WO2014091833A1 - Acoustic generator, acoustic generation device, and electronic apparatus - Google Patents

Acoustic generator, acoustic generation device, and electronic apparatus Download PDF

Info

Publication number
WO2014091833A1
WO2014091833A1 PCT/JP2013/079530 JP2013079530W WO2014091833A1 WO 2014091833 A1 WO2014091833 A1 WO 2014091833A1 JP 2013079530 W JP2013079530 W JP 2013079530W WO 2014091833 A1 WO2014091833 A1 WO 2014091833A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
damping material
piezoelectric vibration
vibration element
generator
Prior art date
Application number
PCT/JP2013/079530
Other languages
French (fr)
Japanese (ja)
Inventor
神谷 哲
寺園 正喜
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2014091833A1 publication Critical patent/WO2014091833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the disclosed embodiment relates to a sound generator, a sound generation device, and an electronic apparatus.
  • Patent Document 1 describes a sound generator that outputs a sound by vibrating a diaphragm by applying a voltage to a piezoelectric element attached to the diaphragm and causing it to vibrate.
  • the frequency characteristics of the sound pressure have a peak (a portion where the sound pressure is higher than the surroundings) and a dip (the sound pressure is higher than the surroundings). There is a problem that it is difficult to obtain a high-quality sound quality.
  • One aspect of the embodiments has been made in view of the above, and an object thereof is to provide an acoustic generator, an acoustic generator, and an electronic apparatus that can obtain a favorable frequency characteristic of sound pressure.
  • the acoustic generator includes a vibrating body, an exciter, and a damping material.
  • the exciter is provided on the vibrating body.
  • the damping material is attached so as to be integrated with the vibrating body.
  • the exciter and the damping material have the symmetry axis or center of gravity of the figure drawn by the outline of the other member with respect to the symmetry axis or center of gravity of the figure drawn by the outline of one of the members. They are arranged so that they do not match.
  • a favorable sound pressure frequency characteristic can be obtained.
  • FIG. 1A is an explanatory diagram in plan view of the sound generator according to the first embodiment.
  • 1B is a cross-sectional view taken along line A-A ′ of FIG. 1A.
  • FIG. 2 is an explanatory view in plan view for explaining the arrangement of the damping material.
  • FIG. 3 is a block diagram of the sound generator.
  • FIG. 4 is a block diagram of the electronic device.
  • FIG. 5A is an explanatory diagram in a plan view of an acoustic generator according to a first modification example of the first embodiment.
  • FIG. 5B is an explanatory diagram in a plan view of an acoustic generator according to a second modification example of the first embodiment.
  • FIG. 6 is an explanatory diagram in plan view of the sound generator according to the second embodiment.
  • FIG. 5A is an explanatory diagram in plan view of an acoustic generator according to a first modification example of the first embodiment.
  • FIG. 5B is an explanatory diagram in a plan view of
  • FIG. 7 is an explanatory diagram in plan view of the sound generator according to the first modification of the second embodiment.
  • FIG. 8A is an explanatory diagram in plan view of an acoustic generator according to a second modification of the second embodiment.
  • FIG. 8B is an explanatory diagram in a plan view of an acoustic generator according to a third modification of the second embodiment.
  • FIG. 8C is an explanatory diagram of the acoustic generator according to the fourth modification example of the second embodiment in plan view.
  • FIG. 9 is an explanatory diagram in plan view of the sound generator according to the third embodiment.
  • FIG. 10 is an explanatory diagram in plan view of the sound generator according to the fourth embodiment.
  • the sound generator 1 is a so-called piezoelectric speaker, and has a configuration for generating sound pressure using a resonance phenomenon of a vibrating body.
  • the acoustic generator 1 includes a frame body 10, a vibrating body 20 stretched on the frame body 10, and a piezoelectric element provided on the vibrating body 20.
  • the vibration element 30 and the damping material 50 are provided.
  • FIG. 1A is an explanatory diagram in a plan view of the sound generator 1 according to the first embodiment viewed from a direction perpendicular to the main surface of the vibrating body 20, and FIG. 1B is an AA ′ diagram in FIG. 1A. It is line sectional drawing. In FIG. 1B, in order to facilitate understanding, the sound generator 1 is shown expanded and deformed in the vertical direction.
  • the vibrating body 20 can be formed using various materials such as resin, metal, and paper.
  • the thin plate-like vibrating body 20 can be made of a resin film made of polyethylene, polyimide, polypropylene, or the like having a thickness of 10 to 200 ⁇ m. Since the resin film is a material having a lower elastic modulus and mechanical Q value than a metal plate or the like, the vibration body 20 is made of a resin film, so that the vibration body 20 bends and vibrates with a large amplitude, thereby reducing the sound pressure. It is possible to reduce the difference between the resonance peak and the dip by widening the width of the resonance peak and reducing the height in the frequency characteristics. A composite of metal and resin may be used as the vibrating body 20.
  • the frame body 10 plays a role of holding the vibrating body 20 and forming a fixed end of vibration.
  • a frame body 10 is configured by vertically joining together an upper frame member 11 and a lower frame member 12 that are rectangular.
  • the outer peripheral part of the vibrating body 20 which consists of a resin film is pinched
  • the thickness and material of the upper frame member 11 and the lower frame member 12 constituting the frame body 10 are not particularly limited, but in the first embodiment, because of excellent mechanical strength and corrosion resistance,
  • a stainless steel material having a thickness of 100 to 5000 ⁇ m is used.
  • the piezoelectric vibration element 30 includes a laminated body 33, surface electrode layers 34 and 35 formed on the upper and lower surfaces of the laminated body 33, and an external surface formed on the side surface where the end face of the internal electrode layer 32 of the laminated body 33 is exposed. Electrodes 36 and 37 are provided. Lead terminals 38 and 39 are connected to the external electrodes 36 and 37.
  • the laminated body 33 is formed by alternately laminating four piezoelectric layers 31a, 31b, 31c, 31d made of ceramics and three internal electrode layers 32.
  • the piezoelectric vibration element 30 has a rectangular main surface on the upper surface side and the lower surface side, and the piezoelectric layers 31a and 31b and the piezoelectric layers 31c and 31d are polarized in different directions in the thickness direction, respectively.
  • the piezoelectric layers 31b and 31c are polarized in the same direction.
  • the piezoelectric vibration element 30 when a voltage is applied to the piezoelectric vibration element 30 via the lead terminals 38 and 39, for example, the lower surface side of the piezoelectric vibration element 30, in other words, the piezoelectric layers 31c and 31d on the vibration body 20 side contract, while the upper surface The piezoelectric layers 31a and 31b on the side are deformed so as to extend.
  • the piezoelectric layers 31a and 31b on the upper surface side of the piezoelectric vibration element 30 and the piezoelectric layers 31c and 31d on the lower surface side exhibit opposite expansion and contraction behavior, and as a result, the piezoelectric vibration element 30 is bent by a bimorph type. By vibrating, a certain vibration can be given to the vibrating body 20 to generate a sound.
  • the piezoelectric vibration element 30 is a bimorph-type laminated piezoelectric vibration element, and the piezoelectric vibration element 30 itself bends and vibrates alone. Therefore, the piezoelectric vibration element 30 is, for example, a soft vibration body 20 regardless of the material of the vibration body 20. However, strong vibrations can be generated, and a sufficient sound pressure can be obtained with a small number of piezoelectric vibration elements 30.
  • piezoelectric layers 31a, 31b, 31c, 31d As a material constituting the piezoelectric layers 31a, 31b, 31c, 31d, conventionally used are lead-free piezoelectric materials such as lead zirconate titanate, Bi layered compounds, and tungsten bronze structure compounds. Piezoelectric ceramics can be used.
  • the material of the internal electrode layer 32 is mainly composed of a metal, for example, silver and palladium.
  • the internal electrode layer 32 may contain ceramic components constituting the piezoelectric layers 31a, 31b, 31c, and 31d, whereby the piezoelectric layers 31a, 31b, 31c, and 31d and the internal electrode layers 32 and 32 are included. , 32 can be obtained, and the piezoelectric vibration element 30 in which the stress due to the difference in thermal expansion is reduced can be obtained.
  • the surface electrode layers 34 and 35 and the external electrodes 36 and 37 are mainly composed of metal such as silver. Moreover, you may contain a glass component. By containing the glass component, it is possible to obtain a strong adhesion between the piezoelectric layers 31a, 31b, 31c, 31d and the internal electrode layer 32 and the surface electrode layers 34, 35 or the external electrodes 36, 37. .
  • the glass component content may be, for example, 20% by volume or less.
  • the wiring connected to the lead terminals 38 and 39 in order to reduce the height of the piezoelectric vibration element 30, it is preferable to use flexible wiring in which a metal foil such as copper or aluminum is sandwiched between resin films.
  • the acoustic generator 1 includes a resin coating layer 40 filled in the frame body 10 so as to embed the piezoelectric vibration element 30.
  • the piezoelectric vibration element 30 can be protected from the external environment.
  • the entire surface of the vibrating body 20 is covered with the covering layer 40, but it is not necessary to cover the entire surface. That is, the acoustic generator 1 only needs to cover the piezoelectric vibration element 30 and at least a part of the surface of the vibration body 20 on the side where the piezoelectric vibration element 30 is disposed with the coating layer 40.
  • the damping material 50 is formed in a substantially rectangular parallelepiped shape, for example.
  • two damping members 50 having the same shape are disposed on both the left and right sides (Y-axis negative direction side and Y-axis positive direction side) of the piezoelectric vibration element 30.
  • each damping material 50 is integrated with the vibrating body 20, the piezoelectric vibrating element 30, and the coating layer 40 by being attached to the surface of the coating layer 40 via an adhesive 60.
  • the region in the vibrating body 20 in which the damping material 50 is disposed receives vibration loss due to the damping material 50 through the coating layer 40, thereby suppressing the resonance phenomenon. It becomes. That is, since the difference between the resonance peak and the dip can be reduced and the frequency characteristic of the sound pressure can be flattened, a favorable frequency characteristic of the sound pressure can be obtained.
  • the exciter (piezoelectric vibration element 30) and the damping material 50 have the contour of the other member with respect to the axis of symmetry or the center of gravity of the figure drawn by the contour of one of the members. It was determined that the symmetry axis or the center of gravity of the figure to be drawn was not matched.
  • the other member is a damping material 50.
  • the other member is an exciter (piezoelectric vibration element 30). It is.
  • the plurality of damping materials 50 are arranged such that the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 is asymmetric as a whole.
  • the degenerated vibration mode is dispersed into a plurality of vibration modes to generate a plurality of resonance peaks.
  • FIG. 2 is an explanatory diagram in plan view for explaining the arrangement of the damping material 50.
  • 1A, 1B and FIG. 2 illustrate two damping members 50, the number is not limited.
