WO2014092021A1 - Silicon nitride sintered body and sliding member using same - Google Patents

Silicon nitride sintered body and sliding member using same Download PDF

Info

Publication number
WO2014092021A1
WO2014092021A1 PCT/JP2013/082858 JP2013082858W WO2014092021A1 WO 2014092021 A1 WO2014092021 A1 WO 2014092021A1 JP 2013082858 W JP2013082858 W JP 2013082858W WO 2014092021 A1 WO2014092021 A1 WO 2014092021A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
nitride sintered
phase
crystal
Prior art date
Application number
PCT/JP2013/082858
Other languages
French (fr)
Japanese (ja)
Inventor
青木 克之
小松 通泰
開 船木
山口 晴彦
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to CN201380057709.9A priority Critical patent/CN104768900B/en
Priority to JP2014552022A priority patent/JP6334413B2/en
Publication of WO2014092021A1 publication Critical patent/WO2014092021A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness

Definitions

  • Embodiments of the present invention relate to a silicon nitride sintered body and a sliding member using the same.
  • Silicon nitride sintered bodies are widely used as constituent materials for sliding members such as bearing balls and rollers.
  • a metal material such as bearing steel has been generally used as a bearing (bearing) member for supporting a rotating shaft, particularly as a component of a bearing ball.
  • metal materials such as bearing steel do not have sufficient wear resistance, there has been a problem that high-speed rotation drive with high reliability cannot be stably obtained due to large variations in bearing life.
  • a silicon nitride sintered body As a means for solving the above problems, recently, a silicon nitride sintered body has been used as a component of a bearing ball. Since the silicon nitride sintered body is superior in sliding characteristics among ceramics, it has sufficient wear resistance in some usage modes, and even during high-speed rotation, a highly reliable rotational drive is performed for a certain period of time. It has been confirmed that this can be realized.
  • silicon nitride sintered bodies include silicon nitride-rare earth oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride-titanium system, and the like.
  • Sintering aids such as rare earth oxides such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintering composition have been conventionally used as sintering aids, and the sintered body is improved by increasing the sinterability. It is added to increase the strength.
  • JP 2006-36554 A Patent Document 1
  • Patent Document 2 discloses a silicon nitride sintered body that exhibits a long life of 400 hours or longer when a predetermined wear resistance test is performed.
  • sliding members such as bearing balls using a silicon nitride sintered body are required to have a long life of 400 hours or more, and further about 800 hours. By extending the life of the bearing ball, it is possible to realize maintenance-free sliding parts such as bearings.
  • Sliding members such as bearings are used in products in various fields such as machine tools, electronic devices, automobiles, aircraft, and even wind power generation.
  • the service life of the sliding member is increased, the service life of various products can be increased and further maintenance-free can be achieved.
  • the problem to be solved by the present invention is to provide a silicon nitride sintered body that can have further long-term reliability of sliding characteristics and a sliding member using the same.
  • the temperature is 29.6 ⁇ 0.3 ° and 31.0 ⁇ 0.3 ° corresponding to the hexagonal ⁇ -SiAlON crystal.
  • the detected strongest peak intensities are I 29.6 ° and I 31.0 ° , while 33.6 ⁇ 0.3 ° and 36.1 ⁇ 0.3 ° corresponding to ⁇ -Si 3 N 4 crystal.
  • the area ratio of the grain boundary phase per unit area 100 ⁇ m ⁇ 100 ⁇ m in an arbitrary cross section of the silicon nitride sintered body is 25 to 40%, and the machinable coefficient is 0.100 to 0.120.
  • a silicon nitride sintered body is obtained.
  • XRD analysis when XRD analysis is performed on a silicon nitride sintered body, it corresponds to any one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4
  • the XRD analysis is preferably performed on an arbitrary cross section of the silicon nitride sintered body.
  • a grain boundary phase including an amorphous phase containing an Hf—Y—O-based compound crystal and Y—Al—O.
  • particles of carbide, oxide, nitride or the like having an average particle diameter of 2 ⁇ m or less.
  • the particles are preferably molybdenum compound particles.
  • Al is 5 to 10% by mass in terms of oxide, and any one or more of rare earth elements is 1 to 10% by mass in terms of oxide, and any one or more of 4A, 5A, and 6A elements is oxide.
  • the sliding member according to the embodiment is characterized by using the silicon nitride sintered body of the embodiment.
  • the sliding member is preferably a bearing ball.
  • the sliding surface is preferably a polished surface having a surface roughness (Ra) of 0.5 ⁇ m or less.
  • This embodiment can provide a silicon nitride sintered body that can provide long-term reliability with respect to sliding characteristics.
  • the machinable coefficient is adjusted, even if the surface is polished, it is easy to obtain a flat sliding surface because degranulation can be reduced. Therefore, long-term reliability can be obtained also with respect to the sliding member using the sintered body.
  • the strongest peak intensity is I 33.6 ° and I 36.1 °
  • the area ratio of the grain boundary phase per unit area 100 ⁇ m ⁇ 100 ⁇ m in an arbitrary cross section of the silicon nitride sintered body is 25 to 40%, and the machinable coefficient is 0.100 to 0.120. This is a silicon nitride sintered body.
  • the measurement surface is an arbitrary surface or an arbitrary cross section of the sintered body, and is a polished surface having a surface roughness Ra of 1 ⁇ m or less.
  • XRD analysis is performed with a Cu target (Cu-K ⁇ ), tube voltage 40 kV, tube current 40 mA, scan speed 2.0 ° / min, slit (RS) 0.15 mm, scan range (2 ⁇ ) 10 ° -60 °. Shall.
  • the scanning range (2 ⁇ ) may be a wide range as long as it includes 10 ° to 60 °.
  • the cross section of the sintered body is preferable. If it analyzes in a cross section, it can also be used as a surface for obtaining the area ratio of the grain boundary phase.
  • the strongest peak intensities detected at 29.6 ⁇ 0.3 ° and 31.0 ⁇ 0.3 ° corresponding to the hexagonal ⁇ -SiAlON crystal are represented by I 29.6. ° , I 31.0 °
  • the strongest peak intensities detected at 33.6 ⁇ 0.3 ° and 36.1 ⁇ 0.3 ° corresponding to ⁇ -Si 3 N 4 crystals are I 33.6 ° , I 36.1 °
  • the peak position by XRD analysis is determined by the lattice constant of each crystal.
  • (I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) 0.10 to 0.30 is satisfied.
  • the magnitude of the peak intensity is determined according to the abundance of each crystal. (Hexagonal ⁇ -SiAlON crystal / ⁇ -Si 3 N 4 crystal)
  • the peak intensity ratio (I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) is 0.10
  • a value of ⁇ 0.30 means that a predetermined amount of hexagonal ⁇ -SiAlON crystal is present with respect to ⁇ -Si 3 N 4 crystal.
  • ⁇ -SiAlON crystal If hexagonal ⁇ -SiAlON crystal is present, peaks are also detected in the vicinity of 34.4 ° and 35.1 °. If ⁇ -Si 3 N 4 crystals are present, peaks are also detected in the vicinity of 23.4 ° and 27.1 °. The presence / absence of the detection of the peak at this side may be used to grasp the presence / absence of the hexagonal ⁇ -SiAlON crystal and ⁇ -Si 3 N 4 crystal. Further, when it is difficult to discriminate due to overlapping with other crystal peaks described later, various qualitative analyzes may be combined.
  • the presence of the hexagonal ⁇ -SiAlON crystal results in a structure in which a hexagonal ⁇ -SiAlON crystal and a ⁇ -Si 3 N 4 crystal are mixed, and the presence of grain boundary phases can be reduced.
  • the phase can be strengthened. Therefore, hardness, toughness, etc. as a sintered body can be improved, and wear resistance can be improved.
  • the hexagonal ⁇ -SiAlON crystal may have both a spherical shape and a columnar shape.
  • the hexagonal ⁇ -SiAlON crystal preferably has an aspect ratio of 2 or less.
  • the ⁇ -Si 3 N 4 crystal has a long columnar shape with an aspect ratio of 2 or more.
  • ⁇ -Si 3 N 4 crystals are intertwined in a complex manner to form a silicon nitride sintered body having high hardness and toughness.
  • ⁇ -Si 3 N 4 crystals have a long columnar shape, there is a large variation in grain boundary size between ⁇ -Si 3 N 4 crystals, and there are formed portions where there are some grain boundary phases and where there are few. It was. For this reason, the long-term life of sliding characteristics was reduced.
  • the peak intensity ratio of (hexagonal ⁇ -SiAlON crystal / ⁇ -Si 3 N 4 crystal) is less than 0.10, the amount of hexagonal ⁇ -SiAlON crystal is too small and the variation in the presence ratio of the grain boundary phase becomes large.
  • the peak intensity ratio of (hexagonal ⁇ -SiAlON crystal / ⁇ -Si 3 N 4 crystal) is larger than 0.30, the proportion of ⁇ -Si 3 N 4 crystal decreases, and ⁇ -Si 3 N The structure in which the four crystals are intertwined in a complicated manner is reduced, and the sliding characteristics are lowered.
  • the area ratio of the grain boundary phase per unit area of 100 ⁇ m ⁇ 100 ⁇ m in an arbitrary cross section of the silicon nitride sintered body is set to 25 to 40%, it becomes easy to control the variation in the presence of the grain boundary phase.
  • grains other than ⁇ -Si 3 N 4 crystal and hexagonal ⁇ -SiAlON crystal are used as the grain boundary phase.
  • the area ratio of the grain boundary phase per unit area of 100 ⁇ m ⁇ 100 ⁇ m is in the range of 25 to 40% regardless of the cross section of any section, that is, any cross section. . Since the ratio of the grain boundary phase is controlled in a small region of unit area 100 ⁇ m ⁇ 100 ⁇ m, not only the hardness and fracture toughness of the sintered body can be improved, but also long-term reliability of sliding characteristics can be obtained.
  • the measuring method of the area ratio of a grain boundary phase is as follows. First, an arbitrary cross section of the silicon nitride sintered body is obtained. This cross section is polished so that the surface roughness Ra is 1 ⁇ m or less. In order to clarify the region of the grain boundary phase with the ⁇ -Si 3 N 4 crystal and the hexagonal ⁇ -SiAlON crystal, a plasma etching process is performed on the obtained polished surface.
  • the etching rate of the grain boundary phase is different from that of the ⁇ -Si 3 N 4 crystal and the hexagonal ⁇ -SiAlON crystal.
  • ⁇ -Si 3 N 4 crystal and hexagonal ⁇ -SiAlON crystal have higher etching rates (easily etched), so ⁇ -Si 3 N 4 crystal and hexagonal ⁇ -
  • the SiAlON crystal becomes a concave portion and the grain boundary phase becomes a convex portion.
  • the etching process can also be chemical etching using acid and alkali.
  • the mirror surface after the etching process is taken with an SEM image (magnification of 1000 times or more).
  • SEM image magnification of 1000 times or more.
  • ⁇ -Si 3 N 4 crystal and hexagonal ⁇ -SiAlON crystal and the grain boundary phase can be distinguished by the difference in contrast.
  • the grain boundary phase appears white.
  • the area ratio of the grain boundary phase per unit area can be measured by image analysis of the SEM photograph. For image analysis, it is effective to perform image analysis by color mapping the grain boundary phase portion.
  • the image may be taken a plurality of times, and the unit area may be 100 ⁇ m ⁇ 100 ⁇ m in total.
  • the silicon nitride sintered body of the first embodiment has a machinable coefficient of 0.100 to 0.120.
  • the machinable coefficient Mc is a value calculated from the following equation (4).
  • Fn is an indentation load, and is 20 kgf here.
  • the indentation load Fn of 20 kgf is a suitable value for measuring the hardness and toughness of the silicon nitride sintered body.
  • Vickers hardness (Hv) shall be measured according to JIS-R-1610.
  • the fracture toughness value (K 1C ) is measured according to the indenter press-in method (IF method) of JIS-R-1607.
  • IF method indenter press-in method
  • Niihara's formula shall be used for the calculation of fracture toughness value.
  • the bearing ball described later is measured using its cross section.
  • the machinable coefficient Mc is a coefficient indicating workability using the indentation load (Fn), the Vickers hardness (Hv), and the fracture toughness value (K 1C ). This is a relational expression of the lateral crack fracture model, and Mc indicates the amount of material removed by one abrasive grain. This means that the larger the machinable coefficient Mc, the larger the amount that can be processed at one time.
  • the lateral crack fracture model is a model proposed by Evans and Marshall as a material removal mechanism during grinding.
  • the amount of material (Delta V) that is removed when one abrasive grain passes through the material surface is determined by the force Fn, Vickers hardness (Hv), and fracture toughness value that push the abrasive grain vertically into the material.
  • Fn force
  • Hv Vickers hardness
  • Frazierness value fracture toughness value that push the abrasive grain vertically into the material.
  • K 1C it is shown that the value is proportional to the value of [Fn 9/8 / (K 1c 1/2 ⁇ Hv 5/8 )].
  • delta V is replaced with a machinable coefficient Mc.
  • Processing is roughly divided into brittle mode and ductile mode.
  • the brittle mode corresponds to so-called roughing
  • the ductility mode corresponds to so-called finishing. Since wear is considered to correspond to ductility mode, in order to satisfy the required performance of wear resistant members, it is important to improve the workability of the brittle mode without reducing the workability of the ductile mode. . Further, as one of the wear models, a mechanism is considered in which minute precracks are generated at the grain boundaries and the propagation of the cracks leads to the destruction of the material surface, thereby causing wear.
  • a parameter Sc Representing the severity of mechanical contact of the wear model.
  • m is expressed by the following equation from the friction coefficient ⁇ , the maximum Hertz stress Pmax, the crystal grain size d of the material, and the fracture toughness value K 1c .
  • the machinable coefficient Mc is preferably in the range of 0.100 to 0.120.
  • the polishing time of the silicon nitride sintered body increases because the amount of polishing with abrasive grains is small.
  • the machinable coefficient Mc exceeds 0.120, the polishing amount of the silicon nitride sintered body by the abrasive grains becomes too large.
  • the polishing amount is large, the workability is improved, but the durability as a sliding member is lowered.
  • a silicon nitride sintered body having a machinable coefficient Mc in the range of 0.100 to 0.120 can improve sliding properties while improving hardness and fracture toughness as a sintered body. Further, since the grain drop marks when polishing the sliding surface can be reduced, it is easy to obtain a flat surface with a surface roughness Ra of 0.5 ⁇ m or less, and further 0.1 ⁇ m or less.
  • the machinable coefficient Mc is preferably in the range of 0.110 to 0.120.
  • Y 4 Si 2 O 7 N 2 (J phase) is a crystal phase present in the grain boundary phase.
  • the fact that a peak is detected at 39.5 ⁇ 0.3 ° means that Y 4 Si 2 O 7 N 2 (J phase) exists.
  • the grain boundary phase can be strengthened.
  • the long-term reliability of the sliding characteristics can be further improved.
  • XRD analysis when XRD analysis is performed on a silicon nitride sintered body, it corresponds to any one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4
  • Any one of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), and Y 2 Si 3 O 3 N 4 is a crystal phase present in the grain boundary phase.
  • the fact that a peak is detected at 31.9 ⁇ 0.3 ° means that any one of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), and Y 2 Si 3 O 3 N 4 is detected. This means that there are more than one crystalline phase.
  • the grain boundary phase can be strengthened.
  • the long-term reliability of the sliding characteristics can be further improved.
  • I 31.9 ° is selected is the peak corresponding to one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4. This is due to the fact that it is one of the strongest peaks.
  • a grain boundary phase including an amorphous phase containing Hf—YO compound crystal and Y—Al—O.
  • the Hf—Y—O-based compound crystal is a compound crystal containing hafnium, yttrium, and oxygen.
  • the amorphous phase containing Y—Al—O is an amorphous phase containing at least yttrium, aluminum, and oxygen.
  • Hafnium is an active component, reacts with yttrium and oxygen to form Hf—Y—O-based compound crystals, and promotes the growth reaction of Si 3 N 4 .
  • formation of one or more of Y 4 Si 2 O 7 N 2 (J phase), Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4 It is thought that it contributes to.
  • phase containing Y—Al—O an amorphous phase (glass phase)
  • glass phase it becomes easy to control the homogeneous distribution of the grain boundary phase.
  • the presence or absence of an amorphous phase containing Hf—Y—O-based compound crystals and Y—Al—O can be confirmed by TEM analysis.
  • particles of carbide, oxide, nitride or the like having an average particle diameter of 2 ⁇ m or less.
  • the particles are selected from silicon (Si), 5A group vanadium (V), niobium (Nb), tantalum (Ta), 6A group chromium (Cr), molybdenum (Mo), tungsten (W). It is preferable that the particles are at least one kind of particles.
  • the above particles contribute to strengthening of the grain boundary phase by being present in the grain boundary phase. Further, in order to realize strengthening of the grain boundary phase, the average particle diameter is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. If the average particle size is larger than 2 ⁇ m, the continuous distribution of grain boundaries is hindered, which may cause structural defects.
  • the particles are preferably molybdenum compound particles. Since the molybdenum compound particles have lubricity, the presence of the molybdenum compound particles on the sliding surface (the surface of the silicon nitride sintered body) can improve the sliding characteristics of the sliding surface. Further, molybdenum compound particles (Mo 2 C) particles are excellent in lubricity.
  • the ⁇ -Si 3 N 4 crystal preferably has a major axis of 2 ⁇ m or more and a maximum aspect ratio of 7 or less.
  • the hexagonal ⁇ -SiAlON crystal preferably has an average particle diameter of 2 ⁇ m or less in both spherical and columnar shapes.
  • the average particle diameter of the spherical shape and the columnar shape is obtained from the average value of 100 grains, with the diameter of the equivalent circle using the major axis as the particle diameter.
  • Al is a component for improving the sinterability and is a component necessary for forming a hexagonal ⁇ -SiAlON crystal and a Y—Al—O-based compound amorphous phase.
  • Al 2 O 3 aluminum oxide
  • AlN aluminum nitride
  • the rare earth elements are Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb. At least one of (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium) is preferable. Moreover, when adding as a sintering auxiliary agent, adding as a rare earth oxide is preferable. In addition, when one or more of rare earth elements is less than 1% by mass and more than 10% by mass in terms of oxide, the proportion of the grain boundary phase may be out of the range of the embodiment, It becomes difficult to adjust the molar ratio.
  • yttrium is preferable.
  • Y 4 Si 2 O 7 N 2 (J phase) Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), Y 2 Si 3 O 3 N 4 , Hf—Y
  • J phase Y 4 Si 2 O 7 N 2
  • H phase Y 2 Si 3 O 12 N
  • K phase YSiO 2 N
  • Y 2 Si 3 O 3 N 4 Hf—Y It functions as a component that forms an amorphous phase containing —O-based compound crystals and Y—Al—O. It also promotes the formation of ⁇ -SiAlON crystals.
  • the 4A group elements are Ti (titanium), Zr (zirconium), and Hf (hafnium).
  • the group 5A elements are V (vanadium), Nb (niobium), and Ta (tantalum).
  • the 6A group elements are Cr (chromium), Mo (molybdenum), and W (tungsten).
  • the oxide conversion of the group 4A element is converted with TiO 2 , ZrO 2 , and HfO 2 .
  • oxide of the Group 5A element shall be converted by V 2 O 5, Nb 2 O 5, Ta 2 O 5.
  • oxide of the Group 6A elements shall be converted in Cr 2 O 3, MoO 3, WO 3.
  • the Group 4A element is preferably added as an oxide
  • the Group 5A element and the Group 6A element are preferably added as carbides.
  • the 4A group element is preferably Hf
  • the 6A group element is preferably Mo.
  • Hf functions as a component that forms Hf—YO compound crystals.
  • Mo molybdenum carbide (Mo 2 C) particles.
  • the molybdenum compound particles serve as a grain boundary phase strengthening component and function as a component for improving the lubricity of the sliding surface.
  • the particles of the 5A group element and the 6A group element have lubricity, and among them, the molybdenum compound has the most excellent lubricity.
  • silicon carbide is exemplified as the carbide particles.
  • silicon carbide When silicon carbide is added, it is preferably in the range of 1 to 5 wt%.
  • the total oxygen content of the sintering aid is in the range of 1.20 to 2.50 parts by mass when the amount of silicon nitride powder is 100 parts by mass. It is preferable to become.
  • the amount added as an oxide can be made the said range by adjusting the ratio added as nitride or carbide as an addition form of various sintering aids.
  • a method of adding an Al component with AlN and a Mo component with Mo 2 C or the like can be mentioned.
  • a hexagonal ⁇ -SiAlON crystal can be easily formed by reducing the total amount of oxygen in the sintering aid and increasing the number of nitrides.
  • the oxide sintering aid contributes to the formation of a grain boundary phase such as an amorphous phase containing Y—Al—O. Therefore, the area ratio of the grain boundary phase can also be controlled by setting the total oxygen content of the sintering aid within the above range.
  • the Vickers hardness (Hv) is 1500 or more
  • the fracture toughness value (K 1c ) is 6.0 MPa ⁇ m 1/2 or more
  • the three-point bending strength is 900 MPa or more. Excellent properties can be shown.
  • the Vickers hardness (Hv) is measured according to JIS-R-1610.
  • the fracture toughness value (K 1C ) is measured according to the indenter press-in method (IF method) of JIS-R-1607.
  • Niihara's formula is used to calculate the fracture toughness value.
  • the three-point bending strength is measured according to JIS-R-1601.
  • the second embodiment is a sliding member using the silicon nitride sintered body of the first embodiment.
  • the sliding member include a bearing ball, a roller, a check ball, a wear pad, a plunger, and a roller.
  • These sliding members slide with a mating member made of a metal member or ceramics.
  • a polished surface having a surface roughness (Ra) of 0.5 ⁇ m or less, further 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
  • the device incorporating the sliding member there are products in various fields such as machine tools, electronic devices, automobiles, airplanes, and even wind power generation.
  • FIG. 1 shows a bearing ball as an example of a sliding member and a rolling member.
  • reference numeral 1 denotes a bearing ball.
  • the bearing ball 1 is a true sphere.
  • a bearing is configured by arranging a plurality of bearing balls.
  • the entire surface of the bearing ball is a sliding surface.
  • shape uniformity is also required.
  • the area ratio of the grain boundary phase and the machinable coefficient Mc are adjusted to 0.100 to 0.120, so that the surface roughness (Ra) is 0.5 ⁇ m or less. Even if it is processed, there is little degranulation and the degranulation trace can be reduced. Therefore, when a polishing process using diamond abrasive grains is performed, a clean flat surface with few degranulation traces can be obtained.
  • the sliding characteristics can be stabilized over a long period of time by controlling the area ratio of the grain boundary phase per unit area 100 ⁇ m ⁇ 100 ⁇ m, the crystal component, and the like.
  • a durability of 700 hours or more, further 800 hours or more can be obtained.
  • silicon nitride powder is prepared.
  • the silicon nitride powder has an oxygen content of 1.7% by mass or less, contains ⁇ -phase type silicon nitride ( ⁇ -Si 3 N 4 ) of 85% by mass or more, has an average particle size of 1.0 ⁇ m or less, and further 0.8 ⁇ m.
  • ⁇ -Si 3 N 4 ⁇ -phase type silicon nitride
  • the following is preferable.
  • a sintering aid powder is prepared.
  • an Al component and a rare earth element component are essential components.
  • at least 1 sort (s) chosen from a 4A group element component, a 5A group element component, and a 6A group element component and silicon carbide shall be added as needed.
  • the total oxygen content of the sintering aid is preferably in the range of 1.20 to 2.50 parts by mass.
  • the Al component is a sintering aid effective for reacting with ⁇ -Si 3 N 4 together with rare earth elements to form a hexagonal ⁇ -SiAlON crystal.
  • the silicon nitride powder and the sintering aid powder are mixed.
  • mixing is performed using a ball mill mixer or the like so as to obtain a uniform mixed state.
  • hexagonal ⁇ -SiAlON crystals are easily formed uniformly.
  • the index of dispersibility at this time is preferably managed using the following thixotropy index (TI value).
  • TI value thixotropy index
  • TI value ⁇ b / ⁇ a
  • a binder is added to the raw material mixture obtained by mixing the silicon nitride powder and the sintering aid powder.
  • the mixing of the raw material mixture and the binder is performed using a ball mill or the like while performing pulverization and granulation as necessary.
  • the raw material mixture is formed into a desired shape.
  • the molding process is performed by a die press, a cold isostatic press (CIP), or the like.
  • the molding pressure is preferably 100 MPa or more.
  • the molded body obtained in the molding process is degreased.
  • the degreasing step is preferably performed at a temperature in the range of 300 to 600 ° C.
  • the degreasing step is performed in the air or in a non-oxidizing atmosphere, and the atmosphere is not particularly limited.
  • the degreased body obtained in the degreasing step is sintered at a temperature in the range of 1600 to 1900 ° C. If the sintering temperature is less than 1600 ° C., the crystal growth of silicon nitride crystal particles may be insufficient. That is, the reaction from ⁇ -Si 3 N 4 to ⁇ -Si 3 N 4 is insufficient, and a dense sintered body structure may not be obtained. In this case, the reliability as a material of the silicon nitride sintered body is lowered. If the sintering temperature exceeds 1900 ° C., the silicon nitride crystal grains grow too much, which may cause a decrease in strength and the ratio of the grain boundary phase may be out of the range.
  • the above sintering step may be performed by either normal pressure sintering or pressure sintering.
  • the sintering step is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere.
  • HIP hot isostatic pressing
  • non-oxidizing atmosphere examples include a nitrogen atmosphere and an argon atmosphere.
  • the HIP treatment temperature is preferably in the range of 1500 to 1900 ° C.
  • the silicon nitride sintered body thus manufactured is subjected to polishing processing at a necessary portion to produce a sliding member.
  • the polishing process is preferably performed using diamond abrasive grains. Since the silicon nitride sintered body according to the embodiment has good workability, it is possible to reduce the processing cost when manufacturing the sliding member from the silicon nitride sintered body. Further, a flat surface having a surface roughness (Ra) of 0.5 ⁇ m or less, further 0.1 ⁇ m or less, and 0.05 ⁇ m or less can be obtained.
  • Example 1 (Examples 1 to 13 and Comparative Examples 1 and 2)
  • the silicon nitride powder one having an oxygen content of 1.2% by mass, an average particle diameter of 0.7 ⁇ m, and a ratio of ⁇ -Si 3 N 4 of 99% by mass was prepared.
  • those shown in Table 1 were prepared as sintering aids.
  • the sintering aid powder those having an average particle size of 1.3 ⁇ m or less were used.
  • the silicon nitride powder and the sintering aid powder were blended and wet mixed for 50 hours by a ball mill. Mixing was performed so that the TI value at this time was 1.0 to 2.0. Next, after taking out from the solution and drying, it mixed with the binder and performed the mixing process for 20 hours with the ball mill, and mixed raw material powder was prepared, respectively.
  • each raw material mixture was molded by a die press and degreased at 460 ° C.
  • the degreased body was sintered in a nitrogen atmosphere at 1700 to 1800 ° C. for 4 to 6 hours.
  • the obtained sintered body was subjected to HIP treatment.
  • the HIP treatment was performed under the conditions of 1600 ° C. ⁇ 1 to 2 hours under a pressure of 100 MPa.
  • silicon nitride sintered bodies according to Examples 1 to 13 and Comparative Examples 1 and 2 were produced.
  • a sample for measuring three-point bending strength (silicon nitride sintered body) was used after being processed into a size of 3 mm ⁇ 4 mm ⁇ 50 mm.
  • Example 1 to 13 and Comparative Examples 1 and 2 silicon nitride sintered bodies were polished to a surface roughness (Ra) of 0.1 ⁇ m or less. Thereafter, Vickers hardness (Hv), fracture toughness value (K 1C ), three-point bending strength, and machinable coefficient Mc were measured. Vickers hardness (Hv) was measured by a method according to JIS-R-1610 with an indentation load of 20 kgf. The fracture toughness value was measured according to the indenter press-fitting method (IF method) of JIS-R-1607 with an indentation load of 20 kgf and determined by the Niihara equation. The three-point bending strength was measured by a method according to JIS-R-1601. The results are shown in Table 2.
  • the silicon nitride sintered body according to each example has a Vickers hardness (Hv) of 1500 or more and a fracture toughness value (K 1C ) of 6.0 MPa ⁇ m 1/2 or more, the three-point bending strength was 900 MPa or more, and the machinable coefficient Mc was in the range of 0.100 to 0.120.
  • the area ratio of the grain boundary phase per unit area of 100 ⁇ m ⁇ 100 ⁇ m was determined using an SEM photograph of the polished surface of the cross section.
  • the unit area of 100 ⁇ m ⁇ 100 ⁇ m was measured at five locations, and the upper limit and lower limit were described.
  • the presence or absence of “Hf—Y—O-based compound crystal” and “Y—Al—O-based compound amorphous phase” in the grain boundary phase was examined by TEM analysis. The results are shown in Table 4 below.
  • the silicon nitride sintered body according to each example had an area ratio of the grain boundary phase in the range of 25 to 40%.
  • Example 1B to 13B and Comparative Examples 1B to 2B Using the same manufacturing method as in Examples 1 to 13 and Comparative Examples 1 and 2, bearing balls as sliding members were produced.
  • the bearing ball was polished to have a diameter of 9.525 mm and a surface roughness (Ra) of 0.01 ⁇ m.
  • the surface roughness (Ra) is prepared as a sample before polishing to 0.01 ⁇ m, and the surface roughness when the polishing process is performed using a diamond grindstone (# 120) is compared. did.
  • the polishing conditions were as follows: the surface roughness after processing until the time when there was no change in the surface roughness (Ra), with the processing area of the sample being constant, the load being 40 N, the rotational speed of the grinding machine being 300 rpm, The thickness (Ra) was measured.
  • the degranulation state can be measured by this polishing process.
  • the degranulation state has a correlation with the surface roughness, meaning that the larger the value, the easier the degranulation occurs, and it is assumed that the reliability in the rolling life test tends to decrease.
  • the rolling life and the change in crushing strength before and after the rolling life were measured.
  • a bearing ball having a finished surface that was polished so that the surface roughness (Ra) was 0.01 ⁇ m was used.
  • the rolling life three bearing balls according to each embodiment are prepared, and the three bearing balls are arranged at equal intervals on a track having a diameter of 40 mm set on the upper surface of the bearing steel SUJ2. This is the rolling life as the time until the surface of the bearing ball peels off at a rotational speed of 1200 rpm with a load applied so that the maximum contact stress of 5.9 GPa acts on the bearing ball under the oil bath lubrication condition of turbine oil. was measured. Note that the rolling life was measured with an upper limit of 800 hours continuous.
  • the bearing balls according to the respective examples exhibited excellent sliding characteristics for 700 hours or more.
  • Examples 1 to 6 having Hf—Y—O-based compound crystals and adding Mo 2 C as a sintering aid maintained excellent characteristics even after 800 hours.
  • the bearing ball is a sliding member that uses the entire surface of the sintered body as a sliding surface. Therefore, if the characteristic as a bearing ball is excellent, even if it is used for other sliding members, the excellent characteristic is exhibited. Therefore, the silicon nitride sintered body of the embodiment can be applied to various sliding members.
  • the silicon nitride sintered body and the sliding member using the same it is possible to provide a silicon nitride sintered body that can provide long-term reliability with respect to sliding characteristics.
  • the machinable coefficient is adjusted, even if the surface is polished, it is easy to obtain a flat sliding surface because degranulation can be reduced. Therefore, long-term reliability can be obtained also with respect to the sliding member using the sintered body.

