WO2014091648A1 - Production method for solid electrolytic capacitor element - Google Patents

Production method for solid electrolytic capacitor element Download PDF

Info

Publication number
WO2014091648A1
WO2014091648A1 PCT/JP2013/005649 JP2013005649W WO2014091648A1 WO 2014091648 A1 WO2014091648 A1 WO 2014091648A1 JP 2013005649 W JP2013005649 W JP 2013005649W WO 2014091648 A1 WO2014091648 A1 WO 2014091648A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
oxidizing agent
solution
layer
dielectric layer
Prior art date
Application number
PCT/JP2013/005649
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 一美
正二 矢部
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2014551836A priority Critical patent/JP5731720B2/en
Publication of WO2014091648A1 publication Critical patent/WO2014091648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Definitions

  • the present invention relates to a method for manufacturing a solid electrolytic capacitor element. More specifically, the present invention relates to a method for manufacturing a solid electrolytic capacitor element in which an increase in leakage current is small during standing for a long time without sealing.
  • the solid electrolytic capacitor element is, for example, a dielectric layer made of a metal oxide by electrolytically oxidizing a sintered body of valve action metal powder such as tantalum, niobium, tungsten, etc. in an electrolyte aqueous solution such as phosphoric acid. And a semiconductor layer is formed on the dielectric layer by electrolytic polymerization or the like, and an electrode layer is further formed on the semiconductor layer. In such a manufacturing process, various proposals have been made in order to improve the characteristics of the solid electrolytic capacitor element.
  • Patent Document 1 discloses that a fixed layer for supplying oxygen by applying a voltage is formed on a dielectric layer, and a voltage application process is performed after the capacitor is completed.
  • Patent Document 2 discloses that after the semiconductor layer is formed, the carbon layer and the silver paste layer are formed after impregnation with an acidic solution of water or an organic solvent in which an organic acid is dissolved. Patent Document 2 states that an organic acid produces an action as a dopant, and the conductivity of the semiconductor layer is improved. Moreover, the voltage application process is performed in the state immersed in the organic acidic solution.
  • a solid electrolytic capacitor is manufactured by sealing the solid electrolytic capacitor element with a resin or the like. If a solid electrolytic capacitor element obtained by a conventional method is left as it is without sealing with resin or the like, the leakage current (hereinafter sometimes abbreviated as LC) may increase. If a repair process such as aging is performed after resin sealing the solid electrolytic capacitor element, the LC can be lowered to some extent. However, if the LC becomes significantly high, it is difficult to reduce the LC to a predetermined value or less even if the repair process is performed.
  • LC leakage current
  • the time from the completion of the manufacturing process of the solid electrolytic capacitor element to the start of the resin sealing process may be different for each manufacturing lot.
  • the LC of the solid electrolytic capacitor may vary due to the difference in the standing time of the solid electrolytic capacitor element.
  • the magnitude of the LC variation due to the difference in the standing time is remarkable.
  • An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor element in which an increase in leakage current is small during standing for a long time without sealing.
  • a step of electrolytically oxidizing a surface of an anode body made of a valve metal to form a dielectric layer, a step of forming a semiconductor layer made of a conductive polymer on the dielectric layer, and the semiconductor layer A method of manufacturing a solid electrolytic capacitor element, comprising: forming an electrode layer on the substrate; and supplying an oxidant having an oxygen releasing function to the semiconductor layer or the dielectric layer.
  • the step of supplying includes the step of bringing a solution containing an oxidizing agent having an oxygen releasing function into contact with a solution obtained in the step of forming the semiconductor layer or the step of forming an electrode layer.
  • the manufacturing method as described.
  • What is obtained in the step of forming the electrode layer is partly in a region where the electrode layer is not formed on the semiconductor layer,
  • the supplying step includes the step of bringing the region into contact with a solution containing an oxidant having an oxygen releasing function, according to [1] or [2].
  • the manufacturing method according to [3], wherein the supplying step includes immersing the region in a solution containing an oxidizing agent having an oxygen releasing function.
  • LC leakage current
  • the manufacturing method of the present invention it is possible to obtain a solid electrolytic capacitor element in which an increase in leakage current is small while left for a long time without sealing. Also, by using such a solid electrolytic capacitor element, the variation in leakage current between production lots of solid electrolytic capacitors is reduced.
  • the effect of the manufacturing method of the present invention is particularly remarkable in a solid electrolytic capacitor element using an anode body made of a sintered body of tungsten powder.
  • a method for manufacturing a solid electrolytic capacitor element includes a step of electrolytically oxidizing a surface of an anode body made of a valve action metal to form a dielectric layer, and electrolytic polymerization on the dielectric layer.
  • the anode body is manufactured from a valve action metal or its alloy.
  • the valve action metal include aluminum, tantalum, niobium, titanium, and tungsten.
  • the anode body preferably has 99% by mass or more of the valve metal element in the total amount of metal elements. Alloys include those in which a part of the valve metal is chemically bonded to other metals or non-metals.
  • the anode body is preferably porous.
  • the porous anode body can be obtained, for example, by sintering a raw material powder made of a valve action metal or a conductive oxide thereof.
  • the raw material powder has a 50% particle diameter (D50) in the volume-based cumulative particle size distribution of preferably 0.1 to 1 ⁇ m, more preferably 0.1 to 0.7 ⁇ m, and even more preferably 0.1 to 0.3 ⁇ m.
  • the raw material powder may be granulated powder.
  • the granulated powder can be produced, for example, by sintering and pulverizing raw powder composed of an ungranulated valve action metal or a conductive oxide thereof.
  • the granulated powder may be produced by sintering and pulverizing the granulated powder once produced.
  • the granulated powder has a 50% particle size (D50) in a volume-based cumulative particle size distribution of preferably 20 to 200 ⁇ m, more preferably 26 to 180 ⁇ m.
  • the valve action metal powder particularly tungsten powder, preferably contains silicon, boron, phosphorus, oxygen and / or nitrogen.
  • the method for incorporating these elements into the metal powder is not particularly limited.
  • silicon source such as silicon powder
  • boron source such as boric acid
  • phosphorus source such as phosphoric acid
  • oxygen source such as oxygen gas and / or nitrogen source such as nitrogen gas
  • nitrogen source such as nitrogen gas
  • the sintered body is obtained by pressure-molding raw material powder to obtain a molded body and firing it in a furnace.
  • a binder may be mixed with the raw material powder.
  • Various conditions such as the amount of powder and the molding apparatus can be appropriately set so as to obtain a desired molding density and the like.
  • the anode body has a porosity of preferably 40 to 60% by volume.
  • the anode body preferably has a rectangular parallelepiped shape. At least one of the eight corners of the rectangular parallelepiped may be chamfered or rounded.
  • an anode lead wire When forming the raw material powder, an anode lead wire can be embedded in the molded body and planted to serve as a terminal of the anode body.
  • a metal such as tungsten, tantalum, niobium, or an alloy wire thereof can be used. Further, the anode lead wire can be welded and connected to the sintered body later. A metal plate or metal foil may be planted or welded to the sintered body instead of the metal wire.
  • Electrolytic oxidation can be performed according to a known procedure.
  • the anode body is immersed in a chemical formed by dissolving an electrolyte such as nitric acid, sulfuric acid, phosphoric acid, oxalic acid, or adipic acid and, if necessary, an oxygen supply agent such as hydrogen peroxide or ozone. This is done by applying a voltage to this.
  • the voltage is applied between the anode body (anode) and the counter electrode (cathode).
  • Energization of the anode body can be performed through the planted anode lead wire.
  • the electrolytic oxidation may be repeated a plurality of times.
  • the surface of the sintered body (the surface of the pores in the sintered body and the outer surface of the sintered body) can be formed into a dielectric layer.
  • a part of the anode lead wire can also be formed into a dielectric layer.
  • the dielectric layer is made of a metal oxide constituting the anode body.
  • An electrolyte, an additive, or the like may enter the dielectric layer during electrolytic oxidation.
  • the sintered body is washed with pure water. By this washing, the chemical conversion liquid is removed as much as possible. It is preferable to perform a high-temperature drying treatment after water removal. Drying is performed at a temperature above the boiling point of water, preferably at 160 ° C or higher. The upper limit of the temperature during drying is preferably 250 ° C. More preferable drying is first performed at a temperature of 105 ° C. or higher and lower than 160 ° C., and then performed at a temperature of 160 ° C. or higher and 230 ° C. or lower. When drying is performed at such a temperature, the capacity in the low and high frequency ranges increases by about 10 to 15%.
  • the drying time is not particularly limited as long as the stability of the dielectric layer can be maintained, and is preferably 10 minutes to 2 hours, more preferably 20 minutes to 60 minutes.
  • the chemical conversion treatment may be performed again after drying.
  • the re-chemical conversion treatment can be performed under the same conditions as the first chemical conversion treatment. After the re-chemical conversion treatment, pure water washing, water removal and drying can be performed as described above.
  • the semiconductor layer used in the conventional solid electrolytic capacitor element can be used without limitation.
  • the semiconductor layer 3 includes a part of the anode lead wire in the vicinity of the sintered body on which the dielectric layer 2 is formed, the pore surface in the sintered body, and the dielectric present on the outer surface of the sintered body. It is preferable to form so as to cover the body layer 2.
  • device obtained through the process of forming a semiconductor layer has sufficient pores for an oxidant solution described later to permeate.
  • the semiconductor layer 3 is preferably made of a conductive polymer.
  • a conductive polymer polypyrrole or a derivative thereof, polythiophene or a derivative thereof (for example, a polymer of 3,4-ethylenedioxythiophene), polysulfide or a derivative thereof, polyfuran or a derivative thereof, polyaniline or a derivative thereof And polymers such as derivatives thereof.
  • the semiconductor layer made of a conductive polymer may include a plurality of layers having different types of conductive polymers and the formation method.
  • the conductive polymer layer can also be obtained by electrolytic polymerization or the like.
  • the electrode layer is formed on the semiconductor layer.
  • the electrode layer is preferably formed of a carbon layer and a metal layer in this order.
  • the electrode layer is preferably not formed on the surface (cross section XX) where the anode lead wire is implanted.
  • the carbon layer can be formed by depositing a carbon paste on the semiconductor layer and then drying and curing it.
  • the carbon paste contains conductive carbon, a resin, a solvent, and other additives as necessary. Examples of the additive include an oxidizing agent, a dispersant, and a pH adjuster.
  • the carbon paste can be attached by various methods depending on the shape of the anode body. Specifically, the carbon paste can be attached by immersing the anode body in which the semiconductor layer is formed in the carbon paste bath, or by transferring the carbon paste attached to the base material onto the semiconductor layer. .
  • the dried carbon paste is dried at a temperature not lower than the boiling point of the solvent, preferably 100 ° C. or higher.
  • the upper limit of the temperature during drying is preferably 160 ° C. More preferable drying is performed at a temperature of 105 ° C. or higher and lower than 150 ° C.
  • the drying time is not particularly limited as long as the solvent can be removed, and is preferably 5 minutes to 2 hours, more preferably 15 minutes to 30 minutes. Drying may be performed in the air or in a stream of inert gas such as argon gas or nitrogen gas.
  • drying By carrying out under reduced pressure up to about 10 kPa, drying can be completed at a lower temperature or in a shorter time. Considering mass production industrially, it is preferable to carry out at atmospheric pressure from the viewpoint of cost.
  • the chemical conversion treatment may be performed again after drying.
  • the re-chemical conversion treatment can be performed under the same conditions as the first chemical conversion treatment. After the re-chemical conversion treatment, pure water washing, solvent removal, and drying can be performed in the same manner as described above.
  • the drying and curing conditions can be appropriately set by combining the above conditions.
  • a metal layer can be formed on the carbon layer as necessary.
  • the metal layer can be formed by depositing a conductive metal paste, such as silver, or by plating a conductive metal.
  • an oxidizing agent having an oxygen releasing function is supplied to the semiconductor layer or the dielectric layer.
  • a solution containing an oxidant having an oxygen releasing function in an element (FIG. 1) obtained through a step of forming a semiconductor layer on the dielectric layer (Hereinafter also referred to as an oxidant solution)
  • a method of bringing an oxidant solution into contact with an element (FIG. 3) obtained through a step of forming a metal layer for example, a solution containing an oxidant having an oxygen releasing function in an element (FIG. 1) obtained through a step of forming a semiconductor layer on the dielectric layer (Hereinafter also referred to as an oxidant solution), a method of contacting an oxidant solution with an element (FIG. 2) obtained through a step of forming a carbon layer on a
  • the semiconductor layer or dielectric layer is impregnated with the oxidant solution by contact with the oxidant solution.