  • the two damping members 50 describe the outline of the piezoelectric vibration element 30 when the vibrating body 20 is viewed in a plan view from a direction perpendicular to the main surface of the vibrating body 20 (Z-axis direction in the drawing). They are arranged so as to be asymmetric with respect to the symmetry axis of the figure. More specifically, the two damping materials 50 are arranged at a position where the rotational symmetry axis a2 of the two damping materials 50 does not coincide with the rotational symmetry axis a1 of the piezoelectric vibration element 30.
  • the two damping members 50 are arranged in a non-rotational symmetry with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30.
  • the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 becomes asymmetric as a whole.
  • the degeneration of the vibration mode can be solved and dispersed in a plurality of vibration modes.
  • the sound generator 1 it is possible to reduce the peak level of the resonance frequency and obtain a favorable sound pressure frequency characteristic with small fluctuation.
  • the frequency characteristics of the sound pressure in the middle range can be made close to flat, good sound quality can be obtained.
  • the two damping members 50 are both with respect to the other symmetry axes of the piezoelectric vibration element 30 (longitudinal line symmetry axis L shown in FIG. 5A and short line symmetry axis W shown in FIG. 5B). Are also arranged axisymmetrically with respect to each other. This also makes it possible to reduce the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50.
  • the position of the rotational symmetry axis a1 of the piezoelectric vibration element 30 is assumed to coincide with the center of gravity of the piezoelectric vibration element 30. That is, since the two damping materials 50 are arranged in a non-rotationally symmetrical manner with respect to the center of gravity of the piezoelectric vibration element 30, the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material are also arranged by this. The symmetry of the composite vibrator constituted by 50 can be lowered.
  • the axis of symmetry of the piezoelectric vibration element 30 means the symmetry of the figure drawn by the outline of the piezoelectric vibration element 30 when the vibration body 20 is viewed in a plan view from a direction perpendicular to the main surface of the vibration body 20. It means the axis.
  • the center of gravity of the piezoelectric vibration element 30 means the center of gravity (center) of a figure drawn by the outline of the piezoelectric vibration element 30 or the center of gravity (center of mass) of the piezoelectric vibration element 30 itself when viewed in plan.
  • the two damping members 50 are arranged asymmetrically with respect to all three symmetry axes and the center of gravity of the piezoelectric vibration element 30 .
  • the two damping members 50 may be asymmetric with respect to any of the three symmetry axes and the center of gravity of the piezoelectric vibration element 30.
  • the two damping members 50 are arranged at positions that are non-rotationally symmetric with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30 but are symmetric with respect to the line symmetry axis L or the line symmetry axis W. Also good.
  • the two damping members 50 are non-axisymmetric with respect to the line symmetry axis L or the line symmetry axis W of the piezoelectric vibration element 30, but may be arranged at positions that are rotationally symmetric with respect to the rotation symmetry axis a ⁇ b> 1. Good.
  • the damping material 50 may be any member that has mechanical loss, but is preferably a member having a high mechanical loss factor, in other words, a low mechanical quality factor (so-called mechanical Q).
  • a damping material 50 can be formed using various elastic bodies, for example, but since it is desirable that it is soft and easily deformed, it can be suitably formed using a rubber material such as urethane rubber. In particular, a porous rubber material such as urethane foam can be suitably used.
  • the rotational symmetry axis a1 of the piezoelectric vibration element 30 and the center of gravity of the piezoelectric vibration element 30 coincide with each other is shown, but the rotation symmetry axis a1 of the piezoelectric vibration element 30 and the center of gravity of the piezoelectric vibration element 30 are It doesn't necessarily need to match. If these do not match, the plurality of damping members 50 may be disposed asymmetrically with respect to either the symmetry axis or the center of gravity of the piezoelectric vibration element 30.
  • FIG. 3 is a block diagram of the sound generator.
  • the acoustic generator 4 can be configured by housing the acoustic generator 1 having the above-described configuration in a resonance box 400.
  • the resonance box 400 is a housing that houses the sound generator 1, and resonates the sound emitted from the sound generator 1 and radiates it as sound waves from the housing surface.
  • Such a sound generator 4 can be used alone as a speaker, and can be suitably incorporated into various electronic devices 2, for example.
  • the sound generator 1 can be used for a mobile phone or a thin television. Alternatively, it can be suitably incorporated into the electronic device 2 such as a tablet terminal.
  • the electronic device 2 to which the sound generator 1 can be incorporated is not limited to the above-described mobile phone, flat-screen TV, tablet terminal, and the like, and for example, a refrigerator, a microwave oven, a vacuum cleaner, a washing machine, and the like. Conventionally, home appliances that have not been focused on sound quality are also included.
  • FIG. 4 is a block diagram of the electronic device 2.
  • the electronic device 2 includes the acoustic generator 1 described above, an electronic circuit connected to the acoustic generator 1, and a housing 200 that houses the acoustic generator 1 and the electronic circuit.
  • the electronic device 2 includes an acoustic generator 1, an electronic circuit including a control circuit 21, a signal processing circuit 22, and a wireless circuit 23 as an input device, an antenna 24, and these And a housing 200 for storing the.
  • the wireless input device is shown in FIG. 4, it can be provided as a signal input by normal electric wiring.
  • the control circuit 21 controls the entire electronic device 2 including the wireless circuit 23 via the signal processing circuit 22.
  • An output signal to the sound generator 1 is input from the signal processing circuit 22.
  • the control circuit 21 generates a sound signal S by controlling the signal processing circuit 22 from the signal input to the radio circuit 23 and outputs the sound signal S to the sound generator 1.
  • the electronic device 2 shown in FIG. 4 incorporates the small and thin acoustic generator 1 and reduces the difference between the resonance peak and the dip to suppress the frequency fluctuation as much as possible. It is possible to improve the sound quality as a whole even in a high sound region including a low sound region having a low sound level.
  • the electronic device 2 in which the sound generator 1 is directly mounted is illustrated as the sound output device.
  • the sound output device for example, a sound generator 4 in which the sound generator 1 is housed in a housing is mounted. It may be the configuration.
  • the arrangement example of the damping material 50 that lowers the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 is not limited to the one shown in FIG. .
  • Another arrangement example of the damping material 50 will be described with reference to FIGS. 5A and 5B.
  • 5A and 5B are explanatory views of the sound generator according to the first and second modifications of the first embodiment in plan view.
  • FIG. 5A shows the symmetry axis in the longitudinal direction of the piezoelectric vibration element 30 as the symmetry axis L
  • FIG. 5B shows the symmetry axis in the short direction of the piezoelectric vibration element 30 as the symmetry axis W.
  • the symmetry axis L and the symmetry axis W may be shown in other drawings used in the description below.
  • the two damping members 50 are arranged at positions that are asymmetric with respect to the longitudinal symmetry axis L of the piezoelectric vibration element 30. Thereby, the symmetry of the composite vibrating body constituted by the vibrating body 20, the piezoelectric vibrating element 30, the coating layer 40, and the damping material 50 can be lowered.
  • the two damping members 50 are arranged at positions that are asymmetric with respect to the symmetry axis W in the short direction of the piezoelectric vibration element 30. Thereby, the symmetry of the composite vibrating body constituted by the vibrating body 20, the piezoelectric vibrating element 30, the coating layer 40, and the damping material 50 can be lowered.
  • FIG. 2 is an explanatory diagram in plan view of the sound generator according to the second embodiment.
  • the sound generator 1 ⁇ / b> A according to the second embodiment is replaced with a damping material instead of one of the two damping materials 50 included in the sound generator 1 according to the first embodiment. 50a.
  • the area of the damping material 50 a when the vibrating body 20 is viewed in plan is smaller than that of the damping material 50.
  • FIG. 6 shows a case where two damping members 50 are arranged at positions that are rotationally symmetric with respect to the rotational symmetry axis a ⁇ b> 1 of the piezoelectric vibration element 30.
  • one of the damping materials 50 in such an assumption is shown by the broken-line rectangle which abbreviate
  • two damping members 50 are arranged symmetrically with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30.
  • one of the damping members 50 indicated by a broken line is By making the damping material 50 a smaller in area in plan view than the other damping material 50, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40 and the damping material 50 is increased. Can be lowered.
  • the symmetry of the composite vibrator can be lowered. Therefore, it is possible to obtain a sound generator having a good sound pressure frequency characteristic in which the vibration mode degeneration can be solved and dispersed, and the sound pressure fluctuation is small.
  • the damping materials 50 and 50a having different areas are arranged at positions facing each other with the piezoelectric vibration element 30 interposed therebetween.
  • the areas of the damping materials 50 and 50a facing each other across the piezoelectric vibration element 30 different from each other, for example, when the areas of the adjacent damping materials are made different, the symmetry of the composite vibrator is further reduced. can do.
  • FIG. 6 shows an example in which the area of the damping material in plan view is different, but this is not limiting, and the shape of the damping material in plan view may be different. This point will be described with reference to FIG.
  • FIG. 7 is an explanatory diagram in plan view of the sound generator according to the first modification of the second embodiment.
  • one of the damping materials 50 indicated by the broken line is replaced with the other damping material 50 under the same assumptions as in FIG.
  • the damping material 50b has a different planar shape. Thereby, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 can be lowered.
  • the planar shape of the at least one damping material 50b (the shape when seen in a plan view from the direction perpendicular to the main surface of the vibrating body 20) is different from the planar shape of the other damping materials 50, thereby combining The symmetry of the vibrating body can be lowered. Therefore, it is possible to obtain the sound generator 1A-1 having a good sound pressure frequency characteristic in which the vibration mode degeneration can be solved and dispersed, and the fluctuation of the sound pressure is small.
  • FIGS. 8A to 8C are explanatory views in plan view of the acoustic generators according to second to fourth modifications of the second embodiment, respectively.
  • 8A to 8C show an example in which four damping materials are arranged.
  • the upper side X-axis negative direction side
  • the lower side Two damping materials are arranged side by side on the X-axis positive direction side.
  • the damping material 50d and the damping material 50e are arranged side by side on the upper side of the piezoelectric vibration element 30, and the damping material 50f and the damping material 50g are arranged on the lower side of the piezoelectric vibration element 30.
  • the damping materials 50d and 50e have different areas when the vibrating body 20 is viewed in plan, and the damping materials 50f and 50g also have different areas when the vibrating body 20 is viewed in plan. .
  • the composite The symmetry of the vibrating body can be lowered.
  • the sound generator 1A-3 according to the third modification includes four damping materials 50h to 50k. These damping materials 50h to 50k have different areas in plan view. Thus, by making the areas of all the damping materials 50h to 50k different, the symmetry of the composite vibrator can be further reduced.
  • the sound generator 1A-4 according to the third modification includes four damping materials 50l to 50o. These damping materials 50l to 50o are all different in shape in plan view. Thus, by making all the four damping members 50l to 50o different in shape, the symmetry of the composite vibrator can be further reduced.
  • FIG. 9 is an explanatory diagram in plan view of the sound generator according to the third embodiment.
  • the acoustic generator 1B according to the third embodiment differs from the above-described embodiments in that it includes one damping material 50p and a plurality of piezoelectric vibration elements (here, two Piezoelectric vibration elements 30a and 30b).
