength TS> 741 MPa, and yield strength YS> 590 MPa in the C direction Charpy impact absorption test. However, the present inventors have further studied whether it is possible to obtain a thick steel plate that exhibits higher base metal strength and also satisfies cryogenic toughness.
 具体的には、C方向のシャルピー衝撃吸収試験において、-196℃での脆性破面率10%以下、TS>830MPa、YS>690MPaを満足する厚鋼板を提供することを更なる目標として検討を行なった。その結果、前記した厚鋼板中の元素の含有量、Di値、残留γ体積分率をより限定された範囲に規定した上で、前記残留γ安定化パラメータの代わりに残留γ中のMn濃度を制御することによって、上記したような、より高い母材強度を発揮しつつ、極低温靭性も満足できることを見出した。 Specifically, in the Charpy impact absorption test in the C direction, we examined as a further goal to provide a thick steel plate that satisfies a brittle fracture surface ratio of 10% or less at −196 ° C., TS> 830 MPa, and YS> 690 MPa. I did it. As a result, after defining the element content, the Di value, and the residual γ volume fraction in the above-described thick steel plate to a more limited range, the Mn concentration in the residual γ is set in place of the residual γ stabilization parameter. It has been found that by controlling, the cryogenic toughness can be satisfied while exhibiting higher base material strength as described above.
 ここで、前記した厚鋼板中の元素の含有量、Di値、残留γ体積分率のより限定した範囲への限定とは、
(a)Mn含有量の下限を0.6%とする、
(b)CrおよびMoの両方の元素を必須添加とし、Moの下限値は0.30%とする、
(c)Di値を5.0超とする、
(d)-196℃において存在する残留γ体積分率の上限を5.0%とする、
(e)下記(4)式で表される鋼中のMn-Niの含有量のバランスを適切に制御する
 [Mn]≧0.31×(7.20-[Ni])+0.50・・・(4)
(式中、[ ]は鋼中の各成分の含有量(質量%)を意味する。)
ことを意味する。
Here, the content of the element in the thick steel plate, the Di value, and the limitation to the more limited range of the residual γ volume fraction are:
(A) The lower limit of the Mn content is 0.6%.
(B) Both Cr and Mo elements are essential additions, and the lower limit of Mo is 0.30%.
(C) The Di value is more than 5.0.
(D) The upper limit of the residual γ volume fraction existing at −196 ° C. is 5.0%.
(E) Properly control the balance of the Mn—Ni content in the steel represented by the following formula (4): [Mn] ≧ 0.31 × (7.20− [Ni]) + 0.50・ (4)
(In the formula, [] means the content (mass%) of each component in the steel.)
Means that.
 また、このような限定に加えて、
(f)-196℃において存在する残留γ中のMn濃度を1.05%以上、とすれば、前記した残留γ安定化パラメータの制御を行なわずとも、-196℃での脆性破面率10%以下、TS>830MPa、YS>690MPaを満足する厚鋼板が提供可能となる。
In addition to these limitations,
(F) If the Mn concentration in residual γ existing at −196 ° C. is 1.05% or more, the brittle fracture surface ratio at −196 ° C. is 10 without controlling the residual γ stabilization parameter described above. % And below, TS> 830MPa, YS> 690MPa can be provided.
 以下、既に説明済みの本発明に係る厚鋼板、すなわちC方向のシャルピー衝撃吸収試験において、-196℃での脆性破面率≦10%、TS>741MPa、YS>590MPaを満足する厚鋼板とは異なる構成である上記(a)~(f)に関して説明する。 Hereinafter, a steel plate according to the present invention that has already been described, that is, a steel plate that satisfies the brittle fracture surface ratio ≦ 10% at −196 ° C., TS> 741 MPa, and YS> 590 MPa in the C direction Charpy impact absorption test. The above (a) to (f) having different configurations will be described.
(a)Mn含有量の下限:0.6%
 TS>830MPa、YS>690MPaという更なる強度の向上、および残留γ中のMn濃度の確保の観点からMn含有量は0.6%以上とする。Mn量の好ましい下限は0.7%以上である。
(A) Lower limit of Mn content: 0.6%
From the viewpoint of further improving the strength of TS> 830 MPa and YS> 690 MPa and securing the Mn concentration in the residual γ, the Mn content is set to 0.6% or more. A preferable lower limit of the amount of Mn is 0.7% or more.
(b)CrおよびMoの両方の元素を必須添加、且つ、Mo含有量の下限:0.30%
(c)Di値:5.0超
 TS>830MPa、YS>690MPaという更なる強度の向上の観点から、CrとMoの両方を必須添加とし、且つ、Moは0.30%以上含有させるようにする。また、Di値も5.0超とする。
(B) Essential addition of both Cr and Mo elements, and lower limit of Mo content: 0.30%
(C) Di value: more than 5.0 From the viewpoint of further improving the strength of TS> 830 MPa and YS> 690 MPa, both Cr and Mo are essential additions, and Mo is contained at 0.30% or more. To do. The Di value is also greater than 5.0.
(d)-196℃において存在する残留γ体積分率の上限:5.0%
 極低温靱性向上の観点からは、残留γ相の体積分率は高い方が良いが、残留γは、マトリクス相に比べて比較的軟質であり、残留γ量が過剰になると、所定のYSおよびTSを確保できなくなる場合があるため、その上限を5.0%とする。残留γ相の体積分率について、好ましい上限は4.8%である。なお、好ましい下限は3.0%、より好ましい下限は3.5%である。
(D) Upper limit of residual γ volume fraction present at −196 ° C .: 5.0%
From the viewpoint of improving the cryogenic toughness, the volume fraction of the residual γ phase is preferably high, but the residual γ is relatively soft compared to the matrix phase, and when the residual γ amount is excessive, a predetermined YS and Since TS may not be secured, the upper limit is set to 5.0%. A preferred upper limit for the volume fraction of the residual γ phase is 4.8%. A preferred lower limit is 3.0%, and a more preferred lower limit is 3.5%.
(e)下記(4)式で表される鋼中のMn-Niの含有量のバランスを適切に制御する
 [Mn]≧0.31×(7.20-[Ni])+0.50・・・(4)
 この条件を満足することにより、残留γの安定性が一層高められるようになる。以下では、上記(4)式の要件を、「鋼中のNi-Mnバランス」または単に「Ni-Mnバランス」と呼ぶ場合がある。
(E) Properly control the balance of the Mn—Ni content in the steel represented by the following formula (4): [Mn] ≧ 0.31 × (7.20− [Ni]) + 0.50・ (4)
Satisfying this condition further enhances the stability of the residual γ. Hereinafter, the requirement of the above formula (4) may be referred to as “Ni—Mn balance in steel” or simply “Ni—Mn balance”.
 上記(4)式に到達した経緯の概略は以下のとおりである。本発明者らは、Ni量を7.5%以下に低減しながら、極低温での高い強度-靱性バランスを確保するためには、鋼中成分のうち、γ安定化元素であるMnの活用が重要であること;更には、Mnと、鋼中成分のうち含有量が比較的多いNiとのバランスが重要であるとの観点に立ち、残留γの安定性を高めるための鋼中設計指針を検討した。具体的には、Ni低減に伴う焼入れ性の影響、L処理時の合金成分の濃縮、衝撃時に形成されるMAサイズの微細化などの観点から、前述したDi値やMs点(マルテンサイト生成開始温度)を含めて鋭意検討した。その結果、衝撃時に形成されるMAサイズは、圧延まま組織サイズと相関があり、鋼中のNiおよびMn量と相関することを見出した。上記知見に基づき、更に検討を行なった結果、所望とする極低温での強度-靱性バランスを確保することができる鋼中のNi-Mnバランスとして、上記(4)式を特定した。 The outline of how the above equation (4) was reached is as follows. In order to ensure a high strength-toughness balance at extremely low temperatures while reducing the amount of Ni to 7.5% or less, the present inventors use Mn which is a γ-stabilizing element among the components in steel. In addition, from the viewpoint that the balance between Mn and Ni having a relatively high content among the components in the steel is important, a design guideline in steel for improving the stability of residual γ. It was investigated. Specifically, from the viewpoints of the effect of hardenability due to Ni reduction, concentration of alloy components during L treatment, and refinement of the MA size formed during impact, the aforementioned Di value and Ms point (start of martensite generation) (Including temperature). As a result, it has been found that the MA size formed at the time of impact has a correlation with the structure size as it is rolled and correlates with the amounts of Ni and Mn in the steel. As a result of further studies based on the above findings, the above formula (4) was specified as the Ni—Mn balance in steel that can ensure the desired strength-toughness balance at extremely low temperatures.
(f)-196℃において存在する残留γ中のMn濃度:1.05%以上
 この条件を満足することにより、残留γの安定性が高められ、極低温下における優れた強度-靱性バランスが達成される。
(F) Mn concentration in residual γ existing at −196 ° C .: 1.05% or more By satisfying this condition, the stability of residual γ is enhanced and an excellent strength-toughness balance is achieved at extremely low temperatures. Is done.
 -196℃において存在する残留γ中の好ましいMn濃度は1.40%以上であり、より好ましくは1.75%以上である。なお、残留γ中の好ましいMn濃度の上限については、上記作用との関係からは特に限定されないが、鋼中Mn量の範囲などを考慮すると、おおむね、2.50%以下であることが好ましい。 The preferable Mn concentration in the residual γ existing at −196 ° C. is 1.40% or more, more preferably 1.75% or more. The preferable upper limit of the Mn concentration in the residual γ is not particularly limited from the relationship with the above action, but considering the range of the amount of Mn in steel and the like, the upper limit is preferably 2.50% or less.
 更に、後記する実施例4で実証したように、(i)残留γの体積分率、(ii)残留γ中のMn濃度、および(iii)λパラメータの少なくともいずれか一つを、より適切な範囲に制御することにより、上述した-196℃より更に低温の-233℃においても、脆性破面率を50%以下の良好な水準に保つことができる。具体的には、(i)残留γ分率をおおむね、3.5~4.8%、(ii)残留γ中のMn濃度を、おおむね、1.40~2.5%、(iii)λパラメータを、おおむね、-10以下の範囲内に制御することにより、-233℃での靱性も向上させることができる。更に、上記(i)~(iii)の少なくとも2つ以上および/または(i)残留γ中のMn濃度を1.75~2.50%と制御すると、-233℃での靱性を一層高めることができる。 Furthermore, as demonstrated in Example 4 to be described later, at least one of (i) the volume fraction of residual γ, (ii) the Mn concentration in residual γ, and (iii) λ L parameter is more appropriate. By controlling in such a range, the brittle fracture surface ratio can be maintained at a favorable level of 50% or less even at −233 ° C., which is lower than −196 ° C. described above. Specifically, (i) the residual γ fraction is approximately 3.5 to 4.8%, (ii) the Mn concentration in the residual γ is approximately 1.40 to 2.5%, (iii) λ By controlling the L parameter within a range of approximately −10 or less, toughness at −233 ° C. can be improved. Further, when at least two of the above (i) to (iii) and / or (i) the Mn concentration in the residual γ is controlled to 1.75 to 2.50%, the toughness at −233 ° C. is further improved. Can do.
 以上、本発明の厚鋼板について説明した。 The thick steel plate of the present invention has been described above.
 次に、本発明の厚鋼板を製造する方法について説明する。本願請求項1または2に規定している本発明に係る厚鋼板の製造方法は、α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)における温度(L処理温度)と、鋼中のAc1およびAc3とで構成される下記式(5)に基づいて算出されるLパラメータが0.25以上、0.45以下であり、且つ、前記Lパラメータと、鋼中成分とで構成される下記式(6)に基づいて算出されるλパラメータが7以下であることを満足するように、L処理温度および鋼中成分を調整する工程と、L処理の後、室温まで水冷した後、焼戻処理(T処理)するに当たり、Ac1以下の温度で10~60分間行なう工程と、を行なうところに特徴がある。
 Lパラメータ=(L処理温度-Ac1)/(Ac3-Ac1)+0.25  ・・・(5)
 λパラメータ=9.05×(0.90×[Lパラメータ]+0.14)×[Mn]+1.46×(0.37×[Lパラメータ]+0.67)×[Cr]-41.5×(0.26×[Lパラメータ]+0.79)×[Mo]  ・・・(6)
(式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する。)
Next, a method for producing the thick steel plate of the present invention will be described. The method for producing a thick steel plate according to the present invention as defined in claim 1 or 2 of the present invention is the temperature (L treatment temperature) in the heat treatment (L treatment) in the α-γ2 phase coexistence region (between A c1 and A c3 ). And the L parameter calculated based on the following formula (5) composed of A c1 and A c3 in the steel is 0.25 or more and 0.45 or less, and the L parameter and the steel The step of adjusting the L treatment temperature and the steel component so that the λ L parameter calculated based on the following formula (6) composed of the components is 7 or less, and after the L treatment, It is characterized in that after water cooling to room temperature, a tempering process (T process) is performed at a temperature of Ac1 or lower for 10 to 60 minutes.
L parameter = (L treatment temperature−A c1 ) / (A c3 −A c1 ) +0.25 (5)
λ L parameter = 9.05 × (0.90 × [L parameter] +0.14) × [Mn] + 1.46 × (0.37 × [L parameter] +0.67) × [Cr] −41.5 × (0.26 × [L parameter] +0.79) × [Mo] (6)
(In formula, [] means content (mass%) of each component in steel.)
 以下、各工程について詳述する。 Hereinafter, each process will be described in detail.
 前記した本発明の製造方法は、圧延工程およびその後の焼戻処理(T処理)を適切に制御して上記要件を満足する厚鋼板を製造するものであり、製鋼工程は特に限定されず、通常、用いられる方法を採用することができる。 The manufacturing method of the present invention described above is for manufacturing a thick steel plate that satisfies the above requirements by appropriately controlling the rolling step and the subsequent tempering treatment (T treatment), and the steel making step is not particularly limited. The method used can be employed.
 以下、本発明を特徴付ける圧延工程以降の工程について、順次、詳しく説明する。 Hereinafter, the steps after the rolling step characterizing the present invention will be described in detail in order.
 まず、加熱温度は約900~1100℃、FRT(仕上げ圧延温度)は約700~900℃、SCT(冷却開始温度)は約650~800℃に制御することが好ましい。ここで、SCTは、仕上圧延の後、60秒以内に上記範囲に制御することが好ましく、これにより、圧延→冷却後に、靱性向上に有用な微細組織が得られる。 First, it is preferable to control the heating temperature to about 900 to 1100 ° C., the FRT (finish rolling temperature) to about 700 to 900 ° C., and the SCT (cooling start temperature) to about 650 to 800 ° C. Here, the SCT is preferably controlled within the above-mentioned range within 60 seconds after finish rolling, whereby a microstructure useful for improving toughness can be obtained after rolling → cooling.
 次いで、800℃~500℃までの温度範囲を約10℃/s以上の平均冷却速度で冷却する。本発明において、特に上記温度範囲の平均冷却速度を制御するのは、冷却後に微細な組織を得るためである。なお、その上限は特に限定されない。 Next, the temperature range from 800 ° C. to 500 ° C. is cooled at an average cooling rate of about 10 ° C./s or more. In the present invention, the average cooling rate in the above temperature range is particularly controlled in order to obtain a fine structure after cooling. The upper limit is not particularly limited.
 本発明では、少なくとも上記温度範囲を約10℃/s以上の平均冷却速度で冷却することが好ましいが、上記平均冷却速度での停止温度は200℃以下とすることが好ましい。これにより、未変態γを低減することができ、微細均一な組織が得られる。 In the present invention, it is preferable to cool at least the above temperature range at an average cooling rate of about 10 ° C./s or more, but the stop temperature at the above average cooling rate is preferably 200 ° C. or less. Thereby, untransformed γ can be reduced, and a fine and uniform structure can be obtained.
 熱間圧延の後、Ac1~Ac3点の二相域[フェライト(α)-γ]温度(L処理温度)に加熱・保持した後、水冷する(L処理)。本発明では、残留γの体積分率、および残留γ安定化パラメータ(好ましくは、残留γの体積分率・残留γ安定化パラメータ)を本発明の範囲に制御するために、上記(5)式で表わされるLパラメータ、および上記(6)式で表わされるλパラメータが所定範囲となるようにL処理温度および鋼中の成分を適切に制御している。 After hot rolling, it is heated and maintained at the two-phase region [ferrite (α) -γ] temperature (L treatment temperature) at points A c1 to A c3 and then cooled with water (L treatment). In the present invention, in order to control the volume fraction of residual γ and the residual γ stabilization parameter (preferably, the volume fraction of residual γ and the residual γ stabilization parameter) within the scope of the present invention, the above equation (5) The L treatment temperature and the components in the steel are appropriately controlled so that the L parameter represented by the formula (1) and the λ L parameter represented by the above formula (6) fall within a predetermined range.
