WO2014091897A1 - Robot control system - Google Patents

Robot control system Download PDF

Info

Publication number
WO2014091897A1
WO2014091897A1 PCT/JP2013/081395 JP2013081395W WO2014091897A1 WO 2014091897 A1 WO2014091897 A1 WO 2014091897A1 JP 2013081395 W JP2013081395 W JP 2013081395W WO 2014091897 A1 WO2014091897 A1 WO 2014091897A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding point
image
robot
master image
workpiece
Prior art date
Application number
PCT/JP2013/081395
Other languages
French (fr)
Japanese (ja)
Inventor
洋樹 井上
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Publication of WO2014091897A1 publication Critical patent/WO2014091897A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37572Camera, tv, vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40114From vision detected initial and user given final state, generate tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Definitions

  • the present invention relates to a robot control system that processes a workpiece by controlling a robot including a welding robot, and more particularly to a robot control system that can efficiently correct a program.
  • a teaching operation for creating a program while actually moving the robot has been performed in order to create a robot operation program.
  • Patent Document JP 2011-045898 A
  • the robot since the robot is moved when the teaching point is corrected, if it is not moved sequentially according to the program, it will take time and cost, and it may be inefficient.
  • an object of the present invention is to provide a robot control system capable of correcting a welding point very efficiently and correcting a program efficiently. Is to provide.
  • the present invention is a robot control system for automatically processing a workpiece, the master image of the first workpiece having a processing point for the operation of the robot in a desired processing, and the robot
  • the robot When there is a next workpiece to be machined based on the robot motion program, a master image of the next workpiece and a robot motion program are acquired, and the next workpiece is machined based on the robot motion program.
  • An image of a point is captured, the information of the master image of the first workpiece is compared with the image of the processing point of the captured next workpiece, and the next image of the welding point of the next workpiece is For each welding point, an image that simultaneously displays the position corresponding to the welding point of the master image acquired on the image of the welding point of the workpiece, The position corresponding to the welding point of the master image is corrected according to the correction instruction of the position corresponding to the welding point of the master image from the operator for the images collectively displayed on the display unit. It is characterized by that.
  • Another feature of the present invention is that when the robot operation program for the next workpiece needs to be updated, the robot is moved to the position of the welding point on the robot operation program for the next workpiece, and the acquisition is performed.
  • the robot is moved by the position corresponding to the welding point of the master image on the image of the welding point of the next workpiece and the position corresponding to the welding point of the corrected master image.
  • the coordinates of the subsequent welding point are acquired, and the coordinates of the welding point on the robot operation program for the next workpiece are updated to the acquired coordinates of the welding point.
  • FIG. 1 is a schematic overall view of a robot control system embodying the present invention. It is a block diagram which shows schematic structure of the control apparatus 3 shown in FIG. It is a flowchart of the correction operation
  • FIG. 1 is a schematic overall view of a robot control system embodying the present invention
  • FIG. 2 is a block diagram showing a schematic configuration of the control device 3 shown in FIG.
  • the robot control system includes a robot 1 that automatically performs processing such as welding, a CAM function that generates and edits an operation program of the robot 1, and a function that controls the robot 1 according to the operation program. ,have. Further, the robot 1 is provided with a camera (imaging means) 7 for imaging the workpiece W, and an image signal from the camera 7 is transmitted to the control device 3.
  • a camera imaging means
  • the camera 7 is attached to the attachment portion of the welding operation unit 1 a of the welding robot 1, but is not limited thereto, and is separate from the arm of the welding robot 1. You may make it move.
  • control device 3 may comprise a data creation / modification function, an image processing function, a robot operation program creation function, and a robot control function by separate computers or control devices, and may be coupled by, for example, a network.
  • the control device 3 is configured by a computer, and includes a CPU 13 to which a ROM 9 and a RAM 11 are connected via a bus, and further to the CPU 13 via a bus.
  • the camera 7 described above, an input unit 15 for inputting an instruction from the operator, a display unit 17 for displaying an image, and a database 19 storing information on the workpiece W and the master image are connected.
  • RAM 11 and the database 19 form storage means
  • ROM 9 and the CPU 13 form control means.
  • FIG. 3 is a flowchart of the correcting operation of the robot operation program by the control device 3 shown in FIG.
  • FIG. 4 is an explanatory diagram of the correcting operation of the robot operation program by the control device 3 shown in FIG.
  • step 101 information on the master image of the workpiece W is created.