  • the arrangement of the damping material 50p is assumed by broken lines so that the two piezoelectric vibration elements 30a and 30b are symmetrical with respect to the damping material 50p. That is, when the vibrating body 20 is viewed in plan, the symmetry axis of the figure drawn by the outline of the damping material 50p indicated by the broken line (rotation symmetry axis a3, longitudinal line symmetry axis L1, transverse direction line symmetry axis W1) The piezoelectric vibration elements 30a and 30b are arranged so as to be symmetric with respect to each other.
  • the position of the rotational symmetry axis a3 of the damping material 50p is assumed to coincide with the center of gravity of the damping material 50p. Accordingly, the two piezoelectric vibration elements 30a and 30b are arranged in rotational symmetry with respect to the center of gravity of the damping material 50p indicated by a broken line.
  • FIG. 10 is an explanatory diagram in plan view of the sound generator according to the fourth embodiment.
  • the sound generator 1C includes one piezoelectric vibration element 30c and one damping material 50q.
  • the arrangement of the damping material 50q that is symmetric with respect to the piezoelectric vibration element 30c is indicated by a broken line.
  • the damping material 50q indicated by the broken line shows the symmetry axis (rotation symmetry axis a4, longitudinal line symmetry axis L2, longitudinal direction line symmetry axis W2) of the piezoelectric vibration element 30c when the vibrating body 20 is viewed in plan. ) With respect to each other.
  • the damping material 50q indicated by the broken line is disposed rotationally symmetrically with respect to the center of gravity of the piezoelectric vibration element 30c.
  • the damping material 50q is arranged symmetrically with respect to the symmetry axis or the center of gravity of the piezoelectric vibration element 30c.
  • the damping material 50q is located from the position indicated by the broken line.
  • the acoustic generator is provided with a plurality of piezoelectric vibration elements and a plurality of damping materials. May be. Further, although the piezoelectric vibration element is rectangular in plan view, the piezoelectric vibration element may be square.
  • piezoelectric vibration element a so-called bimorph type laminated piezoelectric vibration element is illustrated, but a unimorph type piezoelectric vibration element can also be used.
  • the exciter is not limited to a piezoelectric vibration element, and an electric signal is input. What has a function to vibrate is sufficient.
  • an electrodynamic exciter, an electrostatic exciter, or an electromagnetic exciter well known as an exciter for vibrating a speaker may be used.
  • the electrodynamic exciter is such that an electric current is passed through a coil disposed between the magnetic poles of a permanent magnet to vibrate the coil.
  • the electrostatic exciter is composed of two metals facing each other. A bias and an electric signal are passed through the plate to vibrate the metal plate, and an electromagnetic exciter is an electric signal that is passed through the coil to vibrate a thin iron plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

[Problem] To obtain frequency characteristics at a favorable sound pressure. [Solution] This embodiment of an acoustic generator is provided with an oscillating body, an exciter, and a damping material. The exciter is provided on the oscillating body. The damping material is attached in a manner so as to be integrated with the oscillating body. Also, when the oscillating body is seen in a plan view, with respect to the center of gravity or axis of symmetry of the figure depicted by the contour of one member of either the exciter or the damping material, the other is disposed in a manner so that the center of gravity or axis of symmetry of the figure depicted by the contour of the other member does not match.

Description

音響発生器、音響発生装置および電子機器SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
 開示の実施形態は、音響発生器、音響発生装置および電子機器に関する。 The disclosed embodiment relates to a sound generator, a sound generation device, and an electronic apparatus.
 従来、アクチュエータを用いた音響発生器が知られている。たとえば、特許文献1には、振動板に取り付けた圧電素子に電圧を印加して振動させることによって、振動板を振動させて音響を出力する音響発生器が記載されている。 Conventionally, an acoustic generator using an actuator is known. For example, Patent Document 1 describes a sound generator that outputs a sound by vibrating a diaphragm by applying a voltage to a piezoelectric element attached to the diaphragm and causing it to vibrate.
特開2004-23436号公報Japanese Patent Laid-Open No. 2004-23436
 しかしながら、上記した従来の音響発生器は、振動板の共振を積極的に利用するが故に、音圧の周波数特性においてピーク(周囲よりも音圧が高い部分)およびディップ(周囲よりも音圧が低い部分)が生じやすく、良質な音質を得にくいという問題があった。 However, since the above-described conventional sound generator actively uses the resonance of the diaphragm, the frequency characteristics of the sound pressure have a peak (a portion where the sound pressure is higher than the surroundings) and a dip (the sound pressure is higher than the surroundings). There is a problem that it is difficult to obtain a high-quality sound quality.
 実施形態の一態様は、上記に鑑みてなされたものであって、良好な音圧の周波数特性を得ることができる音響発生器、音響発生装置および電子機器を提供することを目的とする。 One aspect of the embodiments has been made in view of the above, and an object thereof is to provide an acoustic generator, an acoustic generator, and an electronic apparatus that can obtain a favorable frequency characteristic of sound pressure.
 実施形態の一態様に係る音響発生器は、振動体と、励振器と、ダンピング材とを備える。励振器は、振動体上に設けられる。ダンピング材は、振動体と一体化するように取り付けられる。そして、振動体を平面視した場合に、励振器およびダンピング材は、いずれか一方の部材の輪郭が描く図形の対称軸または重心に対して他方の部材の輪郭が描く図形の対称軸または重心が一致しないように配置されている。 The acoustic generator according to one aspect of the embodiment includes a vibrating body, an exciter, and a damping material. The exciter is provided on the vibrating body. The damping material is attached so as to be integrated with the vibrating body. When the vibrator is viewed in plan, the exciter and the damping material have the symmetry axis or center of gravity of the figure drawn by the outline of the other member with respect to the symmetry axis or center of gravity of the figure drawn by the outline of one of the members. They are arranged so that they do not match.
 実施形態の一態様によれば、良好な音圧の周波数特性を得ることができる。 According to one aspect of the embodiment, a favorable sound pressure frequency characteristic can be obtained.
図1Aは、第1の実施形態に係る音響発生器の平面視による説明図である。FIG. 1A is an explanatory diagram in plan view of the sound generator according to the first embodiment. 図1Bは、図1AのA-A’線断面図である。1B is a cross-sectional view taken along line A-A ′ of FIG. 1A. 図2は、ダンピング材の配置を説明するための平面視による説明図である。FIG. 2 is an explanatory view in plan view for explaining the arrangement of the damping material. 図3は、音響発生装置のブロック図である。FIG. 3 is a block diagram of the sound generator. 図4は、電子機器のブロック図である。FIG. 4 is a block diagram of the electronic device. 図5Aは、第1の実施形態における第1の変形例に係る音響発生器の平面視による説明図である。FIG. 5A is an explanatory diagram in a plan view of an acoustic generator according to a first modification example of the first embodiment. 図5Bは、第1の実施形態における第2の変形例に係る音響発生器の平面視による説明図である。FIG. 5B is an explanatory diagram in a plan view of an acoustic generator according to a second modification example of the first embodiment. 図6は、第2の実施形態に係る音響発生器の平面視による説明図である。FIG. 6 is an explanatory diagram in plan view of the sound generator according to the second embodiment. 図7は、第2の実施形態の第1の変形例に係る音響発生器の平面視による説明図である。FIG. 7 is an explanatory diagram in plan view of the sound generator according to the first modification of the second embodiment. 図8Aは、第2の実施形態の第2の変形例に係る音響発生器の平面視による説明図である。FIG. 8A is an explanatory diagram in plan view of an acoustic generator according to a second modification of the second embodiment. 図8Bは、第2の実施形態の第3の変形例に係る音響発生器の平面視による説明図である。FIG. 8B is an explanatory diagram in a plan view of an acoustic generator according to a third modification of the second embodiment. 図8Cは、第2の実施形態の第4の変形例に係る音響発生器の平面視による説明図である。FIG. 8C is an explanatory diagram of the acoustic generator according to the fourth modification example of the second embodiment in plan view. 図9は、第3の実施形態に係る音響発生器の平面視による説明図である。FIG. 9 is an explanatory diagram in plan view of the sound generator according to the third embodiment. 図10は、第4の実施形態に係る音響発生器の平面視による説明図である。FIG. 10 is an explanatory diagram in plan view of the sound generator according to the fourth embodiment.
 以下、添付図面を参照して、本願の開示する音響発生器、音響発生装置および電子機器の実施形態について説明する。なお、以下に示す各実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
 第1の実施形態に係る音響発生器の構成について、図1Aおよび図1Bを用いて説明する。
Hereinafter, embodiments of a sound generator, a sound generation device, and an electronic device disclosed in the present application will be described with reference to the accompanying drawings. In addition, this invention is not limited by each embodiment shown below.
(First embodiment)
The configuration of the sound generator according to the first embodiment will be described with reference to FIGS. 1A and 1B.
 第1の実施形態に係る音響発生器1は、いわゆる圧電スピーカと呼ばれるものであり、振動体の共振現象を用いて音圧を発生させる構成を備える。具体的には、音響発生器1は、図1Aおよび図1Bに示すように、枠体10と、この枠体10に張設された振動体20と、この振動体20上に設けられた圧電振動素子30と、ダンピング材50とを備える。 The sound generator 1 according to the first embodiment is a so-called piezoelectric speaker, and has a configuration for generating sound pressure using a resonance phenomenon of a vibrating body. Specifically, as shown in FIGS. 1A and 1B, the acoustic generator 1 includes a frame body 10, a vibrating body 20 stretched on the frame body 10, and a piezoelectric element provided on the vibrating body 20. The vibration element 30 and the damping material 50 are provided.
 なお、図1Aは、第1の実施形態に係る音響発生器1を振動体20の主面に垂直な方向から見た平面視による説明図であり、図1Bは、図1AのA-A’線断面図である。図1Bにおいては、理解を容易にするために、音響発生器1を上下方向に拡張してデフォルメして示している。 1A is an explanatory diagram in a plan view of the sound generator 1 according to the first embodiment viewed from a direction perpendicular to the main surface of the vibrating body 20, and FIG. 1B is an AA ′ diagram in FIG. 1A. It is line sectional drawing. In FIG. 1B, in order to facilitate understanding, the sound generator 1 is shown expanded and deformed in the vertical direction.
 振動体20は、樹脂、金属、紙などの種々の材料を用いて形成することができる。例えば、厚さ10~200μmのポリエチレン、ポリイミド、ポリプロピレンなどの樹脂フィルムにより薄板状の振動体20を構成することができる。樹脂フィルムは金属板などに比べて弾性率および機械的なQ値の低い材料であるため、振動体20を樹脂フィルムにより構成することで、振動体20を大きな振幅で屈曲振動させ、音圧の周波数特性における共振ピークの幅を広く、高さを低くして共振ピークとディップとの差を低減することができる。なお、金属と樹脂との複合体を振動体20として用いてもよい。 The vibrating body 20 can be formed using various materials such as resin, metal, and paper. For example, the thin plate-like vibrating body 20 can be made of a resin film made of polyethylene, polyimide, polypropylene, or the like having a thickness of 10 to 200 μm. Since the resin film is a material having a lower elastic modulus and mechanical Q value than a metal plate or the like, the vibration body 20 is made of a resin film, so that the vibration body 20 bends and vibrates with a large amplitude, thereby reducing the sound pressure. It is possible to reduce the difference between the resonance peak and the dip by widening the width of the resonance peak and reducing the height in the frequency characteristics. A composite of metal and resin may be used as the vibrating body 20.