Abstract

This silicon nitride sintered body is characterized in that, during XRD analysis, when the strongest peak intensities detected at 29.6±0.3° and 31.0±0.3° corresponding to a hexogonal α-SiAlON crystal are I29.6° and I31.0° and the strongest peak intensities detected at 33.6±0.3° and 36.1±0.3° corresponding to a β-Si3N4 crystal are I33.6° and I36.1°, these strongest peak intensities fulfill the relation (I29.6° + I31.0°) / (I33.6° + I36.1°) = 0.10 to 0.30 ... (1), the area ratio of the grain boundary phase per 100μm×100μm unit area in an arbitrary cross section of the silicon nitride sintered body is 25-40%, and the machinable coefficient is 0.100-0.120. By means of the present invention, it is possible to provide a silicon nitride sintered body optimal for sliding members having sliding characteristics that remain stable for a long time, and to provide a sliding member using the same.

Description

窒化珪素焼結体およびそれを用いた摺動部材Silicon nitride sintered body and sliding member using the same
 本発明の実施形態は窒化珪素焼結体およびそれを用いた摺動部材に関する。 Embodiments of the present invention relate to a silicon nitride sintered body and a sliding member using the same.
 窒化珪素焼結体は、ベアリングボール、ローラなどの摺動部材の構成材として広く用いられている。例えば、従来、回転軸を支持するベアリング(軸受)部材として、特にベアリングボールの構成材として、軸受鋼等の金属材料が一般に使用されていた。しかしながら、軸受鋼等の金属材料では耐摩耗性が十分ではないことから、軸受けの寿命のばらつきが大きくなり信頼性が高い高速回転駆動が安定して得られないという問題点があった。 Silicon nitride sintered bodies are widely used as constituent materials for sliding members such as bearing balls and rollers. For example, conventionally, a metal material such as bearing steel has been generally used as a bearing (bearing) member for supporting a rotating shaft, particularly as a component of a bearing ball. However, since metal materials such as bearing steel do not have sufficient wear resistance, there has been a problem that high-speed rotation drive with high reliability cannot be stably obtained due to large variations in bearing life.
 上記のような問題点を解決する一手段として、近年になってベアリングボールの構成材として窒化珪素焼結体が用いられている。窒化珪素焼結体はセラミックスの中でも摺動特性に優れることから、一部の使用態様において耐摩耗性は十分であり、高速回転を行った場合においても信頼性が高い回転駆動をある程度の期間に亘って実現できることが確認されている。 As a means for solving the above problems, recently, a silicon nitride sintered body has been used as a component of a bearing ball. Since the silicon nitride sintered body is superior in sliding characteristics among ceramics, it has sufficient wear resistance in some usage modes, and even during high-speed rotation, a highly reliable rotational drive is performed for a certain period of time. It has been confirmed that this can be realized.
 従来の窒化珪素焼結体の焼結組成としては、窒化珪素-希土類酸化物-酸化アルミニウム系、窒化珪素-酸化イットリウム-酸化アルミニウム-窒化アルミニウム-チタニウム系等が知られている。上記焼結組成における酸化イットリウム(Y)などの希土類酸化物等の焼結助剤は、従来から焼結助剤として一般に使用されており、焼結性を高めて焼結体を緻密化し高強度化するために添加されている。例えば、特開2006-36554号公報(特許文献1)に開示されている。 Known sintered compositions of silicon nitride sintered bodies include silicon nitride-rare earth oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride-titanium system, and the like. Sintering aids such as rare earth oxides such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintering composition have been conventionally used as sintering aids, and the sintered body is improved by increasing the sinterability. It is added to increase the strength. For example, it is disclosed in JP 2006-36554 A (Patent Document 1).
 また、特開2002-326875号公報(特許文献2)には、所定の耐摩耗性試験を実施した場合に、400時間以上の長寿命を示す窒化珪素焼結体が開示されている。 In addition, Japanese Patent Laid-Open No. 2002-326875 (Patent Document 2) discloses a silicon nitride sintered body that exhibits a long life of 400 hours or longer when a predetermined wear resistance test is performed.
 一方、窒化珪素焼結体を使用したベアリングボールなどの摺動部材に対して、400時間以上、さらには800時間程度の長寿命が要求されるようになっている。ベアリングボールの長寿命化を行うことにより、軸受けなどの摺動部のメンテナンスフリー化を実現することができる。 On the other hand, sliding members such as bearing balls using a silicon nitride sintered body are required to have a long life of 400 hours or more, and further about 800 hours. By extending the life of the bearing ball, it is possible to realize maintenance-free sliding parts such as bearings.
 軸受けなどの摺動部材は工作機器、電子機器、自動車、航空機さらには風力発電など様々な分野の製品に使用されている。摺動部材の長寿命化が実現すると、各種製品の長寿命化、さらにはメンテナンスフリー化を達成することができる。 Sliding members such as bearings are used in products in various fields such as machine tools, electronic devices, automobiles, aircraft, and even wind power generation. When the service life of the sliding member is increased, the service life of various products can be increased and further maintenance-free can be achieved.
特開2006-36554号公報JP 2006-36554 A 特開2002-326875号公報JP 2002-326875 A
 本発明が解決しようとする課題は、摺動特性の更なる長期信頼性を具備させることが可能な窒化珪素焼結体およびそれを用いた摺動部材を提供することである。 The problem to be solved by the present invention is to provide a silicon nitride sintered body that can have further long-term reliability of sliding characteristics and a sliding member using the same.
 本発明の一実施形態によれば、窒化珪素焼結体をXRD分析した際に、六方晶系α-SiAlON結晶に対応する29.6±0.3°および31.0±0.3°に検出される最強ピーク強度をI29.6°、I31.0°とする一方、β-Si結晶に対応する33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI33.6°、I36.1°としたときに、各最強ピーク強度が下記関係式:
  (I29.6°+I31.0°)/(I33.6°+I36.1°)=0.10~0.30 …(1)
を満たし、上記窒化珪素焼結体の任意の断面における単位面積100μm×100μm当りの粒界相の面積比が25~40%であり、マシナブル係数が0.100~0.120であることを特徴とする窒化珪素焼結体が得られる。
According to one embodiment of the present invention, when the silicon nitride sintered body is subjected to XRD analysis, the temperature is 29.6 ± 0.3 ° and 31.0 ± 0.3 ° corresponding to the hexagonal α-SiAlON crystal. The detected strongest peak intensities are I 29.6 ° and I 31.0 ° , while 33.6 ± 0.3 ° and 36.1 ± 0.3 ° corresponding to β-Si 3 N 4 crystal. When the detected strongest peak intensity is I 33.6 ° and I 36.1 ° , each strongest peak intensity is represented by the following relational expression:
(I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.10 to 0.30 (1)
The area ratio of the grain boundary phase per unit area 100 μm × 100 μm in an arbitrary cross section of the silicon nitride sintered body is 25 to 40%, and the machinable coefficient is 0.100 to 0.120. A silicon nitride sintered body is obtained.
 また、窒化珪素焼結体をXRD分析した際に、YSi(J相)に対応する39.5±0.3°に検出される最強ピーク強度I39.5°が、下記関係式:
  (I39.5°)/(I33.6°+I36.1°)=0.03~0.10 …(2)
を満たすことが好ましい。また、窒化珪素焼結体をXRD分析した際に、YSi12N(H相)、YSiON(K相)またはYSiのいずれか1種以上に対応する31.9±0.3°に検出される最強ピーク強度I31.9°が、下記関係式:
  (I31.9°)/(I33.6°+I36.1°)=0.05~0.15 …(3)
を満たすことが好ましい。また、XRD分析は窒化珪素焼結体の任意の断面で行うことが好ましい。
Further, when the silicon nitride sintered body was subjected to XRD analysis, the strongest peak intensity I 39.5 ° detected at 39.5 ± 0.3 ° corresponding to Y 4 Si 2 O 7 N 2 (J phase) was The following relational expression:
(I 39.5 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.03 to 0.10 (2)
It is preferable to satisfy. Also, when XRD analysis is performed on a silicon nitride sintered body, it corresponds to any one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4 The strongest peak intensity I 31.9 ° detected at 31.9 ± 0.3 ° is expressed by the following relational expression:
(I 31.9 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.05 to 0.15 (3)
It is preferable to satisfy. The XRD analysis is preferably performed on an arbitrary cross section of the silicon nitride sintered body.
 また、Hf-Y-O系化合物結晶とY-Al-Oとを含有する非晶質相を含む粒界相を具備することが好ましい。また、平均粒径2μm以下の炭化物、酸化物、窒化物等の粒子を具備することが好ましい。また、前記粒子がモリブデン化合物の粒子であることが好ましい。また、Alを酸化物換算値で5~10質量%、希土類元素のいずれか1種類以上を酸化物換算値で1~10質量%、4A、5A、6A元素のいずれか1種類以上を酸化物換算値で1~5質量%含有し、かつ、Alと希土類元素とのmol比が、Al(mol):希土類元素(mol)=1:1~8:1であることが好ましい。また、ビッカース硬度(Hv)が1500以上であり、破壊靭性値(K1C)が6.0MPa・m1/2以上であり、かつ、3点曲げ強度が900MPa以上であることが好ましい。 In addition, it is preferable to have a grain boundary phase including an amorphous phase containing an Hf—Y—O-based compound crystal and Y—Al—O. Moreover, it is preferable to comprise particles of carbide, oxide, nitride or the like having an average particle diameter of 2 μm or less. The particles are preferably molybdenum compound particles. Also, Al is 5 to 10% by mass in terms of oxide, and any one or more of rare earth elements is 1 to 10% by mass in terms of oxide, and any one or more of 4A, 5A, and 6A elements is oxide. The content is preferably 1 to 5% by mass in terms of a converted value, and the molar ratio of Al to the rare earth element is preferably Al (mol): rare earth element (mol) = 1: 1 to 8: 1. Further, it is preferable that the Vickers hardness (Hv) is 1500 or more, the fracture toughness value (K 1C ) is 6.0 MPa · m 1/2 or more, and the three-point bending strength is 900 MPa or more.
 また、実施形態に係る摺動部材は、前記実施形態の窒化珪素焼結体を用いたことを特徴とするものである。また、摺動部材がベアリングボールであることが好ましい。また、摺動面は表面粗さ(Ra)が0.5μm以下の研磨面であることが好ましい。 Further, the sliding member according to the embodiment is characterized by using the silicon nitride sintered body of the embodiment. The sliding member is preferably a bearing ball. The sliding surface is preferably a polished surface having a surface roughness (Ra) of 0.5 μm or less.
 本実施形態は、摺動特性に関して長期信頼性を付与できる窒化珪素焼結体を提供できる。また、マシナブル係数を調整してあるので表面研磨加工したとしても、脱粒を小さくできるので平坦な摺動面を得易い。そのため、その焼結体を使用した摺動部材に関しても長期信頼性を得ることができる。 This embodiment can provide a silicon nitride sintered body that can provide long-term reliability with respect to sliding characteristics. In addition, since the machinable coefficient is adjusted, even if the surface is polished, it is easy to obtain a flat sliding surface because degranulation can be reduced. Therefore, long-term reliability can be obtained also with respect to the sliding member using the sintered body.
本発明に係る窒化けい素焼結体を用いて形成した摺動部材の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the sliding member formed using the silicon nitride sintered compact concerning this invention.
 以下、実施の形態について説明する。 Hereinafter, embodiments will be described.
(第一の実施形態)
 第一の実施形態は、窒化珪素焼結体をXRD分析した際に、六方晶系α-SiAlON結晶に対応する29.6±0.3°および31.0±0.3°に検出される最強ピーク強度をI29.6°、I31.0°とする一方、β-Si結晶に対応する33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI33.6°、I36.1°としたときに、各最強ピーク強度が関係式:
  (I29.6°+I31.0°)/(I33.6°+I36.1°)=0.10~0.30 …(1)
を満たし、上記窒化珪素焼結体の任意の断面における単位面積100μm×100μm当りの粒界相の面積比が25~40%であり、マシナブル係数が0.100~0.120であることを特徴とする窒化珪素焼結体である。
(First embodiment)
In the first embodiment, when the silicon nitride sintered body is subjected to XRD analysis, it is detected at 29.6 ± 0.3 ° and 31.0 ± 0.3 ° corresponding to the hexagonal α-SiAlON crystal. While the strongest peak intensities are I 29.6 ° and I 31.0 ° , they are detected at 33.6 ± 0.3 ° and 36.1 ± 0.3 ° corresponding to β-Si 3 N 4 crystal. When the strongest peak intensity is I 33.6 ° and I 36.1 ° , the strongest peak intensities are related to each other:
(I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.10 to 0.30 (1)
The area ratio of the grain boundary phase per unit area 100 μm × 100 μm in an arbitrary cross section of the silicon nitride sintered body is 25 to 40%, and the machinable coefficient is 0.100 to 0.120. This is a silicon nitride sintered body.
 まず、XRD分析を実施する条件について説明する。測定面は焼結体の任意の表面または任意の断面であり、表面粗さRaが1μm以下に研磨された研磨面とする。XRD分析は、Cuターゲット(Cu-Kα)、管電圧40kV、管電流40mA、スキャンスピート2.0°/min、スリット(RS)0.15mm、走査範囲(2θ)10°~60°にて行うものとする。なお、走査範囲(2θ)は、10°~60°を含んでいれば広い範囲を行ってもよいものとする。特に、焼結体の断面であることが好ましい。断面にて分析すれば、粒界相の面積比を求める面としても使用することができる。 First, the conditions for performing XRD analysis will be described. The measurement surface is an arbitrary surface or an arbitrary cross section of the sintered body, and is a polished surface having a surface roughness Ra of 1 μm or less. XRD analysis is performed with a Cu target (Cu-Kα), tube voltage 40 kV, tube current 40 mA, scan speed 2.0 ° / min, slit (RS) 0.15 mm, scan range (2θ) 10 ° -60 °. Shall. The scanning range (2θ) may be a wide range as long as it includes 10 ° to 60 °. In particular, the cross section of the sintered body is preferable. If it analyzes in a cross section, it can also be used as a surface for obtaining the area ratio of the grain boundary phase.
 第一の実施形態ではXRD分析したとき、六方晶系α-SiAlON結晶に対応する29.6±0.3°および31.0±0.3°に検出される最強ピーク強度をI29.6°、I31.0°とする一方、β-Si結晶に対応する33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI33.6°、I36.1°としたときに各最強ピーク強度が下記関係式:(I29.6°+I31.0°)/(I33.6°+I36.1°)=0.10~0.30を満たすものとする。XRD分析によるピーク位置は、それぞれの結晶の格子定数によって決定される。 In the first embodiment, when XRD analysis is performed, the strongest peak intensities detected at 29.6 ± 0.3 ° and 31.0 ± 0.3 ° corresponding to the hexagonal α-SiAlON crystal are represented by I 29.6. ° , I 31.0 ° , while the strongest peak intensities detected at 33.6 ± 0.3 ° and 36.1 ± 0.3 ° corresponding to β-Si 3 N 4 crystals are I 33.6 ° , I 36.1 ° , each strongest peak intensity is the following relational expression: (I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.10˜ It shall satisfy 0.30. The peak position by XRD analysis is determined by the lattice constant of each crystal.