  • control device 3 operates the robot 1 based on the robot operation program to move the camera 7 to the first processing point (first welding point), and the work image including the first welding point. Is displayed on the display unit 17, and the operator indicates (teaches) the position of the correct welding point in the workpiece image displayed on the display unit 17, and the deviation amount of the specified correct welding point from the image center is indicated. Then, the robot operation program is corrected so that the camera 7 moves to the correct welding point, and the image displayed on the display unit 17 is stored in the RAM 11 as a master image.
  • This operation is performed for all machining points (in this case, the first to third welding points).
  • step 102 it is determined whether there is a next workpiece to be machined based on the same robot operation program. If there is a next workpiece, in step 103, a robot operation program for the next workpiece is determined. Is acquired, and in step 104, a master image for the next workpiece is acquired.
  • the set-up set for the next workpiece to be processed is performed, and the master image and the robot operation program are read.
  • step 105 the robot 1 is operated based on the robot operation program, the camera 7 is moved to the welding point of the next workpiece, and an image is taken.
  • the robot operation program is read, the robot 1 is operated, the camera 7 is moved to the position of the first welding point, and an image of the next workpiece at that position is taken.
  • step 107 the master image information of the first welding point is compared with the image of the position of the first welding point imaged in step 105.
  • step 109 the first image imaged in step 105 is compared.
  • the position of the welding point of the master image in the image of the position of the welding point is acquired and stored. That is, the position of the welding point position of the master image on the image of the position of the first welding point imaged in step 105 is determined and stored in the RAM 11.
  • step 111 it is determined whether or not there is a next welding point. If there is a next welding point, the process returns to step 105, and the processing of steps 105 to 109 is performed on the next welding point. In the case of this embodiment, the second and third welding points are processed following the first welding point.
  • step 113 a thumbnail image that simultaneously displays the position of the welding point acquired in step 109 on the image captured in step 105 is displayed for each welding point. Are collectively displayed on the display unit 17 (see FIG. 4).
  • the images of the first to third welding points are respectively displayed, and the position of the welding point acquired in step 109 is displayed as x.
  • step 115 the operator determines whether or not there is a correction in the welding point in the image displayed on the display unit 17 collectively. If it is determined that there is a correction, in step 117, the welding point Corrections are made.
  • the operator inputs the correction of the welding point position x acquired in step 109 via the input unit 15, and the welding point position acquired in step 109.
  • X is corrected and displayed, and the correction amount is recorded in the RAM 11.
  • the position x of the welding point acquired in step 109 at the second welding point is not properly recognized, so that the correct welding point in the image captured in step 105 is obtained. Since it is shifted from the position, it is corrected as shown by the arrow.
  • step 119 it is determined whether or not the program acquired in step 103 needs to be updated.
  • step 109 when the position of the welding point of the master image in the image of the position of the welding point imaged in step 105 is corrected, or the position of the welding point acquired in step 109 in step 117 is corrected. If it is determined that the program needs to be updated, it is determined that the program need not be updated if the position of the welding point acquired in step 109 is not corrected.
  • step 121 the camera 7 is sequentially moved to the position of the welding point on the program acquired in step 103. That is, in this embodiment, the robot 1 is operated so that the camera 7 is moved in the order of the first to third welding points.
  • step 123 the robot 1 is further moved by a predetermined movement amount in accordance with the position of the welding point acquired in step 109 or the correction amount of the position of the welding point in step 117.
  • the correction is performed in step 117 after the camera 7 is moved to the second welding point.
  • the camera 7 is moved so as to match the position of the correct welding point.
  • step 125 the coordinates of the welding point after the robot 1 is moved in step 123 are acquired.
  • step 127 the coordinates of the welding point on the program are changed to the coordinates of the welding point acquired in step 125. Updated based on.
  • the welding point can be corrected very efficiently as in the prior art, and the program can be corrected efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

A controller in a robot control system creates a workpiece master image and robot operation program. When there exists a next workpiece to be processed on the basis of the same robot operation program, the controller acquires a master image and a robot operation program for the next workpiece, captures an image of a welding point on the next workpiece on the basis of a workpiece robot operation program, compar es information on the master image and the captured image of the welding point on the next workpiece, and acquires a position on the image of the welding point on the next workpiece corresponding to a welding point in the master image. Then, the controller displays images simultaneously showing positions corresp onding to welding points in the master image collectively for each welding point on the image of the welding point on the next workpiece. When an operato r finds that correction is needed for the collectively displayed images and inst ructs that a position corresponding to a welding point in the master image be corrected, the controller corrects the position corres ponding to the welding point in the master image according to the correction inst ruction.