 枠体10は、振動体20を保持して振動の固定端を形成する役割を担っている。たとえば、図1Bに示すように、共に矩形状の上枠部材11と下枠部材12とを、上下に接合して枠体10を構成している。そして、上枠部材11と下枠部材12との間に樹脂フィルムからなる振動体20の外周部を挟み込み、所定の張力を付与した状態で固定している。したがって、長期間使用してもたわみなどの変形の少ない振動体20を備えた音響発生器1となる。 The frame body 10 plays a role of holding the vibrating body 20 and forming a fixed end of vibration. For example, as shown in FIG. 1B, a frame body 10 is configured by vertically joining together an upper frame member 11 and a lower frame member 12 that are rectangular. And the outer peripheral part of the vibrating body 20 which consists of a resin film is pinched | interposed between the upper frame member 11 and the lower frame member 12, and it fixes in the state which gave predetermined tension. Therefore, the acoustic generator 1 includes the vibrating body 20 with little deformation such as deflection even when used for a long time.
 枠体10を構成する上枠部材11と下枠部材12の厚みおよび材質は、特に限定されるものではないが、第1の実施形態では、機械的強度および耐食性に優れているという理由から、たとえば、厚さ100~5000μmのステンレス製の材料を用いている。 The thickness and material of the upper frame member 11 and the lower frame member 12 constituting the frame body 10 are not particularly limited, but in the first embodiment, because of excellent mechanical strength and corrosion resistance, For example, a stainless steel material having a thickness of 100 to 5000 μm is used.
 圧電振動素子30は、積層体33と、この積層体33の上面および下面に形成された表面電極層34、35と、積層体33の内部電極層32の端面が露出する側面に形成された外部電極36、37とを備えている。そして、外部電極36、37にリード端子38、39が接続されている。 The piezoelectric vibration element 30 includes a laminated body 33, surface electrode layers 34 and 35 formed on the upper and lower surfaces of the laminated body 33, and an external surface formed on the side surface where the end face of the internal electrode layer 32 of the laminated body 33 is exposed. Electrodes 36 and 37 are provided. Lead terminals 38 and 39 are connected to the external electrodes 36 and 37.
 積層体33は、セラミックスからなる4層の圧電体層31a、31b、31c、31dと、3層の内部電極層32とが交互に積層されて形成される。また、圧電振動素子30は、上面側および下面側の主面を矩形状としており、圧電体層31aと31b、圧電体層31cと31dは、それぞれ厚み方向に互いに異なる向きに分極されており、圧電体層31bと31cは同じ向きに分極されている。 The laminated body 33 is formed by alternately laminating four piezoelectric layers 31a, 31b, 31c, 31d made of ceramics and three internal electrode layers 32. The piezoelectric vibration element 30 has a rectangular main surface on the upper surface side and the lower surface side, and the piezoelectric layers 31a and 31b and the piezoelectric layers 31c and 31d are polarized in different directions in the thickness direction, respectively. The piezoelectric layers 31b and 31c are polarized in the same direction.
 したがって、リード端子38、39を介して圧電振動素子30に電圧が印加された場合、例えば圧電振動素子30の下面側、換言すれば振動体20側の圧電体層31c、31dは縮む一方、上面側の圧電体層31a、31bは伸びるように変形する。このように、圧電振動素子30の上面側の圧電体層31a、31bと下面側の圧電体層31c、31dとが、相反する伸縮挙動を示し、その結果、圧電振動素子30がバイモルフ型の屈曲振動をすることにより、振動体20に一定の振動を与えて音を発生させることができる。 Therefore, when a voltage is applied to the piezoelectric vibration element 30 via the lead terminals 38 and 39, for example, the lower surface side of the piezoelectric vibration element 30, in other words, the piezoelectric layers 31c and 31d on the vibration body 20 side contract, while the upper surface The piezoelectric layers 31a and 31b on the side are deformed so as to extend. As described above, the piezoelectric layers 31a and 31b on the upper surface side of the piezoelectric vibration element 30 and the piezoelectric layers 31c and 31d on the lower surface side exhibit opposite expansion and contraction behavior, and as a result, the piezoelectric vibration element 30 is bent by a bimorph type. By vibrating, a certain vibration can be given to the vibrating body 20 to generate a sound.
 このように、圧電振動素子30がバイモルフ型の積層型圧電振動素子であり、圧電振動素子30自体が単独で屈曲振動することから、振動体20の材質によらず、例えば柔らかい振動体20であっても強い振動を発生させることができ、少数の圧電振動素子30により充分な音圧を得ることができる。 In this way, the piezoelectric vibration element 30 is a bimorph-type laminated piezoelectric vibration element, and the piezoelectric vibration element 30 itself bends and vibrates alone. Therefore, the piezoelectric vibration element 30 is, for example, a soft vibration body 20 regardless of the material of the vibration body 20. However, strong vibrations can be generated, and a sufficient sound pressure can be obtained with a small number of piezoelectric vibration elements 30.
 ここで、圧電体層31a、31b、31c、31dを構成する材料としては、チタン酸ジルコン酸鉛、Bi層状化合物、タングステンブロンズ構造化合物などの非鉛系圧電体材料などの、従来から用いられている圧電セラミックスを用いることができる。 Here, as a material constituting the piezoelectric layers 31a, 31b, 31c, 31d, conventionally used are lead-free piezoelectric materials such as lead zirconate titanate, Bi layered compounds, and tungsten bronze structure compounds. Piezoelectric ceramics can be used.
 また、内部電極層32の材料は、金属、例えば銀とパラジウムを主成分とする。なお、内部電極層32には圧電体層31a、31b、31c、31dを構成するセラミック成分を含有しても良く、これにより、圧電体層31a、31b、31c、31dと内部電極層32、32、32との熱膨張差による応力を低減した圧電振動素子30を得ることができる。 The material of the internal electrode layer 32 is mainly composed of a metal, for example, silver and palladium. The internal electrode layer 32 may contain ceramic components constituting the piezoelectric layers 31a, 31b, 31c, and 31d, whereby the piezoelectric layers 31a, 31b, 31c, and 31d and the internal electrode layers 32 and 32 are included. , 32 can be obtained, and the piezoelectric vibration element 30 in which the stress due to the difference in thermal expansion is reduced can be obtained.
 また、表面電極層34、35と外部電極36、37は、金属、例えば銀などを主成分とする。また、ガラス成分を含有しても良い。ガラス成分を含有させることによって、圧電体層31a、31b、31c、31dや内部電極層32と、表面電極層34、35または外部電極36、37との間に強固な密着力を得ることができる。ガラス成分の含有量は、たとえば20体積%以下とすればよい。 Further, the surface electrode layers 34 and 35 and the external electrodes 36 and 37 are mainly composed of metal such as silver. Moreover, you may contain a glass component. By containing the glass component, it is possible to obtain a strong adhesion between the piezoelectric layers 31a, 31b, 31c, 31d and the internal electrode layer 32 and the surface electrode layers 34, 35 or the external electrodes 36, 37. . The glass component content may be, for example, 20% by volume or less.
 また、リード端子38、39に接続する配線としては、圧電振動素子30の低背化を図るために、銅またはアルミニウムなどの金属箔を樹脂フィルムで挟んだフレキシブル配線を用いるのが好ましい。 Further, as the wiring connected to the lead terminals 38 and 39, in order to reduce the height of the piezoelectric vibration element 30, it is preferable to use flexible wiring in which a metal foil such as copper or aluminum is sandwiched between resin films.
 また、第1の実施形態に係る音響発生器1は、図1Bに示すように、圧電振動素子30を埋設するように、枠体10内に充填された樹脂製の被覆層40を備える。このように、圧電振動素子30を樹脂製の被覆層40で埋設することにより、適度なダンピング効果を誘発させることができ、共振現象を抑制するとともに、共振ピークとディップとの差をより小さく抑えることができる。さらに、圧電振動素子30を外部環境から保護することもできる。 Further, as shown in FIG. 1B, the acoustic generator 1 according to the first embodiment includes a resin coating layer 40 filled in the frame body 10 so as to embed the piezoelectric vibration element 30. Thus, by embedding the piezoelectric vibration element 30 with the resin coating layer 40, it is possible to induce an appropriate damping effect, suppress the resonance phenomenon, and further reduce the difference between the resonance peak and the dip. be able to. Further, the piezoelectric vibration element 30 can be protected from the external environment.
 なお、第1の実施形態では、振動体20の表面全てが被覆層40により被覆されているが、全てが被覆される必要はない。すなわち、音響発生器1は、圧電振動素子30と、この圧電振動素子30が配置されている側の振動体20の表面の少なくとも一部とが被覆層40により被覆されていればよい。 In the first embodiment, the entire surface of the vibrating body 20 is covered with the covering layer 40, but it is not necessary to cover the entire surface. That is, the acoustic generator 1 only needs to cover the piezoelectric vibration element 30 and at least a part of the surface of the vibration body 20 on the side where the piezoelectric vibration element 30 is disposed with the coating layer 40.
 ダンピング材50は、例えば略直方体形状に形成される。第1の実施形態では、同一の形状を有する2個のダンピング材50が、圧電振動素子30の左右両側(Y軸負方向側およびY軸正方向側)にそれぞれ配置される。また、各ダンピング材50は、図1Bに示すように、被覆層40の表面に接着剤60を介して取り付けられることによって、振動体20、圧電振動素子30および被覆層40と一体化される。 The damping material 50 is formed in a substantially rectangular parallelepiped shape, for example. In the first embodiment, two damping members 50 having the same shape are disposed on both the left and right sides (Y-axis negative direction side and Y-axis positive direction side) of the piezoelectric vibration element 30. Further, as shown in FIG. 1B, each damping material 50 is integrated with the vibrating body 20, the piezoelectric vibrating element 30, and the coating layer 40 by being attached to the surface of the coating layer 40 via an adhesive 60.
 このように、ダンピング材50を設けることによって、ダンピング材50が配置された振動体20における領域は、被覆層40を介してダンピング材50による振動損失を受け、これにより共振現象が抑制されることとなる。すなわち、共振ピークとディップとの差を低減させ、音圧の周波数特性を平坦化することができるため、良好な音圧の周波数特性を得ることができる。 Thus, by providing the damping material 50, the region in the vibrating body 20 in which the damping material 50 is disposed receives vibration loss due to the damping material 50 through the coating layer 40, thereby suppressing the resonance phenomenon. It becomes. That is, since the difference between the resonance peak and the dip can be reduced and the frequency characteristic of the sound pressure can be flattened, a favorable frequency characteristic of the sound pressure can be obtained.
