WO2014091048A1 - Métodos y kits para el pronóstico del cáncer colorrectal - Google Patents

Métodos y kits para el pronóstico del cáncer colorrectal Download PDF

Info

Publication number
WO2014091048A1
WO2014091048A1 PCT/ES2013/070864 ES2013070864W WO2014091048A1 WO 2014091048 A1 WO2014091048 A1 WO 2014091048A1 ES 2013070864 W ES2013070864 W ES 2013070864W WO 2014091048 A1 WO2014091048 A1 WO 2014091048A1
Authority
WO
WIPO (PCT)
Prior art keywords
scd
acsl4
gene
lpl
genes
Prior art date
Application number
PCT/ES2013/070864
Other languages
English (en)
French (fr)
Inventor
Ana I. RAMÍREZ DE MOLINA
Guillermo J. REGLERO RADA
Teodoro VARGAS ALONSO
Susana MOLINA ARRANZ
Margarita GONZÁLEZ-VALLINAS GARRACHÓN
Jaime Feliu Batlle
Juan MORENO RUBIO
Paloma Cejas Guerrero
Original Assignee
Fundación Imdea Alimentación
Fundacion Para La Investigacion Biomedica Del Hospital Universitario De La Paz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Imdea Alimentación, Fundacion Para La Investigacion Biomedica Del Hospital Universitario De La Paz filed Critical Fundación Imdea Alimentación
Publication of WO2014091048A1 publication Critical patent/WO2014091048A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the invention relates to the field of diagnosis and, more particularly, to the methods of predicting the risk of relapse of cancer patients, as well as methods of providing personalized medicine to said patients.
  • the invention also relates to kits for carrying out the methods of diagnostic and predictive medicine. BACKGROUND OF THE INVENTION
  • Colorectal cancer is one of the most common malignancies in the western world, it is the third leading cause of death in men, after lung cancer and prostate cancer and is the second most frequent among women, after cancer of breast Colorectal cancer is the third most common cancer in men (663,000 cases, 10.0% of the total) and the second in women (571,000 cases, 9.4% of the total) worldwide. Some 608,000 deaths from colorectal cancer are estimated worldwide, representing 8% of cancer deaths, making it the fourth most common cause of cancer death. (GLOBOCAN.iarc.fr)
  • the main treatment option for colorectal cancer is surgery, with or without adjuvant chemotherapy and / or radiotherapy, depending on the patient's individual classification and other medical factors.
  • TNM Tumor / Nodules / Metastasis
  • AJCC American Joint Committee on Cancer
  • stage IV patients have a poor prognosis
  • the diagnosis of early colorectal cancer does not exclude the possibility that the tumor may develop very quickly.
  • the causes for which 20 to 40 percent of patients with stage II colorectal cancer are rapidly aggravated and die are unknown.
  • Some studies suggest that a subgroup of patients at high risk for stage II colon cancer could benefit from adjuvant therapy (Quasar et al, Lancet 2007; 370: 2020-2029).
  • stage II disease histopathological variables, such as high-risk characteristics in stage II disease, are only guidelines in staging therapy.
  • the lymph nodes are invaded by the tumor cells, the results of the TNM tests predict a poor prognosis and the patient is usually subjected to surgery followed by heavy chemotherapy.
  • Clinical studies show that for every 25 patients identified as high-risk stage II CCR, 20 are cured, regardless of whether or not they receive treatment (Quasar et al, Lancet 2007; 370: 2020-2029).
  • a subgroup of patients with stage III colon cancer treated only with surgery do not relapse in 5 years, even without adjuvant treatment (Ranghammar et al, Oncology Act 2001; 40: 282-308).
  • Adjuvant chemotherapy is the standard recommendation for phase III CRC, however, the prospective identification of this subgroup of patients with stage III colon cancer could cause it to be dispensed with. of therapy. Therefore, an accurate and reliable method that identifies patients at a higher and lower risk (for example, "high risk” stage II and "low risk” stage III colon cancer) could improve selection of individualized therapy within these groups.
  • US7695913 describes a method to predict the prognosis of a patient suffering from CRC that comprises the determination of the levels of normalized expression of the INHBA, MYBL2, FAP and Ki67 genes in which an increase in the expression of INHBA and FAP correlates negatively with a greater probability of a positive prognosis and where the expression of the MYBL2 and Ki67 genes correlates positively with a greater possibility of a positive prognosis.
  • the method described in this document forms the basis of the Oncotype DX kit, although the kit includes the determination of 12 genes, including the INHBA, MYBL2, FAP and Ki67 genes.
  • WO02057787 reports the results of a study designed to determine whether survivin mRNA can be used to predict death from a recurrent colorectal carcinoma.
  • the study was based on data obtained from biopsies of frozen tumors from 144 patients.
  • the study shows that survivin expression is associated with a significantly higher risk of death from recurrent cancer in patients with stage II colorectal cancer.
  • a stage III patient with a low risk of recurrence similar to that of a stage II patient and a low probability of benefiting from chemotherapy may choose to give up chemotherapy.
  • a patient with a high risk of recurrence and a low probability of benefiting from chemotherapy with 5-FU may choose an alternative treatment.
  • the invention relates to a method for determining the prognosis of a patient suffering from colorectal cancer which comprises determining in a sample obtained from said patient the expression levels of at least one gene selected from the group formed by GCNT3, LPL, APOCl, SCD, ACSLl and / or ACSL4 where an increase in the expression levels of the LPL, APOCl, SCD, ACSLl and / or ACSL4 genes and / or a decrease in the expression levels of the GCNT3 gene with respect to A reference value for each gene is indicative that the patient has a poor prognosis.
  • the invention in another aspect relates to a method for selecting a suitable treatment for patients suffering from colorectal cancer comprising the determination of the expression levels of at least one gene selected from the group consisting of GCNT3, LPL, APOCl, SCD, ACSLl and / or ACSL4 where an increase in the expression levels of the LPL, APOCl, SCD, ACSLl and / or ACSL4 genes and / or a decrease in the expression levels of the GCNT3 gene with respect to a value of Reference for each gene is indicative that the patient has to be treated is a candidate to receive radiotherapy or chemotherapy after surgical treatment.
  • the invention in another aspect, relates to a kit comprising the reagents suitable for the determination of the expression levels of the GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes and, optionally, the reagents for the determination of the expression levels of one or more control genes, constitutive expression or "housekeeping".
  • the invention relates to the use of a kit according to the invention to predict the outcome (prognosis) of a patient suffering from colorectal cancer or to determine if a patient with colorectal cancer is a candidate for chemotherapy or radiotherapy. after surgery.
  • FIGURES Figure 1 Prognostic value of the LPL gene in clinical samples of patients with colon cancer.
  • Figure 2 Prognostic value of the APOC1 gene in clinical samples of patients with colon cancer.
  • Figure 3 Prognostic value of the SCD gene in clinical samples of patients with colon cancer.
  • Figure 4 Prognostic value of the ACSLl gene in clinical samples of patients with colon cancer. ) Prognostic value of ACSLl in the initial series of patients. B) Predictive value of response to chemotherapy of ACSLl in patients of the initial series. C) Predictive value of response to chemotherapy of ACSLl in the validation series.
  • Figure 5 A) Prognostic value of the ACSL4 gene in clinical samples of patients with colon cancer. B) Prognostic value of the ACSL4 gene in clinical samples of patients with colon cancer who have not been treated with chemotherapy.
  • Figure 6 Prognostic value of the GCNT3 gene in clinical samples of patients with colon cancer.
  • Figure 7 Prognostic value of a metabolic footprint based on the determination of combined gene levels.
  • the predictive value of a genomic fingerprint based on the determination of 4 (A) and 5 genes (B) is presented, both in the initial series (panel upper) as in the validation (central panel), as well as the compromise of sensitivity and specificity of the test (lower panel).
  • FIG. 8 (A) Dose-response curves of viability tests (MTT) after 48 hours of treatment with Triacsin C in four colon cancer cell lines (DLD-1, CaCo-2, HTC-116 and SW620). The data are represented as the mean ⁇ the standard deviation of three independent experiments in which each treatment has been performed in triplicate. (B) In vitro response in DLD-1, Caco2, HTC-116 and SW620 cell lines to treatment for 48 hours with Triacsin C. The values represent the concentrations of Triacsin C ( ⁇ ) that produce 50% of the inhibition of Cell viability (IC50), 50% of cell growth inhibition (GI50), total growth inhibition (TGI) and 50% of cell death (LC50). The results are shown as the mean ⁇ the standard deviation of three independent experiments in which each treatment has been performed in triplicate.
  • the authors of the present invention have identified different genes whose expression levels allow the identification of patients with CRC with lower and higher risk of relapse (for example, of "high risk” in stage II and of "low risk” in stage III of colon cancer).
  • the expression levels of the LPL, APOC1, SCD, ACSL1, ACSL4 and GCNT3 genes are differentially expressed in tumor samples from patients having a worse prognosis (determined through disease-free survival) than in those patients who have a better prognosis.
  • the invention relates to a method (hereinafter “prognostic method of the invention") for predicting the outcome of a patient suffering from colorectal cancer comprising determining the levels of expression of the GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes where an increase in the expression levels of the LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes and / or a decrease in levels GCNT3 gene expression with respect to a reference value for each gene is indicative that the patient has a poor prognosis.
  • prognostic method of the invention for predicting the outcome of a patient suffering from colorectal cancer comprising determining the levels of expression of the GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes where an increase in the expression levels of the LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes and / or a decrease in levels GCNT3 gene expression with respect to a reference
  • the term "determine the prognosis” is used here to refer to the probability that a patient has a specific clinical outcome, whether positive or negative.
  • the prediction methods of the present invention can be used clinically to make decisions about choosing the most appropriate treatment for each particular patient.
  • the prediction methods of the present invention are valuable tools for predicting whether a patient will respond favorably to a treatment regimen, such as chemotherapy.
  • the prediction may include prognostic factors.
  • the prediction although preferred, does not have to be correct for 100% of the subjects that can be diagnosed or evaluated. The term, however, requires that a significant part of the subjects can be identified as most likely to have a certain outcome.
  • a subject is statistically significant it can be determined without further ado by the person skilled in the art, using different known statistical evaluation tools, for example, the determination of confidence intervals, the determination of p-value, cross-validation classification rates and details, etc., as shown in Dowdy and Wearden, Wiley Research Statistics, John & Sons, New York 1983.
  • the recommended confidence intervals are at least 50%, at least 60%, so minus 70%, at least 80%, at least 90% or at least 95%.
  • the p-values are preferably 0.01, 0.005 or less.
  • patient refers to all animals classified as mammals and includes, but is not limited to, domestic and farm animals, primates and humans, for example: humans, non-primates. humans, cows, horses, pigs, sheep, goats, dogs, cats or rodents. Preferably, the patient is a human being male or female of any age or race.
  • colonal cancer is used in its broadest sense and refers to (1) all stages and all forms of cancer that originate from epithelial cells of the large intestine and / or rectum and / or (2) all stages and all forms of cancer that affect the lining of the large intestine and / or rectum.
  • the colon and rectum are treated as a single organ.
  • the patient has a stage I, II, III or IV, where stage I is defined as TI NO MO or T2 NO MO, stage II is defined as T3 NO MO or T4 NO MO, the stage III is defined as any T, NI -2, MO and stage IV corresponds to any T, any N, MI.
  • Tumor the tumor invades the submucosa
  • T2 the tumor invades the muscularis basement
  • T3 the tumor invades the muscularis basement in the subserosa, or the consic or perirectal tissues
  • T4 The tumor directly invades other organs or structures, and / or perforates.
  • Node NO: There is no metastasis to regional lymph nodes; NI: metastasis in 1 to 3 regional lymph nodes, N2: Metastasis in 4 or more regional lymph nodes.
  • M0 Distant metastasis mp
  • MI distant metastasis present.
  • the patient whose outcome is predicted is a patient who has been diagnosed with colorectal cancer and who has undergone a surgical intervention of the cancer.
  • the patient has had a surgical intervention of a stage I tumor, a stage II tumor, a stage III tumor or a stage IV tumor.
  • sample refers to the biological material isolated from a subject.
  • the biological sample may contain any biological material suitable for detecting the desired biomarker and may comprise cells and / or non-cellular material of the subject.
  • the sample may be isolated from any suitable biological tissue or fluid, such as, for example, prostate tissue, blood, blood plasma, serum, urine, cerebrospinal fluid (CSF) or feces.
  • suitable biological tissue or fluid such as, for example, prostate tissue, blood, blood plasma, serum, urine, cerebrospinal fluid (CSF) or feces.
  • CSF cerebrospinal fluid
  • the samples used for the determination of the marker genes are samples of colon tissue preferably obtained by biopsy.
  • the samples are samples of biofluids.
  • biofluid can be obtained from any location (such as blood, plasma, serum, urine, bile, cerebrospinal fluid, vitreous or aqueous humor, or any body secretion), an exudate (such as fluid obtained from an abscess or any other site of infection or inflammation), or the fluid obtained from a joint (for example, a normal joint or a joint affected by a disease such as rheumatoid arthritis).
  • the first method of the invention comprises determining the expression levels of at least one gene selected from the group consisting of GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 in a sample of said patient.
  • GCNT3 refers to the gene encoding mucosal glucosaminyl (N-acetyl) transferase 3, also known as C2 / 4GnT, C2GnT-M, C2GnT2 and identified in the UniProtKB / database SwissProt with access number 095395.E1 human GCNT3 gene has access number 4205 in the HGNC database.
  • LPL refers to the gene encoding the lipoprotein lipase protein, P06858.
  • the human LPL gene has accession number 6677 in the HGNC database
  • APOC1 refers to the gene encoding the ApoCl protein, and which is identified in the UniProtKB / SwissProt database with the accession number P02654.
  • the human APOC1 gene has accession number 607 in the HGNC database.
  • SCD refers to the gene encoding the stearoyl-CoA desaturase protein (also called delta-9 desaturase) and which is identified in the UniProtKB / SwissProt database with accession number 000767.
  • the human SCD gene has accession number 1057 in the HGNC database.
  • ACLS1 refers to the gene encoding isoform 1 of the long chain acyl-CoA synthetase and which is identified in the UniProtKB / SwissProt database with accession number P33121.
  • the human ACLS1 gene has accession number 3569 in the HGNC database.
  • ACLS4 refers to the gene encoding isoform 4 of long chain acyl-CoA synthetase and which is identified on the basis of UniProtKB / SwissProt data with access number 060488.
  • the human ACLS4 gene has access number 3571 in the HGNC database.
  • the method according to the present invention may comprise the determination of naturally occurring polymorphic variants of one or more of the genes above.
  • the method of the invention comprises determining the expression levels of each of the genes individually.
  • the method of the invention comprises determining the expression levels of the genes grouped in pairs.
  • the invention comprises the determination of the following GCNT3 and LPL gene pairs;
  • GCNT3 and APOCl GCNT3 and SCD
  • GCNT3 and ACSLl GCNT3 and ACSL4
  • LPL and
  • the method of the invention comprises determining the expression levels of the genes grouped three by three.
  • the invention comprises the determination of the following gene groups: GCNT3, LPL and APOCl; GCNT3, LPL and SCD; GCNT3, LPL and ACSLl; GCNT3, LPL and ACSL4;
  • GCNT3, APOCl and SCD GCNT3, APOCl and ACSLl
  • GCNT3, APOCl and ACSL4 GCNT3, APOCl and ACSL4;
  • GCNT3, SCD and ACSLl GCNT3, SCD and ACSL4; GCNT3, ACSLl and ACSL4; LPL, APOCl and SCD; LPL, APOCl and ACSLl; LPL, APOCl and ACSL4; LPL, SCD and ACSLl;
  • ACSL4 ACSL4; APOCl, ACSLl and ACSL4; SCD, ACSLl and ACSL4.
  • the method of the invention comprises determining the expression levels of the genes grouped four by four.
  • the invention comprises the determination of the following gene groups:
  • GCNT3, LPL APOCl and SCD
  • GCNT3, LPL APOCl and ACSLl
  • GCNT3, LPL APOCl and ACSLl
  • the method of the invention comprises determining the expression levels of the genes grouped five by five.
  • the invention comprises the determination of the following gene groups: GCNT3, LPL, APOC1, SCD, and ACSL1; GCNT3, LPL, APOC1, SCD and ACSL4; GCNT3, LPL, APOC1, ACSL1 and ACSL4; GCNT3, LPL, SCD, ACSL1 and ACSL4; GCNT3, APOC1, SCD, ACSL1 and ACSL4; LPL, APOC1, SCD, ACSL1 and ACSL4.
  • the method of the invention comprises determining the expression levels of the GCNT3, LPL, APOC1, SCD, ACSL1 and ACSL4 genes.
  • the method of the invention comprises determining the expression levels of the ACSL1 and / or ACSL4 genes.
  • the method of the invention comprises determining the levels of expression of the ACSL1 and / or ACSL4 genes and additionally comprising determining the levels of expression of at least one gene selected from the group formed by GCNT3, LPL, APOC1 and SCD.
  • the method of the invention further comprises determining the expression levels of one or more of one of the ABCAl, APOE, FADS2, CD36 genes where an increase in the expression levels of the ABCAl genes , APOE, FADS2 and / or CD36 with respect to a reference value for each gene is indicative that the patient has a poor prognosis.
  • ABC refers to the gene encoding the ABCAl protein (ATP-binding cassette subfmaliy A member /), which is identified in the UniProtKB / SwissProt database with the accession number 095477.
  • the Human ABCA gene has access number 29 in the HGNC database.
  • APOE refers to the gene encoding the apolipoprotein E or Apo-E protein, which is identified in the UniProtKB / SwissProt database with the accession number P02649.
  • the human APOE gene has accession number 613 in the HGNC database.
  • FADS2 refers to the gene encoding II protein delta (6) fatty acid desaturase "or” fatty acid desaturase 2 ", identified on the basis of UniProtKB / SwissProt data with the number Access 095864.
  • the human FADS2 gene has access number 3575 in the HGNC database.
  • CD36 refers to the gene encoding the protein "platelet glycoprotein 4 (thrombospondine receptor)", which is identified in the UniProtKB / SwissProt database with the UniProtKB / Swiss-Prot accession number : P 16671.
  • the human CD36 gene has the access number in the HGNC database.
  • the method of the invention comprises determining the expression levels of one of the following gene groups:
  • ACSL4 ACSL4, ACSL1, SCD, FADS2 and ABCA1
  • any conventional method can be used within the framework of the invention to detect and quantify the levels of said genetic markers.
  • expression levels are determined by quantifying the levels of mRNA encoded by the genes involved or by quantifying the levels of the corresponding proteins.
  • the nucleic acid containing the sample (for example, cells or tissues prepared from the patient) is first extracted according to standard methods, for example, the use of lithic enzymes or chemical solutions or extracted with nucleic acids fixing resins following the manufacturer's instructions.
  • the extracted mRNA is detected by hybridization (for example, the analysis of Northern blot or DNA microarrays after the conversion of the mRNA into a labeled cDNA) and / or amplification (for example, RT-PCR).
  • the determination can be carried out qualitatively, quantitatively, or semi-quantitatively.
  • the quantitative real-time or semi-quantitative determination of RT-PCR is particularly advantageous.
  • the primer pairs are designed to include a region that contains an intron, so that cDNA amplification can be distinguished from putative genomic contamination. Suitable primers can be easily designed by the expert.
  • Other amplification methods include ligase chain reaction (LCR), amplification mediated transcription (TMA), chain shift amplification (SDA) and nucleic acid based sequence amplification (NASBA).
  • LCR ligase chain reaction
  • TMA amplification mediated transcription
  • SDA chain shift amplification
  • NASBA nucleic acid based sequence amplification
  • the amount of mRNA is measured quantitative or semi-quantitative RT-PCR or quantitative real-time or semi-quantitative RT-PCR.
  • specific hybridization refers to the conditions that allow the hybridization of two polynucleotide sequences under high stringent conditions or moderately severe conditions.
  • highly strict conditions and “moderately strict conditions” are defined below in relation to the kit of the invention and are equally applicable in the context of the present method.
  • the expression levels of the marker genes by determining the expression levels of the proteins encoded by said genes, an increase in the amount of corresponding protein must take place.
  • the expression levels of different proteins can be determined using any conventional method.
  • said determination can be made using antibodies capable of specifically binding the protein to be determined (or fragments thereof with the antigenic determinants) and subsequent quantification of the antigen-antibody complex derivatives.
  • the antibodies to be used in this type of analysis can be, for example polyclonal sera, hybridoma supernatants or monoclonal antibodies, antibody fragments, Fv, Fab, Fab 'and F (ab') 2, scFv, diabodies, triabodies , humanized tetrabodies and antibodies.
  • the antibodies may or may not be labeled.
  • markers include radioactive isotopes, enzymes, fluorophores, chemiluminescent reagents, enzyme cofactors or substrates, enzyme inhibitors, particles, dyes, etc.
  • labeled antibodies primary antibody
  • labeled antibodies secondary antibodies
  • Western blot or immunoblot techniques include Western blot or immunoblot techniques, ELISA (Enzyme- linked immunosorbent assay), RIA (radioimmunoassay), competition EIA (enzyme immunoassay), DAS-ELISA (double antibodies sandwich ELISA), immunocytochemical and immunohistochemical techniques, techniques based on the use of biochips or microarrays of proteins as specific antibodies or assays based on colloidal precipitation in formats such as test strips.
  • Other forms of protein detection and quantification include affinity chromatography, ligand binding assays, etc.
  • the levels are compared with reference values for each of said genes.
  • the reference values are the level of expression of the genes that are compared in a reference sample.
  • a “reference sample”, as used herein, means a sample obtained from a group of healthy subjects that does not have a particular disease state or phenotype.
  • the reference sample may include samples of the colon mucosa of patients who do not suffer from colon cancer or who have no history of colon cancer.
  • the reference sample could be a sample or a set of colon cancer samples with a low risk of recurrence. This sample or set of samples can be obtained from patients who have had a surgical resection of the tumor and who have not suffered a relapse, preferably in the absence of adjuvant chemotherapy.
  • the reference sample is a sample of a type that CCR or a group of type I CCR.
  • the appropriate reference levels of gene expression can be determined by measuring the expression levels of such genes on various suitable topics, and those reference levels can be adjusted to specific populations (for example, a reference level may be age-related, so comparisons can be made between levels of expression in samples of subjects of a certain age and reference levels for a particular disease, phenotype, or lack thereof in a given age group ).
  • the reference sample is obtained from several healthy subjects or patients without a previous history of colorectal cancer.
  • the reference sample is a sample or a set of colon cancer samples from patients who have had a surgical resection of the tumor and who have not suffered a relapse, preferably in the absence of adjuvant chemotherapy.
  • the type of reference sample may vary depending on the specific method to be performed. So, in the case of that a diagnosis or prognosis of the disease is carried out, the sample referred to may be a set of non-tumor tissue of colorectal tissue, that of people who do not have a history of colorectal cancer or a distal group of non-tissue Oral tumors with respect to the respective oral tissues, or a sample or a set of colon cancer samples from patients who have had a surgical resection of the tumor and who have not suffered a relapse, preferably in the absence of adjuvant chemotherapy.
  • the reference sample is preferable a sample obtained from said patient before starting treatment.
  • the expression profile of the genes in the reference sample of preference can be generated from a population of two or more people.
  • the population for example, can contain 3, 4, 5, 10, 15, 20, 30, 40, 50 or more people.
  • the expression profile of the genes in the reference sample and in the sample of the person to be diagnosed according to the methods of the present invention can be generated from the same person, provided the profiles are analyzed and the reference profile are generated from the biological samples taken at different times and compared to each other. For example, a sample of an individual can be obtained at the beginning of a study period. A reference biological marker profile of this sample can be compared with the biomarker profiles generated from subsequent samples of the same person.
  • the reference sample is a set of samples from several individuals, and corresponds to portions of colon tissue that are far from the tumor area and that have been preferably obtained in the same biopsy, but which do not have No pathological characteristics of the tumor tissues.
  • the expression of a gene is considered increased in a sample of the subject matter when the levels of increase with respect to the reference sample are at least 5%, at least 10%, at least 15%, by at least 20%), at least 25%, at least 30%>, at least 35%, at least 40%), at least 45%, at least 50%, so minus 55%, at least 60%, at least at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1 10%, at least 120%, at least 130%), at least 140%), at least 150%), or more.
  • the expression of a gene is considered decreased when its levels decrease with respect to the reference sample by at least 5%, at least 10%, at least 15%, at least 20%), at least 25%, at least 30%, at least 35%, at least 40%), at least 45%, at least 50%, at least 55%, so minus 60%), at least 65%, at least 70%, at least 75%, at least 80%), at least 85%, at least 90%, so minus 95%, at least 100%) (i.e. absent).
  • the patient is classified as having a high risk of negative result, if the marker genes show an increase in expression levels with respect to a reference sample and that have a low risk of negative results, if the marker genes show a decrease in expression levels with respect to a reference sample.
  • the patient is classified as having a high risk of negative result, if the expression levels of the gene is higher than the expression level of the same gene in a sample or set of colon cancer samples from patients who have had a surgical resection of the tumor and have not suffered a relapse, preferably in the absence of adjuvant chemotherapy.
  • good prognosis is used to indicate an improvement in some measure of the patient's condition, including those normally used in the art, such as an increase in the duration of the free interval of recurrence (RFI), an increase in overall survival time (OS), an increase in disease-free survival time (DFS), an increase in the duration of recurrence-free interval (DRFI), and the like .
  • RFID free interval of recurrence
  • OS overall survival time
  • DFS disease-free survival time
  • DRFI duration of recurrence-free interval
  • An increase in the probability of positive clinical results corresponds to a decrease in the probability of cancer recurrence.
  • the term "poor prognosis,” as used in the present invention, is used to indicate a worsening of any measure of the patient's condition, even normally used in the art, such as a decrease in the duration of the interval.
  • recurrence-free RFI
  • OS overall survival time
  • DFS disease-free survival time
  • DRFI duration of the recurrence-free interval
  • the outcome in a given patient is measured as disease-free survival.
  • disease-free survival refers to the time elapsed between primary cancer treatment and the time in which the patient survives without the appearance of signs or symptoms of the disease.
  • the prognostic factors are those variables related to the natural history of colorectal cancer, which influence the recurrence and prognosis rates of patients once they have developed colorectal cancer.
  • Clinical parameters that have been associated with a worse prognosis for example, lymph node involvement and high-grade tumors.
  • Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
  • the clinical prognostic factor used in the method of the invention is the stage of the tumor, a stage in which the increase in the tumor is indicative of an increased risk of recurrence or in which the tumor stage decreases is indicative that the patient shows a low risk of recurrence.
  • Patients analyzed according to the present invention may have been treated with one or more therapies aimed at decreasing the size of the tumor. Therefore, in a preferred embodiment, the patients are treated before the determination of the expression levels of the different genes according to the invention with a therapy selected from the group consisting of chemotherapy, radiotherapy or surgery.
  • chemotherapy “Radiotherapy” and “surgery” are defined below in detail and used with the same meaning in the context of the present invention.
  • the patients have been treated with a therapy based on fluoropiri dynes.
  • fluoropiri dynes-based therapy refers to a therapy comprising a fluoropyridine as an active ingredient, and includes both therapies where fluoropyridine is the only active ingredient and compositions comprising a fluoropyridine. and one or more active principles.
  • fluoropyridine refers to a chemotherapy agent comprising a pyrimidine ring wherein said ring is replaced by a fluorine atom.
  • fluorpiri dynes examples include, without limitation, 5-fluorouracil, floxuridine, tegafur, 5-fluoro-2'-deoxyuridine, ftorafur, emitefur, eniluracil and capecitabine.
  • Compositions comprising a fluoropyridine and one or more active ingredients include, without limitation, FOLFOX (a composition comprising folinic acid, 5-FU and oxaliplatin), XELOX (a composition comprising capecitabine and oxaliplatin), FOLFIRI (5-FU, leucovirin and irinotecan), Sl (a combination of ftorafur (a prodrug of 5-FU) and 2 5-FU modulators called 5-chloro-2,4-dihydroxyproidine and oxonic acid in a molar ratio of 1: 0.4: 1).
  • UFT a combination of ftorafur and uracil in a 1: 4 molar ratio).
  • the prognostic methods defined above also offer personalized therapies for patients suffering from colorectal cancer.
  • patients considered to have a poor prognosis are candidates for adjuvant therapy (after tumor removal).
  • patients who show a low risk of relapse can give up additional therapeutic treatment after surgery and avoid the unwanted effects of adjuvant therapy.
  • the invention relates to a method (hereinafter, the first personalized therapeutic method of the invention) for the selection of a suitable treatment for colorectal cancer in a patient comprising the determination of the levels of expression of at least one gene selected from the group consisting of GCNT3, LPL, APOCl, SCD, ACSLl and / or ACSL4 in a sample of said patient, where there is an increase in the expression levels of the LPL, APOCl, SCD, ACSLl genes and / or ACSL4 and / or a decrease in GCNT3 gene expression levels with respect to a reference value for each gene is indicative that the patient has to be treated with adjuvant therapy.
  • the first personalized therapeutic method of the invention for the selection of a suitable treatment for colorectal cancer in a patient comprising the determination of the levels of expression of at least one gene selected from the group consisting of GCNT3, LPL, APOCl, SCD, ACSLl and / or ACSL4 in a sample of said patient, where there is an increase
  • treatment refers to clinical intervention in an attempt to prevent, cure, delay, reduce the severity of, or improve one or more symptoms of the disease or disorder or recurrent disease or disorder, or in order to prolong the survival of a patient beyond what is expected in the absence of such treatment.
  • colonal cancer has been described in detail in the context of the prognostic method of the invention and is used with the same meaning in the context of custom methods according to the invention.
  • the personalized therapy method comprises determining the level of expression of GCNT3, LPL, APOCl, SCD, ACSLl and / or ACSL4 in a sample of said patient.
  • colonal cancer "patient”, “GCNT3 gene”, “LPL gene”, “APOCl gene”, “SCD gene”, “ACSLl” gene, “ACSL4" gene, "expression levels”, “sample” they have been described in detail above, and apply equally to the methods according to the current method.
  • the personalized therapy method according to the invention comprises the determination of the expression levels of each of the genes individually.
  • the personalized therapy method according to the invention comprises determining the expression levels of the genes grouped in pairs.
  • the invention comprises the determination of the following GCNT3 and LPL gene pairs; GCNT3 and APOCl; GCNT3 and SCD; GCNT3 and ACSLl; GCNT3 and ACSL4; LPL and APOCl; LPL and SCD; LPL and ACSLl; LPL and ACSL4; APOCl and SCD; APOCl and ACSLl; APOCl and ACSL4; SCD and ACSLl; SCD and ACSL4; ACSLl and ACSL4.
  • the personalized therapy method according to the invention comprises determining the expression levels of the genes grouped three by three.
  • the invention comprises the determination of the following gene groups: GCNT3, LPL and APOCl; GCNT3, LPL and SCD; GCNT3, LPL and ACSLl; GCNT3, LPL and ACSL4; GCNT3, APOCl and SCD; GCNT3, APOCl and ACSLl; GCNT3, APOCl and ACSL4; GCNT3, SCD and ACSLl; GCNT3, SCD and ACSL4; GCNT3, ACSLl and ACSL4; LPL, APOCl and SCD; LPL, APOCl and ACSLl; LPL, APOCl and ACSL4; LPL, SCD and ACSLl; LPL, SCD and ACSL4; LPL, ACSLl and ACSL4; APOCl, SCD and ACSLl; APOCl, ACSLl; ACSLl, ACSLl; APOCl, ACSL
  • the personalized therapy method according to the invention comprises determining the expression levels of the genes grouped four by four.
  • the invention comprises the determination of the following gene groups: GCNT3, LPL, APOC1 and SCD; GCNT3, LPL, APOC1 and ACSL1; GCNT3, LPL, APOC1 and ACSL4; GCNT3, LPL, SCD and ACSL1; GCNT3, LPL, SCD and ACSL4; GCNT3, LPL, ACSL1 and ACSL4; GCNT3, APOC1, SCD and ACSL1; GCNT3, APOC1, SCD and ACSL4; GCNT3, APOC1, ACSL1 and ACSL4; GCNT3, SCD, ACSL1 and ACSL4; LPL, APOC1, SCD and ACSL1; LPL, APOC1, SCD and ACSL4; LPL, APOC1, ACSL1 and ACSL4; LPL, SCD, ACSL1 and ACSL4; LPL, SCD, ACSL1 and
  • the personalized therapy method according to the invention comprises determining the expression levels of the genes grouped five by five.
  • the invention comprises the determination of the following gene groups: GCNT3, LPL, APOC1, SCD, and ACSL1; GCNT3, LPL, APOC1, SCD and ACSL4; GCNT3, LPL, APOC1, ACSL1 and ACSL4; GCNT3, LPL, SCD, ACSL1 and ACSL4; GCNT3, APOC1, SCD, ACSL1 and ACSL4; LPL, APOC1, SCD, ACSL1 and ACSL4.
  • the personalized therapy method according to the invention comprises the determination of the expression levels of the GCNT3, LPL, APOC1, SCD, ACSL1 and ACSL4 genes.
  • the personalized therapy method according to the invention comprises determining the expression levels of the ACSL1 and / or ACSL4 genes.
  • the personalized therapy method according to the invention comprises determining the expression levels of the ACSL1 and / or ACSL4 genes and additionally comprising determining the expression levels of at least one gene selected from the group consisting of GCNT3, LPL, APOC1 and SCD.
  • the method of the invention further comprises determining the expression levels of one or more of one of the ABCAl, APOE, FADS2, CD36 genes where an increase in the expression levels of the ABCAl genes , APOE, FADS2 and / or CD36 with respect to a reference value for each gene is indicative that the patient has to be treated with adjuvant chemotherapy.
  • the terms "ABCA1”, “APOE”, “FADS2” and “CD36” have been defined in the context of the first method of the invention.
  • the method of the invention comprises determining the expression levels of one of the following gene groups:
  • ACSL4 ACSL1, SCD and ABCA1.
  • ACSL4 ACSL4, ACSL1, SCD, FADS2 and ABCA1
  • the expression levels of the different genes used in the first personalized therapeutic method of the invention can be determined by determining the levels of mRNA encoded by the genes involved or by determining the levels of the polypeptide encoded by the genes involved.
  • the method of assigning a personalized therapy according to the invention comprises the identification of those patients who present an increase in the expression levels of the LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes, alone or combined with an increase in the expression of ABC Al, APOE, FADS2, CD36 and / or a decrease in GCNT3 gene expression levels with respect to a reference value for such genes as candidates for adjuvant radiotherapy or chemotherapy after Surgical or patient treatment that shows decreased levels of gene expression with respect to a reference value as a patient who is not a candidate for radiotherapy or chemotherapy after surgery.
  • surgery means any therapeutic procedure that involves a methodical action of the hand or hand with an instrument, in the body of a human or other mammal, to produce healing or recovery.
  • chemotherapy drug broadly refers to the use of a chemical drug or a combination of both. for the treatment of cancer, tumors or malignant neoplasms, including both cytotoxic or cytostatic drugs.
  • chemotherapy agents include:
  • Alkylating agents for example, mechlorethamine, chlorambucil, cyclophosphamide, ifosfamide, streptozocin, carmustine, lomustine, melphalan, busulfan, dacarbazine, temozolomide, thiotepa or altretamine;
  • Platinum drugs for example, cisplatin, carboplatin and oxaliplatin
  • Antimetabolite drugs for example, 5-fluorouracil, capecitabine,
  • 6-mercaptopurine methotrexate, gemcitabine, cytarabine, fludarabine or pemetrexed
  • Anti-tumor antibiotics for example, daunorubicin, doxorubicin, epirubicin, idarubicin, actinomycin D, bleomycin, mitomycin C, or mitoxantrone;
  • Mitosis inhibitors for example, paclitaxel, docetaxel, ixabepilone, vinblastine, vincristine, vinorelbine, vindesine or estramustine
  • Mitosis inhibitors for example, paclitaxel, docetaxel, ixabepilone, vinblastine, vincristine, vinorelbine, vindesine or estramustine
  • Topoisomerase inhibitors for example, etoposide, teniposide, topotecan, irinotecan, or diflomotecan elomotecan.
  • radiotherapy is a term commonly used in the art to refer to various types of radiation therapy, including internal and external radiation therapies, or radioimmunotherapy, and the use of various types of radiation such as X-rays, gamma rays. , alpha particles, beta particles, photons, electrons, neutrons, radioisotopes, and other forms of ionizing radiation.
  • the treatment is adjuvant or neoadjuvant chemotherapy.
  • Neoadjuvant therapy refers to any type of cancer treatment given before surgical resection of the primary tumor, in a patient with a cancer.
  • the most common reason for neoadjuvant therapy is to reduce the size of the tumor in order to facilitate more effective surgery.
  • Neoadjuvant therapies include radiation therapy and, preferably, systemic therapy, such as hormonal therapy, chemotherapy, immunotherapy and monoclonal antibody therapy.
  • systemic therapy such as hormonal therapy, chemotherapy, immunotherapy and monoclonal antibody therapy.
  • adjuvant therapy refers to any type of cancer treatment (for example, chemotherapy or radiotherapy) as an additional treatment, usually after surgical resection of the primary tumor, in a patient. with a cancer that is at risk of metastasis and / or likely to recur. The objective of this type of adjuvant treatment to improve the prognosis.
  • Adjuvant therapies include radiation therapy and, preferably, systemic therapy, such as hormonal therapy, chemotherapy, immunotherapy and monoclonal antibody therapy.
  • the therapy is a chemotherapy other than a therapy based on fluoropiri dynes.
  • fluoropyridine-based therapy and “fluoropiri dyne”, have been described in detail in relation to the prognostic method of the invention and are used in the context of the present method with the same meaning. Kits of the invention
  • the invention relates to a kit comprising suitable reagents for the determination of expression levels of at least one gene selected from the group consisting of GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4.
  • kits are understood as a product containing the different reagents necessary to carry out the methods of the invention adapted to allow transport and storage.
  • Suitable materials for packing kit components include (polyethylene, polypropylene, polycarbonate and the like) of glass, plastic, bottles, jars, paper, envelopes, etc.
  • the kits of the invention may contain instructions for the simultaneous, sequential or separate use of the different components found in the kit. Said instructions may be in the form of printed material or in the form of an electronic medium capable of storing instructions so that they can be read by a subject, such as electronic storage media (magnetic discs, tapes and the like), optical media (CD -ROM, DVD) and the like.
  • the media may contain Internet addresses that offer such instructions.
  • the term "reagent that allows to determine the level of expression of a gene” means a compound or group of compounds that allows to determine the level of expression of a gene, both by determining the level of mRNA and by determining the level of protein level Therefore, reagents of the first type include probes capable of hybridizing specifically with the mRNA encoded by the genes involved.
  • Reagents of the second type are compounds that specifically bind to proteins encoded by the marker genes and, preferably, antibodies are included, although they may be specific aptamers.
  • the reagents suitable for the determination of expression levels of one or more genes comprise at least 10%, at least 20%, at least 30%, less 40%, at least 50%, less 60 %, at least 70%, at least 80%, at least 90% or less than 100% of the total amount of reagents suitable for determining the expression levels of the genes that make up the kit.
  • kits comprising the reagents for the determination of the expression levels of the GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes
  • the specific reagents for said gene comprise at least 10%), at least 20%, at least 30%, minus 40% , at least 50%, minus 60%, at least 70%, at least 80%, at least 90% or less 100% of the probes present in the kit.
  • suitable reagents for the determination of expression levels of one or more genes comprise at least 55% at least 60%, at least 65%, at least 70%, less 75%, 80 At least%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%) or less 99% of the total amount of reagents that make up the kit
  • the kit of the invention contains reagents suitable for the determination of at least two of the marker genes.
  • the invention comprises kits comprising reagents suitable for the determination of the following GCNT3 and LPL gene pairs; GCNT3 and APOC 1; GCNT3 and SCD; GCNT3 and ACSL1; GCNT3 and ACSL4; LPL and APOC 1; LPL and SCD; LPL and ACSL1; LPL and ACSL4; APOCl and SCD; APOCl and ACSLl; APOCl and ACSL4; SCD and ACSLl;
  • the kit of the invention contains reagents suitable for the determination of at least three of the marker genes.
  • the invention comprises kits comprising reagents suitable for the determination of the following gene groups: GCNT3, LPL and APOCl; GCNT3, LPL and SCD;
  • APOCl and ACSLl GCNT3, APOCl and ACSL4; GCNT3, SCD and ACSLl; GCNT3, SCD and ACSL4; GCNT3, ACSLl and ACSL4; LPL, APOCl and SCD; LPL, APOCl and ACSLl; LPL, APOCl and ACSL4; LPL, SCD and ACSLl; LPL, SCD and ACSL4; LPL, ACSLl and
  • the kit of the invention contains reagents suitable for the determination of at least four of the marker genes.
  • the invention comprises kits comprising reagents suitable for the determination of the following gene groups: GCNT3, LPL, APOCl and SCD; GCNT3, LPL,
  • the kit of the invention contains reagents suitable for the determination of at least five of the marker genes.
  • the invention comprises kits comprising reagents suitable for the determination of the following gene groups: GCNT3, LPL, APOCl, SCD, and ACSLl; GCNT3, LPL, APOCl, SCD and ACSL4; GCNT3, LPL, APOCl, ACSLl and ACSL4; GCNT3, LPL, SCD, ACSLl and ACSL4; GCNT3, APOCl, SCD, ACSLl and ACSL4; LPL, APOCl, SCD, ACSLl and ACSL4.
  • the kit of the invention contains reagents suitable for the determination of at least five of the marker genes.
  • the invention comprises kits comprising reagents suitable for determination. of the following gene groups: GCNT3, LPL, APOC1, SCD, and ACSL1; GCNT3, LPL, APOC1, SCD and ACSL4; GCNT3, LPL, APOC1, ACSL1 and ACSL4; GCNT3, LPL, SCD, ACSL1 and ACSL4; GCNT3, APOC1, SCD, ACSL1 and ACSL4; LPL, APOC1, SCD, ACSL1 and ACSL4;
  • the kit of the invention contains reagents suitable for the determination of the GCNT3, LPL, APOC1, SCD, ACSL1 and ACSL4 genes.
  • the kit of the invention contains reagents suitable for the determination of the ACSL1 and / or ACSL4 genes.
  • the kit of the invention contains reagents suitable for the determination of the ACSL1 and / or ACSL4 genes and additionally comprises reagents suitable for the determination of the expression levels of at least one gene selected from the group formed by GCNT3 , LPL, APOC1 and SCD.
  • the kit of the invention additionally contains reagents suitable for the determination of the expression levels of one or more genes selected from the group ABCA1, APOE, FADS2 and CD36.
  • the kit of the invention comprises reagents suitable for determining the expression levels of the following gene groups:
  • ACSL4 ACSL1, SCD and ABCA1.
  • ACSL4 ACSL4, ACSL1, SCD, FADS2 and ABCA1
  • the kit reagents are nucleic acids that are capable of specifically detecting the mRNA level of the aforementioned genes and / or the level of proteins encoded by one or more of the aforementioned genes. previously. Such detection is achieved thanks to the ability of nucleic acids to hybridize specifically with genes before mentioned.
  • the nucleic acids that are part of the kit of the invention can be probes that specifically recognize the target genes or can be one or more pairs of oligonucleotide primers for the specific amplification of fragments of mRNAs (or their corresponding cDNAs) of said genes
  • the first component of the kit of the invention comprises a probe that can specifically hybridize to the genes mentioned above.
  • specific hybridization refers to the conditions that allow the hybridization of two polynucleotides under highly stringent conditions or moderately stringent conditions.
  • “Rigor” of hybridization reactions is easily determined by one skilled in the art, and is usually an empirical calculation depending on the length of the probe, the washing temperature, and the salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures.
  • Hybridization generally depends on the ability of denatured DNA to resume when complementary strands are present in an environment below their melting temperature. The higher the degree of homology desired between the probe and the hybridizable sequence, the higher the relative temperature, which can be used. As a result, it follows that higher temperatures in relation would tend to make the reaction conditions more astringent, while lower temperatures not so much. For more details and explanations of the astringency of hybridization reactions, see Ausubel et al, Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • High stringency conditions generally involve: (1) low ionic strength and high temperature for washing, for example sodium chloride 0.015 / sodium citrate 0.0015 M /0.1 % sodium dodecyl sulfate at 50 0 C, (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (v / v) formamide with 0, 1% bovine serum albumin / 0.1% Ficoll / 0.1% polyvinylpyrrolidone / 50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42 0 C, or (3) use 50% formamide, 5xSSC (0 , 75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 times Denhardt's solution, Sonic salmon sperm DNA (50 mg / ml), 0.1% SDS, and 10% dextran sulfate at 42
  • Modely stringent conditions can be identified as described by Sambrook et al, Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of wash solution and hybridization conditions (for example, temperature, ionic strength and% SDS) less strict than those described above.
  • moderately stringent conditions is overnight incubation at 37 0 C in a solution comprising: 20% formamide one, 5xSSC (150 mM NaCl, 15 mM sodium citrate), 50 mM sodium phosphate (pH 7.6) , 5x Denhardt solution, 10% dextran sulfate, and 20 mg / ml denatured sheared salmon sperm DNA, followed by washing the filters in lxSSC at about 37-50 ° C.
  • 5xSSC 150 mM NaCl, 15 mM sodium citrate
  • 50 mM sodium phosphate pH 7.6
  • 5x Denhardt solution 10% dextran sulfate
  • 20 mg / ml denatured sheared salmon sperm DNA followed by washing the filters in lxSSC at about 37-50 ° C.
  • the skilled person recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
  • the expression levels of several of the genes identified in the present invention are determined at the same time, it is useful to include the probes for all the genes whose expression is to be determined in a microarray hybridization.
  • the microarrays comprise a plurality of nucleic acids that are spatially distributed and stably associated with a support (for example, a biochip). Nucleic acids have a sequence complementary to particular sub-sequences of genes whose expression must be detected, so that they are capable of hybridizing with said nucleic acids.
  • a microarray comprising a set of nucleic acids is contacted with a preparation of the isolated nucleic acids of the patient under study. The incubation of the microarrays in the preparation of the nucleic acids is carried out under the conditions suitable for hybridization.
  • microarrays are able to provide information Both qualitative and quantitative of the nucleic acids present in a sample, the invention requires the use of matrices and methodologies capable of providing quantitative information.
  • the invention contemplates a variety of matrices in relation to the type of probes and in relation to the type of support used.
  • the probes included in the matrices that are capable of hybridizing with the nucleic acids may be nucleic acids or analogs thereof that maintain the ability to hybridize, such as, for example, the nucleic acids in which the phosphodiester bond has been substituted with a phosphorothioate. , methylimine, methylphosphonate, phosphoramidate, nucleic acids in which the nucleotide ribose is replaced by another hexose, nucleic peptide (APN).
  • the length of the probes can be from 5 to 50 nucleotides and, preferably, from 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, nucleotides 100 and they vary in the range of 10 to 1000 nucleotides, preferably in the range of 15 to 150 nucleotides, more preferably in the range of 15 to 100 nucleotides and nucleic acids may be single stranded or double stranded.
  • the matrix may contain all specific probes of a given mRNA of a certain length or may contain probes selected from different regions of an mRNA. Each probe is analyzed in parallel with a probe with a change base, preferably in a central area of the probe.
  • the matrix is contacted with a sample containing nucleic acids with sequences complementary to the matrix probes and the hybridization signal with each of the probes and the corresponding hybridization controls are determined.
  • the probes in which a greater difference is observed between the hybridization signal with the probe and its hybridization control are selected.
  • the optimization process may include a second round of optimization in which the hybridization matrix is hybridized with a sample that does not contain sequences complementary to the matrix probes. After the second round of selection, probes with hybridization signals below a threshold will be selected. Therefore, the probes that pass the controls, that is, showing a minimum level of non-specific hybridization and a maximum level of specific hybridization with the target nucleic acid are selected.
  • microarrays of the invention not only contain specific probes for polynucleotides indicating a certain pathophysiological situation, but also It contains a series of control probes, which can be of three types: normalization controls, expression level control and hybridization controls.
  • genes such as ⁇ -2-microglobulin 18S ubiquitin, ribosomal protein, cyclophilin A, transferrin receptor, actin, GAPDH, tyrosine 3-monooxygenase / tryptophan 5-monooxygenase protein activation (YWHAZ) can be used ) and beta-actin.
  • the microarrays can be high density matrices, obtained by fixing thousands of oligonucleotides using photolithography (Fodor et al, 1991, Science, 767 to 773). This type of matrix is usually redundant, that is, several probes are included for each mRNA to be detected.
  • the matrices are low density matrices or LDA contain less than 10,000 probes per square centimeter.
  • the supports used to fix the probes can be obtained from a wide variety of materials, such as plastic, ceramics, metals, gels, membranes, crystals, etc. Microarrays can be obtained with any methodology known to the person skilled in the art.
  • a previous washing step is used to remove said non-hybridized nucleic acids.
  • the washing step is carried out using methods and solutions known to the person skilled in the art.
  • kits according to the present invention comprise reagents that are capable of specifically binding to said polypeptide or polypeptides.
  • the invention relates to a kit comprising antibodies specific for the polypeptide encoded by the GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 genes.
  • antibody matrices such as those described by De Wildt et al. (2000) Nat. Biotechnol. 18: 989-994; Lueking et al. (1999) Anal. Biochem 270: 103-111; Ge et al.
  • Matrix antibodies include any immune agent capable of binding a high affinity ligand, including IgG, IgM, IgA, IgD and IgE, as well as antibody-like molecules that have an antigen binding site, such as Fab ' , Fab, F (ab ') 2, single domain antibodies or DABS, Fv, scFv and the like.
  • the techniques for the preparation of said antibodies are well known to those skilled in the art and include the methods described by Ausubel et al. (Current Protocols in Molecular Biology, eds. Ausubel et al. pastJohn Wiley & Sons (1992)).
  • the invention relates to the use of a kit of the invention to determine the prognosis of a patient suffering from colorectal cancer or to determine whether a patient with colorectal cancer is the candidate for adjuvant therapy.
  • the use of the kits according to the invention is carried out in patients with stage II or stage III CCR.
  • the invention relates to the use of an inhibitor of a gene selected from the group consisting of LPL, APOC1, SCD, ACSL1 and ACSL4 for the preparation of a medicament for the treatment of cancer.
  • the invention relates to an inhibitor of a gene selected from the group consisting of LPL, APOC1, SCD, ACSL1 and ACSL4 for use in the treatment of cancer.
  • the invention in another aspect, relates to a method for treating cancer in a subject comprising administering to said subject an inhibitor agent of a gene selected from the group consisting of LPL, APOC1, SCD, ACSL1 and
  • gene inhibitor refers to both a compound capable of causing a decrease in the activity of the expression product of the LPL, APOC1, SCD, ACSL1 and ACSL4 genes as well as a compounds capable of causing a decrease in the expression of said genes, either inhibiting the transcription of the corresponding gene, either inhibiting the translation of the corresponding mRNA or causing a decrease in the levels of the corresponding mRNA or mRNA.
  • the ACSL1 and ACSL4 gene inhibitor is selected from the group formed by the inhibitors in Table 1.
  • Valproate or valproic acid
  • Nonsteroidal anti-inflammatories for example 2-arylpropionic acid, ibuprofen, fenoprofen, ketoprofen and naproxen.
  • Valproate or valproic acid it is a specific ACSL4 inhibitor, thiazolidinediones are specific ACSL4 inhibitors.
  • the ACSL1 and ACSL4 gene inhibitor is Triacsin C.
  • the APOCl inhibitor is Vorinostat (suberoylanilide hydroxamic acid or SAHA).
  • the SCD gene inhibitor is selected from the group formed by the inhibitors in Table 2.
  • the LPL gene inhibitor is selected from that formed by the inhibitors of Table 3.
  • Poloxamer 407 P-407 or Pluronic F-127
  • Angiopoietin-like protein 3 (ANGPTL3)
  • Angiopoietin-like protein 4 (ANGPTL4)
  • the inhibitor agent is an inhibitor antibody specific to the product encoded by said gene.
  • the inhibitor is selected from the group consisting of an antisense olignucleotide specific to said gene, an interference RNA specific to said gene and a ribozyme specific to said gene.
  • the inhibitor agent for use in the present invention is a specific inhibitor antibody for the product encoded by a gene selected from the group consisting of LPL, APOC1, SCD, ACSL1 and ACSL4.
  • Antibodies against an epitope of proteins encoded by LPL, APOC1, SCD, ACSL1 and ACSL4 genes can effectively block the function of these proteins and, therefore, can be used as inhibitors in the compositions of the present invention.
  • “Inhibitor antibody” as used herein, refers to antibodies that are capable of at least partially inhibiting the biological activities of the polypeptides encoded by the LPL, APOC1, SCD, ACSL1 and ACSL4 genes.
  • the determination of the inhibitory capacity on the biological activity of the LPL-encoded product can be carried out, for example, using the method described by Mayes and Felts (Biochem. J., 1968, 108,483-487) based on the determination of the ability of the antibody to inhibit the degradation of triglycerides in the presence of LPL.
  • the determination of the inhibitory capacity on the biological activity of the product encoded by SCD can be carried out, for example, using the method described by Strittmatter et al. (J. Biol. Chem. 1988, 263; 2532-2535) based on the determination of the ability of the antibody to inhibit the degradation of phosphatidylcholine in the presence of SCD.
  • the determination of the inhibitory capacity on the biological activity of the product encoded by ACSL1 or ACSL4 can be carried out, for example, using the method described by Gassler et al. (Gastroenterology, 2007, 133: 587-98) based on the determination of the ability of the antibody to inhibit the synthesis of palmitoyl-CoA from palmitic acid and CoA in the presence of ACSL1 or ASCL4.
  • Antibodies or inhibitor fragments specific for the polypeptides encoded by the LPL, APOC1, SCD, ACSL1 and ACSL4 genes can be purchased commercially or easily produced using conventional techniques of molecular biology.
  • Suitable inhibitory antibodies include, polyclonal antibodies, monoclonal antibodies, Fab, F (ab ') 2, Fab' and scFv fragments thereof, bispecific, heteroconjugate antibodies, diabodies, human and humanized antibodies.
  • the inhibitory agent is an interference RNA (RNAi) specific for silencing a gene selected from the group consisting of GCNT3, LPL, APOCl, SCD, ACSLl and ACSL4.
  • Interference RNAs suitable for silencing the LPL, APOCl, SCD, ACSL1 and / or ACSL4 genes include, without limitation, small interference RNA (siRNA), micro RNA (miRNA) and short bracketed RNA (hRNA).
  • the inhibition of the expression of the LPL, APOCl, SCD, ACSL1 and / or ACSL4 genes is carried out through the use of ribozymes designed to catalytically cut transcripts of mRNA targets generated by transcription of the different genes
  • ribozymes suitable for inhibition of gene expression include, without limitation, hammerhead ribozymes and endoribonuclease RNA (Cech type ribozymes).
  • the inhibitor agent is a specific antisense nucleic acid for a gene selected from the group consisting of LPL, APOCl, SCD, ACSLl and ACSL4.
  • Antisense nucleic acids can be linked to the gene that is desired to be inhibited by conventional base complementarity, or, for example, in the case of binding to double stranded DNA, through specific interactions in the major groove of the double helix. In general, these methods refer to the range of techniques generally employed in the art, and include any method that relies on specific binding to oligonucleotide sequences.
  • Exemplary nucleic acid molecules for use as antisense oligonucleotides include:
  • Oligonucleotides comprising modified bases such as 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxythiethyl) uracil, 5- carboxymethylaminomethyl-2-thiouromethyl, 5-carboxymethyl, 5-carboxymethyl, 5-carboxymethyl dihydrouracil, beta-D-galactosylkeosine, inosine, N6-isopentenyladenine, 1- methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2- methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7- methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylkeosine, 5'-methoxy
  • Oligonucleotides comprising modified sugars such as arabinose, 2-fluoroarabinous, xylulose and hexose.
  • Oligonucleotides comprising a modified phosphate skeleton selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosfordiamidate, a methylphosphonate, an alkyl phosphotriester, and a peptide nucleotide or formacetal (ANP)
  • a modified phosphate skeleton selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosfordiamidate, a methylphosphonate, an alkyl phosphotriester, and a peptide nucleotide or formacetal (ANP)
  • Modified oligonucleotides by incorporating agents that facilitate their transport across the cell membrane (see, for example, Letsinger et al, Proc. Nati. Acad. Sci. USA 86: 6553-6556, 1989; Lemaitre et al., Proc Nati. Acad. Sci. 84: 648-652, 1987; PCT Publication No. WO88 / 09810) or the blood-brain barrier (see, for example, PCT Publication No. WO89 / 10134), hybridization triggered cutting agents (see, for example, Krol et al, BioTechniques 6: 958-976, 1988) intercalating agents (see, for example, Zon, Pharm. Res. 5: 539-549, 1988).
  • Alpha-anomeric oligonucleotides by incorporating agents that facilitate their transport across the cell membrane (see, for example, Letsinger et al, Proc. Nati. Acad. Sci. USA 86: 6553-6556, 1989
  • the LPL, APOC1, SCD, ACSL1 and / or ACSL4 gene expression inhibitor is a DNA enzyme.
  • cancer and “tumor” refer to the physiological condition in mammals characterized by deregulated cell growth.
  • Types of cancer that can be treated according to the methods of the present invention include, without limitation, cancer of the esophagus, stomach, liver, pancreas, gallbladder, small intestine, rectum, colon, colorectal, prostate, lung, ovary and mom.
  • the tumor / cancer to be treated with said compositions is colon cancer.
  • the tumor / cancer to be treated with said compositions is breast cancer.
  • Paraffin tissue samples embedded in paraffin from patients with stage B colon cancer from the University Hospital La Paz in Madrid were used.
  • the study consists of a retrospective analysis of the prognostic value of the expression of GCNT3, LPL, APOC1, SCD, ACSL1 and / or ACSL4 in these patients.
  • Time to progression was used for disease-free survival analysis.
  • ROC receiver operating characteristic curves were used to determine the expression cut-off values of these genes for disease-free survival according to the relationship between sensitivity and false positive ratio (1- specificity), establishing the best combination marked by the ROC curves .
  • the Kaplan-Meier method was used to estimate disease-free survival. All values of p referred are two-tailed. Statistical significance was defined as p ⁇ 0.05. Statistical analysis was performed using SPSS software (version 19.0).
  • Example 1 Prognostic value of the LPL gene in clinical samples of patients with colon cancer.
  • the stratification of patients according to whether they have received chemotherapy or not has no influence on the data, maintaining HR in both cases.
  • Example 3 Prognostic value of the SCD gene in clinical samples of patients with colon cancer.
  • Example 4 Prognostic value of ACSL1 and ACSL4 genes in clinical samples of patients with colon cancer.
  • p 0.0001
  • p 0.001
  • Example 5 Prognostic value of the GCNT3 gene in clinical samples of patients with colon cancer.
  • GCNT3 have significantly lower disease-free survival than those with higher levels.
  • Example 7 Prognostic value of combinations of these genes with four additional genes involved in nearby metabolic pathways.
  • Example 8 Antitumor activity of agents that enhance GCNT3 expression.
  • Triacsin C Four colon cancer cell lines (DLD-1, CaCo-2, HTC-116 and SW620) were treated for 48 hours with Triacsin C. After treatment, the viability of the MTT cells was determined (Figure 8A) as well as the concentrations of Triacsin C ( ⁇ ) that produce 50% inhibition of cell viability (IC50), 50% inhibition of cell growth (GI50), total growth inhibition (TGI) and 50% of cell death (LC50) (figure 8A). The results show that Triacsin C reduces the viability of the four colon cancer lines analyzed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

La invención se refiere a los métodos para predecir el riesgo de recaída de los pacientes con cáncer colorrectal, así como a los métodos para proporcionar medicina personalizada a dichos pacientes, basándose en los niveles de expresión de los genes ACSL1, ACSL4, GCNT3, LPL, APOC1y SCD, cuyos productos de expresión están implicados en el metabolismo energético celular. La invención también se refiere a los kits para llevar a cabo los métodos predictivos y de medicina predictiva.

Description

MÉTODOS Y KITS PARA EL PRONÓSTICO DEL CÁNCER COLORRECTAL
CAMPO DE LA INVENCIÓN La invención se refiere al campo del diagnóstico y, más en particular, a los métodos para predecir el riesgo de recaída de los pacientes con cáncer, así como métodos para proporcionar medicina personalizada a dichos pacientes. La invención se refiere también a kits para llevar a cabo los métodos de la medicina diagnóstica y predictiva. ANTECEDENTES DE LA INVENCIÓN
El cáncer colorrectal (CCR) es una de las neoplasias más frecuentes en el mundo occidental, es la tercera causa de muerte en los hombres, después del cáncer de pulmón y cáncer de próstata y es el segundo en frecuencia entre las mujeres, después del cáncer de mama. El cáncer colorrectal es el tercer cáncer más común en los hombres (663 000 casos, 10,0% del total) y el segundo en mujeres (571 000 casos, 9,4% del total) en todo el mundo. Se estiman unas 608 000 muertes por cáncer colorrectal en todo el mundo, representando el 8% de las muertes por cáncer, por lo que es la cuarta causa más común de muerte por cáncer. (GLOBOCAN.iarc.fr)
La principal opción de tratamiento para el cáncer colorrectal es la cirugía, con o sin quimioterapia y / o radioterapia adyuvante, dependiendo de la clasificación individual del paciente y otros factores médicos.
La selección de un tratamiento adecuado es fundamental tanto para el paciente como por razones económicas. Para la supervivencia del paciente, es esencial saber cuándo utilizar de inmediato un protocolo de tratamiento pesado y agresivo para prevenir la extensión de un cáncer colorrectal maligno. De lo contrario, la supervivencia del paciente puede verse comprometida. Por el contrario, la realización de un tratamiento fuerte y agresivo cuando no es necesario es altamente perjudicial para el paciente. Estos tratamientos someten a los pacientes a un grado de molestias e inconvenientes derivados de la toxicidad adversa que puedan afectar significativamente a la calidad de vida del paciente. Cabe destacar que cada paciente incurre en una posibilidad de 1 en 400 de que el tratamiento se traduzca en toxicidad fatal. Además, los tratamientos pesados y agresivos suelen ser muy costosos, y, por lo tanto, se deben realizar sólo cuando sea necesario.
En la actualidad, la selección del tratamiento se basa en la estadificación del tumor, que se realiza generalmente con el test del Tumor/Nódulos/Metástasis (TNM) de la American Joint Committee on Cáncer (AJCC). El sistema TNM asigna un número en base a tres categorías. "T" denota el grado de invasión de la pared intestinal, "N" el grado de afectación del nodulo linfático, y "M" el grado de metástasis. El estadio de un cáncer suele ser citado como un número I, II, III, IV derivado del valor de TNM agrupado por pronóstico, donde un número más alto indica un cáncer más avanzado y es probable que un resultado peor. Aunque la clasificación AJCC proporciona información valiosa sobre la etapa en que se ha diagnosticado el cáncer colorrectal, no da información sobre la agresividad del tumor y su utilidad para el pronóstico es limitada. Considerando que es claro que los pacientes en estadio IV tienen mal pronóstico, el diagnóstico de cáncer colorrectal en una etapa temprana no excluye la posibilidad de que el tumor se pueda desarrollar muy rápidamente. En particular, se desconocen las causas por las que de un 20 a un 40 por ciento de los pacientes con estadio II de cáncer colorrectal (cáncer temprano ni con metástasis ni con invasión de los ganglios linfáticos en el diagnóstico) se agravan rápidamente y mueren. Algunos estudios sugieren que un subgrupo de pacientes con alto riesgo de cáncer de colon en estadio II se podrían beneficiar de la terapia adyuvante (Quasar et al, Lancet 2007; 370:2020-2029). Sin embargo, las variables histopatológicas, tales como características de alto riesgo en la enfermedad en estadio II, son sólo directrices en la terapia estadificativa. Cuando los ganglios linfáticos son invadidos por las células tumorales, los resultados de las pruebas TNM predicen un mal pronóstico y el paciente suele ser sometido a cirugía seguida de quimioterapia pesada. Los estudios clínicos muestran que por cada 25 pacientes identificados como de alto riesgo en estadio II CCR, 20 se cura, independientemente de si reciben o no tratamiento (Quasar et al, Lancet 2007;. 370:2020-2029). Del mismo modo, un subgrupo de pacientes con cáncer de colon en estadio III tratados sólo con cirugía no recaen en 5 años, incluso sin tratamiento adyuvante (Ranghammar et al, Acta Oncológica 2001; 40: 282-308). La quimioterapia adyuvante es la recomendación estándar para la fase III de CCR, sin embargo, la identificación prospectiva de este subgrupo de pacientes con cáncer de colon en fase III podría hacer que se prescindiera de la terapia. Por lo tanto, un método exacto y fiable que identificara a los pacientes en situación de riesgo mayor y menor (por ejemplo, de "alto riesgo" en estadio II y de "bajo riesgo" en estadio III del cáncer de colon) podría mejorar la selección de la terapia individualizada dentro de estos grupos.
Por esta razón se han descrito varios métodos para predecir el resultado de los pacientes que sufren cáncer colorrectal en base a los niveles de expresión de marcadores moleculares.
US7695913 describe un método para predecir el pronóstico de un paciente que sufre CCR que comprende la determinación de los niveles de expresión normalizada de los genes INHBA, MYBL2, FAP y Ki67 en la que un incremento en la expresión de INHBA y FAP correlaciona negativamente con una mayor probabilidad de un pronóstico positivo y en donde la expresión de los genes MYBL2 y Ki67 se correlaciona positivamente con una mayor posibilidad de un pronóstico positivo. El método descrito en este documento constituye la base del kit de Oncotype DX, aunque el kit incluye la determinación de 12 genes, incluyendo los genes INHBA, MYBL2, FAP y Ki67.
WO02057787 informa de los resultados de un estudio diseñado para determinar si el mARN de la survivina se puede utilizar para predecir muerte por un carcinoma colorrectal recurrente. El estudio se basó en datos obtenidos de biopsias de tumores congelados de 144 pacientes. El estudio muestra que la expresión de survivina se asocia con un riesgo significativamente mayor de muerte por cáncer recurrente en pacientes con estadio II del cáncer colorrectal.
Rosati et al. (Tumor Biol. 2004, 25 :258-63) reporta los resultados de un estudio diseñado para determinar si la expresión de las proteínas timidilato sintasa (TS), p53, bcl-2, Ki-67 y p27 en el adenocarcinoma colorrectal es capaz de predecir supervivencia sin recaídas o supervivencia general. Se examinaron muestras de 103 pacientes por inmunohistoquímica. Según esta referencia, no existe una asociación estadísticamente significativa entre la expresión de cualquiera de las proteínas TS, p53, bcl-2, Ki-67 y p27 y un resultado clínico a pesar de que se observó una asociación estadísticamente significativa entre un resultado desfavorable y una combinación de expresión negativa de p53 y una expresión positiva de Ki-67 y los cánceres en etapa C. Sin embargo, a pesar de las investigaciones realizadas sobre este tema, hoy en día hay muy pocos marcadores tumorales que sean útiles desde el punto de vista clínico, tanto para el diagnóstico del CCR como para determinar el estadio de un carcinoma de CCR. Una prueba capaz de cuantificar la probabilidad del paciente de beneficiarse de la quimioterapia en estadios III sería de gran utilidad. Un paciente en estadio III con un bajo riesgo de recurrencia similar al de un paciente en estadio II y una baja probabilidad de beneficiarse de la quimioterapia podría optar por renunciar a la quimioterapia. Un paciente con un riesgo de recurrencia alta y una baja probabilidad de beneficiarse de quimioterapia con 5-FU podría elegir un tratamiento alternativo.
Por lo tanto, hay una necesidad no cubierta en el campo de los marcadores o los paneles de marcadores que permiten el diagnóstico del CCR y la clasificación del estadio de los carcinomas colorrectales con una alta fiabilidad.
Por lo tanto, un método exacto y confiable que identifique a los pacientes en situación de mayor y menor riesgo (por ejemplo, de "alto riesgo" en estadio II y de "bajo riesgo" en estadio III del cáncer de colon) podría mejorar la selección de la terapia individualizada dentro de estos grupos.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
En un primer aspecto, la invención se refiere a un método para determinar el pronóstico de un paciente que sufre de cáncer colorrectal que comprende determinar en una muestra obtenida de dicho paciente los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOCl, SCD, ACSLl y/o ACSL4 en donde un aumento en los niveles de expresión de los genes LPL, APOCl, SCD, ACSLl y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene un mal pronóstico.
En otro aspecto la invención se relaciona con un método para seleccionar un tratamiento adecuado para pacientes que sufren cáncer colorrectal que comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOCl, SCD, ACSLl y/o ACSL4 en donde un aumento en los niveles de expresión de los genes LPL, APOCl, SCD, ACSLl y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene que ser tratado es candidato para recibir radioterapia o quimioterapia después del tratamiento quirúrgico.
En otro aspecto, la invención se refiere a un kit que comprende los reactivos adecuados para la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSLl y/o ACSL4 y, opcionalmente, los reactivos para la determinación de los niveles de expresión de uno o más genes control, de expresión constitutiva o "housekeeping".
En otro aspecto, la invención se refiere a la utilización de un kit de acuerdo con la invención para predecir el resultado (pronóstico) de un paciente que sufre de cáncer colorrectal o para determinar si un paciente con cáncer colorrectal es candidato a la quimioterapia o radioterapia después de la cirugía.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1: Valor pronóstico del gen LPL en muestras clínicas de pacientes con cáncer de colon.
Figura 2: Valor pronóstico del gen APOC1 en muestras clínicas de pacientes con cáncer de colon.
Figura 3: Valor pronóstico del gen SCD en muestras clínicas de pacientes con cáncer de colon.
Figura 4: Valor pronóstico del gen ACSLl en muestras clínicas de pacientes con cáncer de colon. ) Valor pronóstico de ACSLl en la serie inicial de pacientes. B) Valor predictivo de respuesta a quimioterapia de ACSLl en los pacientes de la serie inicial. C) Valor predictivo de respuesta a quimioterapia de ACSLl en la serie de validación. Figura 5: A) Valor pronóstico del gen ACSL4 en muestras clínicas de pacientes con cáncer de colon. B) Valor pronóstico del gen ACSL4 en muestras clínicas de pacientes con cáncer de colon que no han sido tratados con quimioterapia.
Figura 6: Valor pronóstico del gen GCNT3 en muestras clínicas de pacientes con cáncer de colon.
Figura 7: Valor pronóstico de una huella metabólica basada en la determinación de los niveles de genes combinados. Se presenta el valor predictivo de una huella genómica basada en la determinación de 4 (A) y 5 genes (B), tanto en la serie inicial (panel superior) como en la de validación (panel central), así como el compromiso de sensibilidad y especificidad del test (panel inferior).
Figura 8: (A) Curvas de dosis-respuesta de ensayos de viabilidad (MTT) tras 48h de tratamiento con Triacsin C en cuatro líneas celulares de cáncer de colon (DLD-1, CaCo- 2, HTC-116 y SW620). Los datos se representan como la media ± la desviación estándar de tres experimentos independientes en los que cada tratamiento se ha realizado por triplicado. (B) Repuesta in vitro en las líneas celulares DLD-1, Caco2, HTC-116 y SW620 al tratamiento durante 48h con Triacsin C. Los valores representan las concentraciones de Triacsin C (μΜ) que producen el 50% de la inhibición de la viabilidad celular (IC50), el 50% de la inhibición del crecimiento celular (GI50), la inhibición total del crecimiento (TGI) y el 50% de la muerte celular (LC50). Los resultados se muestran como la media ± la desviación estándar de tres experimentos independientes en los que cada tratamiento se ha realizado por triplicado. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Método pronóstico de la invención
Los autores de la presente invención han identificado distintos genes cuyos niveles de expresión permite la identificación de pacientes con CCR con menor y mayor riesgo de recaída (por ejemplo, de "alto riesgo" en estadio II y de "bajo riesgo" en estadio III del cáncer de colon). Por ejemplo, como se muestra en los ejemplos 1 a 5 de la invención, los niveles de expresión de los genes LPL, APOC1, SCD, ACSL1, ACSL4 y GCNT3 se expresan diferencialmente en muestras de tumores de pacientes que tienen un peor pronóstico (determinado por medio de la supervivencia libre de enfermedad) que en aquellos pacientes que tienen un mejor pronóstico. Por lo tanto, en un primer aspecto, la invención se refiere a un método (en adelante "método pronóstico de la invención") para predecir el resultado de un paciente que sufre de cáncer colorrectal que comprende la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4 en donde un aumento en los niveles de expresión de los genes LPL, APOC1, SCD, ACSL1 y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene un mal pronóstico.
El término "determinar el pronóstico ", se utiliza aquí para referirse a la probabilidad de que un paciente tenga un resultado clínico concreto, ya sea positivo o negativo. Los métodos de predicción de la presente invención pueden ser usados clínicamente para tomar decisiones sobre la elección del tratamiento más adecuado para cada paciente en particular. Los métodos de predicción de la presente invención son herramientas valiosas para predecir si un paciente va a responder favorablemente a un régimen de tratamiento, como la quimioterapia. La predicción puede incluir factores pronósticos. Como comprenderán los expertos en el campo, la predicción, aunque se preferiría, no tiene que ser correcta para el 100% de los sujetos que se puedan diagnosticar o evaluar. El término, sin embargo, requiere que una parte significativa de los sujetos puedan ser identificados como con mayor probabilidad de tener un resultado determinado. Si un sujeto es estadísticamente significativo se puede determinar sin más por el experto en la materia, usando diferentes herramientas de evaluación estadística conocidas, por ejemplo, la determinación de los intervalos de confianza, la determinación del valor-p, validación cruzada tasas de clasificación y los detalles, etc., como se muestra en Dowdy y Wearden, Estadística para la Investigación de Wiley, John & Sons, Nueva York 1983. Los intervalos de confianza recomendados son por lo menos 50%, por lo menos el 60%, por lo menos 70%, por lo menos 80%, al menos 90% o al menos el 95%. Los valores-p son, preferentemente, 0,01, 0,005 o menos.
El término "paciente", como se usa aquí, se refiere a todos los animales clasificados como mamíferos e incluye, pero no se limita a, los animales domésticos y de granja, los primates y los seres humanos, por ejemplo: humanos, primates no humanos, vacas, caballos, cerdos, ovejas, cabras, perros, gatos o roedores. Preferiblemente, el paciente es un ser humano hombre o mujer de cualquier edad o raza.
El término "cáncer colorrectal" se utiliza en su sentido más amplio y se refiere a (1) todas las etapas y todas las formas de cáncer que se origina de las células epiteliales del intestino grueso y / o el recto y / o (2) todos los estadios y todas las formas de cáncer que afectan el revestimiento del intestino grueso y / o el recto. En los sistemas de estadificación para la clasificación del cáncer colorrectal, el colon y el recto son tratadas como un solo órgano. En la modalidad preferida, el paciente presenta un estadio I, II, III o IV, en donde el estadio I se define como TI NO MO o T2 NO MO, el estadio II se define como T3 NO MO o T4 NO MO, el estadio III se define como cualquier T, NI -2, MO y el estadio IV corresponde a cualquier T, cualquier N, MI . De acuerdo con sistema de estadificación de tumor/nodo/metástasis (TNM) de la American Joint Committee on Cáncer (AJCC) (Greene et al. (eds.), cáncer del AJCC Staging Manual. 6 a ed. Nueva York, NY: Springer, 2002), las distintas etapas del cáncer colorrectal se definen como sigue:
Tumor: TI : el tumor invade la submucosa, T2: el tumor invade la muscularis propria, T3 : el tumor invade a la muscularis propria en la subserosa, o los tejidos pericólicos o perirrectal; T4: El tumor invade directamente otros órganos o estructuras, y / o perfora.
Nodo: NO: No hay metástasis a los ganglios linfáticos regionales; NI : metástasis en 1 a 3 ganglios linfáticos regionales, N2: Metástasis en 4 o más ganglios linfáticos regionales.
- Metástasis: M0: Metástasis distante mp; MI : metástasis distante presente.
En una modalidad preferida, el paciente cuyo resultado se predice es un paciente que ha sido diagnosticado con cáncer colorrectal y que ha pasado por una intervención quirúrgica del cáncer. En una modalidad preferida, el paciente ha tenido una intervención quirúrgica de un tumor en estadio I, de un tumor en estadio II, de un tumor en estadio III o de un tumor en estadio IV.
En la presente invención, el término "muestra" o "muestra biológica", se refieren el material biológico aislado de un sujeto. La muestra biológica puede contener cualquier material biológico adecuado para detectar el biomarcador que se desee y puede comprender células y / o material no-celular del sujeto. La muestra puede ser aislado de cualquier tejido o fluido biológico adecuado, como por ejemplo, tejido de la próstata, sangre, plasma sanguíneo, suero, orina, líquido cefalorraquídeo (LCR) o de las heces. Las muestras utilizadas para la determinación de los genes marcadores son muestras de tejido de colon preferentemente obtenidas por biopsia.
Por otra parte, las muestras son muestras de biofluidos. Los términos "fluido biológico" y "biofluido" se utilizan indistintamente en este documento y se refieren a fluidos acuosos de origen biológico. El biofluido se puede obtener desde cualquier localización (tales como sangre, plasma, suero, orina, bilis, líquido cefalorraquídeo, humor vitreo o acuoso, o cualquier secreción corporal), un exudado (como el líquido obtenido a partir de un absceso o cualquier otro sitio de infección o inflamación), o el líquido obtenido a partir de una articulación (por ejemplo, una articulación normal o una articulación afectada por una enfermedad como la artritis reumatoide).
En un primer paso, el primer método de la invención comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4 en una muestra de dicho paciente.
El término "GCNT3", como se usa aquí, se refiere al gen que codifica la glucosaminil (N-acetil) transferasa 3 tipo mucina, también conocido como C2/4GnT, C2GnT-M, C2GnT2 e identificado en la base de datos UniProtKB/SwissProt con el número de acceso 095395.E1 gen GCNT3 humano tiene el número de acceso 4205 en la base de datos HGNC.
El término "LPL", como se usa aquí, se refiere al gen que codifica la proteína lipoproteina lipasa, P06858. El gen LPL humano tiene el número de acceso 6677 en la base de datos HGNC
El término "APOC1 ", como se usa aquí, se refiere al gen que codifica la proteína ApoCl, y que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso P02654. El gen APOC1 humano tiene el número de acceso 607 en la base de datos HGNC.
El término "SCD", como se usa aquí, se refiere al gen que codifica la proteína estearoil-CoA desaturasa (también llamada delta-9 desaturasa) y que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso 000767. El gen SCD humano tiene el número de acceso 1057 en la base de datos HGNC.
El término "ACLS1 ", como se usa aquí, se refiere al gen que codifica la isoforma 1 de la acil-CoA sintetasa de cadena larga y que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso P33121. El gen ACLS1 humano tiene el número de acceso 3569 en la base de datos HGNC.
El término "ACLS4", como se usa aquí, se refiere al gen que codifica la isoforma 4 de la acil-CoA sintetasa de cadena larga y que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso 060488. El gen ACLS4 humano tiene el número de acceso 3571 en la base de datos HGNC.
Se entenderá que el procedimiento según la presente invención puede comprender la determinación de las variantes polimórficas de origen natural de uno o más de los genes anteriormente.
En una realización preferida, el método de la invención comprende la determinación de los niveles de expresión de cada uno de los genes de forma individual.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes agrupados de dos en dos. Así, la invención comprende la determinación de los siguientes pares de genes GCNT3 y LPL;
GCNT3 y APOCl; GCNT3 y SCD; GCNT3 y ACSLl; GCNT3 y ACSL4; LPL y
APOCl; LPL y SCD; LPL y ACSLl; LPL y ACSL4; APOCl y SCD; APOCl y
ACSLl; APOCl y ACSL4; SCD y ACSLl; SCD y ACSL4; ACSLl y ACSL4.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes agrupados de tres en tres. Así, la invención comprende la determinación de los siguientes grupos de genes: GCNT3, LPL y APOCl; GCNT3, LPL y SCD; GCNT3, LPL y ACSLl; GCNT3, LPL y ACSL4;
GCNT3, APOCl y SCD; GCNT3, APOCl y ACSLl; GCNT3, APOCl y ACSL4;
GCNT3, SCD y ACSLl; GCNT3, SCD y ACSL4; GCNT3, ACSLl y ACSL4; LPL, APOCl y SCD; LPL, APOCl y ACSLl; LPL, APOCl y ACSL4; LPL, SCD y ACSLl;
LPL, SCD y ACSL4; LPL, ACSLl y ACSL4; APOCl, SCD y ACSLl; APOCl, SCD y
ACSL4; APOCl, ACSLl y ACSL4; SCD, ACSLl y ACSL4.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes agrupados de cuatro en cuatro. Así, la invención comprende la determinación de los siguientes grupos de genes:
GCNT3, LPL, APOCl y SCD; GCNT3, LPL, APOCl y ACSLl; GCNT3, LPL,
APOCl y ACSL4; GCNT3, LPL, SCD y ACSLl; GCNT3, LPL, SCD y ACSL4;
GCNT3, LPL, ACSLl y ACSL4; GCNT3, APOCl, SCD y ACSLl ; GCNT3, APOCl,
SCD y ACSL4; GCNT3, APOCl, ACSLl y ACSL4; GCNT3, SCD, ACSLl y ACSL4; LPL, APOCl, SCD y ACSLl; LPL, APOCl, SCD y ACSL4; LPL, APOCl, ACSLl y
ACSL4; LPL, SCD, ACSLl y ACSL4; APOCl, SCD, ACSLl y ACSL4. En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes agrupados de cinco en cinco. Así, la invención comprende la determinación de los siguientes grupos de genes: GCNT3, LPL, APOC1, SCD, y ACSL1; GCNT3, LPL, APOC1, SCD y ACSL4; GCNT3, LPL, APOC1, ACSL1 y ACSL4; GCNT3, LPL, SCD, ACSL1 y ACSL4; GCNT3, APOC1, SCD, ACSL1 y ACSL4; LPL, APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes ACSL1 y/o ACSL4.
En otra forma preferida de realización, el método de la invención comprende la determinación de los niveles de expresión de los genes ACSL1 y/o ACSL4 y adicionalmente comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1 y SCD.
En otra forma preferida de realización, el método de la invención comprende adicionalmente la determinación de los niveles de expresión de uno o más de uno de los genes ABCAl, APOE, FADS2, CD36 en donde un aumento en los niveles de expresión de los genes ABCAl, APOE, FADS2 y/o CD36 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene un mal pronóstico.
El término "ABCAl", como se usa aquí, se refiere al gen que codifica la proteína ABCAl (ATP-binding cassette subfmaliy A member /), que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso 095477. El gen ABCAl humano tiene el número de acceso 29 en la base de datos HGNC.
El término "APOE", como se usa aquí, se refiere al gen que codifica la proteína apolipoproteína E o Apo-E, que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso P02649. El gen APOE humano tiene el número de acceso 613 en la base de datos HGNC.
El término "FADS2", como se usa aquí, se refiere al gen que codifica la proteína íídelta(6) fatty acid desaturase" o "fatty acid desaturase 2", que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso 095864. El gen FADS2 humano tiene el número de acceso 3575 en la base de datos HGNC. El término " CD36", como se usa aquí, se refiere al gen que codifica la proteína "platelet glycoprotein 4 (thrombospondine receptor)", que se identifica en la base de datos UniProtKB/SwissProt con el número de acceso UniProtKB/Swiss-Prot:P 16671. El gen CD36 humano tiene el número de acceso en la base de datos HGNC.
En una forma preferida de realización, el método de la invención comprende determinar los niveles de expresión de uno de los siguientes grupos de genes:
ACSL4, SCD, APOE y FADS2;
ACSL4, SCD, ABCA1 y FADS2;
ACSL4, SCD, ABCA1 y APOC 1 ;
- ACSL4, ACSL1, SCD y ABCA1 ;
ACSL4, ACSL1, SCD, FADS2 y ABCA1
ACSL4, APOE, SCD, FADS2 y ABCA1
ACSL4, APOE, SCD, FADS2 y CD36
ACSL4, SCD, FADS2, ABCA1 y CD36
Prácticamente cualquier método convencional puede ser utilizado en el marco de la invención para detectar y cuantificar los niveles de dichos marcadores genéticos. A modo de ejemplo no limitativo, los niveles de expresión se determinan mediante la cuantificación de los niveles de ARNm codificados por los genes involucrados o por medio de la cuantificación de los niveles de las proteínas correspondientes.
Los métodos para determinar la cantidad de ARNm son bien conocidos en la técnica. Por ejemplo, el ácido nucleico que contiene la muestra (por ejemplo, células o tejidos preparada a partir de la paciente) se extrae primero de acuerdo con los métodos estándar, por ejemplo, el uso de enzimas líticas o soluciones químicas o extraídas con ácidos nucleicos resinas de fijación siguiendo las instrucciones del fabricante. El ARNm extraído es detectado por hibridación (por ejemplo, el análisis de Northern blot o microarrays de ADN después de la conversión del ARNm en una cDNA marcado) y/o amplificación (por ejemplo, RT-PCR). La determinación puede llevarse a cabo de forma cualitativa, cuantitativa, o semi-cuantitativa. La determinación cuantitativa en tiempo real o semi-cuantitativos de RT-PCR es particularmente ventajosa. Preferiblemente, los pares de cebadores se diseñan de forma que incluyan una región que contiene un intrón, de forma que se pueda distinguir la amplificación de cDNA de la contaminación genómica putativo. Los cebadores adecuados pueden ser fácilmente diseñados por el experto. Otros métodos de amplificación incluyen reacción en cadena de ligasa (LCR), la transcripción mediada por la amplificación (TMA), la amplificación de desplazamiento de cadena (SDA) y la amplificación de secuencias de ácido nucleico basada (NASBA). Preferiblemente, la cantidad de ARNm se mide cuantitativa o semi- cuantitativos de RT-PCR o cuantitativa en tiempo real o semi-cuantitativos de RT-PCR.
El término "hibridación específica", como se usa aquí, se refiere a las condiciones que permiten la hibridación de dos secuencias de polinucleótidos en condiciones de alta rigurosas o condiciones moderadamente severas. Las expresiones " condiciones altamente estrictas" y "condiciones moderadamente estrictas" se definen a continuación en relación con el kit de la invención y son igualmente aplicables en el contexto del presente método.
Por otra parte, también es posible determinar los niveles de expresión de los genes marcadores por medio de la determinación de los niveles de expresión de las proteínas codificadas por dichos genes, debe tener lugar un aumento de la cantidad de proteína correspondiente. La determinación de los niveles de expresión de las proteínas diferentes se puede realizar utilizando cualquier método convencional. A modo de ejemplo no limitativo, dicha determinación se puede realizar utilizando anticuerpos con capacidad de unirse específicamente a la proteína a determinar (o fragmentos de éstos con los determinantes antigénicos) y posterior cuantificación de los derivados complejos antígeno-anticuerpo. Los anticuerpos que se van a utilizar en este tipo de análisis puede ser, por ejemplo sueros policlonales, sobrenadantes de hibridomas o anticuerpos monoclonales, fragmentos de anticuerpos, Fv, Fab, Fab ' y F(ab')2, scFv, diacuerpos, triabodies, tetrabodies y anticuerpos humanizados. Al mismo tiempo, los anticuerpos pueden ser o no ser etiquetados. Ilustrativos, pero no exclusiva, los ejemplos de marcadores que pueden ser utilizados incluyen isótopos radiactivos, enzimas, fluoróforos, reactivos quimioluminiscentes, cofactores de la enzima o sustratos, inhibidores de la enzima, las partículas, colorantes, etc. Hay una amplia variedad de ensayos bien conocidos que pueden ser utilizado en la presente invención, no se usen los anticuerpos marcados (anticuerpo primario) y anticuerpos marcados (anticuerpos secundarios), las cuales incluyen técnicas de Western-blot o inmunoblot, ELISA (Enzyme-linked immunosorbent assay), RIA (radioinmunoensayo), la competencia EIA ( inmunoensayo enzimático), DAS-ELISA (anticuerpos doble sandwich ELISA), técnicas inmunocitoquímicas e inmunohistoquímicas, técnicas basadas en el uso de biochips o microarrays de proteínas como anticuerpos específicos o ensayos basados en la precipitación coloidal en formatos tales como las tiras reactivas. Otras formas de detección y cuantificación de la proteína incluyen las técnicas de cromatografía de afinidad, de unión al ligando ensayos, etc.
Una vez que los niveles de expresión de los genes por encima de una muestra de un paciente se han determinado, los niveles se comparan con valores de referencia para cada uno de dichos genes. Normalmente, los valores de referencia son el nivel de expresión de los genes que se comparan en una muestra de referencia.
Una "muestra de referencia", como se usa aquí, significa una muestra obtenida de un grupo de sujetos sanos que no tiene un estado de enfermedad o fenotipo particular. Por ejemplo, la muestra de referencia puede incluir muestras de la mucosa del colon de pacientes que no sufren cáncer de colon o que no tienen antecedentes de cáncer de colon. Por otra parte, la muestra de referencia podría ser una muestra o un conjunto de muestras de cáncer de colon con un bajo riesgo de recurrencia. Esta muestra o conjunto de muestras pueden ser obtenidas de pacientes que han tenido una resección quirúrgica del tumor y que no han sufrido una recaída, de preferencia en ausencia de quimioterapia adyuvante. En otra realización, la muestra de referencia es una muestra de un tipo que CCR o un grupo de tipo I CCR.
Los niveles de referencia adecuada expresión de los genes puede ser determinada mediante la medición de los niveles de expresión de dichos genes en varios temas adecuados, y esos niveles de referencia se puede ajustar a las poblaciones específicas (por ejemplo, un nivel de referencia puede estar relacionada con la edad, por lo que las comparaciones se puede hacer entre los niveles de expresión en las muestras de los sujetos de una cierta edad y niveles de referencia para una enfermedad particular, el fenotipo, o falta de ella en un determinado grupo de edad). En una realización preferida, la muestra de referencia se obtiene de varios sujetos sanos o pacientes sin historia previa de cáncer colorrectal. Por otra parte, la muestra de referencia es una muestra o un conjunto de muestras de cáncer de colon de pacientes que han tenido una resección quirúrgica del tumor y que no han sufrido una recaída, de preferencia en ausencia de quimioterapia adyuvante. El experto en la técnica apreciará que el tipo de muestra de referencia puede variar dependiendo del método específico a realizar. Así, en el caso de que un diagnóstico o pronóstico de la enfermedad se lleva a cabo, la muestra hace referencia puede ser un conjunto de tejido no tumoral de tejido colorrectal, el de las personas que no tienen un historial de cáncer colorrectal o de un grupo distal de los tejidos no tum orales con respecto a los tejidos tum orales respectivos, o de una muestra o un conjunto de muestras de cáncer de colon de pacientes que han tenido una resección quirúrgica del tumor y que no han sufrido una recaída, de preferencia en ausencia de quimioterapia adyuvante. En el caso de que el método de la invención está dirigido a determinar el efecto de una terapia en un paciente, la muestra de referencia es preferible una muestra obtenida de dicho paciente antes de iniciar el tratamiento.
El perfil de expresión de los genes en la muestra de referencia de preferencia puede ser generados a partir de una población de dos o más personas. La población, por ejemplo, pueden contener 3, 4, 5, 10, 15, 20, 30, 40, 50 o más personas. Además, el perfil de expresión de los genes en la muestra de referencia y en la muestra de la persona que va a ser diagnosticada de acuerdo con los métodos de la presente invención pueden ser generados a partir de la misma persona, siempre que los perfiles sean analizados y el perfil de referencia son generados a partir de las muestras biológicas tomadas en diferentes momentos y se comparan entre sí. Por ejemplo, una muestra de un individuo puede obtener en el inicio de un período de estudio. Un perfil de marcador biológico de referencia de esta muestra se puede comparar con los perfiles de biomarcadores generados a partir de las muestras posteriores de la misma persona. En una realización preferida, la muestra de referencia es un conjunto de muestras de varios individuos, y corresponde a porciones de tejido de colon que están lejos de la zona del tumor y que han sido obtenidos de preferencia en la misma biopsia, pero que no tienen ninguna característica anatomopatológica del tumor los tejidos.
Una vez que los niveles de expresión de los genes marcadores en relación con los valores de referencia para dichos genes se han determinado, es necesario identificar si existen alteraciones en la expresión de dichos genes (aumento o disminución de la expresión). La expresión de un gen se considera aumentada en una muestra de la materia objeto de estudio cuando los niveles de incremento con respecto a la muestra de referencia son al menos de un 5%, por lo menos 10%, por lo menos 15%, por lo menos el 20%), al menos un 25%, por lo menos 30%>, por lo menos el 35%, por lo menos el 40%), por lo menos 45%, por lo menos el 50%, por lo menos el 55%, por lo menos el 60%, por menos por lo menos 65%, por lo menos el 70%, por lo menos el 75%, por lo menos el 80%, por lo menos el 85%, por lo menos el 90%, por lo menos el 95%, por lo menos 100%, por lo menos 1 10 %, por lo menos 120%, por lo menos 130%), por lo menos 140%), por lo menos 150%), o más. Del mismo modo, la expresión de un gen se considerada disminuida cuando sus niveles disminuyen con respecto a la muestra de referencia en al menos un 5%, por lo menos 10%, por lo menos 15%, por lo menos el 20%), por lo menos el 25%, al menos un 30%, por lo menos el 35%, por lo menos el 40%), por lo menos 45%, por lo menos el 50%, por lo menos el 55%, por lo menos el 60%), por lo menos el 65%, por lo menos 70%, por lo menos el 75%, por lo menos el 80%), por lo menos el 85%, por lo menos el 90%, por lo menos el 95%, por lo menos 100%) (es decir, ausente).
Por último, el paciente se clasifica como de riesgo elevado de resultado negativo, si los genes marcadores muestran un aumento de los niveles de expresión con respecto a una muestra de referencia y que tienen un bajo riesgo de resultados negativos, si los genes marcadores muestran una disminución en los niveles de expresión con respecto a un muestra de referencia. En una modalidad preferida, el paciente se clasifica como de riesgo elevado de resultado negativo, si los niveles de expresión del gen es más alto que el nivel de expresión del mismo gen en una muestra o un conjunto de muestras de cáncer de colon de pacientes que han tenido una resección quirúrgica del tumor y que no han sufrido una recaída, de preferencia en ausencia de quimioterapia adyuvante.
El término "buen pronóstico ", según se usa en la presente invención, se usa para indicar una mejora en alguna medida del estado del paciente, incluyendo aquellas que se usan normalmente en la técnica, tales como un aumento en la duración del intervalo libre de recidiva (RFI), un aumento en el tiempo de la supervivencia global (SG), un aumento en el tiempo libre de enfermedad de supervivencia (DFS), un aumento en la duración de la distancia intervalo libre de recidiva (DRFI), y similares. Un aumento en la probabilidad de los resultados clínicos positivos corresponde a una disminución en la probabilidad de recurrencia del cáncer.
El término "mal pronóstico", según se usa en la presente invención, se usa para indicar un empeoramiento de cualquier medida del estado del paciente, incluso las usan normalmente en la técnica, tales como una disminución en la duración del intervalo libre de recidiva (RFI), una disminución en el tiempo de la supervivencia global (SG), una disminución en el tiempo libre de enfermedad de supervivencia (DFS), una disminución en la duración de la distancia intervalo libre de recidiva (DRFI), y similares. Un aumento en la probabilidad de que el resultado clínico negativo corresponde a un aumento en la probabilidad de recurrencia del cáncer.
En una modalidad preferida, el resultado en un paciente determinado se mide como la supervivencia libre de enfermedad.
El término "supervivencia libre de enfermedad", como se usa aquí, se refiere al tiempo transcurrido entre el tratamiento primario del cáncer y el tiempo en el que paciente sobrevive sin la aparición de signos o síntomas de la enfermedad.
Los factores pronósticos son aquellas variables relacionadas con la historia natural del cáncer colorrectal, que influyen en las tasas de recurrencia y pronóstico de los pacientes una vez que han desarrollado cáncer colorrectal. Los parámetros clínicos que se han asociado con un peor pronóstico, por ejemplo, la participación de los ganglios linfáticos y tumores de alto grado. Los factores pronósticos son frecuentemente utilizados para categorizar a los pacientes en subgrupos con diferentes riesgos básales recaída. En una modalidad preferida, el factor pronóstico clínico utilizado en el método de la invención es la etapa del tumor, etapa en que el aumento del tumor es indicativo de un mayor riesgo de recurrencia o en la que disminuye el estadio tumoral es indicativo de que el paciente muestra un riesgo bajo de recurrencia.
Los pacientes analizados de acuerdo con la presente invención, pueden haber sido tratados con una o más terapias dirigidas a disminuir el tamaño del tumor. Por lo tanto, en una realización preferida, los pacientes son tratados antes de la determinación de los niveles de expresión de los genes diferentes de acuerdo con la invención con una terapia seleccionada del grupo que consiste en quimioterapia, radioterapia o cirugía. Los términos "quimioterapia", "Radioterapia" y "cirugía" se definen a continuación en detalle y se usan con el mismo significado en el contexto de la presente invención. En una forma preferida de realización, los pacientes han sido tratados con una terapia basada en fluoropiri dinas. La expresión "terapia basada en fluoropiri dinas", según se usa en la presente invención, se refiere a una terapia que comprende una fluoropiridina como principio activo, e incluye tanto terapias en donde la fluoropiridina es el único principio activo como composiciones que comprenden una fluoropiridina y uno o más principios activos. El término "fluoropiridina", según se usa en la presente invención, se refiere a un agente de quimiterpia que comprende un anillo de pirimidina en donde dicho anillo se encuentra sustituido por un átomo de flúor. Ejemplos de fluorpiri dinas incluyen, sin limitación, 5-fluorouracilo, floxuridina, tegafur, 5-fluoro-2'-deoxiuridina, ftorafur, emitefur, eniluracil y capecitabina. Composiciones que comprenden una fluoropiridina y uno o más principios activos incluyen, sin limitación, FOLFOX (una composición que comprende ácido folínico, 5-FU y oxaliplatino), XELOX (una composición que comprende capecitabina y oxaliplatin), FOLFIRI (5-FU, leucovirin e irinotecan), S-l (una combinación de ftorafur (una prodroga de 5-FU) y 2 moduladores de 5-FU llamados 5-cloro-2,4-dihidroxipuridine y ácido oxonico en un relación molar de 1 :0.4: 1). UFT (una combinación de ftorafur y uracilo en una relación molar de 1 :4).
Métodos de terapia personalizada
Los métodos de pronóstico definido anteriormente también permiten ofrecer terapias personalizadas para los pacientes que sufren cáncer colorrectal. En particular, los pacientes considerados como que tienen un mal pronóstico son candidatos a una terapia adyuvante (tras la extirpación del tumor). Por el contrario, los pacientes que muestran un bajo riesgo de recaída pueden renunciar a un tratamiento terapéutico adicional tras la cirugía y evitarse los efectos indeseados de la terapia adyuvante.
Por lo tanto, en otro aspecto, la invención se refiere a un método (en adelante, primer método de terapéutica personalizada de la invención) para la selección de un adecuado tratamiento para el cáncer colorrectal en un paciente que comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOCl, SCD, ACSLl y/o ACSL4 en una muestra de dicho paciente, en done un aumento en los niveles de expresión de los genes LPL, APOCl, SCD, ACSLl y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene que ser tratado con terapia adyuvante.
Como se usa aquí, "tratamiento" se refiere a la intervención clínica en un intento de prevenir, curar, retrasar, reducir la gravedad de, o mejorar uno o más síntomas de la enfermedad o trastorno o enfermedad recurrente o trastorno, o con el fin de prolongar la supervivencia de un paciente más allá de lo esperado en ausencia de dicho tratamiento. El término "cáncer colorrectal" ha sido descrito en detalle en el contexto del método pronóstico de la invención y se utiliza con el mismo significado en el contexto de los métodos personalizados de acuerdo a la invención.
En un primer paso, el método de terapia personalizada de acuerdo con la invención comprende la determinación del nivel de expresión de la GCNT3, LPL, APOCl, SCD, ACSLl y/o ACSL4 en una muestra de dicho paciente.
Los términos "cáncer colorrectal", "paciente", "gen GCNT3", "gen LPL", "gen APOCl ", "gen SCD", gen "ACSLl ", gen "ACSL4", "niveles de expresión", "muestra" se han descrito en detalle anteriormente, y se aplican por igual a los métodos de acuerdo con el método actual.
En una realización preferida, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de cada uno de los genes de forma individual.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes agrupados de dos en dos. Así, la invención comprende la determinación de los siguientes pares de genes GCNT3 y LPL; GCNT3 y APOCl; GCNT3 y SCD; GCNT3 y ACSLl; GCNT3 y ACSL4; LPL y APOCl; LPL y SCD; LPL y ACSLl; LPL y ACSL4; APOCl y SCD; APOCl y ACSLl; APOCl y ACSL4; SCD y ACSLl ; SCD y ACSL4; ACSLl y ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes agrupados de tres en tres. Así, la invención comprende la determinación de los siguientes grupos de genes: GCNT3, LPL y APOCl; GCNT3, LPL y SCD; GCNT3, LPL y ACSLl; GCNT3, LPL y ACSL4; GCNT3, APOCl y SCD; GCNT3, APOCl y ACSLl; GCNT3, APOCl y ACSL4; GCNT3, SCD y ACSLl; GCNT3, SCD y ACSL4; GCNT3, ACSLl y ACSL4; LPL, APOCl y SCD; LPL, APOCl y ACSLl; LPL, APOCl y ACSL4; LPL, SCD y ACSLl ; LPL, SCD y ACSL4; LPL, ACSLl y ACSL4; APOCl, SCD y ACSLl; APOCl, SCD y ACSL4; APOCl, ACSLl y ACSL4; SCD, ACSLl y ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes agrupados de cuatro en cuatro. Así, la invención comprende la determinación de los siguientes grupos de genes: GCNT3, LPL, APOC1 y SCD; GCNT3, LPL, APOC1 y ACSL1; GCNT3, LPL, APOC1 y ACSL4; GCNT3, LPL, SCD y ACSL1; GCNT3, LPL, SCD y ACSL4; GCNT3, LPL, ACSL1 y ACSL4; GCNT3, APOC1, SCD y ACSL1; GCNT3, APOC1, SCD y ACSL4; GCNT3, APOC1, ACSL1 y ACSL4; GCNT3, SCD, ACSL1 y ACSL4; LPL, APOC1, SCD y ACSL1; LPL, APOC1, SCD y ACSL4; LPL, APOC1, ACSL1 y ACSL4; LPL, SCD, ACSL1 y ACSL4; APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes agrupados de cinco en cinco. Así, la invención comprende la determinación de los siguientes grupos de genes: GCNT3, LPL, APOC1, SCD, y ACSL1; GCNT3, LPL, APOC1, SCD y ACSL4; GCNT3, LPL, APOC1, ACSL1 y ACSL4; GCNT3, LPL, SCD, ACSL1 y ACSL4; GCNT3, APOC1, SCD, ACSL1 y ACSL4; LPL, APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes ACSL1 y/o ACSL4.
En otra forma preferida de realización, el método de terapia personalizada de acuerdo con la invención comprende la determinación de los niveles de expresión de los genes ACSL1 y/o ACSL4 y adicionalmente comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1 y SCD.
En otra forma preferida de realización, el método de la invención comprende adicionalmente la determinación de los niveles de expresión de uno o más de uno de los genes ABCAl, APOE, FADS2, CD36 en donde un aumento en los niveles de expresión de los genes ABCAl, APOE, FADS2 y/o CD36 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene que ser tratado con quimioterapia adyuvante. Los términos "ABCA1", "APOE", "FADS2" y " CD36" se han definido en el contexto del primer método de la invención.
En una forma preferida de realización, el método de la invención comprende determinar los niveles de expresión de uno de los siguientes grupos de genes:
- ACSL4, SCD, APOE y FADS2;
ACSL4, SCD, ABCA1 y FADS2;
ACSL4, SCD, ABCA1 y APOC 1 ;
ACSL4, ACSL1, SCD y ABCA1.
ACSL4, ACSL1, SCD, FADS2 y ABCA1
- ACSL4, APOE, SCD, FADS2 y ABCA1
ACSL4, APOE, SCD, FADS2 y CD36
ACSL4, SCD, FADS2, ABCA1 y CD36
Los niveles de expresión de los genes diferentes utilizados en el primer método de terapéutica personalizada de la invención se pueden determinar mediante la determinación de los niveles de mRNA codificado por los genes involucrados o por determinación de los niveles del polipéptido codificado por los genes involucrados. En un segundo paso, el método de asignación de una terapia personalizada de acuerdo con la invención comprende la identificación de aquellos pacientes que presentan un aumento en los niveles de expresión de los genes LPL, APOC1, SCD, ACSL1 y/o ACSL4, solos o combinados con un aumento de expresión de los genes ABC Al, APOE, FADS2, CD36 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para dichos genes como candidatos para recibir radioterapia adyuvante o quimioterapia después del tratamiento quirúrgico o de los pacientes que muestra disminución de los niveles de expresión de los genes con respecto a un valor de referencia como un paciente que no es un candidato para recibir radioterapia o quimioterapia después de la cirugía.
El término "cirugía", como se usa aquí, significa cualquier procedimiento terapéutico que implica una acción metódica de la mano o de la mano con un instrumento, en el cuerpo de un humano u otro mamífero, para producir una curación o recuperación.
Como se usa aquí el término "quimioterapia", "droga de quimioterapia" se refiere ampliamente a la utilización de un medicamento químico o una combinación de ambos para el tratamiento del cáncer, tumores o neoplasias malignas, incluyendo tanto los fármacos citotóxicos o citostáticos. Ejemplos de agentes de quimioterapia que pueden estar de acuerdo con la presente invención incluyen:
Agentes alquilantes (por ejemplo, mecloretamina, clorambucil, ciclofosfamida, ifosfamida, estreptozocina, carmustina, lomustina, melfalán, busulfán, dacarbazina, temozolomida, tiotepa o altretamine);
Fármacos de platino (por ejemplo, cisplatino, carboplatino y oxaliplatino);
Fármacos antimetabolitos (por ejemplo, 5-fluorouracilo, la capecitabina, la
6-mercaptopurina, metotrexato, gemcitabina, citarabina, fludarabina o pemetrexed);
Antibióticos anti-tumor (por ejemplo, daunorubicina, doxorubicina, epirubicina, idarubicina, actinomicina D, bleomicina, mitomicina C, o mitoxantrona);
Inhibidores de la mitosis (por ejemplo, paclitaxel, docetaxel, ixabepilona, vinblastina, vincristina, vinorelbina, vindesina o estramustina), y
Inhibidores de la topoisomerasa (por ejemplo, etopósido, tenipósido, topotecan, irinotecan, o diflomotecan elomotecan).
El término "radioterapia" es un término comúnmente utilizado en la técnica para referirse a varios tipos de terapia de radiación, incluidas las terapias de radiación interna y externa, o radioinmunoterapia, y el uso de varios tipos de radiaciones como los rayos X, rayos gamma, partículas alfa, beta partículas, los fotones, electrones, neutrones, radioisótopos, y otras formas de radiaciones ionizantes.
En una modalidad preferida, el tratamiento es la quimioterapia adyuvante o neoadyuvante.
El término "terapia neoadyuvante", como se usa aquí, se refiere a cualquier tipo de tratamiento del cáncer se administra antes de la resección quirúrgica del tumor primario, en una paciente con un cáncer. La razón más común para la terapia neoadyuvante es reducir el tamaño del tumor con el fin de facilitar una cirugía más efectiva. Terapias neoadyuvante incluyen radioterapia y, de preferencia la terapia sistémica, como la terapia hormonal, quimioterapia, inmunoterapia y terapia con anticuerpos monoclonales. El término "terapia adyuvante", como se usa aquí, se refiere a cualquier tipo de tratamiento del cáncer (por ejemplo, la quimioterapia o la radioterapia) como tratamiento adicional, por lo general después de la resección quirúrgica del tumor primario, en una paciente con un cáncer que se encuentra en riesgo de metástasis y / o probable que se repita. El objetivo de este tipo de tratamiento adyuvante para mejorar el pronóstico. Las terapias adyuvantes incluyen radioterapia y, preferentemente, la terapia sistémica, como la terapia hormonal, quimioterapia, inmunoterapia y terapia con anticuerpos monoclonales.
En una forma preferida de realización, la terapia es una quimioterapia distinta a una terapia basada en fluoropiri dinas. Las expresiones "terapia basada en fluoropiridinas" y "fluoropiri dina", se han descrito en detalle en relación al método pronóstico de la invención y se usan en el contexto del presente método con el mismo significado. Kits de la invención
En otra realización, la invención se refiere a un kit que comprende reactivos adecuados para la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4.
En el contexto de la presente invención, "kit" se entiende como un producto que contiene los diferentes reactivos necesarios para llevar a cabo los métodos de la invención adaptado para permitir su transporte y almacenamiento. Los materiales adecuados para el embalaje de los componentes del kit incluyen (polietileno, polipropileno, policarbonato y similares) de cristal, plástico, botellas, frascos, papel, sobres, etc. Además, los kits de la invención puede contener instrucciones para el uso simultáneo, secuencial o separado, de los diferentes componentes que se encuentran en el kit. Dichas instrucciones pueden ser en forma de material impreso o en forma de un soporte electrónico capaz de almacenar instrucciones de manera que puedan ser leídos por un tema, como los medios electrónicos de almacenamiento (discos magnéticos, cintas y similares), los medios ópticos (CD-ROM, DVD) y similares. Adicional o alternativamente, los medios de comunicación pueden contener las direcciones de Internet que ofrecen dichas instrucciones. La expresión "reactivo que permite determinar el nivel de expresión de un gen" significa un compuesto o grupo de compuestos que permite determinar el nivel de expresión de un gen, tanto por medio de la determinación del nivel de ARNm como por medio de la determinación del nivel de la proteína. Por lo tanto, los reactivos del primer tipo incluyen sondas capaces de hibridar específicamente con el ARNm codificado por los genes involucrados. Los reactivos del segundo tipo son compuestos que se unen específicamente a las proteínas codificadas por los genes marcadores y, preferentemente, se incluyen los anticuerpos, aunque pueden ser aptámeros específicos.
En una realización preferida, los reactivos adecuados para la determinación de niveles de expresión de uno o más genes comprenden al menos un 10%, al menos 20%, al menos 30%, menos un 40%, al menos 50%, menos el 60% , por lo menos 70%, por lo menos un 80%, por lo menos el 90% o menos del 100% del importe total de los reactivos adecuados para la determinación de los niveles de expresión de los genes que forman el kit. Así, en el caso particular de kits que comprenden los reactivos para la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4, los reactivos específicos para dicho gen (por ejemplo, las sondas que son capaces de hibridar bajo condiciones estrictas con los ARNm codificados por los genes GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4) comprenden al menos un 10%), al menos 20%, al menos 30%, menos un 40%, al menos 50%, menos el 60%, por lo menos 70%, por lo menos 80 %, por lo menos el 90% o menos el 100% de las sondas presentes en el kit.
En otras realizaciones, los reactivos adecuados para la determinación de los niveles de expresión de uno o más genes comprenden al menos un 55% por lo menos 60%, por lo menos 65%, por lo menos 70%, menos el 75%, 80% como mínimo, en por lo menos 90%, al menos el 95%, por lo menos 96%, al menos el 97%, por lo menos un 98%) o menos el 99% del importe total de los reactivos que forman el kit.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de al menos dos de los genes marcadores. Así, la invención comprende kits que comprenden reactivos adecuados para la determinación de los siguientes pares de genes GCNT3 y LPL; GCNT3 y APOC 1; GCNT3 y SCD; GCNT3 y ACSL1 ; GCNT3 y ACSL4; LPL y APOC 1; LPL y SCD; LPL y ACSL1 ; LPL y ACSL4; APOCl y SCD; APOCl y ACSLl; APOCl y ACSL4; SCD y ACSLl;
SCD y ACSL4; ACSLl y ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de al menos tres de los genes marcadores. Así, la invención comprende kits que comprenden reactivos adecuados para la determinación de los siguientes grupos de genes: GCNT3, LPL y APOCl; GCNT3, LPL y SCD;
GCNT3, LPL y ACSLl; GCNT3, LPL y ACSL4; GCNT3, APOCl y SCD; GCNT3,
APOCl y ACSLl; GCNT3, APOCl y ACSL4; GCNT3, SCD y ACSLl; GCNT3, SCD y ACSL4; GCNT3, ACSLl y ACSL4; LPL, APOCl y SCD; LPL, APOCl y ACSLl; LPL, APOCl y ACSL4; LPL, SCD y ACSLl; LPL, SCD y ACSL4; LPL, ACSLl y
ACSL4; APOCl, SCD y ACSLl; APOCl, SCD y ACSL4; APOCl, ACSLl y ACSL4;
SCD, ACSLl y ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de al menos cuatro de los genes marcadores. Así, la invención comprende kits que comprenden reactivos adecuados para la determinación de los siguientes grupos de genes: GCNT3, LPL, APOCl y SCD; GCNT3, LPL,
APOCl y ACSLl; GCNT3, LPL, APOCl y ACSL4; GCNT3, LPL, SCD y ACSLl;
GCNT3, LPL, SCD y ACSL4; GCNT3, LPL, ACSLl y ACSL4; GCNT3, APOCl,
SCD y ACSLl; GCNT3, APOCl, SCD y ACSL4; GCNT3, APOCl, ACSLl y ACSL4; GCNT3, SCD, ACSLl y ACSL4; LPL, APOCl, SCD y ACSLl; LPL, APOCl, SCD y
ACSL4; LPL, APOCl, ACSLl y ACSL4; LPL, SCD, ACSLl y ACSL4; APOCl, SCD,
ACSLl y ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de al menos cinco de los genes marcadores. Así, la invención comprende kits que comprenden reactivos adecuados para la determinación de los siguientes grupos de genes: GCNT3, LPL, APOCl, SCD, y ACSLl; GCNT3, LPL, APOCl, SCD y ACSL4; GCNT3, LPL, APOCl, ACSLl y ACSL4; GCNT3, LPL, SCD, ACSLl y ACSL4; GCNT3, APOCl, SCD, ACSLl y ACSL4; LPL, APOCl, SCD, ACSLl y ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de al menos cinco de los genes marcadores. Así, la invención comprende kits que comprenden reactivos adecuados para la determinación de los siguientes grupos de genes: GCNT3, LPL, APOC1, SCD, y ACSL1; GCNT3, LPL, APOC1, SCD y ACSL4; GCNT3, LPL, APOC1, ACSL1 y ACSL4; GCNT3, LPL, SCD, ACSL1 y ACSL4; GCNT3, APOC1, SCD, ACSL1 y ACSL4; LPL, APOC1, SCD, ACSL1 y ACSL4;
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de los genes ACSL1 y/o ACSL4.
En otra forma preferida de realización, el kit de la invención contiene reactivos adecuados para la determinación de los genes ACSL1 y/o ACSL4 y adicionalmente comprende reactivos adecuados para la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1 y SCD.
En otra forma preferida de realización, el kit de la invención contiene adicionalmente reactivos adecuados para la determinación de los niveles de expresión de uno o más de uno genes seleccionados del grupo ABCA1, APOE, FADS2 y CD36.
En formas preferidas de realización, el kit de la invención comprende reactivos adecuados para la determinación de los niveles de expresión de los siguientes grupos de genes:
- ACSL4, SCD, APOE y FADS2;
ACSL4, SCD, ABCA1 y FADS2;
ACSL4, SCD, ABCA1 y APOC 1 ;
ACSL4, ACSL1, SCD y ABCA1.
ACSL4, ACSL1, SCD, FADS2 y ABCA1
- ACSL4, APOE, SCD, FADS2 y ABCA1
ACSL4, APOE, SCD, FADS2 y CD36
ACSL4, SCD, FADS2, ABCA1 y CD36
En una realización particular de los kit de la invención, los reactivos del kit son los ácidos nucleicos que son capaces de detectar específicamente el nivel de mRNA de los genes mencionados anteriormente y/o el nivel de proteínas codificadas por uno o más de los genes mencionados anteriormente. Dicha detección se consigue gracias a la capacidad de los ácidos nucleicos de hibridar específicamente con los genes antes mencionados. Los ácidos nucleicos que forman parte del kit de la invención pueden ser sondas que reconocen de forma específica los genes diana o pueden ser uno o más pares de oligonucleótidos cebadores para la amplificación específica de fragmentos de los ARNm (o de sus correspondientes ADNc) de dichos genes.
En una modalidad preferida, el primer componente del kit de la invención comprende una sonda que se pueden hibridar específicamente a los genes mencionados anteriormente.
El término "hibridación específica", como se usa aquí, se refiere a las condiciones que permiten la hibridación de dos polinucleótidos en condiciones altamente rigurosas o condiciones moderadamente rigurosas.
"Rigor" de las reacciones de hibridación es fácilmente determinable por un experto en la materia, y por lo general es un cálculo empírico depende de la longitud de la sonda, la temperatura de lavado, y la concentración de sal. En general, las sondas más largas requieren temperaturas más elevadas para el recocido adecuado, mientras más corto sondas necesitan temperaturas más bajas. La hibridación depende generalmente de la capacidad del ADN desnaturalizado de reanillarse cuando las hebras complementarias están presentes en un ambiente por debajo de su temperatura de fusión. Cuanto mayor sea el grado de homología deseada entre la sonda y la secuencia hibridizable, mayor es la temperatura relativa, que puede ser utilizado. Como resultado, se deduce que las temperaturas más altas en relación tenderían a hacer que las condiciones de reacción más astringentes, mientras que las temperaturas más bajas no tanto. Para obtener más detalles y explicaciones de la astringencia de las reacciones de hibridación, ver Ausubel et al, Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
"Condiciones de alta rigurosidad", tal como se define en la presente invención, implican, por lo general: (1) fuerza iónica baja y alta temperatura para el lavado, por ejemplo de cloruro de sodio 0,015 /citrato de sodio 0.0015 M /0.1% dodecil sulfato de sodio a 50 0 C, (2) emplean durante la hibridación de un agente de desnaturalización, tales como formamida, por ejemplo, el 50% (v / v) formamida con 0, 1% de albúmina de suero bovino /0.1% Ficoll/0.1% polivinilpirrolidone/ tampón fosfato de sodio 50 mM a pH 6,5 con cloruro de sodio a 750 mM, 75 mM de citrato sódico a 42 0 C, o (3) emplean el 50% formamida, 5xSSC (0,75 M NaCl, 0,075 M citrato de sodio), fosfato sódico 50 mM (pH 6,8), 0,1% de pirofosfato de sodio, 5 veces solución de Denhardt, ADN de esperma de salmón sonicado (50 mg / ml), 0, 1% SDS, y el 10% de sulfato de dextrano a 42 0 C, con lavados a 42 0 C en 0.2xSSC (cloruro sódico / citrato de sodio) y el 50% de formamida, seguido por un lavado de alto rigor que consiste en O. lxSSC contiene EDTA a 55° C.
"Condiciones moderadamente rigurosas" pueden ser identificados según lo descrito por Sambrook et al, Molecular Cloning: A Laboratory Manual, Nueva York: Cold Spring Harbor Press, 1989, e incluyen el uso de solución de lavado y las condiciones de hibridación (por ejemplo, temperatura, fuerza iónica y% SDS) menos estrictas que las descritas anteriormente. Un ejemplo de las condiciones moderadamente rigurosas es la incubación durante la noche a 37 0 C en una solución que comprende: un 20% formamida, 5xSSC (150 mM NaCl, 15 mM citrato sódico), fosfato sódico 50 mM (pH 7,6), solución de Denhardt 5x, 10% de sulfato de dextrano, y 20 mg / ml de DNA desnaturalizado esquilada de esperma de salmón, seguido por el lavado de los filtros en lxSSC a unos 37-50° C. El experto en la materia reconocen la forma de ajustar la temperatura, fuerza iónica, etc. según sea necesario para dar cabida a factores como la longitud de la sonda y similares.
En el caso de que los niveles de expresión de varios de los genes identificados en la presente invención se determinen al mismo tiempo, es útil incluir las sondas para todos los genes cuya expresión es que se determinará en una hibridación de micromatrices.
Las micromatrices comprenden una pluralidad de ácidos nucleicos que son distribuidos espacialmente y asociados de forma estable a un soporte (por ejemplo, un biochip). Los ácidos nucleicos tienen una secuencia complementaria a subsecuencias particulares de genes cuya expresión se debe detectar, de forma que son capaces de hibridar con dichos ácidos nucleicos. En los métodos de la invención, una micromatriz que comprende un conjunto de ácidos nucleicos se pone en contacto con una preparación de los ácidos nucleicos aislados del paciente objeto del estudio. La incubación de las micromatrices en la preparación de los ácidos nucleicos se lleva a cabo en las condiciones adecuadas para la hibridación. Posteriormente, tras la eliminación de los ácidos nucleicos que no se han unido al soporte, se detecta el patrón de hibridación, lo que proporciona información sobre el perfil genético de la muestra analizada. A pesar de que las micromatrices son capaces de proporcionar información tanto cualitativa como cuantitativa de los ácidos nucleicos presentes en una muestra, la invención requiere el uso de matrices y metodologías capaces de proporcionar información cuantitativa.
La invención contempla una variedad de matrices en relación con el tipo de sondas y en relación con el tipo de soporte utilizado. Las sondas incluidas en las matrices que son capaces de hibridar con los ácidos nucleicos pueden ser ácidos nucleicos o análogos de los mismos que mantienen la capacidad de hibridación, como por ejemplo, los ácidos nucleicos en el que ha sido el enlace fosfodiéster sustituido con un fosforotioato, metilimina, metilfosfonato, fosforamidato, ácidos nucleicos en los que se sustituye la ribosa de los nucleótidos por otra hexosa, péptido nucleico (APN). La longitud de las sondas pueden de 5 a 50 nucleótidos y, preferiblemente, de 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, los nucleótidos 100 y varían en el rango de 10 a 1000 nucleótidos, preferiblemente en el intervalo de 15 a 150 nucleótidos, más preferiblemente en el rango de 15 a 100 nucleótidos y ácidos nucleicos pueden ser de cadena simple o de doble hebra. La matriz puede contener todas las sondas específicas de un determinado ARNm de una cierta longitud o pueden contener sondas seleccionadas de diferentes regiones de un ARNm. Cada sonda se analiza en paralelo con una sonda con una base de cambio, de preferencia en una zona céntrica de la sonda. La matriz se pone en contacto con una muestra que contiene los ácidos nucleicos con secuencias complementarias a las sondas de la matriz y la señal de hibridación con cada una de las sondas y los controles de hibridación correspondiente se determina. Las sondas en el que se observa una mayor diferencia entre la señal de hibridación con la sonda y su control de hibridación son seleccionadas. El proceso de optimización puede incluir una segunda ronda de optimización en el que se híbrida la matriz de la hibridación con una muestra que no contiene secuencias complementarias a las sondas de la matriz. Después de la segunda ronda de selección, las sondas con las señales de hibridación inferior a un umbral serán seleccionados. Por lo tanto, las sondas que pasan los controles, es decir, que muestran un nivel mínimo de hibridación no específica y un nivel máximo de hibridación específica con el ácido nucleico diana se seleccionan.
Las micromatrices de la invención no sólo contienen sondas específicas para los polinucleótidos que indica una determinada situación fisiopatológica, sino que también contiene una serie de sondas de control, que puede ser de tres tipos: los controles de la normalización, control de nivel de expresión y los controles de hibridación.
En el caso particular de los controles de expresión, es útil el uso de sondas que reconocen de forma específica genes que codifican las proteínas que ejercen funciones esenciales de la célula y que, por tanto, muestran una expresión constante a lo largo del ciclo celular. De forma orientativa, se pueden usar genes tales como β-2-microglobulina 18S ubiquitina, proteína ribosomal, la ciclofilina A, receptor de la transferrina, la actina, GAPDH, tirosina 3 - monooxigenasa / triptófano 5-monooxigenasa activación de la proteína (YWHAZ) y beta-actina.
Los microarrays pueden ser matrices de alta densidad, obtenidas por fijación de miles de oligonucleótidos usando fotolitografía (Fodor et al, 1991, Science, 767 a 773). Este tipo de matrices suelen ser redundante, es decir, se incluyen varias sondas para cada ARNm que ha de ser detectado. En una realización preferida, las matrices son matrices de baja densidad o LDA contienen menos de 10.000 sondas por centímetro cuadrado. En dichas matrices de baja densidad, las sondas de diferentes aplicados manualmente con la ayuda de una pipeta en diferentes lugares de un soporte sólido (por ejemplo, una superficie de cristal, una membrana). Los soportes utilizados para fijar las sondas pueden ser obtenidos a partir de una gran variedad de materiales, como plástico, cerámica, metales, geles, membranas, cristales, etc. Los microarrays se pueden obtener con cualquier metodología conocida por el experto en el arte.
Después de la hibridación, en los casos en que el ácido nucleico no hibridado es capaz de emitir una señal en el paso de detección, se usa una etapa previa de lavado para eliminar dichos ácidos nucleicos no hibridados. La etapa de lavado se lleva a cabo utilizando métodos y soluciones conocidos por el experto en la materia.
En el caso de que los niveles de expresión de los genes de acuerdo con la presente invención se determinen mediante la medición de los niveles del polipéptido o polipéptidos codificados por dicho gen o genes, los kits de acuerdo con la presente invención comprenden reactivos que son capaces de unirse específicamente a dicho polipéptido o polipéptidos. Así, en una realización, la invención se refiere a un kit que comprende anticuerpos específicos para el polipéptido codificado por los genes GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4. Para ello, es posible el empleo de matrices de anticuerpos como los descritos por De Wildt et al. (2000) Nat. Biotechnol. 18:989-994; Lueking et al. (1999) Anal. Biochem. 270: 103-111; Ge et al. (2000) Nucleic Acids Res. 28, e3, I-VII; MacBeath y Schreiber (2000) Ciencia 289: 1760-1763, WO01/40803 y WO 99/51773 Al son útiles. Los anticuerpos de la matriz incluyen cualquier agente inmunológico capaz de unirse a un ligando de alta afinidad, incluyendo IgG, IgM, IgA, IgD e IgE, así como moléculas similares a los anticuerpos que tiene un sitio de unión al antígeno, tales como Fab ', Fab , F (ab ') 2, los anticuerpos de dominio único o DABS, Fv, scFv y similares. Las técnicas para la preparación de dichos anticuerpos son muy bien conocidos por el experto en la técnica e incluyen los métodos descritos por Ausubel et al. (Current Protocols in Molecular Biology, eds. Ausubel et al.„ John Wiley & Sons (1992)).
En otro aspecto, la invención se refiere a la utilización de un kit de la invención para determinar el pronóstico de un paciente que sufre de cáncer colorrectal o para determinar si un paciente con cáncer colorrectal es el candidato a la terapia adyuvante. En una modalidad preferida, el uso de los kits de acuerdo con la invención se lleva a cabo en pacientes con estadio II o estadio III CCR.
Métodos terapéuticos
En otro aspecto, la invención se refiere al uso de un agente inhibidor de un gen seleccionado del grupo formado por LPL, APOC1, SCD, ACSL1 y ACSL4 para la preparación de un medicamento para el tratamiento del cáncer.
En otro aspecto, la invención se refiere a un agente inhibidor de un gen seleccionado del grupo formado por LPL, APOC1, SCD, ACSL1 y ACSL4 para su uso en el tratamiento del cáncer.
En otro aspecto, la invención se refiere a un método para el tratamiento del cáncer en un sujeto que comprende la administración a dicho sujeto de un agente inhibidor de un gen seleccionado del grupo formado por LPL, APOC1, SCD, ACSL1 y
ACSL4.
El término "inhibidor de un gen", según se usa en la presente invención, se refiere tanto a un compuestos capaces de provocar una disminución de la actividad del producto de expresión de los genes LPL, APOC1, SCD, ACSL1 y ACSL4 así como a compuestos capaces de provocar una disminución de la expresión de dichos genes, bien inhibiendo la transcripción del correspondiente gen, bien inhibiendo la traducción del correspondiente ARNm o bien provocando una disminución de los niveles de los correspondientes ARNhn o ARNm.
En una forma preferida de realización, el inhibidor de los genes ACSL1 y ACSL4 se selecciona del grupo formado por los inhibidores de la Tabla 1.
Triacsin C
Valproato o ácido valproico.
Compuestos de la familia de las tiazolidinedionas, (por ejemplo troglitazone, rosiglitazone y pioglitazone).
Enoximone
Antiinflamatorios no esteroideos (por ejemplo ácido 2-arilpropiónico, ibuprofeno, fenoprofeno, quetoprofeno y naproxeno).
Tabla 1 : Inhibidores de ACSL1 y ACSL4. El valproato o ácido valproico: es un inhibidor específico de ACSL4, las tiazolidinedionas son inhibidores específicos de ACSL4.
En una forma preferida de realización, el inhibidor de los genes ACSL1 y ACSL4 es Triacsin C.
En una forma preferida de realización, el inhibidor de APOCl es Vorinostat (suberoylanilide hydroxamic acid o SAHA).
En una forma preferida de realización, el inhibidor del gen SCD se selecciona del grupo formado por los inhibidores de la Tabla 2.
Rapamicina
Piperazina
3-(2-hydroxyethoxy)-N-(5-benzylthiazol-2-yl)-benzamides
3-[4- (2-chloro-5-fluorophenoxy)-l -piperidinyl]-6- (5-methyl-l,3,4- oxadiazol-2-yl)- pyridazine
5- (tetradecyloxy)-2- furancarboxylic acid o TOFA
(N- (2- (6- (3,4-dichlorobenzylamino)-2 -(4 -methoxyphenyl)-3- oxopyrido[2,3-b] pyrazin-4(3H)- yl)ethyl) acetamide o CVT-11127
1 -(4-phenoxypiperidin- 1 -yl)-2-arylaminoethanone
4-(2-Chlorophenoxy)-N-(3-(3-methylcarbamoyl)phenyl)piperidine-l- carboxamide
2-(5 -(3 -(4-(2-bromo-5 -fluorophenoxy)piperidin- 1 -yl)i soxazol-5 -yl)- 2H-tetrazol-2-yl)acetic acid o MK-8245
Tabla 2: Inhibidores de SCD
En una forma preferida de realización, el inhibidor del gen LPL se selecciona del formado por los inhibidores de la Tabla 3.
T F-a
Poloxamer 407 (P-407 o Pluronic F-127)
Tetrahidrolipstatina (THL)
Tyloxapol
Angiopoietin-like protein 3 (ANGPTL3)
Angiopoietin-like protein 4 (ANGPTL4)
Inhibidor de LPL derivado de melanoma (MLPLI)
APOC1
Orlistat o ^-((^-l-((25,3^-3-hexyl-4-oxooxetan-2-yl)tridecan-2-yl) 2- formamido-4-methylpentanoate
GSK 264220A o N-[2-Methyl-5-(l-piperidinylsulfonyl)-3-furanyl]-N'- phenylurea
Tabla 3: Inhibidores de LPL En una forma preferida de realización, el agente inhibidor es un anticuerpo inhibidor específico para el producto codificado por dicho gen. En otra forma preferida de realización, el inhibidor se selecciona del grupo formado por un olignucleotido antisentido específico para dicho gen, un ARN de interferencia específico para dicho gen y una ribozima específica para dicho gen.
En una forma preferida de realización, el agente inhibidor para su uso en la presente invención es un anticuerpo inhibidor específico para el producto codificado por un gen seleccionado del grupo formado por LPL, APOC1, SCD, ACSL1 y ACSL4.
Los anticuerpos contra un epítopo de las proteínas codificadas por genes LPL, APOC1, SCD, ACSL1 y ACSL4 pueden bloquear la función de estas proteínas de forma eficaz y, por lo tanto, se pueden usar como inhibidores en las composiciones de la presente invención. "Anticuerpo inhibidor" como se usa aquí, se refiere a anticuerpos que son capaces de inhibir al menos parcialmente las actividades biológicas de los polipéptidos codificados por los genes LPL, APOC1, SCD, ACSL1 y ACSL4.
La determinación de la capacidad inhibidora sobre la actividad biológica del producto codificado por LPL se puede llevar a cabo, por ejemplo, usando el método descrito por Mayes y Felts (Biochem. J., 1968, 108,483-487) basado en la determinación de la capacidad del anticuerpo para inhibir la degradación de triglicéridos en presencia de LPL.
La determinación de la capacidad inhibidora sobre la actividad biológica del producto codificado por SCD se puede llevar a cabo, por ejemplo, usando el método descrito por Strittmatter et al. (J. Biol. Chem. 1988, 263; 2532-2535) basado en la determinación de la capacidad del anticuerpo para inhibir la degradación de fosfatidilcolina en presencia de SCD.
La determinación de la capacidad inhibidora sobre la actividad biológica del producto codificado por ACSL1 o ACSL4 se puede llevar a cabo, por ejemplo, usando el método descrito por Gassler et al. (Gastroenterology, 2007, 133 : 587-98) basado en la determinación de la capacidad del anticuerpo para inhibir la síntesis de palmitoil-CoA a partir de ácido palmítico y CoA en presencia de ACSL1 o ASCL4.
Los anticuerpos o fragmentos inhibidores específicos para los polipéptidos codificados por los genes LPL, APOC1, SCD, ACSL1 y ACSL4 se pueden adquirir de forma comercial o se pueden producir fácilmente usando técnicas convencionales de biología molecular. Anticuerpos inhibidores adecuados incluyen, anticuerpos policlonales, anticuerpos monoclonales, fragmentos Fab, F(ab')2, Fab' y scFv de los mismos, anticuerpos biespecíficos, heteroconjugados, diacuerpos, anticuerpos humanos y humanizados.
En otra forma preferida de realización, el agente inhibidor es un ARN de interferencia (ARNi) específico para el silenciamiento de un gen seleccionado del grupo formado por GCNT3, LPL, APOCl, SCD, ACSLl y ACSL4. ARNs de interferencia adecuados para el silenciamiento de los genes LPL, APOCl, SCD, ACSLl y/o ACSL4 incluyen, sin limitación, ARN de interferencia pequeños (ARNip), micro ARN (miARN) y ARN horquillados cortos (ARNhc).
En otra forma de realización, la inhibición de la expresión de los genes LPL, APOCl, SCD, ACSLl y/o ACSL4 se lleva a cabo mediante el uso de ribozimas diseñadas para cortar de forma catalítica transcritos de ARNm dianas generados por la transcripción de los distintos genes. Tipos de ribozimas adecuados para la inhibición de la expresión de los genes incluyen, sin limitación, ribozimas de cabeza de martillo y ARN endorribonucleasa (ribozimas de tipo Cech).
En otra forma preferida de realización, el agente inhibidor es un ácidos nucleico antisentido específico para un gen seleccionado del grupo formado por LPL, APOCl, SCD, ACSLl y ACSL4. Los ácidos nucleicos antisentido se pueden unir al gen que se desea inhibir mediante complementariedad de bases convencional, o, por ejemplo, en el caso de unirse a ADN bicatenario, a través de interacciones específicas en el surco mayor de la doble hélice. En general, estos métodos se refieren a la gama de técnicas generalmente empleadas en la técnica, e incluyen cualquier método que se basa en la unión específica a secuencias de oligonucleótidos. Moléculas de ácidos nucleicos ejemplares para su uso como oligonucleótidos antisentido incluyen:
Oligonucléotidos que comprenden bases modificadas tales como 5- fluorouracilo, 5-bromouracilo, 5-clorouracilo, 5-yodouracilo, hipoxantina, xantina, 4-acetilcitosina, 5-(carboxihidroxitietil) uracilo, 5- carboximetilaminometil-2-tiouridina, 5-carboximetilaminometiluracilo, dihidrouracilo, beta-D-galactosilqueosina, inosina, N6-isopenteniladenina, 1- metilguanina, 1-metilinosina, 2,2-dimetilguanina, 2-metiladenina, 2- metilguanina, 3-metilcitosina, 5-metilcitosina, N6-adenina, 7-metilguanina, 5-metilaminometiluracilo, 5-metoxiaminometil-2-tiouracilo, beta-D- manosilqueosina, 5'-metoxicarboximetiluracilo, 5-metoxiuracilo, 2-metiltio- N6-isopenteniladenina, ácido uracil-5-oxiacético (v), wybutoxosina, pseudouracilo, queosina, 2-tiocitosina, 5-metil-2-tiouracilo, 2-tiouracilo, 4- tiouracilo, 5-metiluracilo, éster metílico del ácido uracil-5-oxiacético, ácido uracil-5-oxiacético (v), 5-metil-2-tiouracilo, 3-(3-amino-3-N-2- carboxipropil) uracilo, (acp3)w, y 2,6-diaminopurina.
Oligonucléotidos que comprenden azúcares modificados tales como arabinosa, 2-fluoroarabinosa, xilulosa y hexosa.
Oligonucléotidos que comprenden un esqueleto de fosfato modificado seleccionado del grupo que consiste en un fosforotioato, un fosforoditioato, un fosforamidotioato, un fosforamidato, un fosfordiamidato, un metilfosfonato, un fosfotriéster de alquilo, y un formacetal o un ácido nucleico peptídico (ANP)
Oligonuclétidos modificados mediante la incorporación de agentes que facilitan su transporte a través de la membrana celular (véase, por ejemplo, Letsinger et al, Proc. Nati. Acad. Sci. U.S. A. 86: 6553-6556, 1989; Lemaitre et al., Proc. Nati. Acad. Sci. 84: 648-652, 1987; Publicación de PCT No. WO88/09810) o la barrera hematoencefálica (véase, por ejemplo, publicación de PCT No. WO89/10134), agentes de corte desencadenado por hibridación (ver, por ejemplo, Krol et al, BioTechniques 6: 958-976, 1988) agentes intercalantes (ver, por ejemplo, Zon, Pharm. Res. 5: 539-549, 1988). Oligonucléotidos alfa-anoméricos
Oligonucléotidos morfolino
En otra forma preferida de realización, el inhibidor de la expresión de los genes LPL, APOC1, SCD, ACSL1 y/o ACSL4 es una enzima de ADN.
Los términos "cáncer" y "tumor" se refieren a la condición fisiológica en mamíferos caracterizada por el crecimiento celular desregulado. Tipos de cáncer que que pueden ser tratado de acuerdo a los métodos de la presente invención incluyen, sin limitación, cáncer de esófago, estómago, hígado, páncreas, vesícula biliar, intestino delgado, recto, colon, colorrectal, próstata, pulmón, ovario y mama. En una realización preferida de la invención el tumor/cáncer a ser tratado con dichas composiciones es cáncer de colon. En otra realización preferida de la invención el tumor/cáncer a ser tratado con dichas composiciones es cáncer de mama.
***
La invención se detalla a continuación por medio de los siguientes ejemplos son meramente ilustrativos y de ninguna manera limitar el alcance de la invención.
EJEMPLOS
Materiales y métodos
Muestras de tejido tumoral embebidas en parafina de pacientes con cáncer de colon en estadio B procedentes del Hospital Universitario La Paz de Madrid fueron utilizadas. El estudio realizado consiste en un análisis retrospectivo del valor pronóstico de la expresión de GCNT3, LPL, APOC1, SCD, ACSL1 y/o ACSL4 en estos pacientes. El tiempo hasta la progresión fue utilizado para el análisis de supervivencia libre de enfermedad. Curvas ROC (receiver operating characteristic) se utilizaron para determinar los valores de corte de expresión de estos genes para supervivencia libre de enfermedad según la relación entre sensibilidad y ratio de falsos positivos (1- especificidad), estableciendo la mejor combinación marcada por las curvas ROC. El método Kaplan-Meier fue utilizado para estimar la supervivencia libre de enfermedad. Todos los valores de p referidos son de dos colas. La significancia estadística se definió como p<0.05. El análisis estadístico se realizó utilizando el software SPSS (versión 19.0).
83 pacientes con cáncer de colon en estadio B han sido incluidos en este estudio, con una mediana de supervivencia por cáncer de 69 meses. La mediana de supervivencia libre de enfermedad en estos pacientes es de 60 meses, encontrándose 22 pacientes (26,5%) con recaída en el momento del análisis. Las características clínicas y patológicas de esta serie de pacientes se incluyen en la Tabla 4. Estadio tumoral: B 83 (100%)
Sexo Mujer 34 (41%)
Hombre 49 (59%)
Grado dif . : Pobre 5 (6%)
Moderado 71 (8%)
Bien 6 (7%)
Desmoplasia: No 37 (44%)
Si 29 (35%)
Invasión vascular No 57 (69%)
Si 25 (30%)
Quimioterapia No 34 (41%)
(UFT-LV, xeloda) Si 49 (59%)
Edad en diagnóstico Mediana: 69
Mínimo: 32
Máximo: 86
Tabla 4. Características de los pacientes
Ejemplo 1. Valor pronóstico del gen LPL en muestras clínicas de pacientes con cáncer de colon.
Como se puede observar en la Figura 1, los pacientes con niveles más altos de
LPL presentan de forma significativa menor supervivencia libre de enfermedad (p=0.006) y menor supervivencia global (muerte por cáncer) (p=0.04) que aquéllos con niveles de más bajos. El incremento de riesgo de recaída y muerte por cáncer en estos pacientes es de tres veces superior a los pacientes con niveles bajos de LPL (HR=3.3 y 3.2 respectivamente). La estratificación de los pacientes según hayan recibido o no quimioterapia no tiene influencia en los datos manteniéndose los HR en ambos casos. Estos resultados señalan que la sobre-expresión LPL tiene tanto un valor pronóstico como predictivo de la respuesta al tratamiento en estos pacientes. Ejemplo 2: Valor pronóstico del gen APOC1 en muestras clínicas de pacientes con cáncer de colon.
Como se puede observar en la Figura 2, los pacientes con niveles más altos de APOC1 presentan de forma significativa menor supervivencia libre de enfermedad (p=0.02), y menor supervivencia global (p=0.009) que aquéllos con niveles de más bajos. El incremento de riesgo de recaída y muerte por cáncer es de más de dos veces superior para pacientes con niveles altos de APOC1 (HR=2.6 y 4.7 respectivamente). La estratificación de los pacientes según hayan recibido o no quimioterapia no tiene influencia en los datos manteniéndose los HR en ambos casos. Estos resultados señalan que la sobre-expresión de APOC1 tiene tanto un valor pronóstico como predictivo de la respuesta al tratamiento en estos pacientes.
Ejemplo 3: Valor pronóstico del gen SCD en muestras clínicas de pacientes con cáncer de colon.
Como se puede observar en la Figura 3, los pacientes con niveles más altos de SCD presentan de forma significativa menor supervivencia libre de enfermedad (p=0.02), y menor supervivencia global (p=0.03) que aquéllos con niveles de más bajos. El incremento de riesgo de recaída y muerte por cáncer es de más de dos veces superior para pacientes con niveles altos de SCD (HR=2.6 y 3.3 respectivamente). La estratificación de los pacientes según hayan recibido o no quimioterapia no tiene influencia en los datos manteniéndose los HR en ambos casos. Estos resultados señalan que la sobre-expresión de SCD tiene tanto un valor pronóstico como predictivo de la respuesta al tratamiento en estos pacientes.
Ejemplo 4: Valor pronóstico de los genes ACSLl y ACSL4 en muestras clínicas de pacientes con cáncer de colon.
Como se puede observar en la Figura 4A, los pacientes con niveles más altos de
ACSLl presentan de forma significativa menor supervivencia libre de enfermedad (p=0.02), y menor supervivencia global (p=0.03) que aquéllos con niveles de más bajos. El incremento de riesgo de recaída y muerte por cáncer es de más de dos veces superior para pacientes con niveles altos de ACSLl (HR=2.6 y 3.1 respectivamente). La estratificación de los pacientes según hayan recibido o no quimioterapia seguida del correspondiente análisis multivariante muestra una interacción significativa (p=0.032), indicando que mientras que la sobre-expresión de ACSLl no tiene influencia en la recaída o supervivencia de los pacientes que no han recibido quimioterapia, se produce un incremento de casi 10 veces del factor de riesgo de recaída en aquellos pacientes que si han recibido quimioterapia y tienen sobre-expresado ACSLl, con un HR=9.8 (p=0.009) (Figura 4B). Estos resultados indican que la sobre-expresión de ACSLl tiene un marcado valor predictivo de un fallo en la respuesta al tratamiento con fluoropirimidinas orales (UFT, xeloda) de pacientes con cáncer de colon.
Con el fin de validar estos datos, se utilizaron muestras de tumores de una segunda serie de 58 pacientes con cáncer de colon en estadio B (serie de validación) procedentes del Hospital Universitario La Paz, todos ellos tratados con tratamientos comprendiendo también fluoropiridinas orales (FOLFOX o XELOX). Las características clínicas y patológicas de esta serie de pacientes se incluyen en la Tabla 5.
Figure imgf000041_0001
validación.
Como se puede observar en la Figura 4C, los pacientes con sobre-expresión de ACSLl, a pesar de haber recibido el mismo tratamiento, recaen significativamente antes (p=0.025), y, consecuentemente tienen una supervivencia menor (p=0.04), que aquéllos pacientes con bajos niveles de ACSLl . Estos resultados confirman que ACSLl es un factor predictivo de respuesta a los tratamientos convencionales aplicados en pacientes con cáncer de colon en estadios no avanzados.
ACSL4 es una isozima de la familia de ACSLl . Dentro de estos dos miembros de la familia, hemos observado una correlación significativa entre ACSLl y ACSL4 (correlación de Spearman 0.5, p=0.002), indicando que ambos genes tienen tendencia a "coexpresar" en los mismos pacientes. Sin embargo, al ser un valor de correlación no cercano a 1, estos resultados indican el interés en analizar ambos genes para tener una visión global del valor marcador de esta ruta. Al hacer la determinación del valor pronóstico de ACSL4, observamos que los pacientes con niveles más altos de ACSL4 presentan de forma significativa menor supervivencia libre de enfermedad (p=0.0001), y menor supervivencia global (p=0.001) que aquéllos con niveles de más bajos. El incremento de riesgo de recaída y muerte por cáncer es de más de cuatro veces superior para pacientes con niveles altos de ACSL4 (HR=4.39 y 5.7 respectivamente) (Figura 5A). La estratificación de los pacientes según hayan recibido o no quimioterapia no presenta una interacción significativa, pero si es de mayor magnitud en aquéllos pacientes que no han recibido quimioterapia (Figura 5B) (manteniéndose también un comportamiento cualitativamente semejante en los pacientes tratados). Estos resultados señalan que la sobre-expresión de ACSL4 tiene tanto un valor pronóstico (con mayor magnitud), como predictivo de la respuesta al tratamiento en estos pacientes. Por tanto, estos resultados indican que la determinación de ACSL1 y ACSL4 (simultánea, o no) en pacientes con cáncer de colon en estadios no avanzados provee una importante información tanto aditiva como complementaria sobre el pronóstico de los pacientes (más marcada por ACSL4) y su respuesta a la terapia convencional (más marcada por ACSL1).
Ejemplo 5. Valor pronóstico del gen GCNT3 en muestras clínicas de pacientes con cáncer de colon.
Como se puede observar en la Figura 6, los pacientes con niveles más bajos de
GCNT3 presentan de forma significativa menor supervivencia libre de enfermedad que aquéllos con niveles de más altos. La mediana de supervivencia libre de enfermedad de los pacientes con bajos niveles del gen GCNT3 es de 25 meses, mientras que no se alcanza en los pacientes con niveles de GCNT3 por encima del punto de corte establecido por la curva ROC (p=0.001). Estos resultados señalan que la baja expresión de GCNT3 tiene valor marcador de mal pronóstico en pacientes con cáncer de colon no avanzado.
Ejemplo 6. Valor pronóstico de las combinaciones de distintos genes
Un análisis utilizando el paquete "survival" del software R en el que se ha analizado la supervivencia mediante un análisis multivariante de COX tras discritizar las variables y hacer comparaciones de K-means de parejas de genes, indica que la combinación de algunos de estos genes aumenta la potencia predictiva del test (tabla 6).
Figure imgf000043_0001
combinación de parejas de genes.
Ejemplo 7. Valor pronóstico de las combinaciones de estos genes con cuatro genes adicionales implicados en rutas metabólicas cercanas.
Posteriormente se realizó un análisis multivariante incluyendo a otros 31 genes de rutas metabólicas relacionadas, que individualmente, aunque marcaban cierta tendencia a tener un valor predictivo, no presentaban un valor marcador significativo y validado. Con este análisis se buscaba encontrar una "huella metabólica" marcadora de pronóstico en pacientes con cáncer de colon según un índice pronóstico derivado de un modelo de regresión de Cox. Para ello, se realizó un análisis de Validación Cruzada (CV, Cross-Validation), utilizando 5-fold CV, en el que se observa como combinaciones de ACSL1, ACSL4, SCD, LPL y/o APOC1 con APOE, FADS2, ABCA1 y/o CD36, incrementan significativamente el valor predictivo el test. Mientras que el análisis individual de uno de los genes marcadores señala un riesgo de recaída máximo de 7 veces en un paciente positivo frente a otro que no lo es, el hecho de determinar también la expresión de estos genes adicionales que por sí solos no marcan respuesta, incrementa la el valor pronóstico identificando pacientes que tienen 19 veces más riesgo de recaer que los que no presentan esta huella (Tabla 7). Genel Gene4 Gene3 Gene4 GeneS C.INDEX HR p(test) validation p(val) signature
ACSL4 SCD ABCA1 FADS2 0.79 12.96 0 4.91 0.001
ACSL4 SCD APOE FADS2 0.796 12.79 0 3.96 0.0093
ACSL4 SCD ABCA1 APOC1 0.77 7.71 0 5.05 0.0009
ACSL4 SCD ABCA1 ACSL1 0.775 9.54 0 2.83 0.05
ACSL4 SCD ABCA1 FADS2 ACSL1 0.795 10.29 0 6.16 0.0002
ACSL4 SCD ABCA1 APOE FADS2 0,8 12.96 0 6.16 0.0002
ACSL4 SCD FADS2 APOE CD36 0.811 19.22 0 3.53 0.02
ACSL4 SCD ABCA1 CD36 FADS2 0.791 13.36 0 4.25 0.0033
Tabla 7. Huella genómica basada en genes implicados en el metabolismo. Valor predictivo en Hazard Ratio (HR) de los genes en combinación formando una huella metabólica constituida por la determinación conjunta de los siguientes genes. Estos modelos, identificados en la serie inicial, han sido validados en la serie de validación, y ratificados en un meta-análisis con el global de pacientes.
Así, los pacientes con mayores valores de esta huella metabólica tienen significativamente mayor riesgo de recaída que pacientes con niveles intermedios y bajos (Figura 7).
Ejemplo 8. Actividad antitumoral de agentes que potencian la expresión de GCNT3.
El hecho de que una baja expresión de GNCT3 sea indicativa de un mal pronóstico de la enfermedad sugiere que es un factor de agresividad tumoral. Por tanto, agentes que potencien la expresión de este gen podrían tener una buena actividad antitumoral. Se ha estudiado la actividad potenciadora de GCNT3 de una serie de compuestos bioactivos, encontrando que el extracto de romero potencia de forma significativa la expresión de este gen en distintas células humanas de cáncer de colon y mama tanto in vitro como in vivo. Estos resultados sugieren que agentes capaces de incrementar los niveles de GCNT3 pueden resultar prometedores agentes antitumorales. Igualmente, agentes capaces de inhibir la expresión o actividad de LPL, APOC1, SCD, ACSL1 o ACSL4 pueden resultar también en eficientes agentes con actividad antitumoral, especialmente para pacientes en los que estos marcadores se encuentren alterados. Ejemplo 9. Efecto del tratamiento de triascin C sobre el crecimiento de líneas celulares de cáncer de colon.
Cuatro líneas celulares de cáncer de colon (DLD-1, CaCo-2, HTC-116 y SW620) se trataron durante 48 horas con Triacsin C. Tras el tratamiento se determinó la viabilidad de las células con MTT (figura 8A) así como las concentraciones de de Triacsin C (μΜ) que producen el 50% de la inhibición de la viabilidad celular (IC50), el 50% de la inhibición del crecimiento celular (GI50), la inhibición total del crecimiento (TGI) y el 50% de la muerte celular (LC50) (figura 8A). Los resultados muestran que Triacsin C reduce la viabilidad de las cuatro líneas de cáncer de colon analizadas.

Claims

REIVINDICACIONES
Método para determinar el pronóstico de un paciente afectado de cáncer colorrectal que comprende la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1, SCD, ACSLl y/o ACSL4 en una muestra de dicho paciente, en donde un aumento en los niveles de expresión de los genes LPL, APOC1, SCD, ACSLl y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene un mal pronóstico.
Método según la reivindicación 1 que comprende adicionalmente la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por ABCA1, APOE, FADS2 y CD36, en donde un aumento en los niveles de expresión de los genes ABCA1, APOE, FADS2 y/o CD36 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene un mal pronóstico.
Método según las reivindicaciones 1 o 2 en donde el paciente ha sido tratado con una terapia basada en una fluoropiridina.
Método para seleccionar un tratamiento adecuado para un paciente afectado de cáncer colorrectal que comprende la determinación de los niveles de expresión de de al menos un gen seleccionado del grupo formado por GCNT3, LPL, APOC1, SCD, ACSLl y/o ACSL4 en una muestra de dicho paciente, en donde un aumento en los niveles de expresión de los genes LPL, APOC1, SCD, ACSLl y/o ACSL4 y/o una disminución en los niveles de expresión del gen GCNT3 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene que ser tratado con quimioterapia adyuvante.
Método según la reivindicación 4 que comprende adicionalmente la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por ABCA1, APOE, FADS2 y CD36, en donde un aumento en los niveles de expresión de los genes ABC Al, APOE, FADS2 y/o AGPAT2 con respecto a un valor de referencia para cada gen es indicativo de que el paciente tiene que ser tratado con quimioterapia adyuvante.
6. Método según las reivindicaciones 4 o 5 en donde dicha quimioterapia adyuvante es una terapia distinta a la terapia basada en una fluoropiridina.
7. Método según cualquiera de las reivindicaciones 1 a 6 en donde se determinan los niveles de expresión de los genes APOC1 y SCD; SCD y ACSL1 ; SCD y ACSL4;
APOC1 y ACSL1 ; ACSL4, SCD, APOE y FADS2; ACSL4, SCD, ABCA1 y FADS2; ACSL4, SCD, ABCA1 y APOC1; ACSL4, ACSL1, SCD y ABCA1; LPL, ACSL4, FADS2 y AGPAT2 o LPL, SCD, APOC1, FADS2 y ABCA1. 8. Método según cualquiera de las reivindicaciones 1 a 7 en donde el paciente sufre de cáncer colorrectal en estadio B.
9. Método según cualquiera de las reivindicaciones 1 a 8 en donde la muestra se selecciona del grupo consistente en una biopsia de tumor o un biofluido.
10. Método según la reivindicación 9 en donde el biofluido se selecciona del grupo consistente en sangre, plasma y suero.
11. Un kit que comprende los reactivos adecuados para la determinación de los niveles de expresión de los genes GCNT3, LPL, APOC1, SCD, ACSL1 y/o
ACSL4 y, opcionalmente, los reactivos para la determinación de los niveles de expresión de uno o más genes de expresión constitutiva.
12. Kit según la reivindicación 11 que comprende adicionalmente reactivos adecuados para la determinación de los niveles de expresión de al menos un gen seleccionado del grupo formado por ABCA1, APOE, FADS2 y CD36. Kit según las reivindicaciones 11 o 12 que comprende reactivos adecuados para la determinación de los niveles de expresión de los genes APOC1 y SCD; SCD y ACSL1; SCD y ACSL4; APOC1 y ACSL1; ACSL4, SCD, APOE y FADS2; ACSL4, SCD, ABCA1 y FADS2; ACSL4, SCD, ABCA1 y APOC1; ACSL4, ACSL1, SCD y ABCA1; ACSL4, ACSL1, SCD, FADS2 y ABCA1; ACSL4, APOE, SCD, FADS2 y ABCA1; ACSL4, APOE, SCD, FADS2 y CD36; o ACSL4, SCD, FADS2, ABCA1 y CD36.
Kit según las reivindicaciones 11 a 13 en donde los reactivos adecuados para la detección de los niveles de expresión de dichos genes se seleccionan del grupo formado por sondas que hibridan específicamente con dichos genes y anticuerpos capaces de unirse de forma específica a los polipéptidos codificados por dichos genes.
Uso de un agente inhibidor de un gen seleccionado del grupo formado por LPL, APOC1, SCD, ACSL1 y ACSL4 para la preparación de un medicamento para el tratamiento del cáncer.
16. Uso según la reivindicación 15 en donde
- el agente inhibidor de ACSL1 o ACSL4 se selecciona del grupo formado por un anticuerpo inhibidor específico para el producto codificado por dicho gen, un olignucleotido antisentido específico para dicho gen, un ARN de interferencia específico para dicho gen, una ribozima específica para dicho gen, una enzima de ADN específica para dicho gen y un compuesto según se indica en la Tabla 1,
- el agente inhibidor de APOC1 se selecciona del grupo formado por un anticuerpo inhibidor específico para el producto codificado por dicho gen, un olignucleotido antisentido específico para dicho gen, un ARN de interferencia específico para dicho gen, una ribozima específica para dicho gen, una enzima
de ADN específica para dicho gen y Vorinostat, el agente inhibidor de SCD se selecciona del grupo formado por un anticuerpo inhibidor específico para el producto codificado por dicho gen, un olignucleotido antisentido específico para dicho gen, un ARN de interferencia específico para dicho gen, una ribozima específica para dicho gen, una enzima de ADN específica para dicho gen y un compuesto según se indica en la Tabla 2
y lo
el agente inhibidor de LPL se selecciona del grupo formado por un anticuerpo inhibidor específico para el producto codificado por dicho gen, un olignucleotido antisentido específico para dicho gen, un ARN de interferencia específico para dicho gen, una ribozima específica para dicho gen, una enzima de ADN específica para dicho gen y un compuesto según se indica en la Tabla 3.
PCT/ES2013/070864 2012-12-10 2013-12-10 Métodos y kits para el pronóstico del cáncer colorrectal WO2014091048A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231918 2012-12-10
ES201231918A ES2475366B1 (es) 2012-12-10 2012-12-10 Métodos y kits para el pronóstico del cáncer colorrectal

Publications (1)

Publication Number Publication Date
WO2014091048A1 true WO2014091048A1 (es) 2014-06-19

Family

ID=50933789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070864 WO2014091048A1 (es) 2012-12-10 2013-12-10 Métodos y kits para el pronóstico del cáncer colorrectal

Country Status (2)

Country Link
ES (1) ES2475366B1 (es)
WO (1) WO2014091048A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082099A2 (en) * 2006-01-11 2007-07-19 Genomic Health, Inc. Gene expression markers for colorectal cancer prognosis
WO2009037572A2 (en) * 2007-06-04 2009-03-26 Diagnoplex Biomarker combinations for colorectal cancer
WO2009114836A1 (en) * 2008-03-14 2009-09-17 Genomic Health, Inc. Gene expression markers for prediction of patient response to chemotherapy
WO2010127322A1 (en) * 2009-05-01 2010-11-04 Genomic Health Inc. Gene expression profile algorithm and test for likelihood of recurrence of colorectal cancer and response to chemotherapy
US20120252748A1 (en) * 2011-03-28 2012-10-04 New York University Methods and compositions for determining the responsiveness of cancer therapeutics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082099A2 (en) * 2006-01-11 2007-07-19 Genomic Health, Inc. Gene expression markers for colorectal cancer prognosis
WO2009037572A2 (en) * 2007-06-04 2009-03-26 Diagnoplex Biomarker combinations for colorectal cancer
WO2009114836A1 (en) * 2008-03-14 2009-09-17 Genomic Health, Inc. Gene expression markers for prediction of patient response to chemotherapy
WO2010127322A1 (en) * 2009-05-01 2010-11-04 Genomic Health Inc. Gene expression profile algorithm and test for likelihood of recurrence of colorectal cancer and response to chemotherapy
US20120252748A1 (en) * 2011-03-28 2012-10-04 New York University Methods and compositions for determining the responsiveness of cancer therapeutics

Also Published As

Publication number Publication date
ES2475366A1 (es) 2014-07-10
ES2475366B1 (es) 2015-05-05

Similar Documents

Publication Publication Date Title
ES2781866T3 (es) Métodos y kits para el pronóstico de cáncer colorrectal
ES2791627T3 (es) Métodos y kits para el pronóstico del cáncer colorrectal
Makino et al. p53 Mutation status predicts pathological response to chemoradiotherapy in locally advanced esophageal cancer
Klump et al. Molecular lesions in colorectal cancer: impact on prognosis? Original data and review of the literature
EP2944961A1 (en) Markers for cancer prognosis and therapy and methods of use
US20130123130A1 (en) Multigene prognostic assay for lung cancer
ES2731653T3 (es) Métodos y usos para predecir la respuesta a la eribulina
RU2728674C2 (ru) Экспрессия fgfr и чувствительность к ингибитору fgfr
BRPI0513692B1 (pt) processos para detecção de câncer de bexiga em um indivíduo
BRPI0707642A2 (pt) taxas de expressço de gene de urina para detecÇço de cÂncer
US20150225800A1 (en) Methods and assays for treatment of bladder cancer
US20130225424A1 (en) Methods for determining responsiveness to a drug based upon determination of ras mutation and/or ras amplification
Brunetti et al. Expression and clinical role of the dipeptidyl peptidases DPP8 and DPP9 in ovarian carcinoma
ES2914727T3 (es) Algoritmos y métodos para evaluar los criterios clínicos tardíos en el cáncer de próstata
WO2018202931A2 (es) Método para diagnosticar placa ateroesclerótica inestable
US20210371935A1 (en) Identification of pde3 modulator responsive cancers
GB2519830A (en) Methods for monitoring treatment response and relapse in ovarian cancer
WO2013190081A1 (en) Methods and reagents for the prognosis of cancer
US20150148244A1 (en) Methods for determining responsiveness to a dihydrofolate reductase inhibitor
ES2332557B1 (es) Huella genomica para el pronostico de la evolucion de adenocarcinoma colorectal.
ES2475366B1 (es) Métodos y kits para el pronóstico del cáncer colorrectal
US20110086355A1 (en) BRCA1 mRNA EXPRESSION LEVELS PREDICT SURVIVAL IN BREAST CANCER PATIENTS TREATED WITH NEOADJUVANT CHEMOTHERAPY
JP2014513975A (ja) 結腸癌を有する患者の生存期間のkiaa1456発現による予測
US20240102105A1 (en) Biomarker for predicting responsiveness to anticancer agent and use thereof
ES2332167B1 (es) Empleo de trefoil factor-family 3 (tff3) en el pronostico de sujetos diagnosticados con cancer colorectal.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863052

Country of ref document: EP

Kind code of ref document: A1