  • a means for immersing the element obtained in each step in the oxidant solution, or a means for applying, spraying or dropping the oxidant solution to the element obtained in each step is adopted.
  • at least the oxidant solution is brought into contact with a region where the electrode layer is not formed on the semiconductor layer, for example, a region indicated by 8 in FIG. Is preferred.
  • the present invention from the viewpoint of production efficiency and the like, it is preferable to immerse an element obtained through a step of forming an electrode layer on a semiconductor layer in an oxidant solution.
  • the planted surface of the anode lead wire (cross section XX (the electrode layer is not formed on this surface)) is the oxidizer solution.
  • the element is submerged so as to be immersed in 9. By immersing in the oxidant solution, the oxidant can be efficiently supplied to the semiconductor layer or the dielectric layer of the device.
  • the oxidizing agent having a function of releasing oxygen at least one selected from the group consisting of a manganese (VII) compound, a chromium (VI) compound, a halogen acid compound, a persulfate compound, and an organic peroxide is preferable.
  • manganese (VII) compounds such as permanganate; chromium (VI) compounds such as chromium trioxide, chromate, dichromate; perchloric acid, chlorous acid, hypochlorous acid and And halogen acid compounds such as salts thereof; organic acid peroxides such as peracetic acid, perbenzoic acid and salts and derivatives thereof; and persulfuric acid compounds such as persulfuric acid and salts thereof.
  • persulfate compounds such as ammonium persulfate, potassium persulfate, and potassium hydrogen persulfate are preferred from the viewpoints of ease of handling, stability as an oxidizing agent, and water solubility.
  • oxidizing agents can be used alone or in combination of two or more.
  • the amount of the oxidizing agent contained in the oxidizing agent solution is preferably 0.1% by mass or more and saturated solubility or less, more preferably 0.5% by mass or more and 20% by mass or less, and further preferably 0.5% by mass with respect to the solvent. % To 10% by mass. If the amount of the oxidizing agent is too small, a plurality of immersions and dryings are necessary to obtain a desired effect, and the production efficiency tends to decrease.
  • solvents used for the oxidant solution include water-soluble solvents such as water, methanol and ethanol.
  • a solvent containing 80% by mass or more of water is preferable, a solvent containing 90% by mass or more of water is more preferable, and a solvent containing 95% by mass or more of water is more preferable.
  • the solution temperature at the time of contacting with the oxidant solution is preferably lower than the boiling point of the solvent and high from the viewpoint of dissolving a large amount of the oxidant, but if the temperature is too high, it is necessary to replenish the solvent evaporation frequently. Therefore, it is preferably 20 ° C. to 60 ° C., more preferably 25 ° C. to 50 ° C., and further preferably 30 ° C. to 50 ° C.
  • the contact time with the oxidant solution is determined from a preliminary experiment or the like in consideration of the size of the anode body.
  • the removal of the oxidant solution can be performed, for example, by a method of immersing in water except for the surface on which the anode lead wire is planted.
  • the temperature of water when immersed in water is preferably 20 ° C. to 60 ° C.
  • the time for immersing in water is determined from a preliminary experiment in consideration of the size of the anode body. This immersion in water is thought to leave the oxidant supplied to the semiconductor layer or dielectric layer of the capacitor element as it is, and remove the oxidant from the electrode layer surface.
  • the oxidant solution adhering to the capacitor element it is preferable not to dry the oxidant solution adhering to the capacitor element between the step of immersing in the oxidant solution and the step of immersing in water. Once the oxidant is precipitated by drying of the oxidant solution, it is difficult to redissolve in water. Therefore, the oxidant may remain on the electrode layer surface even when immersed in water. Since the oxidizing agent may hinder the conductivity, the electric resistance between the electrode layer and the external terminal tends to increase.
  • drying may be performed after immersing in a water-soluble solvent such as ethanol to promote water evaporation.
  • a water-soluble solvent such as ethanol
  • a solid electrolytic capacitor element is obtained through the above steps.
  • the oxidant solution that has entered from the semiconductor layer formed on the surface where the lead wire is implanted is supplied to the semiconductor layer or the dielectric layer through the pores in the anode body. Thereafter, when the solvent is removed from the solution, oxygen supplied from the oxidizing agent is considered to contribute to the standing stability of the dielectric layer.
  • a cathode lead is electrically connected to the electrode layer, and a part of the cathode lead is exposed outside the exterior of the electrolytic capacitor to become a cathode external terminal.
  • an anode lead is electrically connected to the anode body via an anode lead wire, and a part of the anode lead is exposed outside the exterior of the electrolytic capacitor and becomes an anode external terminal.
  • a normal lead frame can be used to attach the cathode lead and the anode lead.
  • the exterior can be formed by sealing with a resin or the like to obtain a solid electrolytic capacitor.
  • the solid electrolytic capacitor thus produced can be subjected to an aging treatment as desired.
  • the obtained solid electrolytic capacitor can be used by being mounted on various electric circuits or electronic circuits.
  • the element content in the anode body was determined by ICP emission analysis using ICPS-8000E (manufactured by Shimadzu Corporation). Further, the amount of nitrogen and the amount of oxygen in the anode body were determined by a thermal conductivity method and an infrared absorption method, respectively, using an oxygen / nitrogen analyzer (TC600 manufactured by LECO). The average of the measured values for three randomly selected anode bodies was calculated.
  • the particle size distribution was measured by a laser diffraction scattering method using HRA 9320-X100 manufactured by Microtrack, and the 50% particle size (D50) in the volume-based cumulative particle size distribution was determined.
  • Example 1 (Production of sintered body) Tungsten trioxide was reduced with hydrogen to obtain a primary tungsten powder having a 50% particle size of 0.5 ⁇ m (particle size distribution range: 0.1 ⁇ m to 1 ⁇ m). This powder was mixed with 0.3% by mass of silicon powder having a 50% particle diameter of 60 nm. The mixed powder was heated at 1250 ° C. under reduced pressure for 30 minutes. After returning to room temperature, the lump is crushed, and the particle size is 87 ⁇ m (particle size distribution range is 26 ⁇ m to 180 ⁇ m, and the mesh openings in the mass distribution by sieving have peaks in the range of 53 to 63 ⁇ m and 106 to 125 ⁇ m). Granulated powder was obtained.
  • the granulated powder was pressed and solidified using a TAP-2R molding machine manufactured by Seken Co., Ltd. to produce a molded body.
  • a tantalum wire anode lead wire
  • the obtained molded body was placed in a vacuum firing furnace and sintered at a temperature of 1520 ° C. for 20 minutes. Thereafter, the temperature was lowered to room temperature.
  • the ratio of the sintered body density to the green body density was 1.06.
  • the mass of the anode body excluding the anode lead wire was 60 ⁇ 2 mg.
  • Electrolytic oxidation A 3 mass% ammonium persulfate aqueous solution was prepared as a chemical conversion solution.
  • the chemical conversion liquid was put into a stainless steel container.
  • the sintered body was hung by holding the tip of the anode lead wire.
  • the suspended sintered body was immersed in the chemical forming solution from the surface on which the entire sintered body and the anode lead wire were erected to a position where the lead wire 3.5 mm was sunk.
  • the lead wire was connected to the anode, the container was connected to the cathode, and a voltage of 10 V was applied for 6 hours in the chemical liquid at a liquid temperature of 50 ° C.
  • Electropolymerization process The tip of the anode lead wire was held and the treatment body was hung. The suspended treatment body was immersed in a 10 mass% EDOT ethanol solution from the surface where the entire treatment body and the anode lead wire were planted to a position where the anode lead wire 0.2 mm was sunk. The ethanol solution was pulled up. Subsequently, the anode lead wire 0.2 mm sinks from the surface on which the entire treatment body and the anode lead wire are planted in the polymer solution having a liquid temperature of 20 ° C. stored in a stainless steel (SUS303) container. Soaked into position.
  • SUS303 stainless steel
  • a voltage was applied between the anode lead wire and the container, and electrolytic polymerization was performed at 60 ⁇ A per piece for 60 minutes.
  • the polymerization solution is obtained by dissolving supersaturated EDOT and 3% by mass of anthraquinone sulfonic acid in a solvent composed of 70 parts by mass of water and 30 parts by mass of ethylene glycol. Thereafter, the polymer solution was pulled up, washed with pure water and washed with ethanol, and then dried at 80 ° C.
  • a semiconductor layer 3 made of a conductive polymer was laminated on the surface of the dielectric layer 2.
  • the anode lead 1 and the semiconductor layer 3 are separated by a dielectric layer 2.
  • the processing body on which the semiconductor layer was formed was hung by holding the tip of the anode lead wire.
  • the process body suspended in the chemical liquid was immersed from the surface where the entire process body and the anode lead wire were planted to a position where the anode lead wire was sinked by 0.2 mm.
  • a voltage of 7 V was applied for 15 minutes. It was pulled out from the chemical conversion liquid, washed with pure water and ethanol, and then dried.
  • the above-mentioned dipping step-electrolytic polymerization step-post-chemical conversion step was further repeated 5 times (6 times in total).
  • the second to third electropolymerizations were carried out under the condition of 70 ⁇ A per piece.
  • the fourth to sixth electropolymerizations were performed under the condition of 80 ⁇ A per one.
  • the carbon paste is attached to the treatment body on which the semiconductor layer is formed except the surface where the anode lead wire is planted, and is dried in air at 105 ° C. for 30 minutes using a constant temperature dryer.
  • the carbon layer 4 was formed.
  • As the carbon paste T-602 manufactured by Nippon Graphite Co., Ltd. was used.
  • a silver paste was applied on the carbon layer 4 and dried to form a metal layer 5.
  • the silver paste was mixed with 94% by mass of silver powder (AGC252 manufactured by Fukuda Metal Foil Powder Industry) and 6% by mass of acrylic resin (polymethyl methacrylate manufactured by Aldrich), and butyl acetate was added as a solvent so that the solid content was 30% by mass. Were used.
  • the electrode layer is not formed on the surface (XX) where the anode lead wire of the processed body thus fabricated is planted, and the semiconductor layer is exposed.
  • the oxidizing agent solution adhering to the electrode layer surface was removed.
  • an oxidizing agent was supplied to the semiconductor layer and the dielectric layer.
  • the treated body pulled up from water and suspended in ethanol at 23 ° C. was immersed to the position where the entire treated body and the semiconductor layer formed on the lead wire sink, and allowed to stand for 20 minutes. It pulled up from ethanol and dried at 105 degreeC. 128 solid electrolytic capacitor elements were produced as described above.
  • the leakage current was measured for 30 pieces of the solid electrolytic capacitor elements obtained indiscriminately, and the average (denoted as initial LC in the table) was calculated. Then, 30 of them were left in a constant temperature and humidity chamber at 35 ° C. and 80% RH for 7 days. Then, the leakage current was measured about them, and the average (it describes with LC after leaving in the table
  • the results are shown in Table 1.
  • the anode body had a silicon content of 2880 mass ppm, an oxygen content of 5200 mass ppm, and the total amount of elements (impurity elements) other than tungsten, silicon, and oxygen was 300 mass ppm or less.
  • Examples 2-4 Solid electrolytic capacitor elements were produced in the same manner as in Example 1 except that the oxidant solution was changed to that shown in Table 1, and their leakage currents were measured. The results are shown in Table 1.
  • Comparative Example 1 Solid electrolytic capacitor elements were produced by the same method as in Example 1 except that the immersion in the oxidant solution was not performed, and the leakage currents were measured. The results are shown in Table 1.
  • Examples 5 to 8 and Comparative Example 2 Change the 50% particle size of tungsten primary powder to 0.3 ⁇ m (particle size distribution range 0.05-3 ⁇ m), mix 3% by weight boric acid aqueous solution instead of mixing silicon powder, depressurize 125 ° C before heating at 1250 ° C Under the condition that water was removed under the condition, the temperature of the vacuum baking furnace was changed to 1500 ° C., the chemical conversion solution was changed to a 2 mass% potassium persulfate aqueous solution, the voltage during chemical conversion was changed to 12 V, and EDOT was changed to pyrrole. Solid electrolytic capacitor elements were produced in the same manner as in Examples 1 to 4 and Comparative Example 1. The results are shown in Table 2.
  • the boron content was 106 mass ppm
  • the oxygen content was 7500 mass ppm
  • the total amount of elements (impurity elements) other than tungsten, oxygen, and boron was 300 mass ppm or less.
  • oxygen release is achieved by immersing the element obtained in the process of forming the semiconductor layer or the process of forming the electrode layer in a solution containing an oxidizing agent having an oxygen release function such as potassium persulfate or ammonium persulfate. It can be seen that when an oxidizing agent having a function is supplied to the semiconductor layer or the dielectric layer, a solid electrolytic capacitor element having a small increase in leakage current during standing for a long time without sealing is obtained. It can be seen that the oxidizing agent having an oxygen releasing function supplied to the semiconductor layer or the dielectric layer contributes to the stability of the dielectric layer.
  • an oxidizing agent having an oxygen release function such as potassium persulfate or ammonium persulfate.
  • Anode lead 2 Dielectric layer 3: Semiconductor layer 4: Carbon layer 5: Metal layer 6: A portion of the anode lead where the dielectric layer is not formed 7: Near the sintered body where the dielectric layer is formed 8: part of anode lead wire 8: region in which electrode layer is not formed on semiconductor layer 9: solution containing oxidant having oxygen releasing function XX: plane YY where anode lead is implanted Y: oxygen Level of solution containing oxidizing agent with release function