 さらに、振動体20を平面視した場合に、励振器(圧電振動素子30)およびダンピング材50は、いずれか一方の部材の輪郭が描く図形の対称軸または重心に対して他方の部材の輪郭が描く図形の対称軸または重心が一致しないように配置されていることとした。ここで、一方の部材が励振器(圧電振動素子30)の場合、他方の部材はダンピング材50であり、一方の部材がダンピング材50の場合、他方の部材は励振器(圧電振動素子30)である。 Further, when the vibrating body 20 is viewed in plan, the exciter (piezoelectric vibration element 30) and the damping material 50 have the contour of the other member with respect to the axis of symmetry or the center of gravity of the figure drawn by the contour of one of the members. It was determined that the symmetry axis or the center of gravity of the figure to be drawn was not matched. Here, when one member is an exciter (piezoelectric vibration element 30), the other member is a damping material 50. When one member is a damping material 50, the other member is an exciter (piezoelectric vibration element 30). It is.
 例えば、第1の実施形態では、複数のダンピング材50を、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体が全体として非対称となるように配置することによって、縮退した振動モードを複数の振動モードに分散させ、複数の共振ピークを発生させることとした。 For example, in the first embodiment, the plurality of damping materials 50 are arranged such that the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 is asymmetric as a whole. Thus, the degenerated vibration mode is dispersed into a plurality of vibration modes to generate a plurality of resonance peaks.
 この点について、図2を用いて具体的に説明する。図2は、ダンピング材50の配置を説明するための平面視による説明図である。なお、図1A、1Bおよび図2には、2個のダンピング材50を例示しているが、その個数を限定するものではない。 This point will be specifically described with reference to FIG. FIG. 2 is an explanatory diagram in plan view for explaining the arrangement of the damping material 50. 1A, 1B and FIG. 2 illustrate two damping members 50, the number is not limited.
 図2に示すように、2個のダンピング材50は、振動体20を振動体20の主面に垂直な方向(図のZ軸方向)から平面視した場合に圧電振動素子30の輪郭が描く図形の対称軸に対して互いに非対称となるように配置される。より具体的には、2個のダンピング材50の回転対称軸a2が圧電振動素子30の回転対称軸a1と一致しない位置に、これら2個のダンピング材50を配置する。 As shown in FIG. 2, the two damping members 50 describe the outline of the piezoelectric vibration element 30 when the vibrating body 20 is viewed in a plan view from a direction perpendicular to the main surface of the vibrating body 20 (Z-axis direction in the drawing). They are arranged so as to be asymmetric with respect to the symmetry axis of the figure. More specifically, the two damping materials 50 are arranged at a position where the rotational symmetry axis a2 of the two damping materials 50 does not coincide with the rotational symmetry axis a1 of the piezoelectric vibration element 30.
 これにより、2個のダンピング材50は、圧電振動素子30の回転対称軸a1に対して互いに非回転対称に配置される。この結果、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体が全体として非対称となる。これにより、振動モードの縮退を解いて複数の振動モードに分散させることができる。 Thereby, the two damping members 50 are arranged in a non-rotational symmetry with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30. As a result, the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 becomes asymmetric as a whole. Thereby, the degeneration of the vibration mode can be solved and dispersed in a plurality of vibration modes.
 したがって、第1の実施形態に係る音響発生器1によれば、共振周波数のピークのレベルを小さくして、変動の小さい、良好な音圧の周波数特性を得ることができる。とりわけ、中音域の音圧の周波数特性をフラットに近づけることができるので、良好な音質を得ることができる。 Therefore, according to the sound generator 1 according to the first embodiment, it is possible to reduce the peak level of the resonance frequency and obtain a favorable sound pressure frequency characteristic with small fluctuation. In particular, since the frequency characteristics of the sound pressure in the middle range can be made close to flat, good sound quality can be obtained.
 また、2個のダンピング材50は、圧電振動素子30の他の対称軸(図5Aに示す長手方向の線対称軸Lおよび図5Bに示す短手方向の線対称軸W)の両方に対しても互いに非線対称に配置される。これによっても、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 Further, the two damping members 50 are both with respect to the other symmetry axes of the piezoelectric vibration element 30 (longitudinal line symmetry axis L shown in FIG. 5A and short line symmetry axis W shown in FIG. 5B). Are also arranged axisymmetrically with respect to each other. This also makes it possible to reduce the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50.
 また、第1の実施形態において、圧電振動素子30の回転対称軸a1の位置は、圧電振動素子30の重心と一致するものとする。すなわち、2個のダンピング材50は、圧電振動素子30の重心に対しても互いに非回転対称に配置されているため、これによっても、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 In the first embodiment, the position of the rotational symmetry axis a1 of the piezoelectric vibration element 30 is assumed to coincide with the center of gravity of the piezoelectric vibration element 30. That is, since the two damping materials 50 are arranged in a non-rotationally symmetrical manner with respect to the center of gravity of the piezoelectric vibration element 30, the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material are also arranged by this. The symmetry of the composite vibrator constituted by 50 can be lowered.
 なお、本明細書において、「圧電振動素子30の対称軸」とは、振動体20を振動体20の主面に垂直な方向から平面視した場合に圧電振動素子30の輪郭が描く図形の対称軸のことを意味する。また、「圧電振動素子30の重心」とは、平面視した場合に圧電振動素子30の輪郭が描く図形の重心(中心)もしくは圧電振動素子30そのものの重心(質量中心)を意味する。 In this specification, “the axis of symmetry of the piezoelectric vibration element 30” means the symmetry of the figure drawn by the outline of the piezoelectric vibration element 30 when the vibration body 20 is viewed in a plan view from a direction perpendicular to the main surface of the vibration body 20. It means the axis. Further, “the center of gravity of the piezoelectric vibration element 30” means the center of gravity (center) of a figure drawn by the outline of the piezoelectric vibration element 30 or the center of gravity (center of mass) of the piezoelectric vibration element 30 itself when viewed in plan.
 このように、複数のダンピング材50を、圧電振動素子30の対称軸または重心に対して非対称に配置することにより、良好な音圧を得ることができる。 As described above, by arranging the plurality of damping members 50 asymmetrically with respect to the axis of symmetry or the center of gravity of the piezoelectric vibration element 30, good sound pressure can be obtained.
 なお、ここでは、2個のダンピング材50が、圧電振動素子30の3つの対称軸および重心のすべてに対して非対称に配置される場合の例を示した。しかし、2個のダンピング材50は、圧電振動素子30の3つの対称軸および重心のうちのいずれかに対して非対称であればよい。たとえば、2個のダンピング材50は、圧電振動素子30の回転対称軸a1に対して非回転対称であるが線対称軸Lまたは線対称軸Wに対しては線対称となる位置に配置されてもよい。また、2個のダンピング材50は、圧電振動素子30の線対称軸Lまたは線対称軸Wに対して非線対称であるが回転対称軸a1に対して回転対称となる位置に配置されてもよい。 Here, an example in which the two damping members 50 are arranged asymmetrically with respect to all three symmetry axes and the center of gravity of the piezoelectric vibration element 30 is shown. However, the two damping members 50 may be asymmetric with respect to any of the three symmetry axes and the center of gravity of the piezoelectric vibration element 30. For example, the two damping members 50 are arranged at positions that are non-rotationally symmetric with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30 but are symmetric with respect to the line symmetry axis L or the line symmetry axis W. Also good. Further, the two damping members 50 are non-axisymmetric with respect to the line symmetry axis L or the line symmetry axis W of the piezoelectric vibration element 30, but may be arranged at positions that are rotationally symmetric with respect to the rotation symmetry axis a <b> 1. Good.
 ダンピング材50は、機械的損失を有するものであればよいが、機械的損失係数が高い、言い換えれば、機械的品質係数(いわゆる、メカニカルQ)が低い部材であることが望ましい。このようなダンピング材50は、たとえば、種々の弾性体を用いて形成することができるが、柔らかく変形しやすいことが望ましいため、ウレタンゴム等のゴム材料を用いて好適に形成することができる。特に、ウレタンフォーム等の多孔質なゴム材料を好適に用いることができる。 The damping material 50 may be any member that has mechanical loss, but is preferably a member having a high mechanical loss factor, in other words, a low mechanical quality factor (so-called mechanical Q). Such a damping material 50 can be formed using various elastic bodies, for example, but since it is desirable that it is soft and easily deformed, it can be suitably formed using a rubber material such as urethane rubber. In particular, a porous rubber material such as urethane foam can be suitably used.
 ここでは、圧電振動素子30の回転対称軸a1と圧電振動素子30の重心とが一致する場合の例を示したが、圧電振動素子30の回転対称軸a1と圧電振動素子30の重心とは、必ずしも一致することを要しない。これらが一致しない場合、複数のダンピング材50は、圧電振動素子30の対称軸または重心のいずれかに対して非対称に配置されればよい。 Here, an example in which the rotational symmetry axis a1 of the piezoelectric vibration element 30 and the center of gravity of the piezoelectric vibration element 30 coincide with each other is shown, but the rotation symmetry axis a1 of the piezoelectric vibration element 30 and the center of gravity of the piezoelectric vibration element 30 are It doesn't necessarily need to match. If these do not match, the plurality of damping members 50 may be disposed asymmetrically with respect to either the symmetry axis or the center of gravity of the piezoelectric vibration element 30.
 次に、本実施形態に係る音響発生器1を搭載した音響発生装置について図3を参照して説明する。図3は、音響発生装置のブロック図である。 Next, a sound generator equipped with the sound generator 1 according to this embodiment will be described with reference to FIG. FIG. 3 is a block diagram of the sound generator.
 図3に示すように、上述してきた構成の音響発生器1を、共鳴ボックス400に収納することにより音響発生装置4を構成することができる。共鳴ボックス400は、音響発生器1を収納する筐体であり、音響発生器1の発する音響を共鳴させて筐体面から音波として放射する。かかる音響発生装置4は、スピーカとして単独で用いることができる他、例えば、各種電子機器2へ好適に組み込むことが可能である。 As shown in FIG. 3, the acoustic generator 4 can be configured by housing the acoustic generator 1 having the above-described configuration in a resonance box 400. The resonance box 400 is a housing that houses the sound generator 1, and resonates the sound emitted from the sound generator 1 and radiates it as sound waves from the housing surface. Such a sound generator 4 can be used alone as a speaker, and can be suitably incorporated into various electronic devices 2, for example.
 上述してきたように、圧電スピーカでは不利であった音圧の周波数特性における共振ピークとディップとの差を低減させることができるため、本実施形態に係る音響発生器1は、携帯電話機や薄型テレビ、あるいはタブレット端末などの電子機器2へ好適に組み込むことが可能である。 As described above, since the difference between the resonance peak and the dip in the frequency characteristic of sound pressure, which is disadvantageous in the piezoelectric speaker, can be reduced, the sound generator 1 according to the present embodiment can be used for a mobile phone or a thin television. Alternatively, it can be suitably incorporated into the electronic device 2 such as a tablet terminal.