Description

ロボット制御システムRobot control system
 本発明は、溶接ロボット等からなるロボットを制御してワークの加工を行うロボット制御システムに関し、特に、効率良くプログラムの補正を行うことができるロボット制御システムに関するものである。 The present invention relates to a robot control system that processes a workpiece by controlling a robot including a welding robot, and more particularly to a robot control system that can efficiently correct a program.
 一般に、溶接ロボット等からなるロボットを制御してワークの加工を行うロボット制御システムにおいては、ロボットの動作プログラムの作成のために、実際にロボットを動かしながらプログラムの作成を行うティーチング作業がなされていた。 Generally, in a robot control system that processes a workpiece by controlling a robot such as a welding robot, a teaching operation for creating a program while actually moving the robot has been performed in order to create a robot operation program. .
 そして、このティーチング作業はワーク毎に行う必要があった。すなわち、所定のワークに対して、所定の溶接の教示点のティーチング作業を行っても、次のワークでは位置がずれてしまうことがあるため、ティーチング作業をワーク毎に行う必要があった。 And this teaching work had to be done for each workpiece. That is, even if the teaching work for a predetermined welding teaching point is performed on a predetermined work, the position may be shifted in the next work, and thus it is necessary to perform the teaching work for each work.
 そのため、任意のセンシング技術を使って自動認識して、ロボット動作プログラムを修正する方法が提案されていた。 For this reason, a method has been proposed in which a robot motion program is corrected by automatic recognition using an arbitrary sensing technology.
  従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献、特開2011-045898号公報)。 Conventionally, as this type of technology, for example, those described in the following documents are known (Patent Document, JP 2011-045898 A).
 しかしながら、従来の修正方法では、例えば、CCDカメラを使用した場合、所定の明るさが確保できていない時には、正確な補正ができずにエラーが生じてしまうことがあった。また、自動検出された教示点が間違ってエラーとなるケースもあった。 However, in the conventional correction method, for example, when a CCD camera is used, if a predetermined brightness cannot be ensured, accurate correction cannot be performed and an error may occur. In addition, there are cases where the automatically detected teaching point results in an error.
 そして、間違いがある状態で、そのまま溶接加工を行うと、所望の加工製品が得られないため、実際には、次のようなリカバリー処理が行われていた。 And, if the welding process is carried out as it is in a state where there is a mistake, the desired processed product cannot be obtained, so the following recovery process was actually performed.
 そのようなエラーのリカバリー処理としては、従来では、オペレータが、ドライオペレーション(試運転)を行い、教示点毎に、その都度、その間違いを修正するようにしたトライ&エラーによるティーチングを行うようにしていた。 Conventionally, as an error recovery process, an operator performs a dry operation (trial operation), and teaches by trial and error so that the mistake is corrected for each teaching point. It was.
 そのため、自動補正を行っているにもかかわらず、オペレータが常駐している必要があり、手間がかかってしまうものであった。 Therefore, even though automatic correction is being performed, it is necessary for the operator to be resident, which is troublesome.
 また、教示点の修正時にはロボットの移動を伴うため、プログラムの通りにシーケンシャルに動かさないと、その分の時間やコストがかかってしまい、非効率となるケースもあった。 Also, since the robot is moved when the teaching point is corrected, if it is not moved sequentially according to the program, it will take time and cost, and it may be inefficient.
 そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、非常に効率良く溶接点の修正を行うことができ、効率良くプログラムの補正を行うことができるロボット制御システムを提供することにある。 Accordingly, the present invention has been made in view of the above, and an object of the present invention is to provide a robot control system capable of correcting a welding point very efficiently and correcting a program efficiently. Is to provide.
 上記課題を解決するために、本発明は、ワークの加工を自動で行うロボットの制御システムであって、所望する加工における前記ロボットの動作のための加工点を有する最初のワークのマスター画像およびロボット動作プログラムを作成し、そのロボット動作プログラムに基づいて加工される次のワークがある場合、次のワークのマスター画像およびロボット動作プログラムを取得し、前記ロボット動作プログラムに基づいて前記次のワークの加工点の画像を撮像し、前記最初のワークのマスター画像の情報と前記撮像された前記次のワークの加工点の画像とを比較し、前記次のワークの溶接点の画像上に、前記次のワークの溶接点の画像上において取得されたマスター画像の溶接点に対応した位置を同時に表示した画像を、溶接点毎に、一括表示し、前記表示部上に一括表示された前記画像に対して、オペレータよりの前記マスター画像の溶接点に対応した位置の修正指示に従って、前記マスター画像の溶接点に対応した位置を修正することを特徴とする。 In order to solve the above-mentioned problems, the present invention is a robot control system for automatically processing a workpiece, the master image of the first workpiece having a processing point for the operation of the robot in a desired processing, and the robot When there is a next workpiece to be machined based on the robot motion program, a master image of the next workpiece and a robot motion program are acquired, and the next workpiece is machined based on the robot motion program. An image of a point is captured, the information of the master image of the first workpiece is compared with the image of the processing point of the captured next workpiece, and the next image of the welding point of the next workpiece is For each welding point, an image that simultaneously displays the position corresponding to the welding point of the master image acquired on the image of the welding point of the workpiece, The position corresponding to the welding point of the master image is corrected according to the correction instruction of the position corresponding to the welding point of the master image from the operator for the images collectively displayed on the display unit. It is characterized by that.