 まず、熱間圧延後の上記L処理温度は、Ac1~(Ac1+Ac3)/2の範囲内に制御することが好ましい。これにより、生成したγ相にNiなどの合金元素が濃縮し、その一部が室温で準安定に存在する準安定残留γ相となる。上記L処理温度がAc1点未満、または[(Ac1+Ac3)/2]超では、結果的に、-196℃における残留γ分率、または残留γの安定性が十分に確保できない(後記する実勢例1の表2BのNo.29、30を参照)。好ましいL処理温度は、おおむね、620~650℃である。 First, the L treatment temperature after hot rolling is preferably controlled within the range of A c1 to (A c1 + A c3 ) / 2. Thereby, alloy elements such as Ni are concentrated in the generated γ phase, and a part thereof becomes a metastable residual γ phase that exists metastable at room temperature. When the L treatment temperature is less than the A c1 point or more than [(A c1 + A c3 ) / 2], the residual γ fraction at −196 ° C. or the stability of the residual γ cannot be secured sufficiently as a result (described later). (See Nos. 29 and 30 in Table 2B of Example 1). A preferable L treatment temperature is approximately 620 to 650 ° C.
 本明細書において、Ac1点、およびAc3点は、下記式に基づいて算出されるものである(「講座・現代の金属学  材料編4  鉄鋼材料」、社団法人日本金属学会より)。
 Ac1
  =723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]+290×[As]+6.38×[W]
 Ac3
  =910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+-30×[Mn]+11×[Cr]+20×[Cu]
 上記式中、[ ]は、鋼材中の合金元素の濃度(質量%)を意味する。なお、本発明には、AsおよびWは鋼中成分として含まれないため、上記式において、[As]および[W]はいずれも、0%として計算する。
In the present specification, the Ac1 point and the Ac3 point are calculated based on the following formulas ("Lecture / Modern Metallurgy Materials 4 Steel Materials", Japan Institute of Metals).
A c1 point = 723-10.7 × [Mn] −16.9 × [Ni] + 29.1 × [Si] + 16.9 × [Cr] + 290 × [As] + 6.38 × [W]
A c3 point = 910−203 × [C] 1/2 −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + − 30 × [Mn] + 11 × [Cr] + 20 × [Cu]
In the above formula, [] means the concentration (mass%) of the alloying element in the steel material. In the present invention, As and W are not included as components in the steel, and in the above formula, [As] and [W] are both calculated as 0%.
 上記二相域温度での加熱時間(保持時間)は、おおむね、10~50分とすることが好ましい。10分未満では、γ相への合金元素濃縮が十分進まず、一方、50分超では、α相が焼鈍まされ、強度が低下する。好ましい加熱時間の上限は30分である。 The heating time (holding time) at the above two-phase region temperature is preferably about 10 to 50 minutes. If it is less than 10 minutes, the alloy element concentration to the γ phase does not proceed sufficiently, whereas if it exceeds 50 minutes, the α phase is annealed and the strength decreases. The upper limit of the preferred heating time is 30 minutes.
 更に本発明では、成分ごとに、上記(5)式で表わされるLパラメータを0.25以上、0.45以下にする。Lパラメータは、最終的に残留γの体積分率と残留γの安定性を兼備するために、L処理中の合金濃縮を効率的に利用するために設定されたパラメータである。後記する実施例に示すように、Lパラメータが上記範囲を外れると、所望とする残留γ分率、および/または残留γの安定性が十分得られない。好ましくは0.28以上0.42以下、より好ましくは0.30以上0.40以下である。 Furthermore, in the present invention, the L parameter represented by the above formula (5) is set to 0.25 or more and 0.45 or less for each component. The L parameter is a parameter set in order to efficiently use the alloy concentration during the L treatment in order to finally have both the volume fraction of the residual γ and the stability of the residual γ. As shown in the examples described later, when the L parameter is out of the above range, the desired residual γ fraction and / or the stability of the residual γ cannot be sufficiently obtained. Preferably they are 0.28 or more and 0.42 or less, More preferably, they are 0.30 or more and 0.40 or less.
 更に本発明では、上記(6)式のように、MnとCrとMoの各含有量および上記Lパラメータで決定されるλパラメータを7以下となるように制御する。このλパラメータは、L処理中に旧γ粒界へPが偏析するなどし、MnやCrが濃縮し過ぎた場合に濃縮部に起こる焼戻脆性の悪影響を抑制するために設定されたものである。旧γ粒界に偏析するP量は直接測定することが難しいことから、上記λパラメータは、いわば、旧γ粒界に偏析するP量の代替パラメータと位置づけることができる。旧γ粒界へPの偏析が小さいものは、λパラメータが小さい。好ましくは0.0以下、より好ましくは-10.0以下である。なお、その下限は特に限定されないが、コストの観点からMo添加量を出来るだけ抑えることが好ましく、また、各含有量とLパラメータの好ましい範囲などを総合的に勘案すれば、おおむね、-30以上であることが好ましい。 Further, in the present invention, as in the above equation (6), the λ L parameter determined by the respective contents of Mn, Cr and Mo and the L parameter is controlled to be 7 or less. This λ L parameter is set to suppress the adverse effect of temper embrittlement that occurs in the concentrated part when P is segregated to the old γ grain boundary during L treatment and Mn and Cr are excessively concentrated. It is. Since it is difficult to directly measure the amount of P segregated at the old γ grain boundary, the λ L parameter can be regarded as an alternative parameter for the amount of P segregated at the old γ grain boundary. Those having a small segregation of P to the former γ grain boundary have a small λ L parameter. Preferably it is 0.0 or less, more preferably -10.0 or less. The lower limit is not particularly limited, but it is preferable to suppress the amount of addition of Mo as much as possible from the viewpoint of cost. In addition, generally considering the content and the preferable range of the L parameter, approximately −30 or more It is preferable that
 詳細には、-196℃という極低温域ではPなどの微量不純物の悪影響が顕在化しやすく、焼戻脆性については、Pの旧γ粒界への偏析が大きい場合(すなわち、λパラメータが大きい場合)、極低温靭性へ悪影響を及ぼすと推定される。例えば、後記する実施例1の表1のNo.1、2、25(いずれも本発明例)を比較すると、残留γの体積分率および残留γ安定化パラメータは同程度である[No.1について、残留γの体積分率=8.0%、残留γ安定化パラメータ=3.7;No.2について、残留γの体積分率=9.4%、残留γ安定化パラメータ=3.8;No.25について、残留γの体積分率=7.9%、残留γ安定化パラメータ=3.7]が、λパラメータはそれぞれ、-6.8(No.1)、-10.9(No.2)、5.2(No.25)と大きく異なっている。よって、上記3例のなかでは、λパラメータが最も低いNo.2が、極低温靱性に最も優れている。 Specifically, in the extremely low temperature range of −196 ° C., adverse effects of trace impurities such as P are easily manifested, and temper embrittlement is large when segregation of P to the old γ grain boundary is large (that is, the λ L parameter is large). Case), it is estimated to have an adverse effect on the cryogenic toughness. For example, No. 1 in Table 1 of Example 1 described later. When comparing 1, 2, and 25 (both examples of the present invention), the volume fraction of residual γ and the residual γ stabilization parameter are comparable [No. No. 1, volume fraction of residual γ = 8.0%, residual γ stabilization parameter = 3.7; No. 2, volume fraction of residual γ = 9.4%, residual γ stabilization parameter = 3.8; 25, the volume fraction of residual γ = 7.9%, the residual γ stabilization parameter = 3.7], and the λ L parameter were −6.8 (No. 1) and −10.9 (No. 2) It is very different from 5.2 (No. 25). Therefore, in the above three examples, the No. with the lowest λ L parameter. 2 is most excellent in cryogenic toughness.
 次いで、室温まで水冷した後、焼戻処理(T処理)する。 Next, after water cooling to room temperature, tempering (T treatment) is performed.
 焼戻処理は、Ac1以下の温度で10~60分間行なう。このような低温焼戻により、準安定残留γにCが濃縮され、準安定残留γ相の安定度が増すため、-196℃においても安定に存在する残留γ相が得られる。また、上記低温焼戻により、低いMs点を確保することができる。 The tempering process is performed at a temperature of Ac1 or lower for 10 to 60 minutes. By such low temperature tempering, C is concentrated in the metastable residual γ and the stability of the metastable residual γ phase is increased, so that a residual γ phase that exists stably even at −196 ° C. is obtained. Moreover, a low Ms point can be secured by the low temperature tempering.
 焼戻温度がAc1温度を超えると、二相共存域保持中に生成した準安定残留γ相がα相とセメンタイト相に分解し、-196℃における残留γ相が十分に確保できなくなる。一方、焼戻温度が540℃未満であるか、または焼戻時間が10分未満の場合、準安定残留γ相中へのC濃縮が十分進行せず、所望とする-196℃での残留γ量を確保することができない。また、焼戻時間が60分を超えると、α相の転位密度が過度に減少して、所定の強度(TSおよびYS)が確保できなくなる(後記する実施例1の表2BのNo.33を参照)。 When the tempering temperature exceeds the Ac1 temperature, the metastable residual γ phase generated while maintaining the two-phase coexistence region is decomposed into an α phase and a cementite phase, and a sufficient residual γ phase at −196 ° C. cannot be secured. On the other hand, when the tempering temperature is less than 540 ° C. or when the tempering time is less than 10 minutes, C concentration into the metastable residual γ phase does not proceed sufficiently, and the desired residual γ at −196 ° C. The amount cannot be secured. Further, when the tempering time exceeds 60 minutes, the dislocation density of the α phase is excessively reduced, and a predetermined strength (TS and YS) cannot be secured (No. 33 in Table 2B of Example 1 described later is set. reference).
 好ましい焼戻処理条件は、焼戻温度:540~560℃、焼戻時間:15分以上、45分以下(より好ましくは35分以下、更に好ましくは25分以下)である。 Preferred tempering conditions are tempering temperature: 540 to 560 ° C., tempering time: 15 minutes or more and 45 minutes or less (more preferably 35 minutes or less, more preferably 25 minutes or less).
 上記のように焼戻処理をした後、室温まで冷却する。焼戻後の冷却方法は、水冷でなく、空冷で行なう。空冷中に炭素が残留γ中へ濃縮するため、水冷より空冷の方が、残留γ安定化パラメータが大きくなるためである。 After tempering as above, cool to room temperature. The cooling method after tempering is not water cooling but air cooling. This is because carbon concentrates in the residual γ during air cooling, so that the residual γ stabilization parameter is larger in air cooling than in water cooling.
 次に、本願請求項3に規定している本発明に係る厚鋼板の製造方法について説明する。
 本発明の製造方法は、前記(5)式に基づいて算出されるLパラメータが0.6以上、1.1以下であり、且つ、前記Lパラメータと、鋼中成分とで構成される前記(6)式に基づいて算出されるλパラメータが0以下であることを満足するように、L処理温度および鋼中成分を調整する工程と、L処理の後、室温まで水冷し、焼戻処理(T処理)するに当たり、Ac1以下の温度で10~60分間行なう工程と、を行なうところに特徴がある。
Next, the manufacturing method of the thick steel plate which concerns on this invention prescribed | regulated to this-application Claim 3 is demonstrated.
In the production method of the present invention, the L parameter calculated based on the formula (5) is 0.6 or more and 1.1 or less, and the L parameter and the component in steel ( 6) The step of adjusting the L treatment temperature and steel components so that the λ L parameter calculated based on the equation is 0 or less, and the L treatment, followed by water cooling to room temperature and tempering treatment (T treatment) is characterized in that it is performed at a temperature of Ac 1 or lower for 10 to 60 minutes.
 以下、各工程について詳述するが、前記した本願請求項1または2に係る本発明の厚鋼板を製造する方法と重複する部分(圧延工程の諸条件、L処理の温度・保持時間の条件など)については説明を省略する。 Hereinafter, although each process is explained in full detail, the part which overlaps with the method of manufacturing the thick steel plate of the present invention according to claim 1 or 2 described above (conditions of rolling process, conditions of temperature and holding time of L treatment, etc.) ) Will be omitted.
 上記本願請求項3に規定している本発明に係る厚鋼板の製造方法では、前記(5)式で表わされるLパラメータを0.6以上、1.1以下にする。Lパラメータは、最終的に残留γの体積分率と残留γの安定性(特に、Di値および残留中のMn濃度で表されるもの)を兼備するために設定されたパラメータであり、本発明に係る厚鋼板の成分および所望の組織条件の観点から、特に上限(1.1以下)を規定した。なお、L処理によって残留γの安定性を高める(すなわち、残留γ中へMnを濃縮させる)ということは、裏返せば、母相(鋼中)のMn濃度を希薄にするという意味である。この状態では、強度確保に悪影響を及ぼすため、あるいは残留γの体積分率と残留γの安定性が兼備できなくなるため本発明では、Lパラメータの下限(0.6以上)を設定した。好ましいLパラメータは、0.7以上、1.0以下である。 In the method for manufacturing a thick steel plate according to the present invention defined in claim 3 of the present application, the L parameter represented by the formula (5) is set to 0.6 or more and 1.1 or less. The L parameter is a parameter set to finally combine the volume fraction of residual γ and the stability of residual γ (particularly expressed by the Di value and the Mn concentration in the residual). In particular, the upper limit (1.1 or less) was specified from the viewpoint of the components of the thick steel plate and the desired structure conditions. Note that increasing the stability of the residual γ by the L treatment (that is, concentrating Mn into the residual γ) means that the Mn concentration of the parent phase (in the steel) is diluted when reversed. In this state, since the strength is adversely affected or the volume fraction of residual γ and the stability of residual γ cannot be combined, the lower limit of L parameter (0.6 or more) is set in the present invention. A preferable L parameter is 0.7 or more and 1.0 or less.
 更に本発明では、上記(6)式のように、鋼中のMnとCrとMoの各含有量および上記Lパラメータで決定されるλパラメータを0以下となるように制御する。このλパラメータは、前記の通り、L処理中に旧γ粒界へPが偏析するなどし、MnやCrが濃縮し過ぎた場合に濃縮部に起こる焼戻脆性の悪影響を抑制するために設定されたものである。旧粒界に偏析するP量は直接測定することができないことから、λパラメータは、いわば、旧γ粒界に偏析するP量の代替パラメータと位置づけることができる。旧γ粒界へPの偏析が小さいものは、λパラメータが小さい。好ましくは-10.0以下である。なお、その下限は特に限定されないが、コストの観点からMo添加量を出来るだけ抑えることが好ましく、また、各含有量とLパラメータの好ましい範囲などを総合的に勘案すれば、おおむね、-30以上であることが好ましい。 Further, in the present invention, as shown in the above equation (6), the contents of Mn, Cr and Mo in the steel and the λ L parameter determined by the L parameter are controlled to be 0 or less. As described above, this λ L parameter is used to suppress the adverse effect of temper embrittlement that occurs in the concentrated portion when P is segregated to the old γ grain boundary during L treatment and Mn and Cr are excessively concentrated. It is set. Since the amount of P segregating at the old grain boundary cannot be directly measured, the λ L parameter can be regarded as an alternative parameter for the amount of P segregating at the old γ grain boundary. Those having a small segregation of P to the former γ grain boundary have a small λ L parameter. Preferably it is -10.0 or less. The lower limit is not particularly limited, but it is preferable to suppress the amount of addition of Mo as much as possible from the viewpoint of cost. In addition, generally considering the content and the preferable range of the L parameter, approximately −30 or more It is preferable that
 次いで、室温まで水冷した後、焼戻処理(T処理)する。 Next, after water cooling to room temperature, tempering (T treatment) is performed.
 焼戻処理は、Ac1以下の温度で10~60分間行なう。前記した通り、このような低温焼戻により、準安定残留γにCが濃縮され、準安定残留γ相の安定度が増すため、-196℃においても安定に存在する残留γ相が得られる。また、上記低温焼戻により、低いMs点を確保することができる。 The tempering process is performed at a temperature of Ac1 or lower for 10 to 60 minutes. As described above, C is concentrated in the metastable residual γ by such low temperature tempering, and the stability of the metastable residual γ phase is increased. Therefore, a residual γ phase that exists stably even at −196 ° C. is obtained. Moreover, a low Ms point can be secured by the low temperature tempering.