 なお、音響発生器1が組み込まれる対象となりうる電子機器2としては、前述の携帯電話機や薄型テレビ、あるいはタブレット端末などに限らず、たとえば、冷蔵庫、電子レンジ、掃除機、洗濯機などのように、従来、音質については重視されなかった家電製品も含まれる。 Note that the electronic device 2 to which the sound generator 1 can be incorporated is not limited to the above-described mobile phone, flat-screen TV, tablet terminal, and the like, and for example, a refrigerator, a microwave oven, a vacuum cleaner, a washing machine, and the like. Conventionally, home appliances that have not been focused on sound quality are also included.
 ここで、上述した音響発生器1を備える電子機器2について、図4を参照しながら簡単に説明する。図4は、電子機器2のブロック図である。電子機器2は、上述してきた音響発生器1と、音響発生器1に接続された電子回路と、音響発生器1および電子回路を収納する筐体200とを備えている。 Here, the electronic device 2 including the above-described sound generator 1 will be briefly described with reference to FIG. FIG. 4 is a block diagram of the electronic device 2. The electronic device 2 includes the acoustic generator 1 described above, an electronic circuit connected to the acoustic generator 1, and a housing 200 that houses the acoustic generator 1 and the electronic circuit.
 具体的には、図4に示すように、電子機器2は、音響発生器1と、制御回路21、信号処理回路22および入力装置としての無線回路23を含む電子回路と、アンテナ24と、これらを収納する筐体200とを備えている。なお、無線による入力装置を図4に図示しているが、通常の電気配線による信号入力としても当然設けることができる。 Specifically, as illustrated in FIG. 4, the electronic device 2 includes an acoustic generator 1, an electronic circuit including a control circuit 21, a signal processing circuit 22, and a wireless circuit 23 as an input device, an antenna 24, and these And a housing 200 for storing the. Although the wireless input device is shown in FIG. 4, it can be provided as a signal input by normal electric wiring.
 なお、ここでは、電子機器2が備える他の電子部材(たとえば、ディスプレイ、マイク、スピーカなどのデバイスや回路)については記載を省略した。また、図4では、1つの音響発生器1を例示したが、2つ以上の音響発生器1やその他の発振器を設けることもできる。 In addition, description was abbreviate | omitted here about the other electronic member (for example, devices and circuits, such as a display, a microphone, a speaker) with which the electronic device 2 is provided. Moreover, although one acoustic generator 1 was illustrated in FIG. 4, two or more acoustic generators 1 and other oscillators may be provided.
 制御回路21は、信号処理回路22を介して無線回路23を含む電子機器2全体を制御する。音響発生器1への出力信号は、信号処理回路22から入力される。そして、制御回路21は、無線回路23へ入力された信号を、信号処理回路22を制御することによって音声信号Sを生成し、音響発生器1に対して出力する。 The control circuit 21 controls the entire electronic device 2 including the wireless circuit 23 via the signal processing circuit 22. An output signal to the sound generator 1 is input from the signal processing circuit 22. Then, the control circuit 21 generates a sound signal S by controlling the signal processing circuit 22 from the signal input to the radio circuit 23 and outputs the sound signal S to the sound generator 1.
 このようにして、図4に示す電子機器2は、小型かつ薄型である音響発生器1を組み込みながらも、共振ピークとディップとの差を低減して周波数変動を可及的に抑制し、周波数の低い低音領域をはじめ、高音領域においても全体的に音質の向上を図ることができる。 In this manner, the electronic device 2 shown in FIG. 4 incorporates the small and thin acoustic generator 1 and reduces the difference between the resonance peak and the dip to suppress the frequency fluctuation as much as possible. It is possible to improve the sound quality as a whole even in a high sound region including a low sound region having a low sound level.
 なお、図4においては、音響出力デバイスとして音響発生器1を直接搭載した電子機器2を例示したが、音響出力デバイスとしては、たとえば音響発生器1を筐体に収納した音響発生装置4を搭載した構成であってもよい。 In FIG. 4, the electronic device 2 in which the sound generator 1 is directly mounted is illustrated as the sound output device. However, as the sound output device, for example, a sound generator 4 in which the sound generator 1 is housed in a housing is mounted. It may be the configuration.
 ところで、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くするようなダンピング材50の配置例は、図2に示したものに限定されない。こうしたダンピング材50の他の配置例について、図5Aおよび図5Bを参照して説明する。図5Aおよび図5Bは、第1の実施形態における第1および第2の変形例に係る音響発生器の平面視による説明図である。 By the way, the arrangement example of the damping material 50 that lowers the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 is not limited to the one shown in FIG. . Another arrangement example of the damping material 50 will be described with reference to FIGS. 5A and 5B. 5A and 5B are explanatory views of the sound generator according to the first and second modifications of the first embodiment in plan view.
 なお、図5Aには、圧電振動素子30の長手方向の対称軸を対称軸Lとして、図5Bには、圧電振動素子30の短手方向の対称軸を対称軸Wとして、それぞれ示している。かかる対称軸Lおよび対称軸Wは、後述の説明に用いる他の図面でも示す場合がある。 5A shows the symmetry axis in the longitudinal direction of the piezoelectric vibration element 30 as the symmetry axis L, and FIG. 5B shows the symmetry axis in the short direction of the piezoelectric vibration element 30 as the symmetry axis W. The symmetry axis L and the symmetry axis W may be shown in other drawings used in the description below.
 図5Aに示す音響発生器1-1では、2個のダンピング材50が、圧電振動素子30の長手方向の対称軸Lに対して非対称となる位置に配置される。これにより、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 In the acoustic generator 1-1 shown in FIG. 5A, the two damping members 50 are arranged at positions that are asymmetric with respect to the longitudinal symmetry axis L of the piezoelectric vibration element 30. Thereby, the symmetry of the composite vibrating body constituted by the vibrating body 20, the piezoelectric vibrating element 30, the coating layer 40, and the damping material 50 can be lowered.
 また、図5Bに示す音響発生器1-2では、2個のダンピング材50が、圧電振動素子30の短手方向の対称軸Wに対して非対称となる位置に配置される。これにより、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 Further, in the acoustic generator 1-2 shown in FIG. 5B, the two damping members 50 are arranged at positions that are asymmetric with respect to the symmetry axis W in the short direction of the piezoelectric vibration element 30. Thereby, the symmetry of the composite vibrating body constituted by the vibrating body 20, the piezoelectric vibrating element 30, the coating layer 40, and the damping material 50 can be lowered.
 なお、図2、図5Aおよび図5Bに示した例は、圧電振動素子30が有する3つの対称軸のいずれに対しても非対称になるように、さらに、圧電振動素子30の重心に対しても非対称となるように複数のダンピング材50を配置するものである。このように、圧電振動素子30の全ての対称軸および重心に対して複数のダンピング材50を非対称に配置することにより、上記複合振動体の対称性をより一層低くすることができる。ただし、複数のダンピング材50は、圧電振動素子30が有する対称軸および重心のうち少なくとも1つに対して非対称であればよい。
(第2の実施形態)
 次に、第2の実施形態に係る音響発生器の構成について図6を参照して説明する。図6は、第2の実施形態に係る音響発生器の平面視による説明図である。
2, 5A, and 5B are asymmetrical with respect to any of the three symmetry axes of the piezoelectric vibration element 30, and also with respect to the center of gravity of the piezoelectric vibration element 30. A plurality of damping materials 50 are arranged so as to be asymmetric. As described above, by arranging the plurality of damping members 50 asymmetrically with respect to all the symmetry axes and the center of gravity of the piezoelectric vibration element 30, the symmetry of the composite vibration body can be further reduced. However, the plurality of damping members 50 may be asymmetric with respect to at least one of the symmetry axis and the center of gravity of the piezoelectric vibration element 30.
(Second Embodiment)
Next, the configuration of the sound generator according to the second embodiment will be described with reference to FIG. FIG. 6 is an explanatory diagram in plan view of the sound generator according to the second embodiment.
 図6に示すように、第2の実施形態に係る音響発生器1Aは、第1の実施形態に係る音響発生器1が備える2個のダンピング材50のうちの1個に代えて、ダンピング材50aを備える。ダンピング材50aは、振動体20を平面視した場合の面積がダンピング材50よりも小さい。 As shown in FIG. 6, the sound generator 1 </ b> A according to the second embodiment is replaced with a damping material instead of one of the two damping materials 50 included in the sound generator 1 according to the first embodiment. 50a. The area of the damping material 50 a when the vibrating body 20 is viewed in plan is smaller than that of the damping material 50.
 図6では、2個のダンピング材50が、圧電振動素子30の回転対称軸a1について回転対称となる位置に配置された場合を仮定して示している。なお、かかる仮定におけるダンピング材50の一方を、図6では、符号を略した破線の矩形で示している。 FIG. 6 shows a case where two damping members 50 are arranged at positions that are rotationally symmetric with respect to the rotational symmetry axis a <b> 1 of the piezoelectric vibration element 30. In addition, in FIG. 6, one of the damping materials 50 in such an assumption is shown by the broken-line rectangle which abbreviate | omitted the code | symbol.
 かかる仮定のもとにおいては、圧電振動素子30の回転対称軸a1に対して対称に2個のダンピング材50が配置されることとなるが、たとえば、破線で示したダンピング材50の一方を、平面視した場合の面積が他方のダンピング材50よりも小さいダンピング材50aとすることによって、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 Under this assumption, two damping members 50 are arranged symmetrically with respect to the rotational symmetry axis a1 of the piezoelectric vibration element 30. For example, one of the damping members 50 indicated by a broken line is By making the damping material 50 a smaller in area in plan view than the other damping material 50, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40 and the damping material 50 is increased. Can be lowered.
 このように、少なくとも1つのダンピング材の平面視における面積を他のダンピング材の平面視における面積と異ならせることにより、複合振動体の対称性を低くすることができる。したがって、振動モードの縮退を解いて分散させることができ、音圧の変動が小さい良好な音圧の周波数特性を有する音響発生器を得ることができる。 Thus, by making the area of at least one damping material in plan view different from the area of other damping materials in plan view, the symmetry of the composite vibrator can be lowered. Therefore, it is possible to obtain a sound generator having a good sound pressure frequency characteristic in which the vibration mode degeneration can be solved and dispersed, and the sound pressure fluctuation is small.
 また、第2の実施形態に係る音響発生器1Aでは、面積が互いに異なるダンピング材50、50aが、圧電振動素子30を挟んで対向する位置に配置される。このように、圧電振動素子30を挟んで向かい合うダンピング材50、50aの面積を異ならせることにより、たとえば隣り合うダンピング材の面積を異ならせる場合と比較して、複合振動体の対称性をさらに低くすることができる。 Moreover, in the acoustic generator 1A according to the second embodiment, the damping materials 50 and 50a having different areas are arranged at positions facing each other with the piezoelectric vibration element 30 interposed therebetween. Thus, by making the areas of the damping materials 50 and 50a facing each other across the piezoelectric vibration element 30 different from each other, for example, when the areas of the adjacent damping materials are made different, the symmetry of the composite vibrator is further reduced. can do.