 本発明の他の特徴は、前記次のワークのためのロボット動作プログラムの更新が必要な場合、前記次のワークのためのロボット動作プログラム上の溶接点の位置に前記ロボットを移動し、前記取得された前記次のワークの溶接点の画像上のマスター画像の溶接点に対応した位置および前記修正された前記マスター画像の溶接点に対応した位置の修正分により、前記ロボットを移動し、前記移動後の溶接点の座標を取得し、前記次のワークのためのロボット動作プログラム上の溶接点の座標を、前記取得された溶接点の座標に更新することである。 Another feature of the present invention is that when the robot operation program for the next workpiece needs to be updated, the robot is moved to the position of the welding point on the robot operation program for the next workpiece, and the acquisition is performed. The robot is moved by the position corresponding to the welding point of the master image on the image of the welding point of the next workpiece and the position corresponding to the welding point of the corrected master image. The coordinates of the subsequent welding point are acquired, and the coordinates of the welding point on the robot operation program for the next workpiece are updated to the acquired coordinates of the welding point.
本発明を実施したロボット制御システムの概略全体図である。1 is a schematic overall view of a robot control system embodying the present invention. 図1に示した制御装置3の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus 3 shown in FIG. 図1に示した制御装置3によるロボット動作プログラムの修正動作のフローチャートである。It is a flowchart of the correction operation | movement of the robot operation program by the control apparatus 3 shown in FIG. 図1に示した制御装置3によるロボット動作プログラムの修正動作の説明図である。It is explanatory drawing of correction operation | movement of the robot operation program by the control apparatus 3 shown in FIG.
 以下、図面を用いて本発明を実施した実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明を実施したロボット制御システムの概略全体図であり、図2は、図1に示した制御装置3の概略構成を示すブロック図である。 FIG. 1 is a schematic overall view of a robot control system embodying the present invention, and FIG. 2 is a block diagram showing a schematic configuration of the control device 3 shown in FIG.
 図1に示すように、このロボット制御システムは、溶接等の加工を自動で行うロボット1と、ロボット1の動作プログラムを生成・編集するCAM機能と共に、その動作プログラムに従ってロボット1をコントロールする機能と、を有している。また、ロボット1には、ワークWを撮像するためのカメラ(撮像手段)7が備えられており、カメラ7よりの画像信号は、制御装置3へ送信されるようになっている。 As shown in FIG. 1, the robot control system includes a robot 1 that automatically performs processing such as welding, a CAM function that generates and edits an operation program of the robot 1, and a function that controls the robot 1 according to the operation program. ,have. Further, the robot 1 is provided with a camera (imaging means) 7 for imaging the workpiece W, and an image signal from the camera 7 is transmitted to the control device 3.
 なお、この実施形態では、図1に示すように、カメラ7は、溶接ロボット1の溶接動作部1aの取り付け部分に装着されているが、これに限定されず、溶接ロボット1のアームとは別に移動するようにしても良い。 In this embodiment, as shown in FIG. 1, the camera 7 is attached to the attachment portion of the welding operation unit 1 a of the welding robot 1, but is not limited thereto, and is separate from the arm of the welding robot 1. You may make it move.
 さらに、制御装置3は、データ作成・修正機能、画像処理機能、ロボット動作プログラム作成機能、およびロボットコントロール機能をそれぞれ別体のコンピュータあるいは制御装置で構成し、例えばネットワーク等で結合しても良い。 Furthermore, the control device 3 may comprise a data creation / modification function, an image processing function, a robot operation program creation function, and a robot control function by separate computers or control devices, and may be coupled by, for example, a network.
 図1、2に示すように、この制御装置3は、コンピュータにより構成されており、ROM9およびRAM11がバスを介して接続されたCPU13を有しており、CPU13には、さらに、バスを介して、上述したカメラ7、オペレータよりの指示を入力するための入力部15と、画像を表示するための表示部17、ワークWおよびマスター画像の情報を記憶したデータベース19が接続されている。 As shown in FIGS. 1 and 2, the control device 3 is configured by a computer, and includes a CPU 13 to which a ROM 9 and a RAM 11 are connected via a bus, and further to the CPU 13 via a bus. The camera 7 described above, an input unit 15 for inputting an instruction from the operator, a display unit 17 for displaying an image, and a database 19 storing information on the workpiece W and the master image are connected.
 なお、RAM11およびデータベース19は、記憶手段を形成し、ROM9およびCPU13は、制御手段を形成する。 Note that the RAM 11 and the database 19 form storage means, and the ROM 9 and the CPU 13 form control means.
 次に、図3および図4を参照してロボット動作プログラムの修正動作について説明する。 Next, the robot operation program correction operation will be described with reference to FIG. 3 and FIG.