 六方晶系α-SiAlON結晶が存在すれば、29.6±0.3°および31.0±0.3°にピークが検出される。言い換えると、29.6±0.3°および31.0±0.3°にピークが検出されると六方晶系α-SiAlON結晶が存在することを意味する。また、I29.6°およびI31.0°の両方のピーク強度を用いる理由は、結晶の配向性によるピーク強度の変化の影響を緩和するためである。 If hexagonal α-SiAlON crystals are present, peaks are detected at 29.6 ± 0.3 ° and 31.0 ± 0.3 °. In other words, when peaks are detected at 29.6 ± 0.3 ° and 31.0 ± 0.3 °, it means that hexagonal α-SiAlON crystals are present. The reason why both peak intensities of I 29.6 ° and I 31.0 ° are used is to mitigate the influence of changes in peak intensity due to crystal orientation.
 また、β-Si結晶が存在すれば、33.6±0.3°および36.1±0.3°にピークが検出される。言い換えると、33.6±0.3°および36.1±0.3°にピークが検出されるとβ-Si結晶が存在することを意味する。また、I33.6°およびI36.1°の両方のピーク強度を用いる理由は、結晶の配向性によるピーク強度の変化の影響を緩和するためである。 If β-Si 3 N 4 crystals are present, peaks are detected at 33.6 ± 0.3 ° and 36.1 ± 0.3 °. In other words, β-Si 3 N 4 crystals are present when peaks are detected at 33.6 ± 0.3 ° and 36.1 ± 0.3 °. The reason why both peak intensities of I 33.6 ° and I 36.1 ° are used is to mitigate the influence of changes in peak intensity due to crystal orientation.
 第一の実施形態では、(I29.6°+I31.0°)/(I33.6°+I36.1°)=0.10~0.30を満たすものである。ピーク強度の大きさは、それぞれの結晶の存在量に応じて決まる。(六方晶α-SiAlON結晶/β-Si結晶)ピーク強度比である(I29.6°+I31.0°)/(I33.6°+I36.1°)が0.10~0.30であるということは、β-Si結晶に対し六方晶系α-SiAlON結晶が所定量存在することを意味する。 In the first embodiment, (I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.10 to 0.30 is satisfied. The magnitude of the peak intensity is determined according to the abundance of each crystal. (Hexagonal α-SiAlON crystal / β-Si 3 N 4 crystal) The peak intensity ratio (I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) is 0.10 A value of ˜0.30 means that a predetermined amount of hexagonal α-SiAlON crystal is present with respect to β-Si 3 N 4 crystal.
 また、六方晶α-SiAlON結晶が存在すれば、34.4°、35.1°付近にもピークが検出される。また、β-Si結晶が存在すれば、23.4°、27.1°付近にもピークが検出される。この辺のピークの検出の有無も六方晶α-SiAlON結晶およびβ-Si結晶の存在の有無を把握するのに使用してもよい。また、後述する他の結晶のピークと重なって判別しにくい時は、各種定性分析と組み合わせてもよい。 If hexagonal α-SiAlON crystal is present, peaks are also detected in the vicinity of 34.4 ° and 35.1 °. If β-Si 3 N 4 crystals are present, peaks are also detected in the vicinity of 23.4 ° and 27.1 °. The presence / absence of the detection of the peak at this side may be used to grasp the presence / absence of the hexagonal α-SiAlON crystal and β-Si 3 N 4 crystal. Further, when it is difficult to discriminate due to overlapping with other crystal peaks described later, various qualitative analyzes may be combined.
 六方晶系α-SiAlON結晶を存在させることにより、六方晶系α-SiAlON結晶とβ-Si結晶とが混在した組織となり、粒界相の存在バラツキを低減することができ、粒界相を強化することができる。そのため、焼結体としての硬度、靭性などが向上し、耐摩耗性も向上させることができる。六方晶系α-SiAlON結晶は、球状形状または柱状形状の両方があってもよい。 The presence of the hexagonal α-SiAlON crystal results in a structure in which a hexagonal α-SiAlON crystal and a β-Si 3 N 4 crystal are mixed, and the presence of grain boundary phases can be reduced. The phase can be strengthened. Therefore, hardness, toughness, etc. as a sintered body can be improved, and wear resistance can be improved. The hexagonal α-SiAlON crystal may have both a spherical shape and a columnar shape.
 特に、六方晶α-SiAlON結晶はアスペクト比が2以下であることが好ましい。β-Si結晶は、アスペクト比が2以上の長柱状形状である。特許文献1や特許文献2の窒化珪素焼結体は、β-Si結晶が複雑に絡み合って硬度や靭性の高い窒化珪素焼結体を形成している。一方でβ-Si結晶は長柱状形状であることから、β-Si結晶同士の粒界サイズのバラツキが大きく、部分的に粒界相の多い箇所と少ない箇所が形成されていた。このため、摺動特性の長期寿命の低下がみられた。 In particular, the hexagonal α-SiAlON crystal preferably has an aspect ratio of 2 or less. The β-Si 3 N 4 crystal has a long columnar shape with an aspect ratio of 2 or more. In the silicon nitride sintered bodies of Patent Document 1 and Patent Document 2, β-Si 3 N 4 crystals are intertwined in a complex manner to form a silicon nitride sintered body having high hardness and toughness. On the other hand, since β-Si 3 N 4 crystals have a long columnar shape, there is a large variation in grain boundary size between β-Si 3 N 4 crystals, and there are formed portions where there are some grain boundary phases and where there are few. It was. For this reason, the long-term life of sliding characteristics was reduced.
 第一の実施形態では、長柱状形状のβ-Si結晶と、球状または柱状の六方晶α-SiAlON結晶が混在していることから、β-Si結晶同士の隙間に六方晶α-SiAlON結晶が入り込む構造となり、粒界相の存在割合を安定させることができる。 In the first embodiment, since the long columnar β-Si 3 N 4 crystal and the spherical or columnar hexagonal α-SiAlON crystal are mixed, hexagonal is formed in the gap between the β-Si 3 N 4 crystals. A structure in which crystal α-SiAlON crystal enters can stabilize the existence ratio of the grain boundary phase.
 (六方晶α-SiAlON結晶/β-Si結晶)のピーク強度比が0.10未満では、六方晶α-SiAlON結晶が少な過ぎて粒界相の存在割合のバラツキが大きくなる。一方、(六方晶α-SiAlON結晶/β-Si結晶)のピーク強度比が0.30を超えて大きいと、β-Si結晶の割合が低下し、β-Si結晶が複雑に絡み合った組織が減って摺動特性が低下する。 If the peak intensity ratio of (hexagonal α-SiAlON crystal / β-Si 3 N 4 crystal) is less than 0.10, the amount of hexagonal α-SiAlON crystal is too small and the variation in the presence ratio of the grain boundary phase becomes large. On the other hand, when the peak intensity ratio of (hexagonal α-SiAlON crystal / β-Si 3 N 4 crystal) is larger than 0.30, the proportion of β-Si 3 N 4 crystal decreases, and β-Si 3 N The structure in which the four crystals are intertwined in a complicated manner is reduced, and the sliding characteristics are lowered.
 また、窒化珪素焼結体の任意の断面における単位面積100μm×100μm当りの粒界相の面積比を25~40%とすることにより、粒界相の存在バラツキを制御し易くなる。第一の実施形態において、β-Si結晶と六方晶α-SiAlON結晶以外を粒界相とするものとする。第一の実施形態の窒化珪素焼結体は、任意の断面、つまりはどこの断面を測定したとしても単位面積100μm×100μm当りの粒界相の面積比が25~40%の範囲内となる。単位面積100μm×100μmという微小領域にて粒界相の割合を制御しているので焼結体の硬度や破壊靭性の向上のみならず、摺動特性の長期信頼性を得ることができる。 Further, by setting the area ratio of the grain boundary phase per unit area of 100 μm × 100 μm in an arbitrary cross section of the silicon nitride sintered body to 25 to 40%, it becomes easy to control the variation in the presence of the grain boundary phase. In the first embodiment, grains other than β-Si 3 N 4 crystal and hexagonal α-SiAlON crystal are used as the grain boundary phase. In the silicon nitride sintered body according to the first embodiment, the area ratio of the grain boundary phase per unit area of 100 μm × 100 μm is in the range of 25 to 40% regardless of the cross section of any section, that is, any cross section. . Since the ratio of the grain boundary phase is controlled in a small region of unit area 100 μm × 100 μm, not only the hardness and fracture toughness of the sintered body can be improved, but also long-term reliability of sliding characteristics can be obtained.
 なお粒界相の面積比の測定方法は次の通りである。まず、窒化珪素焼結体の任意の断面を得る。この断面を表面粗さRaが1μm以下となるように研磨加工を施す。β-Si結晶および六方晶α-SiAlON結晶と粒界相の領域を明確にするために、得られた研磨面にプラズマエッチング処理を行う。 In addition, the measuring method of the area ratio of a grain boundary phase is as follows. First, an arbitrary cross section of the silicon nitride sintered body is obtained. This cross section is polished so that the surface roughness Ra is 1 μm or less. In order to clarify the region of the grain boundary phase with the β-Si 3 N 4 crystal and the hexagonal α-SiAlON crystal, a plasma etching process is performed on the obtained polished surface.
 プラズマエッチング処理を実施すると、β-Si結晶および六方晶α-SiAlON結晶と粒界相のエッチングレートが異なるため、どちらか一方が多く削除される。例えばCF4を用いたプラズマエッチングでは、β-Si結晶および六方晶α-SiAlON結晶の方が、エッチングレートが高い(エッチングされ易い)ので、β-Si結晶および六方晶α-SiAlON結晶が凹部、粒界相が凸部となる。 When the plasma etching process is performed, the etching rate of the grain boundary phase is different from that of the β-Si 3 N 4 crystal and the hexagonal α-SiAlON crystal. For example, in plasma etching using CF4, β-Si 3 N 4 crystal and hexagonal α-SiAlON crystal have higher etching rates (easily etched), so β-Si 3 N 4 crystal and hexagonal α- The SiAlON crystal becomes a concave portion and the grain boundary phase becomes a convex portion.
 なお、エッチング処理は酸およびアルカリを用いるケミカルエッチングでも可能である。エッチング処理後の鏡面をSEM画像撮影(1000倍以上の倍率)する。SEM写真では、β-Si結晶および六方晶α-SiAlON結晶と粒界相がコントラストの差で区別できる。通常は、粒界相が白色に見える。エッチング処理を行うことにより、コントラストの差をより明瞭にすることができる。 The etching process can also be chemical etching using acid and alkali. The mirror surface after the etching process is taken with an SEM image (magnification of 1000 times or more). In the SEM photograph, β-Si 3 N 4 crystal and hexagonal α-SiAlON crystal and the grain boundary phase can be distinguished by the difference in contrast. Usually, the grain boundary phase appears white. By performing the etching process, the difference in contrast can be made clearer.
 SEM写真を画像解析することにより、単位面積当たりの粒界相の面積比を測定できる。なお、画像解析は、粒界相部分をカラーマッピングして画像解析する方法が有効である。また、一視野で単位面積100μm×100μmにならない場合は、複数回撮影し、合計で単位面積100μm×100μmにしてもよいものとする。 The area ratio of the grain boundary phase per unit area can be measured by image analysis of the SEM photograph. For image analysis, it is effective to perform image analysis by color mapping the grain boundary phase portion. In addition, when the unit area does not become 100 μm × 100 μm in one field of view, the image may be taken a plurality of times, and the unit area may be 100 μm × 100 μm in total.
 また、第一の実施形態の窒化珪素焼結体は、マシナブル係数が0.100~0.120である。 The silicon nitride sintered body of the first embodiment has a machinable coefficient of 0.100 to 0.120.
 上記マシナブル係数Mcは下記の式(4)から算出される値である。 The machinable coefficient Mc is a value calculated from the following equation (4).
  Mc=Fn9/8/(K1c 1/2・Hv5/8) …(4)
式(4)において、Fnは押込み荷重であり、ここでは20kgfとする。20kgfの押込み荷重Fnは、窒化珪素焼結体の硬度や靭性を測定する上で好適な値である。ビッカース硬度(Hv)は、JIS-R-1610に準じて測定するものとする。破壊靭性値(K1C)は、JIS-R-1607の圧子圧入法(IF法)に準じて測定するものとする。破壊靭性値の計算には、新原の式を用いるものとする。後述するベアリングボールについては、その断面を使用して測定するものとする。
Mc = Fn 9/8 / (K 1c 1/2 · Hv 5/8 ) (4)
In Formula (4), Fn is an indentation load, and is 20 kgf here. The indentation load Fn of 20 kgf is a suitable value for measuring the hardness and toughness of the silicon nitride sintered body. Vickers hardness (Hv) shall be measured according to JIS-R-1610. The fracture toughness value (K 1C ) is measured according to the indenter press-in method (IF method) of JIS-R-1607. For the calculation of fracture toughness value, Niihara's formula shall be used. The bearing ball described later is measured using its cross section.
 マシナブル係数Mcは、押込み荷重(Fn)、ビッカース硬度(Hv)および破壊靭性値(K1C)を使用した加工性を示す係数である。これはラテラル亀裂破壊モデルの関係式であり、Mcは1粒の砥粒により取り除かれる物質量を示している。マシナブル係数Mcが大きいほど一度に加工できる量が大きくなることを意味している。 The machinable coefficient Mc is a coefficient indicating workability using the indentation load (Fn), the Vickers hardness (Hv), and the fracture toughness value (K 1C ). This is a relational expression of the lateral crack fracture model, and Mc indicates the amount of material removed by one abrasive grain. This means that the larger the machinable coefficient Mc, the larger the amount that can be processed at one time.
 ラテラル亀裂破壊モデルとは、研削加工時の材料の除去メカニズムとして、Evans氏とMarshall氏によって提案されたモデルである。このモデルにおいて、1つの研削砥粒が材料表面を通過するときに取り除かれる物質の量(デルタV)は、砥粒を材料に垂直方向に押し込む力Fnとビッカース硬さ(Hv)と破壊靭性値(K1C)との関係において、[Fn9/8/(K1c 1/2・Hv5/8)]の値に比例すると示されている。ここでは、デルタVをマシナブル係数Mcと置き換えている。 The lateral crack fracture model is a model proposed by Evans and Marshall as a material removal mechanism during grinding. In this model, the amount of material (Delta V) that is removed when one abrasive grain passes through the material surface is determined by the force Fn, Vickers hardness (Hv), and fracture toughness value that push the abrasive grain vertically into the material. In relation to (K 1C ), it is shown that the value is proportional to the value of [Fn 9/8 / (K 1c 1/2 · Hv 5/8 )]. Here, delta V is replaced with a machinable coefficient Mc.
 加工は大別して、脆性モードと延性モードとに分けられる。脆性モードはいわゆる粗加工に相当し、延性モードはいわゆる仕上げ加工に相当する。摩耗とは延性モードに相当すると考えられるので、耐摩耗性部材の要求性能を満足させるためには、延性モードの加工性を低下させることなく、脆性モードの加工性を改善することが重要となる。また、摩耗モデルの1つとしては、粒界に微小な予亀裂が発生し、その伝播により材料表面の破壊に至り、摩耗が発生する機構が考えられている。 Processing is roughly divided into brittle mode and ductile mode. The brittle mode corresponds to so-called roughing, and the ductility mode corresponds to so-called finishing. Since wear is considered to correspond to ductility mode, in order to satisfy the required performance of wear resistant members, it is important to improve the workability of the brittle mode without reducing the workability of the ductile mode. . Further, as one of the wear models, a mechanism is considered in which minute precracks are generated at the grain boundaries and the propagation of the cracks leads to the destruction of the material surface, thereby causing wear.
 摩耗モデルの機械的接触の過酷さを表すパラメータSc.mは、摩擦係数μ、最大ヘルツ応力Pmax、材料の結晶粒径d、破壊靭性値K1cから下式で表される。 A parameter Sc. Representing the severity of mechanical contact of the wear model. m is expressed by the following equation from the friction coefficient μ, the maximum Hertz stress Pmax, the crystal grain size d of the material, and the fracture toughness value K 1c .
  Sc.m=[(1+10・μ)・Pmax・(d1/2)]/K1c
 パラメータSc.mが大きいと摩耗が大きく、パラメータSc.mが小さいと摩耗が小さいことを意味する。材料の結晶粒径dを小さくすることや破壊靭性値K1cを大きくすることで、摩耗を抑えることが可能であることが分かる。
Sc. m = [(1 + 10 · μ) · Pmax · (d 1/2 )] / K 1c
Parameter Sc. When m is large, wear is large, and the parameter Sc. If m is small, it means that wear is small. It can be seen that wear can be suppressed by reducing the crystal grain size d of the material or increasing the fracture toughness value K1c .