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A solid electrolytic capacitor element is obtained using a method which includes: a step in which a surface of a positive electrode body comprising a valve action metal such as tungsten is subjected to electrolytic oxidation and chemically converted into a dielectric layer; a step in which electrolytic polymerization is used to form, upon the dielectric layer, a semiconductor layer comprising a conductive polymer; a step in which an electrode layer is formed upon the semiconductor layer; and a step in which an oxidant having an oxygen release function such as potassium persulfate and ammonium persulfate is supplied to the semiconductor layer or the dielectric layer.

Description

固体電解コンデンサ素子の製造方法Method for manufacturing solid electrolytic capacitor element
 本発明は、固体電解コンデンサ素子の製造方法に関する。より詳細に、本発明は、封止せずに長期間放置している間における漏れ電流の上昇が小さい固体電解コンデンサ素子の製造方法に関する。 The present invention relates to a method for manufacturing a solid electrolytic capacitor element. More specifically, the present invention relates to a method for manufacturing a solid electrolytic capacitor element in which an increase in leakage current is small during standing for a long time without sealing.
 固体電解コンデンサ素子は、例えば、タンタル、ニオブ、タングステンなどの弁作用金属粉の焼結体をリン酸などの電解質水溶液中で電解酸化して該焼結体表面を金属酸化物からなる誘電体層に化成し、該誘電体層の上に電解重合等によって半導体層を形成し、さらに半導体層の上に電極層を形成することによって得られる。このような製造工程において、固体電解コンデンサ素子の特性を改良するために、種々の提案がなされている。 The solid electrolytic capacitor element is, for example, a dielectric layer made of a metal oxide by electrolytically oxidizing a sintered body of valve action metal powder such as tantalum, niobium, tungsten, etc. in an electrolyte aqueous solution such as phosphoric acid. And a semiconductor layer is formed on the dielectric layer by electrolytic polymerization or the like, and an electrode layer is further formed on the semiconductor layer. In such a manufacturing process, various proposals have been made in order to improve the characteristics of the solid electrolytic capacitor element.
 例えば、特許文献1には、誘電体層上に電圧印加により酸素供与する固定層を形成し、コンデンサ完成後に電圧印加処理を行うことが開示されている。
 また、特許文献2には、半導体層形成後、有機酸を溶解した水もしくは有機溶媒の酸性溶液に含浸した後にカーボン層と銀ペースト層を形成することが開示されている。特許文献2は、有機酸がドーパントとしての作用を生じ、半導体層の導電性が向上すると述べている。また、有機酸性溶液に浸漬させた状態で電圧印加処理を行っている。
For example, Patent Document 1 discloses that a fixed layer for supplying oxygen by applying a voltage is formed on a dielectric layer, and a voltage application process is performed after the capacitor is completed.
Patent Document 2 discloses that after the semiconductor layer is formed, the carbon layer and the silver paste layer are formed after impregnation with an acidic solution of water or an organic solvent in which an organic acid is dissolved. Patent Document 2 states that an organic acid produces an action as a dopant, and the conductivity of the semiconductor layer is improved. Moreover, the voltage application process is performed in the state immersed in the organic acidic solution.
特開2007-173454号公報JP 2007-173454 A 特開2007-242932号公報JP 2007-242932 A
 固体電解コンデンサ素子を樹脂等で封止することによって固体電解コンデンサが作製される。従来の方法で得られる固体電解コンデンサ素子を樹脂などで封止せずにそのまま放置しておくと、漏れ電流(以下、LCと略すことがある。)が上昇することがある。固体電解コンデンサ素子を樹脂封止した後に、エージング等の修復処理を行うと、LCをある程度下げることができる。しかし、LCが大幅に高くなってしまうと修復処理を行ってもLCを所定の値以下にすることが困難になる。 A solid electrolytic capacitor is manufactured by sealing the solid electrolytic capacitor element with a resin or the like. If a solid electrolytic capacitor element obtained by a conventional method is left as it is without sealing with resin or the like, the leakage current (hereinafter sometimes abbreviated as LC) may increase. If a repair process such as aging is performed after resin sealing the solid electrolytic capacitor element, the LC can be lowered to some extent. However, if the LC becomes significantly high, it is difficult to reduce the LC to a predetermined value or less even if the repair process is performed.
 また、固体電解コンデンサ素子の製造工程の完了から樹脂封止工程の開始までの時間が製造ロット毎に相違する場合がある。その場合には、固体電解コンデンサ素子の放置時間の相違によって固体電解コンデンサのLCにばらつきが生じることがある。とりわけ、タングステンを主成分とする陽極体から作製した固体電解コンデンサにおいては放置時間の相違によるLCのばらつきの大きさが顕著である。 Also, the time from the completion of the manufacturing process of the solid electrolytic capacitor element to the start of the resin sealing process may be different for each manufacturing lot. In that case, the LC of the solid electrolytic capacitor may vary due to the difference in the standing time of the solid electrolytic capacitor element. In particular, in a solid electrolytic capacitor manufactured from an anode body mainly composed of tungsten, the magnitude of the LC variation due to the difference in the standing time is remarkable.
 本発明の目的は、封止せずに長期間放置している間における漏れ電流の上昇が小さい固体電解コンデンサ素子の製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor element in which an increase in leakage current is small during standing for a long time without sealing.
 本発明者らは、上記目的を達成するために鋭意検討した。その結果、以下の態様を包含する発明を完成するに至った。 The present inventors diligently studied to achieve the above object. As a result, an invention including the following aspects has been completed.
〔1〕弁作用金属からなる陽極体の表面を電解酸化して誘電体層に化成する工程と、 該誘電体層の上に導電性高分子からなる半導体層を形成する工程と、 該半導体層の上に電極層を形成する工程と、 酸素放出機能を有する酸化剤を半導体層または誘電体層に供給する工程とを含む固体電解コンデンサ素子の製造方法。 [1] A step of electrolytically oxidizing a surface of an anode body made of a valve metal to form a dielectric layer, a step of forming a semiconductor layer made of a conductive polymer on the dielectric layer, and the semiconductor layer A method of manufacturing a solid electrolytic capacitor element, comprising: forming an electrode layer on the substrate; and supplying an oxidant having an oxygen releasing function to the semiconductor layer or the dielectric layer.
〔2〕前記の供給する工程が、酸素放出機能を有する酸化剤を含む溶液と上記半導体層を形成する工程または電極層を形成する工程で得られるものとを接触させる工程を含む〔1〕に記載の製造方法。
〔3〕前記の電極層を形成する工程で得られるものは、半導体層上に電極層が形成されていない領域が一部にあり、
 前記の供給する工程は、該領域と、酸素放出機能を有する酸化剤を含む溶液とを接触させることを含む〔1〕または〔2〕に記載の製造方法。
〔4〕前記の供給する工程が、前記領域を、酸素放出機能を有する酸化剤を含む溶液に浸漬することを含む〔3〕に記載の製造方法。
[2] The step of supplying includes the step of bringing a solution containing an oxidizing agent having an oxygen releasing function into contact with a solution obtained in the step of forming the semiconductor layer or the step of forming an electrode layer. The manufacturing method as described.
[3] What is obtained in the step of forming the electrode layer is partly in a region where the electrode layer is not formed on the semiconductor layer,
The supplying step includes the step of bringing the region into contact with a solution containing an oxidant having an oxygen releasing function, according to [1] or [2].
[4] The manufacturing method according to [3], wherein the supplying step includes immersing the region in a solution containing an oxidizing agent having an oxygen releasing function.
〔5〕前記の供給する工程の後に、電極層表面から前記溶液を除去する工程をさらに含む〔2〕~〔4〕のいずれかひとつに記載の製造方法。
〔6〕前記の供給する工程が、前記領域から、酸素放出機能を有する酸化剤を含む溶液を含浸させることを含む〔3〕に記載の製造方法。
〔7〕酸化剤を含む溶液は、水を80質量%以上含んでなる溶媒を含んでいる〔2〕~〔6〕のいずれかひとつに記載の製造方法。
[5] The manufacturing method according to any one of [2] to [4], further including a step of removing the solution from the electrode layer surface after the supplying step.
[6] The manufacturing method according to [3], wherein the supplying step includes impregnating a solution containing an oxidizing agent having an oxygen releasing function from the region.
[7] The production method according to any one of [2] to [6], wherein the solution containing the oxidizing agent contains a solvent containing 80% by mass or more of water.
〔8〕酸化剤を含む溶液は、溶媒に対して0.1質量%以上飽和溶解度以下の前記酸化剤を含んでいる〔2〕~〔7〕のいずれかひとつに記載の製造方法。
〔9〕前記の供給する工程における、溶液の温度が20~60℃である〔2〕~〔8〕のいずれかひとつに記載の製造方法。
〔10〕酸素放出機能を有する酸化剤が、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、過硫酸化合物および有機過酸化物からなる群から選ばれる少なくとも一つである、〔1〕~〔9〕のいずれかひとつに記載の製造方法。
〔11〕酸素放出機能を有する酸化剤が過硫酸化合物である〔1〕~〔9〕のいずれかひとつに記載の製造方法。
〔12〕陽極体がタングステン粉の焼結体である〔1〕~〔11〕のいずれかひとつに記載の製造方法。
[8] The production method according to any one of [2] to [7], wherein the solution containing an oxidizing agent contains the oxidizing agent in an amount of 0.1% by mass or more and saturated solubility or less with respect to the solvent.
[9] The production method according to any one of [2] to [8], wherein the temperature of the solution in the supplying step is 20 to 60 ° C.
[10] The oxidizing agent having an oxygen releasing function is at least one selected from the group consisting of a manganese (VII) compound, a chromium (VI) compound, a halogen acid compound, a persulfate compound, and an organic peroxide. ] The production method according to any one of [9] to [9].
[11] The production method according to any one of [1] to [9], wherein the oxidizing agent having an oxygen releasing function is a persulfuric acid compound.
[12] The manufacturing method according to any one of [1] to [11], wherein the anode body is a sintered body of tungsten powder.
 従来の固体電解コンデンサ素子は、封止せずに長期間放置していると、LC(漏れ電流)が大きく変動することがある。これに対して、本発明の製造方法によれば、封止せずに長期間放置している間における漏れ電流の上昇が小さい固体電解コンデンサ素子を得ることができる。また、そのような固体電解コンデンサ素子を用いることによって固体電解コンデンサの製造ロット間の漏れ電流のバラツキが小さくなる。
 本発明の製造方法は、タングステン粉の焼結体からなる陽極体を用いた固体電解コンデンサ素子において、特に、その効果が顕著である。
When a conventional solid electrolytic capacitor element is left unsealed for a long time, LC (leakage current) may fluctuate greatly. On the other hand, according to the manufacturing method of the present invention, it is possible to obtain a solid electrolytic capacitor element in which an increase in leakage current is small while left for a long time without sealing. Also, by using such a solid electrolytic capacitor element, the variation in leakage current between production lots of solid electrolytic capacitors is reduced.
The effect of the manufacturing method of the present invention is particularly remarkable in a solid electrolytic capacitor element using an anode body made of a sintered body of tungsten powder.
誘電体層の上に半導体層を形成する工程を経て得られる素子の断面を示す概念図である。It is a conceptual diagram which shows the cross section of the element obtained through the process of forming a semiconductor layer on a dielectric material layer. 半導体層の上に電極層(カーボン層)を形成する工程を経て得られる素子の断面を示す概念図である。It is a conceptual diagram which shows the cross section of the element obtained through the process of forming an electrode layer (carbon layer) on a semiconductor layer. 半導体層の上に電極層(カーボン層と金属層)を形成する工程を経て得られる素子の断面を示す概念図である。It is a conceptual diagram which shows the cross section of the element obtained through the process of forming an electrode layer (a carbon layer and a metal layer) on a semiconductor layer. 図3に示した素子を酸化剤を含む溶液に浸漬した状態を示す概念図である。It is a conceptual diagram which shows the state which immersed the element shown in FIG. 3 in the solution containing an oxidizing agent.
 本発明の一実施形態に係る固体電解コンデンサ素子の製造方法は、弁作用金属からなる陽極体の表面を電解酸化して誘電体層に化成する工程と、 該誘電体層の上に電解重合等によって導電性高分子からなる半導体層を形成する工程と、 該半導体層の上に電極層を形成する工程と、 酸素放出機能を有する酸化剤を半導体層または誘電体層に供給する工程を含むものである。 A method for manufacturing a solid electrolytic capacitor element according to an embodiment of the present invention includes a step of electrolytically oxidizing a surface of an anode body made of a valve action metal to form a dielectric layer, and electrolytic polymerization on the dielectric layer. A step of forming a semiconductor layer made of a conductive polymer, a step of forming an electrode layer on the semiconductor layer, and a step of supplying an oxidant having an oxygen release function to the semiconductor layer or the dielectric layer. .
 陽極体は弁作用金属やその合金から製造される。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタン、タングステンなどが挙げられる。ここで陽極体は、金属元素総量のうち前記弁作用金属元素が99質量%以上であることが好ましい。また、合金には弁作用金属の一部が他の金属や非金属と化学結合したものを含む。 The anode body is manufactured from a valve action metal or its alloy. Examples of the valve action metal include aluminum, tantalum, niobium, titanium, and tungsten. Here, the anode body preferably has 99% by mass or more of the valve metal element in the total amount of metal elements. Alloys include those in which a part of the valve metal is chemically bonded to other metals or non-metals.
 誘電体層の面積を増やすために、陽極体は多孔質であることが好ましい。多孔質な陽極体は、例えば、弁作用金属またはその導電性酸化物からなる原料粉を焼結させることによって得ることができる。原料粉は、体積基準累積粒度分布における50%粒子径(D50)が、好ましくは0.1~1μm、より好ましくは0.1~0.7μm、さらに好ましくは0.1~0.3μmである。原料粉は、造粒粉であってもよい。造粒粉は、例えば、未造粒の弁作用金属またはそれの導電性酸化物からなる原料粉を焼結・粉砕するなどして製造することができる。また、造粒粉は、一旦製造した造粒粉を、再度、焼結・粉砕するなどして製造してもよい。該造粒粉は、体積基準累積粒度分布における50%粒子径(D50)が、好ましくは20~200μm、より好ましくは26~180μmである。 In order to increase the area of the dielectric layer, the anode body is preferably porous. The porous anode body can be obtained, for example, by sintering a raw material powder made of a valve action metal or a conductive oxide thereof. The raw material powder has a 50% particle diameter (D50) in the volume-based cumulative particle size distribution of preferably 0.1 to 1 μm, more preferably 0.1 to 0.7 μm, and even more preferably 0.1 to 0.3 μm. . The raw material powder may be granulated powder. The granulated powder can be produced, for example, by sintering and pulverizing raw powder composed of an ungranulated valve action metal or a conductive oxide thereof. Further, the granulated powder may be produced by sintering and pulverizing the granulated powder once produced. The granulated powder has a 50% particle size (D50) in a volume-based cumulative particle size distribution of preferably 20 to 200 μm, more preferably 26 to 180 μm.