 焼戻温度がAc1を超えると、二相共存域保持中に生成した準安定残留γ相がα相とセメンタイト相に分解し、-196℃における残留γ相が十分に確保できなくなる。一方、焼戻時間が10分未満の場合、準安定残留γ相中へのC濃縮が十分進行せず、所望とする-196℃での残留γ量を確保することができない。また、焼戻時間が60分を超えると、α相の転位密度が過度に減少して、所定の強度(TS)が確保できなくなる(後記する実施例3の表2BのNo.7を参照)。好ましい焼戻時間は、15分以上、45分以下であり、より好ましくは20分以上、35分以下である。 When the tempering temperature exceeds A c1 , the metastable residual γ phase generated while maintaining the two-phase coexistence region is decomposed into an α phase and a cementite phase, and a sufficient residual γ phase at −196 ° C. cannot be secured. On the other hand, if the tempering time is less than 10 minutes, the C concentration in the metastable residual γ phase does not proceed sufficiently, and the desired residual γ amount at −196 ° C. cannot be ensured. Further, when the tempering time exceeds 60 minutes, the dislocation density of the α phase is excessively reduced, and a predetermined strength (TS) cannot be secured (see No. 7 in Table 2B of Example 3 described later). . A preferable tempering time is 15 minutes or more and 45 minutes or less, more preferably 20 minutes or more and 35 minutes or less.
 更に、焼き戻し温度はAc1以下の温度、好ましい焼き戻し温度は510℃~520℃である。    Further, the tempering temperature is a temperature of A c1 or less, and the preferable tempering temperature is 510 ° C. to 520 ° C.
 上記のように焼戻処理をした後、室温まで冷却する。焼戻後の冷却方法は、水冷でなく、空冷で行なう。空冷中に炭素が残留γ中へ濃縮するため、水冷より空冷の方が、残留γの安定性が高くなるためである。 After tempering as above, cool to room temperature. The cooling method after tempering is not water cooling but air cooling. This is because carbon is concentrated in the residual γ during air cooling, so that the stability of the residual γ is higher in air cooling than in water cooling.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.
実施例1:-196℃での脆性破面率≦10%、引張り強度TS>741MPa、降伏強度YS>590MPaを満足する厚鋼板に係る実施例
 真空溶解炉(150kgVIF)を用い、表1に示す成分組成(残部:鉄および不可避的不純物、単位は質量%)の供試鋼を溶製し、鋳造した後、熱間鍛造により、150mm×150mm×600mmのインゴットを作製した。本実施例では、REMとしてCeを約50%、Laを約25%含むミッシュメタルを用いた。
Example 1: Example relating to a thick steel plate satisfying a brittle fracture surface ratio ≦ 10% at −196 ° C., a tensile strength TS> 741 MPa, and a yield strength YS> 590 MPa. A test steel having a component composition (remainder: iron and inevitable impurities, the unit is mass%) was melted and cast, and then a 150 mm × 150 mm × 600 mm ingot was produced by hot forging. In this example, misch metal containing about 50% Ce and about 25% La was used as REM.
 次に、上記のインゴットを1100℃に加熱した後、830℃以上の温度で板厚75mmまで圧延し、仕上げ圧延温度(FRT)700℃、FRTの後60秒以内のSCT:650℃とし、水冷することにより、板厚25mmまで圧延した(圧下率83%)。なお、800~500℃までの平均冷却速度は19℃/sとし、200℃以下の停止温度まで冷延した。 Next, after heating the above ingot to 1100 ° C., it is rolled to a sheet thickness of 75 mm at a temperature of 830 ° C. or higher, the finish rolling temperature (FRT) is 700 ° C., SCT within 60 seconds after FRT is 650 ° C., As a result, the sheet was rolled to a thickness of 25 mm (a rolling reduction of 83%). The average cooling rate from 800 to 500 ° C. was 19 ° C./s, and cold rolling was performed to a stop temperature of 200 ° C. or lower.
 このようにして得られた鋼板を、表2に示すL処理温度でL処理を行ない、30分間加熱保持した後、水冷した。更に、T処理(焼戻)を、表2に示す温度(T処理温度)および時間(T時間)行なった後、室温まで空冷した。 The steel plate thus obtained was subjected to L treatment at the L treatment temperature shown in Table 2, and heated and held for 30 minutes, and then cooled with water. Further, T treatment (tempering) was performed at the temperature (T treatment temperature) and time (T time) shown in Table 2, and then cooled to room temperature.
 このようにして得られた厚鋼板について、以下のようにして、-196℃において存在する残留γ相の量(体積分率)、残留γ安定化パラメータ、引張り特性(引張り強度TS、降伏強度YS)、極低温靱性(-196℃または-233℃でのC方向における脆性破面率)を評価した。 With respect to the thick steel plate thus obtained, the amount of residual γ phase (volume fraction) present at −196 ° C., the residual γ stabilization parameter, tensile properties (tensile strength TS, yield strength YS) are as follows. ), And cryogenic toughness (the brittle fracture surface ratio in the C direction at −196 ° C. or −233 ° C.).
(1)-196℃において存在する残留γ相の量(体積分率)の測定
 各鋼板のt/4位置より、10mm×10mm×55mmの試験片を採取し、液体窒素温度(-196℃)にて5分間保持した後、リガク社製の二次元微小部X線回折装置(RINT-RAPIDI値I)にてX線回折測定を行なった。次いで、フェライト相の(110),(200),(211),(220)の各格子面のピーク、および残留γ相の(111),(200),(220),(311)の各格子面のピークについて、各ピークの積分強度比に基づき、残留γ相の(111)、(200)、(220)、(311)の体積分率をそれぞれ算出し、これらの平均値を求め、これを「残留γの体積分率」とした。
(1) Measurement of amount of residual γ phase (volume fraction) present at −196 ° C. From a t / 4 position of each steel plate, a 10 mm × 10 mm × 55 mm test piece was taken and liquid nitrogen temperature (−196 ° C.) Was held for 5 minutes, and then X-ray diffraction measurement was performed with a two-dimensional microscopic X-ray diffractometer (RINT-RAPIDI value I) manufactured by Rigaku Corporation. Next, the peaks of the lattice planes (110), (200), (211), and (220) of the ferrite phase and the lattices of (111), (200), (220), and (311) of the residual γ phase For the peak of the surface, based on the integrated intensity ratio of each peak, calculate the volume fraction of (111), (200), (220), (311) of the residual γ phase, and obtain the average value of these, Was defined as “volume fraction of residual γ”.
(2)残留γ安定化パラメータの測定
 上記(2)式に基づいて算出される残留γ安定化パラメータを測定するため、上記(2)式を構成する-196℃において存在する残留γ中の各成分、すなわち、C量<C>、Mn量<Mn>、Al量<Al>、Cu量<Cu>、Ni量<Ni>、Cr量<Cr>、Mo量<Mo>、V量<V>をそれぞれ、以下のようにして測定した。
(2) Measurement of residual γ stabilization parameter In order to measure the residual γ stabilization parameter calculated based on the above equation (2), each of the residual γ existing at −196 ° C. constituting the above equation (2) Components, that is, C content <C>, Mn content <Mn>, Al content <Al>, Cu content <Cu>, Ni content <Ni>, Cr content <Cr>, Mo content <Mo>, V content <V > Was measured as follows.
(2-1)-196℃において存在する残留γ中のC量<C>の測定
 上記(1)の測定と同時に、供試鋼の表面に標準物質Siを塗布し、Siのピークで角度補正を行って精密なγ-Feの格子定数[a0 (Å)]を求めた。精密化されたγ-Feの格子定数と、C以外の下記成分とから、残留γ中のC量を逆算して求めた。
(2-1) Measurement of C content <C> in residual γ existing at −196 ° C. Simultaneously with the measurement in (1) above, the standard material Si was applied to the surface of the test steel, and the angle was corrected with the Si peak. To obtain a precise lattice constant [a 0 (Å)] of γ-Fe. From the refined lattice constant of γ-Fe and the following components other than C, the amount of C in the residual γ was calculated by back calculation.
(2-2)-196℃において存在する残留γ中のNi量<Ni>の測定
 各鋼板のt/4位置より、10mm×10mm×55mmの試験片を採取し、液体窒素温度(-196℃)にて5分間保持した後、日本電子製 JXA-8500FのEPMA装置を用い、加速電圧15kV、照射電流50nA、ビーム径最小の条件下にてNi濃度を測定した。測定は、各試料とも3回ずつ行い、その最大値を残留γ中のNi量とした。
(2-2) Measurement of Ni content <Ni> in residual γ existing at −196 ° C. From a t / 4 position of each steel plate, a 10 mm × 10 mm × 55 mm test piece was collected and liquid nitrogen temperature (−196 ° C. ), The Ni concentration was measured under the conditions of an acceleration voltage of 15 kV, an irradiation current of 50 nA, and a minimum beam diameter using an EPMA apparatus manufactured by JEOL, JXA-8500F. Measurement was performed three times for each sample, and the maximum value was defined as the amount of Ni in the residual γ.
(2-3)-196℃において存在する残留γ中のAl量<Al>の測定
 Alは全量が酸化物または窒化物に消費されていると仮定し、残留γ中のAlは0(ゼロ)とした。
(2-3) Measurement of Al amount <Al> in residual γ existing at −196 ° C. Al is assumed that the entire amount is consumed by oxide or nitride, and Al in residual γ is 0 (zero) It was.
(2-4)-196℃において存在する残留γ中のMn量<Mn>、Cu量<Cu>、Cr量<Cr>、Mo量<Mo>、およびV量<V>の測定
 本実施例では、L処理→T処理後の各合金元素濃度<Mn>、<Cu>、<Cr>、<Mo>、<V>は、上記(2-2)の方法によって得られた実測のNi量<Ni>に比例すると考え、以下のようにして算出した。
(2-4) Measurement of Mn content <Mn>, Cu content <Cu>, Cr content <Cr>, Mo content <Mo>, and V content <V> in residual γ existing at −196 ° C. Then, the concentration of each alloy element <Mn>, <Cu>, <Cr>, <Mo>, <V> after the L treatment → T treatment is the measured Ni amount obtained by the method (2-2) above. Considering that it is proportional to <Ni>, it was calculated as follows.
 L処理、T処理の各熱処理時のNi濃縮の挙動は、下式で表される。
 (各熱処理時の定数)×(γ逆変態の駆動力)×(各合金元素の拡散係数)
The behavior of Ni concentration during each heat treatment of L treatment and T treatment is expressed by the following equation.
(Constant during each heat treatment) x (Driving force of γ reverse transformation) x (Diffusion coefficient of each alloy element)
 ここで、上記式中の(γ逆変態の駆動力)は、各熱処理時の温度に基づき、市販の計算ソフト(サーモカルク)により計算した。また、上記式中の(各合金元素の拡散係数)は、各熱処理時の温度と保持時間に基づき、『Diffusion in Solid Metals and Alloys』(H.Mehrer,1990)の値を用いて計算した。 Here, (driving force of γ reverse transformation) in the above formula was calculated by commercially available calculation software (thermocalc) based on the temperature during each heat treatment. The (diffusion coefficient of each alloy element) in the above formula was calculated based on the temperature and holding time during each heat treatment using the value of “DiffusionDin Solid Metals and Alloys” (H. Mehrer, 1990).
 そして上記式中の(各熱処理時の定数)は、以下のようにして実験的に求めた。上記式に従えば、L処理→T処理後の実測のNi濃度は、{(L処理時の定数)×(γ逆変態の駆動力)×(L処理時のNiの拡散係数)}と、{(T処理時の定数)×(γ逆変態の駆動力)×(L処理時のNiの拡散係数)}との積で表される。すなわち、L処理→T処理後の実測のNi濃度は、(L処理時の定数)と(T処理時の定数)の両方を含み、また(T処理時の定数)は(L処理時の定数)と連動して変化するため、上記積の値が、L処理→T処理後の実測のNi濃度と最も近くなるよう、回帰的に各熱処理時の定数[(L処理時の定数)および(T処理時の定数)]を求めた。このようにして求めた各定数を使用し、<Mn>、<Cu>、<Cr>、<Mo>、<V>の各合金元素濃度を算出した。 And (constant at the time of each heat treatment) in the above formula was experimentally determined as follows. According to the above formula, the measured Ni concentration after L treatment → T treatment is {(constant during L treatment) × (driving force of γ reverse transformation) × (diffusion coefficient of Ni during L treatment)} {(Constant at the time of T treatment) × (driving force for γ reverse transformation) × (diffusion coefficient of Ni at the time of L treatment)}. That is, the measured Ni concentration after L treatment → T treatment includes both (constant for L treatment) and (constant for T treatment), and (constant for T treatment) is (constant for L treatment). ) To change the value of the product so that it is closest to the measured Ni concentration after the L treatment → T treatment, the constants [(constants at the L treatment) and ( Constant during T treatment)]. Using the constants thus obtained, the alloy element concentrations of <Mn>, <Cu>, <Cr>, <Mo>, and <V> were calculated.
(3)引張り特性(引張り強度TS、降伏強度YS)の測定
 各鋼板のt/4位置から、C方向に平行にJIS Z2241の4号試験片を採取し、ZIS Z2241に記載の方法で引張り試験を行い、引張り強度TS、および降伏強度YSを測定した。本実施例では、TS>740MPa、YS>590MPaのものを、母材強度に優れると評価した。
(3) Measurement of tensile properties (tensile strength TS, yield strength YS) From the t / 4 position of each steel plate, No. 4 test piece of JIS Z2241 was taken in parallel to the C direction, and a tensile test was performed by the method described in ZIS Z2241. The tensile strength TS and the yield strength YS were measured. In this example, TS> 740 MPa and YS> 590 MPa were evaluated as having excellent base material strength.
(4)極低温靱性(C方向における脆性破面率)の測定
 各鋼板のt/4位置(t:板厚)且つW/4位置(W:板幅)、およびt/4位置且つおよびW/2位置から、C方向に平行にシャルピー衝撃試験片(JIS Z 2242のVノッチ試験片)を3本採取し、JIS Z2242に記載の方法で、-196℃での脆性破面率(%)を測定し、それぞれの平均値を算出した。そして、このようにして算出された二つの平均値のうち、特性に劣る(すなわち、脆性破面率が大きい)方の平均値を採用し、この値が10%以下のものを、本実施例では、極低温靭性に優れると評価した。
(4) Measurement of cryogenic toughness (brittle fracture surface ratio in the C direction) t / 4 position (t: plate thickness) and W / 4 position (W: plate width), t / 4 position and W of each steel plate / 3 position, three Charpy impact test pieces (V-notch test piece of JIS Z 2242) were taken in parallel with the C direction, and the brittle fracture surface rate at -196 ° C (%) was measured by the method described in JIS Z2242. Were measured and the average value of each was calculated. Of the two average values calculated in this way, the average value that is inferior in characteristics (that is, the brittle fracture surface ratio is large) is adopted, and this value is 10% or less. Then, it evaluated that it was excellent in cryogenic toughness.
 これらの結果を表2に併記する。 These results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2より、以下のように考察することができる。 From Table 2, it can be considered as follows.
 まず、表2AのNo.1~25は、本発明の要件をすべて満足する例であり、母材強度が高くても、-196℃での極低温靱性(詳細には、C方向における脆性破面率の平均値≦10%)に優れた厚鋼板を提供することができた。 First, No. in Table 2A. Examples 1 to 25 are examples that satisfy all of the requirements of the present invention. Even if the base metal strength is high, the cryogenic toughness at −196 ° C. (specifically, the average value of the brittle fracture surface ratio in the C direction ≦ 10 %), An excellent thick steel plate could be provided.
 これに対し、表2BのNo.26~45は、鋼中成分および本発明の好ましい製造条件のいずれかを満足しないため、本発明の要件を満足しない比較例であり、所望とする特性が得られなかった。 In contrast, No. in Table 2B. Nos. 26 to 45 are comparative examples that do not satisfy the requirements of the present invention because they do not satisfy any of the components in the steel and the preferred production conditions of the present invention, and the desired characteristics cannot be obtained.
 まず、No.26は、Di値が本発明の要件を満たさない例であり、所望とする残留γの体積分率が得られず、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、脆性破面率も増加し、-196℃において所望とする極低温靱性を実現できなかった。また、Di値が低いため、TSも低下した。 First, No. No. 26 is an example in which the Di value does not satisfy the requirements of the present invention, and the desired volume fraction of residual γ cannot be obtained, and the residual γ stabilization parameter also decreases. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C. Moreover, since Di value was low, TS also fell.
 No.27は、C量が多い表1BのNo.27を用いた例であり、極低温靱性が低下した。 No. No. 27 in Table 1B with a large amount of C. In this example, the cryogenic toughness was lowered.
 No.28は、P量が多い表1BのNo.28を用いた例であり、所望とする残留γの体積分率が得られず、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。 No. No. 28 is No. in Table 1B with a large amount of P. In this example, the desired volume fraction of residual γ was not obtained, and the residual γ stabilization parameter was also reduced. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
 No.29は、鋼中成分は本発明の要件を満足する表1BのNo.29を用いたが、二相域温度(L処理温度)を下回る温度で加熱し、且つ、Lパラメータが低い例である。そのため、残留γ量が不足し、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。 No. No. 29 in Table 1B in which the components in the steel satisfy the requirements of the present invention. 29 is used, but heating is performed at a temperature lower than the two-phase region temperature (L treatment temperature), and the L parameter is low. Therefore, the amount of residual γ was insufficient and the residual γ stabilization parameter was also reduced. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
 No.30は、Si量が多い表1BのNo.30を用い、且つ、二相域温度(L処理温度)を超える温度で加熱し、且つ、Lパラメータおよびλパラメータが高い例である。そのため、残留γ量が不足し、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。 No. No. 30 is No. in Table 1B with a large amount of Si. 30 and heating at a temperature exceeding the two-phase region temperature (L treatment temperature), and the L parameter and the λ L parameter are high. Therefore, the amount of residual γ was insufficient and the residual γ stabilization parameter was also reduced. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
 No.31は、鋼中成分は本発明の要件を満足する表1BのNo.31を用いたが、焼戻温度(T処理温度)が低いため、残留γ量が不足し、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。 No. No. 31 in Table 1B in which the components in the steel satisfy the requirements of the present invention. 31 was used, but because the tempering temperature (T treatment temperature) was low, the amount of residual γ was insufficient and the residual γ stabilization parameter was also lowered. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased.
 No.32は、Mn量が多い表1BのNo.32を用い、且つ、λパラメータが高い例である。その結果、極低温靱性が低下した。 No. No. 32 is No. in Table 1B with a large amount of Mn. 32, and the λ L parameter is high. As a result, the cryogenic toughness decreased.
 No.33は、鋼中成分は本発明の要件を満足する表1BのNo.33を用いたが、焼戻時間(T時間)が長い例であり、強度(TSおよびYS)が低下した。 No. No. 33 in Table 1B where the components in the steel satisfy the requirements of the present invention. Although 33 was used, this was an example in which the tempering time (T time) was long, and the strength (TS and YS) decreased.
 No.34は、Mn量が少なく、Di値が小さい表1BのNo.34を用いた例であり、所望とする残留γの体積分率が得られず、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、脆性破面率も増加し、-196℃において所望とする極低温靱性を実現できなかった。また、Di値が低いため、TSも低下した。 No. No. 34 in Table 1B has a small amount of Mn and a small Di value. In this example, the desired volume fraction of residual γ was not obtained, and the residual γ stabilization parameter was also reduced. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C. Moreover, since Di value was low, TS also fell.
 No.35は、S量が多い表1BのNo.35を用いた例である。そのため、脆性破面率が増加し、所望とする極低温靱性を実現できなかった。 No. No. 35 in Table 1B with a large amount of S. This is an example using 35. For this reason, the brittle fracture surface ratio increased and the desired cryogenic toughness could not be realized.
 No.36は、鋼中成分は本発明の要件を満足する表1BのNo.36を用いたが、Lパラメータが高い例である。その結果、残留γ量が不足し、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。 No. No. 36 in Table 1B in which the components in the steel satisfy the requirements of the present invention. Although 36 was used, this is an example where the L parameter is high. As a result, the amount of residual γ was insufficient, and the volume fraction of residual γ and the residual γ stabilization parameter exceeded a predetermined range. As a result, the cryogenic toughness decreased.
 No.37は、C量が少なく、Al量が多く、Ni量が少ない表1BのNo.37を用いたため、残留γ量が不足し、残留γ安定化パラメータも低下した。更に、残留γの体積分率・残留γ安定化パラメータも所定範囲を超えた。その結果、極低温靱性が低下した。更にTSも低下した。 No. No. 37 in Table 1B has a small amount of C, a large amount of Al, and a small amount of Ni. Since 37 was used, the amount of residual γ was insufficient and the residual γ stabilization parameter was also reduced. Furthermore, the volume fraction of residual γ and the residual γ stabilization parameter also exceeded the predetermined range. As a result, the cryogenic toughness decreased. TS also decreased.
 No.38は、Al量が少なく、N量が多い表1BのNo.38を用いたため、極低温靱性が低下した。 No. No. 38 in Table 1B has a small amount of Al and a large amount of N. Since 38 was used, the cryogenic toughness decreased.
 No.39は、選択成分であるCu量およびCa量が多い表1BのNo.39を用いたため、極低温靱性が低下した。 No. No. 39 in Table 1B, which has a large amount of Cu and Ca as the selection components. Since 39 was used, cryogenic toughness decreased.
 No.40は、選択成分であるCr量およびZr量が多い表1BのNo.40を用いたため、極低温靱性が低下した。 No. No. 40 in Table 1B, which has a large amount of Cr and Zr as selective components. Since 40 was used, the cryogenic toughness decreased.
 No.41は、選択成分であるNb量およびREM量が多い表1BのNo.41を用いたため、極低温靱性が低下した。 No. No. 41 in Table 1B with a large amount of Nb and REM as the selection components. Since 41 was used, the cryogenic toughness decreased.
 No.42は、選択成分であるMo量が多く、Di値が大きい表1BのNo.42を用いたため、極低温靱性が低下した。 No. No. 42 in Table 1B has a large amount of Mo as a selection component and a large Di value. Since 42 was used, the cryogenic toughness decreased.
 No.43は、選択成分であるTi量が多い表1BのNo.43を用いたため、極低温靱性が低下した。 No. No. 43 in Table 1B with a large amount of Ti as a selected component. Since 43 was used, the cryogenic toughness decreased.
 No.44は、選択成分であるV量が多い表1BのNo.44を用いたため、極低温靱性が低下した。 No. No. 44 of Table 1B with a large amount of V as a selected component. Since 44 was used, the cryogenic toughness decreased.
 No.45は、選択成分であるB量が多い表1BのNo.45を用いたため、極低温靱性が低下した。 No. No. 45 of Table 1B with a large amount of B as a selected component. Since 45 was used, the cryogenic toughness decreased.
実施例2:
 本実施例では、上記実施例1に用いた一部のデータ(いずれも本発明例)について、-233℃での脆性破面率を評価した。
Example 2:
In this example, the brittle fracture surface rate at −233 ° C. was evaluated for some of the data used in Example 1 (all of the examples of the present invention).
 具体的には、表3に記載のNo.(表3のNo.は、前述した表1および表2のNo.に対応する)について、t/4位置且つW/4位置から試験片を3本採取し、下記に記載の方法で-233℃でのシャルピー衝撃試験を実施し、脆性破面率の平均値を評価した。 Specifically, No. in Table 3 (No. in Table 3 corresponds to No. in Table 1 and Table 2 described above) Three test pieces were collected from the t / 4 position and the W / 4 position, and -233 was obtained by the method described below. A Charpy impact test at ℃ was conducted to evaluate the average brittle fracture surface ratio.
 本実施例では、上記脆性破面率≦50%のものを、-233℃での脆性破面率に優れると評価した。
 「高圧ガス」、第24巻181頁、「オーステナイト系ステンレス鋳鋼の極低温衝撃試験」
In this example, the brittle fracture surface ratio ≦ 50% was evaluated as being excellent in the brittle fracture surface ratio at −233 ° C.
"High pressure gas", Vol. 24, page 181, "Cryogenic impact test of austenitic cast stainless steel"
 これらの結果を表3に記載する。 These results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3のNo.1~3、6、8、9、14、18、および20は、いずれも、-196℃のみならず、より低温の-233℃における脆性破面率も良好であり、非常に優れた極低温靱性を達成することができた。その理由として、これらは、いずれも、残留γの体積分率・残留γ安定化パラメータが小さい(21以下)ことが考えられる。 No. in Table 3 1 to 3, 6, 8, 9, 14, 18, and 20 all have not only −196 ° C. but also a good brittle fracture surface ratio at a lower temperature of −233 ° C., and extremely excellent cryogenic temperature. Toughness could be achieved. The reason for this may be that the volume fraction of residual γ and the residual γ stabilization parameter are both small (21 or less).
 これに対し、No.10、および16は、上記例に比べて、残留γの体積分率・残留γ安定化パラメータが35程度と大きいため、-233℃における脆性破面率は大きくなった。 On the other hand, No. Compared with the above example, 10 and 16 had a large volume fraction of residual γ and a residual γ stabilization parameter of about 35, so the brittle fracture surface ratio at −233 ° C. was large.
 以上の実験結果より、-196℃のみならず、より低温の-233℃における脆性破面率も良好な厚鋼板を得るためには、本発明の上記要件において、特に残留γの体積分率・残留γ安定化パラメータを出来るだけ小さくすることが有効であることが分かる。 From the above experimental results, in order to obtain a thick steel sheet having not only −196 ° C. but also a brittle fracture surface ratio at a lower temperature of −233 ° C., in the above requirements of the present invention, in particular, the volume fraction of residual γ It can be seen that it is effective to make the residual γ stabilization parameter as small as possible.
実施例3:-196℃での脆性破面率≦10%、引張り強度TS>830MPa、降伏強度YS>690MPaを満足する厚鋼板に係る実施例
 真空溶解炉(150kgVIF)を用い、表4に示す成分組成(残部:鉄および不可避的不純物、単位は質量%)の供試鋼を溶製し、鋳造した後、熱間鍛造により、150mm×150mm×600mmのインゴットを作製した。本実施例では、REMとしてCeを約50%、Laを約25%含むミッシュメタルを用いた。
 次に、上記のインゴットを1100℃に加熱した後、830℃以上の温度で板厚75mmまで圧延し、仕上げ圧延温度(FRT)700℃、FRTの後60秒以内のSCT:650℃とし、水冷することにより、板厚25mmまで圧延した(圧下率85%)。なお、800~500℃までの平均冷却速度は19℃/sとし、200℃以下の停止温度まで冷延した。
Example 3: Example relating to a thick steel plate satisfying a brittle fracture surface ratio ≦ 10% at −196 ° C., a tensile strength TS> 830 MPa, and a yield strength YS> 690 MPa. A test steel having a component composition (remainder: iron and inevitable impurities, the unit is mass%) was melted and cast, and then a 150 mm × 150 mm × 600 mm ingot was produced by hot forging. In this example, misch metal containing about 50% Ce and about 25% La was used as REM.
Next, after heating the above ingot to 1100 ° C., it is rolled to a sheet thickness of 75 mm at a temperature of 830 ° C. or higher, the finish rolling temperature (FRT) is 700 ° C., SCT within 60 seconds after FRT is 650 ° C., By doing so, it rolled to plate | board thickness 25mm (rolling rate 85%). The average cooling rate from 800 to 500 ° C. was 19 ° C./s, and cold rolling was performed to a stop temperature of 200 ° C. or lower.
 このようにして得られた鋼板を、表5に示すL処理温度でL処理を行ない、30分間加熱保持した後、水冷した。更に、T処理(焼戻)を、表2に示す温度(T処理温度)および時間(T時間)行なった後、室温まで空冷した。 The steel plate thus obtained was subjected to L treatment at the L treatment temperature shown in Table 5, heated and held for 30 minutes, and then cooled with water. Further, T treatment (tempering) was performed at the temperature (T treatment temperature) and time (T time) shown in Table 2, and then cooled to room temperature.
 このようにして得られた厚鋼板について、-196℃において存在する残留γ相の量(体積分率)、残留γ相中のMn量、引張り特性(引張り強度TS、降伏強度YS)、極低温靱性(-196℃または-233℃でのC方向における脆性破面率)を評価した。 For the thick steel plate thus obtained, the amount of residual γ phase (volume fraction) present at −196 ° C., the amount of Mn in the residual γ phase, tensile properties (tensile strength TS, yield strength YS), cryogenic temperature Toughness (the brittle fracture surface ratio in the C direction at -196 ° C or -233 ° C) was evaluated.
 なお、196℃において存在する残留γ相の量(体積分率)の測定、引張り特性(引張り強度TS、降伏強度YS)の測定、極低温靱性(C方向における脆性破面率)の測定については前記実施例1と同様であるので、-196℃において存在する残留γ相中のMn量の測定について説明する。 Regarding the measurement of the amount of residual γ phase (volume fraction) present at 196 ° C., the measurement of tensile properties (tensile strength TS, yield strength YS), and the measurement of cryogenic toughness (brittle fracture surface ratio in the C direction) Since this is the same as in Example 1, measurement of the amount of Mn in the residual γ phase existing at −196 ° C. will be described.
 残留γ相中の平均Mn量をTEM-EDXにて測定し、以下の手順にて算出した。算出の際、残留γ相中の成分は、Fe―Mn―Niであると仮定した。実際の成分は、Fe、Mn、Ni以外に例えばC、Siなども含まれ得るが、これらの元素は少量であり、本実施例においては実質的に無視できるからである。 The average amount of Mn in the residual γ phase was measured with TEM-EDX and calculated according to the following procedure. In the calculation, it was assumed that the component in the residual γ phase was Fe—Mn—Ni. Actual components may include, for example, C, Si and the like in addition to Fe, Mn, and Ni, but these elements are in a small amount and can be substantially ignored in this embodiment.
 まず、各鋼板のt/4位置より、10mm×10mm×55mmの試験片を採取し、液体窒素温度(-196℃)にて5分間保持した後、試験片を10mm×10mm×2mmのサイズに切断し、厚さtを、2mmから0.1mmまで機械研磨した後、3mmΦのサイズに打抜き、電解研磨による薄膜試料を作製した。このようにして得られた薄膜試料について、日立製作所製の透過電子顕微鏡H-800を用いて、透過像と逆格子によりγ相を同定した後、堀場製作所製のEDX分析装置EMAX7000にて上記γ相中のMn濃度を測定した。EDXによる測定は、加速電圧200kV、観察倍率75000倍の条件下で行ない、各試料について5点ずつ測定を行い、その平均値を、残留γ中のMn量とした。 First, a 10 mm × 10 mm × 55 mm test piece was taken from the t / 4 position of each steel plate, held at a liquid nitrogen temperature (−196 ° C.) for 5 minutes, and then the test piece was made into a size of 10 mm × 10 mm × 2 mm. After cutting and mechanically polishing the thickness t from 2 mm to 0.1 mm, it was punched out to a size of 3 mmΦ to prepare a thin film sample by electrolytic polishing. The thin film sample thus obtained was identified with a transmission image and a reciprocal lattice using a transmission electron microscope H-800 manufactured by Hitachi, Ltd., and then the above-mentioned γ was detected using an EDX analyzer EMAX7000 manufactured by Horiba. The Mn concentration in the phase was measured. Measurement by EDX was performed under the conditions of an acceleration voltage of 200 kV and an observation magnification of 75000 times, and each sample was measured at five points, and the average value was taken as the amount of Mn in the residual γ.
 なお、本実施例3では、実施例1と異なり、TS>830MPa、YS>690MPaのものを、母材強度に優れると評価している。 In Example 3, unlike Example 1, TS> 830 MPa and YS> 690 MPa were evaluated as having excellent base material strength.
 これらの結果を表5に併記する。 These results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表5より、以下のように考察することができる。 From Table 5, it can be considered as follows.
 まず、表5AのNo.1~21は、それぞれ、鋼中成分が本発明の要件を満足する表4AのNo.1~21を用いて、本発明の製造条件で作成した例であり、母材強度が高くても、-196℃での極低温靱性(詳細には、C方向における脆性破面率の平均値≦10%)に優れた厚鋼板を提供することができた。 First, No. in Table 5A. Nos. 1 to 21 are No. 1 in Table 4A in which the components in the steel satisfy the requirements of the present invention. 1 to 21 is an example prepared under the production conditions of the present invention, and the cryogenic toughness at −196 ° C. (specifically, the average value of the brittle fracture surface ratio in the C direction) even if the base metal strength is high It was possible to provide a thick steel plate excellent in ≦ 10%.
 これに対し、表5BのNo.1~21は、本発明の鋼中成分および製造条件のいずれかを満足しない比較例であり、所望とする特性が得られなかった。 In contrast, No. in Table 5B. Nos. 1 to 21 are comparative examples not satisfying any of the components in the steel and the production conditions of the present invention, and the desired characteristics were not obtained.
 まず、表5BのNo.1は、鋼中成分は本発明の要件を満足する表4BのNo.1を用いたが、Di値が本発明の要件を満たさない例であり、所望とする残留γの体積分率が得られなかった。その結果、脆性破面率が増加し、-196℃において所望とする極低温靱性を実現できなかった。 First, No. in Table 5B. No. 1 in Table 4B in which the components in the steel satisfy the requirements of the present invention. Although 1 was used, the Di value does not satisfy the requirements of the present invention, and the desired volume fraction of residual γ was not obtained. As a result, the brittle fracture surface ratio increased and the desired cryogenic toughness could not be realized at -196 ° C.
 表5BのNo.2は、C量が多く、Mo量が少ない表4BのNo.2を用いた例であり、極低温靱性が低下した。 No. in Table 5B No. 2 in Table 4B has a large amount of C and a small amount of Mo. In this example, the cryogenic toughness decreased.
