WO2014091690A1 - Variable displacement pump regulator - Google Patents

Variable displacement pump regulator Download PDF

Info

Publication number
WO2014091690A1
WO2014091690A1 PCT/JP2013/006898 JP2013006898W WO2014091690A1 WO 2014091690 A1 WO2014091690 A1 WO 2014091690A1 JP 2013006898 W JP2013006898 W JP 2013006898W WO 2014091690 A1 WO2014091690 A1 WO 2014091690A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compensator
pump
introduction chamber
discharge
Prior art date
Application number
PCT/JP2013/006898
Other languages
French (fr)
Japanese (ja)
Inventor
隆二 堺
勇 吉村
亮次 入江
秀俊 三浦
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201380034598.XA priority Critical patent/CN104411973B/en
Priority to US14/423,628 priority patent/US20150226190A1/en
Priority to EP13861695.8A priority patent/EP2933490A4/en
Priority to KR1020147032770A priority patent/KR20150003366A/en
Publication of WO2014091690A1 publication Critical patent/WO2014091690A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/28Control of machines or pumps with stationary cylinders
    • F04B1/29Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B1/295Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Definitions

  • the present invention relates to a variable displacement pump regulator capable of controlling a discharge flow rate by adjusting a tilt angle.
  • power machines such as hydraulic excavators, cranes, wheel loaders, bulldozers, etc. (in this specification and claims, these power machines (heavy machinery) are collectively referred to as “work machines”) Used for construction work.
  • a hydraulic excavator will be described as an example.
  • various actuators are used to rotate the upper swing body and operate buckets, arms, booms, and the like, and hydraulic pressure is used to drive these actuators. Yes.
  • Such actuators are supplied with hydraulic oil at a required flow rate from a hydraulic pump according to, for example, the turning speed in the case of an upper turning body and the weight of the arm or boom that is pumped up by a bucket.
  • a tandem hydraulic pump including a plurality of hydraulic pumps is used according to the number of actuators and necessary power.
  • variable displacement pump is used for such a hydraulic pump, and the displacement of the variable displacement pump is controlled by a regulator.
  • each variable displacement pump is provided with a regulator, and each regulator does not exceed the horsepower of the engine that drives the pumps of both pumps.
  • the total horsepower control for controlling the tilt angle of each pump is performed based on the discharge pressures of both pumps.
  • the position of the spool or sleeve is controlled by a signal pressure such as the self-pressure of the pump (the discharge pressure of the pump provided with the regulator), and the pressure oil having a pressure corresponding to the position is regulated.
  • the pressure oil having a control pressure is output from the pressure adjusting unit and the capacity of the hydraulic pump is adjusted.
  • the capacity of the variable displacement pump is adjusted by the position of the servo piston.
  • the capacity adjustment in the swash plate type variable displacement pump is performed by the tilt angle of the swash plate.
  • variable displacement pumps driven by a prime mover
  • a plurality of actuators driven by pressure oil supplied from the variable displacement pump
  • commands to a plurality of actuators The first detection means for detecting the command signal of the operation command means, the second detection means for detecting the loads of the plurality of actuators, and the input means for instructing the reference target rotational speed of the prime mover, the reference target rotational speed is low.
  • an auto accelerator device that calculates a reference width for rotational speed correction that becomes smaller as it goes, and corrects a correction value of a reference target rotational speed by a correction value correcting means (see, for example, Patent Document 1).
  • the capacity of two variable displacement pumps is controlled by two regulators.
  • Each regulator is guided by the self-pressure of the variable displacement pump provided with the regulator and the other pressure of the other variable displacement pump, and the position of the spool is controlled by the operation piston operating at those pressures. .
  • the servo piston is moved by outputting the control pressure from the pressure adjusting unit according to the signal pressure such as the discharge pressure (self pressure) of the pump acting on the spool.
  • the pump capacity is changed.
  • the regulator sleeve is also moved by the feedback lever engaged with the servo piston, and the tilt angle of the pump is controlled to be a target value.
  • the spool position control by such self-pressure and the sleeve position control through the feedback lever are always performed, and the control pressure from the regulator of the regulator is guided to the servo piston by these, and the hydraulic pump Is controlled in accordance with the load of the actuator of the work machine.
  • an engaging pin is provided at the engaging portion between the feedback lever and the sleeve described above, and the contact portion of the engaging pin may be worn out over time.
  • FIG. 8 is a diagram showing the horsepower control characteristic by the regulator of the hydraulic pump in relation to the discharge pressure and the flow rate, and the control line 101 is set so as to approximate the design horsepower line 100.
  • This control line 101 shows an example in which two control springs are used, and the control line is changed by changing the number of control springs used for control during the horsepower control from one to two. Is changed so that the control line 101 approximates the equal horsepower line 100.
  • control line may swing to either the flow rate decrease side or the flow rate increase side.
  • the control line 101 tries to lower the horsepower of the pump when the horsepower control of the regulator functions.
  • the discharge flow rate of the pump is decreased, the discharge flow rate is increased by the hysteresis, and the possibility of causing a stall of the prime mover is increased.
  • an object of the present invention is to provide a variable displacement pump regulator that can perform stable horsepower control even when flow rate hysteresis occurs in the horsepower control characteristics of a hydraulic pump over time.
  • a variable displacement pump regulator includes a servo piston that changes a discharge flow rate of a variable displacement pump driven by a prime mover, a feedback lever that detects the position of the servo piston, A compensator spool biased in one direction by a control spring, and the compensator spool is positioned around the compensator spool and is engaged with the feedback lever by the action of the servo piston and the feedback lever.
  • a compensation sleeve configured to move in the axial direction, a discharge pressure introduction chamber into which the discharge pressure of the pump is introduced, and a control pressure from the discharge pressure introduction chamber to the large-diameter pressure receiving portion of the servo piston.
  • the pressure adjusting unit to output is based on the compensation spool and the compensation sleeve. Formed Te, the compensator sleeve, the step portion acting pressure on the end direction by a discharge pressure introduced into the discharge pressure introducing chamber.
  • the compensator sleeve since the step portion is provided in the compensator sleeve that moves in the axial direction around the compensator spool, the compensator sleeve is attached in the opposite direction (one end direction) to the control spring by the discharge pressure introduced into the discharge pressure introduction chamber. Be forced. As a result, a force is always applied to the engaging portion of the feedback lever engaged with the compensator sleeve in the direction opposite to the control spring, and the wear portion of the engaging portion is limited. As a result, even if the control spring side of the engaging portion between the feedback lever and the compensator is worn due to aging, the horsepower control characteristic of the pump will decrease the discharge flow rate of the pump.
  • the horsepower of the pump does not exceed the horsepower of the prime mover (in some cases, the share of the single pump in the prime mover's horsepower), and stable horsepower control is performed to stall the prime mover. Can be prevented.
  • the stepped portion may be formed on the opposite side of the discharge pressure introducing chamber from the pressure adjusting portion by reducing the inner diameter of the compensator sleeve.
  • the pressure adjusting unit side and the counter pressure adjusting unit of the compensator sleeve are biased in the opposite direction (one end direction) to the control spring by the discharge pressure introduced into the discharge pressure introducing chamber.
  • a pressure receiving area difference can be provided on the side.
  • the discharge pressure introduction chamber is a self-pressure introduction chamber into which a self-pressure that is a discharge pressure of the pump is introduced, and is located at a position away from the self-pressure introduction chamber on the side opposite to the pressure regulating unit.
  • a counterpart pressure introduction chamber into which a counterpart pressure that is a discharge pressure of the variable displacement pump is introduced may be formed by the compensation spool and the compensation sleep.
  • Self-pressure in this specification and claims refers to the discharge pressure of its own variable displacement pump in a configuration having a plurality of pumps, and “other pressure” refers to another variable displacement pump. Discharge pressure.
  • the total horsepower of the pump provided with the said regulator and other pumps may not exceed the horsepower of a prime mover.
  • the pump capacity can be changed with a regulator.
  • the counterpart pressure introduction chamber is formed to have a smaller diameter than the self pressure introduction chamber, and the compensator has a step portion on which the pressure acts in the one end direction by the counterpart pressure introduced into the counterpart pressure introduction chamber. It may be provided.
  • the compensator is always in the direction opposite to the control spring (one end direction). It is possible to apply a force for urging. In other words, the force that always urges the engagement portion of the feedback lever toward the side where the pump capacity decreases can be applied by the counterpart pressure introduced into the counterpart pressure introduction chamber.
  • FIG. 1 is a hydraulic circuit diagram showing an embodiment of a variable displacement pump regulator according to the present invention.
  • 2 is a cross-sectional view of the variable displacement pump regulator shown in FIG. 1, and is a cross-sectional view taken along the line II-II shown in FIG. 3 is a cross-sectional view taken along arrows III-III shown in FIG. 4 is a cross-sectional view showing a state in which the compensator spool of the variable displacement pump regulator shown in FIG. 2 has moved to the control spring side.
  • FIG. 5 is a cross-sectional view showing a state in which the compensator has changed in capacity from the state in which the compensator shown in FIG. 4 has moved toward the control spring, and the capacity of the pump has changed.
  • FIG. 1 is a hydraulic circuit diagram showing an embodiment of a variable displacement pump regulator according to the present invention.
  • 2 is a cross-sectional view of the variable displacement pump regulator shown in FIG. 1, and is a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 6 is a schematic diagram showing the relationship between the discharge pressure acting on the compensator shown in FIG. 2 and the force acting on the engaging portion of the feedback lever.
  • FIG. 7 is a horsepower control diagram showing control characteristic changes that may occur when the variable displacement pump regulator shown in FIG. 2 changes over time.
  • FIG. 8 is a horsepower control diagram showing a control characteristic change that may occur when the conventional variable displacement pump regulator changes over time.
  • a variable displacement pump 2 (hereinafter simply referred to as “pump 2”) driven by a prime mover 1 has its swash plate tilt angle controlled by a regulator 10 to adjust the discharge flow rate.
  • the regulator 10 includes a servo piston 21, a feedback lever 24 engaged with the servo piston 21, a compensator 30 biased in one end direction (one of the axial directions) by a control spring 31, And a compensator sleeve 32 (in other words, the compensator spool 30 is inserted).
  • the control pressure guided to the large-diameter pressure receiving portion 22 of the servo piston 21 is adjusted by moving the compensator spool 30 and the compensator sleeve 32 in the axial direction.
  • a pressure adjusting unit 51 for controlling the position of the servo piston 21 and a load calculating unit for horsepower control are integrally provided. Details of the pressure adjusting unit 51 will be described later.
  • a plurality of discharge pressure introduction chambers 34 and 35 are provided. Yes.
  • a counterpart pressure introduction chamber 35 into which the counterpart pressure P2 is introduced is provided at a position far from the center. Steps 42 and 43 are provided in the plurality of discharge pressure introduction chambers 34 and 35, as will be described later.
  • the counterpart pressure introduction chamber 35 has a smaller diameter than the self pressure introduction chamber 34.
  • the horsepower setting pressure Pf is introduced on the side opposite to the control spring 31 of the compensator 30.
  • the horsepower setting pressure Pf By changing the horsepower setting pressure Pf, the set horsepower of the regulator 10 can be changed.
  • the configuration of the variable displacement pump regulator 10 will be described in more detail with reference to FIGS.
  • the regulator casing 11 of the regulator 10 of this embodiment is fixed to the pump casing 12 with bolts 13 and 14 (FIG. 3).
  • the pump casing 12 is provided with a servo piston 21.
  • the regulator casing 11 is provided with a compensator spool 30 and a compensator sleeve 32 that moves in the axial direction around the compensator spool 30.
  • the control spring 31 for urging the compensator spool 30 in one end direction is provided on the right side (one axial direction) of the compensator spool 30.
  • the control spring 31 is displaced by moving the compensator spool 30 in the right direction by the discharge pressure introduced into the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35 of the compensator spool 30.
  • the control spring 31 of this embodiment is composed of two springs provided on the same axis.
  • the position of the compensator 30 is determined by the relationship between the spring force of the control spring 31 and the three pressures (Pd, P2, Pf) acting on itself.
  • control spring 31 may be one or more springs having a linear displacement-load characteristic or a spring having a non-linear displacement-load characteristic.
  • the compensator sleeve 32 is movable in the axial direction along the guide tube portion 15 provided in the regulator casing 11.