 これらの点を考慮した場合、マシナブル係数Mcは0.100~0.120の範囲が好ましい。マシナブル係数Mcが0.100未満の場合には、砥粒による研磨加工量が少ないため、窒化珪素焼結体の研磨加工時間が増大する。マシナブル係数Mcが0.120を超えると、砥粒による窒化珪素焼結体の研磨加工量が大きくなりすぎる。研磨加工量が大きいと加工性は向上するものの、摺動部材としての耐久性が低下する。 In consideration of these points, the machinable coefficient Mc is preferably in the range of 0.100 to 0.120. When the machinable coefficient Mc is less than 0.100, the polishing time of the silicon nitride sintered body increases because the amount of polishing with abrasive grains is small. When the machinable coefficient Mc exceeds 0.120, the polishing amount of the silicon nitride sintered body by the abrasive grains becomes too large. When the polishing amount is large, the workability is improved, but the durability as a sliding member is lowered.
 マシナブル係数Mcが0.100~0.120の範囲である窒化珪素焼結体は、焼結体として硬度および破壊靭性を向上させた上で、摺動特性を向上させることができる。また、摺動面を研磨加工する際の脱粒痕を小さくすることができるので表面粗さRaが0.5μm以下、さらには0.1μm以下の平坦面が得易い。加工性を考慮するとマシナブル係数Mcは0.110~0.120の範囲であることが好ましい。 A silicon nitride sintered body having a machinable coefficient Mc in the range of 0.100 to 0.120 can improve sliding properties while improving hardness and fracture toughness as a sintered body. Further, since the grain drop marks when polishing the sliding surface can be reduced, it is easy to obtain a flat surface with a surface roughness Ra of 0.5 μm or less, and further 0.1 μm or less. In consideration of workability, the machinable coefficient Mc is preferably in the range of 0.110 to 0.120.
 また、窒化珪素焼結体をXRD分析した際に、YSi(J相)に対応する39.5±0.3°に検出される最強ピーク強度I39.5°は、関係式:(I39.5°)/(I33.6°+I36.1°)=0.03~0.10を満たすことが好ましい。 Further, when the silicon nitride sintered body was subjected to XRD analysis, the strongest peak intensity I 39.5 ° detected at 39.5 ± 0.3 ° corresponding to Y 4 Si 2 O 7 N 2 (J phase) is The relational expression: (I 39.5 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.03 to 0.10 is preferably satisfied.
 YSi(J相)は粒界相に存在する結晶相である。39.5±0.3°にピークが検出されるということは、YSi(J相)が存在するということを意味するものである。YSi(J相)のピーク強度比(I39.5°)/(I33.6°+I36.1°)を0.03~0.10の範囲とすることにより、粒界相を強化することができる。粒界相を強化することにより摺動特性の長期信頼性をさらに向上させることができる。 Y 4 Si 2 O 7 N 2 (J phase) is a crystal phase present in the grain boundary phase. The fact that a peak is detected at 39.5 ± 0.3 ° means that Y 4 Si 2 O 7 N 2 (J phase) exists. By setting the peak intensity ratio (I 39.5 ° ) / (I 33.6 ° + I 36.1 ° ) of Y 4 Si 2 O 7 N 2 (J phase) in the range of 0.03 to 0.10 , The grain boundary phase can be strengthened. By strengthening the grain boundary phase, the long-term reliability of the sliding characteristics can be further improved.
 なお、YSi(J相)が存在すれば、31.0°、34.4°、36.1°、39.5°、44.5°付近(±0.3°)にもピークが検出される。I39.5°を選択したのは、J相に応じたピークの中で最強ピークを示す可能性が高いためである。 If Y 4 Si 2 O 7 N 2 (J phase) is present, the vicinity of 31.0 °, 34.4 °, 36.1 °, 39.5 °, 44.5 ° (± 0.3 ° ) Is also detected. The reason why I 39.5 ° is selected is that there is a high possibility of showing the strongest peak among the peaks corresponding to the J phase.
 また、窒化珪素焼結体をXRD分析した際に、YSi12N(H相)、YSiON(K相)またはYSiのいずれか1種以上に対応する31.9±0.3°に検出される最強ピーク強度I31.9°は、(I31.9°)/(I33.6°+I36.1°)=0.05~0.15を満たすことが好ましい。 Also, when XRD analysis is performed on a silicon nitride sintered body, it corresponds to any one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4 The strongest peak intensity I 31.9 ° detected at 31.9 ± 0.3 ° is (I 31.9 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.05 to 0.00. 15 is preferably satisfied.
 YSi12N(H相)、YSiON(K相)またはYSiのいずれか1種は、粒界相に存在する結晶相である。31.9±0.3°にピークが検出されるということは、YSi12N(H相)、YSiON(K相)またはYSiのいずれか1種以上の結晶相が存在することを意味するものである。 Any one of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), and Y 2 Si 3 O 3 N 4 is a crystal phase present in the grain boundary phase. The fact that a peak is detected at 31.9 ± 0.3 ° means that any one of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), and Y 2 Si 3 O 3 N 4 is detected. This means that there are more than one crystalline phase.
 ピーク強度比(I31.9°)/(I33.6°+I36.1°)を0.05~0.15の範囲とすることにより、粒界相を強化することができる。粒界相を強化することにより摺動特性の長期信頼性をさらに向上させることができる。また、I31.9°を選択した理由はYSi12N(H相)、YSiON(K相)またはYSiのいずれか1種以上に応じたピークの中の最強ピークの1つであることに起因している。 By setting the peak intensity ratio (I 31.9 ° ) / (I 33.6 ° + I 36.1 ° ) in the range of 0.05 to 0.15, the grain boundary phase can be strengthened. By strengthening the grain boundary phase, the long-term reliability of the sliding characteristics can be further improved. The reason why I 31.9 ° is selected is the peak corresponding to one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4. This is due to the fact that it is one of the strongest peaks.
 また、Hf-Y-O系化合物結晶とY-Al-Oとを含有する非晶質相を含む粒界相を具備することが好ましい。Hf-Y-O系化合物結晶は、ハフニウムとイットリウムと酸素とを含む化合物結晶である。また、Y-Al-Oを含有する非晶質相は、少なくともイットリウムとアルミニウムと酸素とを含む非晶質相である。 Further, it is preferable to have a grain boundary phase including an amorphous phase containing Hf—YO compound crystal and Y—Al—O. The Hf—Y—O-based compound crystal is a compound crystal containing hafnium, yttrium, and oxygen. The amorphous phase containing Y—Al—O is an amorphous phase containing at least yttrium, aluminum, and oxygen.
 ハフニウムは、活性な成分であり、イットリウムや酸素と反応してHf-Y-O系化合物結晶を形成し、Siの成長反応を促進する。このとき、YSi(J相)、YSi12N(H相)、YSiON(K相)またはYSiの1種以上の形成にも寄与すると考えられる。 Hafnium is an active component, reacts with yttrium and oxygen to form Hf—Y—O-based compound crystals, and promotes the growth reaction of Si 3 N 4 . At this time, formation of one or more of Y 4 Si 2 O 7 N 2 (J phase), Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4 It is thought that it contributes to.
 また、Y-Al-Oを含有する相を非晶質相(ガラス相)とすることにより、粒界相の均質な分布を制御しやすくなる。なお、Hf-Y-O系化合物結晶とY-Al-Oとを含有する非晶質相の存在の有無はTEM分析により確認できる。 Further, by making the phase containing Y—Al—O an amorphous phase (glass phase), it becomes easy to control the homogeneous distribution of the grain boundary phase. Note that the presence or absence of an amorphous phase containing Hf—Y—O-based compound crystals and Y—Al—O can be confirmed by TEM analysis.
 また、平均粒径2μm以下の炭化物、酸化物、窒化物等の粒子を具備することが好ましい。上記粒子としては、珪素(Si)、5A族であるバナジウム(V)、ニオブ(Nb)、タンタル(Ta)、6A族であるクロム(Cr)、モリブデン(Mo)、タングステン(W)、から選ばれる少なくとも1種以上の粒子であることが好ましい。 Further, it is preferable to have particles of carbide, oxide, nitride or the like having an average particle diameter of 2 μm or less. The particles are selected from silicon (Si), 5A group vanadium (V), niobium (Nb), tantalum (Ta), 6A group chromium (Cr), molybdenum (Mo), tungsten (W). It is preferable that the particles are at least one kind of particles.
 上記粒子は、粒界相に存在することにより、粒界相の強化に資する。また、粒界相の強化を実現するためには平均粒径2μm以下、さらには1.5μm以下であることが好ましい。平均粒径が2μmを超えて大きいと、粒界の連続分布性を阻害し、構造欠陥の起因となるおそれがある。 The above particles contribute to strengthening of the grain boundary phase by being present in the grain boundary phase. Further, in order to realize strengthening of the grain boundary phase, the average particle diameter is preferably 2 μm or less, more preferably 1.5 μm or less. If the average particle size is larger than 2 μm, the continuous distribution of grain boundaries is hindered, which may cause structural defects.
 また、上記粒子がモリブデン化合物粒子であることが好ましい。モリブデン化合物粒子は潤滑性があることから、摺動面(窒化珪素焼結体の表面)に存在することにより、摺動面の摺動特性を向上させることができる。また、モリブデン化合物粒子は炭化モリブデン(MoC)粒子が潤滑性に優れている。 The particles are preferably molybdenum compound particles. Since the molybdenum compound particles have lubricity, the presence of the molybdenum compound particles on the sliding surface (the surface of the silicon nitride sintered body) can improve the sliding characteristics of the sliding surface. Further, molybdenum compound particles (Mo 2 C) particles are excellent in lubricity.
 また、β-Si結晶は、長径が2μm以上であり、最大アスペクト比が7以下であることが好ましい。また、六方晶α-SiAlON結晶は球状形状、柱状形状のいずれも平均粒径が2μm以下であることが好ましい。なお球状形状、柱状形状(アスペクト比2以下)の平均粒径は長軸を使った等価円の直径を粒径とし、100粒の平均値により求めるものとする。 Further, the β-Si 3 N 4 crystal preferably has a major axis of 2 μm or more and a maximum aspect ratio of 7 or less. The hexagonal α-SiAlON crystal preferably has an average particle diameter of 2 μm or less in both spherical and columnar shapes. In addition, the average particle diameter of the spherical shape and the columnar shape (aspect ratio of 2 or less) is obtained from the average value of 100 grains, with the diameter of the equivalent circle using the major axis as the particle diameter.
 また、Alを酸化物換算値で5~10質量(wt)%、希土類元素のいずれか1種類以上を酸化物換算値で1~10質量%、4A、5A、6A元素のいずれか1種類以上を酸化物換算値で1~5質量%含有し、かつ、Alと希土類元素とのmol比が、Al(mol):希土類元素(mol)=1:1~8:1であることが好ましい。 Also, Al is 5 to 10 mass (wt)% in terms of oxide, and any one or more of rare earth elements is 1 to 10 mass% in terms of oxide, and one or more of 4A, 5A, and 6A elements Is preferably 1 to 5% by mass in terms of oxide, and the molar ratio of Al to the rare earth element is preferably Al (mol): rare earth element (mol) = 1: 1 to 8: 1.
 Al(アルミニウム)は、焼結性を向上させる成分であると共に、六方晶α-SiAlON結晶やY-Al-O系化合物非晶質相を形成するのに必要な成分である。また、焼結助剤として添加する場合は、Al(酸化アルミニウム)、AlN(窒化アルミニウム)であることが好ましい。Alが酸化物換算で5質量%未満であると、粒界相の割合が低下するおそれがあると共に、各種の結晶成分や非晶質成分の形成が不足するおそれがある。一方、10質量%を超えると粒界相が多くなり過ぎるおそれがある。 Al (aluminum) is a component for improving the sinterability and is a component necessary for forming a hexagonal α-SiAlON crystal and a Y—Al—O-based compound amorphous phase. Further, if added as a sintering aid, Al 2 O 3 (aluminum oxide) is preferably AlN (aluminum nitride). If the Al content is less than 5% by mass in terms of oxide, the proportion of the grain boundary phase may decrease, and the formation of various crystal components and amorphous components may be insufficient. On the other hand, if it exceeds 10 mass%, the grain boundary phase may be excessive.
 希土類元素は、Y(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジウム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)の少なくとも1種以上であることが好ましい。また、焼結助剤として添加する場合は、希土類酸化物として添加することが好ましい。また、希土類元素のいずれか1種類以上を酸化物換算値で1質量%未満、10質量%を超えると粒界相の割合が実施形態の範囲外となるおそれがあり、また、Al元素とのモル比の調整が困難になる。 The rare earth elements are Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb. At least one of (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium) is preferable. Moreover, when adding as a sintering auxiliary agent, adding as a rare earth oxide is preferable. In addition, when one or more of rare earth elements is less than 1% by mass and more than 10% by mass in terms of oxide, the proportion of the grain boundary phase may be out of the range of the embodiment, It becomes difficult to adjust the molar ratio.
 また、希土類元素の中ではイットリウムが好ましい。イットリウムであれば、YSi(J相)、YSi12N(H相)、YSiON(K相)、YSi、Hf-Y-O系化合物結晶、Y-Al-Oを含有する非晶質相を形成する成分として機能する。また、α-SiAlON結晶の生成も促進する。 Of the rare earth elements, yttrium is preferable. In the case of yttrium, Y 4 Si 2 O 7 N 2 (J phase), Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), Y 2 Si 3 O 3 N 4 , Hf—Y It functions as a component that forms an amorphous phase containing —O-based compound crystals and Y—Al—O. It also promotes the formation of α-SiAlON crystals.
 また、4A、5A、6A元素のいずれか1種類以上を酸化物換算値で1~5質量%含むことが好ましい。4A族元素は、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)である。また、5A族元素は、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)である。また、6A族元素は、Cr(クロム)、Mo(モリブデン)、W(タングステン)である。4A族元素の酸化物換算は、TiO、ZrO、HfOにて換算するものとする。また、5A族元素の酸化物換算は、V,Nb,Taにて換算するものとする。また、6A族元素の酸化物換算は、Cr、MoO、WOにて換算するものとする。 Further, it is preferable to contain 1 to 5% by mass of any one of 4A, 5A and 6A elements in terms of oxide. The 4A group elements are Ti (titanium), Zr (zirconium), and Hf (hafnium). The group 5A elements are V (vanadium), Nb (niobium), and Ta (tantalum). The 6A group elements are Cr (chromium), Mo (molybdenum), and W (tungsten). The oxide conversion of the group 4A element is converted with TiO 2 , ZrO 2 , and HfO 2 . Also, in terms of oxide of the Group 5A element shall be converted by V 2 O 5, Nb 2 O 5, Ta 2 O 5. Also, in terms of oxide of the Group 6A elements shall be converted in Cr 2 O 3, MoO 3, WO 3.
 また、焼結助剤として添加する場合は、酸化物、炭化物、窒化物のいずれか1種以上で添加することが好ましい。また、4A族元素は酸化物、5A族元素および6A族元素は炭化物として添加することが好ましい。また、4A族元素はHf、6A族元素はMoであることが好ましい。Hfは前述のようにHf-Y-O系化合物結晶を形成する成分として機能する。また、Moを炭化モリブデン(MoC)粒子として添加することが好ましい。前述のようにモリブデン化合物粒子は粒界相強化成分になると共に、摺動面の潤滑性を向上させる成分として機能する。5A族元素および6A族元素の粒子は潤滑性を有しているが、その中でもモリブデン化合物が最も優れた潤滑性を有する。 Moreover, when adding as a sintering auxiliary agent, it is preferable to add at least 1 type of an oxide, a carbide | carbonized_material, and nitride. Further, the Group 4A element is preferably added as an oxide, and the Group 5A element and the Group 6A element are preferably added as carbides. The 4A group element is preferably Hf, and the 6A group element is preferably Mo. As described above, Hf functions as a component that forms Hf—YO compound crystals. Moreover, it is preferable to add Mo as molybdenum carbide (Mo 2 C) particles. As described above, the molybdenum compound particles serve as a grain boundary phase strengthening component and function as a component for improving the lubricity of the sliding surface. The particles of the 5A group element and the 6A group element have lubricity, and among them, the molybdenum compound has the most excellent lubricity.
 また、前記以外の成分としては、炭化物粒子として炭化珪素(SiC)が挙げられる。炭化珪素を添加する場合は1~5wt%の範囲内であることが好ましい。 Moreover, as a component other than the above, silicon carbide (SiC) is exemplified as the carbide particles. When silicon carbide is added, it is preferably in the range of 1 to 5 wt%.
 また、Alと希土類元素のmol比がAl(mol):希土類元素(mol)=1:1~8:1であることが好ましい。Al量を希土類元素量の1~8倍存在させることにより、六方晶α-SiAlON結晶が形成され易くなる。また、Al(mol):希土類元素(mol)=1.4:1~7.0:1の範囲内であることが好ましい。 Further, the molar ratio of Al to the rare earth element is preferably Al (mol): rare earth element (mol) = 1: 1 to 8: 1. By making Al content 1 to 8 times the amount of rare earth element, hexagonal α-SiAlON crystals are easily formed. Further, Al (mol): rare earth element (mol) is preferably in the range of 1.4: 1 to 7.0: 1.
 また、前述の各成分を焼結助剤として添加する場合、窒化珪素粉末量を100質量部としたとき、焼結助剤の合計の酸素量が1.20~2.50質量部の範囲となることが好ましい。各種焼結助剤の添加形態として窒化物または炭化物として添加する割合を調製することにより、酸化物として添加する量を上記範囲とすることができる。例えば、Al成分をAlN、Mo成分をMoCなどで添加する方法が挙げられる。燒結助剤の合計の酸素量を低減して、窒化物を増やすことによっても、六方晶α-SiAlON結晶を形成し易くなる。また、酸化物焼結助剤はY-Al-Oを含有する非晶質相などの粒界相の形成に寄与する。そのため、焼結助剤の合計酸素量を前記範囲にすることによっても、粒界相の面積比を制御することができる。 Further, when each of the above-mentioned components is added as a sintering aid, the total oxygen content of the sintering aid is in the range of 1.20 to 2.50 parts by mass when the amount of silicon nitride powder is 100 parts by mass. It is preferable to become. The amount added as an oxide can be made the said range by adjusting the ratio added as nitride or carbide as an addition form of various sintering aids. For example, a method of adding an Al component with AlN and a Mo component with Mo 2 C or the like can be mentioned. A hexagonal α-SiAlON crystal can be easily formed by reducing the total amount of oxygen in the sintering aid and increasing the number of nitrides. The oxide sintering aid contributes to the formation of a grain boundary phase such as an amorphous phase containing Y—Al—O. Therefore, the area ratio of the grain boundary phase can also be controlled by setting the total oxygen content of the sintering aid within the above range.
 また、上記のような窒化珪素焼結体であれば、ビッカース硬度(Hv)が1500以上、破壊靭性値(K1c)が6.0MPa・m1/2以上、3点曲げ強度が900MPa以上と優れた特性を示すことができる。 In the case of the silicon nitride sintered body as described above, the Vickers hardness (Hv) is 1500 or more, the fracture toughness value (K 1c ) is 6.0 MPa · m 1/2 or more, and the three-point bending strength is 900 MPa or more. Excellent properties can be shown.
 なお、ビッカース硬度(Hv)は、JIS-R-1610に準じて測定するものとする。破壊靭性値(K1C)は、JIS-R-1607の圧子圧入法(IF法)に準じて測定するものとする。また、破壊靭性値の計算には、新原の式を用いるものとする。また、3点曲げ強度はJIS-R-1601に準じて測定する。 The Vickers hardness (Hv) is measured according to JIS-R-1610. The fracture toughness value (K 1C ) is measured according to the indenter press-in method (IF method) of JIS-R-1607. In addition, Niihara's formula is used to calculate the fracture toughness value. The three-point bending strength is measured according to JIS-R-1601.
(第二の実施形体)
 第二の実施形態は、第一の実施形態の窒化珪素焼結体を用いた摺動部材である。摺動部材としては、ベアリングボール、ローラ、チェックボール、ウエアパッド、プランジャー、コロなどが挙げられる。これら摺動部材は、金属部材やセラミックスなどからなる相手部材と摺動する。摺動面の耐久性を上げるためには、表面粗さ(Ra)が0.5μm以下、さらには0.1μm以下、より好ましくは0.05μm以下に研磨加工した研磨面とすることが好ましい。摺動面を平坦にすることにより、窒化珪素焼結体の耐久性を向上させると共に相手部材への攻撃性を低下させることができる。相手部材への攻撃性を低下させることにより、相手部材の消耗を低減できるので摺動部材を組み込んだ装置の耐久性を向上させることができる。
(Second embodiment)
The second embodiment is a sliding member using the silicon nitride sintered body of the first embodiment. Examples of the sliding member include a bearing ball, a roller, a check ball, a wear pad, a plunger, and a roller. These sliding members slide with a mating member made of a metal member or ceramics. In order to increase the durability of the sliding surface, it is preferable to use a polished surface having a surface roughness (Ra) of 0.5 μm or less, further 0.1 μm or less, more preferably 0.05 μm or less. By flattening the sliding surface, it is possible to improve the durability of the silicon nitride sintered body and reduce the aggressiveness to the mating member. By reducing the aggression of the mating member, the wear of the mating member can be reduced, so that the durability of the device incorporating the sliding member can be improved.
 摺動部材を組み込んだ装置としては、工作機器、電子機器、自動車、航空機さらには風力発電など様々な分野の製品が挙げられる。 As the device incorporating the sliding member, there are products in various fields such as machine tools, electronic devices, automobiles, airplanes, and even wind power generation.
 図1に、摺動部材および転動部材の一例としてベアリングボールを示した。図1中、符号1はベアリングボールである。ベアリングボール1は、真球状の球体である。一般的に、複数個のベアリングボールを配置して軸受けが構成される。ベアリングボールは表面全体が摺動面となる。また、軸受けを構成するにあたり、複数個のベアリングボールを用いることから、形状の均一性も求められる。第一の実施形態の窒化珪素焼結体は、粒界相の面積比およびマシナブル係数Mcを0.100~0.120に調整してあるので、表面粗さ(Ra)0.5μm以下の研磨加工を施したとしても脱粒が少なく、脱粒痕も小さくできる。そのため、ダイヤモンド砥粒を使った研磨加工を行った場合に、脱粒痕の少ない、きれいな平坦面が得られる。 FIG. 1 shows a bearing ball as an example of a sliding member and a rolling member. In FIG. 1, reference numeral 1 denotes a bearing ball. The bearing ball 1 is a true sphere. In general, a bearing is configured by arranging a plurality of bearing balls. The entire surface of the bearing ball is a sliding surface. In addition, since a plurality of bearing balls are used in configuring the bearing, shape uniformity is also required. In the silicon nitride sintered body according to the first embodiment, the area ratio of the grain boundary phase and the machinable coefficient Mc are adjusted to 0.100 to 0.120, so that the surface roughness (Ra) is 0.5 μm or less. Even if it is processed, there is little degranulation and the degranulation trace can be reduced. Therefore, when a polishing process using diamond abrasive grains is performed, a clean flat surface with few degranulation traces can be obtained.
 また、単位面積100μm×100μmあたりの粒界相の面積比や、結晶成分などの制御により、摺動特性を長期に渡り安定化させることができる。例えば、従来、ベアリングボールの場合、連続運転にて400~500時間の耐久性であったものが、700時間以上、さらには800時間以上の耐久性を得ることができる。そのため、摺動部材の長期信頼性を維持するだけでなく、それを組み込んだ装置の長期信頼性またはメンテナンスフリー化などの効果も得られる。 Also, the sliding characteristics can be stabilized over a long period of time by controlling the area ratio of the grain boundary phase per unit area 100 μm × 100 μm, the crystal component, and the like. For example, in the case of a conventional bearing ball, which has a durability of 400 to 500 hours in continuous operation, a durability of 700 hours or more, further 800 hours or more can be obtained. For this reason, not only the long-term reliability of the sliding member is maintained, but also the effects such as the long-term reliability and maintenance-free of the apparatus incorporating the sliding member can be obtained.
(第一の実施形態の窒化珪素焼結体の製造方法)
 次に製造方法について説明する。第一の実施形態の窒化珪素焼結体は上記構成を有すれば特に製造方法は限定されるものではないが効率的に得るための方法として次のものが挙げられる。
(Method for producing a silicon nitride sintered body according to the first embodiment)
Next, a manufacturing method will be described. As long as the silicon nitride sintered body of the first embodiment has the above-described configuration, the manufacturing method is not particularly limited, but the following methods can be cited as methods for obtaining them efficiently.
 まず、窒化珪素粉末を用意する。窒化珪素粉末は酸素含有量が1.7質量%以下で、α相型窒化珪素(α-Si)を85質量%以上含み、平均粒子径が1.0μm以下、さらには0.8μm以下であることが好ましい。α-Si粉末を焼結工程でβ-Si結晶に粒成長させることにより、摺動特性の優れた窒化珪素焼結体を得ることができる。 First, silicon nitride powder is prepared. The silicon nitride powder has an oxygen content of 1.7% by mass or less, contains α-phase type silicon nitride (α-Si 3 N 4 ) of 85% by mass or more, has an average particle size of 1.0 μm or less, and further 0.8 μm. The following is preferable. By growing grains of α-Si 3 N 4 powder into β-Si 3 N 4 crystals in the sintering step, a silicon nitride sintered body having excellent sliding characteristics can be obtained.
 次に、焼結助剤粉末を用意する。焼結助剤としては、Al成分および希土類元素成分を必須成分とする。また、必要に応じて、4A族元素成分、5A族元素成分および6A族元素成分から選ばれる少なくとも1種以上、および炭化珪素を添加するものとする。 Next, a sintering aid powder is prepared. As a sintering aid, an Al component and a rare earth element component are essential components. Moreover, at least 1 sort (s) chosen from a 4A group element component, a 5A group element component, and a 6A group element component and silicon carbide shall be added as needed.
 また、前述のように、Alと希土類元素のmol比がAl(mol):希土類元素(mol)=1:1~8:1となるように添加することが好ましい。また、焼結助剤を添加する際、窒化珪素粉末量を100質量部としたとき、焼結助剤の合計の酸素量が1.20~2.50質量部の範囲となることが好ましい。焼結助剤として添加する成分の酸素量を制御するために、Al成分をAlN、5A族元素成分および6A族元素成分を炭化物として添加することが好ましい。特に、AlNは希土類元素と共にα-Siと反応して六方晶α-SiAlON結晶を形成するのに有効な焼結助剤となる。 Further, as described above, it is preferable to add such that the molar ratio of Al to the rare earth element is Al (mol): rare earth element (mol) = 1: 1 to 8: 1. Further, when adding the sintering aid, when the amount of silicon nitride powder is 100 parts by mass, the total oxygen content of the sintering aid is preferably in the range of 1.20 to 2.50 parts by mass. In order to control the amount of oxygen of the component added as a sintering aid, it is preferable to add the Al component as AlN, the 5A group element component, and the 6A group element component as carbides. In particular, AlN is a sintering aid effective for reacting with α-Si 3 N 4 together with rare earth elements to form a hexagonal α-SiAlON crystal.
 次に上記窒化珪素粉末と焼結助剤粉末とを混合する。混合工程は、ボールミル混合機などを使用して均一混合状態となるように混合する。特に、α-Si粉末とAlN粉末および希土類化合物の分散状態が均一混合とすることにより、六方晶α-SiAlON結晶が均一に形成され易くなる。また、均一混合のためには、ボールミル混合機などを使った混合工程を50時間以上実施することが好ましい。また、混合工程を溶液中で行う湿式混合法とすることも均一混合には有効である。 Next, the silicon nitride powder and the sintering aid powder are mixed. In the mixing step, mixing is performed using a ball mill mixer or the like so as to obtain a uniform mixed state. In particular, when the dispersion state of the α-Si 3 N 4 powder, the AlN powder, and the rare earth compound is uniformly mixed, hexagonal α-SiAlON crystals are easily formed uniformly. For uniform mixing, it is preferable to carry out a mixing process using a ball mill mixer or the like for 50 hours or more. It is also effective for uniform mixing to use a wet mixing method in which the mixing step is performed in a solution.
 また、湿式にて原料混合物を調製する工程において、Al系化合物および希土類化合物を予め分散性の良いスラリーに調製してから、主原料である窒化珪素粉末のスラリーに混合することが好ましい。この時の分散性の指標は、下記チクソトロピーインデックス(TI値)を用いて管理するのが好ましい。回転粘度計において連続的にせん断速度a、bを上げていくと、凝集性を持つ流体では粘度が低下するのが一般的である。この時、せん断速度aとbにおける粘度値ηの比がTI値となる。 Further, in the step of preparing the raw material mixture in a wet process, it is preferable to prepare the Al-based compound and the rare earth compound in advance in a slurry having good dispersibility, and then mix it with the slurry of silicon nitride powder as the main raw material. The index of dispersibility at this time is preferably managed using the following thixotropy index (TI value). When the shear speeds a and b are continuously increased in a rotational viscometer, the viscosity of a fluid having cohesive properties generally decreases. At this time, the ratio of the viscosity value η at the shear rates a and b becomes the TI value.
   TI値=ηb/ηa
せん断速度a,bの値には特に決まりはないが、TI値が1以上の値をとるように設定するのがよい。TI値が1に近づくほど、ニュートン流体の挙動に近くなり、凝集のない、あるいは凝集の極めて弱い高分散のスラリーであることを示唆する。本件ではa=6(1/s)、b=60(1/s)としたときのTI値が1.0~2.0の値をとるように調整した。なお、sは秒を示す。このような混合方式を用いることにより、焼結時の六方晶α-SiAlON結晶の均一な粒成長を効果的に行うことが可能となる。
TI value = ηb / ηa
Although the values of the shear rates a and b are not particularly determined, it is preferable to set the TI value to be 1 or more. The closer the TI value is to 1, the closer to the behavior of the Newtonian fluid, suggesting a highly dispersed slurry with no or very weak aggregation. In this case, adjustment was made so that the TI value was 1.0 to 2.0 when a = 6 (1 / s) and b = 60 (1 / s). Here, s indicates seconds. By using such a mixing method, it is possible to effectively perform uniform grain growth of hexagonal α-SiAlON crystals during sintering.
 次に、窒化珪素粉末と焼結助剤粉末とを混合した原料混合物にバインダを添加する。原料混合物とバインダとの混合はボールミル等を使用し、必要に応じて粉砕や造粒を行いながら実施する。原料混合物を所望の形状に成形する。成形工程は、金型プレスや冷間静水圧プレス(CIP)等により実施する。成形圧力は100MPa以上が好ましい。次に、成形工程で得た成形体を脱脂する。脱脂工程は300~600℃の範囲の温度で実施することが好ましい。脱脂工程は大気中や非酸化性雰囲気中で実施され、雰囲気は特に限定されるものではない。 Next, a binder is added to the raw material mixture obtained by mixing the silicon nitride powder and the sintering aid powder. The mixing of the raw material mixture and the binder is performed using a ball mill or the like while performing pulverization and granulation as necessary. The raw material mixture is formed into a desired shape. The molding process is performed by a die press, a cold isostatic press (CIP), or the like. The molding pressure is preferably 100 MPa or more. Next, the molded body obtained in the molding process is degreased. The degreasing step is preferably performed at a temperature in the range of 300 to 600 ° C. The degreasing step is performed in the air or in a non-oxidizing atmosphere, and the atmosphere is not particularly limited.