 さらに、図6に示すように、面積が互いに異なるダンピング材を振動体20の長手方向に配置することで、短手方向に配置した場合と比較して、複合振動体の対称性をより効果的に低くすることができる。 Furthermore, as shown in FIG. 6, by arranging damping materials having different areas in the longitudinal direction of the vibrating body 20, the symmetry of the composite vibrating body is more effective than in the case where the damping material is disposed in the short direction. Can be lowered.
 図6では、ダンピング材の平面視における面積を異ならせる場合の例を示したが、これに限らず、ダンピング材の平面視における形状を異ならせてもよい。かかる点について図7を参照して説明する。図7は、第2の実施形態の第1の変形例に係る音響発生器の平面視による説明図である。 FIG. 6 shows an example in which the area of the damping material in plan view is different, but this is not limiting, and the shape of the damping material in plan view may be different. This point will be described with reference to FIG. FIG. 7 is an explanatory diagram in plan view of the sound generator according to the first modification of the second embodiment.
 図7に示すように、第1の変形例に係る音響発生器1A-1では、図6と同様の仮定のもとで、破線で示したダンピング材50の一方を、他方のダンピング材50と平面形状の異なるダンピング材50bとしている。これによって、振動体20、圧電振動素子30、被覆層40およびダンピング材50によって構成される複合振動体の対称性を低くすることができる。 As shown in FIG. 7, in the sound generator 1A-1 according to the first modification, one of the damping materials 50 indicated by the broken line is replaced with the other damping material 50 under the same assumptions as in FIG. The damping material 50b has a different planar shape. Thereby, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30, the coating layer 40, and the damping material 50 can be lowered.
 このように、少なくとも1つのダンピング材50bの平面形状(振動体20の主面に垂直な方向から平面視したときの形状)が他のダンピング材50の平面形状と異なるようにすることにより、複合振動体の対称性を低くすることができる。したがって、振動モードの縮退を解いて分散させることができ、音圧の変動が小さい良好な音圧の周波数特性を有する音響発生器1A-1を得ることができる。 In this way, the planar shape of the at least one damping material 50b (the shape when seen in a plan view from the direction perpendicular to the main surface of the vibrating body 20) is different from the planar shape of the other damping materials 50, thereby combining The symmetry of the vibrating body can be lowered. Therefore, it is possible to obtain the sound generator 1A-1 having a good sound pressure frequency characteristic in which the vibration mode degeneration can be solved and dispersed, and the fluctuation of the sound pressure is small.
 次に、第2の実施形態に係る音響発生器1Aのさらなる変形例について図8A~図8Cを参照して説明する。図8A~図8Cは、それぞれ第2の実施形態の第2~第4の変形例に係る音響発生器の平面視による説明図である。図8A~図8Cには、4個のダンピング材が配置される場合の例を示している。 Next, further modifications of the sound generator 1A according to the second embodiment will be described with reference to FIGS. 8A to 8C. 8A to 8C are explanatory views in plan view of the acoustic generators according to second to fourth modifications of the second embodiment, respectively. 8A to 8C show an example in which four damping materials are arranged.
 図8Aに示すように、第2の変形例に係る音響発生器1A-2では、振動体20を平面視した場合に、圧電振動素子30の上辺側(X軸負方向側)および下辺側(X軸正方向側)にダンピング材がそれぞれ2個ずつ並べて配置される。具体的には、圧電振動素子30の上辺側には、ダンピング材50dおよびダンピング材50eが並べて配置され、圧電振動素子30の下辺側には、ダンピング材50fおよびダンピング材50gが並べて配置される。 As shown in FIG. 8A, in the acoustic generator 1A-2 according to the second modified example, when the vibrating body 20 is viewed in plan, the upper side (X-axis negative direction side) and the lower side ( Two damping materials are arranged side by side on the X-axis positive direction side). Specifically, the damping material 50d and the damping material 50e are arranged side by side on the upper side of the piezoelectric vibration element 30, and the damping material 50f and the damping material 50g are arranged on the lower side of the piezoelectric vibration element 30.
 そして、図8Aに示すように、ダンピング材50d、50eは、振動体20を平面視した場合の面積がそれぞれ異なり、ダンピング材50f、50gも、振動体20を平面視した場合の面積がそれぞれ異なる。 As shown in FIG. 8A, the damping materials 50d and 50e have different areas when the vibrating body 20 is viewed in plan, and the damping materials 50f and 50g also have different areas when the vibrating body 20 is viewed in plan. .
 このように、面積が互いに異なるダンピング材を、圧電振動素子30の一方側に並べて配置することにより、面積の等しいダンピング材を圧電振動素子30の一方側に並べて配置した場合と比較して、複合振動体の対称性を低くすることができる。 Thus, by arranging the damping materials having different areas side by side on one side of the piezoelectric vibration element 30, compared to the case of arranging the damping materials having the same area side by side on one side of the piezoelectric vibration element 30, the composite The symmetry of the vibrating body can be lowered.
 また、図8Bに示すように、第3の変形例に係る音響発生器1A-3は、4個のダンピング材50h~50kを備える。これらダンピング材50h~50kは、平面視における面積が全て異なっている。このように、全てのダンピング材50h~50kの面積を異ならせることにより、複合振動体の対称性をさらに低くすることができる。 Also, as shown in FIG. 8B, the sound generator 1A-3 according to the third modification includes four damping materials 50h to 50k. These damping materials 50h to 50k have different areas in plan view. Thus, by making the areas of all the damping materials 50h to 50k different, the symmetry of the composite vibrator can be further reduced.
 また、図8Cに示すように、第3の変形例に係る音響発生器1A-4は、4個のダンピング材50l~50oを備える。これらダンピング材50l~50oは、平面視における形状がすべて異なっている。このように、4個のダンピング材50l~50oの形状を全て異ならせることにより、複合振動体の対称性をさらに低くすることができる。
(第3の実施形態)
 次に、第3の実施形態に係る音響発生器について図9を参照して説明する。図9は、第3の実施形態に係る音響発生器の平面視による説明図である。
Further, as shown in FIG. 8C, the sound generator 1A-4 according to the third modification includes four damping materials 50l to 50o. These damping materials 50l to 50o are all different in shape in plan view. Thus, by making all the four damping members 50l to 50o different in shape, the symmetry of the composite vibrator can be further reduced.
(Third embodiment)
Next, an acoustic generator according to the third embodiment will be described with reference to FIG. FIG. 9 is an explanatory diagram in plan view of the sound generator according to the third embodiment.
 図9に示すように、第3の実施形態に係る音響発生器1Bは、上述してきた各実施形態とは異なり、1個のダンピング材50pと、複数の圧電振動素子(ここでは、2個の圧電振動素子30a、30b)とを備える。 As shown in FIG. 9, the acoustic generator 1B according to the third embodiment differs from the above-described embodiments in that it includes one damping material 50p and a plurality of piezoelectric vibration elements (here, two Piezoelectric vibration elements 30a and 30b).
 ここで、図9では、2個の圧電振動素子30a、30bがダンピング材50pに対して対称となるようなダンピング材50pの配置を破線で仮定している。すなわち、振動体20を平面視した場合に、破線で示したダンピング材50pの輪郭が描く図形の対称軸(回転対称軸a3、長手方向の線対称軸L1、短手方向の線対称軸W1)に対して対称となるように、各圧電振動素子30a、30bが配置されている。 Here, in FIG. 9, the arrangement of the damping material 50p is assumed by broken lines so that the two piezoelectric vibration elements 30a and 30b are symmetrical with respect to the damping material 50p. That is, when the vibrating body 20 is viewed in plan, the symmetry axis of the figure drawn by the outline of the damping material 50p indicated by the broken line (rotation symmetry axis a3, longitudinal line symmetry axis L1, transverse direction line symmetry axis W1) The piezoelectric vibration elements 30a and 30b are arranged so as to be symmetric with respect to each other.
 また、第3の実施形態において、ダンピング材50pの回転対称軸a3の位置は、ダンピング材50pの重心と一致するものとする。したがって、2個の圧電振動素子30a、30bは、破線で示したダンピング材50pの重心に対しても互いに回転対称に配置されていることとなる。 In the third embodiment, the position of the rotational symmetry axis a3 of the damping material 50p is assumed to coincide with the center of gravity of the damping material 50p. Accordingly, the two piezoelectric vibration elements 30a and 30b are arranged in rotational symmetry with respect to the center of gravity of the damping material 50p indicated by a broken line.
 このように、かかる仮定のもとにおいては、ダンピング材50pの対称軸または重心に対して対称に2個の圧電振動素子30a、30bが配置されることとなるが、たとえば、ダンピング材50pを破線で示した位置からずらすことによって、振動体20、圧電振動素子30a、30b、被覆層40およびダンピング材50pによって構成される複合振動体の対称性を低くすることができる。
(第4の実施形態)
 次に、第4の実施形態に係る音響発生器について図10を参照して説明する。図10は、第4の実施形態に係る音響発生器の平面視による説明図である。
As described above, under this assumption, the two piezoelectric vibration elements 30a and 30b are arranged symmetrically with respect to the axis of symmetry or the center of gravity of the damping material 50p. By shifting the position from the position indicated by, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration elements 30a and 30b, the coating layer 40, and the damping material 50p can be lowered.
(Fourth embodiment)
Next, an acoustic generator according to the fourth embodiment will be described with reference to FIG. FIG. 10 is an explanatory diagram in plan view of the sound generator according to the fourth embodiment.
 図10に示すように、第4の実施形態に係る音響発生器1Cは、圧電振動素子30cおよびダンピング材50qをそれぞれ1個ずつ備えている。 As shown in FIG. 10, the sound generator 1C according to the fourth embodiment includes one piezoelectric vibration element 30c and one damping material 50q.
 ここで、図10では、圧電振動素子30cに対して対称となるダンピング材50qの配置を破線で示している。すなわち、破線で示したダンピング材50qは、振動体20を平面視した場合に、圧電振動素子30cの対称軸(回転対称軸a4、長手方向の線対称軸L2、短手方向の線対称軸W2)に対して対称となる位置に配置されている。 Here, in FIG. 10, the arrangement of the damping material 50q that is symmetric with respect to the piezoelectric vibration element 30c is indicated by a broken line. In other words, the damping material 50q indicated by the broken line shows the symmetry axis (rotation symmetry axis a4, longitudinal line symmetry axis L2, longitudinal direction line symmetry axis W2) of the piezoelectric vibration element 30c when the vibrating body 20 is viewed in plan. ) With respect to each other.
 また、第4の実施形態において、圧電振動素子30cの回転対称軸a4の位置は、圧電振動素子30cの重心と一致するものとする。したがって、破線で示したダンピング材50qは、圧電振動素子30cの重心に対しても回転対称に配置されていることとなる。 In the fourth embodiment, it is assumed that the position of the rotational symmetry axis a4 of the piezoelectric vibration element 30c coincides with the center of gravity of the piezoelectric vibration element 30c. Therefore, the damping material 50q indicated by the broken line is disposed rotationally symmetrically with respect to the center of gravity of the piezoelectric vibration element 30c.