 弁作用金属粉、特にタングステン粉は、ケイ素、ホウ素、リン、酸素および/または窒素を含有するものが好ましい。これら元素を金属粉に含有させる方法は特に制限されない。例えば、タングステン原末から造粒粉を製造する際にケイ素粉などのケイ素源、ホウ酸などのホウ素源、リン酸などのリン源、酸素ガスなどの酸素源および/または窒素ガスなどの窒素源を添加または導入することによる方法が挙げられる。 The valve action metal powder, particularly tungsten powder, preferably contains silicon, boron, phosphorus, oxygen and / or nitrogen. The method for incorporating these elements into the metal powder is not particularly limited. For example, when producing granulated powder from tungsten powder, silicon source such as silicon powder, boron source such as boric acid, phosphorus source such as phosphoric acid, oxygen source such as oxygen gas and / or nitrogen source such as nitrogen gas The method by adding or introduce | transducing is mentioned.
 焼結体は、原料粉を加圧成形して成形体を得、それを炉において焼成することによって得られる。加圧成形を容易にするためにバインダーを原料粉に混ぜてもよい。所望の成形密度等になるように粉量や成形装置などの諸条件を適宜設定することができる。陽極体は、細孔率が、好ましくは40~60体積%である。また陽極体は、直方体の形状が好ましい。直方体の8隅の少なくとも1つが、面取りまたは丸み処理されていても良い。 The sintered body is obtained by pressure-molding raw material powder to obtain a molded body and firing it in a furnace. In order to facilitate pressure molding, a binder may be mixed with the raw material powder. Various conditions such as the amount of powder and the molding apparatus can be appropriately set so as to obtain a desired molding density and the like. The anode body has a porosity of preferably 40 to 60% by volume. The anode body preferably has a rectangular parallelepiped shape. At least one of the eight corners of the rectangular parallelepiped may be chamfered or rounded.
 原料粉を成形する際に、陽極体の端子とするために陽極リード線を成形体に埋設し植立させることができる。陽極リード線としてはタングステン、タンタル、ニオブ等の金属やそれらの合金の線材などを用いることができる。また、焼結体に後から陽極リード線を溶接して接続することもできる。金属線材の代わりに金属板や金属箔を焼結体に植立または溶接してもよい。 When forming the raw material powder, an anode lead wire can be embedded in the molded body and planted to serve as a terminal of the anode body. As the anode lead wire, a metal such as tungsten, tantalum, niobium, or an alloy wire thereof can be used. Further, the anode lead wire can be welded and connected to the sintered body later. A metal plate or metal foil may be planted or welded to the sintered body instead of the metal wire.
 電解酸化は公知の手順に従って行うことができる。電解酸化は、例えば、硝酸、硫酸、リン酸、シュウ酸、アジピン酸などの電解質と、必要に応じて過酸化水素やオゾンなどの酸素供給剤とが溶解してなる化成液に陽極体を浸し、これに電圧を印加することによって行う。電圧は、陽極体(陽極)と対電極(陰極)との間に印加する。陽極体への通電は植立させた陽極リード線を通じて行うことができる。電解酸化は複数回繰り返し行ってもよい。この電解酸化によって焼結体表面(焼結体内の細孔表面と焼結体の外表面)を誘電体層に化成することができる。また、この電解酸化において、陽極リード線の一部も誘電体層に化成することができる。なお、誘電体層は、陽極体を構成する金属の酸化物で構成されている。誘電体層には、電解質や添加剤などが電解酸化時に入り込むことがある。 Electrolytic oxidation can be performed according to a known procedure. In electrolytic oxidation, for example, the anode body is immersed in a chemical formed by dissolving an electrolyte such as nitric acid, sulfuric acid, phosphoric acid, oxalic acid, or adipic acid and, if necessary, an oxygen supply agent such as hydrogen peroxide or ozone. This is done by applying a voltage to this. The voltage is applied between the anode body (anode) and the counter electrode (cathode). Energization of the anode body can be performed through the planted anode lead wire. The electrolytic oxidation may be repeated a plurality of times. By this electrolytic oxidation, the surface of the sintered body (the surface of the pores in the sintered body and the outer surface of the sintered body) can be formed into a dielectric layer. In this electrolytic oxidation, a part of the anode lead wire can also be formed into a dielectric layer. The dielectric layer is made of a metal oxide constituting the anode body. An electrolyte, an additive, or the like may enter the dielectric layer during electrolytic oxidation.
 化成処理の後、焼結体を純水で洗浄する。この洗浄によって化成液をできるだけ除去する。水除去の後、高温乾燥処理を行うことが好ましい。乾燥は水の沸点以上の温度、好ましくは160℃以上で行う。乾燥時の温度の上限は好ましくは250℃である。より好ましい乾燥は、先ず105℃以上160℃未満の温度で行い、次いで160℃以上230℃以下の温度で行う。このような温度で乾燥を行うと、低周波域と高周波域における容量が10~15%程度上昇する。乾燥の時間は、誘電体層の安定性が維持できる範囲であれば特に制限されず、好ましくは10分間~2時間、より好ましくは20分間~60分間である。乾燥の後に、化成処理を再度行ってもよい。再化成処理は、1回目の化成処理と同じ条件にて行うことができる。再化成処理の後は、上記と同様に、純水洗浄、水除去および乾燥を行うことができる。 After the chemical conversion treatment, the sintered body is washed with pure water. By this washing, the chemical conversion liquid is removed as much as possible. It is preferable to perform a high-temperature drying treatment after water removal. Drying is performed at a temperature above the boiling point of water, preferably at 160 ° C or higher. The upper limit of the temperature during drying is preferably 250 ° C. More preferable drying is first performed at a temperature of 105 ° C. or higher and lower than 160 ° C., and then performed at a temperature of 160 ° C. or higher and 230 ° C. or lower. When drying is performed at such a temperature, the capacity in the low and high frequency ranges increases by about 10 to 15%. The drying time is not particularly limited as long as the stability of the dielectric layer can be maintained, and is preferably 10 minutes to 2 hours, more preferably 20 minutes to 60 minutes. The chemical conversion treatment may be performed again after drying. The re-chemical conversion treatment can be performed under the same conditions as the first chemical conversion treatment. After the re-chemical conversion treatment, pure water washing, water removal and drying can be performed as described above.
 次いで誘電体層の上に半導体層を形成する。半導体層は従来の固体電解コンデンサ素子に用いられているものが制限なく使用できる。半導体層3は、図1に示すように、誘電体層2が形成された焼結体近傍の陽極リード線の一部と焼結体内の細孔表面及び焼結体の外表面に在る誘電体層2を覆うように形成することが好ましい。なお、半導体層を形成する工程を経て得られる素子には、後述する酸化剤溶液が浸透するのに十分な細孔が残っていると考えられる。 Next, a semiconductor layer is formed on the dielectric layer. The semiconductor layer used in the conventional solid electrolytic capacitor element can be used without limitation. As shown in FIG. 1, the semiconductor layer 3 includes a part of the anode lead wire in the vicinity of the sintered body on which the dielectric layer 2 is formed, the pore surface in the sintered body, and the dielectric present on the outer surface of the sintered body. It is preferable to form so as to cover the body layer 2. In addition, it is thought that the element | device obtained through the process of forming a semiconductor layer has sufficient pores for an oxidant solution described later to permeate.
 半導体層3は、導電性高分子からなることが好ましい。導電性高分子として、ポリピロールまたはそれの誘導体、ポリチオフェンまたはそれの誘導体(例えば、3,4-エチレンジオキシチオフェンの重合体)、ポリスルファイドまたはそれの誘導体、ポリフランまたはそれの誘導体、ポリアニリンまたはそれの誘導体などの高分子等が挙げられる。導電性高分子からなる半導体層は、導電性高分子の種類や形成方法などの異なる層が複数層存在しても良い。該導電性高分子層は、電解重合等によって得ることもできる。 The semiconductor layer 3 is preferably made of a conductive polymer. As the conductive polymer, polypyrrole or a derivative thereof, polythiophene or a derivative thereof (for example, a polymer of 3,4-ethylenedioxythiophene), polysulfide or a derivative thereof, polyfuran or a derivative thereof, polyaniline or a derivative thereof And polymers such as derivatives thereof. The semiconductor layer made of a conductive polymer may include a plurality of layers having different types of conductive polymers and the formation method. The conductive polymer layer can also be obtained by electrolytic polymerization or the like.
 前記半導体層上に電極層を形成する。電極層はカーボン層と金属層とがこの順で形成されたものが好ましい。電極層は陽極リード線が植立された面(横断面X-X)には形成しないことが好ましい。
 カーボン層は、半導体層上にカーボンペーストを付着させ、その後、乾燥硬化させることによって形成できる。
 カーボンペーストは、導電性のカーボンと、樹脂と、溶媒と、その他必要に応じて添加剤とを含有するものである。添加剤としては酸化剤、分散剤、pH調整剤などが挙げられる。
 カーボンペーストの付着は、陽極体の形状に応じて種々の方法によって行うことができる。具体的には、カーボンペースト浴に半導体層が形成された陽極体を浸漬することによって、または基材に付着させたカーボンペーストを半導体層上に転写することによって、カーボンペーストを付着させることができる。
An electrode layer is formed on the semiconductor layer. The electrode layer is preferably formed of a carbon layer and a metal layer in this order. The electrode layer is preferably not formed on the surface (cross section XX) where the anode lead wire is implanted.
The carbon layer can be formed by depositing a carbon paste on the semiconductor layer and then drying and curing it.
The carbon paste contains conductive carbon, a resin, a solvent, and other additives as necessary. Examples of the additive include an oxidizing agent, a dispersant, and a pH adjuster.
The carbon paste can be attached by various methods depending on the shape of the anode body. Specifically, the carbon paste can be attached by immersing the anode body in which the semiconductor layer is formed in the carbon paste bath, or by transferring the carbon paste attached to the base material onto the semiconductor layer. .
 付着させたカーボンペーストの乾燥は、溶媒の沸点以上の温度、好ましくは100℃以上で行う。乾燥時の温度の上限は好ましくは160℃である。より好ましい乾燥は、105℃以上150℃未満の温度で行う。このような温度で乾燥を行うと、適切に溶媒を除去できるとともに均質なカーボン層を形成することができる。乾燥の時間は、溶媒を除去できる範囲であれば特に制限されず、好ましくは5分間~2時間、より好ましくは15分間~30分間である。乾燥は、大気中で行っても良いし、アルゴンガスや窒素ガスなどの不活性ガスの気流中で行っても良い。10kPa程度までの減圧下で行うことによって、より低い温度でまたはより短い時間で乾燥を終わらせることができる。工業的に大量生産することを考えるとコストの点から空気中大気圧で行うことが好ましい。乾燥の後に、化成処理を再度行ってもよい。再化成処理は、1回目の化成処理と同じ条件にて行うことができる。再化成処理の後は、上記と同様に、純水洗浄、溶媒の除去および乾燥を行うことができる。乾燥硬化条件は上記条件を組み合わせて適宜設定することができる。 The dried carbon paste is dried at a temperature not lower than the boiling point of the solvent, preferably 100 ° C. or higher. The upper limit of the temperature during drying is preferably 160 ° C. More preferable drying is performed at a temperature of 105 ° C. or higher and lower than 150 ° C. When drying is performed at such a temperature, the solvent can be appropriately removed and a homogeneous carbon layer can be formed. The drying time is not particularly limited as long as the solvent can be removed, and is preferably 5 minutes to 2 hours, more preferably 15 minutes to 30 minutes. Drying may be performed in the air or in a stream of inert gas such as argon gas or nitrogen gas. By carrying out under reduced pressure up to about 10 kPa, drying can be completed at a lower temperature or in a shorter time. Considering mass production industrially, it is preferable to carry out at atmospheric pressure from the viewpoint of cost. The chemical conversion treatment may be performed again after drying. The re-chemical conversion treatment can be performed under the same conditions as the first chemical conversion treatment. After the re-chemical conversion treatment, pure water washing, solvent removal, and drying can be performed in the same manner as described above. The drying and curing conditions can be appropriately set by combining the above conditions.
 さらに、カーボン層の上に必要に応じて金属層を形成することができる。金属層は、例えば銀などの導電性金属のペーストを付着させることによって、または導電性金属をメッキすることによって形成することができる。 Furthermore, a metal layer can be formed on the carbon layer as necessary. The metal layer can be formed by depositing a conductive metal paste, such as silver, or by plating a conductive metal.
 本発明の製造方法においては、酸素放出機能を有する酸化剤を半導体層または誘電体層に供給する。半導体層または誘電体層に該酸化剤を供給するために、例えば、誘電体層の上に半導体層を形成する工程を経て得られる素子(図1)に酸素放出機能を有する酸化剤を含む溶液(以下、酸化剤溶液ということがある。)を接触させる方法、半導体層の上にカーボン層を形成する工程を経て得られる素子(図2)に酸化剤溶液を接触させる方法、カーボン層の上に金属層を形成する工程を経て得られる素子(図3)に酸化剤溶液を接触させる方法などが挙げられる。酸化剤溶液との接触によって半導体層または誘電体層に酸化剤溶液が含浸される。
 酸化剤溶液との接触のために、各工程で得られる素子を酸化剤溶液に浸漬する手段、または各工程で得られる素子に酸化剤溶液を塗布する、噴き付けるまたは滴下する手段を採用することができる。酸化剤溶液を半導体層または誘電体層に供給するために、半導体層上に電極層が形成されていない領域、例えば、図3中の8で示される領域、に酸化剤溶液を少なくとも接触させることが好ましい。
 本発明においては、製造効率などの観点から、半導体層の上に電極層を形成する工程を経て得られる素子を酸化剤溶液に浸漬することが好ましい。酸化剤溶液への浸漬においては、図4に示すように、陽極リード線の植立された面(横断面X-X(この面には電極層が形成されていない。))が酸化剤溶液9に浸かるように、素子を沈めることが好ましい。この酸化剤溶液への浸漬によって、酸化剤を素子の半導体層または誘電体層に効率的に供給することができる。
In the manufacturing method of the present invention, an oxidizing agent having an oxygen releasing function is supplied to the semiconductor layer or the dielectric layer. In order to supply the oxidant to the semiconductor layer or the dielectric layer, for example, a solution containing an oxidant having an oxygen releasing function in an element (FIG. 1) obtained through a step of forming a semiconductor layer on the dielectric layer (Hereinafter also referred to as an oxidant solution), a method of contacting an oxidant solution with an element (FIG. 2) obtained through a step of forming a carbon layer on a semiconductor layer, and a top of the carbon layer And a method of bringing an oxidant solution into contact with an element (FIG. 3) obtained through a step of forming a metal layer. The semiconductor layer or dielectric layer is impregnated with the oxidant solution by contact with the oxidant solution.
For contact with the oxidant solution, a means for immersing the element obtained in each step in the oxidant solution, or a means for applying, spraying or dropping the oxidant solution to the element obtained in each step is adopted. Can do. In order to supply the oxidant solution to the semiconductor layer or the dielectric layer, at least the oxidant solution is brought into contact with a region where the electrode layer is not formed on the semiconductor layer, for example, a region indicated by 8 in FIG. Is preferred.