 次に、脱脂工程で得た脱脂体を1600~1900℃の範囲の温度で焼結する。焼結温度が1600℃未満であると、窒化珪素結晶粒子の粒成長が不十分になるおそれがある。すなわち、α-Siからβ-Siへの反応が不十分であり、緻密な焼結体組織が得られないおそれがある。この場合、窒化珪素焼結体の材料としての信頼性が低下する。焼結温度が1900℃を超えると窒化珪素結晶粒子が粒成長し過ぎて、強度低下を引き起こすおそれや粒界相の割合が範囲外となるおそれがある。 Next, the degreased body obtained in the degreasing step is sintered at a temperature in the range of 1600 to 1900 ° C. If the sintering temperature is less than 1600 ° C., the crystal growth of silicon nitride crystal particles may be insufficient. That is, the reaction from α-Si 3 N 4 to β-Si 3 N 4 is insufficient, and a dense sintered body structure may not be obtained. In this case, the reliability as a material of the silicon nitride sintered body is lowered. If the sintering temperature exceeds 1900 ° C., the silicon nitride crystal grains grow too much, which may cause a decrease in strength and the ratio of the grain boundary phase may be out of the range.
 上記焼結工程は、常圧焼結および加圧焼結のいずれで実施してもよい。焼結工程は非酸化性雰囲気中で実施することが好ましい。非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げられる。 The above sintering step may be performed by either normal pressure sintering or pressure sintering. The sintering step is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere.
 焼結工程の後に、非酸化性雰囲気中にて30MPa以上の熱間静水圧プレス(HIP)処理を施すことが好ましい。非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げられる。HIP処理温度は1500~1900℃の範囲であることが好ましい。HIP処理を実施することによって、窒化珪素焼結体内の気孔を消滅させることができる。HIP処理圧力が30MPa未満であると、そのような効果を十分に得ることができない。 It is preferable to perform a hot isostatic pressing (HIP) treatment of 30 MPa or more in a non-oxidizing atmosphere after the sintering step. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere. The HIP treatment temperature is preferably in the range of 1500 to 1900 ° C. By performing the HIP process, the pores in the silicon nitride sintered body can be eliminated. If the HIP processing pressure is less than 30 MPa, such an effect cannot be sufficiently obtained.
 このようにして製造された窒化珪素焼結体に対して、必要な箇所に研磨加工を施して摺動部材を作製する。研磨加工は、ダイヤモンド砥粒を用いて実施することが好ましい。実施形態の窒化珪素焼結体は良好な加工性を有しているため、窒化珪素焼結体から摺動部材を作製する際の加工コストを低減することができる。また、表面粗さ(Ra)が0.5μm以下、さらには0.1μm以下、0.05μm以下の平坦面を得ることができる。 The silicon nitride sintered body thus manufactured is subjected to polishing processing at a necessary portion to produce a sliding member. The polishing process is preferably performed using diamond abrasive grains. Since the silicon nitride sintered body according to the embodiment has good workability, it is possible to reduce the processing cost when manufacturing the sliding member from the silicon nitride sintered body. Further, a flat surface having a surface roughness (Ra) of 0.5 μm or less, further 0.1 μm or less, and 0.05 μm or less can be obtained.
(実施例1)
(実施例1~13および比較例1~2)
 窒化珪素粉末として、酸素含有量が1.2質量%であり、平均粒径が0.7μmであり、α-Siの割合が99質量%のものを用意した。次に、焼結助剤として表1に示すものを用意した。なお、焼結助剤粉末は、いずれも平均粒径1.3μm以下のものを使用した。
Figure JPOXMLDOC01-appb-T000001
(Example 1)
(Examples 1 to 13 and Comparative Examples 1 and 2)
As the silicon nitride powder, one having an oxygen content of 1.2% by mass, an average particle diameter of 0.7 μm, and a ratio of α-Si 3 N 4 of 99% by mass was prepared. Next, those shown in Table 1 were prepared as sintering aids. As the sintering aid powder, those having an average particle size of 1.3 μm or less were used.
Figure JPOXMLDOC01-appb-T000001
 次に上記窒化珪素粉末および焼結助剤粉末を配合し、ボールミルにより50時間の湿式混合を行った。このときのTI値が1.0~2.0なるように混合した。次に、溶液から取り出し乾燥した後、バインダと混合してボールミルにより20時間の混合工程を行って、混合原料粉末をそれぞれ調製した。 Next, the silicon nitride powder and the sintering aid powder were blended and wet mixed for 50 hours by a ball mill. Mixing was performed so that the TI value at this time was 1.0 to 2.0. Next, after taking out from the solution and drying, it mixed with the binder and performed the mixing process for 20 hours with the ball mill, and mixed raw material powder was prepared, respectively.
 次に各原料混合物を金型プレスにより成形した後に460℃にて脱脂した。次に脱脂体を窒素雰囲気中1700~1800℃×4~6時間で焼結した。 Next, each raw material mixture was molded by a die press and degreased at 460 ° C. Next, the degreased body was sintered in a nitrogen atmosphere at 1700 to 1800 ° C. for 4 to 6 hours.
 次に得られた焼結体にHIP処理を施した。HIP処理は100MPaの圧力下で1600℃×1~2時間の条件で実施した。これにより実施例1~13および比較例1~2に係る窒化珪素焼結体を作製した。なお、3点曲げ強度測定用の試料(窒化珪素焼結体)は3mm×4mm×50mmのサイズに加工して使用した。 Next, the obtained sintered body was subjected to HIP treatment. The HIP treatment was performed under the conditions of 1600 ° C. × 1 to 2 hours under a pressure of 100 MPa. Thus, silicon nitride sintered bodies according to Examples 1 to 13 and Comparative Examples 1 and 2 were produced. A sample for measuring three-point bending strength (silicon nitride sintered body) was used after being processed into a size of 3 mm × 4 mm × 50 mm.
 実施例1~13および比較例1~2の試料(窒化珪素焼結体)に対して表面粗さ(Ra)を0.1μm以下に研磨した。その後、ビッカース硬度(Hv)、破壊靭性値(K1C)、3点曲げ強度、マシナブル係数Mcを測定した。ビッカース硬度(Hv)は、押込み荷重20kgfによりJIS-R-1610に準じた方法により測定した。破壊靭性値は、押込み荷重20kgfによりJIS-R-1607の圧子圧入法(IF法)に準じて測定し、新原の式により求めた。また、3点曲げ強度はJIS-R-1601に準じた方法により測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
The samples of Examples 1 to 13 and Comparative Examples 1 and 2 (silicon nitride sintered bodies) were polished to a surface roughness (Ra) of 0.1 μm or less. Thereafter, Vickers hardness (Hv), fracture toughness value (K 1C ), three-point bending strength, and machinable coefficient Mc were measured. Vickers hardness (Hv) was measured by a method according to JIS-R-1610 with an indentation load of 20 kgf. The fracture toughness value was measured according to the indenter press-fitting method (IF method) of JIS-R-1607 with an indentation load of 20 kgf and determined by the Niihara equation. The three-point bending strength was measured by a method according to JIS-R-1601. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 上記各表1-2に示す結果から明らかなように、各実施例に係る窒化珪素焼結体は、ビッカース硬度(Hv)が1500以上であり、破壊靭性値(K1C)が6.0MPa・m1/2以上であり、3点曲げ強度が900MPa以上であり、マシナブル係数Mcが0.100~0.120の範囲内であった。Mcの計算例として実施例1のマシナブル係数は押込み荷重Fn=20kgf、ビッカース硬度Hv=1592、破壊靭性値K1c=6.6MPa・m1/2として、Mc=209/8/(6.61/2・15925/8)より算出された値である。 As is clear from the results shown in Tables 1-2 above, the silicon nitride sintered body according to each example has a Vickers hardness (Hv) of 1500 or more and a fracture toughness value (K 1C ) of 6.0 MPa · m 1/2 or more, the three-point bending strength was 900 MPa or more, and the machinable coefficient Mc was in the range of 0.100 to 0.120. As an example of the calculation of Mc, the machinable coefficient of Example 1 is that indentation load Fn = 20 kgf, Vickers hardness Hv = 1599, fracture toughness value K 1c = 6.6 MPa · m 1/2 , Mc = 20 9/8 / (6. 6 1/2 · 1592 5/8 ).
 また、断面の研磨面を使ってXRD分析により各結晶のピーク強度比を求めた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Moreover, the peak intensity ratio of each crystal was determined by XRD analysis using the polished surface of the cross section. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 次に、断面の研磨面のSEM写真を使って単位面積100μm×100μmあたりの粒界相の面積比を求めた。粒界相の面積比は、単位面積100μm×100μmを5か所測定し、上限と下限を記載した。また、TEM分析により、粒界相に「Hf-Y-O系化合物結晶」「Y-Al-O系化合物非晶質相」の有無を調べた。その結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
Next, the area ratio of the grain boundary phase per unit area of 100 μm × 100 μm was determined using an SEM photograph of the polished surface of the cross section. As for the area ratio of the grain boundary phase, the unit area of 100 μm × 100 μm was measured at five locations, and the upper limit and lower limit were described. Further, the presence or absence of “Hf—Y—O-based compound crystal” and “Y—Al—O-based compound amorphous phase” in the grain boundary phase was examined by TEM analysis. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
 上記表4に示す結果から明らかなように、各実施例に係る窒化珪素焼結体は粒界相の面積比が25~40%の範囲内であった。 As is apparent from the results shown in Table 4, the silicon nitride sintered body according to each example had an area ratio of the grain boundary phase in the range of 25 to 40%.
(実施例1B~13Bおよび比較例1B~2B)
 実施例1~13および比較例1~2と同様の製造方法を用いて摺動部材であるベアリングボールを作製した。ベアリングボールの直径は9.525mm、表面粗さ(Ra)は0.01μmになるように研磨した。
(Examples 1B to 13B and Comparative Examples 1B to 2B)
Using the same manufacturing method as in Examples 1 to 13 and Comparative Examples 1 and 2, bearing balls as sliding members were produced. The bearing ball was polished to have a diameter of 9.525 mm and a surface roughness (Ra) of 0.01 μm.
 研磨加工に関しては、試料として表面粗さ(Ra)は0.01μmに研磨加工する前のものを用意して、ダイヤモンド砥石(#120)を使って研磨加工を行った場合の表面粗さを比較した。研磨加工条件は、試料の加工面積を一定にして荷重を40Nとし、研削盤の回転速度を300rpmとして加工し、表面粗さ(Ra)の変化がなくなる時間まで加工を行った後の、表面粗さ(Ra)を測定した。この研磨加工により脱粒状態を測定できる。脱粒状態は表面粗さに相関性があり、数値が大きいほど脱粒が生じやすいことを意味し、転がり寿命テストにおける信頼性は低下傾向となることが想定される。 Regarding the polishing process, the surface roughness (Ra) is prepared as a sample before polishing to 0.01 μm, and the surface roughness when the polishing process is performed using a diamond grindstone (# 120) is compared. did. The polishing conditions were as follows: the surface roughness after processing until the time when there was no change in the surface roughness (Ra), with the processing area of the sample being constant, the load being 40 N, the rotational speed of the grinding machine being 300 rpm, The thickness (Ra) was measured. The degranulation state can be measured by this polishing process. The degranulation state has a correlation with the surface roughness, meaning that the larger the value, the easier the degranulation occurs, and it is assumed that the reliability in the rolling life test tends to decrease.
 また、転がり寿命および転がり寿命の前後での圧砕強度の変化を測定した。転がり寿命および圧砕強度の測定を行うにあたり、ベアリングボールの表面を表面粗さ(Ra)が0.01μmになるように研磨加工した仕上げ加工面を有するものを使用した。 Also, the rolling life and the change in crushing strength before and after the rolling life were measured. In measuring the rolling life and crushing strength, a bearing ball having a finished surface that was polished so that the surface roughness (Ra) was 0.01 μm was used.
 また、転がり寿命は、各実施例に係るベアリングボールを3個用意し、軸受鋼SUJ2の上面に設定した直径40mmの軌道上に上記3個のベアリングボールを等間隔で配置する。これをタービン油の油浴潤滑条件下でベアリングボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmにてベアリングボールの表面が剥離するまでの時間として転がり寿命を測定した。なお、転がり寿命の測定は連続800時間を上限として行った。 Also, for the rolling life, three bearing balls according to each embodiment are prepared, and the three bearing balls are arranged at equal intervals on a track having a diameter of 40 mm set on the upper surface of the bearing steel SUJ2. This is the rolling life as the time until the surface of the bearing ball peels off at a rotational speed of 1200 rpm with a load applied so that the maximum contact stress of 5.9 GPa acts on the bearing ball under the oil bath lubrication condition of turbine oil. Was measured. Note that the rolling life was measured with an upper limit of 800 hours continuous.
 また、転がり試験の前後での圧砕強度に関しては2球圧砕法により、ベアリングボールが破壊される荷重を求めた。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
Further, regarding the crushing strength before and after the rolling test, the load at which the bearing ball was broken was determined by the two-ball crushing method. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 上記表5に示す結果から明らかなように、各実施例に係るベアリングボールは700時間以上の優れた摺動特性を示した。特にHf-Y-O系化合物結晶を具備し、焼結助剤としてMoCを添加した実施例1~6は800時間経過後も優れた特性を維持していることが判明した。 As is clear from the results shown in Table 5 above, the bearing balls according to the respective examples exhibited excellent sliding characteristics for 700 hours or more. In particular, it was found that Examples 1 to 6 having Hf—Y—O-based compound crystals and adding Mo 2 C as a sintering aid maintained excellent characteristics even after 800 hours.
 ベアリングボールは焼結体の全面を摺動面として使用される摺動部材である。そのため、ベアリングボールとしての特性が優れていれば他の摺動部材に用いたとしても同様に優れた特性を示すものである。従って、実施例の窒化珪素焼結体は様々な摺動部材に適用できる。 The bearing ball is a sliding member that uses the entire surface of the sintered body as a sliding surface. Therefore, if the characteristic as a bearing ball is excellent, even if it is used for other sliding members, the excellent characteristic is exhibited. Therefore, the silicon nitride sintered body of the embodiment can be applied to various sliding members.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 本発明に係る窒化珪素焼結体およびそれを用いた摺動部材によれば、摺動特性に関して長期信頼性を付与できる窒化珪素焼結体を提供できる。また、マシナブル係数を調整してあるので表面研磨加工したとしても、脱粒を小さくできるので平坦な摺動面を得易い。そのため、その焼結体を使用した摺動部材に関しても長期信頼性を得ることができる。 According to the silicon nitride sintered body and the sliding member using the same according to the present invention, it is possible to provide a silicon nitride sintered body that can provide long-term reliability with respect to sliding characteristics. In addition, since the machinable coefficient is adjusted, even if the surface is polished, it is easy to obtain a flat sliding surface because degranulation can be reduced. Therefore, long-term reliability can be obtained also with respect to the sliding member using the sintered body.
1…ベアリングボール〈窒化珪素焼結体、摺動部材〉 1. Bearing ball <Silicon nitride sintered body, sliding member>

Claims (12)

  1. 窒化珪素焼結体をXRD分析した際に、六方晶系α-SiAlON結晶に対応する29.6±0.3°および31.0±0.3°に検出される最強ピーク強度をI29.6°、I31.0°とする一方、β-Si結晶に対応する33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI33.6°、I36.1°としたときに、各最強ピーク強度が下記関係式:
      I29.6°+I31.0°)/(I33.6°+I36.1°)=0.10~0.30 …(1)
    を満たし、
    上記窒化珪素焼結体の任意の断面における単位面積100μm×100μm当りの粒界相の面積比が25~40%であり、マシナブル係数が0.100~0.120であることを特徴とする窒化珪素焼結体。
    When the silicon nitride sintered body was subjected to XRD analysis, the strongest peak intensity detected at 29.6 ± 0.3 ° and 31.0 ± 0.3 ° corresponding to the hexagonal α-SiAlON crystal was I 29. 6 ° and I 31.0 ° , while the strongest peak intensities detected at 33.6 ± 0.3 ° and 36.1 ± 0.3 ° corresponding to β-Si 3 N 4 crystals are I 33. When 6 ° and I 36.1 ° , each strongest peak intensity is expressed by the following relational expression:
    I 29.6 ° + I 31.0 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.10 to 0.30 (1)
    The filling,
    Nitriding characterized in that the area ratio of the grain boundary phase per unit area of 100 μm × 100 μm in an arbitrary cross section of the silicon nitride sintered body is 25 to 40% and the machinable coefficient is 0.100 to 0.120. Silicon sintered body.
  2. 窒化珪素焼結体をXRD分析した際に、YSi(J相)に対応する39.5±0.3°に検出される最強ピーク強度I39.5°が、下記関係式:
      (I39.5°)/(I33.6°+I36.1°)=0.03~0.10 …(2)
    を満たすことを特徴とする請求項1記載の窒化珪素焼結体。
    When the silicon nitride sintered body was subjected to XRD analysis, the strongest peak intensity I 39.5 ° detected at 39.5 ± 0.3 ° corresponding to Y 4 Si 2 O 7 N 2 (J phase) was as follows: Relational expression:
    (I 39.5 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.03 to 0.10 (2)
    The silicon nitride sintered body according to claim 1, wherein:
  3. 窒化珪素焼結体をXRD分析した際に、YSi12N(H相)、YSiON(K相)またはYSiのいずれか1種以上に対応する31.9±0.3°に検出される最強ピーク強度I31.9°が、下記関係式:
      (I31.9°)/(I33.6°+I36.1°)=0.05~0.15 …(3)
    を満たすことを特徴とする請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
    When the silicon nitride sintered body is subjected to XRD analysis, it corresponds to any one or more of Y 2 Si 3 O 12 N (H phase), YSiO 2 N (K phase), or Y 2 Si 3 O 3 N 4 31 The strongest peak intensity I 31.9 ° detected at .9 ± 0.3 ° is the following relational expression:
    (I 31.9 ° ) / (I 33.6 ° + I 36.1 ° ) = 0.05 to 0.15 (3)
    The silicon nitride sintered body according to any one of claims 1 to 2, wherein:
  4. XRD分析は窒化珪素焼結体の任意の断面にて行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素焼結体。 The silicon nitride sintered body according to any one of claims 1 to 3, wherein the XRD analysis is performed on an arbitrary cross section of the silicon nitride sintered body.
  5. Hf-Y-O系化合物結晶とY-Al-Oとを含有する非晶質相を含む粒界相を具備することを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化珪素焼結体。 5. The grain boundary phase including an amorphous phase containing a Hf—Y—O-based compound crystal and Y—Al—O, according to any one of claims 1 to 4. Silicon nitride sintered body.
  6. 平均粒径2μm以下の酸化物、炭化物、窒化物のいずれか1種以上の粒子を具備することを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素焼結体。 The silicon nitride sintered body according to any one of claims 1 to 5, comprising at least one of oxide, carbide, and nitride particles having an average particle diameter of 2 µm or less.
  7. 前記粒子がモリブデン化合物粒子であることを特徴とする請求項6記載の窒化珪素焼結体。 The silicon nitride sintered body according to claim 6, wherein the particles are molybdenum compound particles.
  8. Alを酸化物換算値で5~10質量%、希土類元素のいずれか1種類以上を酸化物換算値で1~10質量%、4A、5A、6A元素のいずれか1種類以上を酸化物換算値で1~5質量%含有し、かつ、Alと希土類元素とのmol比がAl(mol):希土類元素(mol)=1:1~8:1であることを特徴とする請求項1ないし請求項7のいずれか1項に記載の窒化珪素焼結体。 5 to 10% by mass in terms of oxide of Al, 1 to 10% by mass in terms of oxide of any one or more of rare earth elements One or more of 4A, 5A, and 6A elements in terms of oxide 1 to 5% by mass, and the molar ratio of Al to the rare earth element is Al (mol): rare earth element (mol) = 1: 1 to 8: 1. Item 8. The silicon nitride sintered body according to any one of items 7 to 9.
  9. ビッカース硬度(Hv)が1500以上であり、破壊靭性値(K1C)が6.0MPa・m1/2以上であり、かつ、3点曲げ強度が900MPa以上であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の窒化珪素焼結体。 The Vickers hardness (Hv) is 1500 or more, the fracture toughness value (K 1C ) is 6.0 MPa · m 1/2 or more, and the three-point bending strength is 900 MPa or more. The silicon nitride sintered body according to any one of claims 8 to 9.
  10. 請求項1ないし請求項9のいずれか1項に記載の窒化珪素焼結体を用いたことを特徴とする摺動部材。 A sliding member comprising the silicon nitride sintered body according to any one of claims 1 to 9.
  11. 摺動部材がベアリングボールであることを特徴とする請求項10記載の摺動部材。 The sliding member according to claim 10, wherein the sliding member is a bearing ball.
  12. 摺動面は表面粗さ(Ra)が0.5μm以下の研磨面であることを特徴とする請求項10ないし請求項11のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 10 to 11, wherein the sliding surface is a polished surface having a surface roughness (Ra) of 0.5 µm or less.
PCT/JP2013/082858 2012-12-14 2013-12-06 Silicon nitride sintered body and sliding member using same WO2014092021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380057709.9A CN104768900B (en) 2012-12-14 2013-12-06 Silicon nitride sinter and use the sliding component of this silicon nitride sinter
JP2014552022A JP6334413B2 (en) 2012-12-14 2013-12-06 Silicon nitride sintered body and sliding member using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273964 2012-12-14
JP2012-273964 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014092021A1 true WO2014092021A1 (en) 2014-06-19