 図3は、図1に示した制御装置3によるロボット動作プログラムの修正動作のフローチャートである。 FIG. 3 is a flowchart of the correcting operation of the robot operation program by the control device 3 shown in FIG.
 図4は、図1に示した制御装置3によるロボット動作プログラムの修正動作の説明図である。 FIG. 4 is an explanatory diagram of the correcting operation of the robot operation program by the control device 3 shown in FIG.
 まず、制御装置3により、データを最初に作成した後、あるいはティーチングにより最初にロボット動作プログラムを作成した後、加工すべき最初のワークが段取りセットされ、そのロボット動作プログラムが読み込まれると、図3のステップ101において、ワークWのマスター画像の情報が作成される。 First, after the data is first created by the control device 3 or the robot operation program is first created by teaching, the first workpiece to be machined is set up and the robot operation program is read. In step 101, information on the master image of the workpiece W is created.
 すなわち、制御装置3により、ロボット動作プログラムに基づいて、ロボット1が動作されてカメラ7が1つ目の加工点(第1の溶接点)に移動され、その第1の溶接点を含むワーク画像が表示部17上に表示され、オペレータにより、その表示部17上に表示されたワーク画像における正しい溶接点の位置が指示(教示)され、前記指示された正しい溶接点の画像中心からのずれ量に基づきカメラ7が正しい溶接点に移動するようにロボット動作プログラムが修正され、表示部17上に表示された画像はマスター画像としてRAM11に記憶される。 That is, the control device 3 operates the robot 1 based on the robot operation program to move the camera 7 to the first processing point (first welding point), and the work image including the first welding point. Is displayed on the display unit 17, and the operator indicates (teaches) the position of the correct welding point in the workpiece image displayed on the display unit 17, and the deviation amount of the specified correct welding point from the image center is indicated. Then, the robot operation program is corrected so that the camera 7 moves to the correct welding point, and the image displayed on the display unit 17 is stored in the RAM 11 as a master image.
 この動作は、全ての加工点(この場合、第1~3の溶接点)に対して行われる。 This operation is performed for all machining points (in this case, the first to third welding points).
 次に、ステップ102において、同一のロボット動作プログラムに基づいて加工される次のワークがあるか否かが判定され、次のワークがある場合、ステップ103において、次のワークのためのロボット動作プログラムが取得され、ステップ104において、次のワークのためのマスター画像が取得される。 Next, in step 102, it is determined whether there is a next workpiece to be machined based on the same robot operation program. If there is a next workpiece, in step 103, a robot operation program for the next workpiece is determined. Is acquired, and in step 104, a master image for the next workpiece is acquired.
 すなわち、加工される次のワークの段取りセットが行われ、そのマスター画像およびロボット動作プログラムが読み込まれる。 That is, the set-up set for the next workpiece to be processed is performed, and the master image and the robot operation program are read.
 次に、ステップ105において、ロボット動作プログラムに基づいてロボット1が動作されてカメラ7が次のワークの溶接点に移動され、画像が撮像される。 Next, in step 105, the robot 1 is operated based on the robot operation program, the camera 7 is moved to the welding point of the next workpiece, and an image is taken.
 すなわち、ロボット動作プログラムが読み出され、ロボット1が動作されて、その第1の溶接点の位置にカメラ7が移動され、その位置の次のワークの画像が撮像される。 That is, the robot operation program is read, the robot 1 is operated, the camera 7 is moved to the position of the first welding point, and an image of the next workpiece at that position is taken.
 次に、ステップ107において、第1の溶接点のマスター画像情報と、ステップ105において撮像された第1の溶接点の位置の画像とが比較され、ステップ109において、ステップ105において撮像された第1の溶接点の位置の画像におけるマスター画像の溶接点の位置が取得され記憶される。すなわち、マスター画像の溶接点の位置が、ステップ105において撮像された第1の溶接点の位置の画像上でどの位置になるかが判定され、RAM11に記憶される。 Next, in step 107, the master image information of the first welding point is compared with the image of the position of the first welding point imaged in step 105. In step 109, the first image imaged in step 105 is compared. The position of the welding point of the master image in the image of the position of the welding point is acquired and stored. That is, the position of the welding point position of the master image on the image of the position of the first welding point imaged in step 105 is determined and stored in the RAM 11.
 そして、ステップ111において、次の溶接点があるか否かが判定され、次の溶接点がある場合、ステップ105に戻り、次の溶接点に対してステップ105~109の処理が行われる。この実施形態の場合、第1の溶接点に続いて第2および第3の溶接点が処理される。 In step 111, it is determined whether or not there is a next welding point. If there is a next welding point, the process returns to step 105, and the processing of steps 105 to 109 is performed on the next welding point. In the case of this embodiment, the second and third welding points are processed following the first welding point.
 次に、ステップ111において次の溶接点がない場合、ステップ113において、ステップ105において撮像された画像上に、ステップ109において取得された溶接点の位置を同時に表示したサムネイル画像が、溶接点毎に、表示部17上に一括表示される(図4参照)。 Next, when there is no next welding point in step 111, in step 113, a thumbnail image that simultaneously displays the position of the welding point acquired in step 109 on the image captured in step 105 is displayed for each welding point. Are collectively displayed on the display unit 17 (see FIG. 4).
 この実施形態の場合、図4に示すように、第1~第3の溶接点の画像がそれぞれ表示され、ステップ109において取得された溶接点の位置は×で表示されている。 In the case of this embodiment, as shown in FIG. 4, the images of the first to third welding points are respectively displayed, and the position of the welding point acquired in step 109 is displayed as x.
 次に、ステップ115において、オペレータにより、表示部17上に一括表示された画像における溶接点に修正があるか否かが判定され、修正が有ると判定された場合、ステップ117において、溶接点の修正が行われる。 Next, in step 115, the operator determines whether or not there is a correction in the welding point in the image displayed on the display unit 17 collectively. If it is determined that there is a correction, in step 117, the welding point Corrections are made.
 すなわち、オペレータにより修正が有ると判定された場合、オペレータは、入力部15を介して、ステップ109において取得された溶接点の位置×の修正を入力し、ステップ109において取得された溶接点の位置×を修正表示するとともに、修正量をRAM11に記録する。 That is, when it is determined by the operator that there is a correction, the operator inputs the correction of the welding point position x acquired in step 109 via the input unit 15, and the welding point position acquired in step 109. X is corrected and displayed, and the correction amount is recorded in the RAM 11.
 この実施形態の場合、図4に示すように、第2の溶接点におけるステップ109において取得された溶接点の位置×が、適切に認識されなかったためにステップ105において撮像された画像における正しい溶接点の位置とずれているので、矢印で示すように修正される。 In the case of this embodiment, as shown in FIG. 4, the position x of the welding point acquired in step 109 at the second welding point is not properly recognized, so that the correct welding point in the image captured in step 105 is obtained. Since it is shifted from the position, it is corrected as shown by the arrow.
 次に、ステップ119において、ステップ103において取得されたプログラムの更新が要るか否かが判定される。 Next, in step 119, it is determined whether or not the program acquired in step 103 needs to be updated.
 すなわち、ステップ109において、ステップ105において撮像された溶接点の位置の画像におけるマスター画像の溶接点の位置の修正があった場合あるいはステップ117においてステップ109において取得された溶接点の位置の修正があった場合には、プログラムの更新が要ると判定され、ステップ109において取得された溶接点の位置の修正なかった場合には、プログラムの更新が要らないと判定される。 That is, in step 109, when the position of the welding point of the master image in the image of the position of the welding point imaged in step 105 is corrected, or the position of the welding point acquired in step 109 in step 117 is corrected. If it is determined that the program needs to be updated, it is determined that the program need not be updated if the position of the welding point acquired in step 109 is not corrected.
 次に、ステップ119においてプログラムの更新が要ると判定された場合、ステップ121において、ステップ103において取得されたプログラム上の溶接点の位置に順番にカメラ7が移動される。すなわち、この実施形態の場合、第1~第3の溶接点の順にカメラ7が移動されるようにロボット1が動作される。 Next, when it is determined in step 119 that the program needs to be updated, in step 121, the camera 7 is sequentially moved to the position of the welding point on the program acquired in step 103. That is, in this embodiment, the robot 1 is operated so that the camera 7 is moved in the order of the first to third welding points.
 次に、ステップ123において、ステップ109において取得された溶接点の位置あるいはステップ117における溶接点の位置の修正量に応じて所定の移動量だけロボット1がさらに移動される。 Next, in step 123, the robot 1 is further moved by a predetermined movement amount in accordance with the position of the welding point acquired in step 109 or the correction amount of the position of the welding point in step 117.
 すなわち、この実施形態の場合、第2の溶接点におけるステップ109において取得された溶接点の位置が修正されているので、この第2の溶接点にカメラ7が移動された後に、ステップ117において修正された正しい溶接点の位置に合わせるように、カメラ7が移動される。 That is, in this embodiment, since the position of the welding point acquired in step 109 at the second welding point is corrected, the correction is performed in step 117 after the camera 7 is moved to the second welding point. The camera 7 is moved so as to match the position of the correct welding point.
 次に、ステップ125において、ステップ123においてロボット1が移動された後における溶接点の座標が取得され、ステップ127において、プログラム上の溶接点の座標が、ステップ125において取得された溶接点の座標に基づいて更新される。 Next, in step 125, the coordinates of the welding point after the robot 1 is moved in step 123 are acquired. In step 127, the coordinates of the welding point on the program are changed to the coordinates of the welding point acquired in step 125. Updated based on.
 この発明は前述の発明の実施の形態に限定されることなく、適宜な変更を行うことにより、その他の態様で実施し得るものである。 The present invention is not limited to the embodiment of the invention described above, and can be implemented in other modes by making appropriate modifications.
 本発明によれば、従来のように、非常に効率良く溶接点の修正を行うことができ、効率良くプログラムの補正を行うことができる。 According to the present invention, the welding point can be corrected very efficiently as in the prior art, and the program can be corrected efficiently.

