WO2014090409A1 - Circuit for heating an oxygen sensor - Google Patents

Circuit for heating an oxygen sensor Download PDF

Info

Publication number
WO2014090409A1
WO2014090409A1 PCT/EP2013/003761 EP2013003761W WO2014090409A1 WO 2014090409 A1 WO2014090409 A1 WO 2014090409A1 EP 2013003761 W EP2013003761 W EP 2013003761W WO 2014090409 A1 WO2014090409 A1 WO 2014090409A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
voltage
heating
lambda probe
electronic switch
Prior art date
Application number
PCT/EP2013/003761
Other languages
French (fr)
Inventor
Jacques Rocher
Philippe Avian
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Publication of WO2014090409A1 publication Critical patent/WO2014090409A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte

Definitions

  • the invention belongs to the field of control of injection in motor vehicles, and more particularly relates to a heating circuit of a lambda probe.
  • a lambda probe (also called “probe 0 2 ”) is used in the exhaust line of an internal combustion engine of a motor vehicle to measure the oxygen content of burnt gases.
  • the measurement performed by the lambda probe allows the injection control and control system to control in closed loop the respective proportions of an oxidant / fuel mixture inside the internal combustion engine of the motor vehicle so that the efficiency of said internal combustion engine is optimal.
  • the lambda probe operates optimally from a temperature threshold T t of the order of 300 ° C. From this temperature threshold T t , the lambda probe quickly provides sufficiently accurate measurements. When the temperature of the probe is below the temperature threshold T t , a heating circuit heats the lambda probe in order to more quickly obtain an operating temperature equal to or greater than said temperature threshold T t . Typically, this kind of situation occurs on a cold internal combustion engine, starting for example.
  • FIG. 1 schematically represents a heating circuit 100 according to the prior art.
  • Said heating circuit 100 comprises a heating element 101 having a first terminal connected to a battery 102 of the motor vehicle and a second terminal connected to a control module 103.
  • the control module 103 comprises an electronic switch 104 having a first terminal connected to the heating element 101 and a second terminal connected to ground.
  • the control module 103 further comprises a control unit 105 controlling said electronic switch 104.
  • the control unit 105 closes the electronic switch 104 and a current flows in the heating element 101 which then produces heat for heating the probe lambda.
  • the heating element 101 is of low impedance, of the order of a few ohms to a few tens of ohms. This impedance varies as a function of the temperature of said heating element 101.
  • the value of the impedance of the heating element 101 varies between about 1.5 ⁇ when the heating element 101 is cold, that is to say when the temperature of said heating element 101 is substantially between -30 ° C and -20 ° C, and about 15 ⁇ ohms when the heating element 101 is hot, i.e.
  • FIG. 2 shows a curve 200 representing the variation of the intensity of the current I passing through the heating element 101 as a function of time t, during a heating phase at the beginning of which said heating element 101 is cold.
  • the impedance variation of the heating element 101 implies a variation of the intensity of the current flowing through the heating element 101.
  • the intensity passing through the heating element 101 can reach a ten amperes, the voltage supplied by the battery 102 being between 12 V and 14 V. Then, the intensity of the current flowing through the heating element 101 decreases gradually to a value equal to about 1 A or 2 A after 10s or 15s.
  • the electronic switch 104 must be dimensioned for the worst case, that is to say it must be able to withstand a current of 10 A. It is therefore large.
  • control module 103 includes a current overcurrent detection system, to protect the electronic switch 104 from a possible short circuit.
  • the current flowing through the heating element 101 can reach a very high intensity, causing the overcurrent detection system to open the electronic switch 104 to protect the electronic switch 104 of the module.
  • the control unit 105 of the control module 103 again commands a closing of the electronic switch 104.
  • This sequence of opening / closing of the electronic switch 104 can be repeated.
  • This succession of overcurrent detection has the effect of weakening the electronic switch 104.
  • the closures and successive openings increase the heating time of the lambda probe by the heating circuit 100.
  • the invention aims to solve all or part of the aforementioned problems.
  • the invention relates to a heating circuit of a lambda probe, said heating circuit comprising:
  • a heating element adapted to produce heat when a current flows through said heating element
  • a controllable voltage source comprising a direct voltage DC voltage converter intended to be connected to a DC voltage source, said controllable voltage source being adapted to generate a variable voltage across the heating element,
  • a control unit configured to control said source of controllable voltage so as to generate a variable voltage ensuring that the current passing through said heating element is of intensity less than or equal to a predefined threshold value (It),
  • the heating circuit according to the invention is remarkable in that the DC voltage converter is a voltage-reducing switching converter comprising an inductive element, a free-wheeling diode and an electronic switch controlled by the control unit. control, said electronic switch being controlled by means of a pulse width modulated signal whose duty cycle is determined according to said determined variable voltage.
  • the heating circuit may include one or more of the following features, which may be considered individually or in any technically operative combination.
  • the heating circuit comprises means adapted to measure the current flowing through the heating element, the control unit being configured to control said source of controllable voltage so as to generate, at the terminals of said heating element, a voltage variable determined according to current measurements made by said means adapted to measure the current flowing through the heating element.
  • the heating circuit comprises means adapted to measure the temperature of the lambda probe, the control unit being configured to control said controllable voltage source so as to generate, at the terminals of said heating element, a variable voltage determined according to measurements. temperature effected by said means adapted to measure the temperature of the lambda probe.
  • the heating circuit comprises a plurality of heating elements connected in parallel, each of said heating elements being associated with a dedicated lambda probe and each of said heating elements being associated with a dedicated electronic switch.
  • FIG. 1 a schematic representation of a lambda probe heating circuit according to the state of the art
  • FIG. 2 a graphical representation of the intensity of a current flowing through a heating element of a lambda probe heating circuit according to the state of the art as a function of time;
  • FIG. 3 a schematic representation of a lambda probe heating circuit according to an exemplary embodiment of the invention
  • - Figure 4 a schematic representation of a lambda probe heating circuit according to an embodiment of the invention
  • - Figure 5 a graphical representation of the voltage across a heating element of a lambda probe heating circuit according to an embodiment of the invention
  • FIG. 6 a schematic representation of a heating circuit of several lambda probes according to an exemplary embodiment of the invention.
  • FIG. 3 shows a heating circuit 300, according to the invention, of a lambda probe comprising a heating element 302, a control unit 402 and a controllable voltage source 301.
  • the heating element 302 is adapted to produce the heat when a current flows through said heating element 302.
  • the heating element 302 is a resistor.
  • the heating of the lambda probe is carried out during recurrent phases, called “heating phases" of the heating circuit 300.
  • heating phases the current flow in the heating element 302 is regulated in order to increase the temperature. of the lambda probe.
  • the flow of current in the heating element 302 is interrupted or the flow of current in the heating element 302 is regulated in order to maintain the temperature of the lambda probe.
  • the controllable voltage source 301 is connected in series with the heating element 302.
  • the control unit 402 is configured to control said controllable voltage source 301 so as to generate, at the terminals of the heating element 302, a variable voltage ensuring that the current flowing through said heating element 302 during each heating phase is of intensity less than or equal to a predefined threshold value T t .
  • the heating circuit 300 further comprises, in the example illustrated in Figure 3, a means adapted to measure the current flowing through the heating element 302 and / or a means adapted to measure the temperature of the lambda probe.
  • the variable voltage to be generated by the controllable voltage source 301 is determined by the control unit 402 which controls said controllable voltage source 301 as a function of current measurements made by said means adapted to measure the current flowing through the heating element 302 and / or as a function of temperature measurements made by said means adapted to measure the temperature of the lambda probe.
  • variable voltage to be generated by the controllable voltage source 301 is determined by the control unit 402 which controls said controllable voltage source 301 as a function of information provided by the lambda probe.
  • the temperature measurements make it possible in particular to control the beginning and the end of the heating phase and, in some embodiments, to select a predetermined voltage profile as described in more detail below.
  • the current measurements make it possible in particular to estimate the impedance of the heating element 302, and thus to determine the variable voltage to be generated, ensuring that the current flowing through the heating element 302 does not exceed the predefined threshold value t .
  • the means adapted to measure the current flowing through the heating element 302 measures the current flowing through the heating element 302 and / or the means adapted to measure the temperature of the lambda probe measures the temperature of the lambda probe.
  • the heating circuit 300 determines the variable voltage to be generated across the heating element 302 as a function of the temperature measurement and / or as a function of the current measurement.
  • the controllable voltage source 301 generates the variable voltage determined in the second step at the terminals of the heating element 302.
  • the variable voltage generated at the terminals of the heating element 302 by the controllable voltage source 301 increases gradually until a nominal voltage is reached.
  • V N Said nominal voltage V N is that supplied by the battery / alternator of the motor vehicle's onboard network.
  • the generated variable voltage can be constant during one or more time intervals of the heating phase.
  • the progressive increase in the variable voltage generated by the controllable voltage source 301 for example follows a predefined voltage profile.
  • a predefined voltage profile is for example stored in a non-volatile memory of the control unit 402.
  • This predefined voltage profile corresponds to a voltage profile previously determined by simulation or experimentation to ensure that the current flowing through the heating element 302 does not exceed the predefined threshold value l t whatever the operating conditions of the heating circuit 300, in particular regardless of the temperature conditions of the lambda probe.
  • several voltage profiles are predefined, associated with respective different temperatures of the lambda probe at the beginning of a heating phase. In fact, the lower the temperature of the lambda probe, the lower the impedance of the heating element 302.
  • each voltage profile is advantageously predefined as corresponding, for the initial temperature considered, to the maximum voltage that can be generated without the current flowing through the heating element 302 exceeds the predetermined threshold value t .
  • controllable voltage source 301 includes a direct voltage DC voltage converter 401 for connection to a DC voltage source 400.
  • the direct voltage DC voltage converter 401 is a voltage-reducing switching converter comprising an electronic switch 303 controlled by the control unit 402, an inductive element 404 connected in series. with the heating element 302 and said electronic switch 303, and a free wheeling diode 403.
  • the electronic switch 303 is a MOS transistor.
  • a first terminal of the electronic switch 303 is connected to the DC voltage source 400.
  • a second terminal of the electronic switch 303 is connected to the cathode of the freewheeling diode 403 and to a first terminal of the inductive element 404.
  • the anode of the freewheeling diode 403 is connected to ground.
  • a second terminal of the inductive element 404 is connected to a first terminal of the heating element 302 and a second terminal of the heating element 302 is connected to ground.
  • variable voltage V R to be generated across the heating element 302, determined in the second step, is generated by controlling the electronic switch 303 of said down-converter by means of a pulse width modulated signal. generated by the control unit 402.
  • the duty cycle of said pulse width modulated signal is determined as a function of said variable voltage, this duty cycle thus being variable.
  • the pulse width modulated signal emitted by the control unit 402 controls the open or closed state of the electronic switch 303.
  • a high state of the logic signal transmitted by the control unit 402 corresponds to in the closed state of the electronic switch 303 and a low state of the logic signal emitted by the control unit 402 corresponds to the open state of the electronic switch 303.
  • the electronic switch 303 is closed, the current flowing through the inductive element 404 increases linearly and no current flows through the freewheeling diode 403.
  • the freewheeling diode 403 becomes conductive and the current flowing through the inductive element 404 decreases.
  • the succession of a high state and a low state of the logic signal emitted by the control unit 402 is called the switching cycle.
  • the energy stored in the inductive element 404 is the same at the beginning and at the end of each switching cycle.
  • the current flowing through the inductive element 404 is the same at the beginning and at the end of each switching cycle, which implies that the output voltage of the converter 401 is substantially equal to the voltage delivered by the DC voltage source 400. multiplied by the duty cycle.
  • FIG. 5 shows a curve 600 of evolution of the voltage across the heating element 302 during a heating phase, when the voltage delivered by the DC voltage source 400 is equal to 14 V.
  • This voltage at the terminals of the heating element 302 is the output voltage of the converter 401.
  • the heating element 302 is cold.
  • the value of the impedance of said heating element 302 is, in one example, substantially equal to 2 ⁇ .
  • the voltage obtained at the terminals of the heating element 302 may be between 0 V and 5 V.
  • the value of the impedance of said heating element 302 is, again in this example, substantially equal to 15 ⁇ .
  • the voltage obtained at the terminals of the heating element 302 may be 12 V to 14 V. This change in voltage across the heating element 302 makes it possible to obtain in this example a current value passing through the heating element 302. the order of 2 At whatever the temperature, and therefore regardless of the value of the impedance of said heating element 302.
  • control of the current by the heating circuit makes it possible to reduce the dimensions of the electronic switch 303, to reduce the heating time of the lambda probe and to eliminate the risk of deterioration of the lambda probe at startup.
  • the heating circuit is associated in one embodiment with several lambda probes.
  • the heating circuit then comprises a plurality of heating elements 302 connected in parallel, each of said heating element 302 being associated with a dedicated lambda probe.
  • Each heating element 302 is further associated with a dedicated electronic switch 700.
  • a first terminal of each heating element 302 is connected to the converter 401.
  • a second terminal of each heating element 302 is connected to a first terminal of the associated electronic switch 700.
  • a second terminal of each electronic switch 700 is connected to ground.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a circuit (300) for heating an oxygen sensor comprising: a heating element (302), a controllable voltage source (301) comprising a voltage converter (401) to be connected to a voltage source (400) that is suitable for generating a variable voltage at the terminals of the heating element; a control unit (402) configured to control said voltage source, such as to generate a variable voltage that ensures that the current passing through said heating element has an intensity that is lower than a predefined threshold value (It); said circuit is characterized in that the voltage converter is a chopping down-converter comprising an inductive element (404), a freewheeling diode (403) and an electronic switch (303) controlled by the control unit, said electronic switch being controlled by means of a modulation signal, the pulse width of which has a cyclic ratio that is determined on the basis of said predetermined variable voltage.

Description

Circuit de chauffage d'une sonde lambda  Heating circuit of a lambda probe
L'invention appartient au domaine du contrôle de l'injection dans les véhicules automobiles, et concerne plus particulièrement un circuit de chauffage d'une sonde lambda.  The invention belongs to the field of control of injection in motor vehicles, and more particularly relates to a heating circuit of a lambda probe.
Selon l'art antérieur, une sonde lambda (également appelée « sonde 02 ») est utilisée dans la ligne d'échappement d'un moteur à combustion interne d'un véhicule automobile pour mesurer la teneur en oxygène de gaz brûlés. La mesure effectuée par la sonde lambda permet au système de contrôle et de pilotage de l'injection de contrôler en boucle fermée les proportions respectives d'un mélange comburant / carburant à l'intérieur du moteur à combustion interne du véhicule automobile afin que l'efficacité dudit moteur à combustion interne soit optimale. According to the prior art, a lambda probe (also called "probe 0 2 ") is used in the exhaust line of an internal combustion engine of a motor vehicle to measure the oxygen content of burnt gases. The measurement performed by the lambda probe allows the injection control and control system to control in closed loop the respective proportions of an oxidant / fuel mixture inside the internal combustion engine of the motor vehicle so that the efficiency of said internal combustion engine is optimal.
La sonde lambda fonctionne de manière optimale à partir d'un seuil de température Tt de l'ordre de 300°C. A partir de ce seuil de température Tt, la sonde lambda fournit rapidement des mesures suffisamment précises. Lorsque la température de la sonde est inférieure au seuil de température Tt, un circuit de chauffage chauffe la sonde lambda afin d'obtenir plus rapidement une température de fonctionnement égale ou supérieure audit seuil de température Tt. Typiquement, ce genre de situation se produit sur un moteur à combustion interne froid, au démarrage par exemple. The lambda probe operates optimally from a temperature threshold T t of the order of 300 ° C. From this temperature threshold T t , the lambda probe quickly provides sufficiently accurate measurements. When the temperature of the probe is below the temperature threshold T t , a heating circuit heats the lambda probe in order to more quickly obtain an operating temperature equal to or greater than said temperature threshold T t . Typically, this kind of situation occurs on a cold internal combustion engine, starting for example.
La figure 1 représente schématiquement un circuit de chauffage 100 selon l'art antérieur. Ledit circuit de chauffage 100 comporte un élément chauffant 101 ayant une première borne reliée à une batterie 102 du véhicule automobile et une deuxième borne reliée à un module de commande 103. Le module de commande 103 comporte un commutateur électronique 104 ayant une première borne reliée à l'élément chauffant 101 et une deuxième borne reliée à la masse. Le module de commande 103 comporte en outre une unité de commande 105 commandant ledit commutateur électronique 104.  FIG. 1 schematically represents a heating circuit 100 according to the prior art. Said heating circuit 100 comprises a heating element 101 having a first terminal connected to a battery 102 of the motor vehicle and a second terminal connected to a control module 103. The control module 103 comprises an electronic switch 104 having a first terminal connected to the heating element 101 and a second terminal connected to ground. The control module 103 further comprises a control unit 105 controlling said electronic switch 104.
Lorsque la ., température de la sonde lambda est inférieure au seuil de température Tt, l'unité de commande 105 ferme le commutateur électronique 104 et un courant circule dans l'élément chauffant 101 qui produit alors de la chaleur permettant de chauffer la sonde lambda. L'élément chauffant 101 est de faible impédance, de l'ordre de quelques ohms à quelques dizaines d'ohms. Cette impédance varie en fonction de la température dudit élément chauffant 101. Typiquement, la valeur de l'impédance de l'élément chauffant 101 varie entre environ 1 ,5 Ω lorsque l'élément chauffant 101 est froid, c'est-à-dire lorsque la température dudit élément chauffant 101 est sensiblement comprise entre - 30°C et - 20°C, et environ 15 Ω ohms lorsque l'élément chauffant 101 est chaud, c'est-à-dire lorsque la température dudit élément chauffant 101 est sensiblement comprise entre 350°C et 600°C. La figure 2 montre une courbe 200 représentant la variation de l'intensité du courant I traversant l'élément chauffant 101 en fonction du temps t, au cours d'une phase de chauffage au début de laquelle ledit élément chauffant 101 est froid. Comme le montre ladite courbe 200, la variation d'impédance de l'élément chauffant 101 implique une variation de l'intensité du courant traversant l'élément chauffant 101. Durant les premières secondes l'intensité traversant l'élément chauffant 101 peut atteindre une dizaine d'ampères, la tension fournie par la batterie 102 étant comprise entre 12 V et 14 V. Ensuite, l'intensité du courant traversant l'élément chauffant 101 diminue progressivement jusqu'à une valeur égale à environ 1 A ou 2 A après 10 s ou 15 s. When the temperature of the lambda probe is below the temperature threshold T t , the control unit 105 closes the electronic switch 104 and a current flows in the heating element 101 which then produces heat for heating the probe lambda. The heating element 101 is of low impedance, of the order of a few ohms to a few tens of ohms. This impedance varies as a function of the temperature of said heating element 101. Typically, the value of the impedance of the heating element 101 varies between about 1.5 Ω when the heating element 101 is cold, that is to say when the temperature of said heating element 101 is substantially between -30 ° C and -20 ° C, and about 15 Ω ohms when the heating element 101 is hot, i.e. when the temperature of said heating element 101 is substantially between 350 ° C and 600 ° C. FIG. 2 shows a curve 200 representing the variation of the intensity of the current I passing through the heating element 101 as a function of time t, during a heating phase at the beginning of which said heating element 101 is cold. As shown by said curve 200, the impedance variation of the heating element 101 implies a variation of the intensity of the current flowing through the heating element 101. During the first seconds, the intensity passing through the heating element 101 can reach a ten amperes, the voltage supplied by the battery 102 being between 12 V and 14 V. Then, the intensity of the current flowing through the heating element 101 decreases gradually to a value equal to about 1 A or 2 A after 10s or 15s.
Le commutateur électronique 104 doit être dimensionné pour le pire cas, c'est- à-dire qu'il doit être capable de supporter un courant de 10 A. Il est donc de taille importante.  The electronic switch 104 must be dimensioned for the worst case, that is to say it must be able to withstand a current of 10 A. It is therefore large.
En outre, le module de commande 103 comporte un système de détection de surintensité de courant, afin de protéger le commutateur électronique 104 d'un éventuel court-circuit. Cependant, lorsque la température est très basse, le courant traversant l'élément chauffant 101 peut atteindre une intensité très élevée entraînant l'ouverture, par le système de détection de surintensité de courant, du commutateur électronique 104 pour protéger ledit commutateur électronique 104 du module de commande 103. Lorsque le courant revient à une valeur nulle, l'unité de commande 105 du module de commande 103 commande à nouveau une fermeture du commutateur électronique 104. Cette suite d'ouverture / fermeture du commutateur électronique 104 peut se répéter. Cette succession de détection de surintensité de courant a pour effet de fragiliser le commutateur électronique 104. En outre, les fermetures et ouvertures successives augmentent la durée de chauffe de la sonde lambda par le circuit de chauffage 100.  In addition, the control module 103 includes a current overcurrent detection system, to protect the electronic switch 104 from a possible short circuit. However, when the temperature is very low, the current flowing through the heating element 101 can reach a very high intensity, causing the overcurrent detection system to open the electronic switch 104 to protect the electronic switch 104 of the module. When the current returns to a zero value, the control unit 105 of the control module 103 again commands a closing of the electronic switch 104. This sequence of opening / closing of the electronic switch 104 can be repeated. This succession of overcurrent detection has the effect of weakening the electronic switch 104. In addition, the closures and successive openings increase the heating time of the lambda probe by the heating circuit 100.
L'invention a pour but de résoudre tout ou partie des problèmes susmentionnés.  The invention aims to solve all or part of the aforementioned problems.
A cette fin, l'invention concerne un circuit de chauffage d'une sonde lambda, ledit circuit de chauffage comportant :  To this end, the invention relates to a heating circuit of a lambda probe, said heating circuit comprising:
• un élément chauffant adapté à produire de la chaleur lorsqu'un courant traverse ledit élément chauffant,  A heating element adapted to produce heat when a current flows through said heating element,
• une source de tension pilotable comportant un convertisseur de tension continue en tension continue destiné à être branché à une source de tension continue, ladite source de tension pilotable étant adaptée à générer une tension variable aux bornes de l'élément chauffant,  A controllable voltage source comprising a direct voltage DC voltage converter intended to be connected to a DC voltage source, said controllable voltage source being adapted to generate a variable voltage across the heating element,
· une unité de commande configurée pour commander ladite source de tension pilotable de sorte à générer une tension variable assurant que le courant traversant ledit élément chauffant est d'intensité inférieure ou égale à une valeur seuil prédéfinie (It), A control unit configured to control said source of controllable voltage so as to generate a variable voltage ensuring that the current passing through said heating element is of intensity less than or equal to a predefined threshold value (It),
Le circuit de chauffage conforme à l'invention est remarquable en ce que le convertisseur de tension continue en tension continue est un convertisseur à découpage abaisseur de tension comportant un élément inductif, une diode de roue libre et un commutateur électronique commandé par l'unité de commande, ledit commutateur électronique étant commandé au moyen d'un signal à modulation de largeur d'impulsion dont le rapport cyclique est déterminé en fonction de ladite tension variable déterminée.  The heating circuit according to the invention is remarkable in that the DC voltage converter is a voltage-reducing switching converter comprising an inductive element, a free-wheeling diode and an electronic switch controlled by the control unit. control, said electronic switch being controlled by means of a pulse width modulated signal whose duty cycle is determined according to said determined variable voltage.
Dans des modes particuliers de réalisation, le circuit de chauffage peut comporter l'une ou plusieurs des caractéristiques suivantes, lesquelles peuvent être considérées individuellement ou selon toute combinaison techniquement opérante.  In particular embodiments, the heating circuit may include one or more of the following features, which may be considered individually or in any technically operative combination.
Le circuit de chauffage conforme à l'invention comporte un moyen adapté à mesurer le courant traversant l'élément chauffant, l'unité de commande étant configurée pour commander ladite source de tension pilotable de sorte à générer, aux bornes dudit élément chauffant, une tension variable déterminée en fonction de mesures de courant effectuées par ledit moyen adapté à mesurer le courant traversant l'élément chauffant.  The heating circuit according to the invention comprises means adapted to measure the current flowing through the heating element, the control unit being configured to control said source of controllable voltage so as to generate, at the terminals of said heating element, a voltage variable determined according to current measurements made by said means adapted to measure the current flowing through the heating element.
Le circuit de chauffage comporte un moyen adapté à mesurer la température de la sonde lambda, l'unité de commande étant configurée pour commander ladite source de tension pilotable de sorte à générer, aux bornes dudit élément chauffant, une tension variable déterminée en fonction de mesures de température effectuées par ledit moyen adapté à mesurer la température de la sonde lambda.  The heating circuit comprises means adapted to measure the temperature of the lambda probe, the control unit being configured to control said controllable voltage source so as to generate, at the terminals of said heating element, a variable voltage determined according to measurements. temperature effected by said means adapted to measure the temperature of the lambda probe.
Le circuit de chauffage comporte une pluralité d'éléments chauffants branchés en parallèle, chacun desdits éléments chauffants étant associé à une sonde lambda dédiée et chacun desdits éléments chauffants étant associé à un commutateur électronique dédié.  The heating circuit comprises a plurality of heating elements connected in parallel, each of said heating elements being associated with a dedicated lambda probe and each of said heating elements being associated with a dedicated electronic switch.
L'invention sera mieux comprise à la lecture de la description suivante, donnée à titre d'exemple nullement limitatif, et faite en se référant aux figures qui représentent :  The invention will be better understood on reading the following description, given by way of non-limiting example, and with reference to the figures which represent:
- Figure 1 : une représentation schématique d'un circuit de chauffage de sonde lambda selon l'état de l'art ;  - Figure 1: a schematic representation of a lambda probe heating circuit according to the state of the art;
- Figure 2 : une représentation graphique de l'intensité d'un courant traversant un élément chauffant d'un circuit de chauffage de sonde lambda selon l'état de l'art en fonction du temps ;  FIG. 2: a graphical representation of the intensity of a current flowing through a heating element of a lambda probe heating circuit according to the state of the art as a function of time;
- Figure 3 : une représentation schématique d'un circuit de chauffage de sonde lambda selon un exemple de réalisation de l'invention ;  - Figure 3: a schematic representation of a lambda probe heating circuit according to an exemplary embodiment of the invention;
- Figure 4 : une représentation schématique d'un circuit de chauffage de sonde lambda selon un exemple de réalisation de l'invention ; - Figure 5 : une représentation graphique de la tension aux bornes d'un élément chauffant d'un circuit de chauffage de sonde lambda selon un exemple de réalisation de l'invention ; - Figure 4: a schematic representation of a lambda probe heating circuit according to an embodiment of the invention; - Figure 5: a graphical representation of the voltage across a heating element of a lambda probe heating circuit according to an embodiment of the invention;
- Figure 6 : une représentation schématique d'un circuit de chauffage de plusieurs sondes lambda selon un exemple de réalisation de l'invention. - Figure 6: a schematic representation of a heating circuit of several lambda probes according to an exemplary embodiment of the invention.
Dans ces figures, des références identiques d'une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas à l'échelle, sauf mention contraire. In these figures, identical references from one figure to another designate identical or similar elements. For the sake of clarity, the elements shown are not to scale unless otherwise stated.
La figure 3 montre un circuit de chauffage 300, conforme à l'invention, d'une sonde lambda comportant un élément chauffant 302, une unité de commande 402 et une source de tension pilotable 301. L'élément chauffant 302 est adapté à produire de la chaleur lorsqu'un courant traverse ledit élément chauffant 302. Dans un exemple, l'élément chauffant 302 est une résistance.  FIG. 3 shows a heating circuit 300, according to the invention, of a lambda probe comprising a heating element 302, a control unit 402 and a controllable voltage source 301. The heating element 302 is adapted to produce the heat when a current flows through said heating element 302. In one example, the heating element 302 is a resistor.
Le chauffage de la sonde lambda est effectué au cours de phases récurrentes, dites « phases de chauffage » du circuit de chauffage 300. Lors desdites phases de chauffage, la circulation du courant dans l'élément chauffant 302 est régulée afin d'augmenter la température de la sonde lambda. En dehors desdites phases de chauffage, la circulation du courant dans l'élément chauffant 302 est interrompue ou la circulation du courant dans l'élément chauffant 302 est régulée afin de maintenir la température de la sonde lambda.  The heating of the lambda probe is carried out during recurrent phases, called "heating phases" of the heating circuit 300. During said heating phases, the current flow in the heating element 302 is regulated in order to increase the temperature. of the lambda probe. Outside of said heating phases, the flow of current in the heating element 302 is interrupted or the flow of current in the heating element 302 is regulated in order to maintain the temperature of the lambda probe.
La source de tension pilotable 301 est branchée en série avec l'élément chauffant 302. L'unité de commande 402 est configurée pour commander ladite source de tension pilotable 301 de sorte à générer, aux bornes de l'élément chauffant 302, une tension variable assurant que le courant traversant ledit élément chauffant 302 au cours de chaque phase de chauffage est d'intensité inférieure ou égale à une valeur seuil prédéfinie Tt. The controllable voltage source 301 is connected in series with the heating element 302. The control unit 402 is configured to control said controllable voltage source 301 so as to generate, at the terminals of the heating element 302, a variable voltage ensuring that the current flowing through said heating element 302 during each heating phase is of intensity less than or equal to a predefined threshold value T t .
Le circuit de chauffage 300 comporte en outre, dans l'exemple illustré par la figure 3, un moyen adapté à mesurer le courant traversant l'élément chauffant 302 et/ou un moyen adapté à mesurer la température de la sonde lambda. Ainsi la tension variable à générer par la source de tension pilotable 301 est déterminée, par l'unité de commande 402 qui commande ladite source de tension pilotable 301 , en fonction de mesures de courant effectuées par ledit moyen adapté à mesurer le courant traversant l'élément chauffant 302 et/ou en fonction de mesures de température effectuées par ledit moyen adapté à mesurer la température de la sonde lambda.  The heating circuit 300 further comprises, in the example illustrated in Figure 3, a means adapted to measure the current flowing through the heating element 302 and / or a means adapted to measure the temperature of the lambda probe. Thus, the variable voltage to be generated by the controllable voltage source 301 is determined by the control unit 402 which controls said controllable voltage source 301 as a function of current measurements made by said means adapted to measure the current flowing through the heating element 302 and / or as a function of temperature measurements made by said means adapted to measure the temperature of the lambda probe.
En variante, la tension variable à générer par la source de tension pilotable 301 est déterminée, par l'unité de commande 402 qui commande ladite source de tension pilotable 301 , en fonction d'informations fournies par la sonde lambda. Les mesures de température permettent notamment de contrôler le début et la fin de la phase de chauffage et, dans certains modes de réalisation, de sélectionner un profil de tension préétabli tel que décrit plus en détail ci-après. Alternatively, the variable voltage to be generated by the controllable voltage source 301 is determined by the control unit 402 which controls said controllable voltage source 301 as a function of information provided by the lambda probe. The temperature measurements make it possible in particular to control the beginning and the end of the heating phase and, in some embodiments, to select a predetermined voltage profile as described in more detail below.
Les mesures de courant permettent notamment d'estimer l'impédance de l'élément chauffant 302, et donc de déterminer la tension variable à générer assurant que le courant traversant l'élément chauffant 302 ne dépasse la valeur seuil prédéfinie lt. The current measurements make it possible in particular to estimate the impedance of the heating element 302, and thus to determine the variable voltage to be generated, ensuring that the current flowing through the heating element 302 does not exceed the predefined threshold value t .
Selon une mise en oeuvre, dans une première étape, le moyen adapté à mesurer le courant traversant l'élément chauffant 302 mesure le courant traversant l'élément chauffant 302 et/ou le moyen adapté à mesurer la température de la sonde lambda mesure la température de la sonde lambda. Dans une deuxième étape, le circuit de chauffage 300 détermine la tension variable à générer aux bornes de l'élément chauffant 302 en fonction de la mesure de température et/ou en fonction de la mesure de courant. Dans une troisième étape, la source de tension pilotable 301 génère la tension variable déterminée à la deuxième étape aux bornes de l'élément chauffant 302.  According to one implementation, in a first step, the means adapted to measure the current flowing through the heating element 302 measures the current flowing through the heating element 302 and / or the means adapted to measure the temperature of the lambda probe measures the temperature of the lambda probe. In a second step, the heating circuit 300 determines the variable voltage to be generated across the heating element 302 as a function of the temperature measurement and / or as a function of the current measurement. In a third step, the controllable voltage source 301 generates the variable voltage determined in the second step at the terminals of the heating element 302.
Dans un mode préféré de mise en oeuvre du circuit de chauffage 300, au cours de chaque phase de chauffage, la tension variable générée aux bornes de l'élément chauffant 302 par la source de tension pilotable 301 augmente progressivement jusqu'à atteindre une tension nominale VN. Ladite tension nominale VN est celle fournie par la batterie/alternateur du réseau de bord du véhicule automobile. In a preferred embodiment of the heating circuit 300, during each heating phase, the variable voltage generated at the terminals of the heating element 302 by the controllable voltage source 301 increases gradually until a nominal voltage is reached. V N. Said nominal voltage V N is that supplied by the battery / alternator of the motor vehicle's onboard network.
On entend par « augmente progressivement » une croissance au sens large de la tension variable générée au cours d'une phase de chauffage. En d'autres termes, la tension variable générée peut être constante au cours d'un ou de plusieurs intervalles de temps de la phase de chauffage.  The term "gradually increases" a growth in the broad sense of the variable voltage generated during a heating phase. In other words, the generated variable voltage can be constant during one or more time intervals of the heating phase.
L'augmentation progressive de la tension variable générée par la source de tension pilotable 301 suit par exemple un profil de tension prédéfini. Un tel profil de tension prédéfini est par exemple mémorisé dans une mémoire non volatile de l'unité de commande 402. Ce profil de tension prédéfini correspond à un profil de tension préalablement déterminé par simulation ou expérimentation permettant d'assurer que le courant traversant l'élément chauffant 302 ne dépassera pas la valeur seuil prédéfinie lt quelles que soient les conditions d'opération du circuit chauffant 300, en particulier quelles que soient les conditions de température de la sonde lambda. Dans un exemple, plusieurs profils de tensions sont prédéfinis, associés à des températures respectives différentes de la sonde lambda au début d'une phase de chauffage. En effet, plus la température de la sonde lambda est faible et plus l'impédance de l'élément chauffant 302 est faible. Par conséquent, plus la température de la sonde lambda au début d'une phase de chauffage est faible et plus la tension variable générée doit être faible. Ainsi, en disposant de plusieurs profils de tension prédéfinis associés à des températures respectives différentes de la sonde lambda au début d'une phase de chauffage, il sera possible d'accélérer le chauffage de la sonde lambda. Chaque profil de tension est avantageusement prédéfini comme correspondant, pour la température initiale considérée, à la tension maximale pouvant être générée sans que le courant traversant l'élément chauffant 302 ne dépasse la valeur seuil prédéfinie lt. The progressive increase in the variable voltage generated by the controllable voltage source 301 for example follows a predefined voltage profile. Such a predefined voltage profile is for example stored in a non-volatile memory of the control unit 402. This predefined voltage profile corresponds to a voltage profile previously determined by simulation or experimentation to ensure that the current flowing through the heating element 302 does not exceed the predefined threshold value l t whatever the operating conditions of the heating circuit 300, in particular regardless of the temperature conditions of the lambda probe. In one example, several voltage profiles are predefined, associated with respective different temperatures of the lambda probe at the beginning of a heating phase. In fact, the lower the temperature of the lambda probe, the lower the impedance of the heating element 302. Consequently, the lower the temperature of the lambda probe at the beginning of a heating phase, the lower the variable voltage generated. Thus, by having several predefined voltage profiles associated with temperatures respective different from the lambda probe at the beginning of a heating phase, it will be possible to accelerate the heating of the lambda probe. Each voltage profile is advantageously predefined as corresponding, for the initial temperature considered, to the maximum voltage that can be generated without the current flowing through the heating element 302 exceeds the predetermined threshold value t .
On comprend donc que, lorsqu'un ou des profils de tension prédéfinis sont utilisés, il n'est pas nécessaire de mesurer le courant traversant l'élément chauffant 302.  It is thus understood that, when one or more predefined voltage profiles are used, it is not necessary to measure the current flowing through the heating element 302.
Dans un mode de réalisation, la source de tension pilotable 301 comporte un convertisseur de tension continue en tension continue 401 destiné à être branché à une source de tension continue 400.  In one embodiment, the controllable voltage source 301 includes a direct voltage DC voltage converter 401 for connection to a DC voltage source 400.
Dans un mode de réalisation (cf. figure 4), le convertisseur de tension continue en tension continue 401 est un convertisseur à découpage abaisseur de tension comportant un commutateur électronique 303 commandé par l'unité de commande 402, un élément inductif 404 branché en série avec l'élément chauffant 302 et ledit commutateur électronique 303, et une diode 403 de roue libre. Dans un exemple, le commutateur électronique 303 est un transistor MOS.  In one embodiment (see FIG. 4), the direct voltage DC voltage converter 401 is a voltage-reducing switching converter comprising an electronic switch 303 controlled by the control unit 402, an inductive element 404 connected in series. with the heating element 302 and said electronic switch 303, and a free wheeling diode 403. In one example, the electronic switch 303 is a MOS transistor.
Dans un exemple, comme le montre la figure 4, une première borne du commutateur électronique 303 est reliée à la source de tension continue 400. Une deuxième borne du commutateur électronique 303 est reliée à la cathode de la diode 403 de roue libre et à une première borne de l'élément inductif 404. L'anode de la diode 403 de roue libre est reliée à la masse. Une deuxième borne de l'élément inductif 404 est reliée à une première borne de l'élément chauffant 302 et une deuxième borne de l'élément chauffant 302 est reliée à la masse.  In one example, as shown in FIG. 4, a first terminal of the electronic switch 303 is connected to the DC voltage source 400. A second terminal of the electronic switch 303 is connected to the cathode of the freewheeling diode 403 and to a first terminal of the inductive element 404. The anode of the freewheeling diode 403 is connected to ground. A second terminal of the inductive element 404 is connected to a first terminal of the heating element 302 and a second terminal of the heating element 302 is connected to ground.
La tension variable VR à générer aux bornes de l'élément chauffant 302, déterminée à la deuxième étape, est générée en commandant le commutateur électronique 303 dudit convertisseur à découpage abaisseur de tension au moyen d'un signal à modulation de largeur d'impulsion généré par l'unité de commande 402. Le rapport cyclique dudit signal à modulation de largeur d'impulsion est déterminé en fonction de ladite tension variable, ce rapport cyclique étant ainsi variable. The variable voltage V R to be generated across the heating element 302, determined in the second step, is generated by controlling the electronic switch 303 of said down-converter by means of a pulse width modulated signal. generated by the control unit 402. The duty cycle of said pulse width modulated signal is determined as a function of said variable voltage, this duty cycle thus being variable.
Plus précisément, le signal à modulation de largeur d'impulsion émis par l'unité de commande 402 commande l'état ouvert ou fermé du commutateur électronique 303. Dans un exemple un état haut du signal logique émis par l'unité de commande 402 correspond à l'état fermé du commutateur électronique 303 et un état bas du signal logique émis par l'unité de commande 402 correspond à l'état ouvert du commutateur électronique 303. Lorsque le commutateur électronique 303 est fermé, le courant traversant l'élément inductif 404 augmente linéairement et aucun courant ne traverse la diode 403 de roue libre. Lorsque le commutateur électronique 303 est ouvert, la diode 403 de roue libre devient passante et le courant traversant l'élément inductif 404 décroit. La succession d'un état haut et d'un état bas du signal logique émis par l'unité de commande 402 est appelé cycle de commutation. More precisely, the pulse width modulated signal emitted by the control unit 402 controls the open or closed state of the electronic switch 303. In one example, a high state of the logic signal transmitted by the control unit 402 corresponds to in the closed state of the electronic switch 303 and a low state of the logic signal emitted by the control unit 402 corresponds to the open state of the electronic switch 303. When the electronic switch 303 is closed, the current flowing through the inductive element 404 increases linearly and no current flows through the freewheeling diode 403. When the electronic switch 303 is open, the freewheeling diode 403 becomes conductive and the current flowing through the inductive element 404 decreases. The succession of a high state and a low state of the logic signal emitted by the control unit 402 is called the switching cycle.
Lorsque le convertisseur 401 est en régime permanent, l'énergie stockée dans l'élément inductif 404 est la même au début et à la fin de chaque cycle de commutation. En conséquence, le courant traversant l'élément inductif 404 est le même au début et à la fin de chaque cycle de commutation ce qui implique que la tension de sortie du convertisseur 401 est sensiblement égale à la tension délivrée par la source de tension continue 400 multipliée par le rapport cyclique.  When the converter 401 is in steady state, the energy stored in the inductive element 404 is the same at the beginning and at the end of each switching cycle. As a result, the current flowing through the inductive element 404 is the same at the beginning and at the end of each switching cycle, which implies that the output voltage of the converter 401 is substantially equal to the voltage delivered by the DC voltage source 400. multiplied by the duty cycle.
La figure 5 montre une courbe 600 d'évolution de la tension aux bornes de l'élément chauffant 302 lors d'une phase de chauffage, lorsque la tension délivrée par la source de tension continue 400 est de valeur égale à 14 V. Cette tension aux bornes de l'élément chauffant 302 est la tension de sortie du convertisseur 401. Durant les premières secondes suivant la mise en marche du circuit de chauffage 300, l'élément chauffant 302 est froid. La valeur de l'impédance dudit élément chauffant 302 est, dans un exemple, sensiblement égale à 2 Ω. La tension obtenue aux bornes de l'élément chauffant 302 pourra être de valeur comprise entre 0 V et 5 V. Lorsque l'élément chauffant 302 est chaud, la valeur de l'impédance dudit élément chauffant 302 est, toujours dans cet exemple, sensiblement égale à 15 Ω. La tension obtenue aux bornes de l'élément chauffant 302 pourra être de 12 V à 14 V. Cette évolution de tension aux bornes de l'élément chauffant 302 permet d'obtenir dans cet exemple une valeur de courant traversant l'élément chauffant 302 de l'ordre de 2 A quelle que soit la température, et donc quelle que soit la valeur de l'impédance dudit élément chauffant 302.  FIG. 5 shows a curve 600 of evolution of the voltage across the heating element 302 during a heating phase, when the voltage delivered by the DC voltage source 400 is equal to 14 V. This voltage at the terminals of the heating element 302 is the output voltage of the converter 401. During the first seconds after switching on the heating circuit 300, the heating element 302 is cold. The value of the impedance of said heating element 302 is, in one example, substantially equal to 2 Ω. The voltage obtained at the terminals of the heating element 302 may be between 0 V and 5 V. When the heating element 302 is hot, the value of the impedance of said heating element 302 is, again in this example, substantially equal to 15 Ω. The voltage obtained at the terminals of the heating element 302 may be 12 V to 14 V. This change in voltage across the heating element 302 makes it possible to obtain in this example a current value passing through the heating element 302. the order of 2 At whatever the temperature, and therefore regardless of the value of the impedance of said heating element 302.
Ainsi la maîtrise du courant par le circuit de chauffage permet de réduire les dimensions du commutateur électronique 303, de réduire la durée de chauffe de la sonde lambda et de supprimer le risque de détérioration de la sonde lambda au démarrage.  Thus control of the current by the heating circuit makes it possible to reduce the dimensions of the electronic switch 303, to reduce the heating time of the lambda probe and to eliminate the risk of deterioration of the lambda probe at startup.
Comme le montre la figure 7, le circuit de chauffage est associé dans un mode de réalisation à plusieurs sondes lambda. Le circuit de chauffage comporte alors une pluralité d'éléments chauffants 302 branchés en parallèle, chacun de desdits élément chauffant 302 étant associé à une sonde lambda dédiée. Chaque élément chauffant 302 est en outre associé à un commutateur électronique 700 dédié.  As shown in FIG. 7, the heating circuit is associated in one embodiment with several lambda probes. The heating circuit then comprises a plurality of heating elements 302 connected in parallel, each of said heating element 302 being associated with a dedicated lambda probe. Each heating element 302 is further associated with a dedicated electronic switch 700.
Une première borne de chaque élément chauffant 302 est reliée au convertisseur 401. Une deuxième borne de chaque élément chauffant 302 est reliée à une première borne du commutateur électronique 700 associé. Une deuxième borne de chaque commutateur électronique 700 est reliée à la masse. Ainsi, un seul circuit de chauffage 300 permet de chauffer plusieurs sondes lambda en même temps ou de manière successive à condition que les commutateurs électroniques 700 associés aux sondes lambda devant être chauffées soient fermés. A first terminal of each heating element 302 is connected to the converter 401. A second terminal of each heating element 302 is connected to a first terminal of the associated electronic switch 700. A second terminal of each electronic switch 700 is connected to ground. Thus, a single heating circuit 300 makes it possible to heat several lambda probes at the same time or to successively provided that the electronic switches 700 associated with the lambda probes to be heated are closed.

Claims

REVENDICATIONS
1. Circuit de chauffage (300) d'une sonde lambda, ledit circuit de chauffage (300) comportant :  1. Heating circuit (300) of a lambda probe, said heating circuit (300) comprising:
• un élément chauffant (302) adapté à produire de la chaleur lorsqu'un courant traverse ledit élément chauffant (302),  A heating element (302) adapted to produce heat when a current flows through said heating element (302),
· une source de tension pilotable (301 ) comportant un convertisseur de tension continue en tension continue (401 ) destiné à être branché à une source de tension continue (400), ladite source de tension pilotable (301 ) étant adaptée à générer une tension variable aux bornes de l'élément chauffant (302),  A controllable voltage source (301) having a direct voltage DC voltage converter (401) for connection to a DC voltage source (400), said controllable voltage source (301) being adapted to generate a variable voltage at the terminals of the heating element (302),
· une unité de commande (402) configurée pour commander ladite source de tension pilotable (301 ) de sorte à générer une tension variable assurant que le courant traversant ledit élément chauffant (302) est d'intensité inférieure ou égale à une valeur seuil prédéfinie (lt), A control unit (402) configured to control said controllable voltage source (301) so as to generate a variable voltage ensuring that the current flowing through said heating element (302) is of intensity less than or equal to a predefined threshold value ( l t ),
caractérisé en ce que le convertisseur de tension continue en tension continue (401 ) est un convertisseur à découpage abaisseur de tension comportant un élément inductif (404), une diode (403) de roue libre et un commutateur électronique (303) commandé par l'unité de commande (402), ledit commutateur électronique (303) étant commandé au moyen d'un signal à modulation de largeur d'impulsion dont le rapport cyclique est déterminé en fonction de ladite tension variable déterminée. characterized in that the DC voltage direct voltage converter (401) is a voltage step down converter having an inductive element (404), a freewheeling diode (403) and an electronic switch (303) controlled by the control unit (402), said electronic switch (303) being controlled by means of a pulse width modulated signal whose duty cycle is determined according to said determined variable voltage.
2. Circuit selon la revendication 1 , caractérisé en ce qu'il comporte un moyen adapté à mesurer le courant traversant l'élément chauffant (302), l'unité de commande (402) étant configurée pour commander ladite source de tension pilotable (301 ) de sorte à générer, aux bornes dudit élément chauffant (302), une tension variable déterminée en fonction de mesures de courant effectuées par ledit moyen adapté à mesurer le courant traversant l'élément chauffant (302).  2. Circuit according to claim 1, characterized in that it comprises means adapted to measure the current flowing through the heating element (302), the control unit (402) being configured to control said source of controllable voltage (301). ) so as to generate, at the terminals of said heating element (302), a variable voltage determined according to current measurements made by said means adapted to measure the current flowing through the heating element (302).
3. Circuit selon la revendication 1 ou 2, caractérisé en ce qu'il comporte un moyen adapté à mesurer la température de la sonde lambda, l'unité de commande (402) étant configurée pour commander ladite source de tension pilotable (301 ) de sorte à générer, aux bornes dudit élément chauffant (302), une tension variable déterminée en fonction de mesures de température effectuées par ledit moyen adapté à mesurer la température de la sonde lambda.  3. Circuit according to claim 1 or 2, characterized in that it comprises a means adapted to measure the temperature of the lambda probe, the control unit (402) being configured to control said controllable voltage source (301). so as to generate, at the terminals of said heating element (302), a variable voltage determined according to temperature measurements made by said means adapted to measure the temperature of the lambda probe.
4. Circuit selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte une pluralité d'éléments chauffants (302) branchés en parallèle, chacun desdits éléments chauffants (302) étant associé à une sonde lambda dédiée et chacun desdits éléments chauffants (302) étant associé à un commutateur électronique (700) dédié. 4. Circuit according to one of claims 1 to 5, characterized in that it comprises a plurality of heating elements (302) connected in parallel, each of said elements heater (302) being associated with a dedicated lambda probe and each of said heating elements (302) being associated with a dedicated electronic switch (700).
PCT/EP2013/003761 2012-12-13 2013-12-12 Circuit for heating an oxygen sensor WO2014090409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261990A FR2999859B1 (en) 2012-12-13 2012-12-13 LAMBDA PROBE HEATING CIRCUIT AND ASSOCIATED METHOD
FR1261990 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014090409A1 true WO2014090409A1 (en) 2014-06-19

Family

ID=47714372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/003761 WO2014090409A1 (en) 2012-12-13 2013-12-12 Circuit for heating an oxygen sensor

Country Status (2)

Country Link
FR (1) FR2999859B1 (en)
WO (1) WO2014090409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002577A (en) * 2014-11-24 2017-08-01 罗伯特·博世有限公司 Method for recognizing variation in a region at least in voltage λ characteristic curves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611562A (en) * 1984-05-07 1986-09-16 Toyota Jidosha Kabushiki Kaisha Method and system for internal combustion engine oxygen sensor heating control which provide sensor heating limited for reliable operation
EP0778464A1 (en) * 1995-12-06 1997-06-11 Toyota Jidosha Kabushiki Kaisha A heater controller for an air-fuel ratio sensor
EP1026501A2 (en) * 1999-02-03 2000-08-09 Denso Corporation Gas concentration measuring apparatus compensating for error component of output signal
DE10229026A1 (en) * 2002-06-28 2004-01-22 Robert Bosch Gmbh Heater control switch for lambda probe used for combustion engine exhaust emissions control, has current limitation and fast response, by providing voltage compensation via micro controlled field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611562A (en) * 1984-05-07 1986-09-16 Toyota Jidosha Kabushiki Kaisha Method and system for internal combustion engine oxygen sensor heating control which provide sensor heating limited for reliable operation
EP0778464A1 (en) * 1995-12-06 1997-06-11 Toyota Jidosha Kabushiki Kaisha A heater controller for an air-fuel ratio sensor
EP1026501A2 (en) * 1999-02-03 2000-08-09 Denso Corporation Gas concentration measuring apparatus compensating for error component of output signal
DE10229026A1 (en) * 2002-06-28 2004-01-22 Robert Bosch Gmbh Heater control switch for lambda probe used for combustion engine exhaust emissions control, has current limitation and fast response, by providing voltage compensation via micro controlled field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002577A (en) * 2014-11-24 2017-08-01 罗伯特·博世有限公司 Method for recognizing variation in a region at least in voltage λ characteristic curves

Also Published As

Publication number Publication date
FR2999859A1 (en) 2014-06-20
FR2999859B1 (en) 2017-10-27

Similar Documents

Publication Publication Date Title
FR2879072A1 (en) DISCHARGE LAMP IGNITION CIRCUIT, CONTROL BASED ON TEMPERATURE AND SUPPLY VOLTAGE
FR2476929A1 (en) CIRCUIT FOR CHARGING A BATTERY AND SUPPLYING ELECTRIC ENERGY FROM SOLAR ENERGY
FR2661588A1 (en) LIGHTING CIRCUIT FOR A DISCHARGE LAMP FOR VEHICLES.
EP2083511B1 (en) Battery power supply for radio frequency transmitter
FR2997248A1 (en) METHOD AND DEVICE FOR CONTROLLING THE POWER OF AN ELECTRICAL CONSUMER
EP1977514B1 (en) Controlling a mos transistor
FR2864172A1 (en) DOUBLE-STAGE IONIZATION DETECTION CIRCUIT
FR2630271A1 (en) HIGH-VOLTAGE POWER SUPPLY DEVICE FOR THE AUXILIARY CIRCUIT OF A MOTOR VEHICLE
EP1992069B1 (en) Device for controlling a mos transistor
WO2014090409A1 (en) Circuit for heating an oxygen sensor
EP1067608B1 (en) Device and control circuit for a piezoelectric actuator
FR2937196A1 (en) DEVICE AND METHOD FOR CONTROLLING A RESONANT ULTRASONIC PIEZOELECTRIC INJECTOR.
WO2009000996A2 (en) Rotary electric machine and method for controlling same
WO2020011768A1 (en) Method for triggering the changing of a transistor to the on state
EP3700053A1 (en) System and method of preloading of a capacitor by a battery comprising a preloading resistance and a chopper device
EP1560474A2 (en) Protection circuit for a switched mode power suplly and lighting device for a vehicle
FR2927740A1 (en) CONTROL APPARATUS FOR AN ALTERNATOR ON BOARD IN A VEHICLE
FR2807200A1 (en) METHOD AND DEVICE FOR CONTROLLING AT LEAST ONE ELECTROMAGNETIC CONSUMER
EP3896414A2 (en) Switch system with device for determining temperature, electrical installation comprising such a switch system and corresponding method
WO2019154818A1 (en) Method and device for detecting when a predefined temperature threshold is exceeded
FR2802364A1 (en) METHOD AND DEVICE FOR CONTROLLING THE POWER SUPPLY OF A ROTOR WINDING OF AN ELECTRIC MACHINE SUCH AS AN ALTERNATOR OR ALTERNATOR-STARTER OF A VEHICLE, IN PARTICULAR A MOTOR VEHICLE
FR3032811B1 (en) METHOD AND UNIT FOR CORRECTING A POWER CONTROL
EP1182341A1 (en) Controller for a ceramic piezoelectric device, particularly for an internal combustion motor injection actuator
EP2991225A1 (en) Static relay for controlling an electric starter of a motor vehicle and corresponding electric starter of a motor vehicle
FR3018554A1 (en) FUEL FILTRATION ASSEMBLY COMPRISING A HEATING SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13818980

Country of ref document: EP

Kind code of ref document: A1