Family

ID=50934312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082858 WO2014092021A1 (en) 2012-12-14 2013-12-06 Silicon nitride sintered body and sliding member using same

Country Status (3)

Country Link
JP (1) JP6334413B2 (en)
CN (1) CN104768900B (en)
WO (1) WO2014092021A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117553A1 (en) * 2015-01-23 2016-07-28 株式会社東芝 Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
JP2017209716A (en) * 2016-05-27 2017-11-30 日本特殊陶業株式会社 Friction agitation joining tool
JP2019198895A (en) * 2014-09-25 2019-11-21 株式会社東芝 Friction stir welding tool member made of sintered silicon nitride and friction stir welding device
WO2023162746A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Silicon nitride sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108840687A (en) * 2018-07-26 2018-11-20 深圳市东川技术研究有限公司 A kind of high-intensitive sintering process for matching grand new material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182276A (en) * 1983-03-31 1984-10-17 株式会社東芝 Silicon nitride sintered body
JPS60239365A (en) * 1984-04-06 1985-11-28 サントレ−ド リミテイド Nitride base ceramic material
JPS62275071A (en) * 1986-05-22 1987-11-30 日立金属株式会社 Tough sialon
JPH0244066A (en) * 1988-04-07 1990-02-14 Toyota Central Res & Dev Lab Inc Silicon nitride sintered body
JPH04209764A (en) * 1990-11-30 1992-07-31 Toyota Central Res & Dev Lab Inc Silicon nitride sintered material and its production
JPH09506852A (en) * 1993-12-23 1997-07-08 ザ・ダウ・ケミカル・カンパニー SiAlON composite and method for producing the same
JP2007130700A (en) * 2005-11-08 2007-05-31 Ngk Spark Plug Co Ltd Sialon cutting tool, and tool equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475944B2 (en) * 2007-06-28 2013-07-02 Kennametal Inc. Coated ceramic cutting insert and method for making the same
JP5268750B2 (en) * 2009-04-01 2013-08-21 株式会社東芝 Impact resistant member and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182276A (en) * 1983-03-31 1984-10-17 株式会社東芝 Silicon nitride sintered body
JPS60239365A (en) * 1984-04-06 1985-11-28 サントレ−ド リミテイド Nitride base ceramic material
JPS62275071A (en) * 1986-05-22 1987-11-30 日立金属株式会社 Tough sialon
JPH0244066A (en) * 1988-04-07 1990-02-14 Toyota Central Res & Dev Lab Inc Silicon nitride sintered body
JPH04209764A (en) * 1990-11-30 1992-07-31 Toyota Central Res & Dev Lab Inc Silicon nitride sintered material and its production
JPH09506852A (en) * 1993-12-23 1997-07-08 ザ・ダウ・ケミカル・カンパニー SiAlON composite and method for producing the same
JP2007130700A (en) * 2005-11-08 2007-05-31 Ngk Spark Plug Co Ltd Sialon cutting tool, and tool equipped with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGETAKA WADA ET AL.: "Erosive wear of .ALPHA.'-.BETA.' sialon composites", JOURNAL OF THE JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 37, no. 7, 25 September 1990 (1990-09-25), pages 166 - 169 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198895A (en) * 2014-09-25 2019-11-21 株式会社東芝 Friction stir welding tool member made of sintered silicon nitride and friction stir welding device
WO2016117553A1 (en) * 2015-01-23 2016-07-28 株式会社東芝 Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
JPWO2016117553A1 (en) * 2015-01-23 2017-11-02 株式会社東芝 High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
US10308560B2 (en) 2015-01-23 2019-06-04 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
JP2017209716A (en) * 2016-05-27 2017-11-30 日本特殊陶業株式会社 Friction agitation joining tool
WO2023162746A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Silicon nitride sintered body

Also Published As

Publication number Publication date
CN104768900A (en) 2015-07-08
JPWO2014092021A1 (en) 2017-01-12
JP6334413B2 (en) 2018-05-30
CN104768900B (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6400478B2 (en) Wear-resistant material
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP5944910B2 (en) Silicon nitride sintered body and method for manufacturing the same, and wear-resistant member and bearing using the same
JP6334413B2 (en) Silicon nitride sintered body and sliding member using the same
JP2013234120A (en) Silicon nitride sintered body and sliding member using the same
JP6491964B2 (en) Silicon nitride sintered body and wear-resistant member using the same
JP2008285349A (en) Silicon nitride sintered compact and sliding member using the same
US9663407B2 (en) Silicon nitride wear resistant member and method for producing silicon nitride sintered compact
WO2005030674A1 (en) Wear resistant member comprised of silicon nitride and process for producing the same
JPWO2008032427A1 (en) Sliding member and bearing using the same
JP4693374B2 (en) Manufacturing method of sintered silicon nitride
JP2011016716A (en) Sintered silicon nitride
EP4155565A1 (en) Silicon nitride sintered body, wear-resistant member using same, and method for manufacturing silicon nitride sintered body
JP2003300780A (en) Wear resistant member made of silicon nitride and production method therefor
JP5349525B2 (en) Rolling element
JP2016104689A (en) Silicon nitride sintered body, manufacturing method therefor and rolling element for bearing
JP7353820B2 (en) Silicon nitride sintered body and wear-resistant parts using the same
JP4939736B2 (en) Manufacturing method of sintered silicon nitride
JP2007326745A (en) Wear resistant member, wear resistant equipment and method of manufacturing wear resistant member
JP2008230922A (en) Silicon nitride sintered compact and sliding member using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863582

Country of ref document: EP

Kind code of ref document: A1