Claims (2)

  1.  ワークの加工を自動で行うロボットの制御システムであって、
     所望する加工における前記ロボットの動作のための加工点を有する最初のワークのマスター画像およびロボット動作プログラムを作成し、そのロボット動作プログラムに基づいて加工される次のワークがある場合、次のワークのマスター画像およびロボット動作プログラムを取得し、前記ロボット動作プログラムに基づいて前記次のワークの加工点の画像を撮像し、前記最初のワークのマスター画像の情報と前記撮像された前記次のワークの加工点の画像とを比較し、前記次のワークの溶接点の画像上に、前記次のワークの溶接点の画像上において取得されたマスター画像の溶接点に対応した位置を同時に表示した画像を、溶接点毎に、一括表示し、前記表示部上に一括表示された前記画像に対して、オペレータよりの前記マスター画像の溶接点に対応した位置の修正指示に従って、前記マスター画像の溶接点に対応した位置を修正することを特徴とするロボットの制御システム。
    A robot control system that automatically processes workpieces,
    When a master image of a first workpiece having a machining point for the operation of the robot in a desired machining and a robot operation program are created and there is a next workpiece to be machined based on the robot operation program, A master image and a robot operation program are acquired, an image of a processing point of the next workpiece is captured based on the robot operation program, and information on the master image of the first workpiece and processing of the captured next workpiece Compared with the image of the point, on the image of the welding point of the next workpiece, an image simultaneously displaying the position corresponding to the welding point of the master image acquired on the image of the welding point of the next workpiece, For each welding point, a batch display is performed, and the master image from the operator is melted with respect to the images collectively displayed on the display unit. Robot control system, characterized in that according to a modified indication of the position corresponding to the point, to correct the position corresponding to the welding point of the master image.
  2.  前記次のワークのためのロボット動作プログラムの更新が必要な場合、前記次のワークのためのロボット動作プログラム上の溶接点の位置に前記ロボットを移動し、前記取得された前記次のワークの溶接点の画像上のマスター画像の溶接点に対応した位置および前記修正された前記マスター画像の溶接点に対応した位置の修正分により、前記ロボットを移動し、前記移動後の溶接点の座標を取得し、前記次のワークのためのロボット動作プログラム上の溶接点の座標を、前記取得された溶接点の座標に更新することを特徴とする請求項1に記載のロボットの制御システム。 When the robot operation program for the next workpiece needs to be updated, the robot is moved to the position of the welding point on the robot operation program for the next workpiece, and the welding of the acquired next workpiece is performed. The robot is moved by the position corresponding to the welding point of the master image on the image of the point and the correction of the position corresponding to the welding point of the corrected master image, and the coordinates of the welding point after the movement are acquired. The robot control system according to claim 1, wherein the coordinates of the welding point on the robot operation program for the next workpiece are updated to the acquired coordinates of the welding point.
PCT/JP2013/081395 2012-12-13 2013-11-21 Robot control system WO2014091897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-272353 2012-12-13
JP2012272353A JP6220514B2 (en) 2012-12-13 2012-12-13 Robot control system and robot control method

Publications (1)

Publication Number Publication Date
WO2014091897A1 true WO2014091897A1 (en) 2014-06-19

Family

ID=50934192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081395 WO2014091897A1 (en) 2012-12-13 2013-11-21 Robot control system

Country Status (2)

Country Link
JP (1) JP6220514B2 (en)
WO (1) WO2014091897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866206A (en) * 2017-11-24 2019-06-11 株式会社安川电机 The control method of robot system and robot system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006829B1 (en) * 2017-10-31 2019-08-05 한국생산기술연구원 System for robot calibration and method for calibration using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266190A (en) * 2002-03-15 2003-09-24 Honda Motor Co Ltd Method of forming lap joint in laser welding
JP2011045898A (en) * 2009-08-26 2011-03-10 Amada Co Ltd Welding robot
JP2012198785A (en) * 2011-03-22 2012-10-18 Okuma Corp Servo motor control device and servo motor control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266190A (en) * 2002-03-15 2003-09-24 Honda Motor Co Ltd Method of forming lap joint in laser welding
JP2011045898A (en) * 2009-08-26 2011-03-10 Amada Co Ltd Welding robot
JP2012198785A (en) * 2011-03-22 2012-10-18 Okuma Corp Servo motor control device and servo motor control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866206A (en) * 2017-11-24 2019-06-11 株式会社安川电机 The control method of robot system and robot system
CN109866206B (en) * 2017-11-24 2023-04-11 株式会社安川电机 Robot system and control method for robot system

Also Published As

Publication number Publication date
JP6220514B2 (en) 2017-10-25
JP2014117757A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US10025291B2 (en) Simulator, simulation method, and simulation program
US11466974B2 (en) Image capturing apparatus and machine tool
EP2082850B1 (en) Generating device of processing robot program
JPH07311610A (en) Coordinate system setting method using visual sensor
JP6763846B2 (en) Teaching device and teaching method for teaching robots
JP2004351570A (en) Robot system
JP2012254518A (en) Robot control system, robot system and program
CN111565895B (en) Robot system and robot control method
JP2020075354A (en) External input device, robot system, control method for robot system, control program, and recording medium
JP2006048244A (en) Working program generating device
JP7337495B2 (en) Image processing device, its control method, and program
JP2016187846A (en) Robot, robot controller and robot system
US10678212B2 (en) Numerical control system
CN111225143B (en) Image processing apparatus, control method thereof, and program storage medium
JP2015116655A (en) Robot, robot control method, and robot control program
CN114119570A (en) Automatic model changing method, device, controller and storage medium
WO2014091897A1 (en) Robot control system
EP3462258B1 (en) Control device with corresponding method and recording medium to generate a corrected path
JP2006031311A (en) Robot control device and robot system
JP2015003348A (en) Robot control system, control device, robot, control method for robot control system and robot control method
JP6253847B1 (en) Laser processing apparatus, laser processing method, and laser processing program
US20220134567A1 (en) Robot system, robot control device, and robot control program
JPH1058363A (en) Off-line teaching device for robot
WO2023053368A1 (en) Teaching device and robot system
CN112184819A (en) Robot guiding method and device, computer equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862340

Country of ref document: EP

Kind code of ref document: A1