  • One end of a feedback lever 24 is engaged with the compensator 32.
  • the other end of the feedback lever 24 is engaged with the servo piston 21 by a control pin 27.
  • the feedback lever 24 is provided with an engagement pin 25 at one end.
  • the compensator sleeve 32 is provided with an engaging groove 37 on the side surface of the control spring side portion, and the engaging pin 25 of the feedback lever 24 is fitted into the engaging groove 37.
  • the feedback lever 24 is supported on the regulator casing 11 by a support pin 26 provided at an intermediate portion, and is swung around the support pin 26 by the movement of the servo piston 21.
  • the compensation sleeve 32 is moved in the axial direction by the oscillation of the feedback lever 24. That is, the position of the compensator 32 is determined by the position of the servo piston 21.
  • the plurality of discharge pressure introducing chambers 34 and 35 described above are formed by the compensator spool 30 and the compensator sleeve 32.
  • the compensator 30 includes a large-diameter portion 38 serving as a guide portion, a pressure-controlling land portion 33 having the same diameter as the large-diameter portion 38, and a pressure-controlling land portion 33 in order from the control spring 31.
  • a small-diameter medium-diameter portion 39 and a small-diameter portion 40 having a diameter smaller than that of the medium-diameter portion 39 are provided, and the shaft portion 41 is integrally connected therebetween.
  • a horsepower setting operation piston 44 is provided at the end (left direction) opposite to the control spring 31 of the compensator spool 30, and this operation piston 44 is pivoted by a cylindrical guide 16 provided on the cover 17. Guided in the direction.
  • the compensator spool 30 and the horsepower setting operation piston 44 may be configured integrally or separately.
  • the compensator sleeve 32 is provided with a guide tube portion 48 for guiding the large-diameter portion 38 in the axial direction on the control spring 31 side of the inner surface formed in a cylindrical shape, and a guide tube portion 48 is guided to a predetermined position of the guide tube portion 48.
  • a control pressure output chamber 36 having a predetermined size and a large diameter from the portion 48 is provided.
  • the control pressure output chamber 36 is provided at a position corresponding to the pressure adjusting land portion 33 provided in the compensator 30.
  • the control pressure output chamber 36 and the pressure adjustment land portion 33 form a pressure adjustment portion 51 that outputs a control pressure from the discharge pressure introduction chamber 34 to the large-diameter pressure receiving portion 22 of the servo piston 21.
  • the self-pressure introduction chamber 34 having the same diameter as the guide cylinder portion 48 is formed, and in the direction opposite to the control spring 31 of the self-pressure introduction chamber 34.
  • the counterpart pressure introduction chamber 35 is formed with an inner diameter that guides the medium diameter portion 39 in the axial direction.
  • the inner diameter of the compensator sleeve 32 is formed to be an inner diameter that guides the small diameter portion 40 in the axial direction.
  • the inner diameter portion of the self-pressure introduction chamber 34 formed between the pressure adjusting land portion 33 and the middle diameter portion 39 of the compensator spool 30 is thus formed by forming the inner surface of the compensator sleeve 32 to have different inner diameters.
  • a step portion 42 is provided on the 39 side (opposite side of the pressure adjusting portion 51), and a step portion 43 is provided on the small diameter portion 40 side of the counterpart pressure introduction chamber 35 formed between the medium diameter portion 39 and the small diameter portion 40. It has been.
  • the step portion 42 is formed on the inner diameter portion side of the self-pressure introduction chamber 34 due to the difference in diameter between the pressure adjusting land portion 33 and the medium diameter portion 39, and the step portion 43 is formed with the medium diameter portion 39 and the small diameter portion.
  • the diameter of the counterpart pressure introduction chamber 35 is smaller than the diameter of the self-pressure introduction chamber 34 on the inner surface of the compensator sleeve 32, and the small diameter portion 40 is axially disposed in comparison with the diameter of the counterpart pressure introduction chamber 35.
  • an oil discharge chamber 61 that guides pressure oil from a control flow path 47 (described later) to a tank passage 62 provided in the regulator casing 11.
  • the compensator sleeve 32 includes an oil discharge chamber 61, a control pressure output chamber 36, a self-pressure introduction chamber 34, and a counterpart pressure introduction chamber 35, respectively, a tank passage 62, a control passage 47, an introduction passage 45 described later, and an introduction described later.
  • Communication passages 71 to 74 (reference numerals 71 to 74 are shown only in FIG. 4) for communicating with the passage 46 are provided.
  • Each of the communication paths 71 to 74 includes an annular groove provided on the outer peripheral surface of the compensator sleeve 32 and a plurality of through holes that penetrate the compensator sleeve 32 in the radial direction.
  • the self-pressure Pd introduced from the pump 2 to the small-diameter pressure receiving portion 23 of the servo piston 21 is introduced into the self-pressure introduction chamber 34 through the introduction flow path 45 and the communication path 73.
  • a counter pressure P ⁇ b> 2 is introduced into the counter pressure introducing chamber 35 from a counter pump (not shown) through the introduction flow path 46 and the communication path 74.
  • the compensator 30 is moved in a direction (right direction) in which the control spring 31 is contracted against the spring force of the control spring 31.
  • This configuration is the calculation unit 50 in the horsepower control unit of the regulator 10.
  • the pressure adjusting land portion 33 is moved in the axial direction, whereby the self-pressure introduction chamber 34 and the control pressure output chamber 36 are communicated with each other, and the self-pressure is increased.
  • Pd is introduced as a control pressure Pcl into the large-diameter pressure receiving portion 22 of the servo piston 21 through the communication path 72 and the control flow path 47. That is, the opening area between the self-pressure introduction chamber 34 and the control pressure output chamber 36 is changed by the movement of the pressure adjusting land portion 33, and the control pressure Pcl is adjusted.
  • This configuration is the pressure adjusting unit 51 in the horsepower control unit of the regulator 10, and the pressure adjusting unit 51 is incorporated in the calculation unit 50.
  • the pressure adjusting land 33 is incorporated into the calculation unit 50 of the horsepower control unit so as to form an integral configuration, whereby the calculation unit 50 causes the compensator 30 to be set in accordance with the discharge pressures of the self-pump and the counterpart pump.
  • the mechanism for adjusting the discharge flow rate of the pump 2 by introducing the control pressure Pcl for moving the servo piston 21 by the pressure adjusting land portion 33 by moving the servo piston 21 to the position is configured compactly.
  • the operation of the compensator spool 30 and the compensator sleeve 32 will be described with reference to FIGS.
  • the relative positional relationship between the compensator spool 30 and the compensator sleeve 32 becomes the state shown in FIG.
  • the chamber 36 is blocked by the pressure adjusting land portion 33 and does not communicate with either the self-pressure introduction chamber 34 or the oil discharge chamber 61.
  • the discharge pressure Pd is introduced into the self-pressure introduction chamber 34 of the variable displacement pump regulator 10, and the total pressure of the discharge pressure (self-pressure) Pd, the counterpart pressure P2, and the set pressure Pf is controlled by the control spring.
  • the compensator spool 30 moves toward the control spring 31.
  • the pressure adjusting land portion 33 of the compensator spool 30 connects the self-pressure introduction chamber 34 and the control pressure output chamber 36, and the control pressure is applied from the self-pressure introduction chamber 34 to the large-diameter pressure receiving portion 22 of the servo piston 21 by this communication.
  • Pcl is introduced.
  • the tilt angle is controlled so that the servo piston 21 decreases the discharge flow rate of the variable displacement pump 2.
  • this embodiment is an example of a double pump
  • the compensatory spool 30 in addition to the self pressure Pd introduced into the self pressure introduction chamber 34, the compensatory spool 30 is also moved by the counterpart pressure P2 introduced into the counterpart pressure introduction chamber 35. Due to these pressures, the self-pressure flows from the self-pressure introduction chamber 34 to the control pressure output chamber 36, and the control pressure Pcl is introduced into the large-diameter pressure receiving portion 22 of the servo piston 21 through the control flow path 47. As a result, the discharge flow rate is reduced in accordance with any required horsepower of the double pump.
  • the compensator 30 moves away from the control spring 31 (leftward).
  • the control pressure output chamber 36 communicates with the oil discharge chamber 62.
  • the pressure oil is discharged from the large-diameter pressure receiving portion 22 to the tank passage 62 through the control passage 47, the communication passage 71, and the oil discharge chamber 61, and the servo piston 21 moves to the right and the compensator 32 moves to the left.
  • the opening between the control pressure output chamber 36 and the oil discharge chamber 61 is closed.
  • the tilt angle of the pump 2 is controlled, and when the pump 2 reaches a target discharge flow rate, the position of the compensator spool 30, the compensator sleeve 32, and the servo piston 21 is maintained.
  • the discharge flow rate control of the variable displacement pump 2 is always performed in accordance with the discharge pressure of each pump that changes depending on the work of the work machine.
  • FIG. 6 is a schematic diagram showing the relationship between the discharge pressure Pd and the counterpart pressure P2 acting on the compensation sleeve 32 and the force acting on the engagement pin 25 of the feedback lever 24.
  • the compensator 32 has a self-pressure Pd force F1 introduced into the self-pressure introduction chamber 34 and a counterpart pressure P2 force F2 introduced into the counterpart pressure introduction chamber 35 due to the area difference between the step portions 42 and 43. It acts on the steps 42 and 43. Therefore, when the discharge pressures Pd and P2 are applied between the engagement pin 25 of the feedback lever 24 and the engagement groove 37 of the compensator sleeve 32 by these acting forces, the contact portion 28 on the control spring side is always applied. A load is acting.
  • the compensator sleeve 32 is always urged in the direction away from the control spring 31 (the anti-control spring direction) by the self-pressure Pd and the counterpart pressure P2 introduced into the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35.
  • a load corresponding to the resultant force F1 and F2 is always applied to these joint portions.
  • FIG. 7 is a diagram showing the horsepower characteristics of the variable displacement pump regulator 10 in relation to the discharge pressure and the flow rate.
  • the engagement pin (engagement portion) 25 of the feedback lever 24 is worn against the control line 101 set to approximate the design horsepower line 100. Even if a change occurs in the control characteristic, the characteristic changes only in the direction in which the discharge flow rate decreases as in the control line 102.
  • control line 101 that is initially set to approximate the equal horsepower line 100 changes to the flow rate decreasing side like the control line 102 after aging, so that stable operation is possible even when used over time.
  • the variable displacement pump regulator 10 can be configured.
  • the calculation unit 50 and the pressure adjustment unit 51 are integrated, and the steps 42 and 43 are provided in the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35. Since the compensator sleeve 32 has a difference in area where the forces F1 and F2 in the counter-control spring direction are applied by the discharge pressures Pd and P2, the discharge pressure is applied to the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35. In the applied state, forces F1 and F2 are always applied to the compensator sleeve 32 in the anti-control spring direction.
  • the engagement pin (engagement portion) 25 of the feedback lever 24 that controls the position of the compensator sleeve 32 is always in contact with the control spring side portion 28, and wear due to use over time is caused by the engagement pin 25 and the engagement groove 37. Only the control spring side portion 28 in contact with is.
  • the compensator sleeve 32 whose position is controlled by the feedback lever 24 by the movement of the servo piston 21 is worn even if the engagement pin 25 which is an engagement portion with the feedback lever 24 is worn over time. Is directional, and the servo piston 21 is always worn so that the feedback lever 24 tilts in the direction of decreasing the discharge flow rate of the pump 2.
  • variable displacement pump regulator 10 capable of controlling the horsepower can be configured.
  • the servo piston 21 is driven according to the self-pressure Pd and the counter pressure P2, and the target power is generated.
  • the discharge flow rate of the pump 2 can be controlled so as not to exceed.
  • the double-pump variable displacement pump regulator 10 has been described as an example.
  • the pump may have a single pump or other configuration, and is not limited to the above embodiment.
  • the step portions 42 and 43 that give the two discharge pressure introduction chambers 34 and 35 an area difference are formed.
  • the regulator 10 may have only the self-pressure introduction chamber 34. Further, there may be two or more discharge pressure introduction chambers, and a pressure necessary for flow rate control may be applied.
  • variable displacement pump regulator can be used in hydraulic excavators, cranes, wheel loaders, bulldozers and the like used in civil engineering and construction work.
  • variable displacement pump 10 regulator for variable displacement pump 11 regulator casing 21 servo piston 22 large diameter pressure receiving portion 23 small diameter pressure receiving portion 24 feedback lever 25 engagement pin (engagement portion) 30 Compensation spool 31 Control spring 32 Compensation sleeve 33 Pressure regulating land 34 Self-pressure introduction chamber (discharge pressure introduction chamber) 35 Counter pressure introduction chamber (discharge pressure introduction chamber) 36 Control pressure output chamber 37 Engagement groove 42 Step portion 43 Step portion 51 Pressure adjustment portion 101 Control line 102 Control line (hysteresis) Pd Self pressure (Discharge pressure) P2 Counter pressure (discharge pressure) Pcl control pressure

Abstract

This regulator (10) is provided with a feedback lever (24) which moves a compensator sleeve (32) in the axial direction of a compensator spool (30). The compensator spool (30) and the compensator sleeve (32) form an autogenous pressure introducing chamber (34), into which the autogenous pressure (Pd) of a pump is introduced, and a pressure adjusting unit (51), which outputs a control pressure (Pcl) from the autogenous pressure introducing chamber (34) to a large-diameter pressure receiving part (22) of a servo piston (21). Inside of the compensator sleeve (32), a step portion (42) is provided where a pressure acts in the direction a control spring (31) biases the compensator spool (30) by means of the autogenous pressure (Pd) introduced into the autogenous pressure introducing chamber (34).

Description

可変容量型ポンプ用レギュレータVariable displacement pump regulator
 本発明は、傾転角を調整することで吐出流量の制御が可能な可変容量型ポンプ用レギュレータに関する。 The present invention relates to a variable displacement pump regulator capable of controlling a discharge flow rate by adjusting a tilt angle.
 従来、油圧ショベル、クレーン、ホイールローダ、ブルドーザ等の動力機械類(この明細書及び特許請求の範囲の書類では、これらの動力機械類(重機)を総称して「作業機械」という)が土木・建設工事などに使用されている。例えば、油圧ショベルを例に説明すると、油圧ショベルでは、上部旋回体を旋回させるとともにバケット、アーム及びブームなどを作動させるために種々のアクチュエータが用いられ、これらのアクチュエータの駆動に油圧が利用されている。 Conventionally, power machines such as hydraulic excavators, cranes, wheel loaders, bulldozers, etc. (in this specification and claims, these power machines (heavy machinery) are collectively referred to as “work machines”) Used for construction work. For example, a hydraulic excavator will be described as an example. In a hydraulic excavator, various actuators are used to rotate the upper swing body and operate buckets, arms, booms, and the like, and hydraulic pressure is used to drive these actuators. Yes.
 そして、このようなアクチュエータには、例えば、上部旋回体の場合には旋回速度、アームやブームの場合にはバケットで掬い上げる重量などに応じて油圧ポンプから必要な流量の作動油が供給される。また、アクチュエータの数や必要な動力などに応じて、複数台の油圧ポンプを備えたタンデム型油圧ポンプなどが用いられる。 Such actuators are supplied with hydraulic oil at a required flow rate from a hydraulic pump according to, for example, the turning speed in the case of an upper turning body and the weight of the arm or boom that is pumped up by a bucket. . In addition, a tandem hydraulic pump including a plurality of hydraulic pumps is used according to the number of actuators and necessary power.
 このような油圧ポンプには可変容量型ポンプが用いられ、可変容量型ポンプの容量はレギュレータで制御される。例えば、一対の可変容量型ポンプを用いる場合には、それぞれの可変容量型ポンプにレギュレータが設けられ、各レギュレータは、双方のポンプの馬力の合計がそれらのポンプを駆動するエンジンの馬力を超えないように双方のポンプの吐出圧力に基づいて各ポンプの傾転角を制御する全馬力制御を行う。一般的なレギュレータでは、ポンプの自己圧力(当該レギュレータが設けられたポンプの吐出圧力)などの信号圧力によってスプールあるいはスリーブの位置が制御され、それらの位置に応じた圧力を有する圧油が調圧部に導かれ、その調圧部から制御圧力を有する圧油が出力されて油圧ポンプの容量調整が行われている。容量調整機構の一部品としてサーボピストンを用いた油圧ポンプでは、このサーボピストンの位置によって可変容量型ポンプの容量が調整される。斜板形可変容量ポンプでの容量調整は斜板の傾転角によって行われる。 ¡A variable displacement pump is used for such a hydraulic pump, and the displacement of the variable displacement pump is controlled by a regulator. For example, in the case of using a pair of variable displacement pumps, each variable displacement pump is provided with a regulator, and each regulator does not exceed the horsepower of the engine that drives the pumps of both pumps. Thus, the total horsepower control for controlling the tilt angle of each pump is performed based on the discharge pressures of both pumps. In a general regulator, the position of the spool or sleeve is controlled by a signal pressure such as the self-pressure of the pump (the discharge pressure of the pump provided with the regulator), and the pressure oil having a pressure corresponding to the position is regulated. The pressure oil having a control pressure is output from the pressure adjusting unit and the capacity of the hydraulic pump is adjusted. In a hydraulic pump using a servo piston as one part of the capacity adjustment mechanism, the capacity of the variable displacement pump is adjusted by the position of the servo piston. The capacity adjustment in the swash plate type variable displacement pump is performed by the tilt angle of the swash plate.
 例えば、この種の先行技術として、原動機で駆動される2台の可変容量型ポンプと、この可変容量型ポンプから供給される圧油で駆動する複数のアクチュエータと、複数のアクチュエータに操作を指令する操作指令手段の指令信号を検出する第1検出手段と、複数のアクチュエータの負荷を検出する第2検出手段と、原動機の基準目標回転数を指令する入力手段とを備え、基準目標回転数が低くなるに従って小さくなる回転数補正の基準幅を計算し、補正値補正手段で基準目標回転数の補正値を補正するようにしたオートアクセル装置がある(例えば、特許文献1参照)。 For example, as this type of prior art, two variable displacement pumps driven by a prime mover, a plurality of actuators driven by pressure oil supplied from the variable displacement pump, and commands to a plurality of actuators The first detection means for detecting the command signal of the operation command means, the second detection means for detecting the loads of the plurality of actuators, and the input means for instructing the reference target rotational speed of the prime mover, the reference target rotational speed is low. There is an auto accelerator device that calculates a reference width for rotational speed correction that becomes smaller as it goes, and corrects a correction value of a reference target rotational speed by a correction value correcting means (see, for example, Patent Document 1).
 このオートアクセル装置では、2台の可変容量型ポンプの容量を2つのレギュレータで制御している。各レギュレータには、当該レギュレータが設けられた可変容量型ポンプの自己圧力と他の可変容量型ポンプの相手圧力とが導かれ、それらの圧力で動作する操作用ピストンによってスプールの位置が制御される。 In this auto accelerator device, the capacity of two variable displacement pumps is controlled by two regulators. Each regulator is guided by the self-pressure of the variable displacement pump provided with the regulator and the other pressure of the other variable displacement pump, and the position of the spool is controlled by the operation piston operating at those pressures. .
特開平11-107322号公報Japanese Patent Laid-Open No. 11-107322
 ところで、上記したような可変容量型ポンプのレギュレータでは、スプールに作用するポンプの吐出圧力(自己圧力)などの信号圧力に応じて調圧部より制御圧力を出力させることにより、サーボピストンを移動させてポンプ容量を変化させている。サーボピストンが移動すると、サーボピストンに係合したフィードバックレバーでレギュレータのスリーブも移動し、ポンプの傾転角が狙い値となるように制御される。このような自己圧力によるスプールの位置制御と、フィードバックレバーを介して行うスリーブの位置制御とは常時行われており、これらによってレギュレータの調圧部からの制御圧力がサーボピストンに導かれ、油圧ポンプからの吐出流量が作業機械のアクチュエータの負荷に応じて制御される。 By the way, in the regulator of the variable displacement pump as described above, the servo piston is moved by outputting the control pressure from the pressure adjusting unit according to the signal pressure such as the discharge pressure (self pressure) of the pump acting on the spool. The pump capacity is changed. When the servo piston moves, the regulator sleeve is also moved by the feedback lever engaged with the servo piston, and the tilt angle of the pump is controlled to be a target value. The spool position control by such self-pressure and the sleeve position control through the feedback lever are always performed, and the control pressure from the regulator of the regulator is guided to the servo piston by these, and the hydraulic pump Is controlled in accordance with the load of the actuator of the work machine.
 しかしながら、上記したフィードバックレバーとスリーブとの係合部には係合ピンが設けられており、この係合ピンの接触部分が経年使用によって摩耗することがある。 However, an engaging pin is provided at the engaging portion between the feedback lever and the sleeve described above, and the contact portion of the engaging pin may be worn out over time.
 上記オートアクセル装置のレギュレータの場合、スプールの位置を制御する操作用ピストンがスプールとは別体であるため、上記スリーブには軸方向の付勢力が作用せず係合ピンと接する係合部にはスプールの動作方向に関係なく摩擦力などが作用し、その力によって方向性無く係合部は摩耗する。そして、この摩耗によって、係合ピンとその接触部分との間に隙間が生じ、この隙間がポンプの流量を増減させるレギュレータの制御圧力に対して所定幅の不感帯を生じさせ、その不感帯によって馬力制御に方向性のないヒステリシスを生じさせる。このヒステリシスは、経年使用による係合部の摩耗の進展によって増加する。 In the case of the regulator of the auto accelerator device, since the operation piston for controlling the position of the spool is separate from the spool, the urging force in the axial direction does not act on the sleeve, and the engagement portion contacting the engagement pin does not A frictional force or the like is applied regardless of the operation direction of the spool, and the engaging portion is worn without directionality by the force. This wear causes a gap between the engagement pin and the contact portion, and this gap creates a dead band of a predetermined width with respect to the control pressure of the regulator that increases or decreases the flow rate of the pump. Causes non-directional hysteresis. This hysteresis increases with the progress of wear of the engaging portion due to use over time.
 図8は、油圧ポンプのレギュレータによる馬力制御特性を吐出圧力と流量との関係で示す線図であり、設計線である等馬力線100に近似するように制御線101が設定されている。この制御線101は、2本の制御バネを用いた場合の例を示しており、この馬力制御において途中で制御に用いている制御バネの本数を1本から2本に変化させることで制御線の傾きを変化させて、等馬力線100に制御線101が近似するようにしている。 FIG. 8 is a diagram showing the horsepower control characteristic by the regulator of the hydraulic pump in relation to the discharge pressure and the flow rate, and the control line 101 is set so as to approximate the design horsepower line 100. This control line 101 shows an example in which two control springs are used, and the control line is changed by changing the number of control springs used for control during the horsepower control from one to two. Is changed so that the control line 101 approximates the equal horsepower line 100.
 そのため、上記したようにスリーブとピンとの係合部が方向性無く摩耗した場合、図示するように、目標とする制御線101の流量に対して、実際の制御線102には、ヒステリシスが生じ、制御線が流量減少側あるいは流量増加側のいずれにも振れる場合がある。 Therefore, as described above, when the engaging portion between the sleeve and the pin is worn without directionality, as shown in the figure, hysteresis occurs in the actual control line 102 with respect to the target flow rate of the control line 101, In some cases, the control line may swing to either the flow rate decrease side or the flow rate increase side.
 そして、吐出圧力に対する流量が等馬力線100の流量を越えるような場合、例えば、油圧ショベルの場合には、土砂の掘削積込み作業等のように、大きな馬力を要する作業を行う際、油圧ポンプが過剰な吐出流量を吐出する結果、油圧ポンプの馬力(油圧ポンプが複数の場合は全油圧ポンプの合計馬力)が原動機の馬力を超えることになり、原動機がストールあるいは作動が不安定となる可能性がある。 When the flow rate with respect to the discharge pressure exceeds the flow rate of the equal horsepower line 100, for example, in the case of a hydraulic excavator, when performing work requiring large horsepower, such as excavation and loading work of earth and sand, As a result of discharging an excessive discharge flow rate, the horsepower of the hydraulic pump (or the total horsepower of all the hydraulic pumps if there are multiple hydraulic pumps) may exceed the horsepower of the prime mover, which may cause the prime mover to stall or become unstable There is.
 このように、スリーブとフィードバックレバーとの係合部における摩耗によってポンプの吐出圧力に対する流量のヒステリシスが増えると、レギュレータの馬力制御が機能したときに、つまり、ポンプの馬力を下げようと制御線101のようにポンプの吐出流量を減少させようとしてもヒステリシス分吐出流量が増加することになり、原動機のストールを生じる可能性が高くなる。 Thus, when the hysteresis of the flow rate with respect to the discharge pressure of the pump increases due to wear at the engagement portion between the sleeve and the feedback lever, the control line 101 tries to lower the horsepower of the pump when the horsepower control of the regulator functions. As described above, even if the discharge flow rate of the pump is decreased, the discharge flow rate is increased by the hysteresis, and the possibility of causing a stall of the prime mover is increased.
 そこで、本発明は、経年使用により油圧ポンプの馬力制御特性にて流量のヒステリシスが生じたとしても、安定した馬力制御ができる可変容量型ポンプ用レギュレータを提供することを目的とする。 Therefore, an object of the present invention is to provide a variable displacement pump regulator that can perform stable horsepower control even when flow rate hysteresis occurs in the horsepower control characteristics of a hydraulic pump over time.
 上記目的を達成するために、本発明に係る可変容量型ポンプ用レギュレータは、原動機によって駆動される可変容量型ポンプの吐出流量を変化させるサーボピストンと、前記サーボピストンの位置を検知するフィードバックレバーと、制御バネによって一端方向へ付勢されたコンペンスプールと、前記コンペンスプールの周囲に位置し、前記サーボピストンと前記フィードバックレバーとの作用によって前記フィードバックレバーとの係合部を介して該コンペンスプールの軸方向に移動するように構成されたコンペンスリーブと、を備え、前記ポンプの吐出圧力が導入される吐出圧力導入室と、前記吐出圧力導入室から前記サーボピストンの大径受圧部に制御圧力を出力する調圧部とが、前記コンペンスプールと前記コンペンスリーブによって形成され、前記コンペンスリーブには、前記吐出圧力導入室に導入した吐出圧力によって前記一端方向に圧力が作用する段部が設けられている。 To achieve the above object, a variable displacement pump regulator according to the present invention includes a servo piston that changes a discharge flow rate of a variable displacement pump driven by a prime mover, a feedback lever that detects the position of the servo piston, A compensator spool biased in one direction by a control spring, and the compensator spool is positioned around the compensator spool and is engaged with the feedback lever by the action of the servo piston and the feedback lever. A compensation sleeve configured to move in the axial direction, a discharge pressure introduction chamber into which the discharge pressure of the pump is introduced, and a control pressure from the discharge pressure introduction chamber to the large-diameter pressure receiving portion of the servo piston. The pressure adjusting unit to output is based on the compensation spool and the compensation sleeve. Formed Te, the compensator sleeve, the step portion acting pressure on the end direction by a discharge pressure introduced into the discharge pressure introducing chamber.
 この構成では、コンペンスプールの周囲で軸方向に移動するコンペンスリーブに段部が設けられているので、吐出圧力導入室に導入した吐出圧力によりコンペンスリーブが制御バネと反対方向(一端方向)に付勢される。その結果、このコンペンスリーブに係合しているフィードバックレバーの係合部には常に制御バネと反対方向に力が作用し、係合部の摩耗部位が限定される。これにより、経年使用によってフィードバックレバーとコンペンスリーブとの係合部の制御バネ側が摩耗したとしても、ポンプの馬力制御特性はポンプの吐出流量を低下させることになる。従って、フィードバックレバーの係合部が摩耗したとしても、ポンプの馬力が原動機の馬力(場合によっては原動機の馬力における単独ポンプ負担分)を超えることがなく、安定した馬力制御を行って原動機のストールを生じないようにできる。 In this configuration, since the step portion is provided in the compensator sleeve that moves in the axial direction around the compensator spool, the compensator sleeve is attached in the opposite direction (one end direction) to the control spring by the discharge pressure introduced into the discharge pressure introduction chamber. Be forced. As a result, a force is always applied to the engaging portion of the feedback lever engaged with the compensator sleeve in the direction opposite to the control spring, and the wear portion of the engaging portion is limited. As a result, even if the control spring side of the engaging portion between the feedback lever and the compensator is worn due to aging, the horsepower control characteristic of the pump will decrease the discharge flow rate of the pump. Therefore, even if the engagement part of the feedback lever is worn, the horsepower of the pump does not exceed the horsepower of the prime mover (in some cases, the share of the single pump in the prime mover's horsepower), and stable horsepower control is performed to stall the prime mover. Can be prevented.
 また、前記段部は、前記コンペンスリーブの内径を小径にすることで、前記吐出圧力導入室の前記調圧部と反対側に形成されてもよい。 Further, the stepped portion may be formed on the opposite side of the discharge pressure introducing chamber from the pressure adjusting portion by reducing the inner diameter of the compensator sleeve.
 このように構成すれば、吐出圧力導入室に導入される吐出圧力によってコンペンスリーブが制御バネと反対方向(一端方向)に付勢されるように、コンペンスリーブの調圧部側と反調圧部側とに受圧面積差を設けることができる。 With this configuration, the pressure adjusting unit side and the counter pressure adjusting unit of the compensator sleeve are biased in the opposite direction (one end direction) to the control spring by the discharge pressure introduced into the discharge pressure introducing chamber. A pressure receiving area difference can be provided on the side.
 また、前記吐出圧力導入室は、前記ポンプの吐出圧力である自己圧力が導入される自己圧力導入室であり、前記自己圧力導入室から前記調圧部と反対側に離れた位置に、他の可変容量型ポンプの吐出圧力である相手圧力が導入される相手圧力導入室が、前記コンペンスプールと前記コンペンスリープによって形成されていてもよい。この明細書及び特許請求の範囲の書類中における「自己圧力」は、複数のポンプを備えた構成における自己の可変容量型ポンプの吐出圧力をいい、「相手圧力」は、他の可変容量型ポンプの吐出圧力をいう。 The discharge pressure introduction chamber is a self-pressure introduction chamber into which a self-pressure that is a discharge pressure of the pump is introduced, and is located at a position away from the self-pressure introduction chamber on the side opposite to the pressure regulating unit. A counterpart pressure introduction chamber into which a counterpart pressure that is a discharge pressure of the variable displacement pump is introduced may be formed by the compensation spool and the compensation sleep. “Self-pressure” in this specification and claims refers to the discharge pressure of its own variable displacement pump in a configuration having a plurality of pumps, and “other pressure” refers to another variable displacement pump. Discharge pressure.
 このように構成すれば、複数の可変容量型ポンプを備えた構成において、それぞれの吐出圧力に応じて、当該レギュレータが設けられたポンプと他のポンプの合計馬力が原動機の馬力を超えないようにレギュレータでポンプ容量を変更することができる。 If comprised in this way, in the structure provided with the several variable displacement pump, according to each discharge pressure, the total horsepower of the pump provided with the said regulator and other pumps may not exceed the horsepower of a prime mover. The pump capacity can be changed with a regulator.
 また、前記相手圧力導入室は、前記自己圧力導入室よりも小径に形成され、前記コンペンスリーブには、前記相手圧力導入室に導入された相手圧力によって前記一端方向に圧力が作用する段部が設けられていてもよい。 The counterpart pressure introduction chamber is formed to have a smaller diameter than the self pressure introduction chamber, and the compensator has a step portion on which the pressure acts in the one end direction by the counterpart pressure introduced into the counterpart pressure introduction chamber. It may be provided.
 このように構成すれば、複数の可変容量型ポンプを備えた構成において、自己圧力と相手圧力とに応じてポンプ容量を制御する構成においても、コンペンスリーブに常に制御バネと反対方向(一端方向)に付勢する力を作用させることができる。すなわち、フィードバックレバーの係合部に常にポンプ容量が減少する側に向けて付勢する力を相手圧力導入室に導入した相手圧力によっても作用させることができる。 With this configuration, even in a configuration including a plurality of variable displacement pumps, in which the pump displacement is controlled according to the self pressure and the counterpart pressure, the compensator is always in the direction opposite to the control spring (one end direction). It is possible to apply a force for urging. In other words, the force that always urges the engagement portion of the feedback lever toward the side where the pump capacity decreases can be applied by the counterpart pressure introduced into the counterpart pressure introduction chamber.
 本発明によれば、経年使用してもポンプの容量が減少する側にしか摩耗等が起こらないので、経年使用によっても安定した馬力制御ができる可変容量型ポンプ用レギュレータを構成することが可能となる。 According to the present invention, since wear or the like occurs only on the side where the capacity of the pump is reduced even when used over time, it is possible to configure a variable capacity pump regulator capable of stable horsepower control even over time. Become.
図1は本発明に係る可変容量型ポンプ用レギュレータの一実施形態を示す油圧回路図である。FIG. 1 is a hydraulic circuit diagram showing an embodiment of a variable displacement pump regulator according to the present invention. 図2は図1に示す可変容量型ポンプ用レギュレータの断面図であり、図3に示すII-II矢視の断面図である。2 is a cross-sectional view of the variable displacement pump regulator shown in FIG. 1, and is a cross-sectional view taken along the line II-II shown in FIG. 図3は図2に示すIII-III矢視の断面図である。3 is a cross-sectional view taken along arrows III-III shown in FIG. 図4は図2に示す可変容量型ポンプ用レギュレータのコンペンスプールが制御バネ側へ移動した状態を示す断面図である。4 is a cross-sectional view showing a state in which the compensator spool of the variable displacement pump regulator shown in FIG. 2 has moved to the control spring side. 図5は図4に示すコンペンスプールが制御バネ側へ移動した状態から、ポンプの容量が変わりコンペンスリーブが移動した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the compensator has changed in capacity from the state in which the compensator shown in FIG. 4 has moved toward the control spring, and the capacity of the pump has changed. 図6は図2に示すコンペンスリーブに作用する吐出圧力とフィードバックレバーの係合部に作用する力との関係を示す模式図である。FIG. 6 is a schematic diagram showing the relationship between the discharge pressure acting on the compensator shown in FIG. 2 and the force acting on the engaging portion of the feedback lever. 図7は図2に示す可変容量型ポンプ用レギュレータについて経年変化した場合に生じうる制御特性変化を示した馬力制御線図である。FIG. 7 is a horsepower control diagram showing control characteristic changes that may occur when the variable displacement pump regulator shown in FIG. 2 changes over time. 図8は従来の可変容量型ポンプ用レギュレータについて経年変化した場合に生じうる制御特性変化を示した馬力制御線図である。FIG. 8 is a horsepower control diagram showing a control characteristic change that may occur when the conventional variable displacement pump regulator changes over time.
 以下、本発明の一実施形態を図面に基づいて説明する。以下の実施形態では、タンデム型ポンプなどの斜板形ダブルポンプの1台のポンプのみを図示し、図示するポンプの吐出圧力を「自己圧力Pd」、他のポンプの吐出圧力を「相手圧力P2」という。また、可変容量型ポンプの馬力制御に関する部分のみを図示して説明する。さらに、この明細書及び特許請求の範囲の書類中における上下左右方向の概念は、図2に示すレギュレータの断面図における上下左右方向の概念と一致するものとする。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiment, only one pump of a swash plate type double pump such as a tandem pump is illustrated, and the discharge pressure of the illustrated pump is “self pressure Pd”, and the discharge pressures of the other pumps are “other pressure P2”. " Further, only the portion related to the horsepower control of the variable displacement pump will be illustrated and described. Furthermore, the concept of the up / down / left / right direction in the document of this specification and claims shall be the same as the concept of the up / down / left / right direction in the sectional view of the regulator shown in FIG.
 図1に示すように、原動機1により駆動される可変容量型ポンプ2(以下、単に「ポンプ2」という)は、斜板の傾転角がレギュレータ10によって制御されて吐出流量が調整されている。このレギュレータ10は、サーボピストン21と、サーボピストン21に係合されたフィードバックレバー24と、制御バネ31で一端方向(軸方向の一方)へ付勢されたコンペンスプール30と、このコンペンスプール30の周囲に位置する(換言すれば、コンペンスプール30が挿通された)コンペンスリーブ32とを有している。コンペンスプール30とコンペンスリーブ32が軸方向に移動することによって、サーボピストン21の大径受圧部22に導かれる制御圧力が調整されるようになっている。 As shown in FIG. 1, a variable displacement pump 2 (hereinafter simply referred to as “pump 2”) driven by a prime mover 1 has its swash plate tilt angle controlled by a regulator 10 to adjust the discharge flow rate. . The regulator 10 includes a servo piston 21, a feedback lever 24 engaged with the servo piston 21, a compensator 30 biased in one end direction (one of the axial directions) by a control spring 31, And a compensator sleeve 32 (in other words, the compensator spool 30 is inserted). The control pressure guided to the large-diameter pressure receiving portion 22 of the servo piston 21 is adjusted by moving the compensator spool 30 and the compensator sleeve 32 in the axial direction.
 そして、この実施形態の上記コンペンスプール30とコンペンスリーブ32との間には、サーボピストン21の位置を制御する調圧部51と馬力制御の荷重演算部が一体的に設けられている。この調圧部51の詳細は、後述する。 And, between the compensator spool 30 and the compensator sleeve 32 of this embodiment, a pressure adjusting unit 51 for controlling the position of the servo piston 21 and a load calculating unit for horsepower control are integrally provided. Details of the pressure adjusting unit 51 will be described later.
 また、コンペンスプール30とコンペンスリーブ32の間には、この実施形態ではダブルポンプ2(図では1台のみを示す)が用いられているため、複数の吐出圧力導入室34,35が設けられている。この実施形態では、複数の吐出圧力導入室34,35として、自己圧力Pdが導入される自己圧力導入室34と、この自己圧力導入室34から制御バネ31と反対方向(すなわち、前記一端方向)に離れた位置に、相手圧力P2が導入される相手圧力導入室35とが設けられている。これら複数の吐出圧力導入室34,35には、後述するように、段部42,43がそれぞれ設けられている。相手圧力導入室35は、自己圧力導入室34よりも小径に形成されている。 In addition, since the double pump 2 (only one unit is shown in the figure) is used between the compensator spool 30 and the compensator sleeve 32, a plurality of discharge pressure introduction chambers 34 and 35 are provided. Yes. In this embodiment, as the plurality of discharge pressure introducing chambers 34 and 35, a self pressure introducing chamber 34 into which the self pressure Pd is introduced, and the direction opposite to the control spring 31 from the self pressure introducing chamber 34 (that is, the one end direction). A counterpart pressure introduction chamber 35 into which the counterpart pressure P2 is introduced is provided at a position far from the center. Steps 42 and 43 are provided in the plurality of discharge pressure introduction chambers 34 and 35, as will be described later. The counterpart pressure introduction chamber 35 has a smaller diameter than the self pressure introduction chamber 34.
 なお、この実施形態では、コンペンスプール30の制御バネ31と反対側に馬力設定圧力Pfが導入されるようになっている。この馬力設定圧力Pfを変更することで、レギュレータ10の設定馬力を変更することができる。 In this embodiment, the horsepower setting pressure Pf is introduced on the side opposite to the control spring 31 of the compensator 30. By changing the horsepower setting pressure Pf, the set horsepower of the regulator 10 can be changed.
 図2,3に基づいて、上記可変容量型ポンプ用レギュレータ10の構成をより詳しく説明する。この実施形態のレギュレータ10のレギュレータケーシング11はポンプケーシング12にボルト13,14で固定されている(図3)。ポンプケーシング12には、サーボピストン21が設けられている。レギュレータケーシング11には、コンペンスプール30と、その周囲で軸方向に移動するコンペンスリーブ32とが設けられている。 The configuration of the variable displacement pump regulator 10 will be described in more detail with reference to FIGS. The regulator casing 11 of the regulator 10 of this embodiment is fixed to the pump casing 12 with bolts 13 and 14 (FIG. 3). The pump casing 12 is provided with a servo piston 21. The regulator casing 11 is provided with a compensator spool 30 and a compensator sleeve 32 that moves in the axial direction around the compensator spool 30.
 図2に示すように、コンペンスプール30の右側(軸方向の一方)には、このコンペンスプール30を一端方向に付勢する上記制御バネ31が設けられている。この制御バネ31は、コンペンスプール30の自己圧力導入室34と相手圧力導入室35とに導入される吐出圧力によってコンペンスプール30が右方向に移動することで変位させられる。この実施形態の制御バネ31は、同軸上に設けられた2本のバネからなる。コンペンスプール30は、制御バネ31のバネ力と自身に作用する3つの圧力(Pd,P2,Pf)との関係で位置が決まる。制御バネ31を2本のバネで構成することにより、後述する図7に示すように、流量の変化によって途中で傾きが変化する制御線を等馬力線に近似させている。なお、上記制御バネ31には、1本又は複数本の線形の変位-荷重特性をもったバネ若しくは非線形の変位-荷重特性をもったバネを用いてもよい。 As shown in FIG. 2, the control spring 31 for urging the compensator spool 30 in one end direction is provided on the right side (one axial direction) of the compensator spool 30. As shown in FIG. The control spring 31 is displaced by moving the compensator spool 30 in the right direction by the discharge pressure introduced into the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35 of the compensator spool 30. The control spring 31 of this embodiment is composed of two springs provided on the same axis. The position of the compensator 30 is determined by the relationship between the spring force of the control spring 31 and the three pressures (Pd, P2, Pf) acting on itself. By configuring the control spring 31 with two springs, as shown in FIG. 7 to be described later, a control line whose inclination changes midway due to a change in flow rate is approximated to an equal horsepower line. The control spring 31 may be one or more springs having a linear displacement-load characteristic or a spring having a non-linear displacement-load characteristic.
 上記コンペンスリーブ32は、レギュレータケーシング11に設けられた案内筒部15に沿って軸方向に移動可能となっている。このコンペンスリーブ32には、フィードバックレバー24の一端が係合している。フィードバックレバー24の他端は、上記サーボピストン21と制御ピン27で係合している。このフィードバックレバー24には、一端に係合ピン25が設けられている。コンペンスリーブ32には、制御バネ側部分の側面に係合溝37が設けられており、この係合溝37に上記フィードバックレバー24の係合ピン25が嵌まり込んでいる。フィードバックレバー24は、中間部分に設けられた支持ピン26によってレギュレータケーシング11に支持されており、サーボピストン21の移動によって支持ピン26を中心に揺動させられる。このフィードバックレバー24の揺動により、コンペンスリーブ32が軸方向に移動させられる。つまり、コンペンスリーブ32の位置は、サーボピストン21の位置によって決められる。 The compensator sleeve 32 is movable in the axial direction along the guide tube portion 15 provided in the regulator casing 11. One end of a feedback lever 24 is engaged with the compensator 32. The other end of the feedback lever 24 is engaged with the servo piston 21 by a control pin 27. The feedback lever 24 is provided with an engagement pin 25 at one end. The compensator sleeve 32 is provided with an engaging groove 37 on the side surface of the control spring side portion, and the engaging pin 25 of the feedback lever 24 is fitted into the engaging groove 37. The feedback lever 24 is supported on the regulator casing 11 by a support pin 26 provided at an intermediate portion, and is swung around the support pin 26 by the movement of the servo piston 21. The compensation sleeve 32 is moved in the axial direction by the oscillation of the feedback lever 24. That is, the position of the compensator 32 is determined by the position of the servo piston 21.
 コンペンスプール30とコンペンスリーブ32によって、上述した複数の吐出圧力導入室34,35が形成されている。コンペンスプール30には、制御バネ31から遠ざかる方向に向かって順に、ガイド部となる大径部38と、この大径部38と同径の調圧ランド部33と、この調圧ランド部33よりも小径の中径部39と、この中径部39よりも小径の小径部40とが設けられ、これらの間が軸部41で一体的に連結されている。このコンペンスプール30の制御バネ31と反対方向(左方向)の端部には馬力設定操作用ピストン44が設けられており、この操作用ピストン44はカバー17に設けられた筒状ガイド16によって軸方向に案内されている。なお、コンペンスプール30と馬力設定操作用ピストン44とは一体的に構成されていても、別体で構成されていても良い。 The plurality of discharge pressure introducing chambers 34 and 35 described above are formed by the compensator spool 30 and the compensator sleeve 32. The compensator 30 includes a large-diameter portion 38 serving as a guide portion, a pressure-controlling land portion 33 having the same diameter as the large-diameter portion 38, and a pressure-controlling land portion 33 in order from the control spring 31. A small-diameter medium-diameter portion 39 and a small-diameter portion 40 having a diameter smaller than that of the medium-diameter portion 39 are provided, and the shaft portion 41 is integrally connected therebetween. A horsepower setting operation piston 44 is provided at the end (left direction) opposite to the control spring 31 of the compensator spool 30, and this operation piston 44 is pivoted by a cylindrical guide 16 provided on the cover 17. Guided in the direction. The compensator spool 30 and the horsepower setting operation piston 44 may be configured integrally or separately.
 上記コンペンスリーブ32には、筒状に形成された内面の制御バネ31側に、上記大径部38を軸方向に案内するガイド筒部48が設けられ、そのガイド筒部48の所定位置にガイド部48から所定寸法で大径になった制御圧力出力室36が設けられている。この制御圧力出力室36は、上記コンペンスプール30に設けられた調圧ランド部33と対応する位置に設けられている。制御圧力出力室36と調圧ランド部33によって、吐出圧力導入室34からサーボピストン21の大径受圧部22に制御圧力を出力する調圧部51が形成される。この制御圧力出力室36の制御バネ31と反対方向には、上記ガイド筒部48と同径の上記自己圧力導入室34が形成され、その自己圧力導入室34の制御バネ31と反対方向には、上記中径部39を軸方向に案内する内径で上記相手圧力導入室35が形成される。この相手圧力導入室35の制御バネ31と反対方向では、コンペンスリーブ32の内径が上記小径部40を軸方向に案内する内径に形成されている。 The compensator sleeve 32 is provided with a guide tube portion 48 for guiding the large-diameter portion 38 in the axial direction on the control spring 31 side of the inner surface formed in a cylindrical shape, and a guide tube portion 48 is guided to a predetermined position of the guide tube portion 48. A control pressure output chamber 36 having a predetermined size and a large diameter from the portion 48 is provided. The control pressure output chamber 36 is provided at a position corresponding to the pressure adjusting land portion 33 provided in the compensator 30. The control pressure output chamber 36 and the pressure adjustment land portion 33 form a pressure adjustment portion 51 that outputs a control pressure from the discharge pressure introduction chamber 34 to the large-diameter pressure receiving portion 22 of the servo piston 21. In the direction opposite to the control spring 31 of the control pressure output chamber 36, the self-pressure introduction chamber 34 having the same diameter as the guide cylinder portion 48 is formed, and in the direction opposite to the control spring 31 of the self-pressure introduction chamber 34. The counterpart pressure introduction chamber 35 is formed with an inner diameter that guides the medium diameter portion 39 in the axial direction. In the direction opposite to the control spring 31 of the counterpart pressure introducing chamber 35, the inner diameter of the compensator sleeve 32 is formed to be an inner diameter that guides the small diameter portion 40 in the axial direction.
 そして、このようにコンペンスリーブ32の内面を異なる内径に形成することにより、上記コンペンスプール30の調圧ランド部33と中径部39との間に形成される自己圧力導入室34の中径部39側(調圧部51と反対側)に段部42が設けられ、中径部39と小径部40との間に形成される相手圧力導入室35の小径部40側に段部43が設けられている。上記段部42は、調圧ランド部33と中径部39との直径差分の面積差で自己圧力導入室34の中径部側に形成され、上記段部43は、中径部39と小径部40との直径差分の面積差で相手圧力導入室35の小径部側に形成されている。このように、コンペンスリーブ32の内面には、自己圧力導入室34の直径に比べて相手圧力導入室35の直径が小さく、この相手圧力導入室35の直径に比べて小径部40を軸方向に案内する部分の直径が小さい3段階の面積差が持たされている。 The inner diameter portion of the self-pressure introduction chamber 34 formed between the pressure adjusting land portion 33 and the middle diameter portion 39 of the compensator spool 30 is thus formed by forming the inner surface of the compensator sleeve 32 to have different inner diameters. A step portion 42 is provided on the 39 side (opposite side of the pressure adjusting portion 51), and a step portion 43 is provided on the small diameter portion 40 side of the counterpart pressure introduction chamber 35 formed between the medium diameter portion 39 and the small diameter portion 40. It has been. The step portion 42 is formed on the inner diameter portion side of the self-pressure introduction chamber 34 due to the difference in diameter between the pressure adjusting land portion 33 and the medium diameter portion 39, and the step portion 43 is formed with the medium diameter portion 39 and the small diameter portion. It is formed on the small-diameter portion side of the counterpart pressure introducing chamber 35 by the area difference of the diameter difference from the portion 40. As described above, the diameter of the counterpart pressure introduction chamber 35 is smaller than the diameter of the self-pressure introduction chamber 34 on the inner surface of the compensator sleeve 32, and the small diameter portion 40 is axially disposed in comparison with the diameter of the counterpart pressure introduction chamber 35. There is a three-stage area difference in which the diameter of the guided portion is small.
 一方、コンペンスプール30の大径部38と調圧ランド部36の間には、後述する制御流路47からレギュレータケーシング11に設けられたタンク通路62へ圧油を導く排油室61が形成されている。また、コンペンスリーブ32には、排油室61、制御圧力出力室36、自己圧力導入室34および相手圧力導入室35をそれぞれタンク通路62、制御流路47、後述する導入通路45および後述する導入通路46と連通するための連通路71~74(符合71~74は、図4のみに図示)が設けられている。連通路71~74のそれぞれは、コンペンスリーブ32の外周面に設けられた環状溝とコンペンスリーブ32を径方向に貫通する複数の貫通穴とで構成される。 On the other hand, between the large diameter portion 38 and the pressure adjusting land portion 36 of the compensator spool 30 is formed an oil discharge chamber 61 that guides pressure oil from a control flow path 47 (described later) to a tank passage 62 provided in the regulator casing 11. ing. Further, the compensator sleeve 32 includes an oil discharge chamber 61, a control pressure output chamber 36, a self-pressure introduction chamber 34, and a counterpart pressure introduction chamber 35, respectively, a tank passage 62, a control passage 47, an introduction passage 45 described later, and an introduction described later. Communication passages 71 to 74 (reference numerals 71 to 74 are shown only in FIG. 4) for communicating with the passage 46 are provided. Each of the communication paths 71 to 74 includes an annular groove provided on the outer peripheral surface of the compensator sleeve 32 and a plurality of through holes that penetrate the compensator sleeve 32 in the radial direction.
 上記自己圧力導入室34には、ポンプ2から導入流路45及び連通路73を介してサーボピストン21の小径受圧部23に導入された自己圧力Pdが導入されている。相手圧力導入室35には、図示していない相手ポンプから導入流路46及び連通路74を介して相手圧力P2が導入されている。 The self-pressure Pd introduced from the pump 2 to the small-diameter pressure receiving portion 23 of the servo piston 21 is introduced into the self-pressure introduction chamber 34 through the introduction flow path 45 and the communication path 73. A counter pressure P <b> 2 is introduced into the counter pressure introducing chamber 35 from a counter pump (not shown) through the introduction flow path 46 and the communication path 74.
 そして、これらの吐出圧力によって、コンペンスプール30が制御バネ31のバネ力に抗して制御バネ31を縮める方向(右方向)に移動させられる。この構成が、レギュレータ10の馬力制御部における演算部50である。 Then, by these discharge pressures, the compensator 30 is moved in a direction (right direction) in which the control spring 31 is contracted against the spring force of the control spring 31. This configuration is the calculation unit 50 in the horsepower control unit of the regulator 10.
 また、コンペンスプール30が制御バネ31を縮める方向に移動させられることによって調圧ランド部33が軸方向に移動し、これによって自己圧力導入室34と制御圧力出力室36とが連通し、自己圧力Pdが連通路72及び制御流路47を介してサーボピストン21の大径受圧部22に制御圧力Pclとして導入される。つまり、調圧ランド部33の移動によって自己圧力導入室34と制御圧力出力室36との間の開口面積が変化し、制御圧力Pclが調整される。この構成が、レギュレータ10の馬力制御部における調圧部51であり、この調圧部51は上記演算部50に組込まれている。 Further, when the compensator spool 30 is moved in the direction in which the control spring 31 is contracted, the pressure adjusting land portion 33 is moved in the axial direction, whereby the self-pressure introduction chamber 34 and the control pressure output chamber 36 are communicated with each other, and the self-pressure is increased. Pd is introduced as a control pressure Pcl into the large-diameter pressure receiving portion 22 of the servo piston 21 through the communication path 72 and the control flow path 47. That is, the opening area between the self-pressure introduction chamber 34 and the control pressure output chamber 36 is changed by the movement of the pressure adjusting land portion 33, and the control pressure Pcl is adjusted. This configuration is the pressure adjusting unit 51 in the horsepower control unit of the regulator 10, and the pressure adjusting unit 51 is incorporated in the calculation unit 50.
 このように、馬力制御部の演算部50に調圧ランド部33を組込んで一体的な構成とすることにより、演算部50でコンペンスプール30を自己ポンプ及び相手ポンプの吐出圧力に応じた所定の位置に移動させ、調圧ランド部33でサーボピストン21を移動させる制御圧力Pclを導いてポンプ2の吐出流量を調整する機構を、コンパクトに構成している。 As described above, the pressure adjusting land 33 is incorporated into the calculation unit 50 of the horsepower control unit so as to form an integral configuration, whereby the calculation unit 50 causes the compensator 30 to be set in accordance with the discharge pressures of the self-pump and the counterpart pump. The mechanism for adjusting the discharge flow rate of the pump 2 by introducing the control pressure Pcl for moving the servo piston 21 by the pressure adjusting land portion 33 by moving the servo piston 21 to the position is configured compactly.
 次に、図4,5に基づいて、コンペンスプール30とコンペンスリーブ32の動作について説明する。サーボピストン21に作用する小径受圧部23からの力と大径受圧部22からの力が釣り合っていると、コンペンスプール30とコンペンスリーブ32の相対位置関係が図2に示す状態となり、制御圧力出力室36が調圧ランド部33で塞がれて自己圧力導入室34と排油室61のどちらとも連通しない。 Next, the operation of the compensator spool 30 and the compensator sleeve 32 will be described with reference to FIGS. When the force from the small diameter pressure receiving portion 23 acting on the servo piston 21 and the force from the large diameter pressure receiving portion 22 are balanced, the relative positional relationship between the compensator spool 30 and the compensator sleeve 32 becomes the state shown in FIG. The chamber 36 is blocked by the pressure adjusting land portion 33 and does not communicate with either the self-pressure introduction chamber 34 or the oil discharge chamber 61.
 図4に示すように、可変容量型ポンプ用レギュレータ10の自己圧力導入室34に吐出圧力Pdが導入され、その吐出圧力(自己圧力)Pdと相手圧力P2及び設定圧力Pfの総圧力が制御バネ31のバネ荷重よりも大きい場合には、コンペンスプール30が制御バネ31に向かって移動する。これにより、コンペンスプール30の調圧ランド部33が自己圧力導入室34と制御圧力出力室36とを連通させ、この連通によって自己圧力導入室34からサーボピストン21の大径受圧部22に制御圧力Pclが導入される。これにより、サーボピストン21が可変容量型ポンプ2の吐出流量を減少させるように傾転角を制御する。 As shown in FIG. 4, the discharge pressure Pd is introduced into the self-pressure introduction chamber 34 of the variable displacement pump regulator 10, and the total pressure of the discharge pressure (self-pressure) Pd, the counterpart pressure P2, and the set pressure Pf is controlled by the control spring. When the spring load is larger than 31, the compensator spool 30 moves toward the control spring 31. As a result, the pressure adjusting land portion 33 of the compensator spool 30 connects the self-pressure introduction chamber 34 and the control pressure output chamber 36, and the control pressure is applied from the self-pressure introduction chamber 34 to the large-diameter pressure receiving portion 22 of the servo piston 21 by this communication. Pcl is introduced. Thus, the tilt angle is controlled so that the servo piston 21 decreases the discharge flow rate of the variable displacement pump 2.
 この実施形態ではダブルポンプの例であるため、上記自己圧力導入室34に導入される自己圧力Pdに加え、相手圧力導入室35に導入される相手圧力P2によってもコンペンスプール30が移動させられ、それらの圧力によって自己圧力が自己圧力導入室34から制御圧力出力室36に流れ、制御流路47を介してサーボピストン21の大径受圧部22に制御圧力Pclが導入される。これにより、ダブルポンプのいずれかの必要馬力に応じて吐出流量が減少させられる。 Since this embodiment is an example of a double pump, in addition to the self pressure Pd introduced into the self pressure introduction chamber 34, the compensatory spool 30 is also moved by the counterpart pressure P2 introduced into the counterpart pressure introduction chamber 35. Due to these pressures, the self-pressure flows from the self-pressure introduction chamber 34 to the control pressure output chamber 36, and the control pressure Pcl is introduced into the large-diameter pressure receiving portion 22 of the servo piston 21 through the control flow path 47. As a result, the discharge flow rate is reduced in accordance with any required horsepower of the double pump.
 そして、図5に示すように、サーボピストン21の大径受圧部22に導入された制御圧力Pclによってサーボピストン21が左方へ移動するとフィードバックレバー24が支持ピン26を中心に揺動してコンペンスリーブ32を移動させる。このコンペンスリーブ32の移動により制御圧力出力室36と自己圧力導入室34との間の開口が塞がれると、自己圧力導入室34から大径受圧部22に制御圧力Pclが導入されるのを止める。このようにして、サーボピストン21によりポンプ2の傾転角が必要な吐出流量の傾転角に調整される。 Then, as shown in FIG. 5, when the servo piston 21 moves to the left by the control pressure Pcl introduced into the large-diameter pressure receiving portion 22 of the servo piston 21, the feedback lever 24 swings around the support pin 26 and the compensator. The sleeve 32 is moved. When the opening between the control pressure output chamber 36 and the self pressure introducing chamber 34 is blocked by the movement of the compensator 32, the control pressure Pcl is introduced from the self pressure introducing chamber 34 into the large diameter pressure receiving portion 22. stop. In this manner, the servo piston 21 adjusts the tilt angle of the pump 2 to the tilt angle of the required discharge flow rate.
 一方、図2に示す状態から自己圧力導入室34に導入される自己圧力Pd又は相手圧力導入室35に導入される相手圧力P2が低下すると、コンペンスプール30が制御バネ31から遠ざかる方向(左方)に移動し、制御圧力出力室36が排油室62と連通する。これにより、大径受圧部22から制御流路47、連通路71及び排油室61を通じてタンク通路62へ圧油が排出され、サーボピストン21が右方へ移動するとともにコンペンスリーブ32が左方へ移動し、制御圧力出力室36と排油室61の間の開口が塞がれる。 On the other hand, when the self-pressure Pd introduced into the self-pressure introduction chamber 34 or the counterpart pressure P2 introduced into the counterpart pressure introduction chamber 35 decreases from the state shown in FIG. 2, the compensator 30 moves away from the control spring 31 (leftward). The control pressure output chamber 36 communicates with the oil discharge chamber 62. As a result, the pressure oil is discharged from the large-diameter pressure receiving portion 22 to the tank passage 62 through the control passage 47, the communication passage 71, and the oil discharge chamber 61, and the servo piston 21 moves to the right and the compensator 32 moves to the left. The opening between the control pressure output chamber 36 and the oil discharge chamber 61 is closed.
 このようにしてポンプ2の傾転角が制御され、そのポンプ2では狙いの吐出流量となった状態になると、コンペンスプール30とコンペンスリーブ32及びサーボピストン21の位置が保たれる。このように可変容量型ポンプ2の吐出流量制御は、作業機械の作業等によって変化する各ポンプの吐出圧力に応じて常に行われる。 In this way, the tilt angle of the pump 2 is controlled, and when the pump 2 reaches a target discharge flow rate, the position of the compensator spool 30, the compensator sleeve 32, and the servo piston 21 is maintained. As described above, the discharge flow rate control of the variable displacement pump 2 is always performed in accordance with the discharge pressure of each pump that changes depending on the work of the work machine.
 図6は上記コンペンスリーブ32に作用する吐出圧力Pd及び相手圧力P2とフィードバックレバー24の係合ピン25に作用する力との関係を示す模式図である。コンペンスリーブ32には、上記段部42,43による面積差によって、上記自己圧力導入室34に導入した自己圧力Pdの力F1、及び上記相手圧力導入室35に導入した相手圧力P2の力F2が上記段部42,43の部分に作用している。そのため、これらの作用力によってフィードバックレバー24の係合ピン25とコンペンスリーブ32の係合溝37との間には、吐出圧力Pd,P2が作用している時には常に制御バネ側の接触部28に荷重が作用している。より詳しくは、コンペンスリーブ32が常に左方に向けて付勢されることにより、係合ピン25には制御バネ31から遠ざかる方向に押圧される力が作用し、係合溝37にはその反力(制御バネ31に向かう方向の力)が作用する。 FIG. 6 is a schematic diagram showing the relationship between the discharge pressure Pd and the counterpart pressure P2 acting on the compensation sleeve 32 and the force acting on the engagement pin 25 of the feedback lever 24. The compensator 32 has a self-pressure Pd force F1 introduced into the self-pressure introduction chamber 34 and a counterpart pressure P2 force F2 introduced into the counterpart pressure introduction chamber 35 due to the area difference between the step portions 42 and 43. It acts on the steps 42 and 43. Therefore, when the discharge pressures Pd and P2 are applied between the engagement pin 25 of the feedback lever 24 and the engagement groove 37 of the compensator sleeve 32 by these acting forces, the contact portion 28 on the control spring side is always applied. A load is acting. More specifically, when the compensator sleeve 32 is always urged to the left, a force pressed in a direction away from the control spring 31 is applied to the engagement pin 25, and the counter force is applied to the engagement groove 37. Force (force in the direction toward the control spring 31) acts.
 つまり、上記自己圧力導入室34及び相手圧力導入室35に導入された自己圧力Pd及び相手圧力P2により、コンペンスリーブ32は常に制御バネ31から遠ざかる方向(反制御バネ方向)に向けて付勢された状態となり、これらの接合部分には常に力F1及びF2の合力に相当する荷重が作用している。 In other words, the compensator sleeve 32 is always urged in the direction away from the control spring 31 (the anti-control spring direction) by the self-pressure Pd and the counterpart pressure P2 introduced into the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35. A load corresponding to the resultant force F1 and F2 is always applied to these joint portions.
 そのため、フィードバックレバー24の係合ピン25とその係合部である係合溝37との接触部分が摩耗する場合には、係合ピン25と係合溝37とが接触する制御バネ側部分28が摩耗する。また、経年使用による摩耗は係合ピン25と係合溝37との制御バネ側のみにしか進展せず、この摩耗によって生じるコンペンスプール30とコンペンスリーブ32との位置関係のズレによってフィードバックレバー24の角度が変化するとしても、サーボピストン21はポンプ容量が減少する方向にしか移動しない。従って、この摩耗によってコンペンスプール30やコンペンスリーブ32等の釣り合う位置が変化したとしても、ポンプ2の馬力制御において吐出流量が減少、つまりポンプの馬力を下げる方向にしか馬力制御特性は変化しない。 Therefore, when the contact portion between the engagement pin 25 of the feedback lever 24 and the engagement groove 37 which is the engagement portion is worn, the control spring side portion 28 where the engagement pin 25 and the engagement groove 37 are in contact with each other. Wear out. Further, wear due to aging progresses only on the control spring side of the engagement pin 25 and the engagement groove 37, and the displacement of the feedback lever 24 due to the positional relationship between the compensator spool 30 and the compensator sleeve 32 caused by this wear. Even if the angle changes, the servo piston 21 moves only in the direction in which the pump displacement decreases. Therefore, even if the balance position of the compensator spool 30 and the compensator sleeve 32 changes due to this wear, the discharge flow rate decreases in the horsepower control of the pump 2, that is, the horsepower control characteristic changes only in the direction of lowering the horsepower of the pump.
 図7は、可変容量型ポンプ用レギュレータ10の馬力特性を吐出圧力と流量との関係で示す線図である。上記可変容量型ポンプ用レギュレータ10によれば、設計線である等馬力線100に近似するように設定された制御線101に対し、フィードバックレバー24の係合ピン(係合部)25において摩耗を生じて制御特性に変化が生じたとしても、制御線102のように吐出流量が減少する方向にしか、その特性は変化しない。 FIG. 7 is a diagram showing the horsepower characteristics of the variable displacement pump regulator 10 in relation to the discharge pressure and the flow rate. According to the variable displacement pump regulator 10, the engagement pin (engagement portion) 25 of the feedback lever 24 is worn against the control line 101 set to approximate the design horsepower line 100. Even if a change occurs in the control characteristic, the characteristic changes only in the direction in which the discharge flow rate decreases as in the control line 102.
 つまり、等馬力線100に近似するように初期設定された制御線101は、経年変化後に制御線102のように流量減少側へ変化することになるため、経年使用しても安定した運転ができる可変容量型ポンプ用レギュレータ10を構成することができる。 That is, the control line 101 that is initially set to approximate the equal horsepower line 100 changes to the flow rate decreasing side like the control line 102 after aging, so that stable operation is possible even when used over time. The variable displacement pump regulator 10 can be configured.
 以上のように、上記可変容量型ポンプ用レギュレータ10によれば、演算部50と調圧部51とを一体的な構成とし、自己圧力導入室34及び相手圧力導入室35に段部42,43を設けて、吐出圧力Pd,P2によって反制御バネ方向の力F1及びF2が作用する面積差をコンペンスリーブ32に持たせているので、自己圧力導入室34及び相手圧力導入室35に吐出圧力が作用している状態では常にコンペンスリーブ32には反制御バネ方向に力F1及びF2が作用している。 As described above, according to the variable displacement pump regulator 10, the calculation unit 50 and the pressure adjustment unit 51 are integrated, and the steps 42 and 43 are provided in the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35. Since the compensator sleeve 32 has a difference in area where the forces F1 and F2 in the counter-control spring direction are applied by the discharge pressures Pd and P2, the discharge pressure is applied to the self-pressure introduction chamber 34 and the counterpart pressure introduction chamber 35. In the applied state, forces F1 and F2 are always applied to the compensator sleeve 32 in the anti-control spring direction.
 そのため、コンペンスリーブ32の位置を制御するフィードバックレバー24の係合ピン(係合部)25は、常に制御バネ側部28で接触し、経年使用による摩耗はこれら係合ピン25と係合溝37とが接触する制御バネ側部28のみとなる。 Therefore, the engagement pin (engagement portion) 25 of the feedback lever 24 that controls the position of the compensator sleeve 32 is always in contact with the control spring side portion 28, and wear due to use over time is caused by the engagement pin 25 and the engagement groove 37. Only the control spring side portion 28 in contact with is.
 すなわち、サーボピストン21の移動によってフィードバックレバー24で位置制御されるコンペンスリーブ32は、経年使用によってフィードバックレバー24との係合部である係合ピン25の部分に摩耗を生じたとしても、その摩耗には方向性があり、必ずサーボピストン21がポンプ2の吐出流量を小さくする方向にフィードバックレバー24が傾くように摩耗することになる。 In other words, the compensator sleeve 32 whose position is controlled by the feedback lever 24 by the movement of the servo piston 21 is worn even if the engagement pin 25 which is an engagement portion with the feedback lever 24 is worn over time. Is directional, and the servo piston 21 is always worn so that the feedback lever 24 tilts in the direction of decreasing the discharge flow rate of the pump 2.
 従って、経年使用によって係合ピン25と係合溝37との接触部分が摩耗したとしても、フィードバックレバー24は常にポンプ傾転が小容量側となる方向へのみ傾くため、経年使用しても安定した馬力制御ができる可変容量型ポンプ用レギュレータ10を構成することが可能となる。 Therefore, even if the contact portion between the engagement pin 25 and the engagement groove 37 is worn due to use over time, the feedback lever 24 always tilts only in the direction in which the pump tilts toward the small capacity side. Thus, the variable displacement pump regulator 10 capable of controlling the horsepower can be configured.
 また、この実施形態では、ダブルポンプの自己圧力Pdと相手圧力P2とを演算部50に導入しているので、自己圧力Pd及び相手圧力P2に応じてサーボピストン21を駆動して狙いの動力を超えないようにポンプ2の吐出流量を制御することができる。 Further, in this embodiment, since the self-pressure Pd and the counter pressure P2 of the double pump are introduced into the calculation unit 50, the servo piston 21 is driven according to the self-pressure Pd and the counter pressure P2, and the target power is generated. The discharge flow rate of the pump 2 can be controlled so as not to exceed.
 なお、上記実施形態では、ダブルポンプの可変容量型ポンプ用レギュレータ10を例に説明したが、ポンプはシングルポンプその他の構成であってもよく、上記実施形態に限定されるものではない。 In the above embodiment, the double-pump variable displacement pump regulator 10 has been described as an example. However, the pump may have a single pump or other configuration, and is not limited to the above embodiment.
 また、上記実施形態では、2つの吐出圧力導入室34,35に面積差を持たせる段部42,43を形成している。ただし、レギュレータ10は、自己圧力導入室34のみを有していてもよい。また、吐出圧力導入室は2つ以上あってもよく、更に流量制御に必要な圧力を作用させるようにしてもよい。 Further, in the above-described embodiment, the step portions 42 and 43 that give the two discharge pressure introduction chambers 34 and 35 an area difference are formed. However, the regulator 10 may have only the self-pressure introduction chamber 34. Further, there may be two or more discharge pressure introduction chambers, and a pressure necessary for flow rate control may be applied.
 さらに、上述した実施形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は上述した実施形態に限定されるものではない。 Furthermore, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.
 本発明に係る可変容量型ポンプ用レギュレータは、土木・建設工事などに使用されている油圧ショベルや、クレーン、ホイールローダ、ブルドーザ等の作業機械において利用できる。 The variable displacement pump regulator according to the present invention can be used in hydraulic excavators, cranes, wheel loaders, bulldozers and the like used in civil engineering and construction work.
     1 原動機
     2 可変容量型ポンプ
    10 可変容量型ポンプ用レギュレータ
    11 レギュレータケーシング
    21 サーボピストン
    22 大径受圧部
    23 小径受圧部
    24 フィードバックレバー
    25 係合ピン(係合部)
    30 コンペンスプール
    31 制御バネ
    32 コンペンスリーブ
    33 調圧ランド部
    34 自己圧力導入室(吐出圧力導入室)
    35 相手圧力導入室(吐出圧力導入室)
    36 制御圧力出力室
    37 係合溝
    42 段部
    43 段部
    51 調圧部
   101 制御線
   102 制御線(ヒステリシス)
    Pd 自己圧力(吐出圧力)
    P2 相手圧力(吐出圧力)
   Pcl 制御圧力
1 prime mover 2 variable displacement pump 10 regulator for variable displacement pump 11 regulator casing 21 servo piston 22 large diameter pressure receiving portion 23 small diameter pressure receiving portion 24 feedback lever 25 engagement pin (engagement portion)
30 Compensation spool 31 Control spring 32 Compensation sleeve 33 Pressure regulating land 34 Self-pressure introduction chamber (discharge pressure introduction chamber)
35 Counter pressure introduction chamber (discharge pressure introduction chamber)
36 Control pressure output chamber 37 Engagement groove 42 Step portion 43 Step portion 51 Pressure adjustment portion 101 Control line 102 Control line (hysteresis)
Pd Self pressure (Discharge pressure)
P2 Counter pressure (discharge pressure)
Pcl control pressure

Claims (4)

  1.  原動機によって駆動される可変容量型ポンプの吐出流量を変化させるサーボピストンと、
     前記サーボピストンの位置を検知するフィードバックレバーと、
     制御バネによって一端方向へ付勢されたコンペンスプールと、
     前記コンペンスプールの周囲に位置し、前記サーボピストンと前記フィードバックレバーとの作用によって前記フィードバックレバーとの係合部を介して該コンペンスプールの軸方向に移動するように構成されたコンペンスリーブと、を備え、
     前記ポンプの吐出圧力が導入される吐出圧力導入室と、前記吐出圧力導入室から前記サーボピストンの大径受圧部に制御圧力を出力する調圧部とが、前記コンペンスプールと前記コンペンスリーブによって形成され、
     前記コンペンスリーブには、前記吐出圧力導入室に導入された吐出圧力によって前記一端方向に圧力が作用する段部が設けられていることを特徴とする可変容量型ポンプ用レギュレータ。
    A servo piston that changes the discharge flow rate of a variable displacement pump driven by a prime mover;
    A feedback lever for detecting the position of the servo piston;
    A compensation spool biased in one direction by a control spring;
    A compensation sleeve positioned around the compensation spool and configured to move in the axial direction of the compensation spool via an engagement portion with the feedback lever by the action of the servo piston and the feedback lever; Prepared,
    A discharge pressure introducing chamber into which the discharge pressure of the pump is introduced, and a pressure adjusting unit that outputs a control pressure from the discharge pressure introducing chamber to the large-diameter pressure receiving portion of the servo piston are formed by the compensator spool and the compensator sleeve. And
    A regulator for a variable displacement pump, wherein the compensator is provided with a step portion in which a pressure acts in the one end direction by a discharge pressure introduced into the discharge pressure introduction chamber.
  2.  前記段部は、前記コンペンスリーブの内径を小径にすることで、前記吐出圧力導入室の前記調圧部と反対側に形成されている請求項1に記載の可変容量型ポンプ用レギュレータ。 The variable capacity pump regulator according to claim 1, wherein the step portion is formed on the opposite side of the discharge pressure introducing chamber from the pressure adjusting portion by reducing the inner diameter of the compensator sleeve.
  3.  前記吐出圧力導入室は、前記ポンプの吐出圧力である自己圧力が導入される自己圧力導入室であり、前記自己圧力導入室から前記調圧部と反対側に離れた位置に、他の可変容量型ポンプの吐出圧力である相手圧力が導入される相手圧力導入室が、前記コンペンスプールと前記コンペンスリーブによって形成されている請求項1又は2に記載の可変容量型ポンプ用レギュレータ。 The discharge pressure introduction chamber is a self-pressure introduction chamber into which a self-pressure that is a discharge pressure of the pump is introduced, and another variable capacity is provided at a position away from the self-pressure introduction chamber on the side opposite to the pressure regulating unit. The regulator for a variable displacement pump according to claim 1 or 2, wherein a counterpart pressure introduction chamber into which a counterpart pressure as a discharge pressure of the mold pump is introduced is formed by the compensation spool and the compensation sleeve.
  4.  前記相手圧力導入室は、前記自己圧力導入室よりも小径に形成され、
     前記コンペンスリーブには、前記相手圧力導入室に導入された相手圧力によって前記一端方向に圧力が作用する段部が設けられている請求項3に記載の可変容量型ポンプ用レギュレータ。
    The counterpart pressure introduction chamber is formed with a smaller diameter than the self-pressure introduction chamber,
    The regulator for a variable displacement pump according to claim 3, wherein the compensator is provided with a step portion in which a pressure acts in the one end direction by a counterpart pressure introduced into the counterpart pressure introduction chamber.
PCT/JP2013/006898 2012-12-11 2013-11-25 Variable displacement pump regulator WO2014091690A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380034598.XA CN104411973B (en) 2012-12-11 2013-11-25 Variable displacement pump regulator
US14/423,628 US20150226190A1 (en) 2012-12-11 2013-11-25 Variable displacement pump regulator
EP13861695.8A EP2933490A4 (en) 2012-12-11 2013-11-25 Variable displacement pump regulator
KR1020147032770A KR20150003366A (en) 2012-12-11 2013-11-25 Variable displacement pump regulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012270475A JP5918688B2 (en) 2012-12-11 2012-12-11 Variable displacement pump regulator
JP2012-270475 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091690A1 true WO2014091690A1 (en) 2014-06-19

Family

ID=50933998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006898 WO2014091690A1 (en) 2012-12-11 2013-11-25 Variable displacement pump regulator

Country Status (6)

Country Link
US (1) US20150226190A1 (en)
EP (1) EP2933490A4 (en)
JP (1) JP5918688B2 (en)
KR (1) KR20150003366A (en)
CN (1) CN104411973B (en)
WO (1) WO2014091690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795897A (en) * 2015-02-23 2017-05-31 川崎重工业株式会社 The oil pressure actuated systems of building machinery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111116B2 (en) * 2013-03-28 2017-04-05 Kyb株式会社 Pump volume control device
JP2016169818A (en) * 2015-03-13 2016-09-23 川崎重工業株式会社 Hydraulic driving system
JP6912907B2 (en) * 2017-03-13 2021-08-04 Kyb株式会社 Servo regulator
JP6577502B2 (en) * 2017-03-17 2019-09-18 Kyb株式会社 Servo regulator
KR102198500B1 (en) * 2018-12-19 2021-01-05 주식회사 모트롤 Regulator for hydraulic pump
KR102197623B1 (en) * 2018-12-19 2021-01-04 주식회사 모트롤 Regulator for hydraulic pump
CN116044736B (en) * 2022-12-29 2023-11-07 川崎春晖精密机械(浙江)有限公司 Testing system and testing method for regulator for swash plate plunger pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634102U (en) * 1979-08-24 1981-04-03
JPH01107322A (en) 1987-10-20 1989-04-25 Matsushita Electric Ind Co Ltd Optical disk
JP2008175062A (en) * 2006-12-18 2008-07-31 Nachi Fujikoshi Corp Piston pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1600848A1 (en) * 1967-05-24 1971-09-30 Linde Ag Control unit for a double pump unit
GB1445347A (en) * 1973-01-26 1976-08-11 Lucas Industries Ltd Fuel control apparatus for gas turbine engines
US4189921A (en) * 1976-07-02 1980-02-26 Eaton Corporation Hydraulic controller
JPS601273Y2 (en) * 1978-06-26 1985-01-14 株式会社小松製作所 Hydraulic pump capacity control device
JPS60128999U (en) * 1984-02-08 1985-08-29 株式会社小松製作所 Variable hydraulic pump capacity control device
JPH068641B2 (en) * 1986-09-30 1994-02-02 日立建機株式会社 Hydraulic circuit
KR950007252B1 (en) * 1991-11-30 1995-07-07 삼성중공업주식회사 Control devices of oil pump of variable capacity
JP3909935B2 (en) * 1997-03-31 2007-04-25 カヤバ工業株式会社 Pump control device
JPH11148463A (en) * 1997-11-13 1999-06-02 Hitachi Constr Mach Co Ltd Capacity control device for hydraulic pump
JP3568510B2 (en) * 2002-02-01 2004-09-22 株式会社カワサキプレシジョンマシナリ Control device for swash plate type axial piston pump
KR100506640B1 (en) * 2003-01-22 2005-08-10 한국기계연구원 Servo regulator of variable displacement swash plate type piston pump controlled in positive-negative direction
US7584625B2 (en) * 2005-10-21 2009-09-08 Emerson Climate Technologies, Inc. Compressor capacity modulation system and method
CN101644287B (en) * 2009-06-11 2011-11-16 佛山市顺德区必乐士液压机械有限公司 Electromagnetic switching double-displacement pump
JP5238739B2 (en) * 2010-02-26 2013-07-17 川崎重工業株式会社 Operating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634102U (en) * 1979-08-24 1981-04-03
JPH01107322A (en) 1987-10-20 1989-04-25 Matsushita Electric Ind Co Ltd Optical disk
JP2008175062A (en) * 2006-12-18 2008-07-31 Nachi Fujikoshi Corp Piston pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933490A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795897A (en) * 2015-02-23 2017-05-31 川崎重工业株式会社 The oil pressure actuated systems of building machinery
CN106795897B (en) * 2015-02-23 2018-09-21 川崎重工业株式会社 The oil pressure actuated systems of building machinery

Also Published As

Publication number Publication date
EP2933490A4 (en) 2016-08-24
EP2933490A1 (en) 2015-10-21
JP2014114911A (en) 2014-06-26
CN104411973B (en) 2016-04-20
KR20150003366A (en) 2015-01-08
US20150226190A1 (en) 2015-08-13
JP5918688B2 (en) 2016-05-18
CN104411973A (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014091690A1 (en) Variable displacement pump regulator
JP6134263B2 (en) Hydraulic drive system
US9976283B2 (en) Hydraulic drive system for construction machine
JP4976920B2 (en) Pump discharge control device
JP5918728B2 (en) Hydraulic control device for work machine
CN109790857B (en) Hydraulic drive system for construction machine
JP6075866B2 (en) Pump control device
CN108105182B (en) Oil pressure driving system
US11274682B2 (en) Hydraulic driving apparatus
US10655740B2 (en) Work machine
JP7130474B2 (en) Excavator
JP4033849B2 (en) Variable displacement hydraulic pump controller
US11377822B2 (en) Hydraulic drive apparatus
JP6731387B2 (en) Hydraulic drive for construction machinery
JP5750613B2 (en) Hydraulic continuously variable transmission
JP5985268B2 (en) Hydraulic system for construction machinery
JP2020128778A (en) Hydraulic drive system
JP7001572B2 (en) Construction machinery
JP5870334B2 (en) Pump system
CN112555210A (en) Fluid control device, construction machine, and control method for fluid control device
JP2012107664A (en) Hydraulic drive device, and working machine equipped with hydraulic drive device
JP6761283B2 (en) Pump device
JP5945742B2 (en) Pump unit swash plate angle control system
WO2021124767A1 (en) Hydraulic circuit for construction machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380034598.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147032770

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423628

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013861695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013861695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE