WO2014091594A1 - Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material - Google Patents

Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material Download PDF

Info

Publication number
WO2014091594A1
WO2014091594A1 PCT/JP2012/082340 JP2012082340W WO2014091594A1 WO 2014091594 A1 WO2014091594 A1 WO 2014091594A1 JP 2012082340 W JP2012082340 W JP 2012082340W WO 2014091594 A1 WO2014091594 A1 WO 2014091594A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay mineral
layered clay
organic
inorganic composite
composite material
Prior art date
Application number
PCT/JP2012/082340
Other languages
French (fr)
Japanese (ja)
Inventor
智和 棚瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/082340 priority Critical patent/WO2014091594A1/en
Priority to JP2014551798A priority patent/JP5945335B2/en
Publication of WO2014091594A1 publication Critical patent/WO2014091594A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to an interlayer modified layered clay mineral containing a silicon-containing oligomer excellent in electrical insulation, a varnish containing the same, an organic-inorganic composite material, an electric device using the organic-inorganic composite material, a semiconductor device, It relates to a rotating machine coil.
  • Layered clay minerals (clays) represented by montmorillonite and smectite are excellent in electrical insulation, and combined with various resin materials such as polyolefin, nylon, polystyrene, epoxy resin, etc. to reduce flame resistance, lower dielectric constant, and improve insulation life It is known that excellent properties such as high strength and low thermal expansion can be imparted.
  • Patent Document 1 describes that when the clay organically treated with ammonium ion and the polyolefin are complexed, the flame retardancy is improved.
  • Patent Document 2 describes that the insulation life of an epoxy resin containing a layered clay mineral modified with a quaternary ammonium ion is improved.
  • Non-Patent Document 1 describes that an epoxy resin with montmorillonite interlayer-modified with phosphonium ion has improved low thermal expansion.
  • Non-Patent Document 2 describes that montmorillonite obtained by interlayer modification of 1,2-aminolauric acid improves the strength of nylon.
  • the clay dispersion technology by the conventional interlayer modification method it is necessary to select an appropriate interlayer modifier according to the type of resin to be combined, and there is a problem that the combination of resins and types of resins that can be manufactured are limited.
  • the clay obtained by the conventional method is insufficient in peeling, and as a result, there is a problem that the function required of the clay, such as electrical insulation and material strength, is not sufficiently exhibited.
  • the present invention provides an interlayer-modified layered clay mineral containing a silicon-containing oligomer which can be highly dispersed in the resin regardless of the type of resin to be combined, and a varnish and an organic-inorganic composite material using the layered clay mineral,
  • An object of the present invention is to provide an electrical device, a semiconductor device and a rotating machine coil using the organic-inorganic composite material.
  • the present inventor has intensively studied to solve the above-mentioned problems. Then, when the layered clay mineral is modified between layers with a suitable cationic compound and a silicon-based oligomer formed by the hydrolysis reaction of an alkoxysilane is inserted, the interlayer distance of the layered clay mineral is expanded, and the layered clay mineral is It has been found that addition to a resin gives an organic-inorganic composite material in which the electrical insulation property is greatly improved, and the present invention has been completed.
  • the present invention is as follows.
  • An interlayer modified layered clay mineral comprising a silicon-containing oligomer, wherein the layered clay mineral is at least one selected from the group consisting of smectite group, mica group, vermiculite group and mica group And the interlayer modified layered clay mineral.
  • the particle size of the silicon-containing oligomer is 0.1 ⁇ m to 100 nm.
  • the thickness of the layered clay mineral is 0.05 ⁇ m to 10 ⁇ m.
  • a varnish comprising the interlayer modified layered clay mineral according to any one of (1) to (3) and a monomer.
  • the monomer is a bisphenol A type epoxy prepolymer, 4,4′-ethylidene diphenyl dicyanate, 3,3′-4,4′-biphenyl tetracarboxylic acid dianhydride, It is a varnish which is at least one or more selected from the group consisting of p-phenylenediamines.
  • An organic-inorganic composite material comprising the interlayer-modified layered clay mineral and resin according to any one of (1) to (3), or the varnish according to (4) or (5).
  • a semiconductor device including a semiconductor element and a sealing material, wherein the sealing material includes the organic-inorganic composite material according to (6) or (7), and the semiconductor element is sealed with the sealing material.
  • Semiconductor device including a semiconductor element and a sealing material, wherein the sealing material includes the organic-inorganic composite material according to (6) or (7), and the semiconductor element is sealed with the sealing material.
  • a rotating machine coil including a conductor and an insulating material, wherein the conductor wound with the insulating material is the varnish according to (4) or (5) or the organic-according to (6) or (7) It is the said rotary machine coil impregnated with the inorganic composite material.
  • the interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention has a high dielectric breakdown strength and can be highly dispersed in the resin regardless of the type of resin to be combined. It can be applied to materials and electrical devices.
  • FIG. 1 is a schematic explanatory view of a method for introducing a copper complex into a layered clay mineral.
  • FIG. 2 is a schematic explanatory view of a method of expanding the layers of the layered clay mineral by utilizing the hydrolysis reaction of alkoxysilane.
  • FIG. 3 is a schematic cross-sectional view of a power semiconductor device to which the organic-inorganic composite material of the present invention is applied.
  • FIG. 4 is a schematic cross-sectional view of an insulated wire manufactured using a varnish containing a layered clay mineral and a resin material according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of a rotary machine coil to which the organic-inorganic composite material of the present invention is applied.
  • FIG. 1 is a schematic explanatory view of a method for introducing a copper complex into a layered clay mineral.
  • FIG. 2 is a schematic explanatory view of a method of expanding the layers of the layered clay mineral by
  • FIG. 6 is a schematic view of a dielectric breakdown voltage measuring apparatus.
  • FIG. 7 shows the results of XRD measurement and X-ray fluorescence measurement of an untreated layered clay mineral.
  • FIG. 8 shows the results of XRD measurement and X-ray fluorescence measurement of the layered clay mineral to which the copper complex obtained in Examples 1 to 11 is introduced.
  • FIG. 9 is a graph showing the results of XRD measurement of a layered clay mineral in which the interlayer is expanded using the hydrolysis reaction of the alkoxysilane obtained in Example 4.
  • FIG. 10 is a graph showing the results of XRD measurement of the organic-inorganic composite material obtained in Example 4.
  • FIG. 11 is a cross-sectional SEM photograph of the organic-inorganic composite material obtained in Example 4 and a result of elemental analysis.
  • the present invention relates to a layered clay mineral having an interlayer distance extended with a silicon-based oligomer further formed by hydrolysis reaction of an alkoxysilane with respect to a layered clay mineral interlayer modified with a suitable cationic compound, and an organic containing the layered clay mineral -An inorganic composite material, an electric device using the organic-inorganic composite material, a semiconductor device, and a rotating machine coil are provided.
  • a layered clay mineral having an interlayer distance extended with a silicon-based oligomer further formed by hydrolysis reaction of an alkoxysilane with respect to a layered clay mineral interlayer modified with a suitable cationic compound, and an organic containing the layered clay mineral -An inorganic composite material, an electric device using the organic-inorganic composite material, a semiconductor device, and a rotating machine coil are provided.
  • the present invention will be described in detail.
  • Interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention comprises the silicon-containing oligomer intercalated between layers of the layered clay mineral It is characterized in that the layers are expanded.
  • a layered clay mineral is a fine-grained natural product that exhibits viscosity and plasticity when it contains an appropriate amount of water, and is a mineral that has an ordered layered structure.
  • the chemical components mainly include, but are not limited to, iron (Fe), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K) and the like in addition to silicic acid, alumina and water.
  • the main minerals are layered clay layered silicate minerals (phylosilicate minerals), but minerals such as calcite, dolomite, feldspars, quartz, and zeolites (zeolites) can also be mentioned.
  • the layered clay mineral of the present invention includes, for example, at least one selected from the mineral group consisting of smectite group, mica group, vermiculite group and mica group.
  • Layered clay minerals belonging to the smectite group include montmorillonite, hectorite, saponite, sauconite, beidellite, stevensite, nontronite and the like, but are not limited thereto.
  • Layered clay minerals belonging to the mica group include, but are not limited to, chlorite, phlogopite, lepidolite, muscovite, biotite, paragonite, margarite, teniolight, tetrasilicic mica, and the like.
  • Layered clay minerals belonging to the vermiculite group include, but are not limited to, trioctahedral vermiculite, dioctahedral vermiculite, and the like.
  • Layered clay minerals belonging to the mica group include, but are not limited to, muscovite, biotite, paragonite, levitrite, margarite, clintonite, anandite and the like.
  • the layered clay mineral of the present invention may be a natural product or a synthetic product, and the above-mentioned minerals can be used alone or in combination of two or more.
  • the layered clay mineral according to the present invention may be interlayer modified with a cationic compound.
  • the layered clay mineral modified with the cationic compound of the present invention refers to a mineral in which the cationic compound is ionically bonded to the interlayer and / or the surface of the layered clay mineral.
  • inorganic cations such as alkali metal ions such as sodium ions and alkaline earth metal ions are usually supported between layers.
  • Various substances can be supported between the layers of layered clay mineral by replacing this inorganic cation with other ions by ion exchange reaction or the like. This is called interlayer modification.
  • a silicon-containing oligomer is inserted into the layered viscosity mineral to expand the layers of the layered viscosity mineral.
  • the silicon-containing oligomer has a substituent that is compatible with the cationic compound. Therefore, silicon-containing oligomers can be inserted between the layers by modifying the cationic compound in advance between the layers of the layered viscosity mineral. That is, the layered viscosity mineral of the present invention is preferably modified between layers with a cationic compound.
  • the cationic compound used in the present invention is a compound having a high affinity to a silicon-containing oligomer containing a phenyl group for extending the interlayer distance of a layered viscosity mineral, an alkoxysilane having an amino group, an alkylamine, and an arylamine
  • Organic cationic compounds such as quaternary ammonium compounds and tertiary amine compounds such as dimethyldodecylamine
  • inorganic ions such as aluminum, copper, zinc, potassium and calcium
  • methylene blue, rhodamine B, phthalocyanines, and amine-modified Examples include, but are not limited to, heparin, proteins, and DNA molecules.
  • organic cationic compounds such as dimethyldodecylamine, diethylenetriamine, triethyltetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiverazine, mensene diamine, isophorone diamine, m-xylene diamine, meta-phenylene Diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) Organic cation compounds obtained by cationizing 3-aminopropylmethyldimethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, etc.
  • organic cationic compounds such as dimethyl
  • the above cationic compounds can be used alone or in combination of two or more.
  • the method of interlayer modification with the cationic compound of the present invention is a method of adsorbing and / or binding the cationic compound to the interlayer and / or the surface of the layered clay mineral by a physical or chemical method. For example, when layer clay mineral and hydrochloric acid cationized dimethyldodecylamine are mixed and stirred while heating, sodium ions are separated from the layer by ion exchange reaction, and cationized dimethyldodecylamine is supported on the layer or the surface A layered clay mineral is obtained.
  • the present invention is characterized in that a silicon-based oligomer is precipitated on a layered clay mineral which is interlayer-modified with the cationic compound thus obtained, to obtain a layered clay mineral having an expanded interlayer (FIG. 2).
  • the silicon-containing oligomer can be produced by hydrolyzing an alkoxysilane. Specifically, the layered clay mineral and an appropriate alkoxysilane are mixed and stirred in an organic solvent, and then a hydrolysis reaction is performed in the presence of an alkali catalyst or an acid catalyst to precipitate a silicon-based oligomer in the layered clay mineral.
  • the molar volume of the silicon-based oligomer is several tens to several hundreds times that of the raw material alkoxysilane as the molecular weight of the silicon-based oligomer is increased, and the layer of the layered clay mineral is expanded as the hydrolysis reaction progresses.
  • the silicon-containing oligomers of the present invention function as so-called spacers, which extend the interlayer distance of layered clay minerals.
  • alkoxysilane that is a raw material of silicon-based oligomers
  • examples of the alkoxysilane that is a raw material of silicon-based oligomers include tetraethoxysilane, tetramethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, mercaptopropyltrimethoxysilane, aminopropyltrimethoxysilane, methyltriethoxysilane and methyltrimethoxy Examples include, but are not limited to, silane, hexyl ethoxysilane, hexyltrimethoxysilane, p-styryltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like.
  • alkoxy having a benzene ring such as phenyltriethoxysilane, phenyltrimethoxysilane, p-styryltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and the like
  • Alkoxysilanes having alkyl groups such as silanes or ethyltrimethoxysilane, n-propyltrimethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, etc.
  • alkoxides can be used alone or as a mixture of two or more.
  • an alkoxide containing a metal element other than silicon such as titanium tetraethoxide, titanium tetraisopropoxide, aluminum propoxide, zirconium butoxide, etc. may be included.
  • a (1, 10 phenanthroline) copper complex is ion-exchanged between layers of the layered clay mineral, and the silicon-containing oligomer has a benzene ring Or a layered clay mineral in which cationized aliphatic amines are ion-exchanged between layers of the layered clay mineral, and a silicon-containing oligomer includes a long chain alkyl group, Not limited to these.
  • the particle size of the silicon-containing oligomer used in the present invention can be designed to be any size as long as it allows the interlayer to be expanded, preferably 0.1 nm to 100 nm, more preferably 1.61 nm to 2 .02 nm.
  • the layers can be measured by a known method, for example, using a high resolution X-ray diffractometer.
  • the X-ray source is set to Cu
  • the X-ray output is set to 50 kV-250 mA
  • the scanning range is set to 0.5 ⁇ 2 ⁇ ⁇ 60 deg
  • the XRD pattern is measured.
  • d represents the layer spacing
  • represents the diffraction angle
  • n represents the reflection order
  • the layer spacing can be calculated by using
  • the interlayer modified layered clay mineral containing the silicon-containing oligomer of the present invention can be designed to any thickness that exhibits excellent dielectric breakdown strength and dielectric breakdown voltage.
  • the thickness is 0.05 to 10 ⁇ m.
  • the thickness can be measured by a known method.
  • the layer clay mineral can be embedded in a resin or the like, fixed, and polished to expose the cross section of the layer clay mineral, and can be measured by a direct measurement with an electron microscope .
  • the silicon-containing oligomer and the interlayer-modified layered clay mineral may be present in any ratio as long as the interlayer is expanded.
  • 0.1 wt% to 10 wt% of the interlayer modified layered clay mineral and 0.1 wt% to 30 wt% of the silicon-containing oligomer may be present in any ratio as long as the interlayer is expanded.
  • the varnish of the present invention contains an interlayer-modified layered clay mineral containing the above-mentioned silicon-containing oligomer and a monomer, and refers to the state before curing reaction of these substances.
  • the monomer used for the varnish of the present invention include bisphenol A epoxy prepolymer, bisphenol F epoxy prepolymer, ortho-cresol novolac epoxy prepolymer, methylhymic anhydride, 2-ethyl- 4-Methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 4,4'-ethylidene diphenyl dicyanate, 4,4'-dicyanatobiphenyl, 3,3 ', 5,5'-tetra Methyl-4,4'-dicyanatobiphenyl, 3,3'-3,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine, pyromellitic dianhydride, 4,4'-diaminodiphenyl ether, Phenolic compounds, formaldehyde, urea, polyols, diisocyanates , Methyl methacrylate, styren
  • the varnish of the present invention can be prepared by mixing an interlayer modified layered clay mineral containing a silicon-containing oligomer with a resin raw material and sufficiently stirring, and any known method may be used.
  • resin raw materials include, but are not limited to, monomers, curing agents, curing catalysts and the like.
  • an organic solvent may be added for the purpose of lowering the viscosity of the resin raw material.
  • a stirring method a method of applying mechanical shearing such as a planetary ball mill or a bead mill may be used.
  • the varnish of the present invention can be used to provide an insulated wire exhibiting a high breakdown voltage.
  • the organic-inorganic composite material of the present invention comprises an interlayer-modified layered clay mineral and a resin comprising the above-mentioned silicon-containing oligomer of the present invention.
  • a layered clay mineral excellent in electrical insulation is used in combination with a resin material
  • the resin is characterized by flame retardancy, low dielectric constant, improvement in insulation life, high strength, low thermal expansion, etc. It can be granted.
  • a layered viscosity mineral having an increased interlayer distance is mixed with a resin, the layered viscosity mineral is highly dispersed in the resin. As a result, the above-mentioned characteristics of the resin can be enhanced.
  • the above-mentioned silicon-containing oligomer is inserted between the layers described in “(1) Interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention”, and the layered clay mineral in which the layers are expanded is mixed with the resin.
  • the present invention provides an organic-inorganic composite material excellent in withstand voltage characteristics.
  • the resin raw material of the present invention includes glycidyl ether compounds such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, ortho cresol novolac type epoxy resin, phenol resin, unsaturated polyester resin, polyimide resin, polyamide resin, polyamide imide resin, Although cyanate ester resin etc. are mention
  • the organic-inorganic composite material of the present invention can be produced using any known method.
  • the varnish described in the above-mentioned "(2) varnish of the present invention” is injected into a mold made of aluminum or the like together with other substances such as a catalyst, and heat-cured in an electric furnace to obtain an organic-inorganic composite material.
  • the varnish described in the above-mentioned "(2) varnish of the present invention” is injected into a mold made of aluminum or the like together with other substances such as a catalyst, and heat-cured in an electric furnace to obtain an organic-inorganic composite material.
  • the semiconductor device of the present invention is a semiconductor device including a semiconductor element and a sealing material, and the sealing material is the above-mentioned “(3) Organic-inorganic composite material of the present invention”.
  • the semiconductor element is sealed with the sealing material, including the organic-inorganic composite material of the present invention described above.
  • the semiconductor device of the present invention includes any known semiconductor device.
  • the semiconductor element of the present invention means an element of the functional central portion of the electronic component or the electronic component in the semiconductor, and is incorporated in an electric product / electronic device such as a television receiver, a cellular phone, or a computer. It is incorporated in the form of a computer etc.
  • Semiconductor devices according to the present invention include, but are not limited to, transistors, integrated circuits (IC ⁇ LSI), resistors, capacitors, and the like.
  • the sealing material of the present invention is one of the materials constituting the semiconductor package, and is a resin containing the organic-inorganic composite material of the present invention among resins used for preventing air oxidation and mixing of impurities.
  • FIG. 3 shows a schematic cross-sectional view of a power semiconductor device which is an example of the semiconductor device of the present invention.
  • the back side electrode of power semiconductor element 401 is electrically connected to circuit wiring member 402 on insulating substrate 406 by bonding material 404, and the main electrode of power semiconductor element 401 is lead member 403.
  • the wire 405. On the back side of the insulating substrate 406, a heat sink for dissipating heat generated by the power semiconductor element 401 to the outside is provided.
  • the periphery of the power semiconductor element 401 is sealed with a sealing resin (sealing material) 408 in a state where the circuit wiring member 402, the lead member 403, and a part of the heat dissipation plate 407 are exposed.
  • the organic-inorganic composite material of the present invention can be applied to the sealing resin (sealing material) 408.
  • the organic-inorganic composite material of the present invention has high dielectric breakdown strength, short circuit between the chip and the wiring due to partial discharge can be prevented, which can contribute to increase the life of the power semiconductor device.
  • the structure of the power semiconductor device shown in FIG. 3 is an example, and it is possible to apply the organic-inorganic composite material of the present invention as a sealing resin that covers the periphery of the semiconductor element 401 even in semiconductor devices of other structures. Nor.
  • Electric wire of the present invention is an electric wire containing a conductor and an insulating material, and the conductor is the varnish of the present invention described in the above-mentioned "(2) Varnish of the present invention"
  • the organic-inorganic composite material according to the present invention is coated with the insulating material containing the organic-inorganic composite material according to the present invention.
  • the electric wire of the present invention includes a linear conductor such as metal and is for conducting electricity between two points, and means a wire for insulation and protection.
  • high voltage distribution lines, high voltage drop lines, low voltage overhead lines, low voltage drop lines, electric power cables such as indoor wiring, electric equipment electric wires, communication electric wires, underground electric wires, indoor wiring, fire fighting equipment, control circuits, This includes, but is not limited to, cables for use in power equipment, ships, under carpet wiring, etc., and cords and the like used in connection with outlets of small electric products.
  • it includes electric wires of any shape such as single wires, twisted wires, twisted wire pairs, and shielded wires.
  • the conductor contained in the electric wire of the present invention is a material having a high electric conductivity (conductivity) which contains movable electric charge and easily conducts electricity, and it is, for example, copper, silver, aluminum, an optical fiber or an alloy of these, etc.
  • a material having a high electric conductivity conductivity
  • it is, for example, copper, silver, aluminum, an optical fiber or an alloy of these, etc.
  • the insulating material polyethylene, crosslinked polyethylene, polyvinyl chloride, Kapton, rubber-like polymer, oil-impregnated paper, Teflon (registered trademark), silicone, fluorine resin, etc. other than the varnish of the present invention or the organic-inorganic composite material
  • a substance having the property of being difficult to pass through electricity or heat may be included.
  • FIG. 4 sectional drawing of the insulated wire produced using the varnish of this invention which is one example of the electric wire of this invention is shown.
  • the said insulated wire can be manufactured by, for example, forming the insulation coating 502 containing the varnish of this invention in the conductor 501, and baking it.
  • the film containing the varnish and the organic-inorganic composite material according to the present invention exhibits a high dielectric breakdown voltage, so that an insulated wire excellent in surge resistance can be obtained.
  • the rotating machine coil of the present invention includes a conductor and an insulating material, and the conductor wound with the insulating material is the book described in the above (2) the varnish of the present invention. It is impregnated with the insulating material containing the varnish of the invention or the organic-inorganic composite material of the present invention described in “(3) Organic-inorganic composite material of the present invention”.
  • the rotating machine coil of the present invention is an insulating coated conductor wound in a coil shape, and is used for a motor or a generator by combining with a magnet.
  • FIG. 5 the structure of the rotary machine coil which is an example of the rotary machine coil of this invention is shown.
  • the rotary coil of the present invention is manufactured, for example, by winding an insulating tape around a conductor 601, heating and drying, and then vacuum impregnating the varnish of the present invention and then heating and curing to form an insulating coating 602. be able to.
  • the rotating machine coil of the present invention is coated with a resin having high insulating properties as described above, the heat resistant life is high.
  • the clay was separated by vacuum filtration. At this time, it was confirmed that the filtrate had a blue, red or black color.
  • the clay was again dispersed in pure water, and redispersion and filtration under reduced pressure were repeated until the color of the filtrate became clear, to completely remove unreacted copper complexes, sodium ions, chloride ions and the like in the dispersion.
  • the washed clay was vacuum dried at 75 ° C. for 12 hours to completely remove water. It was confirmed that the dried clay was blue, red or black depending on the type of copper complex supported. In addition, it was confirmed by fluorescent X-ray analysis that sodium and chlorine were removed from the dried clay.
  • 0.4 g of clay was ultrasonically dispersed in 40 ml of hexane. Further, phenyltriethoxysilane and tetraethoxysilane were added, and left standing overnight. At this time, the addition amount of phenyltriethoxysilane and tetraethoxysilane was set to 1: 1, and four kinds of samples having different total addition amounts were manufactured to conduct an experiment. A mixed solution of 5 g of water, 3 g of 25% aqueous ammonia and 30 ml of ethanol was added to this dispersion, and the mixture was stirred at room temperature for 4 hours using a magnetic stirrer. After stirring, the solvent was removed at 80 ° C.
  • Example 11 Treated powder prepared by the same method as in Example 2 and bisphenol A type epoxy resin (JER 828; Japan Epoxy), acid anhydride (MHAC-P; Hitachi Chemical) and imidazole curing catalyst (2EMZ-CN; Shikoku Kasei And the mixture was stirred by a ball mill for 2 hours.
  • the rotation speed of the ball mill was set to 450 rpm, and the mode was set to reverse at intervals of 5 minutes.
  • the resulting varnish was heated at 100 ° C. ⁇ 120 ° C. ⁇ 150 ° C. for 1 hour each, and finally heated at 180 ° C. for 2 hours to obtain an organic-inorganic composite material.
  • Example 12 The mixture was heated in 3,3'-4,4'-biphenyltetracarboxylic dianhydride and water, or in methanol or ethanol, to synthesize a tetracarboxylic acid or a carboxylic acid ester. After cooling, p-phenylenediamine was added and heated to synthesize a polyamic acid. The treated polyamic acid was dissolved in a solvent such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N 'dimethyl acetamide, N, N' dimethylformamide, etc. Mix and stir in a ball mill for 2 hours.
  • a solvent such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N 'dimethyl acetamide, N, N' dimethylformamide, etc.
  • the rotation speed of the ball mill was set to 450 rpm, and the mode was set to reverse at intervals of 5 minutes.
  • the obtained varnish was heated at 100 ° C. for 1 hour, and then heated at 400 ° C. for 30 minutes to obtain an organic-inorganic composite material.
  • XRD measurement (interlayer distance evaluation) The distance between clay layers in the treated powder and the organic-inorganic composite material of Examples 1 to 11 and Comparative Examples 1 to 2 was measured using a high resolution X-ray diffractometer (manufactured by Rigaku Corporation, model: ATX-G) did.
  • the X-ray source is Cu
  • the X-ray output is 50 kV-250 mA
  • the scanning range is 0.5 ⁇ 2 ⁇ ⁇ 60 deg.
  • a spherical electrode 705 with a diameter of 5 mm is placed on the surface of the organic-inorganic composite material 704 on the aluminum plate 707, and the voltage of commercial frequency (50 Hz) is gradually boosted between the aluminum plate 707 and the spherical electrode 705 (boosting speed: 1 kV / sec ), And the voltage when the short circuit current flows is taken as the breakdown voltage V TOP (kV).
  • the measurement sample 704, the spherical electrode 705 and the aluminum plate 707 were immersed in an electrically insulating oil (Fluorinert (registered trademark) Sumitomo 3M Co., Ltd., FC-77) 702 filled in a polypropylene case 701.
  • V RMS breakdown voltage
  • FIG. 10 shows the result of X-ray diffraction of the organic-inorganic composite prepared in Example 4.
  • the layer spacing was 1.70 nm according to Bragg's equation. Only an increase of 0.02 nm was observed as compared to the layered clay mineral processed in FIG.
  • Table 1 shows the layer spacing of the layered clay mineral dispersed under various conditions, and the spacing and dielectric breakdown strength of the layered clay mineral in the organic-inorganic composite material.
  • the layer spacing of the layered clay mineral can be controlled from 1.61 nm to 2.02 nm by the blending amount of the alkoxysilane at the time of dispersion treatment. Also, the layer spacing in the organic-inorganic composite was controllable from 1.64 nm to 4.51 nm.
  • FIG. 11 shows a cross-sectional SEM photograph of the organic-inorganic composite produced in Example 4 and the result of elemental analysis. Elemental analysis showed that a peak of silicon was observed at the peak position of aluminum. On the other hand, it was shown that there are places where peaks of silicon and oxygen can be seen even in a part where aluminum does not exist. Since aluminum is a constituent element of a layered clay mineral, it was thought that in the resin, a portion in which the layered clay mineral and silicon oxide coexist and a portion in which only silicon oxide is present.
  • the reason why the dielectric breakdown strength of the organic-inorganic composite material is improved is that since the layered clay mineral is electrically neutralized by the adsorption of the layered clay mineral by the electrostatic interaction of the silicon oxide, the insulation The breakdown strength has been improved.
  • Example 13 A power semiconductor device was manufactured using the organic-inorganic composite material of the present invention. First, 80 wt% of silica as a filler in the varnish of Example 4, 5 parts by weight of KBM 403 (Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, Hoechst Wax E (manufactured by Clariant Japan Co., Ltd.) as a release agent 2 parts by weight and 1 part by weight of carbon black as a colorant were added, and the mixture was melt-kneaded to prepare a sealing resin raw material.
  • KBM 403 Shin-Etsu Chemical Co., Ltd.
  • Hoechst Wax E manufactured by Clariant Japan Co., Ltd.
  • a module on which a power semiconductor element is mounted is manufactured, and the entire module is covered by a potting method using a sealing resin raw material, and 100 ° C. ⁇ 120 ° C. ⁇ 150 ° C. ⁇ 200 ° C. for one hour each It was heat cured for a while and sealed with a resin.
  • the schematic diagram of the produced power semiconductor device is shown in FIG.
  • the back side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 on the insulating substrate 406 by the bonding material 404, and the main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 by the wire 405 There is.
  • the periphery of the power semiconductor element 401 is sealed with a sealing resin 408 in a state in which the circuit wiring member 402, the lead member 403, and a part of the heat dissipation plate 407 are exposed.
  • the power cycle life of the comparative example 3 was 4000 times while the power cycle life of the example 13 was 20000 times. From the above, it has been shown that the power cycle life is improved by using the organic-inorganic composite material of the present invention for a power semiconductor device. This is because when the organic-inorganic composite material of the present invention is used as the sealing material, the insulation deterioration due to the partial discharge voltage is suppressed.
  • Example 14 (Preparation of Example 14 and Comparative Example 4) As Example 14, an enameled wire was made on a trial basis by a process of applying a varnish containing the layered clay mineral of the present invention and a resin raw material to a wire and heating it. As a result of the accelerated life evaluation at 150 ° C., the reduction rate of the breakdown voltage at 500 h was 5% of the initial value.
  • an enameled wire was manufactured by using a commercially available insulating covering material.
  • the reduction rate of the breakdown voltage at 500 h was 60% of the initial value. From the above, it was shown that an enameled wire excellent in voltage resistance can be obtained by using the organic-inorganic composite of the present invention as an enameled wire coating material.
  • Example 15 (Preparation of Example 15 and Comparative Example 5) As Example 15, after winding an insulating tape around a conductor, heating and drying, a varnish containing the layered clay mineral of the present invention and a resin raw material was vacuum impregnated and heat-cured to obtain a rotary machine coil. As a result of carrying out accelerated life evaluation of this rotary machine coil at 150 ° C., the decreasing rate of the breakdown voltage of 500 h was 10% of the initial value.
  • the organic-inorganic composite material containing the interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention has a high dielectric breakdown strength, so that it is possible to prevent short circuit between the chip and the wiring due to partial discharge. Can contribute to the longevity of
  • a film using a varnish containing the interlayer-modified layered clay mineral of the present invention and a monomer exhibits a high dielectric breakdown voltage, and thus can provide an insulated wire excellent in surge resistance characteristics.
  • a rotary coil can be obtained by vacuum impregnation of the varnish of the present invention and heat curing to form an insulation coating. Since this rotating machine coil is coated with a highly insulating resin, it has a high heat resistant life and is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention addresses the problem of providing: an interlayer-modified layered clay mineral including a silicon-containing oligomer having excellent electrical insulation properties; a varnish and an organic-inorganic composite material including same; and an electrical device, a semiconductor device, and a rotary machine coil using said organic-inorganic composite material. Said problem is solved by: a layered clay mineral being interlayer-modified by an appropriate cationic compound and having an expanded clay interlayer distance as a result of the insertion of a silicon oligomer generated by the hydrolysis reaction of an alkoxysilane; and an organic-inorganic composite material having said layered clay mineral added to a resin and having the electrical insulation properties thereof greatly improved.

Description

層状粘土鉱物、それを含むワニス及び有機-無機複合材料、当該有機-無機複合材料を用いた電気的装置、半導体装置及び回転機コイルLayered clay mineral, varnish containing the same, organic-inorganic composite material, electric device using the organic-inorganic composite material, semiconductor device and rotary coil
 本発明は、電気絶縁性に優れるケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物、それを含むワニス及び有機-無機複合材料、当該有機-無機複合材料を用いた電気的装置、半導体装置及び回転機コイルに関する。 The present invention relates to an interlayer modified layered clay mineral containing a silicon-containing oligomer excellent in electrical insulation, a varnish containing the same, an organic-inorganic composite material, an electric device using the organic-inorganic composite material, a semiconductor device, It relates to a rotating machine coil.
 電気・電子機器のパワー密度は年々増加し、インバーターや発電機の動作環境は高温化、高電界化が進んでいる。それに伴い、これらを構成する絶縁樹脂材料については、高耐熱化、高耐電圧化が課題となっている。 The power density of electric and electronic devices is increasing year by year, and the operating environment of inverters and generators is getting higher in temperature and higher in electric field. In connection with it, high heat resistance-ization and high voltage-resistance-ization become a subject about the insulation resin material which comprises these.
 モンモリロナイト、スメクタイトに代表される層状粘土鉱物(クレイ)は電気絶縁性に優れ、ポリオレフィン、ナイロン、ポリスチレン、エポキシ樹脂等の様々な樹脂材料との組み合わせにより難燃化、低誘電率化、絶縁寿命向上、高強度化、低熱膨張化等の優れた特性を付与できることが知られている。 Layered clay minerals (clays) represented by montmorillonite and smectite are excellent in electrical insulation, and combined with various resin materials such as polyolefin, nylon, polystyrene, epoxy resin, etc. to reduce flame resistance, lower dielectric constant, and improve insulation life It is known that excellent properties such as high strength and low thermal expansion can be imparted.
 例えば、特許文献1は、アンモニウムイオンで有機化処理したクレイとポリオレフィンとを複合化すると、難燃化が向上したことを記載する。特許文献2は、4級アンモニウムイオンで層間修飾した層状粘土鉱物を含むエポキシ樹脂の絶縁寿命が向上したことを記載する。非特許文献1は、ホスホニウムイオンで層間修飾したモンモリロナイトによるエポキシ樹脂は低熱膨張化が向上したことを記載する。そして、非特許文献2は、1,2-アミノラウリン酸を層間修飾したモンモリロナイトはナイロンの強度を向上させたことを記載する。 For example, Patent Document 1 describes that when the clay organically treated with ammonium ion and the polyolefin are complexed, the flame retardancy is improved. Patent Document 2 describes that the insulation life of an epoxy resin containing a layered clay mineral modified with a quaternary ammonium ion is improved. Non-Patent Document 1 describes that an epoxy resin with montmorillonite interlayer-modified with phosphonium ion has improved low thermal expansion. Non-Patent Document 2 describes that montmorillonite obtained by interlayer modification of 1,2-aminolauric acid improves the strength of nylon.
特開2006-265507号公報JP, 2006-265507, A 特開2005-251543号公報JP 2005-251543 A
 しかし、従来の層間修飾法によるクレイ分散技術では、組み合わせる樹脂の種類に応じた適切な層間修飾剤を選定する必要があり、樹脂の組み合わせ及び作製できる樹脂の種類が制限されていたという問題があった。また、従来の方法で得られるクレイは、剥離が不十分であり、その結果、電気絶縁性や材料強度等といったクレイに求められる機能が十分に発現されないという問題があった。そこで、本発明は、組み合わせる樹脂の種類を選ばずに樹脂中へ高分散できるケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物と、その層状粘土鉱物を用いたワニス及び有機-無機複合材料、当該有機-無機複合材料を用いた電気的装置、半導体装置及び回転機コイルを提供することを目的とする。 However, in the clay dispersion technology by the conventional interlayer modification method, it is necessary to select an appropriate interlayer modifier according to the type of resin to be combined, and there is a problem that the combination of resins and types of resins that can be manufactured are limited. The In addition, the clay obtained by the conventional method is insufficient in peeling, and as a result, there is a problem that the function required of the clay, such as electrical insulation and material strength, is not sufficiently exhibited. Therefore, the present invention provides an interlayer-modified layered clay mineral containing a silicon-containing oligomer which can be highly dispersed in the resin regardless of the type of resin to be combined, and a varnish and an organic-inorganic composite material using the layered clay mineral, An object of the present invention is to provide an electrical device, a semiconductor device and a rotating machine coil using the organic-inorganic composite material.
 本発明者は、上記課題を解決するために鋭意研究を行った。そして、層状粘土鉱物を適当なカチオン性化合物で層間修飾して、アルコキシシランの加水分解反応により生成するケイ素系オリゴマーを挿入すると、当該層状粘土鉱物の層間距離が拡大すること及び当該層状粘土鉱物を樹脂へ添加すると電気絶縁性が大きく向上する有機-無機複合材料が得られることを見出して、本発明を完成するに至った。 The present inventor has intensively studied to solve the above-mentioned problems. Then, when the layered clay mineral is modified between layers with a suitable cationic compound and a silicon-based oligomer formed by the hydrolysis reaction of an alkoxysilane is inserted, the interlayer distance of the layered clay mineral is expanded, and the layered clay mineral is It has been found that addition to a resin gives an organic-inorganic composite material in which the electrical insulation property is greatly improved, and the present invention has been completed.
 すなわち、本発明は以下のとおりである。 That is, the present invention is as follows.
 (1) ケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物であって、前記層状粘土鉱物がスメクタイト群、マイカ群、バーミキュライト群及び雲母群からなる群から選ばれる少なくとも1種又はそれ以上である、前記層間修飾された層状粘土鉱物である。好ましくは、前記ケイ素含有オリゴマーの粒径は0.1μm~100nmである。また、好ましくは、前記層状粘土鉱物の厚みは0.05μm~10μmである。 (1) An interlayer modified layered clay mineral comprising a silicon-containing oligomer, wherein the layered clay mineral is at least one selected from the group consisting of smectite group, mica group, vermiculite group and mica group And the interlayer modified layered clay mineral. Preferably, the particle size of the silicon-containing oligomer is 0.1 μm to 100 nm. In addition, preferably, the thickness of the layered clay mineral is 0.05 μm to 10 μm.
 (2) (1)記載の層間修飾された層状粘土鉱物において、前記層状粘土鉱物が0.1wt%~10wt%、ケイ素含有オリゴマーが0.1wt%~30wt%含まれる、層間修飾された層状粘土鉱物である。 (2) The interlayer-modified layered clay according to (1), wherein the layered clay mineral is contained at 0.1 wt% to 10 wt% and the silicon-containing oligomer is contained at 0.1 wt% to 30 wt%. It is a mineral.
 (3) (1)又は(2)記載の層間修飾された層状粘土鉱物において:前記層間修飾された層状粘土鉱物の層間に(1,10フェナントロリン)銅錯体がイオン交換されており、かつ、ケイ素含有オリゴマーがベンゼン環を含むか;又は、前記層間修飾された層状粘土鉱物の層間にカチオン化された脂肪族アミン類がイオン交換されており、かつ、ケイ素含有オリゴマーが長鎖アルキル基を含む;層間修飾された層状粘土鉱物である。 (3) In the interlayer-modified layered clay mineral according to (1) or (2): (1,10 phenanthroline) copper complex is ion-exchanged between layers of the interlayer-modified layered clay mineral, and silicon The contained oligomer contains a benzene ring; or the cationized aliphatic amine is ion-exchanged between the layers of the interlayer-modified layered clay mineral, and the silicon-containing oligomer contains a long chain alkyl group; An interlayer modified layered clay mineral.
 (4) (1)~(3)いずれか1項記載の層間修飾された層状粘土鉱物及びモノマーを含む、ワニスである。 (4) A varnish comprising the interlayer modified layered clay mineral according to any one of (1) to (3) and a monomer.
 (5) (4)記載のワニスにおいて、前記モノマーがビスフェノールA型エポキシプレポリマー、4,4’-エチリデンジフェニルジシアナート、3、3’-4,4’-ビフェニルテトラカルボン酸二無水物、p-フェニレンジアミンからなる群から選ばれる少なくとも1種又はそれ以上である、ワニスである。 (5) In the varnish described in (4), the monomer is a bisphenol A type epoxy prepolymer, 4,4′-ethylidene diphenyl dicyanate, 3,3′-4,4′-biphenyl tetracarboxylic acid dianhydride, It is a varnish which is at least one or more selected from the group consisting of p-phenylenediamines.
 (6) (1)~(3)いずれか1項記載の層間修飾された層状粘土鉱物及び樹脂、又は、(4)若しくは(5)記載のワニスを含む、有機-無機複合材料である。 (6) An organic-inorganic composite material comprising the interlayer-modified layered clay mineral and resin according to any one of (1) to (3), or the varnish according to (4) or (5).
 (7) (6)記載の有機-無機複合材料において、前記樹脂がエポキシ樹脂、シアネートエステル樹脂、ポリイミド樹脂からなる群から選ばれる少なくとも1種以上である、有機-無機複合材料である。 (7) The organic-inorganic composite material according to (6), wherein the resin is at least one selected from the group consisting of an epoxy resin, a cyanate ester resin, and a polyimide resin.
 (8) 半導体素子及び封止材を含む半導体装置であって、前記封止材は(6)又は(7)記載の有機-無機複合材料を含み、前記半導体素子が前記封止材で封止される、半導体装置である。 (8) A semiconductor device including a semiconductor element and a sealing material, wherein the sealing material includes the organic-inorganic composite material according to (6) or (7), and the semiconductor element is sealed with the sealing material. Semiconductor device.
 (9) 導体と絶縁材料を含む電線であって、前記導体が、(4)若しくは(5)記載のワニス又は(6)又は(7)記載の有機-無機複合材料を含む前記絶縁材料で被覆されている、前記電線である。 (9) A wire containing a conductor and an insulating material, wherein the conductor is coated with the varnish described in (4) or (5) or the insulating material containing the organic-inorganic composite material described in (6) or (7). And the electric wire.
 (10) 導体と絶縁材料を含む回転機コイルであって、前記絶縁材料が巻回された前記導体は、(4)若しくは(5)記載のワニス又は(6)又は(7)記載の有機-無機複合材料で含浸されている、前記回転機コイルである。 (10) A rotating machine coil including a conductor and an insulating material, wherein the conductor wound with the insulating material is the varnish according to (4) or (5) or the organic-according to (6) or (7) It is the said rotary machine coil impregnated with the inorganic composite material.
 本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物は、絶縁破壊強度が高く、組み合わせる樹脂の種類を選ばずに樹脂中へ高分散させることができるため、幅広いワニス、有機-無機複合材料及び電気的装置に適用することができる。 The interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention has a high dielectric breakdown strength and can be highly dispersed in the resin regardless of the type of resin to be combined. It can be applied to materials and electrical devices.
図1は、層状粘土鉱物に銅錯体を導入する方法の概略説明図である。FIG. 1 is a schematic explanatory view of a method for introducing a copper complex into a layered clay mineral. 図2は、アルコキシシランの加水分解反応を利用して層状粘土鉱物の層間を拡大する方法の概略説明図である。FIG. 2 is a schematic explanatory view of a method of expanding the layers of the layered clay mineral by utilizing the hydrolysis reaction of alkoxysilane. 図3は、本発明の有機-無機複合材料が適用されるパワー半導体装置の断面模式図である。FIG. 3 is a schematic cross-sectional view of a power semiconductor device to which the organic-inorganic composite material of the present invention is applied. 図4は、本発明に係る層状粘土鉱物と樹脂原料を含むワニスを用いて作製した絶縁電線の断面模式図である。FIG. 4 is a schematic cross-sectional view of an insulated wire manufactured using a varnish containing a layered clay mineral and a resin material according to the present invention. 図5は、本発明の有機-無機複合材料が適用される回転機コイルの構成を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing the configuration of a rotary machine coil to which the organic-inorganic composite material of the present invention is applied. 図6は、絶縁破壊電圧測定装置の模式図である。FIG. 6 is a schematic view of a dielectric breakdown voltage measuring apparatus. 図7は、未処理の層状粘土鉱物のXRD測定結果及び蛍光X線測定結果を示す図である。FIG. 7 shows the results of XRD measurement and X-ray fluorescence measurement of an untreated layered clay mineral. 図8は、実施例1~11で得られる銅錯体を導入した層状粘土鉱物のXRD測定結果及び蛍光X線測定結果を示す図である。FIG. 8 shows the results of XRD measurement and X-ray fluorescence measurement of the layered clay mineral to which the copper complex obtained in Examples 1 to 11 is introduced. 図9は、実施例4で得られるアルコキシシランの加水分解反応を利用して層間を拡大した層状粘土鉱物のXRD測定結果を示す図である。FIG. 9 is a graph showing the results of XRD measurement of a layered clay mineral in which the interlayer is expanded using the hydrolysis reaction of the alkoxysilane obtained in Example 4. 図10は、実施例4で得られる有機-無機複合材料のXRD測定結果を示す図である。FIG. 10 is a graph showing the results of XRD measurement of the organic-inorganic composite material obtained in Example 4. 図11は、実施例4で得られる有機-無機複合材料の断面SEM写真及び元素分析結果を示す図である。FIG. 11 is a cross-sectional SEM photograph of the organic-inorganic composite material obtained in Example 4 and a result of elemental analysis.
 本発明は、適当なカチオン性化合物で層間修飾した層状粘土鉱物に対して、さらにアルコキシシランの加水分解反応により生成するケイ素系オリゴマーで層間距離を拡張した層状粘土鉱物及び当該層状粘土鉱物を含む有機-無機複合材料、当該有機-無機複合材料を用いた電気的装置、半導体装置及び回転機コイルを提供する。以下、本発明を詳細に説明する。 The present invention relates to a layered clay mineral having an interlayer distance extended with a silicon-based oligomer further formed by hydrolysis reaction of an alkoxysilane with respect to a layered clay mineral interlayer modified with a suitable cationic compound, and an organic containing the layered clay mineral -An inorganic composite material, an electric device using the organic-inorganic composite material, a semiconductor device, and a rotating machine coil are provided. Hereinafter, the present invention will be described in detail.
 (1)本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物
 本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物は、層状粘土鉱物の層間に上記ケイ素含有オリゴマーが挿入されており、層間が拡がっていることを特徴とする。
(1) Interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention The interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention comprises the silicon-containing oligomer intercalated between layers of the layered clay mineral It is characterized in that the layers are expanded.
 <層状粘土鉱物>
 層状粘土鉱物とは、適量の水を含んでいるときに粘性と可塑性を示す微粒の天然物で、整然とした層状構造であるような鉱物をいう。その化学成分としては、主としてケイ酸・アルミナ・水のほか、鉄(Fe)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)及びカリウム(K)等も含まれるがこれらに限定されない。主な鉱物としては層状粘土層状ケイ酸塩鉱物(フィロケイ酸塩鉱物)があるが、方解石、苦灰石、長石類、石英、沸石(ゼオライト)類などの鉱物等もあげられる。
<Layered clay mineral>
A layered clay mineral is a fine-grained natural product that exhibits viscosity and plasticity when it contains an appropriate amount of water, and is a mineral that has an ordered layered structure. The chemical components mainly include, but are not limited to, iron (Fe), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K) and the like in addition to silicic acid, alumina and water. The main minerals are layered clay layered silicate minerals (phylosilicate minerals), but minerals such as calcite, dolomite, feldspars, quartz, and zeolites (zeolites) can also be mentioned.
 本発明の層状粘土鉱物としては、例えばスメクタイト群、マイカ群、バーミキュライト群、雲母群からなる鉱物群から選ばれる少なくとも1種以上があげられる。スメクタイト群に属する層状粘土鉱物としては、モンモリロナイト、ヘクトライト、サポナイト、ソーコナイト、バイデライト、ステブンサイト、ノントロナイト等があげられるが、これらに限定されない。マイカ群に属する層状粘土鉱物としては、クロライト、フロゴパイト、レピドライト、マスコバイト、バイオタイト、パラゴナイト、マーガライト、テニオライト、テトラシリシックマイカ等があげられるが、これらに限定されない。バーミキュライト群に属する層状粘土鉱物としては、トリオクタヘドラルバーミキュライト、ジオクタヘドラルバーミキュライト等があげられるが、これらに限定されない。雲母群に属する層状粘土鉱物としては、白雲母、黒雲母、パラゴナイト、レビトライト、マーガライト、クリントナイト、アナンダイト等があげられるが、これらに限定されない。本発明の層状粘土鉱物としては、天然物でも合成物でもよく、また、上記の鉱物を単独で又は2種類以上併用して用いることができる。 The layered clay mineral of the present invention includes, for example, at least one selected from the mineral group consisting of smectite group, mica group, vermiculite group and mica group. Layered clay minerals belonging to the smectite group include montmorillonite, hectorite, saponite, sauconite, beidellite, stevensite, nontronite and the like, but are not limited thereto. Layered clay minerals belonging to the mica group include, but are not limited to, chlorite, phlogopite, lepidolite, muscovite, biotite, paragonite, margarite, teniolight, tetrasilicic mica, and the like. Layered clay minerals belonging to the vermiculite group include, but are not limited to, trioctahedral vermiculite, dioctahedral vermiculite, and the like. Layered clay minerals belonging to the mica group include, but are not limited to, muscovite, biotite, paragonite, levitrite, margarite, clintonite, anandite and the like. The layered clay mineral of the present invention may be a natural product or a synthetic product, and the above-mentioned minerals can be used alone or in combination of two or more.
 <カチオン性化合物で層間修飾された層状粘土鉱物>
 本発明に関する層状粘土鉱物は、カチオン性化合物で層間修飾されていてもよい。本発明のカチオン性化合物で層間修飾された層状粘土鉱物とは、カチオン性化合物が層状粘土鉱物の層間及び/又は表面にイオン結合している鉱物をいう。層状粘土鉱物は、通常、層間にナトリウムイオン等アルカリ金属イオンやアルカリ土類金属イオン等の無機陽イオンが坦持されている。この無機陽イオンをイオン交換反応等により他のイオンと置き換えることにより、様々な物質を層状粘土鉱物の層間に担持させることができる。これを層間修飾という。
<Layered clay mineral intercalated with cationic compound>
The layered clay mineral according to the present invention may be interlayer modified with a cationic compound. The layered clay mineral modified with the cationic compound of the present invention refers to a mineral in which the cationic compound is ionically bonded to the interlayer and / or the surface of the layered clay mineral. In the layered clay mineral, inorganic cations such as alkali metal ions such as sodium ions and alkaline earth metal ions are usually supported between layers. Various substances can be supported between the layers of layered clay mineral by replacing this inorganic cation with other ions by ion exchange reaction or the like. This is called interlayer modification.
 層状粘度鉱物の層間を拡げるために、層状粘度鉱物にケイ素含有オリゴマーを挿入する。このケイ素含有オリゴマーには、カチオン性化合物と親和性がある置換基がある。そこで、層状粘度鉱物の層間に予めカチオン性化合物を修飾しておけば、ケイ素含有オリゴマーを層間に挿入することができる。つまり、本発明の層状粘度鉱物はカチオン性化合物で層間修飾されるのが好ましい。 A silicon-containing oligomer is inserted into the layered viscosity mineral to expand the layers of the layered viscosity mineral. The silicon-containing oligomer has a substituent that is compatible with the cationic compound. Therefore, silicon-containing oligomers can be inserted between the layers by modifying the cationic compound in advance between the layers of the layered viscosity mineral. That is, the layered viscosity mineral of the present invention is preferably modified between layers with a cationic compound.
 本発明で用いられるカチオン性化合物は、層状粘度鉱物の層間距離を拡げるためのフェニル基を含むケイ素含有オリゴマーと親和性が高い化合物をいい、アミノ基を有するアルコキシシラン、アルキルアミン類、アリールアミン類、第4級アンモニウム化合物及びジメチルドデシルアミン等の第3級アミン化合物等の有機カチオン性化合物;アルミニウム、銅、亜鉛、カリウム、カルシウムなどの無機イオン;メチレンブルー、ローダミンB、フタロシアニン、またアミン変性されたヘパリンやタンパク質やDNA分子等があげられるが、これらに限定されない。好ましくは、有機カチオン性化合物で、ジメチルドデシルアミン、ジエチレントリアミン、トリエチルテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N-アミノエチルピベラジン、メンセンジアミン、イソフオロンジアミン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、等を塩酸等の強酸でカチオン化した有機カチオン化合物、アミンを配位子とする金属錯体で、エチレンジアミン、ジアミノプロパン、ジエチレントリアミン、トリエチルテトラミン、テトラエチレンペンタミン、1,10フェナントロリンを配位子とする銅錯体であり、さらに好ましくは、1,10フェナントロリンを配位子とする銅錯体である。本発明では、上記カチオン性化合物を単独で又は2種類以上併用して用いることができる。 The cationic compound used in the present invention is a compound having a high affinity to a silicon-containing oligomer containing a phenyl group for extending the interlayer distance of a layered viscosity mineral, an alkoxysilane having an amino group, an alkylamine, and an arylamine Organic cationic compounds such as quaternary ammonium compounds and tertiary amine compounds such as dimethyldodecylamine; inorganic ions such as aluminum, copper, zinc, potassium and calcium; methylene blue, rhodamine B, phthalocyanines, and amine-modified Examples include, but are not limited to, heparin, proteins, and DNA molecules. Preferably, organic cationic compounds such as dimethyldodecylamine, diethylenetriamine, triethyltetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiverazine, mensene diamine, isophorone diamine, m-xylene diamine, meta-phenylene Diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) Organic cation compounds obtained by cationizing 3-aminopropylmethyldimethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, etc. with strong acid such as hydrochloric acid, metal with an amine as a ligand It is a copper complex having ethylenediamine, diaminopropane, diethylenetriamine, triethyltetramine, tetraethylenepentamine, 1,10 phenanthroline as a ligand, and more preferably a copper complex having 1,10 phenanthroline as a ligand. is there. In the present invention, the above cationic compounds can be used alone or in combination of two or more.
 本発明のカチオン性化合物で層間修飾を行う方法は、カチオン性化合物を層状粘土鉱物の層間及び/又は表面に物理的、化学的方法により吸着及び/又は結合させる方法等である。例えば、層状粘土鉱物と塩酸でカチオン化したジメチルドデシルアミンを混合して加熱しながら攪拌すると、イオン交換反応によりナトリウムイオンが層間から脱離し、カチオン化したジメチルドデシルアミンが層間又は表面に坦持した層状粘土鉱物が得られる。また、アミンを配位子とする金属錯体の水溶液と層状粘土鉱物を混合、攪拌すると、同様にイオン交換反応が起こり、層間にカチオン性金属錯体が坦持した層状粘土鉱物が得られる(図1)。 The method of interlayer modification with the cationic compound of the present invention is a method of adsorbing and / or binding the cationic compound to the interlayer and / or the surface of the layered clay mineral by a physical or chemical method. For example, when layer clay mineral and hydrochloric acid cationized dimethyldodecylamine are mixed and stirred while heating, sodium ions are separated from the layer by ion exchange reaction, and cationized dimethyldodecylamine is supported on the layer or the surface A layered clay mineral is obtained. In addition, when an aqueous solution of a metal complex having an amine as a ligand and a layered clay mineral are mixed and stirred, an ion exchange reaction similarly occurs to obtain a layered clay mineral in which a cationic metal complex is supported between layers (FIG. 1) ).
 <ケイ素含有オリゴマー>
 本発明では、このようにして得られたカチオン性化合物で層間修飾された層状粘土鉱物にケイ素系オリゴマーを析出させて、層間を拡張した層状粘土鉱物を獲得することを特徴とする(図2)。当該ケイ素含有オリゴマーはアルコキシシランを加水分解反応することにより生成させることができる。具体的には、上記層状粘土鉱物と適当なアルコキシシランとを有機溶剤中で混合攪拌した後、アルカリ触媒又は酸触媒存在下で加水分解反応を行い、層状粘土鉱物にケイ素系オリゴマーを析出させる。ここで、ケイ素系オリゴマーの高分子量化に伴い、原料であるアルコキシシランと比べて、そのモル体積が数十から数百倍となり、加水分解反応の進行に伴い、層状粘土鉱物の層間が拡張されるのである。このように、本発明のケイ素含有オリゴマーは、層状粘土鉱物の層間距離を拡張する、いわゆるスぺーサーとして機能する。
<Silicon containing oligomers>
The present invention is characterized in that a silicon-based oligomer is precipitated on a layered clay mineral which is interlayer-modified with the cationic compound thus obtained, to obtain a layered clay mineral having an expanded interlayer (FIG. 2). . The silicon-containing oligomer can be produced by hydrolyzing an alkoxysilane. Specifically, the layered clay mineral and an appropriate alkoxysilane are mixed and stirred in an organic solvent, and then a hydrolysis reaction is performed in the presence of an alkali catalyst or an acid catalyst to precipitate a silicon-based oligomer in the layered clay mineral. Here, the molar volume of the silicon-based oligomer is several tens to several hundreds times that of the raw material alkoxysilane as the molecular weight of the silicon-based oligomer is increased, and the layer of the layered clay mineral is expanded as the hydrolysis reaction progresses. The Thus, the silicon-containing oligomers of the present invention function as so-called spacers, which extend the interlayer distance of layered clay minerals.
 ケイ素系オリゴマーの原料となるアルコキシシランとしては、テトラエトキシシラン、テトラメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、メルカプトプロピルトリメトキシシラン、アミノプロピルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、ヘキシルトキエトキシシラン、ヘキシルトリメトキシシラン、p-スチリルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等があげられるが、これらに限定されない。このうち、層状粘土鉱物との親和性の観点からは、フェニルトリエトキシシラン、フェニルトリメトキシシラン、p-スチリルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのベンゼン環を有するアルコキシシランか、又はエチルトリメトキシシラン、n-プロピルトリメトキシシラン、イソブチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン等のアルキル基を有するアルコキシシランが好ましい。これらのアルコキシドを単独又は2種類以上の混合物として用いることができる。また、上記アルコキシシランと共に、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、アルミニウムプロポキシド、ジルコニウムブトキシド、等などのケイ素以外の金属元素を含むアルコキシドを含んでもよい。 Examples of the alkoxysilane that is a raw material of silicon-based oligomers include tetraethoxysilane, tetramethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, mercaptopropyltrimethoxysilane, aminopropyltrimethoxysilane, methyltriethoxysilane and methyltrimethoxy Examples include, but are not limited to, silane, hexyl ethoxysilane, hexyltrimethoxysilane, p-styryltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like. Among them, from the viewpoint of affinity with layered clay minerals, alkoxy having a benzene ring such as phenyltriethoxysilane, phenyltrimethoxysilane, p-styryltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and the like Alkoxysilanes having alkyl groups such as silanes or ethyltrimethoxysilane, n-propyltrimethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, etc. preferable. These alkoxides can be used alone or as a mixture of two or more. In addition to the above alkoxysilane, an alkoxide containing a metal element other than silicon such as titanium tetraethoxide, titanium tetraisopropoxide, aluminum propoxide, zirconium butoxide, etc. may be included.
 本発明の好ましいケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物としては、層状粘土鉱物の層間に(1,10フェナントロリン)銅錯体がイオン交換されており、かつ、ケイ素含有オリゴマーがベンゼン環を含むような層状粘土鉱物か又は、層状粘土鉱物の層間にカチオン化した脂肪族アミン類がイオン交換されており、かつ、ケイ素含有オリゴマーが長鎖アルキル基を含むような層状粘土鉱物があげられるが、これらに限定されない。 As an interlayer modified layered clay mineral containing a preferred silicon-containing oligomer of the present invention, a (1, 10 phenanthroline) copper complex is ion-exchanged between layers of the layered clay mineral, and the silicon-containing oligomer has a benzene ring Or a layered clay mineral in which cationized aliphatic amines are ion-exchanged between layers of the layered clay mineral, and a silicon-containing oligomer includes a long chain alkyl group, Not limited to these.
 本発明で用いるケイ素含有オリゴマーの粒径は、層間を拡大できるような粒径であればいかなる大きさにも設計できるが、好ましくは、0.1nm~100nm、さらに好ましくは、1.61nm~2.02nmである。 The particle size of the silicon-containing oligomer used in the present invention can be designed to be any size as long as it allows the interlayer to be expanded, preferably 0.1 nm to 100 nm, more preferably 1.61 nm to 2 .02 nm.
 層間は公知の方法で測定することができるが、例えば、高分解能X線回折装置を用いて測定できる。当該測定方法は、例えば、X線源をCu、X線出力を50kV-250mA、走査範囲を0.5≦2θ≦60degと設定して、XRDパターンを測定する。得られたXRDパターンをブラッグの式
2dsinθ=nλ
(ここで、dは層間隔、θは回折角度、nは反射次数、λはX線波長=0.154nmをそれぞれ示す)
を用いることにより、層間隔を算出することができる。
The layers can be measured by a known method, for example, using a high resolution X-ray diffractometer. In the measurement method, for example, the X-ray source is set to Cu, the X-ray output is set to 50 kV-250 mA, and the scanning range is set to 0.5 ≦ 2θ ≦ 60 deg, and the XRD pattern is measured. The obtained XRD pattern is represented by Bragg's equation 2d sin .theta. = N.lambda.
(Here, d represents the layer spacing, θ represents the diffraction angle, n represents the reflection order, and λ represents the X-ray wavelength = 0.154 nm)
The layer spacing can be calculated by using
 本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物は、優れた絶縁破壊強度や絶縁破壊電圧を示すようないかなる厚みにも設計することができる。好ましくは、その厚みは0.05~10μmである。厚みは公知の方法で測定することができるが、例えば、層状粘土鉱物を樹脂等に埋め込んで固定化し、研磨することにより層状粘土鉱物の断面を露出させ、電子顕微鏡で直接計測する方法で測定できる。 The interlayer modified layered clay mineral containing the silicon-containing oligomer of the present invention can be designed to any thickness that exhibits excellent dielectric breakdown strength and dielectric breakdown voltage. Preferably, the thickness is 0.05 to 10 μm. The thickness can be measured by a known method. For example, the layer clay mineral can be embedded in a resin or the like, fixed, and polished to expose the cross section of the layer clay mineral, and can be measured by a direct measurement with an electron microscope .
 本願発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物のうち、ケイ素含有オリゴマーと層間修飾された層状粘土鉱物は、層間が拡大されるのであれば、いかなる比率でも存在してよい。例えば、層間修飾された層状粘土鉱物が0.1wt%~10wt%、ケイ素含有オリゴマーが0.1wt%~30wt%である。 Among the interlayer-modified layered clay minerals including the silicon-containing oligomer of the present invention, the silicon-containing oligomer and the interlayer-modified layered clay mineral may be present in any ratio as long as the interlayer is expanded. For example, 0.1 wt% to 10 wt% of the interlayer modified layered clay mineral and 0.1 wt% to 30 wt% of the silicon-containing oligomer.
 (2)本発明のワニス
 本発明のワニスは、上記ケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物及びモノマーを含み、これらの物質を硬化反応させる前の状態をいう。
(2) Varnish of the Present Invention The varnish of the present invention contains an interlayer-modified layered clay mineral containing the above-mentioned silicon-containing oligomer and a monomer, and refers to the state before curing reaction of these substances.
 本発明のワニスに用いられるモノマーとしては、具体的には、例えば、ビスフェノールA型エポキシプレポリマー、ビスフェノールF型エポキシプレポリマー、オルトクレゾールノボラック型エポキシプレポリマー、無水メチルハイミック酸、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、4,4’-エチリデンジフェニルジシアナート、4,4’-ジシアナートビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジシアナートビフェニル、3、3’-4,4’-ビフェニルテトラカルボン酸二無水物、p-フェニレンジアミン、ピロメリット酸二無水物、4,4’-ジアミノジフェニルエーテル、フェノール化合物、ホルムアルデヒド、尿素、ポリオール、ジイソシアネート、メタクリル酸メチル、スチレン、テレフタル酸及びエチレングリコールからなる群から選ばれる少なくとも1種又はそれ以上であるが、これらに限定されない。 Specific examples of the monomer used for the varnish of the present invention include bisphenol A epoxy prepolymer, bisphenol F epoxy prepolymer, ortho-cresol novolac epoxy prepolymer, methylhymic anhydride, 2-ethyl- 4-Methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 4,4'-ethylidene diphenyl dicyanate, 4,4'-dicyanatobiphenyl, 3,3 ', 5,5'-tetra Methyl-4,4'-dicyanatobiphenyl, 3,3'-3,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine, pyromellitic dianhydride, 4,4'-diaminodiphenyl ether, Phenolic compounds, formaldehyde, urea, polyols, diisocyanates , Methyl methacrylate, styrene, but is at least one or more selected from the group consisting of terephthalic acid and ethylene glycol, and the like.
 本発明のワニスは、ケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物を樹脂原料と混合して、十分に攪拌することで作製することができ、いかなる公知の方法を用いてもよい。樹脂原料としては、モノマー、硬化剤、硬化触媒等あげられるが、これらに限定されない。さらに、樹脂原料の粘度を下げる目的で有機溶剤を加えてもよい。攪拌方法としては、遊星ボールミルやビーズミル等の機械的せん断を加える方法を用いてもよい。 The varnish of the present invention can be prepared by mixing an interlayer modified layered clay mineral containing a silicon-containing oligomer with a resin raw material and sufficiently stirring, and any known method may be used. Examples of resin raw materials include, but are not limited to, monomers, curing agents, curing catalysts and the like. Furthermore, an organic solvent may be added for the purpose of lowering the viscosity of the resin raw material. As a stirring method, a method of applying mechanical shearing such as a planetary ball mill or a bead mill may be used.
 本発明のワニスを用いて、高い絶縁破壊電圧を示す絶縁電線を提供することができる。 The varnish of the present invention can be used to provide an insulated wire exhibiting a high breakdown voltage.
 (3)本発明の有機-無機複合材料
 本発明の有機-無機複合材料は、上記本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物及び樹脂を含む。上記のように、電気絶縁性に優れる層状粘土鉱物は樹脂材料との組み合わせて用いると、当該樹脂に難燃化、低誘電率化、絶縁寿命向上、高強度化、低熱膨張化等の特性を付与できる。ここで、層間距離が広がった層状粘度鉱物を樹脂と混合すると、樹脂中に層状粘度鉱物が高度に分散される。その結果、当該樹脂の上記特性を高めることができる。本発明では、『(1)本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物』で説明した層間に上記ケイ素含有オリゴマーが挿入されて層間が拡がった層状粘土鉱物を樹脂と混合して、耐電圧特性に優れた有機-無機複合材料を提供するものである。
(3) Organic-Inorganic Composite Material of the Present Invention The organic-inorganic composite material of the present invention comprises an interlayer-modified layered clay mineral and a resin comprising the above-mentioned silicon-containing oligomer of the present invention. As described above, when a layered clay mineral excellent in electrical insulation is used in combination with a resin material, the resin is characterized by flame retardancy, low dielectric constant, improvement in insulation life, high strength, low thermal expansion, etc. It can be granted. Here, when a layered viscosity mineral having an increased interlayer distance is mixed with a resin, the layered viscosity mineral is highly dispersed in the resin. As a result, the above-mentioned characteristics of the resin can be enhanced. In the present invention, the above-mentioned silicon-containing oligomer is inserted between the layers described in “(1) Interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention”, and the layered clay mineral in which the layers are expanded is mixed with the resin. Thus, the present invention provides an organic-inorganic composite material excellent in withstand voltage characteristics.
 <樹脂>
 本発明の樹脂原料としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂などのグリシジルエーテル化合物、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、シアネートエステル樹脂等があげられるが、これらに限定されない。これらを単独又は2種類以上の混合物として用いることができる。
<Resin>
The resin raw material of the present invention includes glycidyl ether compounds such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, ortho cresol novolac type epoxy resin, phenol resin, unsaturated polyester resin, polyimide resin, polyamide resin, polyamide imide resin, Although cyanate ester resin etc. are mention | raise | lifted, it is not limited to these. These can be used alone or as a mixture of two or more.
 <有機-無機複合材料の作製方法>
 本発明の有機-無機複合材料は公知のいかなる方法をも用いて作製することができる。例えば、上記『(2)本発明のワニス』に記載したワニスを触媒等の他の物質と共にアルミニウム製等の金型に注入し、電気炉で加熱硬化することにより有機-無機複合材料を得ることができる。
<Method of producing organic-inorganic composite material>
The organic-inorganic composite material of the present invention can be produced using any known method. For example, the varnish described in the above-mentioned "(2) varnish of the present invention" is injected into a mold made of aluminum or the like together with other substances such as a catalyst, and heat-cured in an electric furnace to obtain an organic-inorganic composite material. Can.
 (4)本発明の半導体装置
 本発明の半導体装置は、半導体素子及び封止材を含む半導体装置であって、前記封止材は、上記『(3)本発明の有機-無機複合材料』で記載した本発明の有機-無機複合材料を含み、前記半導体素子は前記封止材で封止されている。
(4) Semiconductor Device of the Present Invention The semiconductor device of the present invention is a semiconductor device including a semiconductor element and a sealing material, and the sealing material is the above-mentioned “(3) Organic-inorganic composite material of the present invention”. The semiconductor element is sealed with the sealing material, including the organic-inorganic composite material of the present invention described above.
 本発明の半導体装置とは、公知のいかなる半導体装置をも含む。 The semiconductor device of the present invention includes any known semiconductor device.
 本発明の半導体素子とは、半導体における電子部品又は電子部品の機能中心部の素子をいい、テレビ受像機、携帯電話、コンピュータといった電気製品・電子機器に内蔵され、自動車や各種産業機器などにもコンピュータ等などの形で組み込まれている。本発明に関する半導体素子としては、トランジスタや集積回路(IC・LSI)、抵抗、コンデンサなどが含まれるが、これらに限定されない。 The semiconductor element of the present invention means an element of the functional central portion of the electronic component or the electronic component in the semiconductor, and is incorporated in an electric product / electronic device such as a television receiver, a cellular phone, or a computer. It is incorporated in the form of a computer etc. Semiconductor devices according to the present invention include, but are not limited to, transistors, integrated circuits (IC · LSI), resistors, capacitors, and the like.
 本発明の封止材とは、半導体パッケージを構成する材料の一つで、空気酸化や不純物混入を防ぐために用いる樹脂のうち、上記本発明の有機-無機複合材料を含むものをいう。 The sealing material of the present invention is one of the materials constituting the semiconductor package, and is a resin containing the organic-inorganic composite material of the present invention among resins used for preventing air oxidation and mixing of impurities.
 図3に、本発明の半導体装置の1例であるパワー半導体装置の断面模式図を示す。図3に示したパワー半導体装置では、パワー半導体素子401の裏面側電極が絶縁基板406上の回路配線部材402に接合材404によって電気的に接続され、パワー半導体素子401の主電極がリード部材403にワイヤ405によって電気的に接続されている。絶縁基板406の裏面側にはパワー半導体素子401で発生した熱を外部に逃がすための放熱板が設けられている。そして、回路配線部材402、リード部材403、放熱板407の一部が露出した状態でパワー半導体素子401の周囲が封止樹脂(封止材)408で封止される。この封止樹脂(封止材)408に本発明の有機-無機複合材料を適用することができる。 FIG. 3 shows a schematic cross-sectional view of a power semiconductor device which is an example of the semiconductor device of the present invention. In the power semiconductor device shown in FIG. 3, the back side electrode of power semiconductor element 401 is electrically connected to circuit wiring member 402 on insulating substrate 406 by bonding material 404, and the main electrode of power semiconductor element 401 is lead member 403. Are electrically connected by the wire 405. On the back side of the insulating substrate 406, a heat sink for dissipating heat generated by the power semiconductor element 401 to the outside is provided. Then, the periphery of the power semiconductor element 401 is sealed with a sealing resin (sealing material) 408 in a state where the circuit wiring member 402, the lead member 403, and a part of the heat dissipation plate 407 are exposed. The organic-inorganic composite material of the present invention can be applied to the sealing resin (sealing material) 408.
 本発明の有機-無機複合材料は、絶縁破壊強度が高いため、部分放電によるチップと配線のショートを防止でき、パワー半導体装置の高寿命化に寄与することができる。なお、図3に示したパワー半導体装置の構造は一例であり、他の構造の半導体装置においても半導体素子401の周囲を覆う封止樹脂として本発明の有機-無機複合材料を適用できることはいうまでもない。 Since the organic-inorganic composite material of the present invention has high dielectric breakdown strength, short circuit between the chip and the wiring due to partial discharge can be prevented, which can contribute to increase the life of the power semiconductor device. The structure of the power semiconductor device shown in FIG. 3 is an example, and it is possible to apply the organic-inorganic composite material of the present invention as a sealing resin that covers the periphery of the semiconductor element 401 even in semiconductor devices of other structures. Nor.
 (5)本発明の電線
 本発明の電線は、導体と絶縁材料を含む電線であって、前記導体が、上記『(2)本発明のワニス』で記載した本発明のワニス又は上記『(3)本発明の有機-無機複合材料』で記載した本発明の有機-無機複合材料を含む前記絶縁材料で被覆されている。
(5) Electric wire of the present invention The electric wire of the present invention is an electric wire containing a conductor and an insulating material, and the conductor is the varnish of the present invention described in the above-mentioned "(2) Varnish of the present invention" The organic-inorganic composite material according to the present invention "is coated with the insulating material containing the organic-inorganic composite material according to the present invention.
 本発明の電線とは、金属等の線状導体を含み、2点間で電気を伝導するためのもので、絶縁や保護のための被覆がされているものをいう。また、高圧配電線、高圧引込線、低圧架空電線、低圧引込線、屋内配線等の電力用電線、電気機器用電線、通信用電線、地中電線路用、屋内配線、消防設備用、制御回路用、電力機器用、船舶用、アンダーカーペット配線用等のケーブル及び小型電気製品のコンセントにつないで用いられるコード等が含まれるが、これらに限定されない。また、単線、撚線、撚対線、シールド線等のいかなる形状の電線をも含む。本発明の電線に含まれる導体とは、移動可能な電荷を含み電気を通しやすい、電気伝導率(導電率)の高い材料をいい、例えば、銅、銀、アルミニウム、光ファイバ又はこれらの合金等があげられるが、これらに限定されない。絶縁材料には、上記本発明のワニス又は有機-無機複合材料の他、ポリエチレン、架橋ポリエチレン、ポリ塩化ビニル、カプトン、ゴム状重合体、油浸紙、テフロン(登録商標)、シリコーン、フッ素樹脂等の電気や熱を通しにくい性質を有する物質が含まれていてもよい。 The electric wire of the present invention includes a linear conductor such as metal and is for conducting electricity between two points, and means a wire for insulation and protection. Also, high voltage distribution lines, high voltage drop lines, low voltage overhead lines, low voltage drop lines, electric power cables such as indoor wiring, electric equipment electric wires, communication electric wires, underground electric wires, indoor wiring, fire fighting equipment, control circuits, This includes, but is not limited to, cables for use in power equipment, ships, under carpet wiring, etc., and cords and the like used in connection with outlets of small electric products. Also, it includes electric wires of any shape such as single wires, twisted wires, twisted wire pairs, and shielded wires. The conductor contained in the electric wire of the present invention is a material having a high electric conductivity (conductivity) which contains movable electric charge and easily conducts electricity, and it is, for example, copper, silver, aluminum, an optical fiber or an alloy of these, etc. There is no limitation to these. As the insulating material, polyethylene, crosslinked polyethylene, polyvinyl chloride, Kapton, rubber-like polymer, oil-impregnated paper, Teflon (registered trademark), silicone, fluorine resin, etc. other than the varnish of the present invention or the organic-inorganic composite material A substance having the property of being difficult to pass through electricity or heat may be included.
 図4に、本発明の電線の1例である本発明のワニスを用いて作製した絶縁電線の断面図を示す。当該絶縁電線は、例えば、導体501に本発明のワニスを含む絶縁被覆502を形成して、焼き付けることにより製造できる。 In FIG. 4, sectional drawing of the insulated wire produced using the varnish of this invention which is one example of the electric wire of this invention is shown. The said insulated wire can be manufactured by, for example, forming the insulation coating 502 containing the varnish of this invention in the conductor 501, and baking it.
 本発明に関するワニスや有機-無機複合材料を含む膜は、高い絶縁破壊電圧を示すため、耐サージ特性に優れる絶縁電線を得ることができる。 The film containing the varnish and the organic-inorganic composite material according to the present invention exhibits a high dielectric breakdown voltage, so that an insulated wire excellent in surge resistance can be obtained.
 (6)本発明の回転機コイル
 本発明の回転機コイルは、導体と絶縁材料を含み、前記絶縁材料が巻回された前記導体は、上記『(2)本発明のワニス』で記載した本発明のワニス又は上記『(3)本発明の有機-無機複合材料』で記載した本発明の有機-無機複合材料を含む前記絶縁材料で含浸されている。
(6) The rotating machine coil of the present invention The rotating machine coil of the present invention includes a conductor and an insulating material, and the conductor wound with the insulating material is the book described in the above (2) the varnish of the present invention. It is impregnated with the insulating material containing the varnish of the invention or the organic-inorganic composite material of the present invention described in “(3) Organic-inorganic composite material of the present invention”.
 本発明の回転機コイルとは、絶縁被覆された導体がコイル状に巻かれたものであり、磁石と組み合わせることにより、モーターや発電機に用いられる。 The rotating machine coil of the present invention is an insulating coated conductor wound in a coil shape, and is used for a motor or a generator by combining with a magnet.
 図5に、本発明の回転機コイルの1例である回転機コイルの構成を示す。 In FIG. 5, the structure of the rotary machine coil which is an example of the rotary machine coil of this invention is shown.
 本発明の回転機コイルは、例えば、導体601に絶縁テープを巻回して、加熱乾燥した後、本発明のワニスを真空含浸してから、加熱硬化して絶縁被覆602を形成するプロセスにより作製することができる。 The rotary coil of the present invention is manufactured, for example, by winding an insulating tape around a conductor 601, heating and drying, and then vacuum impregnating the varnish of the present invention and then heating and curing to form an insulating coating 602. be able to.
 本発明の回転機コイルは、上記のように絶縁性が高い樹脂で被覆されているため、耐熱寿命が高い。 Since the rotating machine coil of the present invention is coated with a resin having high insulating properties as described above, the heat resistant life is high.
 次に、本発明を実施例及び比較例によって説明するが、本発明は下記に限定されるものではない。 Next, the present invention will be described by way of examples and comparative examples, but the present invention is not limited to the following.
 (実施例1~10)
 純水400mlに層状粘土鉱物(以下、「クレイ」と記載する場合もある)としてクニミネ工業株式会社製のクニピアF(登録商標)を5g添加し、80℃に保持しながら2時間攪拌した。これによりクニピアFが水中に白濁した状態で分散した乳白色の分散液を得る。別途、純水400mlに、1,10-フェナントロリンが配位した銅錯体3.25gを溶解させておき、上記で得たクレイの分散液に投入した。さらに80℃で2時間攪拌して、クレイの層間のナトリウムイオンが各金属錯体とイオン交換反応して、クレイの層間に各金属錯体が置換した層間修飾クレイを得た。この反応機構を図1に示す。
(Examples 1 to 10)
5 g of Kunipia F (registered trademark) manufactured by Kunimine Kogyo Co., Ltd. as a layered clay mineral (hereinafter sometimes referred to as “clay”) was added to 400 ml of pure water and stirred for 2 hours while maintaining at 80 ° C. This gives a milky white dispersion in which Kunipia F is dispersed in water in a cloudy state. Separately, 3.25 g of a copper complex coordinated with 1,10-phenanthroline was dissolved in 400 ml of pure water, and the solution was poured into the clay dispersion obtained above. The mixture was further stirred at 80 ° C. for 2 hours, and sodium ions between the clay layers were ion-exchanged with each metal complex to obtain an interlayer modified clay in which each metal complex was substituted between the clay layers. The reaction mechanism is shown in FIG.
 以上の方法でクレイの層間に金属錯体を担持させた後、減圧濾過によりクレイを分離した。このとき、濾液は青、赤又は黒色を呈していることを確認した。再度、クレイを純水中に分散して、濾液の色が透明になるまで再分散と減圧濾過を繰り返し、分散液中の未反応の銅錯体やナトリウムイオン、塩素イオンなどを完全に除去した。 After the metal complex was supported between the clay layers by the above method, the clay was separated by vacuum filtration. At this time, it was confirmed that the filtrate had a blue, red or black color. The clay was again dispersed in pure water, and redispersion and filtration under reduced pressure were repeated until the color of the filtrate became clear, to completely remove unreacted copper complexes, sodium ions, chloride ions and the like in the dispersion.
 洗浄後のクレイを75℃で12時間、減圧乾燥し、水分を完全に除去した。乾燥したクレイは担持した銅錯体の種類に応じて青、赤又は黒色を呈していることを確認した。また、蛍光X線分析により、乾燥したクレイ中にはナトリウム、塩素が除去されていることを確認した。 The washed clay was vacuum dried at 75 ° C. for 12 hours to completely remove water. It was confirmed that the dried clay was blue, red or black depending on the type of copper complex supported. In addition, it was confirmed by fluorescent X-ray analysis that sodium and chlorine were removed from the dried clay.
 クレイ0.4gをヘキサン40mlに超音波分散させた。さらにフェニルトリエトキシシランとテトラエトキシシランを加えて、一昼夜放置した。このとき、フェニルトリエトキシシランとテトラエトキシシランの添加量を1:1とし、総添加量が異なる試料を4種類作製して実験を行った。この分散液に、水5g、25%アンモニア水3g、エタノール30mlの混合液を加え、マグネチックスターラーを用いて室温で4時間攪拌した。攪拌後、アスピレータを用いて80℃で溶媒除去し、エタノール洗浄と溶媒除去を3回繰り返した。最後にロータリーポンプを用いて80℃で2時間真空乾燥した。得られた処理粉体の重量を秤量し、ケイ素系オリゴマーとクレイの比率を求めた。 0.4 g of clay was ultrasonically dispersed in 40 ml of hexane. Further, phenyltriethoxysilane and tetraethoxysilane were added, and left standing overnight. At this time, the addition amount of phenyltriethoxysilane and tetraethoxysilane was set to 1: 1, and four kinds of samples having different total addition amounts were manufactured to conduct an experiment. A mixed solution of 5 g of water, 3 g of 25% aqueous ammonia and 30 ml of ethanol was added to this dispersion, and the mixture was stirred at room temperature for 4 hours using a magnetic stirrer. After stirring, the solvent was removed at 80 ° C. using an aspirator, and ethanol washing and solvent removal were repeated three times. Finally, it was vacuum dried at 80 ° C. for 2 hours using a rotary pump. The weight of the obtained treated powder was weighed to determine the ratio of silicon-based oligomer to clay.
 上記処理粉体とロンザ社製のプリマセットLECy(化合物名:4,4’-エチリデンジフェニルジシアナート)と東京化成工業製の4-ノニルフェノールを秤量し、メノウボールを入れたメノウ製容器に投入し、ボールミルで2時間攪拌した。処理粉体の添加量は1~15wt%まで変化させた。ボールミルの回転速度を450rpmとし、5分間隔で反転させるモードに設定した。以上より、金属錯体が層間修飾されたクレイが樹脂原料中に分散したワニスを得た。ワニスを100℃→120℃→150℃→200℃で各1時間ずつ加熱し、最後に250℃で6時間加熱し、有機-無機複合材料を得た。 The above treated powder, Primaset LECy (compound name: 4,4'-ethylidene diphenyl dicyanate) manufactured by Lonza Co., Ltd. and 4-nonylphenol manufactured by Tokyo Chemical Industry Co., Ltd. are weighed, and put into an agate container made of agateball. And stirred with a ball mill for 2 hours. The addition amount of the treated powder was changed to 1 to 15 wt%. The rotation speed of the ball mill was set to 450 rpm, and the mode was set to reverse at intervals of 5 minutes. As mentioned above, the varnish in which the clay by which the metal complex was interlayer-modified was disperse | distributed in the resin raw material was obtained. The varnish was heated at 100 ° C. → 120 ° C. → 150 ° C. → 200 ° C. for 1 hour each and finally heated at 250 ° C. for 6 hours to obtain an organic-inorganic composite material.
 (実施例11)
 実施例2と同様の方法で作製した処理粉体とビスフェノールA型エポキシ樹脂(JER828;ジャパンエポキシ製)、酸無水物(MHAC-P;日立化成製)及びイミダゾール硬化触媒(2EMZ-CN;四国化成製)を混合し、ボールミルで2時間攪拌した。ボールミルの回転速度を450rpmとし、5分間隔で反転させるモードに設定した。得られたワニスを100℃→120℃→150℃で各1時間加熱した後、最後に180℃で2時間加熱して、有機-無機複合材料を得た。
(Example 11)
Treated powder prepared by the same method as in Example 2 and bisphenol A type epoxy resin (JER 828; Japan Epoxy), acid anhydride (MHAC-P; Hitachi Chemical) and imidazole curing catalyst (2EMZ-CN; Shikoku Kasei And the mixture was stirred by a ball mill for 2 hours. The rotation speed of the ball mill was set to 450 rpm, and the mode was set to reverse at intervals of 5 minutes. The resulting varnish was heated at 100 ° C. → 120 ° C. → 150 ° C. for 1 hour each, and finally heated at 180 ° C. for 2 hours to obtain an organic-inorganic composite material.
 (実施例12)
 3、3’-4,4’-ビフェニルテトラカルボン酸二無水物と水、あるいはメタノール、エタノール中で加熱し、テトラカルボン酸、あるいはカルボン酸エステルを合成した。冷却後、p-フェニレンジアミンを加えて加熱し、ポリアミック酸を合成した。合成したポリアミック酸をN-メチル-2-ピロリドン、ジメチルスルホキシド、N,N’ジメチルアセトアミド、N,N’ジメチルホルムアミド等の溶剤に溶解し、実施例2と同様の方法で作製した処理粉体を混合し、ボールミルで2時間攪拌した。ボールミルの回転速度を450rpmとし、5分間隔で反転させるモードに設定した。得られたワニスを100℃で1時間加熱後、400℃30分間加熱し、有機-無機複合材料を得た。
(Example 12)
The mixture was heated in 3,3'-4,4'-biphenyltetracarboxylic dianhydride and water, or in methanol or ethanol, to synthesize a tetracarboxylic acid or a carboxylic acid ester. After cooling, p-phenylenediamine was added and heated to synthesize a polyamic acid. The treated polyamic acid was dissolved in a solvent such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N 'dimethyl acetamide, N, N' dimethylformamide, etc. Mix and stir in a ball mill for 2 hours. The rotation speed of the ball mill was set to 450 rpm, and the mode was set to reverse at intervals of 5 minutes. The obtained varnish was heated at 100 ° C. for 1 hour, and then heated at 400 ° C. for 30 minutes to obtain an organic-inorganic composite material.
 (比較例1)
 処理粉体を添加しなかった以外は、実施例1と同様にして樹脂硬化物を得た。
(Comparative example 1)
A cured resin was obtained in the same manner as in Example 1 except that the treated powder was not added.
 (比較例2の作製)
 処理粉体を添加しないこと以外は実施例2と同様にして樹脂硬化物を得た。
(Production of Comparative Example 2)
A cured resin was obtained in the same manner as in Example 2 except that the treated powder was not added.
 (測定・評価)
(1)XRD測定(層間距離評価)
 実施例1~11、比較例1~2の処理粉体及び有機-無機複合材料中のクレイ層間距離は、高分解能X線回折装置(株式会社リガク製、型式:ATX-G)を用いて測定した。測定条件は、X線源はCu、X線出力は50kV-250mA、走査範囲は0.5≦2θ≦60degとした。測定したXRDパターンからブラッグの式(2dsinθ=nλ、d:層間隔、θ:回折角度、n:反射次数、λ:X線波長=0.154nm)を用いて層間隔を算出した。
(Measurement and evaluation)
(1) XRD measurement (interlayer distance evaluation)
The distance between clay layers in the treated powder and the organic-inorganic composite material of Examples 1 to 11 and Comparative Examples 1 to 2 was measured using a high resolution X-ray diffractometer (manufactured by Rigaku Corporation, model: ATX-G) did. As the measurement conditions, the X-ray source is Cu, the X-ray output is 50 kV-250 mA, and the scanning range is 0.5 ≦ 2θ ≦ 60 deg. The layer spacing was calculated from the measured XRD pattern using Bragg's equation (2d sin θ = nλ, d: layer spacing, θ: diffraction angle, n: reflection order, λ: X-ray wavelength = 0.154 nm).
 (2)絶縁破壊電圧測定(絶縁破壊強度評価)
 実施例1~12及び比較例1~2の有機-無機複合材料の絶縁破壊電圧は、以下のように測定した。測定には耐圧測定装置(株式会社佐々木電工社製)を用いた。図6に該測定装置の模式図を示す。電極板として片面に直径80mm、深さ1mmの窪みを形成した100mm×100mm×5mmtのアルミニウム板707を用い、窪みの中に樹脂原料を1~2g流し込み、各実施例に記載した硬化条件で加熱した。アルミニウム板707上の有機-無機複合材料704の表面に直径5mmの球状電極705を置き、アルミニウム板707と球状電極705間に商用周波数(50Hz)の電圧を徐々に昇圧(昇圧速度:1kV/sec)しながら印加し、短絡電流が流れた時の電圧を破壊電圧VTOP(kV)とした。測定試料704、球状電極705及びアルミニウム板707はポリプロピレンケース701に充填した電気絶縁油(フロリナート(登録商標)住友スリーエム株式会社製、FC-77)702中に浸漬した。
(2) Breakdown voltage measurement (breakdown strength evaluation)
The dielectric breakdown voltages of the organic-inorganic composites of Examples 1 to 12 and Comparative Examples 1 and 2 were measured as follows. For the measurement, a pressure measuring device (manufactured by Sasaki Denko Corporation) was used. FIG. 6 shows a schematic view of the measuring apparatus. As an electrode plate, using a 100 mm × 100 mm × 5 mmt aluminum plate 707 having a depression of 80 mm in diameter and 1 mm in depth formed on one side, 1 to 2 g of a resin material is poured into the depression and heated under the curing conditions described in each example. did. A spherical electrode 705 with a diameter of 5 mm is placed on the surface of the organic-inorganic composite material 704 on the aluminum plate 707, and the voltage of commercial frequency (50 Hz) is gradually boosted between the aluminum plate 707 and the spherical electrode 705 (boosting speed: 1 kV / sec ), And the voltage when the short circuit current flows is taken as the breakdown voltage V TOP (kV). The measurement sample 704, the spherical electrode 705 and the aluminum plate 707 were immersed in an electrically insulating oil (Fluorinert (registered trademark) Sumitomo 3M Co., Ltd., FC-77) 702 filled in a polypropylene case 701.
 VTOPから実効電圧VRMS(絶縁破壊電圧)=VTOP/√2を計算し、VRMSを膜厚(0.05mm)で割り絶縁破壊強度とした。 The effective voltage V RMS (breakdown voltage) = V TOP / √2 calculated from V TOP, was split breakdown strength V RMS in thickness (0.05 mm).
 図7には実施例1~12で用いた未処理の層状粘土鉱物(クニピアF(登録商標))のXRD測定結果及び蛍光X線測定結果を示す。XRDスペクトルより、2θ=7.183°に層状粘土鉱物の層間隔に相当する回折ピークが見られた。ブラッグの式より層間隔は1.23nmであった。また、蛍光X線測定より、層状粘土鉱物にはナトリウムが含まれていた。 FIG. 7 shows the XRD measurement results and the fluorescent X-ray measurement results of the untreated layered clay mineral (Kunipia F (registered trademark)) used in Examples 1-12. From the XRD spectrum, a diffraction peak corresponding to the layer spacing of the layered clay mineral was observed at 2θ = 7.183 °. The layer spacing was 1.23 nm according to Bragg's equation. Moreover, sodium was contained in the layered clay mineral from the fluorescent X-ray measurement.
 図8には実施例1~12において、銅錯体で層間修飾した層状粘土鉱物のXRD測定結果及び蛍光X線測定結果を示す。XRDスペクトルより、2θ=5.646°に層状粘土鉱物の層間隔に相当する回折ピークが見られた。ブラッグの式より層間隔は1.56nmであり、未処理の層間隔より0.33nm拡大した。この場合、蛍光X線測定より層状粘土鉱物にはナトリウムは検出されず、銅が検出された。これより、層間のナトリウムイオンが銅錯体とイオン交換したことにより層間隔が拡大したと考えられる。 FIG. 8 shows the XRD measurement results and the fluorescent X-ray measurement results of the layered clay mineral interlayer-modified with a copper complex in Examples 1 to 12. From the XRD spectrum, a diffraction peak corresponding to the layer spacing of the layered clay mineral was observed at 2θ = 5.646 °. According to Bragg's equation, the layer spacing is 1.56 nm, which is 0.33 nm wider than the untreated layer spacing. In this case, sodium was not detected in the layered clay mineral from fluorescent X-ray measurement, and copper was detected. From this, it is considered that the layer interval was expanded by the sodium ion exchange between the layers with the copper complex.
 図9には実施例4において、銅錯体でイオン交換した後、アルコキシシランで分散処理した層状粘土鉱物のXRD測定結果を示す。XRDスペクトルより、2θ=5.264°に層状粘土鉱物の層間隔に相当する回折ピークが見られた。ブラッグの式より層間隔は1.68nmであった。これより、アルコキシシランで分散処理することにより、層間隔が0.13nm拡大したことが示された。 FIG. 9 shows the results of XRD measurement of a layered clay mineral dispersed with an alkoxysilane after ion exchange with a copper complex in Example 4. From the XRD spectrum, a diffraction peak corresponding to the layer spacing of the layered clay mineral was observed at 2θ = 5.264 °. The layer spacing was 1.68 nm according to Bragg's equation. From this, it was shown that the layer interval was expanded by 0.13 nm by the dispersion treatment with the alkoxysilane.
 図10には、実施例4において作製した有機-無機複合材料のX線回折結果を示す。2θ=5.187°に層状粘土鉱物の層間隔に相当する回折ピークが見られた。ブラッグの式より層間隔は1.70nmであった。図9の分散処理した層状粘土鉱物と比べて0.02nmの増加がみられただけであった。 FIG. 10 shows the result of X-ray diffraction of the organic-inorganic composite prepared in Example 4. A diffraction peak corresponding to the layer spacing of the layered clay mineral was observed at 2θ = 5.187 °. The layer spacing was 1.70 nm according to Bragg's equation. Only an increase of 0.02 nm was observed as compared to the layered clay mineral processed in FIG.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1には各種条件で分散処理した層状粘土鉱物の層間隔及び有機-無機複合材料中の層状粘土鉱物の層間隔と絶縁破壊強度を示す。分散処理するときのアルコキシシランの配合量により、層状粘土鉱物の層間隔を1.61nm~2.02nmまで制御可能であった。また、有機-無機複合材料中の層間隔は、1.64nm~4.51nmまで制御可能であった。 Table 1 shows the layer spacing of the layered clay mineral dispersed under various conditions, and the spacing and dielectric breakdown strength of the layered clay mineral in the organic-inorganic composite material. The layer spacing of the layered clay mineral can be controlled from 1.61 nm to 2.02 nm by the blending amount of the alkoxysilane at the time of dispersion treatment. Also, the layer spacing in the organic-inorganic composite was controllable from 1.64 nm to 4.51 nm.
 分散処理した層状粘土鉱物を0.5wt%~30wt%添加することにより、有機-無機複合材料の絶縁破壊強度は樹脂単独と比べて著しく向上することが示された。 It was shown that the addition of 0.5 wt% to 30 wt% of the dispersed layered clay mineral significantly improves the dielectric breakdown strength of the organic-inorganic composite material as compared with the resin alone.
 図11は、実施例4で作製した有機-無機複合材料の断面SEM写真及び元素分析の結果を示す。元素分析から、アルミニウムのピーク位置にはケイ素のピークが見られることが示された。一方、アルミニウムが存在しない部分にもケイ素と酸素のピークが見られる場所が存在することが示された。アルミニウムは層状粘土鉱物の構成元素であることから、樹脂中には、層状粘土鉱物と酸化ケイ素が共存する部分と、酸化ケイ素単独の部分が存在することが考えられた。また、高倍率SEM写真の解析から、樹脂中に見られる約100nmの粒子は酸化ケイ素であり、0.1~3μm程度の層状粘土鉱物の周囲を酸化ケイ素粒子が被覆する構造になっていると考えられた。このような構造になった原因について以下に考察する。 FIG. 11 shows a cross-sectional SEM photograph of the organic-inorganic composite produced in Example 4 and the result of elemental analysis. Elemental analysis showed that a peak of silicon was observed at the peak position of aluminum. On the other hand, it was shown that there are places where peaks of silicon and oxygen can be seen even in a part where aluminum does not exist. Since aluminum is a constituent element of a layered clay mineral, it was thought that in the resin, a portion in which the layered clay mineral and silicon oxide coexist and a portion in which only silicon oxide is present. Also, from the analysis of high-magnification SEM photographs, it is assumed that the particles of about 100 nm found in the resin are silicon oxide and that silicon oxide particles cover the periphery of layered clay minerals of about 0.1 to 3 μm. it was thought. The cause of this structure will be discussed below.
 アンモニア触媒存在下でアルコキシシランの加水分解反応を行うと、反応液はpH=12程度のアルカリ性になるため、生成した酸化ケイ素粒子(等電点pH=2)の表面は負電荷を形成していると考えられた。層状粘土鉱物の表面にはカチオン性の銅錯体が坦持しているため、負に帯電した酸化ケイ素粒子は銅錯体が坦持された層状粘土鉱物表面に吸着される。従って、実施例4では、層状粘土鉱物の層間以外で析出した過剰な酸化ケイ素粒子が静電的な作用により層状粘土鉱物に吸着したと考えられた。 When the hydrolysis reaction of alkoxysilane is performed in the presence of an ammonia catalyst, the reaction solution becomes alkaline at about pH = 12, so the surface of the produced silicon oxide particles (isoelectric point pH = 2) forms a negative charge. It was thought that. Since a cationic copper complex is supported on the surface of the layered clay mineral, negatively charged silicon oxide particles are adsorbed on the surface of the layered clay mineral on which the copper complex is supported. Therefore, in Example 4, it was considered that excess silicon oxide particles deposited outside the layer of the layered clay mineral were adsorbed to the layered clay mineral by electrostatic action.
 以上より、有機-無機複合材料の絶縁破壊強度が向上した原因としては、酸化ケイ素が静電的な相互作用で層状粘土鉱物に吸着することにより層状粘土鉱物が電気的に中和されたため、絶縁破壊強度が向上したことがあげられる。 From the above, the reason why the dielectric breakdown strength of the organic-inorganic composite material is improved is that since the layered clay mineral is electrically neutralized by the adsorption of the layered clay mineral by the electrostatic interaction of the silicon oxide, the insulation The breakdown strength has been improved.
 (実施例13の作製)
 本発明の有機-無機複合材料を用いてパワー半導体装置を作製した。まず、実施例4のワニス中にフィラとしてシリカを80wt%、シランカップリング剤としてKBM403(信越化学工業株式会社製)を5重量部、離型剤としてヘキストワックスE(クラリアントジャパン株式会社製)を2重量部、着色剤としてカーボンブラックを1重量部加え、溶融混錬して封止樹脂原料を作製した。別途、パワー半導体素子が搭載されたモジュールを作製し、封止樹脂原料を用いてポッティング法によりモジュール全体を被覆し、100℃→120℃→150℃→200℃で各1時間、250℃で6時間加熱硬化して樹脂封止した。
(Preparation of Example 13)
A power semiconductor device was manufactured using the organic-inorganic composite material of the present invention. First, 80 wt% of silica as a filler in the varnish of Example 4, 5 parts by weight of KBM 403 (Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, Hoechst Wax E (manufactured by Clariant Japan Co., Ltd.) as a release agent 2 parts by weight and 1 part by weight of carbon black as a colorant were added, and the mixture was melt-kneaded to prepare a sealing resin raw material. Separately, a module on which a power semiconductor element is mounted is manufactured, and the entire module is covered by a potting method using a sealing resin raw material, and 100 ° C. → 120 ° C. → 150 ° C. → 200 ° C. for one hour each It was heat cured for a while and sealed with a resin.
 図3に作製したパワー半導体装置の模式図を示す。パワー半導体素子401の裏面側電極が絶縁基板406上の回路配線部材402に接合材404によって電気的に接続され、パワー半導体素子401の主電極がリード部材403にワイヤ405によって電気的に接続されている。絶縁基板406の裏面側にはパワー半導体素子401で発生した熱を外部に逃がすための放熱板が設けられている。そして、回路配線部材402、リード部材403、放熱板407の一部が露出した状態でパワー半導体素子401の周囲が封止樹脂408で封止されている。 The schematic diagram of the produced power semiconductor device is shown in FIG. The back side electrode of the power semiconductor element 401 is electrically connected to the circuit wiring member 402 on the insulating substrate 406 by the bonding material 404, and the main electrode of the power semiconductor element 401 is electrically connected to the lead member 403 by the wire 405 There is. On the back side of the insulating substrate 406, a heat sink for dissipating heat generated by the power semiconductor element 401 to the outside is provided. The periphery of the power semiconductor element 401 is sealed with a sealing resin 408 in a state in which the circuit wiring member 402, the lead member 403, and a part of the heat dissipation plate 407 are exposed.
 比較例3として、層状粘土鉱物を含まない樹脂で封止したパワー半導体装置を作製した。パワーサイクル(PC)試験(ΔTc=170℃、20℃⇔190℃)のサイクル寿命を評価した結果を表2に示す。表2において、α1はT以下の温度での熱膨張係数を示し、α2はT超の温度での熱膨張係数を示す。なお、表2中、YDCN-750は,o-クレゾールノボラック型エポキシ樹脂で東都化成株式会社の商品名である。 As Comparative Example 3, a power semiconductor device sealed with a resin containing no layered clay mineral was produced. The results of evaluating the cycle life of the power cycle (PC) test (ΔTc = 170 ° C., 20 ° C./190° C.) are shown in Table 2. In Table 2, α1 indicates the thermal expansion coefficient at a temperature equal to or lower than T g , and α2 indicates the thermal expansion coefficient at a temperature higher than T g . In Table 2, YDCN-750 is an o-cresol novolac epoxy resin, which is a trade name of Toto Kasei Co., Ltd.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 サイクル寿命評価の結果、実施例13のパワーサイクル寿命は20000回であったのに対し、比較例3のパワーサイクル寿命は、4000回であった。以上より、パワー半導体装置に本発明の有機-無機複合材料を用いることで、パワーサイクル寿命が向上することが示された。これは、封止材として本発明の有機-無機複合材料を用いると部分放電電圧に伴う絶縁劣化が抑制されるからである。 As a result of the cycle life evaluation, the power cycle life of the comparative example 3 was 4000 times while the power cycle life of the example 13 was 20000 times. From the above, it has been shown that the power cycle life is improved by using the organic-inorganic composite material of the present invention for a power semiconductor device. This is because when the organic-inorganic composite material of the present invention is used as the sealing material, the insulation deterioration due to the partial discharge voltage is suppressed.
 (実施例14及び比較例4の作製)
 実施例14として、電線に本発明の層状粘土鉱物と樹脂原料を含むワニスを塗布し、加熱するプロセスによりエナメル線を試作した。150℃の加速寿命評価を実施した結果、500hの絶縁破壊電圧の減少率は初期値の5%であった。
(Preparation of Example 14 and Comparative Example 4)
As Example 14, an enameled wire was made on a trial basis by a process of applying a varnish containing the layered clay mineral of the present invention and a resin raw material to a wire and heating it. As a result of the accelerated life evaluation at 150 ° C., the reduction rate of the breakdown voltage at 500 h was 5% of the initial value.
 比較例4として市販の絶縁被覆材を用いてエナメル線を試作した。150℃の加速寿命評価を実施した結果、500hの絶縁破壊電圧の減少率は初期値の60%であった。以上より、エナメル線被覆材として本発明の有機-無機複合材料を用いることで、耐電圧性に優れたエナメル線が得られることが示された。 As Comparative Example 4, an enameled wire was manufactured by using a commercially available insulating covering material. As a result of the accelerated life evaluation at 150 ° C., the reduction rate of the breakdown voltage at 500 h was 60% of the initial value. From the above, it was shown that an enameled wire excellent in voltage resistance can be obtained by using the organic-inorganic composite of the present invention as an enameled wire coating material.
 (実施例15及び比較例5の作製)
 実施例15として、導体に絶縁テープを巻回し、加熱乾燥した後、本発明の層状粘土鉱物と樹脂原料を含むワニスを真空含浸し、加熱硬化するプロセスにより回転機コイルを得た。この回転機コイルを150℃の加速寿命評価を実施した結果、500hの絶縁破壊電圧の減少率は初期値の10%であった。
(Preparation of Example 15 and Comparative Example 5)
As Example 15, after winding an insulating tape around a conductor, heating and drying, a varnish containing the layered clay mineral of the present invention and a resin raw material was vacuum impregnated and heat-cured to obtain a rotary machine coil. As a result of carrying out accelerated life evaluation of this rotary machine coil at 150 ° C., the decreasing rate of the breakdown voltage of 500 h was 10% of the initial value.
 比較例5として市販の含浸樹脂を用いて回転機コイルを作製し、150℃の加速寿命評価を実施した結果、500hの絶縁破壊電圧の減少率は初期値の60%であった。 As a result of producing a rotating machine coil using a commercially available impregnated resin as Comparative Example 5, and carrying out accelerated life evaluation at 150 ° C., the decreasing rate of the breakdown voltage of 500 h was 60% of the initial value.
 以上より、本発明の有機-無機複合材料を含浸樹脂として用いることで、耐熱寿命に優れた回転機コイルを得られることが示された。 From the above, it has been shown that by using the organic-inorganic composite material of the present invention as the impregnated resin, it is possible to obtain a rotary machine coil having an excellent heat resistant life.
 本発明のケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物を含む有機-無機複合材料は、絶縁破壊強度が高いため、部分放電によるチップと配線のショートを防止することができ、パワー半導体装置の高寿命化に寄与することができる。 The organic-inorganic composite material containing the interlayer-modified layered clay mineral containing the silicon-containing oligomer of the present invention has a high dielectric breakdown strength, so that it is possible to prevent short circuit between the chip and the wiring due to partial discharge. Can contribute to the longevity of
 本発明の層間修飾された層状粘土鉱物及びモノマーを含む、ワニスを用いた膜は、高い絶縁破壊電圧を示すため、耐サージ特性に優れる絶縁電線を提供できる。 A film using a varnish containing the interlayer-modified layered clay mineral of the present invention and a monomer exhibits a high dielectric breakdown voltage, and thus can provide an insulated wire excellent in surge resistance characteristics.
 本発明のワニスを真空含浸し、加熱硬化して絶縁被覆を形成することにより回転機コイルを得ることができる。この回転機コイルは、絶縁性が高い樹脂で被覆されているため、耐熱寿命が高く、有用である。 A rotary coil can be obtained by vacuum impregnation of the varnish of the present invention and heat curing to form an insulation coating. Since this rotating machine coil is coated with a highly insulating resin, it has a high heat resistant life and is useful.
401 パワー半導体素子
402 回路配線部材
403 リード部材
404 接合材
405 ワイヤ
406 絶縁基板
407 放熱板
408 封止材
501 導体
502 絶縁被覆
601 導体
602 絶縁被覆
701 PPケース
702 電気絶縁油
703 有機-無機複合材料
704 球状電極
705 対向電極(アルミニウム製)
DESCRIPTION OF SYMBOLS 401 Power semiconductor element 402 Circuit wiring member 403 Lead member 404 Bonding material 405 Wire 406 Insulating substrate 407 Heat dissipation plate 408 Sealing material 501 Conductor 502 Insulating coating 601 Conductor 602 Insulating coating 701 PP case 702 Electrical insulating oil 703 Organic-inorganic composite material 704 Spherical electrode 705 Counter electrode (made of aluminum)

Claims (10)

  1.  ケイ素含有オリゴマーを含む、層間修飾された層状粘土鉱物であって、前記層状粘土鉱物がスメクタイト群、マイカ群、バーミキュライト群及び雲母群からなる群から選ばれる少なくとも1種又はそれ以上である、前記層間修飾された層状粘土鉱物。 An interlayer modified layered clay mineral comprising a silicon-containing oligomer, wherein the layered clay mineral is at least one or more selected from the group consisting of smectite group, mica group, vermiculite group and mica group. Modified layered clay mineral.
  2.  請求項1記載の層間修飾された層状粘土鉱物において、前記層状粘土鉱物が0.1wt%~10wt%、ケイ素含有オリゴマーが0.1wt%~30wt%含まれる、層間修飾された層状粘土鉱物。 The interlayer modified layered clay mineral according to claim 1, wherein the layered clay mineral is contained at 0.1 wt% to 10 wt% and the silicon-containing oligomer is contained at 0.1 wt% to 30 wt%.
  3.  請求項1又は2記載の層間修飾された層状粘土鉱物において、
    前記層間修飾された層状粘土鉱物の層間に(1,10フェナントロリン)銅錯体がイオン交換されており、かつ、ケイ素含有オリゴマーがベンゼン環を含むか、又は、
    前記層間修飾された層状粘土鉱物の層間にカチオン化された脂肪族アミン類がイオン交換されており、かつ、ケイ素含有オリゴマーが長鎖アルキル基を含む、
    層間修飾された層状粘土鉱物。
    In the interlayer modified layered clay mineral according to claim 1 or 2,
    (1,10 phenanthroline) copper complex is ion-exchanged between the layers of the interlayer modified layered clay mineral, and the silicon-containing oligomer contains a benzene ring, or
    The cationized aliphatic amines are ion-exchanged between the layers of the interlayer-modified layered clay mineral, and the silicon-containing oligomer contains a long chain alkyl group.
    Interlayer modified layered clay mineral.
  4.  請求項1~3いずれか1項記載の層間修飾された層状粘土鉱物及びモノマーを含む、ワニス。 A varnish comprising the interlayer modified layered clay mineral and monomer according to any one of claims 1 to 3.
  5.  請求項4記載のワニスにおいて、前記モノマーがビスフェノールA型エポキシプレポリマー、4,4’-エチリデンジフェニルジシアナート、3、3’-4,4’-ビフェニルテトラカルボン酸二無水物、p-フェニレンジアミンからなる群から選ばれる少なくとも1種又はそれ以上である、ワニス。 5. The varnish according to claim 4, wherein the monomer is a bisphenol A epoxy prepolymer, 4,4′-ethylidene diphenyl dicyanate, 3,3′-4,4′-biphenyl tetracarboxylic dianhydride, p-phenylene A varnish which is at least one or more selected from the group consisting of diamines.
  6.  請求項1~3いずれか1項記載の層間修飾された層状粘土鉱物及び樹脂、又は、請求項4若しくは5記載のワニスを含む、有機-無機複合材料。 An organic-inorganic composite comprising the interlayer modified layered clay mineral and resin according to any one of claims 1 to 3 or the varnish according to claim 4 or 5.
  7.  請求項6記載の有機-無機複合材料において、前記樹脂がエポキシ樹脂、シアネートエステル樹脂、ポリイミド樹脂からなる群から選ばれる少なくとも1種以上である、有機-無機複合材料。 The organic-inorganic composite material according to claim 6, wherein the resin is at least one selected from the group consisting of an epoxy resin, a cyanate ester resin, and a polyimide resin.
  8.  半導体素子及び封止材を含む半導体装置であって、前記封止材は請求項6又は7記載の有機-無機複合材料を含み、前記半導体素子が前記封止材で封止される、半導体装置。 A semiconductor device comprising a semiconductor element and a sealing material, wherein the sealing material comprises the organic-inorganic composite material according to claim 6 or 7, and the semiconductor element is sealed with the sealing material. .
  9.  導体と絶縁材料を含む電線であって、前記導体が、請求項4若しくは5記載のワニス又は請求項6又は7記載の有機-無機複合材料を含む前記絶縁材料で被覆されている、前記電線。 A wire comprising a conductor and an insulating material, wherein the conductor is coated with the varnish according to claim 4 or 5 or the organic-inorganic composite material according to claim 6 or 7.
  10.  導体と絶縁材料を含む回転機コイルであって、前記絶縁材料が巻回された前記導体は、請求項4若しくは5記載のワニス又は請求項6又は7記載の有機-無機複合材料で含浸されている、前記回転機コイル。 A rotary coil comprising a conductor and an insulating material, wherein the conductor wound with the insulating material is impregnated with the varnish according to claim 4 or 5 or the organic-inorganic composite material according to claim 6 or 7 The said rotating machine coil.
PCT/JP2012/082340 2012-12-13 2012-12-13 Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material WO2014091594A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/082340 WO2014091594A1 (en) 2012-12-13 2012-12-13 Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material
JP2014551798A JP5945335B2 (en) 2012-12-13 2012-12-13 Layered clay mineral, varnish containing the same, organic-inorganic composite material, electrical device using the organic-inorganic composite material, semiconductor device, and rotating machine coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082340 WO2014091594A1 (en) 2012-12-13 2012-12-13 Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material

Publications (1)

Publication Number Publication Date
WO2014091594A1 true WO2014091594A1 (en) 2014-06-19

Family

ID=50933915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082340 WO2014091594A1 (en) 2012-12-13 2012-12-13 Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material

Country Status (2)

Country Link
JP (1) JP5945335B2 (en)
WO (1) WO2014091594A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146304A1 (en) * 2018-01-23 2019-08-01 東亞合成株式会社 Sustained-release complex including interlaminar modified layered inorganic compound and method for producing same
CN113083383A (en) * 2021-03-18 2021-07-09 华中农业大学 Microfluidic chip device, preparation method and soil microbial community culture method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839252A (en) * 1981-09-02 1983-03-07 Mitsubishi Electric Corp Insulating method for rotary machine coil
JPS6227319A (en) * 1985-07-29 1987-02-05 Fuji Kagaku Kogyo Kk Production of clay derivative having porous structure
JPS63302068A (en) * 1987-01-31 1988-12-08 Toshiba Corp Thermal head
JPH10242336A (en) * 1997-02-25 1998-09-11 Sony Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839252A (en) * 1981-09-02 1983-03-07 Mitsubishi Electric Corp Insulating method for rotary machine coil
JPS6227319A (en) * 1985-07-29 1987-02-05 Fuji Kagaku Kogyo Kk Production of clay derivative having porous structure
JPS63302068A (en) * 1987-01-31 1988-12-08 Toshiba Corp Thermal head
JPH10242336A (en) * 1997-02-25 1998-09-11 Sony Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146304A1 (en) * 2018-01-23 2019-08-01 東亞合成株式会社 Sustained-release complex including interlaminar modified layered inorganic compound and method for producing same
CN111511868A (en) * 2018-01-23 2020-08-07 东亚合成株式会社 Slow-release complex agent comprising interlaminar-modified layered inorganic compound and method for producing same
JPWO2019146304A1 (en) * 2018-01-23 2021-01-07 東亞合成株式会社 Sustained-release composite agent containing an interlayer-modified layered inorganic compound and its production method
JP7028263B2 (en) 2018-01-23 2022-03-02 東亞合成株式会社 A sustained release complex containing an interlayer-modified layered inorganic compound and a method for producing the same.
CN111511868B (en) * 2018-01-23 2023-07-28 东亚合成株式会社 Sustained-release complexing agent comprising interlayer-modified layered inorganic compound and method for producing same
CN113083383A (en) * 2021-03-18 2021-07-09 华中农业大学 Microfluidic chip device, preparation method and soil microbial community culture method

Also Published As

Publication number Publication date
JP5945335B2 (en) 2016-07-05
JPWO2014091594A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
Huang et al. Role of interface in highly filled epoxy/BaTiO 3 nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property
Tanaka et al. Advances in nanodielectric materials over the past 50 years
JP4338731B2 (en) Aluminum oxide produced by high pyrolysis method and surface-modified
US7781063B2 (en) High thermal conductivity materials with grafted surface functional groups
Tanaka et al. Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
KR20140099352A (en) Insulating wire having partial discharge resistance and high partial discharge inception voltage
JP2006057017A (en) Partial discharge resistant insulating resin composition for high voltage equipment, partial discharge resistant insulating material, and insulating structure
KR101243944B1 (en) Heat-radiant solution-processible composites and heat-radiant composite films fabricated using well-dispersed composites
JP6317322B2 (en) Thermally conductive platy pigments coated with aluminum oxide
Park et al. Effect of epoxy-modified silicone-treated micro-/nano-silicas on the electrical breakdown strength of epoxy/silica composites
WO2014091594A1 (en) Layered clay mineral, varnish and organic-inorganic composite material including same, and electrical device, semiconductor device, and rotary machine coil using said organic-inorganic composite material
WO2022097694A1 (en) Aluminum-containing silica sol dispersed in nitrogen-containing solvent, and resin composition
EP3208815A1 (en) Internal combustion engine ignition coil and method for manufacturing internal combustion engine ignition coil
US9090796B2 (en) Organic-inorganic composite materials containing triazine rings and electrical devices using the same
KR101391235B1 (en) Inorganic nanofiller, partial discharge resistant enameled wire comprising the same, and preparing method of the enameled wire
JP2017222527A (en) Composite particle, varnish, organic-inorganic composite material, semiconductor device and stator coil for rotating machine
Kim et al. Enhanced thermal resistance of nanocomposite enameled wire prepared from surface modified silica nanoparticle
KR102262025B1 (en) Surface-modified boron nitride, composition having the same dispersed within, and wire coated with the composition
KR101132347B1 (en) Nanofiller for enameled wire, nanocomposite including the same, and preparing method of the same
JP2005239765A (en) Inorganic filler-dispersed insulating paint and insulated wire
Yoo et al. Surge‐Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface
Nisha et al. Effect of 4-Aminobutyltriethoxysilane Modified Al 2 O 3 Nanoparticles on the Dielectric Properties of Epoxy Nanocomposites for High Voltage Applications
JP2003022710A (en) Low dielectric type insulating material and its manufacturing method
JP7346279B2 (en) Wire Harness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889941

Country of ref document: EP

Kind code of ref document: A1