In the present invention, from the viewpoint of production efficiency and the like, it is preferable to immerse an element obtained through a step of forming an electrode layer on a semiconductor layer in an oxidant solution. In the immersion in the oxidizer solution, as shown in FIG. 4, the planted surface of the anode lead wire (cross section XX (the electrode layer is not formed on this surface)) is the oxidizer solution. It is preferable that the element is submerged so as to be immersed in 9. By immersing in the oxidant solution, the oxidant can be efficiently supplied to the semiconductor layer or the dielectric layer of the device.
 酸素を放出する機能を有する酸化剤としては、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、過硫酸化合物および有機過酸化物からなる群から選ばれる少なくとも一つが好ましい。具体的には、過マンガン酸塩などのマンガン(VII)化合物;三酸化クロム、クロム酸塩、二クロム酸塩などのクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸およびそれらの塩などのハロゲン酸化合物;過酢酸、過安息香酸およびそれらの塩や誘導体などの有機酸過酸化物;過硫酸およびその塩などの過硫酸化合物が挙げられる。これらのうち、扱い易さと酸化剤としての安定性、水易溶性の観点から、過硫酸アンモニウム、過硫酸カリウム、過硫酸水素カリウム等の過硫酸化合物が好ましい。これらの酸化剤は1種単独でまたは2種以上を組み合わせて使用することができる。
 酸化剤溶液に含まれる酸化剤の量は、溶媒に対して、好ましくは0.1質量%以上飽和溶解度以下、より好ましくは0.5質量%以上20質量%以下、さらに好ましくは0.5質量%以上10質量%以下である。酸化剤の量が少なすぎると、所望の効果を得るために、複数回の浸漬・乾燥が必要となり、生産効率が低下する傾向がある。
As the oxidizing agent having a function of releasing oxygen, at least one selected from the group consisting of a manganese (VII) compound, a chromium (VI) compound, a halogen acid compound, a persulfate compound, and an organic peroxide is preferable. Specifically, manganese (VII) compounds such as permanganate; chromium (VI) compounds such as chromium trioxide, chromate, dichromate; perchloric acid, chlorous acid, hypochlorous acid and And halogen acid compounds such as salts thereof; organic acid peroxides such as peracetic acid, perbenzoic acid and salts and derivatives thereof; and persulfuric acid compounds such as persulfuric acid and salts thereof. Of these, persulfate compounds such as ammonium persulfate, potassium persulfate, and potassium hydrogen persulfate are preferred from the viewpoints of ease of handling, stability as an oxidizing agent, and water solubility. These oxidizing agents can be used alone or in combination of two or more.
The amount of the oxidizing agent contained in the oxidizing agent solution is preferably 0.1% by mass or more and saturated solubility or less, more preferably 0.5% by mass or more and 20% by mass or less, and further preferably 0.5% by mass with respect to the solvent. % To 10% by mass. If the amount of the oxidizing agent is too small, a plurality of immersions and dryings are necessary to obtain a desired effect, and the production efficiency tends to decrease.
 前記の酸化剤溶液に用いられる好ましい溶媒としては、水、メタノール、エタノールなどの水溶性溶媒が挙げられる。本発明に用いられる溶媒としては、水を80質量%以上含む溶媒が好ましく、水を90質量%以上含む溶媒がより好ましく、水を95質量%以上含む溶媒がさらに好ましい。エタノールなどの水溶性溶媒が少量添加されていると、溶液の表面張力が下がり陽極体細孔への浸み込み易さが増すので好ましい。 Favorable solvents used for the oxidant solution include water-soluble solvents such as water, methanol and ethanol. As the solvent used in the present invention, a solvent containing 80% by mass or more of water is preferable, a solvent containing 90% by mass or more of water is more preferable, and a solvent containing 95% by mass or more of water is more preferable. It is preferable to add a small amount of a water-soluble solvent such as ethanol since the surface tension of the solution is lowered and the penetration into the anode body pores is increased.
 酸化剤溶液に接触させる時の溶液温度は、酸化剤を多く溶解させる点から、溶媒の沸点以下で且つ高い方が良いが、あまりに高温であると溶媒の蒸発分を頻繁に補給する必要が生じるので、好ましく20℃~60℃、より好ましくは25℃~50℃、さらに好ましくは30℃~50℃である。酸化剤溶液への接触時間は、陽極体の大きさなどを考慮して予備実験などから決定される。 The solution temperature at the time of contacting with the oxidant solution is preferably lower than the boiling point of the solvent and high from the viewpoint of dissolving a large amount of the oxidant, but if the temperature is too high, it is necessary to replenish the solvent evaporation frequently. Therefore, it is preferably 20 ° C. to 60 ° C., more preferably 25 ° C. to 50 ° C., and further preferably 30 ° C. to 50 ° C. The contact time with the oxidant solution is determined from a preliminary experiment or the like in consideration of the size of the anode body.
 前記の酸化剤溶液に接触させる工程の後、電極層表面から前記溶液を除去することが好ましい。酸化剤溶液の除去は、例えば、陽極リード線が植立された面を除いて水に浸漬する方法によって行うことができる。水に浸漬する時の水の温度は、20℃~60℃が好ましい。水に浸漬する時間は、陽極体の大きさなどを考慮して予備実験などから決定される。この水への浸漬によって、コンデンサ素子の半導体層または誘電体層に供給された酸化剤はそのまま残され、電極層表面から酸化剤が除去されると考えられる。酸化剤溶液に浸漬する工程と水に浸漬する工程との間でコンデンサ素子に付着した酸化剤溶液を乾燥させないことが好ましい。酸化剤溶液の乾燥によって酸化剤が一旦析出すると、水に再溶解し難くなるので、水に浸漬しても電極層表面に酸化剤が残ることがある。酸化剤は導電性を阻害することがあるので、電極層と外部端子との間の電気抵抗が大きくなる傾向がある。 It is preferable to remove the solution from the electrode layer surface after the step of contacting with the oxidant solution. The removal of the oxidant solution can be performed, for example, by a method of immersing in water except for the surface on which the anode lead wire is planted. The temperature of water when immersed in water is preferably 20 ° C. to 60 ° C. The time for immersing in water is determined from a preliminary experiment in consideration of the size of the anode body. This immersion in water is thought to leave the oxidant supplied to the semiconductor layer or dielectric layer of the capacitor element as it is, and remove the oxidant from the electrode layer surface. It is preferable not to dry the oxidant solution adhering to the capacitor element between the step of immersing in the oxidant solution and the step of immersing in water. Once the oxidant is precipitated by drying of the oxidant solution, it is difficult to redissolve in water. Therefore, the oxidant may remain on the electrode layer surface even when immersed in water. Since the oxidizing agent may hinder the conductivity, the electric resistance between the electrode layer and the external terminal tends to increase.
 その後、乾燥させて水を除去する。なお、乾燥前に、例えばエタノールなどの水溶性溶媒に浸漬して、水の蒸発が促されるようにしてから乾燥を行っても良い。 Then, dry to remove water. Prior to drying, drying may be performed after immersing in a water-soluble solvent such as ethanol to promote water evaporation.
 以上の工程によって、固体電解コンデンサ素子が得られる。本発明の製造方法によれば、リード線が植立された面に形成された半導体層から侵入した酸化剤溶液が陽極体内の細孔を通して半導体層または誘電体層にまで供給される。その後、溶液から溶媒が除去されると酸化剤から供給される酸素が誘電体層の放置安定性に寄与するものと考えられる。 A solid electrolytic capacitor element is obtained through the above steps. According to the manufacturing method of the present invention, the oxidant solution that has entered from the semiconductor layer formed on the surface where the lead wire is implanted is supplied to the semiconductor layer or the dielectric layer through the pores in the anode body. Thereafter, when the solvent is removed from the solution, oxygen supplied from the oxidizing agent is considered to contribute to the standing stability of the dielectric layer.
 次に、上記電極層に陰極リードが電気的に接続され、該陰極リードの一部が電解コンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リード線を介して陽極リードが電気的に接続され、該陽極リードの一部が電解コンデンサの外装の外部に露出して陽極外部端子となる。陰極リードおよび陽極リードの取り付けには通常のリードフレームを用いることができる。次いで、樹脂等による封止によって外装を形成して固体電解コンデンサを得ることができる。このようにして作製された固体電解コンデンサは、所望によりエージング処理を行うことができる。得られた固体電解コンデンサは、各種電気回路または電子回路に装着し、使用することができる。 Next, a cathode lead is electrically connected to the electrode layer, and a part of the cathode lead is exposed outside the exterior of the electrolytic capacitor to become a cathode external terminal. On the other hand, an anode lead is electrically connected to the anode body via an anode lead wire, and a part of the anode lead is exposed outside the exterior of the electrolytic capacitor and becomes an anode external terminal. A normal lead frame can be used to attach the cathode lead and the anode lead. Subsequently, the exterior can be formed by sealing with a resin or the like to obtain a solid electrolytic capacitor. The solid electrolytic capacitor thus produced can be subjected to an aging treatment as desired. The obtained solid electrolytic capacitor can be used by being mounted on various electric circuits or electronic circuits.
 以下に実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. Note that these are merely illustrative examples, and the present invention is not limited by these.
 各種特性の測定は以下のようにして行った。
(漏れ電流)
 コンデンサ素子に室温下で2.5Vを印加した。電圧印加開始から15秒間経過時に、電源のプラス端子から、コンデンサ素子の陽極リード線、コンデンサ素子の電極層、さらに電源のマイナス端子に至る回路の電流値(漏れ電流)を測定した。無作為に選んだコンデンサ素子40個についての測定値の平均を算出した。
Various characteristics were measured as follows.
(Leak current)
2.5 V was applied to the capacitor element at room temperature. When 15 seconds passed from the start of voltage application, the current value (leakage current) of the circuit from the positive terminal of the power source to the anode lead wire of the capacitor element, the electrode layer of the capacitor element, and the negative terminal of the power source was measured. The average of the measured values for 40 capacitor elements randomly selected was calculated.
(元素分析)
 ICPS-8000E(島津製作所製)を用いてICP発光分析によって陽極体中の元素含有量を決定した。また、酸素・窒素分析装置(LECO社製TC600)を用いて陽極体中の窒素量と酸素量をそれぞれ熱伝導度法と赤外吸収法により決定した。無作為に選択した陽極体3個についての測定値の平均を算出した。
(Elemental analysis)
The element content in the anode body was determined by ICP emission analysis using ICPS-8000E (manufactured by Shimadzu Corporation). Further, the amount of nitrogen and the amount of oxygen in the anode body were determined by a thermal conductivity method and an infrared absorption method, respectively, using an oxygen / nitrogen analyzer (TC600 manufactured by LECO). The average of the measured values for three randomly selected anode bodies was calculated.
(50%粒子径)
 マイクロトラック社製 HRA 9320-X100を用い、レーザー回折散乱法で粒度分布を測定し、体積基準累積粒度分布における50%粒子径(D50)を求めた。
(50% particle size)
The particle size distribution was measured by a laser diffraction scattering method using HRA 9320-X100 manufactured by Microtrack, and the 50% particle size (D50) in the volume-based cumulative particle size distribution was determined.
実施例1
〔焼結体の作製〕
 三酸化タングステンを水素還元して50%粒子径0.5μm(粒度分布範囲0.1μm~1μm)のタングステン一次粉を得た。この粉に50%粒子径60nmの珪素粉を0.3質量%混合した。該混合粉を減圧下1250℃で30分間加熱した。室温に戻し、塊状物を解砕し、50%粒子径87μm(粒度分布範囲26μm~180μm、ふるい分けによる質量分布においてメッシュの目開きが53~63μmと106~125μmの範囲にピークがある。)の造粒粉を得た。
Example 1
(Production of sintered body)
Tungsten trioxide was reduced with hydrogen to obtain a primary tungsten powder having a 50% particle size of 0.5 μm (particle size distribution range: 0.1 μm to 1 μm). This powder was mixed with 0.3% by mass of silicon powder having a 50% particle diameter of 60 nm. The mixed powder was heated at 1250 ° C. under reduced pressure for 30 minutes. After returning to room temperature, the lump is crushed, and the particle size is 87 μm (particle size distribution range is 26 μm to 180 μm, and the mesh openings in the mass distribution by sieving have peaks in the range of 53 to 63 μm and 106 to 125 μm). Granulated powder was obtained.
 造粒粉を精研社製TAP-2R型成形機にて押し固めて成形体を作製した。この成形の際に0.29mmφ、長さ9.8mmのタンタル線(陽極リード線)を3.8mm埋設し外側に6mm出して植立させた。
 得られた成形体を真空焼成炉に入れ、温度1520℃にて20分間維持して焼結させた。その後、室温まで降温した。1.0mm×1.5mm×4.5mm(1.0mm×1.5mm面にリード線が植立。内部に3.8mm、外部に6mm)の6面体の焼結体を複数個作製した。
 成形体密度に対する焼結体密度の比は1.06であった。陽極リード線を除いた陽極体の質量は60±2mgであった。
The granulated powder was pressed and solidified using a TAP-2R molding machine manufactured by Seken Co., Ltd. to produce a molded body. At the time of this molding, a tantalum wire (anode lead wire) having a diameter of 0.29 mmφ and a length of 9.8 mm was embedded in 3.8 mm, and 6 mm outside was planted.
The obtained molded body was placed in a vacuum firing furnace and sintered at a temperature of 1520 ° C. for 20 minutes. Thereafter, the temperature was lowered to room temperature. A plurality of hexahedron sintered bodies having a size of 1.0 mm × 1.5 mm × 4.5 mm (lead wires were planted on a 1.0 mm × 1.5 mm surface. 3.8 mm inside and 6 mm outside) were produced.
The ratio of the sintered body density to the green body density was 1.06. The mass of the anode body excluding the anode lead wire was 60 ± 2 mg.
〔誘電体層の形成(化成処理)〕
 i)電解酸化
 3質量%の過硫酸アンモニウム水溶液を化成液として用意した。化成液をステンレス製容器に入れた。陽極リード線の先端を把持して焼結体をぶら下げた。化成液に、ぶら下げられた焼結体を焼結体全体と陽極リード線が稙立された面からリード線3.5mmが沈む位置まで浸漬した。リード線を陽極に、容器を陰極に接続し、液温50℃の化成液において10Vの電圧を6時間印加した。
 ii)水洗浄-水除去-乾燥
 次いで、純水で洗浄して焼結体細孔中の化成液を除去した。その後エタノールに漬けて攪拌することにより表面(細孔内の表面も含む。)に付着した水のほとんどを除去した。エタノールから引き上げ、190℃にて30分間乾燥させた。焼結体表面が三酸化タングステンの誘電体層に化成された。
[Formation of dielectric layer (chemical conversion treatment)]
i) Electrolytic oxidation A 3 mass% ammonium persulfate aqueous solution was prepared as a chemical conversion solution. The chemical conversion liquid was put into a stainless steel container. The sintered body was hung by holding the tip of the anode lead wire. The suspended sintered body was immersed in the chemical forming solution from the surface on which the entire sintered body and the anode lead wire were erected to a position where the lead wire 3.5 mm was sunk. The lead wire was connected to the anode, the container was connected to the cathode, and a voltage of 10 V was applied for 6 hours in the chemical liquid at a liquid temperature of 50 ° C.
ii) Water washing-water removal-drying Subsequently, washing with pure water was performed to remove the chemical conversion liquid in the pores of the sintered body. Thereafter, most of the water adhering to the surface (including the surface in the pores) was removed by soaking in ethanol and stirring. It was pulled from ethanol and dried at 190 ° C. for 30 minutes. The surface of the sintered body was formed into a tungsten trioxide dielectric layer.
〔半導体層の積層〕
 i)浸漬工程
 陽極リード線の先端を把持して誘電体層が形成された焼結体をぶら下げた。10質量%のエチレンジオキシチオフェン(以下EDOTと略す。)エタノール溶液に、ぶら下げられた前記焼結体を焼結体全体と陽極リード線が植立された面から陽極リード線0.2mmが沈む位置まで浸漬した。エタノール溶液から引き上げて室温で乾燥させた。次いで10質量%のトルエンスルホン酸鉄水溶液にぶら下げられた前記焼結体を焼結体全体と陽極リード線が植立された面からリード線0.2mmが沈む位置まで浸漬した。該水溶液から引き上げて60℃で10分間静置してEDOTを反応させた。この一連の操作を3回繰り返して処理体を得た。
[Lamination of semiconductor layers]
i) Immersion step The sintered body on which the dielectric layer was formed was hung by holding the tip of the anode lead wire. In a 10% by mass ethylenedioxythiophene (hereinafter abbreviated as EDOT) ethanol solution, the anode lead wire 0.2 mm sinks from the surface on which the entire sintered body and anode lead wire are planted. Soaked into position. It pulled up from the ethanol solution and dried at room temperature. Next, the sintered body suspended in a 10% by mass aqueous solution of toluenesulfonic acid iron was immersed from the surface on which the entire sintered body and the anode lead wire were planted to a position where the lead wire was sinked by 0.2 mm. The EDOT was reacted by pulling up from the aqueous solution and allowing to stand at 60 ° C. for 10 minutes. This series of operations was repeated three times to obtain a treated body.
 ii)電解重合工程
 陽極リード線の先端を把持して処理体をぶら下げた。10質量%EDOTエタノール溶液に、ぶら下げられた処理体を、処理体全体と陽極リード線が植立された面から陽極リード線0.2mmが沈む位置まで浸漬した。該エタノール溶液から引き上げた。引き続き、ステンレス(SUS303)製容器に貯留された液温20℃の重合液に、ぶら下げられた処理体を、処理体全体と陽極リード線が植立された面から陽極リード線0.2mmが沈む位置まで浸漬した。陽極リード線と容器との間に電圧を印加し、1個当たり60μAで60分間電解重合させた。なお、重合液は、水70質量部とエチレングリコール30質量部からなる溶剤に、過飽和のEDOTおよび3質量%のアントラキノンスルホン酸を溶解させたものである。その後、重合液から引き上げ、純水による洗浄およびエタノールによる洗浄を行い、次いで80℃で乾燥させた。図1に示すように、誘電体層2の表面上に導電性高分子からなる半導体層3が積層された。前記陽極リード線1と半導体層3は誘電体層2により隔てられている。
ii) Electropolymerization process The tip of the anode lead wire was held and the treatment body was hung. The suspended treatment body was immersed in a 10 mass% EDOT ethanol solution from the surface where the entire treatment body and the anode lead wire were planted to a position where the anode lead wire 0.2 mm was sunk. The ethanol solution was pulled up. Subsequently, the anode lead wire 0.2 mm sinks from the surface on which the entire treatment body and the anode lead wire are planted in the polymer solution having a liquid temperature of 20 ° C. stored in a stainless steel (SUS303) container. Soaked into position. A voltage was applied between the anode lead wire and the container, and electrolytic polymerization was performed at 60 μA per piece for 60 minutes. The polymerization solution is obtained by dissolving supersaturated EDOT and 3% by mass of anthraquinone sulfonic acid in a solvent composed of 70 parts by mass of water and 30 parts by mass of ethylene glycol. Thereafter, the polymer solution was pulled up, washed with pure water and washed with ethanol, and then dried at 80 ° C. As shown in FIG. 1, a semiconductor layer 3 made of a conductive polymer was laminated on the surface of the dielectric layer 2. The anode lead 1 and the semiconductor layer 3 are separated by a dielectric layer 2.
 iii)後化成工程
 3質量%の過硫酸アンモニウム水溶液を化成液として用意した。陽極リード線の先端を把持して半導体層が形成された処理体をぶら下げた。化成液に、ぶら下げられた前記処理体を、処理体全体と陽極リード線が植立された面から陽極リード線0.2mmが沈む位置まで浸漬した。液温20℃の化成液において7Vの電圧を15分間印加した。化成液から引き上げ、純水による洗浄およびエタノールによる洗浄を行い、次いで乾燥させた。
iii) Post-chemical conversion step A 3% by mass aqueous ammonium persulfate solution was prepared as a chemical conversion solution. The processing body on which the semiconductor layer was formed was hung by holding the tip of the anode lead wire. The process body suspended in the chemical liquid was immersed from the surface where the entire process body and the anode lead wire were planted to a position where the anode lead wire was sinked by 0.2 mm. In the chemical solution at a liquid temperature of 20 ° C., a voltage of 7 V was applied for 15 minutes. It was pulled out from the chemical conversion liquid, washed with pure water and ethanol, and then dried.
 その後、上述の浸漬工程-電解重合工程-後化成工程をさらに5回(合計6回)繰り返し行った。なお、第2回目~第3回目の電解重合は1個当たり70μAの条件にて行った。第4回目~第6回目の電解重合は1個当たり80μAの条件にて行った。 Thereafter, the above-mentioned dipping step-electrolytic polymerization step-post-chemical conversion step was further repeated 5 times (6 times in total). The second to third electropolymerizations were carried out under the condition of 70 μA per piece. The fourth to sixth electropolymerizations were performed under the condition of 80 μA per one.
〔電極層の積層〕
 図2に示すように、半導体層が形成された処理体に陽極リード線の植立された面を除いてカーボンペーストを付着させ、恒温乾燥器を用いて105℃の空気中で30分間乾燥させてカーボン層4を形成した。尚、カーボンペーストは、日本黒鉛社製T-602を使用した。
 次いで、図3に示すように、カーボン層4の上に銀ペーストを塗布し乾燥させて金属層5を形成した。銀ペーストは、銀粉(福田金属箔粉工業製AGC252)94質量%にアクリル樹脂(アルドリッチ社製ポリメチルメタクリレート)6質量%混合し、これら固形分を30質量%となるよう酢酸ブチルを溶媒として加えて作製したものを使用した。こうして作製された処理体の陽極リード線が植立された面(X-X)には電極層が形成されず半導体層が露出している。
(Lamination of electrode layers)
As shown in FIG. 2, the carbon paste is attached to the treatment body on which the semiconductor layer is formed except the surface where the anode lead wire is planted, and is dried in air at 105 ° C. for 30 minutes using a constant temperature dryer. Thus, the carbon layer 4 was formed. As the carbon paste, T-602 manufactured by Nippon Graphite Co., Ltd. was used.
Next, as shown in FIG. 3, a silver paste was applied on the carbon layer 4 and dried to form a metal layer 5. The silver paste was mixed with 94% by mass of silver powder (AGC252 manufactured by Fukuda Metal Foil Powder Industry) and 6% by mass of acrylic resin (polymethyl methacrylate manufactured by Aldrich), and butyl acetate was added as a solvent so that the solid content was 30% by mass. Were used. The electrode layer is not formed on the surface (XX) where the anode lead wire of the processed body thus fabricated is planted, and the semiconductor layer is exposed.
〔酸化剤溶液への浸漬〕
 1質量%過硫酸アンモニウム水溶液にエタノール5体積%を添加した50℃の溶液を酸化剤溶液として用意した。
 陽極リード線を把持して電極層が形成された処理体をぶら下げた。図4に示すように、50℃の酸化剤溶液に、ぶら下げられた前記処理体を、処理体全体とリード線上に形成された半導体層が沈む位置まで浸漬し、30分間静置した。酸化剤溶液から引き上げ、前記処理体表面が乾かないうちに、30℃の水に、ぶら下げられた前記処理体を、陽極リード線の植立された面を除いて浸漬し、40分間静置した。電極層表面に付着した酸化剤溶液が除去された。これらの操作によって酸化剤を半導体層および誘電体層に供給した。
 水から引き上げて、23℃のエタノールに、ぶら下げられた前記処理体を、処理体全体とリード線上に形成された半導体層が沈む位置まで浸漬し、20分間静置した。エタノールから引き上げて105℃で乾燥させた。
 以上のようにして、固体電解コンデンサ素子を128個作製した。
[Immersion in oxidizer solution]
A 50 ° C. solution in which 5% by volume of ethanol was added to a 1% by mass ammonium persulfate aqueous solution was prepared as an oxidant solution.
The treated body on which the electrode layer was formed by holding the anode lead wire was hung. As shown in FIG. 4, the suspended treatment body was immersed in an oxidant solution at 50 ° C. until the semiconductor layer formed on the whole treatment body and the lead wire sinks, and left for 30 minutes. It pulled up from the oxidizing agent solution, and while the surface of the treated body did not dry, the treated body suspended in water at 30 ° C. was immersed except for the planted surface of the anode lead wire and allowed to stand for 40 minutes. . The oxidizing agent solution adhering to the electrode layer surface was removed. By these operations, an oxidizing agent was supplied to the semiconductor layer and the dielectric layer.
The treated body pulled up from water and suspended in ethanol at 23 ° C. was immersed to the position where the entire treated body and the semiconductor layer formed on the lead wire sink, and allowed to stand for 20 minutes. It pulled up from ethanol and dried at 105 degreeC.
128 solid electrolytic capacitor elements were produced as described above.
 得られた固体電解コンデンサ素子のうちから無差別に選んだ30個について漏れ電流を測定し、その平均(表中、初期LCと表記する。)を算出した。次いでそれら30個を35℃80%RHの恒温恒湿器に7日間放置した。その後、それらについて漏れ電流を測定し、その平均(表中、放置後LCと表記する。)を算出した。その結果を表1に示す。尚、陽極体は、ケイ素含有量が2880質量ppm、酸素含有量が、5200質量ppm、タングステン、ケイ素、酸素以外の元素(不純物元素)の総量が300質量ppm以下であった。 The leakage current was measured for 30 pieces of the solid electrolytic capacitor elements obtained indiscriminately, and the average (denoted as initial LC in the table) was calculated. Then, 30 of them were left in a constant temperature and humidity chamber at 35 ° C. and 80% RH for 7 days. Then, the leakage current was measured about them, and the average (it describes with LC after leaving in the table | surface) was computed. The results are shown in Table 1. The anode body had a silicon content of 2880 mass ppm, an oxygen content of 5200 mass ppm, and the total amount of elements (impurity elements) other than tungsten, silicon, and oxygen was 300 mass ppm or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2~4
 酸化剤溶液を表1に記載のものに変えた以外は実施例1と同じ方法で固体電解コンデンサ素子を作製し、それらの漏れ電流を測定した。結果を表1に示す。
Examples 2-4
Solid electrolytic capacitor elements were produced in the same manner as in Example 1 except that the oxidant solution was changed to that shown in Table 1, and their leakage currents were measured. The results are shown in Table 1.
比較例1
 酸化剤溶液への浸漬を行わなかった以外は実施例1と同じ方法で固体電解コンデンサ素子を作製し、それらの漏れ電流を測定した。結果を表1に示す。
Comparative Example 1
Solid electrolytic capacitor elements were produced by the same method as in Example 1 except that the immersion in the oxidant solution was not performed, and the leakage currents were measured. The results are shown in Table 1.
実施例5~8、比較例2
 タングステン一次粉の50%粒子径を0.3μm(粒度分布範囲0.05~3μm)に変え、珪素粉を混合する代わりに3質量%ほう酸水溶液を混合し、1250℃による加熱前に125℃減圧下にて水を除去し、真空焼成炉の温度を1500℃に変え、化成液を2質量%過硫酸カリウム水溶液に変え、化成処理時の電圧を12Vに変え、EDOTをピロールに変えた以外は実施例1~4および比較例1と同じ方法で固体電解コンデンサ素子を作製した。それらの結果を表2に示す。陽極体は、ホウ素含有量が106質量ppm、酸素含有量が7500質量ppm、タングステン、酸素、ホウ素以外の元素(不純物元素)の総量が300質量ppm以下であった。
Examples 5 to 8 and Comparative Example 2
Change the 50% particle size of tungsten primary powder to 0.3μm (particle size distribution range 0.05-3μm), mix 3% by weight boric acid aqueous solution instead of mixing silicon powder, depressurize 125 ° C before heating at 1250 ° C Under the condition that water was removed under the condition, the temperature of the vacuum baking furnace was changed to 1500 ° C., the chemical conversion solution was changed to a 2 mass% potassium persulfate aqueous solution, the voltage during chemical conversion was changed to 12 V, and EDOT was changed to pyrrole. Solid electrolytic capacitor elements were produced in the same manner as in Examples 1 to 4 and Comparative Example 1. The results are shown in Table 2. In the anode body, the boron content was 106 mass ppm, the oxygen content was 7500 mass ppm, and the total amount of elements (impurity elements) other than tungsten, oxygen, and boron was 300 mass ppm or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、半導体層を形成する工程または電極層を形成する工程で得られる素子を過硫酸カリウムや過硫酸アンモニウムなどの酸素放出機能を有する酸化剤を含む溶液に浸漬するなどして、酸素放出機能を有する酸化剤を半導体層または誘電体層に供給すると、封止せずに長期間放置している間における漏れ電流の上昇が小さい固体電解コンデンサ素子が得られることがわかる。半導体層または誘電体層に供給した酸素放出機能を有する酸化剤が、誘電体層の安定性に寄与していることがわかる。 From the above results, oxygen release is achieved by immersing the element obtained in the process of forming the semiconductor layer or the process of forming the electrode layer in a solution containing an oxidizing agent having an oxygen release function such as potassium persulfate or ammonium persulfate. It can be seen that when an oxidizing agent having a function is supplied to the semiconductor layer or the dielectric layer, a solid electrolytic capacitor element having a small increase in leakage current during standing for a long time without sealing is obtained. It can be seen that the oxidizing agent having an oxygen releasing function supplied to the semiconductor layer or the dielectric layer contributes to the stability of the dielectric layer.
1:陽極リード線
2:誘電体層
3:半導体層
4:カーボン層
5:金属層
6:陽極リード線の誘電体層が形成されていない部分
7:誘電体層が形成された焼結体近傍の陽極リード線の一部
8:半導体層上に電極層が形成されていない領域
9:酸素放出機能を有する酸化剤を含む溶液
X-X:陽極リードが植立された面
Y-Y:酸素放出機能を有する酸化剤を含む溶液の液面
1: Anode lead 2: Dielectric layer 3: Semiconductor layer 4: Carbon layer 5: Metal layer 6: A portion of the anode lead where the dielectric layer is not formed 7: Near the sintered body where the dielectric layer is formed 8: part of anode lead wire 8: region in which electrode layer is not formed on semiconductor layer 9: solution containing oxidant having oxygen releasing function XX: plane YY where anode lead is implanted Y: oxygen Level of solution containing oxidizing agent with release function

Claims (12)

  1.  弁作用金属からなる陽極体の表面を電解酸化して誘電体層に化成する工程と、
     該誘電体層の上に導電性高分子からなる半導体層を形成する工程と、
     該半導体層の上に電極層を形成する工程と、
     酸素放出機能を有する酸化剤を半導体層または誘電体層に供給する工程と
    を含む固体電解コンデンサ素子の製造方法。
    A step of electrolytically oxidizing the surface of an anode body made of a valve metal to form a dielectric layer;
    Forming a semiconductor layer made of a conductive polymer on the dielectric layer;
    Forming an electrode layer on the semiconductor layer;
    And a step of supplying an oxidant having an oxygen releasing function to the semiconductor layer or the dielectric layer.
  2.  前記の供給する工程が、酸素放出機能を有する酸化剤を含む溶液と上記半導体層を形成する工程または電極層を形成する工程で得られるものとを接触させる工程を含む請求項1に記載の製造方法。 The manufacturing according to claim 1, wherein the supplying step includes a step of bringing a solution containing an oxidizing agent having an oxygen releasing function into contact with a solution obtained in the step of forming the semiconductor layer or the step of forming an electrode layer. Method.
  3.  前記の電極層を形成する工程で得られるものは、半導体層上に電極層が形成されていない領域が一部にあり、
     前記の供給する工程は、該領域と、酸素放出機能を有する酸化剤を含む溶液とを接触させることを含む請求項1または2に記載の製造方法。
    What is obtained in the step of forming the electrode layer is partly a region where the electrode layer is not formed on the semiconductor layer,
    The manufacturing method according to claim 1, wherein the supplying step includes bringing the region into contact with a solution containing an oxidizing agent having an oxygen releasing function.
  4.  前記の供給する工程が、前記領域を、酸素放出機能を有する酸化剤を含む溶液に浸漬することを含む請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the supplying step includes immersing the region in a solution containing an oxidizing agent having an oxygen releasing function.
  5.  前記の供給する工程の後に、電極層表面から前記溶液を除去する工程をさらに含む請求項2~4のいずれかひとつに記載の製造方法。 5. The manufacturing method according to claim 2, further comprising a step of removing the solution from the electrode layer surface after the supplying step.
  6.  前記の供給する工程が、前記領域から、酸素放出機能を有する酸化剤を含む溶液を含浸させることを含む請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the supplying step includes impregnating a solution containing an oxidizing agent having an oxygen releasing function from the region.
  7.  酸化剤を含む溶液は、水を80質量%以上含んでなる溶媒を含んでいる請求項2~6のいずれかひとつに記載の製造方法。 The production method according to any one of claims 2 to 6, wherein the solution containing the oxidizing agent contains a solvent containing 80% by mass or more of water.
  8.  酸化剤を含む溶液は、溶媒に対して0.1質量%以上飽和溶解度以下の前記酸化剤を含んでいる請求項2~7のいずれかひとつに記載の製造方法。 The production method according to any one of claims 2 to 7, wherein the solution containing the oxidizing agent contains the oxidizing agent in an amount of 0.1% by mass or more and saturated solubility or less with respect to the solvent.
  9.  前記の供給する工程における、溶液の温度が20~60℃である請求項2~8のいずれかひとつに記載の製造方法。 The production method according to any one of claims 2 to 8, wherein the temperature of the solution in the supplying step is 20 to 60 ° C.
  10.  酸素放出機能を有する酸化剤が、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、過硫酸化合物および有機過酸化物からなる群から選ばれる少なくとも一つである、請求項1~9のいずれかひとつに記載の製造方法。 The oxidizing agent having an oxygen releasing function is at least one selected from the group consisting of manganese (VII) compounds, chromium (VI) compounds, halogen acid compounds, persulfate compounds, and organic peroxides. The manufacturing method as described in any one of these.
  11.  酸素放出機能を有する酸化剤が過硫酸化合物である請求項1~9のいずれかひとつに記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the oxidizing agent having an oxygen releasing function is a persulfuric acid compound.
  12.  陽極体がタングステン粉の焼結体である請求項1~11のいずれかひとつに記載の製造方法。 The method according to any one of claims 1 to 11, wherein the anode body is a sintered body of tungsten powder.
PCT/JP2013/005649 2012-12-11 2013-09-24 Production method for solid electrolytic capacitor element WO2014091648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551836A JP5731720B2 (en) 2012-12-11 2013-09-24 Method for manufacturing solid electrolytic capacitor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270033 2012-12-11
JP2012270033 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091648A1 true WO2014091648A1 (en) 2014-06-19

Family

ID=50933962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005649 WO2014091648A1 (en) 2012-12-11 2013-09-24 Production method for solid electrolytic capacitor element

Country Status (2)

Country Link
JP (1) JP5731720B2 (en)
WO (1) WO2014091648A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093154A1 (en) * 2013-12-20 2015-06-25 昭和電工株式会社 Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor
WO2015093155A1 (en) * 2013-12-20 2015-06-25 昭和電工株式会社 Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor
JP5824115B1 (en) * 2014-06-23 2015-11-25 昭和電工株式会社 Method for manufacturing tungsten-based capacitor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247109A (en) * 1985-08-27 1987-02-28 昭和電工株式会社 Manufacture of solid electrolytic capacitor
JPH0335516A (en) * 1989-06-30 1991-02-15 Nitto Denko Corp Solid electrolytic capacitor and manufacture thereof
JPH0714751A (en) * 1992-10-19 1995-01-17 Nitto Denko Corp Production of solid electrolytic capacitor
JP2004349658A (en) * 2002-07-26 2004-12-09 Sanyo Electric Co Ltd Electrolytic capacitor
JP2009505413A (en) * 2005-08-19 2009-02-05 エイブイエックス リミテッド Solid capacitor and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247109A (en) * 1985-08-27 1987-02-28 昭和電工株式会社 Manufacture of solid electrolytic capacitor
JPH0335516A (en) * 1989-06-30 1991-02-15 Nitto Denko Corp Solid electrolytic capacitor and manufacture thereof
JPH0714751A (en) * 1992-10-19 1995-01-17 Nitto Denko Corp Production of solid electrolytic capacitor
JP2004349658A (en) * 2002-07-26 2004-12-09 Sanyo Electric Co Ltd Electrolytic capacitor
JP2009505413A (en) * 2005-08-19 2009-02-05 エイブイエックス リミテッド Solid capacitor and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093154A1 (en) * 2013-12-20 2015-06-25 昭和電工株式会社 Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor
WO2015093155A1 (en) * 2013-12-20 2015-06-25 昭和電工株式会社 Tungsten powder, positive electrode body for capacitors, and electrolytic capacitor
JP5824115B1 (en) * 2014-06-23 2015-11-25 昭和電工株式会社 Method for manufacturing tungsten-based capacitor element

Also Published As

Publication number Publication date
JPWO2014091648A1 (en) 2017-01-05
JP5731720B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP4614269B2 (en) Solid electrolytic capacitor
WO2013186970A1 (en) Capacitor element and method for manufacturing same
JP5731720B2 (en) Method for manufacturing solid electrolytic capacitor element
JP5502562B2 (en) Manufacturing method of solid electrolytic capacitor
JP5731719B2 (en) Carbon paste and solid electrolytic capacitor element
US9607770B2 (en) Method for producing capacitor
US8512423B2 (en) Method for producing solid electrolytic capacitor
JP4827195B2 (en) Method for manufacturing solid electrolytic capacitor element
US10032563B2 (en) Capacitor element
US20170047169A1 (en) Method for manufacturing tungsten-based capacitor element
JP4689381B2 (en) Capacitor element manufacturing method
JP3992706B2 (en) Capacitor manufacturing method
JP5020465B2 (en) Chip-shaped solid electrolytic capacitor and manufacturing method thereof
JP5940222B2 (en) Anode body of solid electrolytic capacitor element and manufacturing method thereof
JP5824115B1 (en) Method for manufacturing tungsten-based capacitor element
JP5496708B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10275746A (en) Manufacture of solid-state electrolytic capacitor
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element
JP2005057255A (en) Method for manufacturing solid electrolytic capacitor
TWI469163B (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
JP2005101592A (en) Sintered compact and chip solid electrolytic capacitor using the same
JP2011176181A (en) Method of manufacturing solid-state electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862349

Country of ref document: EP

Kind code of ref document: A1