 このように、かかる仮定のもとにおいては、圧電振動素子30cの対称軸または重心に対して対称にダンピング材50qが配置されることとなるが、たとえば、ダンピング材50qを破線で示した位置からずらすことによって、振動体20、圧電振動素子30c、被覆層40およびダンピング材50qによって構成される複合振動体の対称性を低くすることができる。 As described above, under such an assumption, the damping material 50q is arranged symmetrically with respect to the symmetry axis or the center of gravity of the piezoelectric vibration element 30c. For example, the damping material 50q is located from the position indicated by the broken line. By shifting, the symmetry of the composite vibration body constituted by the vibration body 20, the piezoelectric vibration element 30c, the coating layer 40, and the damping material 50q can be lowered.
 なお、上述してきた各実施形態では、圧電振動素子およびダンピング材のいずれかが単数である場合の例を示したが、音響発生器には、複数の圧電振動素子および複数のダンピング材が設けられてもよい。また、圧電振動素子を平面視で矩形状としたが、圧電振動素子は正方形であってもよい。 In each of the above-described embodiments, an example in which one of the piezoelectric vibration element and the damping material is singular has been described. However, the acoustic generator is provided with a plurality of piezoelectric vibration elements and a plurality of damping materials. May be. Further, although the piezoelectric vibration element is rectangular in plan view, the piezoelectric vibration element may be square.
 また、圧電振動素子として、いわゆるバイモルフ型の積層型圧電振動素子を例示したが、ユニモルフ型の圧電振動素子を用いることもできる。 Further, as the piezoelectric vibration element, a so-called bimorph type laminated piezoelectric vibration element is illustrated, but a unimorph type piezoelectric vibration element can also be used.
 また、上述した各実施形態では、励振器の一例として圧電振動素子を用いる場合を例に挙げて説明したが、励振器は、圧電振動素子に限定されるものではなく、電気信号が入力されて振動する機能を有しているものであれば良い。例えば、スピーカを振動させる励振器としてよく知られた、動電型の励振器や、静電型の励振器や、電磁型の励振器であっても構わない。なお、動電型の励振器は、永久磁石の磁極の間に配置されたコイルに電流を流してコイルを振動させるようなものであり、静電型の励振器は、向き合わせた2つの金属板にバイアスと電気信号とを流して金属板を振動させるようなものであり、電磁型の励振器は、電気信号をコイルに流して薄い鉄板を振動させるようなものである。 In each of the above-described embodiments, the case where a piezoelectric vibration element is used as an example of an exciter has been described as an example. However, the exciter is not limited to a piezoelectric vibration element, and an electric signal is input. What has a function to vibrate is sufficient. For example, an electrodynamic exciter, an electrostatic exciter, or an electromagnetic exciter well known as an exciter for vibrating a speaker may be used. The electrodynamic exciter is such that an electric current is passed through a coil disposed between the magnetic poles of a permanent magnet to vibrate the coil. The electrostatic exciter is composed of two metals facing each other. A bias and an electric signal are passed through the plate to vibrate the metal plate, and an electromagnetic exciter is an electric signal that is passed through the coil to vibrate a thin iron plate.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1 音響発生器
 2 電子機器
 4 音響発生装置
 10 枠体
 20 振動体
 30 圧電振動素子
 40 被覆層
 50 ダンピング材
 60 接着剤
DESCRIPTION OF SYMBOLS 1 Sound generator 2 Electronic device 4 Sound generator 10 Frame body 20 Vibrating body 30 Piezoelectric vibration element 40 Coating layer 50 Damping material 60 Adhesive

Claims (12)

  1.  振動体と、
     該振動体上に設けられた励振器と、
     前記振動体と一体化するように取り付けられたダンピング材とを備え、
     前記振動体を平面視した場合に、前記励振器および前記ダンピング材は、いずれか一方の部材の輪郭が描く図形の対称軸または重心に対して他方の部材の輪郭が描く図形の対称軸または重心が一致しないように配置されていることを特徴とする音響発生器。
    A vibrating body,
    An exciter provided on the vibrator;
    A damping material attached to be integrated with the vibrating body,
    When the vibrating body is viewed in plan, the exciter and the damping material are arranged so that the symmetry axis or center of gravity of the figure drawn by the outline of the other member with respect to the symmetry axis or center of gravity of the figure drawn by the outline of one of the members The sound generator is characterized by being arranged so as not to match.
  2.  前記励振器および前記ダンピング材のいずれか一方の部材が1個、他方の部材が複数設けられており、前記一方の部材の輪郭が描く図形の対称軸または重心に対して、複数の他方の部材が互いに非対称に配置されていることを特徴とする請求項1に記載の音響発生器。 One of the exciter and the damping material is provided, and the other member is provided in plural, and the other member is provided with respect to the symmetry axis or center of gravity of the figure drawn by the outline of the one member. The sound generators according to claim 1, wherein are arranged asymmetrically with respect to each other.
  3.  前記一方の部材が前記励振器であり、複数の前記他方の部材が前記ダンピング材であり、前記励振器の輪郭が描く図形の対称軸または重心に対して、複数の前記ダンピング材が互いに非回転対称または非線対称に配置されていることを特徴とする請求項2に記載の音響発生器。 The one member is the exciter, the plurality of other members are the damping materials, and the plurality of damping materials do not rotate with respect to the axis of symmetry or the center of gravity of the figure drawn by the outline of the exciter The sound generator according to claim 2, wherein the sound generator is arranged symmetrically or non-linearly symmetrically.
  4.  前記一方の部材が前記ダンピング材であり、複数の前記他方の部材が前記励振器であり、前記ダンピング材の輪郭が描く図形の対称軸または重心に対して、複数の前記励振器が互いに非回転対称または非線対称に配置されていることを特徴とする請求項2に記載の音響発生器。 The one member is the damping material, the plurality of the other members are the exciters, and the plurality of exciters are not rotated with respect to the symmetry axis or the center of gravity of the figure drawn by the outline of the damping material. The sound generator according to claim 2, wherein the sound generator is arranged symmetrically or non-linearly symmetrically.
  5.  複数の前記他方の部材の少なくとも一つは、前記振動体を平面視した場合の面積が他の前記他方の部材と異なることを特徴とする請求項2~4のいずれか一つに記載の音響発生器。 The sound according to any one of claims 2 to 4, wherein at least one of the plurality of other members has an area different from that of the other member when the vibrating body is viewed in plan. Generator.
  6.  前記面積が互いに異なる複数の前記他方の部材が、前記一方の部材を挟んで対向する位置に配置されていることを特徴とする請求項5に記載の音響発生器。 6. The sound generator according to claim 5, wherein the other members having different areas are arranged at positions facing each other with the one member interposed therebetween.
  7.  前記面積が互いに異なる複数の前記他方の部材が、前記一方の部材の一方側に並べて配置されていることを特徴とする請求項5または6に記載の音響発生器。 The acoustic generator according to claim 5 or 6, wherein a plurality of the other members having different areas are arranged side by side on one side of the one member.
  8.  複数の前記他方の部材の少なくとも一つは、前記振動体を平面視した場合の形状が他の前記他方の部材と異なることを特徴とする請求項5~7のいずれか一つに記載の音響発生器。 The acoustic according to any one of claims 5 to 7, wherein at least one of the plurality of other members has a shape different from that of the other member when the vibrating body is viewed in plan. Generator.
  9.  全ての前記他方の部材の前記面積が異なることを特徴とする請求項5~8のいずれか一つに記載の音響発生器。 The sound generator according to any one of claims 5 to 8, wherein the areas of all the other members are different.
  10.  前記励振器は、バイモルフ型の積層型圧電振動素子であることを特徴とする請求項1~9のいずれか一つに記載の音響発生器。 The acoustic generator according to any one of claims 1 to 9, wherein the exciter is a bimorph type laminated piezoelectric vibration element.
  11.  請求項1~10のいずれか一つに記載の音響発生器と、
     該音響発生器を収容する筐体と
     を備えることを特徴とする音響発生装置。
    An acoustic generator according to any one of claims 1 to 10;
    A sound generation device comprising: a housing that houses the sound generator.
  12.  請求項1~10のいずれか一つに記載の音響発生器と、
     該音響発生器に接続された電子回路と、
     該電子回路および前記音響発生器を収容する筐体とを備え、
     前記音響発生器から音響を発生させる機能を有することを特徴とする電子機器。
    An acoustic generator according to any one of claims 1 to 10;
    An electronic circuit connected to the acoustic generator;
    A housing for housing the electronic circuit and the acoustic generator;
    An electronic apparatus having a function of generating sound from the sound generator.
PCT/JP2013/079530 2012-12-10 2013-10-31 Acoustic generator, acoustic generation device, and electronic apparatus WO2014091833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012269650 2012-12-10
JP2012-269650 2012-12-10

Publications (1)

Publication Number Publication Date
WO2014091833A1 true WO2014091833A1 (en) 2014-06-19

Family

ID=50934131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079530 WO2014091833A1 (en) 2012-12-10 2013-10-31 Acoustic generator, acoustic generation device, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2014091833A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052835A1 (en) * 2005-11-02 2007-05-10 Nec Corporation Speaker, image element protective screen, case of terminal, and terminal
JP2010199818A (en) * 2009-02-24 2010-09-09 Panasonic Corp Flat board loudspeaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052835A1 (en) * 2005-11-02 2007-05-10 Nec Corporation Speaker, image element protective screen, case of terminal, and terminal
JP2010199818A (en) * 2009-02-24 2010-09-09 Panasonic Corp Flat board loudspeaker

Similar Documents

Publication Publication Date Title
JP6047575B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
US9161134B2 (en) Acoustic generator, acoustic generating device, and electronic device
JP6053794B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP5908994B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP5638169B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2014045720A1 (en) Sound emitter, sound emission device, and electronic apparatus
US20150296303A1 (en) Acoustic generator, acoustic generation device, and electronic device
JP6192743B2 (en) Sound generator, sound generator, electronic equipment
JP5602978B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP6166038B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2014127767A (en) Acoustic generator, acoustic generating device, and electronic apparatus
JP5909169B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2014123900A (en) Sound generator, sound generating system, and electronic apparatus
JP2014123812A (en) Sound generator, sound generating system, and electronic apparatus
JP6034182B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2014091833A1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JP2014064212A (en) Acoustic generator, acoustic generation apparatus, and electronic apparatus
JP6092618B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP5714190B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2014116795A (en) Sound generator, sound generation device and electronic apparatus
JP2014072711A (en) Acoustic generator, acoustic generation device and electronic apparatus
WO2014104018A1 (en) Sound generator, sound generating apparatus, and electronic apparatus
JP2014057251A (en) Sound generator, sound generating device, and electronic apparatus
WO2014091813A1 (en) Acoustic generator, acoustic generation device, and electronic device
JP2015154298A (en) Acoustic generator, acoustic generating apparatus, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP