WO2014091456A1 - Procédé pour la récupération de métaux du groupe du platine - Google Patents

Procédé pour la récupération de métaux du groupe du platine Download PDF

Info

Publication number
WO2014091456A1
WO2014091456A1 PCT/IB2013/060909 IB2013060909W WO2014091456A1 WO 2014091456 A1 WO2014091456 A1 WO 2014091456A1 IB 2013060909 W IB2013060909 W IB 2013060909W WO 2014091456 A1 WO2014091456 A1 WO 2014091456A1
Authority
WO
WIPO (PCT)
Prior art keywords
pgm
chloride
containing material
pgms
chloride salt
Prior art date
Application number
PCT/IB2013/060909
Other languages
English (en)
Inventor
Jacques Frederik DE VILLIERS
Peter Maurice CHENNELLS
Original Assignee
Fer-Min-Ore (Proprietary) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fer-Min-Ore (Proprietary) Limited filed Critical Fer-Min-Ore (Proprietary) Limited
Priority to AP2015008588A priority Critical patent/AP2015008588A0/xx
Publication of WO2014091456A1 publication Critical patent/WO2014091456A1/fr
Priority to ZA2015/05013A priority patent/ZA201505013B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0009Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising

Definitions

  • This invention relates to a process for recovering platinum group metals (PGMs - ruthenium, rhodium, palladium, osmium, iridium, platinum and gold) and base metals (copper, nickel and cobalt) from ores, concentrates, tailings as well as recycled materials containing PGMs.
  • PGMs platinum group metals
  • ruthenium, rhodium, palladium, osmium, iridium, platinum and gold base metals (copper, nickel and cobalt) from ores, concentrates, tailings as well as recycled materials containing PGMs.
  • Chlorination of ore concentrates have been around for decades, either in the presence of carbon or carbon monoxide, in the presence of a chloride salt such as sodium chloride, in a salt bath such as sodium chloride or combinations of the aforementioned.
  • a chloride salt such as sodium chloride
  • a salt bath such as sodium chloride or combinations of the aforementioned.
  • the only processes operating commercially are the carbo-chlorination of titanium and zirconium concentrates and the dry chlorination of magnesium concentrates.
  • Carbo-chlorination introduces further cost and safety issues, while not giving any recovery advantage.
  • the relatively low salt addition compromises the recovery of the insoluble PGM's.
  • chlorine needs to be recycled, it will need to be passed through a clean-up stage to remove carbon dioxide and/or residual carbon monoxide.
  • the higher leaching acidity has significant cost implications with regards to acid neutralization and/or acid regeneration.
  • a chloride melt is prepared from chloride salts (sodium, potassium or magnesium). Ore or matte is mixed with KCI, the quantity is stoichiometric with the PGMs and base metals present. This mixture is introduced into the chloride melt and gaseous chlorine is introduced at 300 - 650 °C to form the PGM and base metal chlorides. The PGM chlorides then react with the KCI to form the corresponding PGM sails.
  • the problem with this process is that the molten salt bath chlorination would be operationally very difficult to control. The water volumes needed after leaching would be huge and the salt must be crystallized before use. Both capital and operating costs would be prohibitively high, in addition, the lower temperatures of reaction compromise the recovery of the insoluble PG!vYs.
  • a method of recovering platinum group metals PGMs - ruthenium, rhodium, palladium, osmium, iridium, platinum and gold
  • PGM-containing material such as PGM bearing ores, concentrates, tailings as well as recycled materials containing PGMs (including but not limited to spent catalytic converters)
  • the PGM-containing material is mixed with a chloride salt such as potassium chloride or sodium chloride, preferably sodium chloride, at a ratio of 40% to 300% by mass, preferably 50% to 200%, preferably 50% to 150%, preferably 60% to 100%, more preferably 60% to 80%, most preferably 60% to 75% by mass on a dry weight basis, chloride to PGM containing material, and the mixture is then reacted with chlorine gas in a chJorination reaction, in a suitable chlorination reactor, at a temperature of 750 to 850°
  • the reaction can be conducted in any suitable reactor, including but not limited to a static vessel alike vertical shaft reactor, a tubular reactor, a multiple hearth reactor or a rotary device, preferably a vertical shaft reactor.
  • the chloride salt is from a chloride brine, which may be supplemented with solid chloride salt.
  • the PGM-containtng material/chloride salt mixture is spray dried such that more than 50% of the spray dried mixture falls in the particle size range 300 [xm to 1.2 mm, and may be calcined at a temperature of 200 to 250 °C, prior to the chlorination reaction.
  • no carbon/CO is introduced to the reactor during the chlorination reaction.
  • the mixture becomes a tacky partial melt and PGMs and base metals in the PGM-contain/ng material are selectively chlorinated, resulting in the formation of PGM chloride salts of the type Na 2 PtC! 6 , Na 2 irCI 6t Na 2 RuCi 6 , Na 2 PdCI 4 , Na 3 RhCI 6 and NaAuCI 4t as well as the various base metal chlorides.
  • the chlorination reaction typically takes place under a pressure of 1 - 2 bar and the chlorine gas may be introduced at a rate of 40 to 60 g/h for 5 to 15 minutes, followed by a rate of 10 to 15 g/h for 40 to 60 minutes.
  • the residue may be leached with 0.1 to 1.5 M HCl to form a ieachate containing dissolved PGM chloro acids and base metal chlorides which is filtered, and PGMs and base metals may be recovered from the filtered ieachate by conventional technology, i.e. cementation, ion exchange or solvent extraction.
  • the present invention entails the chlorination of PGM bearing ores, concentrates, tailings as well as recycled materials containing PGMs (including but not limited to spent catalytic converters) in the presence of a chloride salt like but not limited to sodium chforide (or other chloride salts like potassium chloride) to selectively convert the PGMs to their respective chloro-saits.
  • the reaction can be conducted in any suitable reactor, including but not limited to a static vessel alike a vertical shaft reactor, a tubular reactor or a rotary device.
  • Refractory ore concentrate is mixed with sodium chloride brine (40% to 300% by mass on a dry weight basis, chloride to ore concentrate) and then dried (typically spray-dried, such that the majority of the spray dried material fails in the size range 300 pm to 1.2 mm) and may be calcined at a temperature of 130 to 250 °C.
  • Solid sodium chloride can also be mixed and blended with the ore concentrate before calcination. This mixture is then reacted with chlorine at a temperature of 750 to 850°C in a vertical shaft reactor for 60 to 120 minutes.
  • chlorine gas at the bottom of the reactor at a rate of 40 - 60 g/h under a pressure of 1 to 2 bar for 5 - 15 minutes, and then the chlorine flow rate is reduces to 10 - 15 g/h for a further 40 - 60 minutes.
  • No carbon/CO is introduced to the reactor. The advantage of this is that other metal species in the feed materia! are not converted to their respective metallic forms. The reaction mass becomes a tacky partial melt.
  • the PGMs and base metals in the ore concentrate are selectively chlorinated, resuiting in the formation of PGM chloride salts of the type Na 2 PtCI 6 , Na 2 lrCI B , Na 2 RuCI 6 , Na 2 PdCI 4 , Na 3 RhCI 6 and NaAuCI 4 , as well as the various base metal chlorides. Some iron chloride and small quantities of other metal chlorides are also formed.
  • PGM chloride salts are highly soluble and, after cooling, are leached from the residue with weak hydrochloric acid (0.1-1.0 M HCl solution), forming the corresponding PGM ch!oro-acids of the type H 2 PtCI 6 (chloroplatinic acid), H 2 lrCI 6 (chSoroiridic acid), H 2 RuCI 6 , H 2 PdCI 4 (chloropalladic acid), H 3 RhCI 6> and HAuCI 4 (chloroauric acid).
  • the barren solids are separated from the PGM- rich hydrochloric acid through filtration.
  • PGM metal recovery can then be done by conventional technology, i.e. cementation, ion exchange or solvent extraction.
  • the combination of the high salt content and high temperature of the present invention lead to a higher recovery of PGMs including the rhodium, ruthenium and iridium than prior art processes.
  • the achieved recoveries are similar to the conventional process of smelting and converting.
  • Other advantages of this process are that it produces a mixed PGM metal concentrate (>70% PGM metals) which is significantly richer than a conventional smelter converter matte (0.2% PGM metals) which can bypass the Base Metals Refinery and be sent directly to the Precious Metals Refinery.
  • the quartz tube has a chlorine gas inlet at the bottom and a chlorine gas outlet at the top.
  • the unreacted chlorine leaving the reactor is directed to a 7% - 12% NaOH scrubber to produce sodium hypochlorite.
  • the PGM and base metals barren residue is ready for disposal. Analyze the barren residue for PGMs and base metals.
  • the Ieach liquor is analyzed for PGMs and base metals.
  • the Ieach liquor is subjected to anionic resin exchange to recover all the PGMs in anionic form. Once the resin is sufficiently loaded with PGMs, it is treated and incinerated to recover the PGMs as a mixed PGM metal sponge containing more than 70% PGM metals.
  • the Ieach solution is subjected to cationic ion exchange to remove ail iron from the solution.
  • the iron is stripped from the resin with 6M HCl as ferric chloride, where after the resin is reused.
  • the base metals are then precipitated from the Ieach liquor as a 50% mixed metal sulfide product, using NaHS and NaOH. 18. Finally the minor metals (Mg, Al, Ca & Cr) are precipitated with sodium carbonate.
  • the remaining liquid is NaCl brine, which is recycled to the front-end of the process.
  • Tests were conducted on a number of PGM concentrates covering high chrome concentrates, high sulfur concentrates, high PGM loading concentrates (>500 g/ton PGM 4E) and low PGM loading concentrates ( ⁇ 70 g/ton PGM 4E). in all cases, the PGM and Base Metal extractions were comparable with conventionai smelting.
  • the high sulfur concentrate had a PGM loading of 108 g/t 4E (Pt, Pd, Rh & Au) and a base metal loading of 8.6% (Cu, Ni & Co).
  • the process of the present invention extracted 99.7% of the PGMs and 99.7% of the base metals.
  • the process of the present invention is applicable across the range of PGM concentrates available in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Cette invention porte sur un procédé de récupération de métaux du groupe du platine (PGM : ruthénium, rhodium, palladium, osmium, iridium, platine et or) et (s'ils sont présents) de métaux de base (en particulier le cuivre, le nickel et le cobalt) à partir d'un matériau contenant des PGM tel que des minerais, concentrés et résidus contenant des PGM ainsi que des matériaux recyclés contenant des PGM. Le matériau contenant des PGM est mélangé avec un sel de type chlorure en un rapport du chlorure au matériau contenant des PGM, en termes de poids sec, de 40 % à 300 % en masse. Le mélange est ensuite amené à réagir avec du chlore gazeux dans une réaction de chloration à une température de 750 à 850°C, pour convertir sélectivement les PGM en leurs sels chlorés respectifs et (s'ils sont présents) les métaux de base en leurs sels métalliques respectifs et obtenir un résidu contenant des sels de PGM et des sels de métaux de base.
PCT/IB2013/060909 2012-12-14 2013-12-13 Procédé pour la récupération de métaux du groupe du platine WO2014091456A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AP2015008588A AP2015008588A0 (en) 2012-12-14 2013-12-13 Process for recovering platinum group metals
ZA2015/05013A ZA201505013B (en) 2012-12-14 2015-07-13 Process for recovering platinum group metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA201209531 2012-12-14
ZA2012/09531 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091456A1 true WO2014091456A1 (fr) 2014-06-19

Family

ID=50933826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/060909 WO2014091456A1 (fr) 2012-12-14 2013-12-13 Procédé pour la récupération de métaux du groupe du platine

Country Status (3)

Country Link
AP (1) AP2015008588A0 (fr)
WO (1) WO2014091456A1 (fr)
ZA (1) ZA201505013B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335933A (zh) * 2016-08-30 2017-01-18 昆明贵容电子材料有限公司 一种水溶性硝酸钯的制备方法
CN106335932A (zh) * 2016-08-30 2017-01-18 昆明铂磊科技有限公司 一种三氯化钌的生产工艺
CN106430333A (zh) * 2016-08-30 2017-02-22 昆明铂磊科技有限公司 一种氯化钯的生产工艺
CN110036122A (zh) * 2016-10-30 2019-07-19 耶达研究及发展有限公司 用于从废催化剂回收铂族金属的方法
US11248278B1 (en) 2020-12-11 2022-02-15 Phoenix Tailings, Inc. Metal recovery using molten salt and related systems
WO2022125872A1 (fr) * 2020-12-11 2022-06-16 Phoenix Tailings, Inc. Récupération de métaux à l'aide de sel fondu et systèmes associés
US11427887B2 (en) 2017-11-27 2022-08-30 The Board Of Trustees Of The University Of Illinois Extraction of selected platinum-group metals from supported catalyst
WO2023247913A1 (fr) * 2022-06-22 2023-12-28 Johnson Matthey Public Limited Company Recyclage de composants de membrane revêtus de catalyseur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238662A (en) * 1987-07-31 1993-08-24 Chevron Research Company Processes for recovering precious metals
US20070131058A1 (en) * 2003-07-22 2007-06-14 Mario Bergeron Process for recovering platinum group metals from ores and concentrates
US20090301260A1 (en) * 2008-06-06 2009-12-10 Lawrence Shore Efficient process for previous metal recovery from fuel cell membrane electrode assemblies
US7968065B2 (en) * 2003-09-30 2011-06-28 Jaguar Nickel Inc. Process for the recovery of value metals from base metal sulfide ores

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238662A (en) * 1987-07-31 1993-08-24 Chevron Research Company Processes for recovering precious metals
US20070131058A1 (en) * 2003-07-22 2007-06-14 Mario Bergeron Process for recovering platinum group metals from ores and concentrates
US7968065B2 (en) * 2003-09-30 2011-06-28 Jaguar Nickel Inc. Process for the recovery of value metals from base metal sulfide ores
US20090301260A1 (en) * 2008-06-06 2009-12-10 Lawrence Shore Efficient process for previous metal recovery from fuel cell membrane electrode assemblies

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335933A (zh) * 2016-08-30 2017-01-18 昆明贵容电子材料有限公司 一种水溶性硝酸钯的制备方法
CN106335932A (zh) * 2016-08-30 2017-01-18 昆明铂磊科技有限公司 一种三氯化钌的生产工艺
CN106430333A (zh) * 2016-08-30 2017-02-22 昆明铂磊科技有限公司 一种氯化钯的生产工艺
CN110036122A (zh) * 2016-10-30 2019-07-19 耶达研究及发展有限公司 用于从废催化剂回收铂族金属的方法
US11473168B2 (en) 2016-10-30 2022-10-18 Yeda Research And Development Co. Ltd. Method for platinum group metals recovery from spent catalysts
US11427887B2 (en) 2017-11-27 2022-08-30 The Board Of Trustees Of The University Of Illinois Extraction of selected platinum-group metals from supported catalyst
US11248278B1 (en) 2020-12-11 2022-02-15 Phoenix Tailings, Inc. Metal recovery using molten salt and related systems
WO2022125872A1 (fr) * 2020-12-11 2022-06-16 Phoenix Tailings, Inc. Récupération de métaux à l'aide de sel fondu et systèmes associés
WO2023247913A1 (fr) * 2022-06-22 2023-12-28 Johnson Matthey Public Limited Company Recyclage de composants de membrane revêtus de catalyseur

Also Published As

Publication number Publication date
AP2015008588A0 (en) 2015-07-31
ZA201505013B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2014091456A1 (fr) Procédé pour la récupération de métaux du groupe du platine
EP3418403B1 (fr) Procédé de traitement hydrométallurgique d'extraction d'éléments précieux, de base et rares
Trinh et al. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy
US3880653A (en) Chlorine leach process
CN110343859B (zh) 用于萃取贵元素、贱元素和稀有元素的处理工艺
US4094668A (en) Treatment of copper refinery slimes
Shen et al. Recovery palladium, gold and platinum from hydrochloric acid solution using 2-hydroxy-4-sec-octanoyl diphenyl-ketoxime
AU2016204101A1 (en) Process for the Recovery of Gold from an Ore in Chloride Medium With a Nitrogen Species
EP2195470A1 (fr) Système et procédé pour extraire des valeurs en métaux communs à partir de minerais d'oxydes
Antuñano et al. Hydrometallurgical processes for Waelz oxide valorisation–An overview
CA2912928A1 (fr) Procede de traitement destine a la recuperation et la separation d'elements des liqueurs
AU2021204219B2 (en) Recovery of Metals from Pyrite
Van Schalkwyk et al. Leaching of Ni–Cu–Fe–S converter matte at varying iron endpoints; mineralogical changes and behaviour of Ir, Rh and Ru
WO2005007903A1 (fr) Procede de recuperation de metaux du groupe platine a partir de minerais et de concentres
Nagai et al. Development of methods for concentration and dissolution of Rh and Ru from copper slime
US3975189A (en) Recovery of copper sulphide and nickel from solution
Green, BR*, Smit, DMC Maumela, H. & Coetzer Leaching and recovery of platinum group metals from UG-2 concentrates
EA008574B1 (ru) Извлечение металлов платиновой группы
AU2013211472B2 (en) System and method for extracting base metal values from oxide ores
JPS6018733B2 (ja) ニツケルマツトを処理するための湿式治金法
Acres et al. Pt Platinum: Supplement Volume A 1 Technology of Platinum-Group Metals
Bernfeld et al. Review on the recovery of the platinum-group metals
WO2011140593A1 (fr) Récupération de métaux du groupe platine à partir de matériaux contenant des métaux du groupe platine
WO2018078632A1 (fr) Procédé de récupération de métaux du groupe du platine à partir de catalyseurs usés
RU2144091C1 (ru) Способ переработки промпродуктов медно-никелевого производства

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 13862462

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13862462

Country of ref document: EP

Kind code of ref document: A1