WO2014090071A1 - 一种基于全控器件的电压源换流器的子模块单元 - Google Patents

一种基于全控器件的电压源换流器的子模块单元 Download PDF

Info

Publication number
WO2014090071A1
WO2014090071A1 PCT/CN2013/087418 CN2013087418W WO2014090071A1 WO 2014090071 A1 WO2014090071 A1 WO 2014090071A1 CN 2013087418 W CN2013087418 W CN 2013087418W WO 2014090071 A1 WO2014090071 A1 WO 2014090071A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module unit
module
igbt
capacitor
Prior art date
Application number
PCT/CN2013/087418
Other languages
English (en)
French (fr)
Inventor
汤广福
贺之渊
栾洪洲
吕铮
欧阳文敏
Original Assignee
国家电网公司
国网智能电网研究院
中电普瑞电力工程有限公司
辽宁省电力有限公司大连供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院, 中电普瑞电力工程有限公司, 辽宁省电力有限公司大连供电公司 filed Critical 国家电网公司
Publication of WO2014090071A1 publication Critical patent/WO2014090071A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the invention belongs to the technical field of flexible direct current transmission, and particularly relates to a sub-module unit of a voltage source converter based on a full control device.
  • VSC-HVDC high-voltage direct current transmission technology
  • the two-level voltage source converter adopts pulse width modulation technology, and the output voltage of the inverter jumps at a high frequency between ⁇ Udc/2, which brings about large dv/dt stress and large system loss.
  • a series of problems such as high noise and harsh electromagnetic environment. Even a three-level voltage source converter can only alleviate the above problems to some extent.
  • Two-level and three-level voltage source commutation adopts switching device series technology. Due to the parameter dispersion of the switching device itself, each switching device needs to be equipped with complex static voltage equalizing circuit, dynamic voltage equalizing circuit and absorption circuit. , causing potential malfunctions in valve operation. In addition, the series connection technology of the switching device has high requirements on the press-fit process, the parts are difficult to manufacture, and the assembly is prone to defects.
  • a plurality of switching devices In two-level and three-level voltage source converters, a plurality of switching devices generally form a valve segment, and several valve segments are cascaded into a converter valve required for engineering, and the converter valve is suspended.
  • the installation requirements are high, and it also brings inconvenience to equipment maintenance, reducing work efficiency and operability.
  • the present invention provides a sub-module unit of a voltage source converter based on a full control device, the voltage source converter based on the sub-module unit is highly modular, insensitive to switching device parameters, and output Voltage Low rate of change, low dv/dt stress, low noise, no filters, easy installation and maintenance.
  • the invention provides a sub-module unit of a voltage source converter based on a full control device, wherein the voltage source converter is a three-phase six-bridge arm structure, and each bridge arm comprises N serially connected sub-module units;
  • the sub-module unit comprises a capacitor, an IGBT module of a half bridge structure, a main support structure, a support plate, a connecting water pipe and a heat sink; the capacitor and the IGBT module of the half bridge structure are connected in parallel to form a power element Device
  • the main support structure is used to support the power component of the sub-module unit, the support plate, the connecting water pipe and the heat sink; the support plate is arranged perpendicular to the base of the main support structure; the support plate has two symmetric settings a radiator, the radiators being connected by a connecting water pipe;
  • a capacitor of each sub-module unit is bolted to the base of the main support structure.
  • the IGBT module of the half bridge structure of the submodule unit replaces the IGBT module of the H bridge structure.
  • the sub-module unit includes a thyristor and a vacuum switch connected in parallel; the thyristor is connected in parallel with the lower tube IGBT of the sub-module unit;
  • the thyristor is press-fitted between the positive and negative outgoing busbars of the capacitor of the sub-module unit;
  • the vacuum switch is fixed to the support plate by bolts.
  • the sub-module unit includes an energy-receiving power supply and a secondary control system; the energy-receiving power source is energized from a capacitor of the sub-module unit to supply power to the secondary control system; Controlling the IGBT module, vacuum switch and thyristor of the sub-module unit;
  • the energy-receiving power source is placed under the vacuum switch; the energy-receiving power source is encapsulated by a metal casing, and the outer casing is in contact with the main supporting structure for ensuring an equipotential;
  • the secondary control system is located above the power receiving power source, and the outer casing of the secondary control system is in contact with the main supporting structure for ensuring an equipotential.
  • the submodule unit comprises two voltage equalizing resistors connected in series; the voltage equalizing resistor is placed on the heat sink and is opposite to the IGBT.
  • the heat sink is fixed by bolts on the support plate.
  • an explosion-proof plate is added to one side of the radiator.
  • the secondary control system is an integrated board, which is encapsulated by a metal casing.
  • the main support structure is designed with a lifting hole for lifting and transporting.
  • the sub-module unit includes a package outer casing, and a surrounding frame is respectively connected to the main support structure.
  • the surface of the package casing is treated with anti-corrosion treatment.
  • the self-forming electrical system of the present invention can be expanded according to system requirements
  • the secondary control system of the present invention is an integrated system, which reduces wiring difficulty and is easy to disassemble and replace; at the same time, its outer casing is packaged with metal, and electromagnetic shielding is effectively performed externally;
  • the power-carrying power supply of the present invention does not require an external power supply, and directly takes power from the power electronic capacitor;
  • the present invention is packaged with a casing to achieve both an electromagnetic shielding effect and an aesthetic appearance.
  • the voltage source converter based on the present invention is highly modular, insensitive to switching device parameters, low in output voltage change rate, low in dv/dt stress, low in noise, no filter required, and easy to install and overhaul.
  • 1 is an electrical schematic diagram of a sub-module unit in a voltage source converter provided by the present invention.
  • 1, 2 is the terminal of the sub-module; K is the vacuum switch, T is the thyristor; GDU is the secondary control system; PW is the power supply; IGBT (Sl) and its built-in diode D1 IGBT module; IGBT (S2) An IGBT module composed of a diode D2 built therein; R1 and R2 are voltage equalizing resistors; and C is a capacitor.
  • FIG. 2 is a front view of a submodule unit provided by the present invention.
  • 1 is the package housing; 2 is the sub-module capacitor.
  • Figure 3 is a front elevational view of the sub-module unit of the present invention with the outer casing removed.
  • 3 is the power supply; 4 is the secondary control system; 5 is the main support structure.
  • FIG. 4 is a left side view of a sub-module unit provided by the present invention.
  • 6 is a vacuum switch.
  • FIG. 5 is a top plan view of a sub-module unit provided by the present invention.
  • 7 is a thyristor
  • 8 is a support plate
  • 9 is a connecting water pipe
  • 10 is a heat sink
  • 11 is an IGBT module.
  • the sub-module unit of the voltage source converter of the embodiment adopts an independent control mode, and the electrical schematic diagram of the sub-module unit is as shown in FIG. 1 , which is a parallel structure of the IGBT module and the capacitor of the half bridge structure, and the embodiment is set to be half.
  • the upper part of the bridge structure or the H-bridge structure is an upper tube IGBT module.
  • the IGBT module in which the IGBT (SI) in FIG. 1 and the built-in diode D1 are connected in parallel is an upper tube IGBT module (referred to as an upper IGBT), a half bridge structure or H.
  • Lower half of the bridge structure Part of the IGBT module is a lower tube.
  • the IGBT module in which the IGBT (S2) in FIG. 1 and the built-in diode D2 are connected in parallel is a lower tube IGBT module (referred to as a lower IGBT).
  • the breaking of the two full control devices is also controlled separately by the secondary control system, and the two work alternately.
  • the output voltage of the sub-module unit is the capacitor voltage, that is, the high level; when the IGBT of the full control device is turned on, the output voltage of the sub-module unit is zero. level.
  • This mode of operation lays the foundation for modular multi-level. When multiple sub-module units are cascaded, the output voltage can be multi-level by controlling the operating state of each sub-module unit.
  • a protection thyristor is connected in parallel to the two ends of the lower tube IGBT module, which can function as a shunt.
  • a series of grading resistors connected in series are connected across the sub-module capacitor.
  • a vacuum switch is connected in parallel to the lead-out terminal, and the basic functional unit is short-circuited by bypass.
  • the sub-module unit is electrically and structurally independent, and has two external interfaces for convenient expansion.
  • the embodiment further includes a device for supporting the same, so that the voltage source converter is highly modular, insensitive to the parameters of the switching device, low in output voltage change rate, and low in dv/dt stress of the device. Low noise, no need for filters, easy installation and maintenance, as shown in Figure 2-5.
  • the supporting device comprises a main supporting structure, a supporting plate, a connecting water pipe and a radiator, and specifically:
  • the entire device is packaged by the package housing.
  • 1 is the package housing; 2 is the capacitor.
  • the package housing is connected to the main support structure around the periphery.
  • the surface of the package housing is treated for corrosion protection, but the bolted joint is left untreated to maintain an equipotential with the main support structure.
  • the front view of the enclosure is removed for the submodule unit.
  • the main support structure is used to support all parts, and all load-bearing mechanisms are connected to them with fasteners.
  • the negative poles of all charged units and the electrically suspended metal casing are electrically connected directly or indirectly to the main support structure to ensure equipotentiality.
  • the main support structure is designed with lifting holes for lifting and transporting.
  • the support plate is disposed perpendicular to the base of the main support structure; the support plate is fixed with two symmetrically disposed heat sinks by bolts, and an explosion-proof plate is attached to one side of the heat sink, and the two heat sinks are connected
  • the water pipes are connected.
  • each sub-module unit of the voltage source converter is placed opposite each other, and are respectively vertically attached to the two heat sinks.
  • the required safety insulation gap is ensured between the full control devices.
  • the full control device driver board is fixed on the heat sink and is different from the IGBT module.
  • an explosion-proof device is installed on one of the control devices.
  • the explosion-proof device can also be used for electromagnetic shielding. The external electromagnetic interference to the fully controlled device driver board.
  • the explosion-proof device also maintains a reliable equipotential connection with the main support structure and secures the two with screws.
  • the bottom of the capacitor of each sub-module unit is bolted to the base of the main support structure.
  • the thyristor of the sub-module unit is press-fitted between the positive and negative busbars of the sub-module capacitor. It is installed between the positive and negative busbars of the capacitor by the press-fit process, which effectively utilizes and greatly saves space.
  • the vacuum switch of the sub-module is electrically connected in parallel between the positive and negative outlets of the basic functional unit, and its function is to quickly bypass the sub-module when it fails, without affecting the normal operation of other functional units, the operation time It is in milliseconds.
  • two connecting busbars are connected in parallel to the positive and negative outgoing busbars, and the bottom of the busbar is fixed to the supporting plate by bolts, which not only ensures the seismic effect, but also electrically supports the supporting plates. Potential.
  • the power supply of the sub-module unit is taken from the capacitor and then converted into various voltages required, which are placed at the bottom of the main support structure, the power supply is packaged with a metal casing, and the outer casing and the main support structure Contact, used to ensure equipotentiality.
  • the secondary control system of the sub-module unit is integrated on a PCB and is fixed to a specially designed guide groove above the power supply.
  • the PCB card needs to be replaced, it only needs to be pulled out, which is convenient and quick.
  • the external package is in a metal casing. The package can be removed separately from the module unit for easy replacement.
  • the housing is reliably equipotentially connected to the main support structure.
  • the power supply of the secondary control system is directly powered from the power electronic capacitor, and a specially designed circuit board is used to transform the voltage to output various voltages required for control. It adopts a similar installation method to the secondary control system, that is, the power supply box with a push-pull type is designed, and the outer part is a shield metal case. The whole module can be easily and quickly removed from the module unit, and the power board can be easily taken out and installed from the box.
  • the voltage equalizing resistor of the submodule unit is placed on the heat sink, on the opposite side of the IGBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rectifiers (AREA)

Abstract

一种基于全控器件的电压源换流器的子模块单元,电压源换流器为三相六桥臂结构,每个桥臂包括N个串联的子模块单元。子模块单元包括主要由电容器(C)和半桥结构的IGBT模块构成的电力元器件、主支撑结构(5)、支撑板(8)、连接水管(9)和散热器(10)。主支撑结构用来支撑子模块单元的电力元器件、支撑板、连接水管和散热器。支撑板与主支撑结构的底座垂直设置。支撑板上有两块对称设置的散热器,散热器之间通过连接水管相连。每个子模块单元的两个IGBT模块分别放置在两块散热器上。每个子模块的电容器的底部通过螺栓固定在主支撑结构的底座上。子模块单元结构上独立,方便安装及运输。

Description

一种基于全控器件的电压源换流器的子模块单元
技术领域
本发明属于柔性直流输电技术领域,具体涉及一种基于全控器件的电压源换流器的 子模块单元。
背景技术
基于电压源换流器的高压直流输电技术 (VSC-HVDC) 于 1900年首次提出, 其主 要特点是采用全控性电力电子器件构成的电压源换流器,取代常规直流输电中基于半控 型器件的电流源换流器。 自该技术提出以来, 由于其卓越的可控性和灵活性, 一直吸引 着世界上众多学者和研究人员的高度关注。
至目前, 基于电压源换流器的高电压直流输电工程在世界范围内有多个, 其电压源 换流器拓扑结构主要为两电平及三电平二极管中间箝位型结构,但是这种结构存在一些 问题:
( 1 ) 两电平电压源换流器采用脉宽调制技术, 换流器输出电压高频率地在 ±Udc/2 之间跃变, 由此带来设备 dv/dt应力大、 系统损耗大、 噪声高和电磁环境严酷等一系列 问题。 即便是三电平电压源换流器也只能一定程度上缓解上述问题。
(2) 两电平和三电平电压源换流采用开关器件串联技术, 由于开关器件本身参数 分散性, 设计时需要给每个开关器件配备复杂的静态均压电路、 动态均压电路和吸收电 路, 给阀运行造成潜在故障。 此外, 开关器件串联技术对压装工艺要求很高, 零件制造 难度大, 组装易产生缺陷。
(3 ) 两电平和三电平电压源换流输出电压波形畸变率大, 谐波含量高, 需要配置 专门的滤波电路以降低谐波对系统造成的不良影响。
(4) 两电平和三电平电压源换流器中, 一般数个开关器件组成一个阀段, 数个阀 段级联成工程所需的换流阀, 换流阀采用悬吊方式。 造成现场安装要求很高, 同时也给 设备检修带来不便, 降低了工作效率和可操作性。 发明内容
针对现有技术的不足, 本发明提供一种基于全控器件的电压源换流器的子模块单 元, 基于此子模块单元的电压源换流器高度模块化、 对开关器件参数不敏感、 输出电压 变化率低、 设备 dv/dt应力小、 噪声低、 无需滤波器、 安装与检修方便。
本发明提供的一种基于全控器件的电压源换流器的子模块单元,所述电压源换流器 为三相六桥臂结构, 每个桥臂包括 N个串联的子模块单元; 其改进之处在于, 所述子模 块单元包括电容器、半桥结构的 IGBT模块、 主支撑结构、支撑板、连接水管和散热器; 所述电容器和所述半桥结构的 IGBT模块并联, 构成电力元器件;
所述主支撑结构用来支撑子模块单元的电力元器件、 支撑板、 连接水管和散热器; 所述支撑板与所述主支撑结构的底座垂直设置;所述支撑板上有两块对称设置的散 热器, 所述散热器之间通过连接水管相连;
每个子模块单元的两个 IGBT模块分别放置在两块散热器上;
每个子模块单元的电容器通过螺栓固定在所述主支撑结构的底座上。
其中, 所述子模块单元的半桥结构的 IGBT模块替换 H桥结构的 IGBT模块。 其中, 所述子模块单元包括并联的晶闸管和真空开关; 所述晶闸管与所述子模块单 元的下管 IGBT并联;
所述晶闸管压装于子模块单元的电容器的正负出线母排间;
所述真空开关通过螺栓固定在所述支撑板上。
其中, 所述子模块单元包括取能电源和二次控制系统; 所述取能电源从所述子模块 单元的电容器取能, 为所述二次控制系统供电; 所述二次控制系统用于控制所述子模块 单元的 IGBT模块、 真空开关和晶闸管;
所述取能电源放置于真空开关下面; 所述取能电源用金属外壳封装, 其外壳与所述 主支撑结构接触, 用于保证等电位;
所述二次控制系统位于所述取能电源上面,所述二次控制系统的外壳与所述主支撑 结构接触, 用于保证等电位。
其中, 所述子模块单元包括两个串联的均压电阻; 所述均压电阻放置在所述散热器 上, 与 IGBT异侧。
其中, 所述支撑板上通过螺栓固定所述散热器。
其中, 所述散热器一侧加装有防爆板。
其中, 所述二次控制系统为集成板卡, 其用金属外壳封装。
其中, 所述主支撑结构上设计有吊装孔, 用于吊装运输。 其中, 所述子模块单元包括封装外壳, 其四周边框分别与所述主支撑结构连接。 其中, 所述封装外壳表面做防腐处理。 与现有技术比, 本发明的有益效果为:
( 1 ) 本发明自成电气系统, 可根据系统需要进行扩展;
(2) 本发明结构上独立, 方便安装及运输;
(3) 本发明各个组成部分安装清晰, 方便拆卸更换;
(4) 本发明二次控制系统为集成系统, 减少了接线难度, 也易于拆卸更换; 同时 其其外壳用金属封装, 有效地对外进行电磁屏蔽;
(5) 本发明的取能电源不需要附加外置电源, 直接从电力电子电容器取能;
(6) 本发明用外壳进行封装, 既达到电磁屏蔽效果, 同时也美观。
(7 ) 基于本发明的电压源换流器高度模块化、 对开关器件参数不敏感、 输出电压 变化率低、 设备 dv/dt应力小、 噪声低、 无需滤波器、 安装与检修方便。
附图说明
图 1为本发明提供的电压源换流器中的子模块单元的电气原理图。 图中, 1,2为子 模块的引出端; K为真空开关、 T为晶闸管; GDU为二次控制系统; PW为取能电源; IGBT(Sl)与其内置的二极管 D1构成的 IGBT模块; IGBT(S2)与其内置的二极管 D2构 成的 IGBT模块; Rl、 R2为均压电阻; C为电容器。
图 2为本发明提供的子模块单元的主视图。 图中, 1为封装外壳; 2为子模块电容 器。
图 3为本发明提供的子模块单元除去外壳的主视图。 图中, 3为取能电源; 4为二 次控制系统; 5为主支撑结构。
图 4为本发明提供的子模块单元的左视图。 图中, 6为真空开关。
图 5为本发明提供的子模块单元的俯视图。 图中, 7为晶闸管; 8为支撑板; 9为连 接水管; 10为散热器; 11为 IGBT模块。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
本实施例的电压源换流器的子模块单元采用独立控制方式,子模块单元的电气原理 图如图 1所示, 此为半桥结构的 IGBT模块和电容器并联结构, 本实施例定为半桥结构 或 H桥结构上半部分为上管 IGBT模块, 例如图 1中的 IGBT (SI ) 和内置二极管 D1 并联构成的 IGBT模块为上管 IGBT模块(可简称上 IGBT), 半桥结构或 H桥结构下半 部分为下管 IGBT模块, 例如图 1中的 IGBT (S2) 和内置二极管 D2并联构成的 IGBT 模块为下管 IGBT模块 (可简称下 IGBT)。 2个全控器件的开断也是通过二次控制系统 分别进行控制, 两者交替工作。 当全控器件上管 IGBT模块导通时, 则该子模块单元输 出电压为电容器电压, 即为高电平; 当全控器件下管 IGBT导通时, 则该子模块单元输 出电压为零电平。 这种工作方式为模块化多电平奠定了基础, 当多个该子模块单元进行 级联时, 通过对各个子模块单元的工作状态进行控制, 则输出电压可为多电平。
同时, 为了防止系统发生故障时, 全控器件通过的故障电流会产生较高温度而使全 控器件烧毁, 所以将一保护晶闸管并联于下管 IGBT模块两端, 可以起到分流的作用。
为了均衡子模块级联时电容器上的电压, 避免电容器由于分压不均匀造成损坏, 在 子模块电容器两端并联一组串联的均压电阻。
另外, 该子模块单元不可避免发生故障, 为了不影响其它基本功能单元的工作, 将 一真空开关并联于引出端, 对该基本功能单元进行旁路短接。
并且, 该子模块单元电气及结构上为独立单元, 对外 2个接口, 方便扩展。
本实施例在此子模块结构的情况下, 还包含用于其支撑的装置, 使电压源换流器高 度模块化、 对开关器件参数不敏感、 输出电压变化率低、 设备 dv/dt应力小、 噪声低、 无需滤波器、 安装与检修方便, 如图 2-图 5所示。 支撑装置包括主支撑结构、 支撑板、 连接水管和散热器, 具体的:
如图 2所示, 为子模块单元的主视图, 其整体的装置通过封装外壳封装。 1为封装 外壳; 2为电容器。 封装外壳四周分别与所述主支撑结构连接。 所述封装外壳表面做防 腐处理, 但螺栓连接处不作处理, 以便与主支撑结构保持等电位。
如图 3所示, 为子模块单元除去外壳的主视图。 图中, 主支撑结构用来支撑所有部 件, 所有承重机构都与其用紧固件进行连接。 同时为保证电气上的安全性, 所有带电单 元的负极及电气悬浮金属外壳都与主支撑结构直接或间接进行电气连接, 保证等电位。 为了方便基本功能单元的吊装运输, 主支撑结构上设计吊装孔, 用于吊装运输。 所述支 撑板与所述主支撑结构的底座垂直设置;所述支撑板上通过螺栓固定有两块对称设置的 散热器, 散热器一侧加装有防爆板, 两块散热器之间通过连接水管相连。
电压源换流器的每个子模块单元的上下 IGBT模块结构上面对面放置, 分别竖直紧 贴在 2个散热器上。全控性器件之间保证所需的安全绝缘间隙, 为了充分利用空间及接 线方便, 将全控器件驱动板固定在散热器上, 与 IGBT模块异侧。 此外为了防止意外发 生, 在其中一全控器件一侧加装了防爆装置。 同时该防爆装置也可以用来电磁屏蔽, 防 止外界对全控器件驱动板的电磁干扰。该防爆装置也与主支撑结构保持可靠的等电位连 接, 用螺钉将两者固定。
每个子模块单元的电容器的底部通过螺栓固定在所述主支撑结构的底座上。
子模块单元的晶闸管压装于子模块电容器的正负出线母排间,它通过压装工艺安装 于电容器正负极母排间, 这样有效利用并大大地节省了空间。
子模块的真空开关电气上并联于基本功能单元的正负极出线之间,其作用是当该子 模块出现故障时能快速地将其旁路, 而不影响其他功能单元的正常工作, 动作时间为毫 秒级。 为了达到较好的外观及均匀电场的效果, 用两个连接母排并联到正负出线母排, 将其底部用螺栓固定于支撑板上, 既保证了抗震效果, 电气上也与支撑板等电位。
子模块单元的取能电源从电容器上取能, 然后转换成所需的各种电压, 其置于主支 撑结构的底部, 所述取能电源用金属外壳封装, 其外壳与所述主支撑结构接触, 用于保 证等电位。
子模块单元的二次控制系统集成在一个 PCB板上, 将其固定于专门设计的导槽上, 位于所述取能电源的上面。 当 PCB板卡需要更换时只需向外抽出即可, 方便快捷。 同 时为了屏蔽电磁干扰, 外部用金属外壳封装。 封装盒可以单独从模块单元取出, 方便更 换。 外壳与主支撑结构进行可靠的等电位连接。
二次控制系统的取能电源直接从电力电子电容器取能,采取专门设计的电路板变压 以输出控制所需的多种电压。其采用与二次控制系统相似的安装方式, 即设计抽插式的 电源盒, 外部为屏蔽金属壳。 整体可以从模块单元方便快捷取出, 电源板卡也方便从盒 中抽出及安装。
子模块单元的均压电阻放置在所述散热器上, 与 IGBT异侧。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管 参照上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然 可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任 何修改或者等同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求
1、 一种基于全控器件的电压源换流器的子模块单元, 所述电压源换流器为三相六 桥臂结构, 每个桥臂包括 N个串联的子模块单元; 其特征在于, 所述子模块单元包括电 容器、 半桥结构的 IGBT模块、 主支撑结构、 支撑板、 连接水管和散热器; 所述电容器 和所述半桥结构的 IGBT模块并联, 构成电力元器件;
所述主支撑结构用来支撑子模块单元的电力元器件、 支撑板、 连接水管和散热器; 所述支撑板与所述主支撑结构的底座垂直设置;所述支撑板上有两块对称设置的散 热器, 所述散热器之间通过连接水管相连;
每个子模块单元的两个 IGBT模块分别放置在两块散热器上;
每个子模块单元的电容器通过螺栓固定在所述主支撑结构的底座上。
2、 如权利要求 1所述的子模块单元, 其特征在于, 所述子模块单元的半桥结构的 IGBT模块替换 H桥结构的 IGBT模块。
3、 如权利要求 1所述的子模块单元, 其特征在于, 所述子模块单元包括并联的晶 闸管和真空开关; 所述晶闸管与所述子模块单元的下管 IGBT并联;
所述晶闸管压装于子模块单元的电容器的正负出线母排间;
所述真空开关通过螺栓固定在所述支撑板上。
4、 如权利要求 1所述的子模块单元, 其特征在于, 所述子模块单元包括取能电源 和二次控制系统; 所述取能电源从所述子模块单元的电容器取能, 为所述二次控制系统 供电; 所述二次控制系统用于控制所述子模块单元的 IGBT模块、 真空开关和晶闸管; 所述取能电源放置于真空开关下面; 所述取能电源用金属外壳封装, 其外壳与所述 主支撑结构接触, 用于保证等电位;
所述二次控制系统位于所述取能电源上面,所述二次控制系统的外壳与所述主支撑 结构接触, 用于保证等电位。
5、 如权利要求 1所述的子模块单元, 其特征在于, 所述子模块单元包括两个串联 的均压电阻; 所述均压电阻放置在所述散热器上, 与 IGBT异侧。
6、 如权利要求 1或 3所述的子模块单元, 其特征在于, 所述支撑板上通过螺栓固 定所述散热器。
7、 如权利要求 1、 5或 6任一所述的子模块单元, 其特征在于, 所述散热器一侧加 装有防爆板。
8、 如权利要求 4所述的子模块单元, 其特征在于, 所述二次控制系统为集成板卡, 其用金属外壳封装。
9、 如权利要求 1或 4所述的子模块单元, 其特征在于, 所述主支撑结构上设计有 吊装孔, 用于吊装运输。
10、如权利要求 1所述的子模块单元,其特征在于,所述子模块单元包括封装外壳, 其四周边框分别与所述主支撑结构连接。
11、 如权利要求 10所述的子模块单元, 其特征在于, 所述封装外壳表面做防腐处 理。
PCT/CN2013/087418 2012-12-10 2013-11-19 一种基于全控器件的电压源换流器的子模块单元 WO2014090071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210530821.7 2012-12-10
CN201210530821.7A CN103036452B (zh) 2012-12-10 2012-12-10 一种基于全控器件的电压源换流器的子模块单元

Publications (1)

Publication Number Publication Date
WO2014090071A1 true WO2014090071A1 (zh) 2014-06-19

Family

ID=48023017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087418 WO2014090071A1 (zh) 2012-12-10 2013-11-19 一种基于全控器件的电压源换流器的子模块单元

Country Status (2)

Country Link
CN (1) CN103036452B (zh)
WO (1) WO2014090071A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089570A4 (en) * 2013-12-26 2017-07-05 Hyosung Corporation Modular cooling apparatus for high-voltage direct-current transmission system
CN107511560A (zh) * 2017-09-11 2017-12-26 上海和宗焊接设备制造有限公司 一种手持式电焊机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036452B (zh) * 2012-12-10 2015-03-25 国网智能电网研究院 一种基于全控器件的电压源换流器的子模块单元
CN104426403B (zh) * 2013-09-09 2017-05-17 南京南瑞继保电气有限公司 一种适用于大容量模块化多电平电压源换流器的模块单元
CN103633819B (zh) * 2013-11-08 2016-04-20 国家电网公司 一种基于全控器件的电压源换流器子模块单元支撑架
KR101572560B1 (ko) * 2013-12-26 2015-12-11 주식회사 효성 초고압 직류 송전시스템의 모듈장치
CN105743324A (zh) * 2014-12-11 2016-07-06 南京南瑞继保电气有限公司 一种板卡可插拔式柔性直流输电功率模块
CN106787817B (zh) * 2016-11-08 2019-02-22 中车株洲电力机车研究所有限公司 模块化多电平换流器的子模块及模块化多电平换流器
KR102030727B1 (ko) * 2018-03-26 2019-10-10 엘에스산전 주식회사 서브모듈
CN112532072B (zh) * 2020-03-26 2022-03-29 南京南瑞继保电气有限公司 模块化多电平子模块、阀塔及交流耐压测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795064A (zh) * 2010-03-11 2010-08-04 荣信电力电子股份有限公司 一种基于iegt的功率相模块
CN102163907A (zh) * 2011-01-28 2011-08-24 中国电力科学研究院 一种基于全控器件的电压源换流器基本功能单元
CN102170140A (zh) * 2011-04-21 2011-08-31 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的起动方法
WO2012136467A2 (de) * 2011-04-07 2012-10-11 Siemens Aktiengesellschaft Zweiteilige stromrichterzelle
CN103036452A (zh) * 2012-12-10 2013-04-10 国网智能电网研究院 一种基于全控器件的电压源换流器的子模块单元

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151198A (en) * 1998-11-18 2000-11-21 International Business Machines Corporation Overmolding of actuator E-block by thixotropic or semisolid forging
CN101860246A (zh) * 2010-04-16 2010-10-13 常州佳讯光电产业发展有限公司 光伏逆变器逆变单元模块化结构装置
CN102118019B (zh) * 2011-01-14 2014-02-12 中国电力科学研究院 一种模块化多电平换流器子模块控制保护方法
CN102130609B (zh) * 2011-03-10 2014-12-17 中国电力科学研究院 一种基于半桥电路的vsc基本功能单元的绝缘配合方法
CN102130619B (zh) * 2011-03-21 2014-07-02 中国电力科学研究院 一种模块化多电平变流器的均压控制方法
CN102354955B (zh) * 2011-07-22 2014-11-05 中国电力科学研究院 一种模块化多电平换流器的保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795064A (zh) * 2010-03-11 2010-08-04 荣信电力电子股份有限公司 一种基于iegt的功率相模块
CN102163907A (zh) * 2011-01-28 2011-08-24 中国电力科学研究院 一种基于全控器件的电压源换流器基本功能单元
WO2012136467A2 (de) * 2011-04-07 2012-10-11 Siemens Aktiengesellschaft Zweiteilige stromrichterzelle
CN102170140A (zh) * 2011-04-21 2011-08-31 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的起动方法
CN103036452A (zh) * 2012-12-10 2013-04-10 国网智能电网研究院 一种基于全控器件的电压源换流器的子模块单元

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089570A4 (en) * 2013-12-26 2017-07-05 Hyosung Corporation Modular cooling apparatus for high-voltage direct-current transmission system
US10231363B2 (en) 2013-12-26 2019-03-12 Hyosung Heavy Industries Corporation Modular cooling apparatus for high-voltage direct-current transmission system
CN107511560A (zh) * 2017-09-11 2017-12-26 上海和宗焊接设备制造有限公司 一种手持式电焊机

Also Published As

Publication number Publication date
CN103036452A (zh) 2013-04-10
CN103036452B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2014090071A1 (zh) 一种基于全控器件的电压源换流器的子模块单元
US9373995B2 (en) Basic function unit of voltage-source converter based on full-controlled devices
CN103296907B (zh) 多重化逆变器及有源电力滤波系统
CN203405559U (zh) 电能回馈型电子负载
US20130234636A1 (en) Split laminated dc bus structure
CN104052079A (zh) 电能回馈型电子负载
CN102158057B (zh) 一种模块化功率柜
CN106026693A (zh) 一种高集成变流器模块
Gao et al. Control of parallel-connected modular multilevel converters
CN103532402A (zh) 一种电源配电系统及方法
CN1858955A (zh) 串联型电压质量扰动发生装置
CN102104332A (zh) 集成化大功率斩波器及高频开关电源
CN104734467A (zh) 吊装式层叠结构功率模块
CN104935205A (zh) 牵引传动系统用变压器
CN105743324A (zh) 一种板卡可插拔式柔性直流输电功率模块
CN103354231B (zh) 一种igbt功率单元及用于柔性直流输电的子模块
CN103138622A (zh) 辅助电源系统和电力机车
CN103166478B (zh) 一种高压集成门极换向晶闸管五电平功率柜
UA124032C2 (uk) Чотириквадрантний силовий модуль
CN105553243A (zh) 对称式电容板及三相变频器
CN210898534U (zh) 有源电力滤波柜体
CN109962481B (zh) 一种三相独立式三电平并联型有源电能质量装置
CN206948207U (zh) 一种三相电力专用逆变电源
CN207150445U (zh) 一种大功率前维护式换流阀功率单元结构
CN102118113B (zh) 一种整流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862888

Country of ref document: EP

Kind code of ref document: A1