 表5BのNo.3は、P量が多い表4BのNo.3を用いた例であり、極低温靱性が低下した。 No. in Table 5B 3 is No. in Table 4B with a large amount of P. In this example, the cryogenic toughness was lowered.
 表5BのNo.4は、鋼中成分は本発明の要件を満足する表4BのNo.4を用いたが、二相域温度(L処理温度)を下回る温度で加熱し、且つ、Lパラメータが低い例である。そのため、残留γ量が不足した。その結果、極低温靱性が低下した。 No. in Table 5B No. 4 in Table 4B in which the components in the steel satisfy the requirements of the present invention. 4 is used, however, heating is performed at a temperature lower than the two-phase region temperature (L treatment temperature), and the L parameter is low. Therefore, the amount of residual γ was insufficient. As a result, the cryogenic toughness decreased.
 表5BのNo.5は、Si量およびMo量が多い表4BのNo.5を用い、且つ、二相域温度(L処理温度)を超える温度で加熱し、且つ、Lパラメータおよびλパラメータが高い例である。そのため、残留γ量が不足した。その結果、極低温靱性が低下した。 No. in Table 5B. No. 5 in Table 4B with a large amount of Si and Mo. 5 is heated at a temperature exceeding the two-phase region temperature (L treatment temperature), and the L parameter and the λ L parameter are high. Therefore, the amount of residual γ was insufficient. As a result, the cryogenic toughness decreased.
 表5BのNo.6は、Mn量が多くMo量が少ない表4BのNo.6を用いたが、焼戻温度(T処理温度)が高く、λパラメータが高く、所望とする残留γの体積分率が得られなかった。その結果、極低温靱性が低下した。 No. in Table 5B. No. 6 in Table 4B has a large amount of Mn and a small amount of Mo. 6 was used, but the tempering temperature (T treatment temperature) was high, the λ L parameter was high, and the desired volume fraction of residual γ could not be obtained. As a result, the cryogenic toughness decreased.
 表5BのNo.7は、鋼中成分は本発明の要件を満足する表4BのNo.7を用いたが、焼戻時間(T時間)が長い例であり、上記(2)式のNi-Mnのバランスが好ましい範囲を下回った。その結果、低温靱性が低下した。更に強度(TS)も低下した。 No. in Table 5B No. 7 in Table 4B in which the components in the steel satisfy the requirements of the present invention. 7 was used, but the tempering time (T time) was long, and the Ni—Mn balance of the above formula (2) was below the preferred range. As a result, the low temperature toughness decreased. Furthermore, the strength (TS) also decreased.
 表5BのNo.8は、Mn量が少ない表4BのNo.8を用いた例であり、上記(2)式のNi-Mnバランスが好ましい範囲を下回り、残留γ中のMn濃度が低くなり、残留γ量も不足した。その結果、極低温靱性が低下した。 No. in Table 5B No. 8 in Table 4B with a small amount of Mn. In this example, the Ni—Mn balance in the above formula (2) was below the preferred range, the Mn concentration in the residual γ was lowered, and the residual γ amount was insufficient. As a result, the cryogenic toughness decreased.
 表5BのNo.9は、S量が多い表4BのNo.9を用いた例である。そのため、脆性破面率が増加し、所望とする極低温靱性を実現できなかった。 No. in Table 5B No. 9 in Table 4B with a large amount of S. 9 is an example. For this reason, the brittle fracture surface ratio increased and the desired cryogenic toughness could not be realized.
 表5BのNo.10は、C量が少なく、Al量が多く、Ni量が少なく、上記(2)式のNi-Mnバランスが好ましい範囲を下回る表4BのNo.10を用いた例である。残留γ量の確保に有用なC量およびNi量が少ないため、残留γの体積率は小さくなった。その結果、極低温靱性が低下し、YSは良好であった。ただし、強度向上に有効なC量およびNi量が少ないため、TSは低下した。 No. in Table 5B No. 10 in Table 4B has a small amount of C, a large amount of Al, a small amount of Ni, and the Ni—Mn balance of the above formula (2) is below the preferred range. 10 is an example. Since the amount of C and Ni useful for securing the amount of residual γ is small, the volume ratio of residual γ is small. As a result, the cryogenic toughness decreased and YS was good. However, since the amount of C and Ni effective for strength improvement are small, TS decreased.
 表5BNo.11は、Al量およびMo量が少なく、N量が多く、λパラメータが高い表4BのNo.11を用いたため、極低温靱性が低下した。 Table 5BNo. 11 has less amount of Al and Mo content, the number is N quantity, lambda L parameter is high Table 4B No. Since 11 was used, the cryogenic toughness decreased.
 表5BのNo.12は、選択成分であるCu量およびCa量が多い表4BのNo.12を用いたため、極低温靱性が低下した。 No. in Table 5B No. 12 in Table 4B, which has a large amount of Cu and Ca as the selection components. Since 12 was used, the cryogenic toughness decreased.
 表5BのNo.13は、選択成分であるMo量が少なく、Cr量およびZr量が多く、λパラメータが高い表4BのNo.13を用いたため、極低温靱性が低下した。 No. in Table 5B. No. 13 in Table 4B has a small amount of Mo as a selection component, a large amount of Cr and Zr, and a high λ L parameter. Since 13 was used, the cryogenic toughness decreased.
 表5BのNo.14は、選択成分であるNb量およびREM量が多い表4BのNo.14を用いたため、極低温靱性が低下した。 No. in Table 5B No. 14 in Table 4B, which has a large amount of Nb and REM as the selection components. Since 14 was used, the cryogenic toughness decreased.
 表5BのNo.15は、選択成分であるMo量が多い表4BのNo.15を用いたため、極低温靱性が低下した。 No. in Table 5B No. 15 in Table 4B with a large amount of Mo as a selection component. Since 15 was used, the cryogenic toughness decreased.
 表5BのNo.16は、選択成分であるTi量が多い表4BのNo.16を用いたため、極低温靱性が低下した。 No. in Table 5B No. 16 in Table 4B with a large amount of Ti as a selected component. Since 16 was used, the cryogenic toughness decreased.
 表5BのNo.17は、選択成分であるV量が多い表4BのNo.17を用いたため、極低温靱性が低下した。 No. in Table 5B No. 17 in Table 4B with a large amount of V as a selected component. Since No. 17 was used, the cryogenic toughness decreased.
 表5BのNo.18は、選択成分であるB量が多い表4BのNo.18を用いたため、極低温靱性が低下した。 No. in Table 5B No. 18 in Table 4B with a large amount of B as a selected component. Since 18 was used, the cryogenic toughness decreased.
 表5BのNo.19は、鋼中成分は本発明の要件を満足する表4BのNo.19を用いたが、Lパラメータが高く、L処理温度も高い例である。そのため、残留γ量中のMn濃度が低く、残留γ量も不足し、極低温靱性が低下した。 No. in Table 5B No. 19 in Table 4B in which the components in the steel satisfy the requirements of the present invention. 19 is used, but the L parameter is high and the L processing temperature is also high. Therefore, the Mn concentration in the residual γ amount was low, the residual γ amount was insufficient, and the cryogenic toughness was lowered.
 表5BのNo.20は、鋼中成分は本発明の要件を満足する表5BのNo.20を用いたが、焼戻温度(T処理温度)が高く、上記(2)式で規定するNi-Mnバランスが好ましい範囲を下回る例であり、所望とする残留γの体積分率が得られず、残留γ中のMn濃度も低下した。その結果、脆性破面率も増加し、-196℃において所望とする極低温靱性を実現できなかった。更にYSおよびTSも低下した。 No. in Table 5B No. 20 in Table 5B in which the components in the steel satisfy the requirements of the present invention. 20 is an example in which the tempering temperature (T treatment temperature) is high, and the Ni—Mn balance defined by the above formula (2) is below the preferred range, and the desired volume fraction of residual γ can be obtained. In addition, the Mn concentration in the residual γ also decreased. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C. Furthermore, YS and TS also decreased.
 表5BのNo.21は、Mo量が少なく、Lパラメータおよびλパラメータも高い表4BのNo.21を用いた例である。その結果、脆性破面率も増加し、-196℃において所望とする極低温靱性を実現できなかった。 No. in Table 5B. No. 21 in Table 4B has a small Mo amount and a high L parameter and a high λ L parameter. 21 is an example. As a result, the brittle fracture surface ratio also increased and the desired cryogenic toughness could not be realized at -196 ° C.
実施例4
 本実施例では、上記実施例3に用いた表5Aの本発明例について、-233℃での脆性破面率を評価した。
Example 4
In this example, the brittle fracture surface rate at −233 ° C. was evaluated for the inventive examples of Table 5A used in Example 3 above.
 具体的には、表6に記載のNo.(表6のNo.は、前述した表4Aおよび表5AのNo.に対応する)について、t/4位置且つW/4位置から試験片を3本採取し、下記に記載の方法で-233℃でのシャルピー衝撃試験を実施し、脆性破面率の平均値を評価した。本実施例では、上記脆性破面率≦50%のものを、-233℃での脆性破面率に優れると評価した。
 「高圧ガス」、第24巻181頁、「オーステナイト系ステンレス鋳鋼の極低温衝撃試験」
Specifically, No. 1 described in Table 6 was obtained. (No. in Table 6 corresponds to Nos. In Table 4A and Table 5A described above) Three test pieces were collected from the t / 4 position and the W / 4 position, and -233 was obtained by the method described below. A Charpy impact test at ℃ was conducted to evaluate the average brittle fracture surface ratio. In this example, the brittle fracture surface ratio ≦ 50% was evaluated as being excellent in the brittle fracture surface ratio at −233 ° C.
"High pressure gas", Vol. 24, page 181, "Cryogenic impact test of austenitic cast stainless steel"
 これらの結果を表6に記載する。表6には参考の為に(i)残留γの体積分率、(ii)残留γ中のMn濃度、および(iii)λパラメータの値を表5Aから抜粋して併設した。それぞれの詳細は以下の通りである。 These results are listed in Table 6. In Table 6, (i) volume fraction of residual γ, (ii) Mn concentration in residual γ, and (iii) λ L parameter values are extracted from Table 5A for reference. Details of each are as follows.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表6のNo.1~3、5~14、17~20は、いずれも、上記(i)~(iii)の少なくとも一つを満足する表5AのNo.1~3、5~14、17~20を用いた例であり、-233℃における脆性破面率は50%以下と良好であった。一方、表6のNo.4、15、16、21は上記(i)~(iii)の要件を一つも満足しない表5AのNo.4、15、16、21を用いた例であり、-233℃において所望とする靱性を得ることはできなかった。 No. in Table 6 Nos. 1 to 3, 5 to 14, and 17 to 20 are all No. 1 in Table 5A that satisfy at least one of the above (i) to (iii). Examples 1 to 3, 5 to 14, and 17 to 20 were used, and the brittle fracture surface ratio at −233 ° C. was good at 50% or less. On the other hand, no. Nos. 4, 15, 16, and 21 satisfy No. 1 in Table 5A that do not satisfy any of the requirements (i) to (iii) above. In this example, 4, 15, 16, and 21 were used, and the desired toughness could not be obtained at -233 ° C.
 まず、表6のNo.1~3は、上記(ii)の要件を満足する表5AのNo.1~3を用いたため、-233℃における脆性破面率は50%と良好であった。 First, No. in Table 6 1 to 3 are Nos. 1 to 5 in Table 5A that satisfy the requirement (ii). Since 1 to 3 were used, the brittle fracture surface ratio at −233 ° C. was as good as 50%.
 これに対し、表6のNo.4は、上記(i)~(iii)の要件を一つも兼ね備えていない表5AのNo.4を用いたため、-233℃において所望とする靱性を得ることはできなかった。 In contrast, No. in Table 6 No. 4 in Table 5A, which does not have any of the above requirements (i) to (iii). 4 was used, the desired toughness could not be obtained at -233 ° C.
 次に、表6のNo.5は、上記(i)~(iii)の要件を全て兼ね備え、且つ(ii)残留γ中のMn濃度をより好ましい1.75~2.50%の範囲に制御した表5AのNo.5を用いたため、-233℃における靱性を15%と一層高めることができた。 Next, no. No. 5 in Table 5A, which has all the above requirements (i) to (iii), and (ii) controls the Mn concentration in the residual γ to a more preferable range of 1.75 to 2.50%. 5 was used, the toughness at −233 ° C. could be further increased to 15%.
 また、表6のNo.6は、上記(i)および(iii)の要件を満足する表5AのNo.6を用いたため、-233℃における靱性を40%と一層高めることができた。 In addition, No. in Table 6 No. 6 in Table 5A that satisfies the requirements (i) and (iii) above. 6 was used, the toughness at −233 ° C. could be further increased to 40%.
 表6のNo.7は、上記(iii)の要件を満足する表5AのNo.7を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 7 in Table 5A that satisfies the requirement (iii) above. 7 was used, the brittle fracture surface rate at −233 ° C. was as good as 50%.
 表6のNo.8は、上記(i)および(ii)の要件を兼ね備え、且つ(ii)残留γ中のMn濃度をより好ましい1.75~2.50%の範囲に制御した表5AのNo.8を用いたため、-233℃における靱性を25%と一層高めることができた。 No. in Table 6 No. 8 in Table 5A, which combines the above requirements (i) and (ii), and (ii) controlled the Mn concentration in the residual γ to a more preferable range of 1.75 to 2.50%. Since 8 was used, the toughness at −233 ° C. could be further increased to 25%.
 表6のNo.9は、上記(i)および(iii)の要件を満足する表5AのNo.9を用いたため、-233℃における靱性を40%と一層高めることができた。 No. in Table 6 No. 9 in Table 5A that satisfies the requirements (i) and (iii) above. 9 was used, the toughness at −233 ° C. could be further increased to 40%.
 表6のNo.10は、上記(ii)および(iii)の要件を満足する表5AのNo.10を用いたため、-233℃における靱性を40%と一層高めることができた。 No. in Table 6 No. 10 in Table 5A that satisfies the requirements (ii) and (iii) above. Since 10 was used, the toughness at −233 ° C. could be further increased to 40%.
 表6のNo.11は、上記(ii)の要件を満足する表5AのNo.11を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 11 in Table 5A that satisfies the requirement (ii) above. 11 was used, the brittle fracture surface rate at −233 ° C. was as good as 50%.
 表6のNo.12は、上記(ii)および(iii)の要件を満足する表5AのNo.12を用いたため、-233℃における靱性を40%と一層高めることができた。 No. in Table 6 No. 12 in Table 5A that satisfies the requirements (ii) and (iii) above. Since 12 was used, the toughness at −233 ° C. could be further increased to 40%.
 表6のNo.13は、上記(i)~(iii)の要件を全て兼ね備え、且つ(ii)残留γ中のMn濃度をより好ましい1.75~2.50%の範囲に制御した表5AのNo.13を用いたため、-233℃における靱性を15%と一層高めることができた。 No. in Table 6 No. 13 in Table 5A, which has all the requirements (i) to (iii) described above, and (ii) the Mn concentration in the residual γ is controlled to a more preferable range of 1.75 to 2.50%. Since 13 was used, the toughness at −233 ° C. could be further increased to 15%.
 表6のNo.14は、上記(ii)の要件を満足する表5AのNo.14を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 14 in Table 5A that satisfies the requirement (ii) above. 14 was used, the brittle fracture surface rate at −233 ° C. was as good as 50%.
 これに対し、表6のNo.15および16は、上記(i)~(iii)の要件を一つも兼ね備えていない表5AのNo.15および16を用いたため、-233℃において所望とする靱性を得ることはできなかった。 In contrast, No. in Table 6 Nos. 15 and 16 are No. 5 in Table 5A that do not have any of the requirements (i) to (iii). Since 15 and 16 were used, the desired toughness could not be obtained at -233 ° C.
 一方、表6のNo.17は、上記(iii)の要件を満足する表5AのNo.17を用いたため、-233℃における脆性破面率は50%と良好であった。 On the other hand, no. No. 17 in Table 5A that satisfies the requirement (iii) above. Since No. 17 was used, the brittle fracture surface ratio at -233 ° C. was good at 50%.
 表6のNo.18は、上記(i)の要件を満足する表5AのNo.18を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 18 in Table 5A that satisfies the requirement (i) above. 18 was used, the brittle fracture surface rate at -233 ° C. was as good as 50%.
 表6のNo.19は、上記(ii)の要件を満足する表5AのNo.19を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 19 in Table 5A that satisfies the requirement (ii) above. 19 was used, the brittle fracture surface rate at -233 ° C. was as good as 50%.
 表6のNo.20は、上記(i)の要件を満足する表5AのNo.20を用いたため、-233℃における脆性破面率は50%と良好であった。 No. in Table 6 No. 20 in Table 5A that satisfies the requirement (i) above. 20 was used, the brittle fracture surface rate at -233 ° C. was as good as 50%.
 これに対し、表6のNo.21は、上記(i)~(iii)の要件を一つも兼ね備えていない表5AのNo.21を用いたため、-233℃において所望とする靱性を得ることはできなかった。 In contrast, No. in Table 6 No. 21 in Table 5A does not have any of the requirements (i) to (iii) above. Since No. 21 was used, the desired toughness could not be obtained at -233 ° C.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2012年12月13日出願の日本特許出願(特願2012-272184)、2012年12月27日出願の日本特許出願(特願2012-285916)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on December 13, 2012 (Japanese Patent Application No. 2012-272184) and a Japanese patent application filed on December 27, 2012 (Japanese Patent Application No. 2012-285916). Incorporated herein by reference.
 本発明の厚鋼板は、液化天然ガスの貯蔵タンクのように、極低温物質と接触する鋼板として有用である。
 
The steel plate of the present invention is useful as a steel plate that comes into contact with a cryogenic substance, such as a storage tank for liquefied natural gas.

Claims (6)

  1.  質量%で、
     C :0.02~0.10%、
     Si:0.40%以下(0%を含まない)、
     Mn:0.50~2.0%、
     P :0.007%以下(0%を含まない)、
     S :0.007%以下(0%を含まない)、
     Al:0.005~0.050%、
     Ni:5.0~7.5%、
     N :0.010%以下(0%を含まない)
    を含有すると共に、
     Cr:1.20%以下(0%を含まない)、およびMo:1.0%以下(0%を含まない)よりなる群から選択される少なくとも一種の元素を含有し、
     残部が鉄および不可避不純物である厚鋼板であって、
     鋼中成分で構成される下記(1)式に基づいて決定されるDi値が2.5以上であり、
     Di値=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×1.115  ・・・  (1)
    (式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する、)
     -196℃において存在する残留オーステナイト相(残留γ)が体積分率にて2.0~12.0%であり、且つ、
      残留オーステナイト中に含まれる成分で構成される下記(2)式に基づいて決定される残留γ安定化パラメータが3.1以上であることを特徴とする極低温靱性に優れた厚鋼板。
      残留γ安定化パラメータ=
      (365×<C>+39×<Mn>+30×<Al>+10×<Cu>+17×<Ni>+20×<Cr>+5×<Mo>+35×<V>)/100  ・・・  (2)
    (式中、< >は、-196℃において存在する残留オーステナイト中に含まれる各成分の含有量(質量%)を意味する。)
    % By mass
    C: 0.02 to 0.10%,
    Si: 0.40% or less (excluding 0%),
    Mn: 0.50 to 2.0%,
    P: 0.007% or less (excluding 0%),
    S: 0.007% or less (excluding 0%),
    Al: 0.005 to 0.050%,
    Ni: 5.0 to 7.5%,
    N: 0.010% or less (excluding 0%)
    And containing
    Containing at least one element selected from the group consisting of Cr: 1.20% or less (not including 0%) and Mo: 1.0% or less (not including 0%);
    The balance is a steel plate with iron and inevitable impurities,
    Di value determined on the basis of the following formula (1) composed of components in steel is 2.5 or more,
    Di value = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [ Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × 1.115 (1)
    (In the formula, [] means the content (% by mass) of each component in the steel)
    The residual austenite phase (residual γ) present at −196 ° C. is 2.0 to 12.0% in volume fraction, and
    A thick steel plate excellent in cryogenic toughness, characterized in that a residual γ stabilization parameter determined based on the following formula (2) composed of components contained in residual austenite is 3.1 or more.
    Residual γ stabilization parameter =
    (365 × <C> + 39 × <Mn> + 30 × <Al> + 10 × <Cu> + 17 × <Ni> + 20 × <Cr> + 5 × <Mo> + 35 × <V>) / 100 (2)
    (In the formula, <> means the content (% by mass) of each component contained in the retained austenite existing at -196 ° C.)
  2.  前記残留γ相の体積分率と前記残留γ安定化パラメータとで構成される下記式(3)に基づいて算出される残留γ相の体積分率・残留γ安定化パラメータが40以下である請求項1に記載の厚鋼板。
      残留γの体積分率・残留γ安定化パラメータ
      =10/(残留γ相の体積分率×残留γ安定化パラメータ)1/2  ・・・(3)
    The volume fraction of residual γ phase and the residual γ stabilization parameter calculated based on the following equation (3) composed of the volume fraction of the residual γ phase and the residual γ stabilization parameter are 40 or less: Item 2. The thick steel plate according to Item 1.
    Residual γ volume fraction / residual γ stabilization parameter = 10 / (volume fraction of residual γ phase × residual γ stabilization parameter) 1/2 (3)
  3.  質量%で、
     C :0.02~0.10%、
     Si:0.40%以下(0%を含まない)、
     Mn:0.6~2.0%、
     P :0.007%以下(0%を含まない)、
     S :0.007%以下(0%を含まない)、
     Al:0.005~0.050%、
     Ni:5.0~7.5%、
     N :0.010%以下(0%を含まない)
     Mo:0.30~1.0%、
     Cr:1.20%以下(0%を含まない)、
    を含有し、残部が鉄および不可避不純物である厚鋼板であって、
     鋼中成分で構成される下記(1)式に基づいて決定されるDi値が5.0超であり、
     Di=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×1.115・・・(1)
    (式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する、)
     -196℃において存在する残留オーステナイト相(残留γ)が体積分率にて2.0~5.0%であり、
     -196℃において存在する残留オーステナイト相(残留γ)中のMn濃度が1.05%以上であり、且つ
     鋼中のMnおよびNiの含有量(質量%)が、下記(4)式を満たすことを特徴とする
    極低温靱性に優れた厚鋼板。
     [Mn]≧0.31×(7.20-[Ni])+0.50・・・(4)
    (式中、[ ]は鋼中の各成分の含有量(質量%)を意味する。)
    % By mass
    C: 0.02 to 0.10%,
    Si: 0.40% or less (excluding 0%),
    Mn: 0.6 to 2.0%,
    P: 0.007% or less (excluding 0%),
    S: 0.007% or less (excluding 0%),
    Al: 0.005 to 0.050%,
    Ni: 5.0 to 7.5%,
    N: 0.010% or less (excluding 0%)
    Mo: 0.30 to 1.0%,
    Cr: 1.20% or less (excluding 0%),
    Is a thick steel plate with the balance being iron and inevitable impurities,
    Di value determined on the basis of the following formula (1) composed of steel components is more than 5.0,
    Di = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [Ni ]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × 1.115 (1)
    (In the formula, [] means the content (% by mass) of each component in the steel)
    The residual austenite phase (residual γ) present at −196 ° C. is 2.0 to 5.0% in volume fraction,
    The Mn concentration in the residual austenite phase (residual γ) existing at −196 ° C. is 1.05% or more, and the Mn and Ni contents (mass%) in the steel satisfy the following formula (4). A steel plate with excellent cryogenic toughness characterized by
    [Mn] ≧ 0.31 × (7.20− [Ni]) + 0.50 (4)
    (In the formula, [] means the content (mass%) of each component in the steel.)
  4.  更に、下記(a)~(e)群の少なくとも1群を含む請求項1~3のいずれかに記載の厚鋼板。
     (a)Cu:1.0%以下(0%を含まない)、
     (b)Ti:0.025%以下(0%を含まない)、Nb:0.100%以下(0%を含まない)、およびV:0.50%以下(0%を含まない)よりなる群から選択される少なくとも一種、
     (c)B:0.0050%以下(0%を含まない)、
     (d)Ca:0.0030%以下(0%を含まない)および REM:0.0050%以下(0%を含まない)よりなる群から選択される少なくとも一種、
     (e)Zr:0.005%以下(0%を含まない)。
    The thick steel plate according to any one of claims 1 to 3, further comprising at least one group of the following groups (a) to (e):
    (A) Cu: 1.0% or less (excluding 0%),
    (B) Ti: 0.025% or less (not including 0%), Nb: 0.100% or less (not including 0%), and V: 0.50% or less (not including 0%) At least one selected from the group,
    (C) B: 0.0050% or less (excluding 0%),
    (D) Ca: 0.0030% or less (excluding 0%) and REM: at least one selected from the group consisting of 0.0050% or less (excluding 0%),
    (E) Zr: 0.005% or less (excluding 0%).
  5.  請求項1または2に記載の厚鋼板の製造方法であって、
     α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)における温度(L処理温度)と、鋼中のAc1およびAc3とで構成される下記式(5)に基づいて算出されるLパラメータが0.25以上、0.45以下であり、且つ、
     前記Lパラメータと、鋼中成分とで構成される下記式(6)に基づいて算出されるλパラメータが7以下であることを満足するように、L処理温度および鋼中成分を調整する工程と、
     L処理の後、室温まで水冷し、焼戻処理(T処理)するに当たり、Ac1以下の温度で10~60分間行なう工程と、
    を行なうことを特徴とする厚鋼板の製造方法。
     Lパラメータ=(L処理温度-Ac1)/(Ac3-Ac1)+0.25  ・・・(5)
     λパラメータ=9.05×(0.90×[Lパラメータ]+0.14)×[Mn]+1.46×(0.37×[Lパラメータ]+0.67)×[Cr]-41.5×(0.26×[Lパラメータ]+0.79)×[Mo]  ・・・(6)
    (式中、[ ]は、鋼中の各成分の含有量(質量%)を意味する。)
    It is a manufacturing method of the thick steel plate of Claim 1 or 2,
    Based on the following formula (5) composed of the temperature (L treatment temperature) in the heat treatment (L treatment) in the α-γ2 phase coexistence region (between A c1 and A c3 ), and A c1 and A c3 in the steel L parameter calculated in the above is 0.25 or more and 0.45 or less, and
    Adjusting the L treatment temperature and the steel component so that the λ L parameter calculated based on the following formula (6) composed of the L parameter and the steel component is 7 or less. When,
    A step of water cooling to room temperature after L treatment and tempering treatment (T treatment) at a temperature of Ac1 or lower for 10 to 60 minutes;
    The manufacturing method of the thick steel plate characterized by performing.
    L parameter = (L treatment temperature−A c1 ) / (A c3 −A c1 ) +0.25 (5)
    λ L parameter = 9.05 × (0.90 × [L parameter] +0.14) × [Mn] + 1.46 × (0.37 × [L parameter] +0.67) × [Cr] −41.5 × (0.26 × [L parameter] +0.79) × [Mo] (6)
    (In formula, [] means content (mass%) of each component in steel.)
  6.  請求項3に記載の厚鋼板の製造方法であって、
     α-γ2相共存域(Ac1~Ac3間)での熱処理(L処理)における温度(L処理温度)と、鋼中のAc1およびAc3とで構成される下記(5)式に基づいて算出されるLパラメータが0.6以上、1.1以下であり、且つ、
     前記Lパラメータと、鋼中成分とで構成される下記(6)式に基づいて算出されるλパラメータが0以下であることを満足するように、L処理温度および鋼中成分を調整する
    ことを特徴とする厚鋼板の製造方法。
     Lパラメータ=(L処理温度-Ac1)/(Ac3-Ac1)+0.25・・・(5)
     λパラメータ=9.05×(0.90×[Lパラメータ]+0.14)×[Mn]+1.46×(0.37×[Lパラメータ]+0.67)×[Cr]-41.5×(0.26×[Lパラメータ]+0.79)×[Mo]・・・(6)
    (式中、[ ]は鋼中の各成分の含有量(質量%)を意味する。)
     
    It is a manufacturing method of the thick steel plate according to claim 3,
    Based on the following formula (5) composed of the temperature (L treatment temperature) in the heat treatment (L treatment) in the α-γ2 phase coexistence region (between A c1 and A c3 ), and A c1 and A c3 in the steel. L parameter calculated in the above is 0.6 or more and 1.1 or less, and
    Adjusting the L treatment temperature and the steel component so that the λ L parameter calculated based on the following formula (6) composed of the L parameter and the steel component is 0 or less. A method for producing a thick steel plate.
    L parameter = (L treatment temperature−A c1 ) / (A c3 −A c1 ) +0.25 (5)
    λ L parameter = 9.05 × (0.90 × [L parameter] +0.14) × [Mn] + 1.46 × (0.37 × [L parameter] +0.67) × [Cr] −41.5 × (0.26 × [L parameter] +0.79) × [Mo] (6)
    (In the formula, [] means the content (mass%) of each component in the steel.)
PCT/JP2013/083239 2012-12-13 2013-12-11 Thick steel plate having excellent cryogenic toughness WO2014092129A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13861920.0A EP2933347A4 (en) 2012-12-13 2013-12-11 Thick steel plate having excellent cryogenic toughness
KR1020157015524A KR101711774B1 (en) 2012-12-13 2013-12-11 Thick steel plate having excellent cryogenic toughness
CN201380062597.6A CN104854252B (en) 2012-12-13 2013-12-11 The steel plate of pole excellent in low temperature toughness

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012272184A JP5973902B2 (en) 2012-12-13 2012-12-13 Thick steel plate with excellent cryogenic toughness
JP2012-272184 2012-12-13
JP2012285916A JP5973907B2 (en) 2012-12-27 2012-12-27 Thick steel plate with excellent cryogenic toughness
JP2012-285916 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014092129A1 true WO2014092129A1 (en) 2014-06-19

Family

ID=50934413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083239 WO2014092129A1 (en) 2012-12-13 2013-12-11 Thick steel plate having excellent cryogenic toughness

Country Status (4)

Country Link
EP (2) EP3190201A1 (en)
KR (1) KR101711774B1 (en)
CN (1) CN104854252B (en)
WO (1) WO2014092129A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928592A (en) * 2015-07-17 2015-09-23 上海交通大学 High-strength low-temperature-resistant steel and heat processing technology thereof
EP3272899A4 (en) * 2015-03-20 2018-10-17 Baoshan Iron & Steel Co., Ltd. Low-yield-ratio high-strength-toughness thick steel plate with excellent low-temperature impact toughness and manufacturing method therefor
CN109536850A (en) * 2019-01-10 2019-03-29 北京科技大学 A kind of high tough low yield strength ratio thick steel plate and its production technology
CN114250416A (en) * 2021-12-13 2022-03-29 莱芜钢铁集团银山型钢有限公司 56 kg-grade low-yield-ratio ultrahigh-strength marine steel plate and preparation method thereof
JP7078203B1 (en) * 2020-12-03 2022-05-31 Jfeスチール株式会社 Steel plate
WO2022118592A1 (en) * 2020-12-03 2022-06-09 Jfeスチール株式会社 Steel plate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196929B2 (en) * 2014-04-08 2017-09-13 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness at cryogenic temperatures
JP2017115239A (en) * 2015-12-18 2017-06-29 株式会社神戸製鋼所 Thick steel sheet excellent in ultra low temperature toughness
CN105543694B (en) * 2015-12-29 2017-12-29 东北大学 A kind of preparation method of LNG tank 7Ni steel plates
RU2625514C1 (en) * 2016-06-23 2017-07-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Casting austenitic high-strength corrosion-resisting in inorganic and organic environments cryogenic steel and method of its production
KR102075206B1 (en) * 2017-11-17 2020-02-07 주식회사 포스코 Low temperature steeel plate having excellent impact toughness property and method for manufacturing the same
RU2686758C1 (en) * 2018-04-02 2019-04-30 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Structural cryogenic steel and method of its production
US11279993B2 (en) * 2018-12-27 2022-03-22 Nippon Steel Corporation Nickel-containing steel plate
CN110129676A (en) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 A kind of LNG storage tank 7Ni steel plate and production technology
CN110396646B (en) * 2019-07-23 2020-10-20 北京科技大学 Yield ratio regulation and evaluation method of low-carbon high-strength ship plate steel
CN110616369B (en) * 2019-08-21 2021-10-29 舞阳钢铁有限责任公司 Large-thickness steel plate with yield of 785MPa grade for ocean engineering and production method thereof
KR102200225B1 (en) * 2019-09-03 2021-01-07 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof
KR102427046B1 (en) * 2020-12-10 2022-07-28 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135813A (en) 1973-05-04 1974-12-27
JPS5113308A (en) 1974-07-24 1976-02-02 Nippon Steel Corp TEIONYOKYOJINKOOYOBISONO NETSUSHORIHOHO
JP2003129134A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp Method for manufacturing high-strength steel sheet superior in low-temperature toughness
WO2007034576A1 (en) * 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof
WO2007080646A1 (en) * 2006-01-13 2007-07-19 Sumitomo Metal Industries, Ltd. Cryogenic steel
JP2011219848A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011219849A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011241419A (en) 2010-05-17 2011-12-01 Sumitomo Metal Ind Ltd Thick steel plate for low temperature, and method of manufacturing the same
WO2012067474A2 (en) * 2010-11-19 2012-05-24 주식회사 포스코 High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP2013014812A (en) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP2013213273A (en) * 2012-03-09 2013-10-17 Kobe Steel Ltd Thick steel plate superior in ultra-low temperature toughness
JP2013234381A (en) * 2012-04-13 2013-11-21 Kobe Steel Ltd Thick steel plate with excellent cryogenic toughness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127815A (en) * 1984-11-26 1986-06-16 Nippon Steel Corp Production of high arrest steel containing ni
BR112013000436B1 (en) * 2010-07-09 2018-07-03 Nippon Steel & Sumitomo Metal Corporation NI ADDED STEEL SHEET AND SAME PRODUCTION METHOD

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135813A (en) 1973-05-04 1974-12-27
JPS5113308A (en) 1974-07-24 1976-02-02 Nippon Steel Corp TEIONYOKYOJINKOOYOBISONO NETSUSHORIHOHO
JP2003129134A (en) * 2001-10-18 2003-05-08 Nippon Steel Corp Method for manufacturing high-strength steel sheet superior in low-temperature toughness
WO2007034576A1 (en) * 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof
WO2007080646A1 (en) * 2006-01-13 2007-07-19 Sumitomo Metal Industries, Ltd. Cryogenic steel
JP2011219848A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011219849A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011241419A (en) 2010-05-17 2011-12-01 Sumitomo Metal Ind Ltd Thick steel plate for low temperature, and method of manufacturing the same
WO2012067474A2 (en) * 2010-11-19 2012-05-24 주식회사 포스코 High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP2013014812A (en) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP2013213273A (en) * 2012-03-09 2013-10-17 Kobe Steel Ltd Thick steel plate superior in ultra-low temperature toughness
JP2013234381A (en) * 2012-04-13 2013-11-21 Kobe Steel Ltd Thick steel plate with excellent cryogenic toughness

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Cryogenic-Temperature Impact Test of Austenitic Stainless Cast Steel", JOURNAL OF THE HIGH PRESSURE GAS SAFETY INSTITUTE OF JAPAN, vol. 24, pages 181
FURUYA ET AL.: "Development of 6% Ni steel for LNG tanks", CAMP-ISIJ, vol. 23, 2010, pages 1322
H. MEHRER, DIFFUSION IN SOLID METALS AND ALLOYS, 1990
See also references of EP2933347A4 *
YANO ET AL.: "Effects of ferrite-austenite two-phase region heat treatment of 6% Ni steel on low-temperature toughness", TETSU-TO-HAGANE (IN JAPANESE), THE 59TH YEAR, vol. 6, 1973, pages 752 - 763

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272899A4 (en) * 2015-03-20 2018-10-17 Baoshan Iron & Steel Co., Ltd. Low-yield-ratio high-strength-toughness thick steel plate with excellent low-temperature impact toughness and manufacturing method therefor
CN104928592A (en) * 2015-07-17 2015-09-23 上海交通大学 High-strength low-temperature-resistant steel and heat processing technology thereof
CN109536850A (en) * 2019-01-10 2019-03-29 北京科技大学 A kind of high tough low yield strength ratio thick steel plate and its production technology
JP7078203B1 (en) * 2020-12-03 2022-05-31 Jfeスチール株式会社 Steel plate
WO2022118592A1 (en) * 2020-12-03 2022-06-09 Jfeスチール株式会社 Steel plate
CN114250416A (en) * 2021-12-13 2022-03-29 莱芜钢铁集团银山型钢有限公司 56 kg-grade low-yield-ratio ultrahigh-strength marine steel plate and preparation method thereof
WO2023109005A1 (en) * 2021-12-13 2023-06-22 莱芜钢铁集团银山型钢有限公司 56 kg-grade low-yield-ratio ultrahigh-strength maritime work steel plate and preparation method therefor

Also Published As

Publication number Publication date
CN104854252B (en) 2016-10-12
EP2933347A1 (en) 2015-10-21
CN104854252A (en) 2015-08-19
EP3190201A1 (en) 2017-07-12
KR20150082611A (en) 2015-07-15
KR101711774B1 (en) 2017-03-02
EP2933347A4 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2014092129A1 (en) Thick steel plate having excellent cryogenic toughness
JP5833991B2 (en) Thick steel plate with excellent cryogenic toughness
JP6055363B2 (en) High strength thick steel plate with excellent cryogenic toughness
JP4268079B2 (en) Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet
JP6018453B2 (en) High strength thick steel plate with excellent cryogenic toughness
WO2017104599A1 (en) Thick steel plate having excellent cryogenic toughness
JP2007126715A (en) HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
KR101442400B1 (en) Thick steel plate excellent in ultra low temperature toughness
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP6018454B2 (en) High strength thick steel plate with excellent cryogenic toughness
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
KR101596998B1 (en) Thick steel plate excellent in ultra low temperature toughness
JP6852805B2 (en) Nickel-containing steel for low temperature
JP6852806B2 (en) Nickel-containing steel for low temperature
KR102309124B1 (en) Low-temperature nickel-containing steel
JP5973902B2 (en) Thick steel plate with excellent cryogenic toughness
JP5741426B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP5973907B2 (en) Thick steel plate with excellent cryogenic toughness
JP6760055B2 (en) Ni steel for liquid hydrogen
JP6620662B2 (en) Ni steel for liquid hydrogen
JP6620661B2 (en) Ni steel for liquid hydrogen
JP6620660B2 (en) Ni steel for liquid hydrogen
KR20200123831A (en) High Mn steel and manufacturing method thereof
WO2020256032A1 (en) Steel sheet
JP2012197497A (en) Thick steel plate excellent in toughness and strain aging property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013861920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157015524

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE