WO2014090037A1 - 云计算中的任务调度方法及系统 - Google Patents

云计算中的任务调度方法及系统 Download PDF

Info

Publication number
WO2014090037A1
WO2014090037A1 PCT/CN2013/085186 CN2013085186W WO2014090037A1 WO 2014090037 A1 WO2014090037 A1 WO 2014090037A1 CN 2013085186 W CN2013085186 W CN 2013085186W WO 2014090037 A1 WO2014090037 A1 WO 2014090037A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacterial
individual
task
current
bacteria
Prior art date
Application number
PCT/CN2013/085186
Other languages
English (en)
French (fr)
Inventor
李明俐
任建丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020157018393A priority Critical patent/KR101942617B1/ko
Priority to US14/650,747 priority patent/US10127085B2/en
Publication of WO2014090037A1 publication Critical patent/WO2014090037A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5066Algorithms for mapping a plurality of inter-dependent sub-tasks onto a plurality of physical CPUs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals

Definitions

  • the present invention relates to the field of cloud computing, and in particular to a task scheduling method and system in cloud computing.
  • BACKGROUND Cloud computing is a business computing model that provides infrastructure, platforms, and software. It distributes computing tasks across resource pools of large numbers of computers, enabling applications to acquire computing power, storage space, and information services as needed.
  • the basic principle of cloud computing is to automatically split a large number of computational processing tasks into a myriad of smaller subtasks through a network, and then submit a huge system composed of multiple servers. After searching, calculating and analyzing, the processing results are returned. To the user, the network that provides these resources is called the "cloud.”
  • the services provided by cloud computing are very large, so the number of tasks in the "cloud” is also very large.
  • the main technical problem to be solved by the present invention is to provide a task scheduling method and system in cloud computing, which can well meet the needs of users.
  • the present invention provides a task scheduling method in cloud computing, including: parameterizing feature information of a task; classifying the task; and calculating the best by a bacterial foraging algorithm according to the classification result a working node; performing the task through the best working node.
  • calculating the optimal working node by the bacterial foraging algorithm according to the classification result comprises: encoding the parameterized feature information of the task according to the classification result to obtain the encoded feature Information; select N from the working node as the bacterial individual i to initialize the bacterial group, l ⁇ i ⁇ N ; according to the algorithm decoding library, respectively decode the encoded characteristic information corresponding to each bacterial individual; calculate the individual bacteria Fitness value; performing bacterial tendency operation on each bacterial individual; performing bacterial individual copying operation; performing migration operation of individual bacteria; determining whether the currently obtained optimal bacterial individual reaches the expected value of the user, and if so, selecting the corresponding work of the individual bacteria
  • the node acts as the best working node; otherwise, it returns the step of calculating the fitness value of each individual of the bacteria.
  • the method further comprises: performing a quorum sensing operation on each bacterial individual.
  • performing a quorum sensing operation on each bacterial individual comprises: determining a bacterial individual sequence/ ⁇ - ⁇ that is optimally located in the bacterial population, storing its position and fitness value; determining that the bacterial population is to be Searching the bacterial individual sequence I; in the / £ - ⁇ , selecting a number J raêt rf ; traversing the / £ — ⁇ , determining the position of the ⁇ in the / £ - ⁇ ⁇ ; Traversing the individual bacteria in the I, finding the starting position of the J raêt rf in the I, and replacing it with the number of the ⁇ ; the current position of the current bacterial individual and the bacteria in the Individuals compare, if the current bacterial individual's new position is better, the optimal bacterial individual is updated to the current bacterial individual
  • the optimal bacterial individual is updated to the current bacterial individual, and the optimal fitness value of the bacterial group is updated accordingly as follows: If J ! (7 + 1, ⁇ /)>J ⁇ (7, ⁇ /)
  • ⁇ U + 1, /) (j + l,k,l) + C cc x ( ⁇ " (j,k,l)- (j,k, /))
  • + ⁇ ' is the current bacterial individual i update position after quorum sensing
  • J j + ⁇ ,k,l) is the fitness value of the current bacterial individual i
  • ⁇ o, z is the position and adaptation of the bacterial individual b which is the optimal position of the current bacterial group Degree value
  • C ⁇ is the attraction factor, which determines the stride of the individual bacteria swimming toward the optimal position of the group history.
  • the current bacterial individual is the speed after the dth trending operation
  • is the inertia weight, so that the bacteria maintain the motion inertia and expand the search space
  • w indicates the current bacterial individual i through the d-1th trend Speed after operation
  • is the acceleration constant; is a pseudo-random number uniformly distributed in the interval [0, 1]; is the velocity of the individual i of the bacteria
  • ⁇ ( ⁇ ) is the position of the bacterial individual b with the optimal position of the current bacterial group
  • + ⁇ ⁇ ) is the position of the current bacterial individual i after the d-1th directional operation
  • the directional operation of the current bacterial individual i is as follows:
  • C(Ji,l, L init / n k "-, C ⁇ :, /) indicates the first step of bacterial replication, the trending step size of the first migration;
  • L mM is the initial trend step;
  • n is the parameter that controls the step gradient;
  • ⁇ (0 represents the rotation vector, the value range is [-U].
  • the fitness value is calculated as follows:
  • J' u + ⁇ ,k,i) fu, k,i)+ J cc ( ⁇ ' u + ⁇ ,k,i),p(j+i, k,i))
  • the bacterial individual i performs the update position after the j+1th directional operation; p + , z ) is the individual position in the bacterial group after the j+1th directional operation of the bacterial individual i; the jth time for the bacterial individual i Individual positions in the bacterial population after the operation; ⁇ and ⁇ indicate and release rates, respectively; and 1 indicate the influence of the number of release factors and the release position on the clustering of the bacterial population,
  • the clustering influence coefficient, ⁇ - ) 2 indicates the variance of the position of the i-th bacteria, indicating the m-th dimension of the position of the bacterial group, indicating the m-th dimension of the position of the i-th bacteria, and D indicating the dimension of the bacterial search environment.
  • the number ⁇ , ⁇ [ ⁇ (- ⁇ 1 _ ) 2 ] indicates the repellency effect of the position of the i-th bacterium on the bacterial population.
  • the characteristic information of the task includes the number of CPUs and memory. At least one of a bandwidth, a resource cost, and a reciprocal of the failure rate.
  • the task is classified into a plurality of evaluation indicators according to the priority of each task and/or each task. Each task is classified.
  • the evaluation index of the task execution is task completion time, network bandwidth, resource cost or reliability parameter. To solve the above problem, the present invention also provides a cloud.
  • the task scheduling system in the calculation comprises: a user task information group processing module, configured to parameterize the feature information of the task; a task classification module, configured to classify the task; a resource allocation and scheduling module, set to be classified according to the classification
  • the optimal working node is calculated by the bacterial foraging algorithm; the node management module is configured to deploy the task to the best The working node performs the task by using the best working node.
  • the resource allocation and scheduling module calculates an optimal working node by using a bacterial foraging algorithm according to the classification result:
  • the classification result is obtained by encoding the parameterized feature information of the task to obtain the encoded feature information; selecting N from the working node as the bacterial individual i to initialize the bacterial group, l ⁇ i ⁇ N ; decoding the library according to the algorithm Decoding each encoded individual with corresponding encoded feature information; calculating the appropriateness of each bacterial individual
  • the value of the bacteria should be carried out for each bacterial individual; the individual copying operation of the bacteria; the migration operation of the individual bacteria; the determination of whether the currently obtained optimal bacterial individual reaches the expected value of the user, and if so, the corresponding work of the individual is selected.
  • the node acts as the best working node; otherwise, it returns the step of calculating the fitness value of each individual of the bacteria.
  • the resource allocation and scheduling module further comprises: performing a quorum sensing operation on each bacterial individual during the bacterial trending operation of each bacterial individual.
  • the resource allocation and scheduling module performs a quorum sensing operation on each bacterial individual, including: determining a sequence of optimal bacterial individuals/ ⁇ - ⁇ in the bacterial population, storing the position and fitness thereof a value; determining a bacterial individual sequence I in the bacterial population to be searched; in the / £ , selecting a number J rami; traversing the / ⁇ ⁇ ⁇ 3 ⁇ 4 , determining that the ⁇ traversing position in the / £ For each bacterial individual in I, find the starting position of the J rami in the I, and replace it with the number of the ⁇ ; compare the current position of the current bacterial individual with the individual bacteria in the case, If the new position of the current bacterial individual is better, the optimal bacterial individual is updated to the current bacterial individual, and the optimal fitness value of the bacterial group is updated accordingly; otherwise, the current bacterial individual is optimally oriented for the next trending operation.
  • the resource allocation and scheduling module performs a quorum sensing operation on each bacterial individual, such as finding that the current bacterial individual is paused, reselecting a direction, and searching the bacterial individual again; Or stop the search of the current bacterial individual, jump to the next bacterial individual to perform the search operation.
  • the speed after the dth trending operation ⁇ is the inertia weight, which makes the bacteria maintain the motion inertia and expand the search space; w represents the speed of the current bacterial individual i after the d-1th directional operation; Acceleration constant; is a pseudo-random number that is uniformly distributed in the interval [0, 1]; is the velocity of the individual i of the bacteria; ⁇ ( ⁇ ) is the position of the bacterial individual b with the optimal position of the current bacterial group;
  • the resource allocation and scheduling module performs a directional operation on the current bacterial individual i.
  • ⁇ , (j + 1, k, /) ⁇ (j, k, /) + C ⁇ k, /) ⁇ (7')
  • CiJ ⁇ LJn '- 1 , C ⁇ , /) The first step of bacterial replication, the trending step of the first migration; ,, is the initial trend step; n is the parameter that controls the step gradient;
  • the fitness value is calculated as follows:
  • J' (7 + ⁇ ,k,l) (j, k,l) + J cc (ff (j + ⁇ ,k,l), P(j + ⁇ ,k, /))
  • ⁇ (', ⁇ ,/) is the z-th order of bacteria i, The fitness value after the kth copy operation and the /migration operation; K ⁇ + ⁇ + 'O is the inter-individual sensitivity value of the bacteria i; ⁇ +1 /) is the j+i time for the bacterial individual i
  • the update position after the operation; P + ⁇ is the individual position in the bacterial group after the j+1th trending operation for the bacterial individual i; and the individual position in the bacterial group after the jth trending operation for the bacterial individual i; ⁇ and 1 ⁇ represent the number of attracting factors and the
  • the characteristic information of the task includes the number of CPUs and memory. At least one of a bandwidth, a resource cost, and a reciprocal of the failure rate.
  • the task is classified into a plurality of evaluation indicators according to the priority of each task and/or each task. Each task is classified.
  • the evaluation index of the task execution is task completion time, network bandwidth, resource cost or reliability parameter.
  • the beneficial effects of the present invention are:
  • the task scheduling method and system in cloud computing provided by the present invention parameterizes the feature information of the task; then classifies each task, and calculates the best working node by the bacterial foraging algorithm according to the classification result, which is the most The good working node can match the task.
  • the invention utilizes the bacterial foraging algorithm to realize the task scheduling and resource allocation problem in the cloud computing, so that the cloud computing has the advantages of group intelligence parallel search, easy jumping out of the local minimum value, and the like, and helps to maintain the cloud.
  • the diversity of task groups in the calculation better meet the needs of users and improve the satisfaction of user experience.
  • 1 is a schematic structural diagram of a task scheduling system in cloud computing according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a task scheduling method in cloud computing according to an embodiment of the present invention
  • Schematic diagram of the bacterial foraging algorithm flow
  • FIG. 4 is a flow chart of the trending operation in the bacterial foraging algorithm of the embodiment of the present invention
  • FIG. 5 is a flow chart of the copy operation in the bacterial foraging algorithm of the embodiment of the present invention
  • the bacterial foraging algorithm is a novel biomimetic random search algorithm, and its biological basis is The intelligent behavior of E. coli during the foraging process.
  • a control system of E. coli itself guides its behavior in the process of searching for food, including three steps of trending, copying and migrating (also known as eliminating a dispersal), and evaluating the effect of each state change, and then One step activity provides information. Under the control of this system, E. coli will gradually approach the direction of the food source.
  • the search process judges the pros and cons of the search algorithm through the nutrient distribution function.
  • the solution of the optimization problem corresponds to the state of the bacteria in the search space, that is, the fitness value of the optimization function.
  • ⁇ ⁇ ⁇ > indicates the position of the bacteria i after the jth directional operation, the kth copy operation, and the 1st migration operation.
  • the entire life cycle of the directional operation of E. coli is to change between the basic movements of swimming and rotation to find food and avoid toxic substances. Simulating this phenomenon in the bacterial foraging algorithm is called directional operation.
  • the directional operation makes BBFA have local mining ability, which determines the direction of the algorithm and the level of detail in a certain area.
  • ⁇ ( > , represents the rotation vector, which has a value range of [-1,1].
  • the same new individual that is, the generated new individual has the same position as the original individual, or the number of bacterial populations S having the same copying operation does not change.
  • you can also refer to other evolutionary algorithms when designing the algorithm consider various other retention methods, and mix various retention methods to improve the performance of the algorithm, such as: Roulette Bet method, ( ⁇ + ⁇ ) method, league method, steady state method, scale conversion and sorting method, sharing method, etc.
  • migration operation The local area where the individual organisms of the migratory operation may suddenly change (eg sudden rise in temperature) or gradually change (eg consumption of food), which may result in collective death of the bacterial population living in this local area. , or collective migration to a new local area. Simulating this phenomenon in the bacterial foraging optimization algorithm is called migration operation.
  • Migration operations occur with a certain probability. Given a probability ped, if a bacterial individual in the population satisfies the probability of migration, the bacterial individual perishes and randomly generates a new individual at any location in the solution space, which may be different from the perishing individual. Location, ie different foraging ability.
  • the task scheduling system in the cloud computing includes: a user task information group processing module, configured to store feature information of the task group, and parameterize the feature information of the task, that is, the feature information of the task is based on A certain encoding rule is encoded and recorded in the task information database.
  • the feature information of the task in this embodiment may be measured by at least one of the CPU, the number of memory, the bandwidth, the resource cost, and the reciprocal of the failure rate.
  • the task parsing module is configured to decode the library by the algorithm, corresponding to each target bacterial individual, and decode the feature information of the task; the task classification module is set to classify the task, and specifically can be judged by the priority of each task and/or the execution of each task.
  • the indicators classify each task; for example, when each task has priority, it can be classified according to the priority of each task; when not, the tasks can be classified according to the evaluation indicators executed by each task; The priority of each task and the evaluation indicators for each task are classified into tasks.
  • the evaluation index in this embodiment can be combined with the priority of the task and the quality of service (Qos) of the user to ensure the CPU, the number of memory, the bandwidth, the resource cost, and the reciprocal of the failure rate.
  • the resource allocation and scheduling module is set to calculate the best working node by the bacterial foraging algorithm according to the classification result; the cloud control module: the cloud control module is the central nervous system of the whole system, respectively, and the resource allocation and scheduling module, the resource monitoring module, The node management module is connected and set to control management of the entire cloud computing network. For example: Notifying each working node to deploy the scheduled task to the local; feeding back the results monitored by the resource monitoring module to the resource allocation and scheduling module.
  • the cloud control module feeds back the failure information; if the real-time migration is successful, the migration success information is fed back to the cloud control module.
  • the node management module is configured to deploy the corresponding task to the best working node calculated by the resource allocation and scheduling module, and execute the task through the optimal working node.
  • the resource monitoring module is configured to monitor whether the assigned task is successfully executed, and feedback the monitored information to the cloud control module in real time, so that the cloud control module notifies the resource allocation and scheduling module to reclaim resources, or re-executes tasks and working node resources. match. Based on the above system, the present invention will be further described below in conjunction with the complete task scheduling allocation process.
  • Step 201 Parameterize the feature information of the task
  • Step 202 Classify the task
  • Step 203 According to the classification
  • the optimal working node is calculated by the bacterial foraging algorithm
  • the task is performed by the optimal working node.
  • the method may further include the step 200: sorting the tasks of the user according to the priority.
  • the method may further include: monitoring the assigned task and performing resource recovery according to the monitoring result or returning to step 203 to re-allocate the working node resource, and step 204-206 in FIG.
  • step 201 parameterizing the feature information of the task, that is, the feature information of the task is encoded according to a certain coding rule, and recorded in the task information database; according to the cloud computing model
  • the feature information of the task in this embodiment may be represented by at least one attribute information of a computing node resource computing capability and a communication capability, such as a CPU, a memory number, a bandwidth, a resource cost, and a reciprocal of a failure rate.
  • step 202 classifying the tasks, the tasks may be classified by the priority of each task and/or the evaluation indicators executed by the tasks; the following is a description of the classification according to the evaluation indicators executed by the tasks.
  • the evaluation index in this embodiment can be combined with the CPU, the number of memory, the bandwidth, the resource cost, and the reciprocal of the failure rate to ensure the task priority and the user service quality (Qos) guarantee.
  • Task completion time, network bandwidth, resource cost, or reliability parameters can be expressed as follows: Suppose a virtual machine working node i resource ⁇ , the feature set is:
  • represents a dimensional diagonal matrix, which represents the CPU, the number of memory, the bandwidth, the resource cost, and the reciprocal of the failure rate, and other attribute information that can measure the computing power and communication capability of the node.
  • the working node resource ⁇ the performance description matrix vector is:
  • the task execution evaluation index can adopt task completion time, network bandwidth, resource cost, reliability parameter, etc. If the task completion time is adopted, the evaluation indicator description includes start time, total completion time, end time, etc., and the task is selected when used. Time is used as a criterion for evaluation.
  • some classical clustering algorithms can be used, such as C-means, K-nearest neighbors, etc.
  • step 203 See Figure 3, According to the classification result, the optimal working node is calculated by the bacterial foraging algorithm.
  • Step 301 According to the classification result, the parameterized feature information is encoded to obtain the encoded feature information; the coding mode may adopt binary coding or real coding. , any method such as sequence coding, general data structure coding, etc.; Step 302: Select N from the working node as the bacterial individual i to initialize the bacterial group, l ⁇ i ⁇ N; the size of the bacterial population size N affects the performance of the BFOA.
  • the population size is small, BFOA calculation speed is fast, but the diversity of population is reduced, which affects the optimization performance of the algorithm.
  • the population size is large, and there are many regions in the initial distribution of individuals, and the chance of approaching the optimal solution is higher.
  • N may be randomly selected based on the classification result of the task and the actual situation of each working node and the current number of tasks in the task group: the value of the selected N may be the number of current tasks in the task group, or may be It is N working nodes that are selected and determined for one or more tasks in the task group. That is, in this embodiment, all tasks in the task group may be scheduled at the same time, or one or more tasks in the task group may be scheduled at one time.
  • Step 303 Decode the corresponding encoded feature information of each bacterial individual according to the algorithm decoding library.
  • Step 304 Calculate the fitness value of each bacterial individual.
  • the current bacterial individual i (l ⁇ i ⁇ N) After performing the directional operation, calculate the fitness value as follows:
  • ⁇ - ⁇ :! Indicates the influence of the location of the first bacteria on the clustering of the bacterial population, e X p(-v aflr j (-ff indicates the coefficient of influence of the position of the i-th bacterial on the cluster of bacteria, j (; - ) 2 indicates The variance of the position of the i-th bacterium indicates the m-th dimension of the position of the bacterial group, indicating the m-th dimension of the position of the i-th bacterium, and D indicates the dimension of the bacterial search environment. ⁇ [ ⁇ (-> ⁇ 1 _ ) 2 ] indicates the repellency effect of the location of the i-th bacterium on the bacterial population.
  • Step 305 Perform bacterial tropism on each individual bacterial organism.
  • C()>0 indicating bacteria
  • the following methods can be used to perform the trend operation on the current bacterial individual i: ⁇ , (7 + 1, ⁇ , /)- ⁇ . (7, k,l) + C ⁇ k, l) (j) where: C(Ji,l, C ⁇ , /) indicates the step of the first replication of the bacteria, the trending step of the first migration; is the initial trend step; n is the parameter that controls the gradient of the step; ; represents the rotation vector, the value range is [-1] ,1].
  • Step 410 Perform a quorum sensing operation on the bacteria individual
  • Step 411 Store the fitness value of the new location as the current best fitness value
  • Step 412 Adjust the step size, specifically adopting dynamic adjustment, in the random direction Continue swimming, go to step 406
  • Step 414 End. Since the original BFO algorithm searches for the solution space, an inter-individual sensing mechanism is employed. In this way, when the task individual performs the trend operation, the sensed value of the task is superimposed on the fitness value. This inter-individual sensing mechanism helps to maintain the diversity of the task group in the cloud computing, and increases the task group to jump out of the local part.
  • the optimal possibility but it is also possible to dissipate the near-optimal task individual, causing the optimization process to be delayed.
  • Many task individuals are assigned to the vicinity of the global optimal resources, but because of the increase in the number, the concentration of the exclusion factor generated in the region increases, but the best-performing task individual may be expelled from the optimal region, resulting in a decrease in accuracy. Therefore, in the present embodiment, during the trending operation of each bacterial individual i, the quorum sensing operation (CTS cell-to-swarm) is performed before the fitness value of the new location is stored as the current best fitness value. ;), the individual bacteria perceive the surrounding environment, and try to find out if there is the best bacteria in the flora.
  • CTS cell-to-swarm the quorum sensing operation
  • the quorum sensing mechanism in this embodiment allows the bacterial individual to use the experience of the peer to guide his or her swimming route.
  • This belief attraction mechanism speeds up the global search speed in the solution space and helps the individual to jump out of the local optimum. It also avoids the possibility of bacteria escaping from the global optimal region.
  • step 410 the specific process of performing a quorum sensing operation on a bacterial individual is as follows: Step 4101: Determine the current optimal bacterial individual sequence / ⁇ 3 ⁇ 4 in the bacterial population, store its position and fitness value; Step 4102: Determine the bacterial population Sequence of bacterial individual I to be searched; Step 4103: In which, select a number; Step 4104: traversing / ⁇ - 3 ⁇ 4, J rami position determining step in / in 4105: traversing each bacterial individual I is found in the starting position 1 ⁇ will be replaced with the number; step 4106: the current The current position of the individual bacteria is evaluated based on the individual, and the step is specifically to perform an individual-based evaluation on the current position of the current bacterial individual by calculating the fitness value of the individual, so as to adjust the direction of the individual, change the step size, and sense the subsequent group.
  • Step 4107 Comparing the current position of the current bacterial individual with the individual bacterial organism, if the current bacterial individual's new position is better, the optimal bacterial individual is updated to the current bacterial individual, and the bacterial population is the most The optimal fitness value is also updated accordingly; otherwise, the current bacterial individual moves closer to the position of the optimal bacterial individual in the next directional operation; Step 4108: During the quorum sensing operation on the bacterial individual i, if the current bacterial individual is found Pause, re-select a direction, search the individual again; or stop the current bacteria Body search, skip to the next bacteria individuals search operation.
  • the individual bacteria perceive the surrounding environment, and try to find out whether the best bacteria are present in the bacterial group. If so, remember its position; otherwise, remember its current position. At the next trending operation, the bacteria move closer to the position of the optimal bacterial individual each time they move to a new position.
  • OT represents the speed of the current bacterial individual i after the dth trending operation
  • is the inertia weight, which makes the bacteria maintain the motion inertia and expand the search space; indicating that the current bacterial individual i has the d-
  • the speed after 1 trending operation
  • is the acceleration constant; is the pseudo-random number of the hook distribution in the [ ⁇ , ⁇ ] interval; the velocity of the individual i of the bacteria
  • ⁇ ( ⁇ ) is the optimal bacterial position of the current bacterial group
  • the position of the individual b; e ⁇ u + ) is
  • Step 306 Performing a bacterial replication operation on each bacterial individual, and still using the retention mode of the retention elite in the present embodiment, the specific process is shown in FIG. 5: Step 500: Start; Step 501: Update the current bacterial individual i; Step 502 : judging whether the current bacterial individual i belongs to the bacterial group, if yes, go to step 503; otherwise, go to step 504: Step 503: Calculate the sum of the fitness values of all the positions that the current bacterial individual i passed in the last trending operation cycle Step 504: Sort the bacteria according to the merits of the fitness value; Step 505: Eliminate the Sr bacteria with poor fitness values, and the remaining Sr bacteria each split a new individual that is identical to oneself; Step 506: End.
  • Step 600 Start; Step 601: Update the current bacterial individual i; Step 602 : determining whether the current bacterial individual i belongs to the bacterial group, if yes, go to step 603; otherwise, go to step 605; Step 603: Determine whether randO is less than ped, if yes, go to step 604, otherwise, go to step 601; : The current bacterial individual i is extinct, a new bacterium i is randomly generated, and the process proceeds to step 601; Step 605: End.
  • Step 308 Determine whether the currently obtained optimal bacterial individual reaches the expected value of the user, and if yes, go to step 309; otherwise, go to step 310; Step 309: Select the working node corresponding to the individual bacteria as the best working node. Step 310: Retain the current optimal individual, and update the fitness value, and return to step 304.
  • the invention utilizes the bacterial foraging algorithm to realize the task scheduling and resource allocation problem in the cloud computing, so that the cloud computing has the advantages of group intelligence parallel search, easy jumping out of the local minimum value, and the like, and helps to maintain the cloud.
  • the diversity of task groups in the calculation better meet the needs of users and improve the satisfaction of user experience.
  • the present invention adjusts the step size of the bacterial swimming to a dynamic value when performing a directional operation on the individual bacteria, which can improve the global search ability in the early stage of optimization and optimize the local search ability in the later stage, which is more conducive to the improvement of the cloud computing efficiency and Increased resource utilization.
  • the present invention performs a quorum sensing operation during the tendency operation of each bacterial individual i, and the individual bacteria perceive the surrounding environment to test whether the best bacteria are present in the bacterial group. That is, the quorum sensing mechanism in this embodiment allows the bacterial individual to use the experience of the peer to guide his or her swimming route. This belief attraction mechanism speeds up the global search speed in the solution space and helps the individual to jump out of the local optimum.
  • the task scheduling method and system for cloud computing provided by the embodiments of the present invention have the following beneficial effects:
  • the scheduling of the user task group by the cloud computing has the advantages of group intelligence parallel search, easy jumping out of local minimum value, and the like. It helps to maintain the diversity of task groups in cloud computing; it can better meet the needs of users and improve the satisfaction of user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种本发明提供的云计算中的任务调度方法及系统,通过将任务的特征信息进行参数化;然后对各任务进行分类,根据分类结果,通过细菌觅食算法计算得到最佳工作节点,将该最佳工作节点与该任务进行匹配即可。可见,本发明利用细菌觅食算法来实现云计算中任务调度和资源分配问题,使得云计算对用户任务群的调度具有群体智能并行搜索、易跳出局部极小值等优点,有助于保持云计算中任务群的多样性;更能满足用户的需求,提高用户体验的满意度。

Description

云计算中的任务调度方法及系统 技术领域 本发明涉及云计算领域, 具体涉及一种云计算中的任务调度方法及系统。 背景技术 云计算是一种提供了基础设施、 平台和软件的商业计算模型。 它将计算任务分布 在大量计算机构成的资源池上, 使各种应用系统能够根据需要获取计算力、 存储空间 和信息服务。 云计算的基本原理是透过网络将庞大的计算处理任务自动分拆成无数个 较小的子任务, 再交由多部服务器组成的庞大系统, 经搜寻、 计算分析之后, 将处理 结果回传给用户, 提供这些资源的网络被称为"云"。 云计算所提供的服务面向的用户 群十分庞大, 故"云"中的任务数量也非常巨大。 因此, 任务调度和资源分配问题是决 定云计算效率的重点与难点。 但是, 目前针对云计算中任务的调度, 还没有一种较好 的算法能满足用户的需求。 发明内容 本发明要解决的主要技术问题是, 提供一种云计算中的任务调度方法及系统, 能 很好的满足用户的需求。 为了解决上述问题, 本发明提供了一种云计算中的任务调度方法,包括- 将任务的特征信息进行参数化; 对所述任务进行分类; 根据分类结果, 通过细菌 觅食算法计算得到最佳工作节点; 通过所述最佳工作节点执行所述任务。 在本发明的一种实施例中, 根据分类结果, 通过细菌觅食算法计算得到最佳工作 节点包括: 根据所述分类结果, 对所述任务经参数化的特征信息进行编码得到编码后的特征 信息; 从工作节点中选择 N个作为细菌个体 i组成初始化细菌群, l≤i≤N; 根据算法解 码库, 分别对各细菌个体对应所述编码后的特征信息进行解码; 计算各细菌个体的适 应度值; 对各细菌个体进行细菌趋向操作; 进行细菌个体复制操作; 进行细菌个体的 迁徙操作; 判断当前得到的最优细菌个体是否达到用户的期望值, 如是, 则选择该细 菌个体对应的工作节点作为最佳工作节点; 否则, 返回所述计算各细菌个体的适应度 值步骤。 在本发明的一种实施例中, 在对各细菌个体进行细菌趋向操作过程中, 还包括: 对各细菌个体执行群体感应操作。 在本发明的一种实施例中, 对各细菌个体执行群体感应操作包括: 确定细菌群体中目前位置最优的细菌个体序列 /ε—^, 存储其位置和适应度值; 确 定细菌群中将要进行搜索的细菌个体序列 I; 在所述 /£— ^中, 选定一个编号 Jrarf ; 遍 历所述 /£— ^, 确定所述 ^在所述 /£— ^中的位置 ^ ; 遍历所述 I中的各细菌个体, 找到所述 I中所述 Jrarf的起始位置, 将其与所述 ^的编号进行置换; 对当前细菌个体 的当前位置与所述 中的细菌个体进行比较, 如果当前细菌个体的新位置更优, 将 最优细菌个体更新为当前细菌个体, 并将细菌群最优适应度值也相应进行更新; 否则, 当前细菌个体下一次趋向性操作时, 向最优细菌个体的位置靠拢。 在本发明的一种实施例中, 在对各细菌个体执行群体感应操作过程中, 如发现当 前细菌个体停顿, 重新选定一个方向, 再次对该细菌个体进行搜索; 或停止当前细菌 个体的搜索, 跳至下一细菌个体进行搜索操作。 在本发明的一种实施例中, 在当前细菌个体的新位置更优时, 将最优细菌个体更 新为当前细菌个体, 并将细菌群最优适应度值也相应进行更新具体如下: If J!(7 + 1,^/)>J^(7,^/)
θί U + 1, /) = (j + l,k,l) + Cccx (Θ" (j,k,l)- (j,k, /)) 式中: + ^' 为当前细菌个体 i进行群体感应后的更新位置; J j + \,k,l) 为 当前细菌个体 i的适应度值; ^o,z)和 分别为当前细菌群位置最优的细 菌个体 b的位置和适应度值; C为吸引因子, 决定细菌个体向群体历史最优位置游 动的步幅。 在本发明的一种实施例中, 在当前细菌个体下一次趋向性操作向最优细菌个体的 位置靠拢具体如下: ν,Γ = ω · v d +C、- φ、- (0b (j,k,D- (j + , /)) (j + ) = D ( + 1 0 + V 式中, 表示当前细菌个体〖经第 d次趋向性操作后的速度; ω为惯性权重, 使细菌保持运动惯性和扩展搜索空间的趋势; w表示当前细菌个体 i经第 d-1次趋向 性操作后的速度; ς为加速度常数; 是 [0, 1]区间内均匀分布的伪随机数; 为细菌 个体 i的速度; ^( ^)为当前细菌群位置最优的细菌个体 b的位置;
Figure imgf000005_0001
+ ΐ ΐ) 为当前细菌个体 i经第 d-1次趋向性操作后的位置; + l /)为当前细菌个体 i经 第 d次趋向性操作后的位置。 在本发明的一种实施例中, 对当前细菌个体 i进行趋向性操作具体如下:
式中: c()>o,表示细菌向前游动的步长; , Δ()表示旋转向量, 取值范围为 [-1,1]。
Figure imgf000005_0002
在本发明的一种实施例中, 对当前细菌个体 i进行趋向性操作具体如下:
Θ, (j + 1, k, /) = · (J, k, /) + C(k, l) (j) 式中: C(Ji,l、 = Linit/n k"-、 C^:,/)表示细菌第 次复制、 第 /次迁徙时的趋向操作 步长; LmM为初始趋向步长; n为控制步长下降梯度的参数; Δ(0表示旋转向量, 取值范围为 [-U]。
Figure imgf000005_0003
在本发明的一种实施例中, 对当前细菌个体 i进行趋向性操作后, 计算其适应度 值具体如下:
J' u +\,k,i) = f u, k,i)+ Jcc (θ' u +\,k,i),p(j+i, k,i))
Jcc{e,P{j,k,l)) exp(- | ,„ -0:†]
Figure imgf000005_0004
P(j,k ) = {0 j,k ) I i = 1,2,...^} 式中, ^G' ,0为细菌 i在第 j次趋向操作, 第 k次复制操作和第 /次迁徙操作之 后的适应度值; «H'+ '/)'p('+ '))为细菌 i的个体间感应度值; θ' +ι, !为 细菌个体 i进行第 j+1次趋向操作后的更新位置; p +z)为细菌个体 i进行第 j+1 次趋向操作后在细菌群中的个体位置; 为细菌个体 i进行第 j次趋向操作后在 细菌群中的个体位置; ^^和^^分别表示 和释放速率; 和1 分 别表示排斥因子的数量和释放 位置对细菌群的群聚性影响,
Figure imgf000006_0001
的群聚性影响系数, ^ - )2表示第 i个细菌所在位置的方差, 表示细菌群所 在位置的第 m维, 表示第 i个细菌所在位置的第 m维, D表示细菌搜索环境的维数, ^[ ^^(- ^^1 _ )2]表示第 i 个细菌所在位置对细菌群的排斥性影响,
QXV(-wrep∑(0m -& 表示第 i个细菌所在位置对细菌群的排斥性影响系数。 在本发明的一种实施例中, 所述任务的特征信息包括 CPU、 内存个数、 带宽、 资 源成本以及故障率的倒数中的至少一种。 在本发明的一种实施例中, 对所述任务进行分类包为根据各任务的优先级和 /或各 任务执行的评判指标对各任务进行分类。 在本发明的一种实施例中,所述任务执行的评判指标为任务完成时间、网络带宽、 资源成本或可靠性参数。 为了解决上述问题, 本发明还提供了一种云计算中的任务调度系统, 包括: 用户任务信息群处理模块, 设置为将任务的特征信息进行参数化; 任务分类模块, 设置为对所述任务进行分类; 资源分配与调度模块, 设置为根据分类结果, 通过细菌 觅食算法计算得到最佳工作节点; 节点管理模块, 设置为将所述任务部署到所述最佳 工作节点, 通过所述最佳工作节点执行所述任务。 在本发明的一种实施例中, 所述资源分配与调度模块根据分类结果, 通过细菌觅 食算法计算得到最佳工作节点包括: 根据所述分类结果, 对所述任务经参数化的特征信息进行编码得到编码后的特征 信息; 从工作节点中选择 N个作为细菌个体 i组成初始化细菌群, l≤i≤N; 根据算法解 码库, 分别对各细菌个体对应所述编码后的特征信息进行解码; 计算各细菌个体的适 应度值; 对各细菌个体进行细菌趋向操作; 进行细菌个体复制操作; 进行细菌个体的 迁徙操作; 判断当前得到的最优细菌个体是否达到用户的期望值, 如是, 则选择该细 菌个体对应的工作节点作为最佳工作节点; 否则, 返回所述计算各细菌个体的适应度 值步骤。 在本发明的一种实施例中, 所述资源分配与调度模块在对各细菌个体进行细菌趋 向操作过程中, 还包括: 对各细菌个体执行群体感应操作。 在本发明的一种实施例中, 所述资源分配与调度模块对各细菌个体执行群体感应 操作包括: 确定细菌群体中目前位置最优的细菌个体序列 /ε—^, 存储其位置和适应度值; 确 定细菌群中将要进行搜索的细菌个体序列 I; 在所述 /£ 中, 选定一个编号 Jrami ; 遍 历所述 /ε έί¾, 确定所述 ^在所述 /£ 中的位置 遍历所述 I中的各细菌个体, 找到所述 I中所述 Jrami的起始位置, 将其与所述 ^的编号进行置换; 对当前细菌个体 的当前位置与所述 中的细菌个体进行比较, 如果当前细菌个体的新位置更优, 将 最优细菌个体更新为当前细菌个体, 并将细菌群最优适应度值也相应进行更新; 否则, 当前细菌个体下一次趋向性操作时, 向最优细菌个体的位置靠拢。 在本发明的一种实施例中, 所述资源分配与调度模块在对各细菌个体执行群体感 应操作过程中, 如发现当前细菌个体停顿, 重新选定一个方向, 再次对该细菌个体进 行搜索; 或停止当前细菌个体的搜索, 跳至下一细菌个体进行搜索操作。 在本发明的一种实施例中, 所述资源分配与调度模块在判断当前细菌个体的新位 置更优时, 将最优细菌个体更新为当前细菌个体, 并将细菌群最优适应度值也相应进 行更新具体如下: if +\,k,i) > jbestu,k,i) θί U + 1, k, /) = u + i, k, i) + ccc x (Θ" u,k, i) - u, k, /)) 式中: + H^为当前细菌个体 i进行群体感应后的更新位置; J' (7' + ,0 为 当前细菌个体 i 的适应度值; ^0,Z)和 分别为当前细菌群位置最优的细 菌个体 b的位置和适应度值; c为吸引因子, 决定细菌个体向群体历史最优位置游 动的步幅。 在本发明的一种实施例中, 所述资源分配与调度模块在将当前细菌个体下一次趋 向性操作向最优细菌个体的位置靠拢具体如下: V = ω · V;Jdι- ι- (0b (j D- » U + , /)) e-(j+i,k,i) = eS_r)u+i,k,i)+vi 式中, 表示当前细菌个体 i经第 d次趋向性操作后的速度; ω为惯性权重, 使细菌保持运动惯性和扩展搜索空间的趋势; w表示当前细菌个体 i经第 d-1次趋向 性操作后的速度; (^为加速度常数; 是 [0, 1]区间内均勾分布的伪随机数; 为细菌 个体 i的速度; ^( ^)为当前细菌群位置最优的细菌个体 b的位置;
Figure imgf000008_0001
为当前细菌个体 i经第 d-1次趋向性操作后的位置; + l /)为当前细菌个体 i经 第 d次趋向性操作后的位置。 在本发明的一种实施例中, 所述资源分配与调度模块对当前细菌个体 i进行趋向 性操作具体如下: ei (j + \,k,l) = ei (j,k,l) + C (j) 式中: C()>0, 表示细菌向前游动的步长;
Φ( >= ; Δ( , 表示旋转向量, 取值范围为 [-1,1]。 在本发明的一种实施例中, 所述资源分配与调度模块对当前细菌个体 i进行趋向 性操作具体如下: Θ, (j + 1, k, /) = · (j, k, /) + C{k, /)Φ(7') 式中: CiJ^LJn '-1, C^,/)表示细菌第 次复制、 第 /次迁徙时的趋向操作 步长; ,.,为初始趋向步长; n为控制步长下降梯度的参数;
Φ( )= , W , Δ«表示旋转向量, 取值范围为 [-1,1]。
Λ/Δγ( Δ( 在本发明的一种实施例中, 所述资源分配与调度模块对当前细菌个体 i进行趋向 性操作后, 计算其适应度值具体如下:
J' (7 +\,k,l) = (j, k,l) + Jcc (ff (j + \,k,l), P(j + \,k, /))
JcMP(j,k,l)) = fjJcM0i(j,k )) =∑[-dallr exp(-w_∑(^-^)2] + [Λ^ exp (- f - )2 PU,k,l) = {e j,k,l)\i = \,2,...S} 式中, ^(',^,/)为细菌 i在第 j次趋向操作, 第 k次复制操作和第 /次迁徙操作之 后的适应度值; K^ + ^^ + 'O为细菌 i的个体间感应度值; ·+1 /)为 细菌个体 i进行第 j+i次趋向操作后的更新位置; P +^ 为细菌个体 i进行第 j+1 次趋向操作后在细菌群中的个体位置; 为细菌个体 i进行第 j次趋向操作后在 细菌群中的个体位置; ^^和1^ 分别表示吸引因子的数量和释放速率; Λ^和1 分 别表示排斥因子的数量和释放速率; [- freXp(-K^;£( - )2]表示第 i个细菌所在 位置对细菌群的群聚性影响, exp(-vvaflr j ( -ffj表示第 i个细菌所在位置对细菌群 的群聚性影响系数, j (; - )2表示第 i个细菌所在位置的方差, 表示细菌群所 在位置的第 m维, 表示第 i个细菌所在位置的第 m维, D表示细菌搜索环境的维数, [ ^^(;- ^^1-^)2]表示第 i 个细菌所在位置对细菌群的排斥性影响,
QXV(-wrep∑(0m -& 表示第 i个细菌所在位置对细菌群的排斥性影响系数。 在本发明的一种实施例中, 所述任务的特征信息包括 CPU、 内存个数、 带宽、 资 源成本以及故障率的倒数中的至少一种。 在本发明的一种实施例中, 对所述任务进行分类包为根据各任务的优先级和 /或各 任务执行的评判指标对各任务进行分类。 在本发明的一种实施例中,所述任务执行的评判指标为任务完成时间、网络带宽、 资源成本或可靠性参数。 本发明的有益效果是: 本发明提供的云计算中的任务调度方法及系统, 通过将任务的特征信息进行参数 化; 然后对各任务进行分类, 根据分类结果, 通过细菌觅食算法计算得到最佳工作节 点, 将该最佳工作节点与该任务进行匹配即可。 可见, 本发明利用细菌觅食算法来实 现云计算中任务调度和资源分配问题, 使得云计算对用户任务群的调度具有群体智能 并行搜索、 易跳出局部极小值等优点, 有助于保持云计算中任务群的多样性; 更能满 足用户的需求, 提高用户体验的满意度。 附图说明 图 1为本发明 种实施例的云计算中的任务调度系统结构示意图; 图 2为本发明 种实施例的云计算中的任务调度方法流程示意图; 图 3为本发明 种实施例的细菌觅食算法流程示意图; 图 4为本发明 种实施例的细菌觅食算法中趋向性操作流程图; 图 5为本发明 种实施例的细菌觅食算法中复制操作流程图; 图 6为本发明 种实施例的细菌觅食算法中迁徙操作流程图。 具体实施方式 下面通过具体实施方式结合附图对本发明作进一步详细说明。 为了更好的理解本发明, 下面的首先对细菌觅食 (Bacteria Foraging Optimization, 简称为 BFO)算法进行一个简单的说明: 细菌觅食算法是一种新型的仿生随机搜索算法, 其生物学基础是大肠杆菌在觅食 过程中体现出来的智能行为。 大肠杆菌自身的一个控制系统指导着其在寻找食物过程 中的行为, 包括趋向、 复制和迁徙 (又称消除一驱散)等三个步骤, 并对每一次状态的 改变进行效果评价, 进而为下一步活动提供信息。 在这个系统的控制下, 大肠杆菌将 逐渐朝食物源的方向靠近。 在 BFO 模型中, 搜索过程通过营养分布函数来判断搜索 算法的优劣, 优化问题的解对应搜索空间中的细菌的状态, 即优化函数的适应度值。 该算法具有群体智能算法并行搜索、 易跳出局部极小值等优点。 具体如下: 假定细菌种群大小为 S, 一个细菌个体所处的位置表示问题的一个候选解, 细菌 个体 i的信息用 D维向量表示为: θι = 1,2, ...5*
Θ^ Ρ>表示细菌 i在第 j次趋向性操作,第 k次复制操作和第 1次迁徙操作之后 的位置。
( 1 ) 趋向性操作 大肠杆菌的整个生命周期都是在游动和旋转两种基本运动之间进行变换以寻找食 物并避开有毒物质。 在细菌觅食算法中模拟这种现象称为趋向性操作, 趋向性操作使 得 BFOA具有局部开采能力,它决定算法的前进方向以及在某一区域搜索的详细程度 等, 细菌个体 i的每一步趋向性操作表示如下- ei u+ ) = ei U, k,i) + c(i) U) 式中: C( ) >0, 表示细菌个体向前游动的步长;
Φ( > , 表示旋转向量, 其取值范围为 [-1,1]。
Figure imgf000011_0001
(2) 复制操作 生物进化过程的规律是优胜劣汰。 经过一段时间的食物搜索过程后, 部分寻找食 物能力弱的细菌会被自然淘汰掉, 为了维持种群规模, 剩余的细菌会进行繁殖。 在细 菌觅食算法中模拟这种现象称为复制操作。 下面就以采用的保留精英的方式复制操作 过程为例进行说明: 在原始 BFOA中, 经过复制操作后算法的种群大小不变。 设淘汰掉的细菌个数为 Sr=S/2, 首先按照细菌位置的优劣排序, 然后把排在后面的 Sr个细菌淘汰掉, 剩余 的 Sr个细菌进行自我复制, 各自生成一个与自己完全相同的新个体, 即生成的新个体 与原个体有相同的位置, 或者说具有相同的经过复制操作后的细菌种群数量 S不会发 生改变。 假定被淘汰的细菌个数为 Sr = S/2,首先按照细菌位置的优劣进行排序, 把排 在后面的 Sr个细菌淘汰掉, 剩下的细菌进行自我复制。 当然, 除了上述保留精英的方式复制方法外, 在进行算法设计时还可以参考其他 进化算法, 考虑其他多种保留方式, 及各种保留方式的混合来进行复制以提高算法性 能, 如: 轮盘赌方法, (μ + λ)方法, 联赛方法, 稳态方法, 比例变换与排序方法, 共 享方法等。 (3 ) 迁徙操作 细菌个体生活的局部区域可能会突然发生变化 (如: 温度的突然升高) 或者逐渐 变化 (如: 食物的消耗), 这样可能会导致生活在这个局部区域的细菌种群集体死亡, 或者集体迁徙到一个新的局部区域。 在细菌觅食优化算法中模拟这种现象称为迁徙操 作。 迁徙操作以一定概率发生。 给定概率 ped, 如果种群中的某个细菌个体满足迁徙 发生的概率, 则这个细菌个体灭亡, 并随机地在解空间的任意位置生成一个新个体, 这个新个体与灭亡的个体可能具有不同的位置, 即不同的觅食能力。 迁徙操作随机生 成的这个新个体可能更靠近全局最优解, 这样更有利于趋向性操作跳出局部最优解和 寻找全局最优解。 即迁徙操作使得 BFOA具有随机搜索的能力, 有助于 BFOA保持种 群的多样性, 减少早熟收敛的情况。 请参考图 1, 本例中提供的云计算中的任务调度系统包括: 用户任务信息群处理模块, 设置为存储任务群的特征信息, 将任务的特征信息进 行参数化, 即将任务的特征信息根据一定编码规则进行编码, 记录到任务信息数据库 中; 本实施例中的任务的特征信息可采用 CPU、 内存个数、 带宽、 资源成本以及故障 率的倒数等至少一个衡量工作节点资源计算能力和通信能力的属性信息表示。 任务解析模块: 设置为通过算法解码库, 对应各目的细菌个体, 解码任务的特征 信息; 任务分类模块, 设置为对任务进行分类, 具体可通过各任务的优先级和 /或各任务 执行的评判指标对各任务进行分类; 例如, 各任务具有优先级时, 则可根据各任务的 优先级进行分类; 没有时, 则可根据各任务执行的评判指标对各任务进行分类; 自然, 也可根据各任务的优先级和各任务执行的评判指标对各任务进行分类。 本实施例中的 评判指标可通过将任务优先级以及用户服务质量 (Qos) 保证所涉及的 CPU、 内存个 数、 带宽、 资源成本以及故障率的倒数等特性结合, 作为评判指标, 具体可为任务完 成时间、 网络带宽、 资源成本或可靠性参数等。 资源分配与调度模块, 设置为根据分类结果, 通过细菌觅食算法计算得到最佳工 作节点; 云控制模块: 云控制模块是整个系统的中枢神经, 分别与资源分配与调度模块、 资源监测模块、 节点管理模块连接, 设置为整个云计算网络的控制管理。 例如: 通知 各个工作节点将调度的任务向本地部署; 将资源监测模块监测的结果反馈至资源分配 与调度模块等。 如果资源分配与调度模块查找不到足够资源的工作节点进行任务实时 迁移, 则向云控制模块反馈查找失败信息; 如果实时迁移成功, 则向云控制模块反馈 迁移成功信息。 节点管理模块, 设置为将相应的任务部署到资源分配与调度模块计算得到的最佳 工作节点, 通过该最佳工作节点执行任务。 资源监测模块, 设置为监测分配的任务是否成功执行完成, 并将监测到的信息实 时反馈至云控制模块, 以便云控制模块通知资源分配与调度模块回收资源, 或者重新 进行任务和工作节点资源的匹配。 基于上述系统, 下面结合完整的任务调度分配流程对本发明做进一步的说明。 假 设用户任务群数目为 M, 请参见图 2所示的云计算中的任务调度方法,包括: 步骤 201 : 将任务的特征信息进行参数化; 步骤 202: 对任务进行分类; 步骤 203 : 根据分类结果, 通过细菌觅食算法计算得到最佳工作节点; 通过最佳工作节点执行任务。 在上述步骤 201之前, 如判断各任务具有优先级时, 还可包括步骤 200: 对用户 的任务按照优先级进行排序。 在上述步骤 203之后, 还可进一步包括: 对分配的任务 进行监测以及根据监测结果进行资源的回收或者返回步骤 203进行重新分配工作节点 资源, 及图 2中的步骤 204-步骤 206。 下面结合具体的流程分别对上述步骤进行详细 的说明: 对于步骤 201 : 将任务的特征信息进行参数化, 即将任务的特征信息根据一定编 码规则进行编码, 记录到任务信息数据库中; 根据云计算模型的特点, 本实施例中的 任务的特征信息可采用 CPU、 内存个数、 带宽、 资源成本以及故障率的倒数等至少一 个衡量工作节点资源计算能力和通信能力的属性信息表示。 对于步骤 202: 对任务进行分类, 具体可通过各任务的优先级和 /或各任务执行的 评判指标对各任务进行分类; 下面则具体以按照任务执行的评判指标进行分类进行进 —步的说明, 具体考虑以下几种因素: 根据用户对云计算资源需求的多样性与偏好性, 来作 Qos保证; 云计算平台带宽 利用率; 公平性因素等。 本实施例中的评判指标可通过将任务优先级以及用户服务质量 (Qos) 保证所涉 及的 CPU、 内存个数、带宽、 资源成本以及故障率的倒数等特性结合, 作为评判指标, 具体可为任务完成时间、 网络带宽、 资源成本或可靠性参数; 具体可表示如下: 假设某虚拟机工作节点 i资源 Μ,.的特征集合为:
其中, ^表示一个 维对角矩阵, 分别表示 CPU、 内存的个数, 带宽、 资源成 本及故障率的倒数等能够衡量节点资源计算能力和通信能力的属性信息。 工作节点资源 Μ,.的性能描述矩阵向量为:
VM^{Qn,Qi2,Q ,Qi4,Q ,m l5] 其中, im表示^对应的特征值。 任务执行的评判指标可采用任务完成时间、 网络带宽、 资源成本、可靠性参数等, 如采用任务完成时间时, 评判指标描述包括开始时间、 总完成时间、 结束时间等, 使 用时选取任务总完成时间作为评判指标。 通常第 n类任务的一般期待向量可以描述为: En = {enl , en2 , en3 , en4 , enm },me [l,5] (8) 其中 e„m分别表示 CPU、 内存、 带宽等的一般期待, 且满足 £¾=1。 对于任务的分类, 具体可使用一些经典的聚类算法, 例如 C均值, K近邻等聚类 方法。 对于步骤 203: 请参见图 3, 根据分类结果, 通过细菌觅食算法计算得到最佳工作 节点包括: 步骤 301: 根据分类结果, 对任务经参数化的特征信息进行编码得到编码后的特 征信息; 编码方式可以采用二进制编码、 实数编码、 有序列编码、 一般数据结构编码 方式等任何方式; 步骤 302: 从工作节点中选择 N个作为细菌个体 i组成初始化细菌群, l≤i≤N; 细 菌种群规模 N的大小影响 BFOA效能的发挥。 种群规模小, BFOA的计算速度快, 但 种群的多样性降低, 影响算法的优化性能; 种群规模大, 个体初始时分布的区域多, 靠近最优解的机会就越高。也可以说是, 种群规模越大, 种群中个体的多样性就越高, 越能避免算法陷入局部极小值。 但是种群规模太大时, 算法的计算量就会增加, 算法 的收敛速度会变慢。 本实施例中可基于任务的分类结果以及当前各工作节点的实际情 况和任务群中当前任务的个数随机选择 N个:选择的 N的值可以是任务群中当前任务 的个数, 也可以是针对任务群中的某一个或多个任务进行选择确定的 N个工作节点。 也即, 本实施例中可以同时对任务群中的所有任务进行调度, 也可一次对任务群中的 其中一个或多个任务进行调度。 步骤 303: 根据算法解码库, 分别对各细菌个体对应编码后的特征信息进行解码; 步骤 304: 计算各细菌个体的适应度值; 本实施例中, 对当前细菌个体 i (l≤i≤N) 进行趋向性操作后, 计算其适应度值具体如下:
J' (7 +\,k,l) = (j, k,l) + Jcc (ff (j + \,k,l), P(j + \,k, /)) J 0,P(j,k,l)) = exp (- W。,^ ( - )2] + Α exp (― (
Figure imgf000015_0001
P(j,k,l) = {0iU,k,l)\i = l,2,..S} 式中, ^( ', ,/)为细菌 i在第」 '次趋向操作, 第 k次复制操作和第 /次迁徙操作之 后的适应度值; ^^^ + ^^^^+^^^为细菌丄的个体间感应度值; θ'ϋ+ΥΛ,ί 为 细菌个体 i进行第 j+i次趋向操作后的更新位置; P +^ 为细菌个体 i进行第 j+l 次趋向操作后在细菌群中的个体位置; 为细菌个体 i进行第 j次趋向操作后在 细菌群中的个体位置; ^^和^^分别表示吸引因子的数量和释放速率; 和1 V分 别表示排斥因子的数量和释放速率; ;^卜^^^^ ^^!^ -^^:!表示第 个细菌所在 位置对细菌群的群聚性影响, eXp(-vaflr j ( -ff 表示第 i个细菌所在位置对细菌群 的群聚性影响系数, j (; - )2表示第 i个细菌所在位置的方差, 表示细菌群所 在位置的第 m维, 表示第 i个细菌所在位置的第 m维, D表示细菌搜索环境的维数, ^[ ^^(-> ^^1_ )2]表示第 i 个细菌所在位置对细菌群的排斥性影响,
QXV(-wrep∑(0m -ff 表示第 i个细菌所在位置对细菌群的排斥性影响系数。 步骤 305: 对各细菌个体进行细菌趋向性操作, 其具体流程如图 4所示: 对当前细菌个体 i进行趋向性操作具体表示如下: ei (j + \,k,l) = ei (j,k,l) + C (j) 式中: C()>0, 表示细菌向前游动的步长; , 表示旋转向量, 取值范围为 [-1,1]。
Figure imgf000016_0001
本实施例中, 为了进一步提高搜索速度, 提高优化前期的全局搜索能力和优化后 期的局部搜索能力, 还可采用以下方式对当前细菌个体 i进行趋向性操作: Θ, (7 + 1,^,/)-^. (7, k,l) + C{k, l) (j) 式中: C(Ji,l、
Figure imgf000016_0002
C^,/)表示细菌第 次复制、 第 /次迁徙时的趋向操作 步长; 为初始趋向步长; n为控制步长下降梯度的参数; , 表示旋转向量, 取值范围为 [-1,1]。
Figure imgf000016_0003
前细菌个体 i进行趋向性操作的过程具体如下: 步骤 400: 开始; 步骤 401及步骤 402: 更新细菌个体 i,确定其为细菌群中的个体; 步骤 403: 计算细菌个体 i的适应度值, 存储其适应度值为当前最好的值; 步骤 404: 旋转, 细菌个体 i旋转后随机产生方向上游动的一个初始步长; 步骤 405: 初始化计数值 Y=0; 步骤 406: 计算新位置上细菌个体 i的适应度值; 步骤 407: 判断 Y是否小于该方向上前进的最大步数 X, 如是, 转至步骤 408; 否则, 转至步骤 401 ; 步骤 408: 更新 Υ=Υ+1 ; 步骤 409: 判断新位置的适应度值是否更好; 如是, 转至步骤 409; 否则, 转至
413; 步骤 410: 对细菌个体执行群体感应操作; 步骤 411 : 将新位置的适应度值存储为目前最好的适应度值; 步骤 412: 调整步长, 具体可采用动态调整, 在该随机方向上继续游动, 转至步 骤 406;
Figure imgf000017_0001
步骤 414: 结束。 由于原始 BFO算法搜索解空间时, 采用的是个体间感应机制。这样, 任务个体在 进行趋向操作时, 会将任务的感应值叠加到适应值上, 这种基于个体间的感应机制, 有助于保持云计算中任务群的多样性, 增加了任务群体跳出局部最优的可能性, 但也 有可能使得接近最优的任务个体遭到驱散, 导致优化进程延缓。 很多任务个体分配至 全局最优资源附近, 但因为数量的增多导致该区域产生的排斥因子浓度升高, 反而可 能会将位置最好的任务个体驱逐出最优区域, 造成精度下降。 因此, 本实施中在每个 细菌个体 i的趋向操作过程中, 在将新位置的适应度值存储为目前最好的适应度值前, 还对其进行群体感应操作 (CTS cell-to-swarm;), 细菌个体感知周围环境, 试探搜索菌群 中是否存在位置最好的细菌。 即本实施例中群体感应机制允许细菌个体利用同伴的经 验来指导自己的游动路线, 这种信念吸引机制加快了在解空间中的全局搜索速度, 同 时有助于细菌个体跳出局部最优, 并避免了细菌从全局最优区域逃逸的可能。 在步骤 410中, 对细菌个体执行群体感应操作的具体过程如下: 步骤 4101 : 确定细菌群体中目前位置最优的细菌个体序列 /ε ¾ , 存储其位置和 适应度值; 步骤 4102: 确定细菌群中将要进行搜索的细菌个体序列 I; 步骤 4103: 在 中, 选定一个编号 ; 步骤 4104: 遍历 /ε¾ , 确定 Jrami在 / 中的位置 步骤 4105 : 遍历 I中的各细菌个体, 找到 1中 ^的起始位置, 将其与 的编号 进行置换; 步骤 4106: 对当前细菌个体的当前位置进行基于个体的评价, 该步骤具体为通过 计算个体的适应度值, 对当前细菌个体的当前位置进行基于个体的评价, 以便调整个 体的方向, 改变步长, 为后续群体感应做前趋运动准备; 步骤 4107: 对当前细菌个体的当前位置与 中的细菌个体进行比较, 如果当 前细菌个体的新位置更优, 将最优细菌个体更新为当前细菌个体, 并将细菌群最优适 应度值也相应进行更新; 否则, 当前细菌个体下一次趋向性操作时, 向最优细菌个体 的位置靠拢; 步骤 4108:在对细菌个体 i执行群体感应操作过程中,如发现当前细菌个体停顿, 重新选定一个方向, 再次对该细菌个体进行搜索; 或停止当前细菌个体的搜索, 跳至 下一细菌个体进行搜索操作。 本实施对每个细菌个体 i进行群体感应操作过程中, 细菌个体感知周围环境, 试 探搜索菌群中是否存在位置最好的细菌。 如有, 记忆其位置; 否则, 记忆自身当前位 置。 下一次趋向操作时, 细菌每移动到新的位置就向最优细菌个体的位置靠拢。 具体的, 在步骤 4107中, 在当前细菌个体的新位置更优时, 将最优细菌个体更新 为当前细菌个体, 并将细菌群最优适应度值也相应进行更新具体如下: if +\,k,i) > jbestu,k,i) ffcc u + 1, k, /) = θι u + i,k,i) + ccc x (eb u,k,i) - ff u,k, /)) 式中: ^ + H^为当前细菌个体 i进行群体感应后的更新位置; J' (J + l, k, P) 为 当前细菌个体 i 的适应度值; ^0,z)和 ^^ ',^)分别为当前细菌群位置最优的细 菌个体 b的位置和适应度值; c为吸引因子, 决定细菌个体向群体历史最优位置游动 的步幅。 在步骤 4107中,在当前细菌个体下一次趋向性操作向最优细菌个体的位置靠拢具 体如下: ν,Γ = ω · V dι- ι- (0b (j D- » U + , /)) e-(j+i,k,i) = eS_r)u+i,k,i)+vi 式中, OT表示当前细菌个体 i经第 d次趋向性操作后的速度; ω为惯性权重, 使细菌保持运动惯性和扩展搜索空间的趋势; 表示当前细菌个体 i经第 d-1次趋向 性操作后的速度; ς为加速度常数; 是 [ο,ι]区间内均勾分布的伪随机数; 为细菌 个体 i的速度; ^( ^)为当前细菌群位置最优的细菌个体 b的位置; e^u + ) 为当前细菌个体 i经第 d-1次趋向性操作后的位置; /w(' + l /)为当前细菌个体 i经 第 d次趋向性操作后的位置。 步骤 306: 对各细菌个体进行细菌复制操作, 本实施中仍采用保留精英的复制方 式进行说明, 其具体流程如图 5所示: 步骤 500: 开始; 步骤 501: 更新当前细菌个体 i; 步骤 502: 判断当前细菌个体 i是否属于细菌群, 如是, 转至步骤 503; 否则, 转 至步骤 504: 步骤 503:计算当前细菌个体 i在上次趋向性操作循环中经过的所有位置的适应度 值总和; 步骤 504: 按照适应度值的优劣将细菌排序; 步骤 505:淘汰适应度值差的 Sr个细菌,剩余的 Sr个细菌各自分裂出一个与自己 完全相同的新个体; 步骤 506: 结束。 步骤 307: 对各细菌个体进行迁徙操作, 迁徙操作以一定概率发生。 设给定概率 ped, 如果种群中的某个细菌个体满足迁徙发生的概率, 则这个细菌个体灭亡, 并随机 地在解空间的任意位置生成一个新个体, 这个新个体与灭亡的个体可能具有不同的位 置, 即不同的觅食能力。 迁徙操作随机生成的这个新个体可能更靠近全局最优解, 更 有利于趋向性操作跳出局部最优解和寻找全局最优解。 设初始时设 i=0, randG是 [0, 1]区间上均勾分布的随机数其具体流程如图 6所示, 包括: 步骤 600: 开始; 步骤 601 : 更新当前细菌个体 i; 步骤 602: 判断当前细菌个体 i是否属于细菌群, 如是, 转至步骤 603; 否则, 转 至步骤 605; 步骤 603: 判断 randO是否小于 ped, 如是, 转至步骤 604, 否则, 转至步骤 601 ; 步骤 604: 当前细菌个体 i灭亡, 随机产生新细菌 i, 转至步骤 601 ; 步骤 605: 结束。 步骤 308: 判断当前得到的最优细菌个体是否达到用户的期望值, 如是, 转至步 骤 309; 否则, 转至步骤 310; 步骤 309: 选择该细菌个体对应的工作节点作为最佳工作节点。 步骤 310: 保留当前最优个体, 并更新适应度值, 返回步骤 304。 可见, 本发明利用细菌觅食算法来实现云计算中任务调度和资源分配问题, 使得 云计算对用户任务群的调度具有群体智能并行搜索、 易跳出局部极小值等优点, 有助 于保持云计算中任务群的多样性; 更能满足用户的需求, 提高用户体验的满意度。 进一步的, 本发明在对细菌个体进行趋向性操作时, 将细菌游动的步长调整为动 态值, 可提高优化前期全局搜索能力和优化后期的局部搜索能力, 更利于云计算效率 的提升和资源利用率的提升。 另外, 本发明在每个细菌个体 i的趋向操作过程中, 还对其进行群体感应操作, 细菌个体感知周围环境, 试探搜索菌群中是否存在位置最好的细菌。 即本实施例中群 体感应机制允许细菌个体利用同伴的经验来指导自己的游动路线, 这种信念吸引机制 加快了在解空间中的全局搜索速度, 同时有助于细菌个体跳出局部最优, 并避免细菌 从全局最优区域逃逸的可能, 保证高优先级的任务分配至效率最高的工作节点执行。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在 不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发 明的保护范围。 综上所述, 本发明实施例提供的一种云计算中任务调度方法及系统具有如下有益 效果: 使得云计算对用户任务群的调度具有群体智能并行搜索、 易跳出局部极小值等 优点, 有助于保持云计算中任务群的多样性; 更能满足用户的需求, 提高用户体验的 满意度。

Claims

权 利 要 求 书
1. 一种云计算中的任务调度方法, 包括:
将任务的特征信息进行参数化;
对所述任务进行分类;
根据分类结果, 通过细菌觅食算法计算得到最佳工作节点;
通过所述最佳工作节点执行所述任务。
2. 如权利要求 1所述的云计算中的任务调度方法, 其中, 根据分类结果, 通过细 菌觅食算法计算得到最佳工作节点包括:
根据所述分类结果, 对所述任务经参数化的特征信息进行编码得到编码后 的特征信息;
从工作节点中选择 N个作为细菌个体 i组成初始化细菌群, l i N; 根据算法解码库,分别对各细菌个体对应所述编码后的特征信息进行解码; 计算各细菌个体的适应度值;
对各细菌个体进行细菌趋向操作;
进行细菌个体复制操作;
进行细菌个体的迁徙操作;
判断当前得到的最优细菌个体是否达到用户的期望值, 如是, 则选择该细 菌个体对应的工作节点作为最佳工作节点; 否则, 返回所述计算各细菌个体的 适应度值步骤。
3. 如权利要求 2所述的云计算中的任务调度方法, 其中, 在对各细菌个体进行细 菌趋向操作过程中, 还包括:
对各细菌个体执行群体感应操作。
4. 如权利要求 3所述的云计算中的任务调度方法, 其中, 对各细菌个体执行群体 感应操作包括:
确定细菌群体中目前位置最优的细菌个体序列 /£ ,存储其位置和适应度 值; 确定细菌群中将要进行搜索的细菌个体序列 I; 在所述 ^中, 选定一个编号 ^; 遍历所述 ic best, 确定所述 Jrami在所述 ic best中的位置 PJ; 遍历所述 I中的各细菌个体, 找到所述 I中所述 Jrami的起始位置, 将其与 所述 ^的编号进行置换;
对当前细菌个体的当前位置与所述 中的细菌个体进行比较,如果当前 细菌个体的新位置更优, 将最优细菌个体更新为当前细菌个体, 并将细菌群最 优适应度值也相应进行更新; 否则, 当前细菌个体下一次趋向性操作时, 向最 优细菌个体的位置靠拢。
5. 如权利要求 4所述的云计算中的任务调度方法, 其中, 在对各细菌个体执行群 体感应操作过程中, 如发现当前细菌个体停顿, 重新选定一个方向, 再次对该 细菌个体进行搜索; 或停止当前细菌个体的搜索, 跳至下一细菌个体进行搜索 操作。
6. 如权利要求 4所述的云计算中的任务调度方法, 其中, 在当前细菌个体的新位 置更优时, 将最优细菌个体更新为当前细菌个体, 并将细菌群最优适应度值也 相应进行更新具体如下:
Figure imgf000023_0001
U + 1, k, /) = θι u +i,k,i)+cccx (eb u,k,i)- ff u,k, /)) 式中: z)为当前细菌个体 i 进行群体感应后的更新位置;
J'(j + l,kJ) 为当前细菌个体 i的适应度值; ^O,0和 ^ z)分别为当前 细菌群位置最优的细菌个体 b的位置和适应度值; c为吸引因子,决定细菌个 体向群体历史最优位置游动的步幅。
7. 如权利要求 4所述的云计算中的任务调度方法, 其中, 在当前细菌个体下一次 趋向性操作向最优细菌个体的位置靠拢具体如下:
V-Γ = · V + ·^· (0b (jXD- » U + , /))
Figure imgf000023_0002
= eld d_,)(j+\,k,i)+v- 式中, "表示当前细菌个体 i经第 d次趋向性操作后的速度; ω为惯性 权重, 使细菌保持运动惯性和扩展搜索空间的趋势; ι ω表示当前细菌个体 i 经第 d-i次趋向性操作后的速度; ς为加速度常数; 是 [ο,ι]区间内均匀分布 的伪随机数; 为细菌个体 i的速度; ^ ^)为当前细菌群位置最优的细菌 个体 b的位置; U + l ,/)为当前细菌个体 i经第 d-1次趋向性操作后的位 置; τ_/+ι,^/)为当前细菌个体 i经第 d次趋向性操作后的位置。
8. 如权利要求 2所述的云计算中的任务调度方法, 其中, 对当前细菌个体 i进行 趋向性操作具体如下:
Figure imgf000024_0001
式中: C()>0, 表示细菌向前游动的步长;
Φ(])= ' △()表示旋转向量, 取值范围为 [-1,1]。
Ar( A(
9. 如权利要求 2所述的云计算中的任务调度方法, 其中, 对当前细菌个体 i进行 趋向性操作具体如下- · (7 + 1, k, /) = θ{ (j, k, /) + C{k, /)Φ(7) 式中: C(Ji,P> = Lm,W-1, C^,/)表示细菌第 次复制、 第 /次迁徙时的趋 向操作步长; „为初始趋向步长; n为控制步长下降梯度的参数; , 表示旋转向量, 取值范围为 [-1,1]。
Figure imgf000024_0002
10. 如权利要求 2所述的云计算中的任务调度方法, 其中, 对当前细菌个体 i进行 趋向性操作后, 计算其适应度值具体如下-
J!(7 + l,^/) = J!(j,^/) + Jcc(^0- + l,^/),P(j + l, ,/)) j e,P(j,k,i)) = = j-dattr (-
Figure imgf000024_0003
^Ι - )" + έ[Α e - ep∑(0„: -0†}
P(j,k,l) = {e j,k,l)\i-\,2,..S} 式中, G' ,0为细菌 i在第」'次趋向操作, 第 k次复制操作和第 /次迁徙 操作之后的适应度值; H + ^^ + ^)为细菌 i的个体间感应度值; ^ + I ,/)为细菌个体 i进行第 j+1次趋向操作后的更新位置; ( ' + ,/)为 细菌个体 i进行第」'+1次趋向操作后在细菌群中的个体位置; 为细菌个 体 i进行第」'次趋向操作后在细菌群中的个体位置; ^^和1^。 分别表示吸引因 子的数量和释放速率; 和1 分别表示排斥因子的数量和释放速率; ∑[-dattr eXp(-v^ M - )2]表示第 i个细菌所在位置对细菌群的群聚性影响,
^ ^^^!^ - )2表示第 1个 菌所在位 ¾对 菌群 ¾群聚性影 B向系数, H )2表示第 i个细菌所在位置的方差, ^表示细菌群所在位置的第 m 维, 表示第 i 个细菌所在位置的第 m维, D 表示细菌搜索环境的维数, ∑[hrep - 2]表示第 i个细菌所在位置对细菌群的排斥性影响,
Figure imgf000025_0001
^V(-wrep∑(0m - & 表示第 i个细菌所在位置对细菌群的排斥性影响系数。
11. 如权利要求 1-10任一项所述的云计算中的任务调度方法, 其中, 所述任务的特 征信息包括 CPU、 内存个数、带宽、资源成本以及故障率的倒数中的至少一种。
12. 如权利要求 1-10任一项所述的云计算中的任务调度方法, 其中, 对所述任务进 行分类包为根据各任务的优先级和 /或各任务执行的评判指标对各任务进行分 类。
13. 如权利要求 12所述的云计算中的任务调度方法,其中,所述任务执行的评判指 标为任务完成时间、 网络带宽、 资源成本或可靠性参数。
14. 一种云计算中的任务调度系统, 包括: 用户任务信息群处理模块, 设置为将任务的特征信息进行参数化; 任务分类模块, 设置为对所述任务进行分类;
资源分配与调度模块, 设置为根据分类结果, 通过细菌觅食算法计算得到 最佳工作节点;
节点管理模块, 设置为将所述任务部署到所述最佳工作节点, 通过所述最 佳工作节点执行所述任务。
15. 如权利要求 14所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块根据分类结果, 通过细菌觅食算法计算得到最佳工作节点包括:
根据所述分类结果, 对所述任务经参数化的特征信息进行编码得到编码后 的特征信息;
从工作节点中选择 N个作为细菌个体 i组成初始化细菌群, l i N;
根据算法解码库,分别对各细菌个体对应所述编码后的特征信息进行解码; 计算各细菌个体的适应度值;
对各细菌个体进行细菌趋向操作;
进行细菌个体复制操作;
进行细菌个体的迁徙操作;
判断当前得到的最优细菌个体是否达到用户的期望值, 如是, 则选择该细 菌个体对应的工作节点作为最佳工作节点; 否则, 返回所述计算各细菌个体的 适应度值步骤。
16. 如权利要求 15所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块在对各细菌个体进行细菌趋向操作过程中, 还包括:
对各细菌个体执行群体感应操作。
17. 如权利要求 16所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块对各细菌个体执行群体感应操作包括:
确定细菌群体中目前位置最优的细菌个体序列 ,存储其位置和适应度 值;
确定细菌群中将要进行搜索的细菌个体序列 I;
在所述 /£— ^中, 选定一个编号 Jrami; 遍历所述 Ic best, 确定所述 J 在所述 Ic best中的位置 PJ; 遍历所述 I中的各细菌个体, 找到所述 I中所述 Jrami的起始位置, 将其与 所述 ^的编号进行置换;
对当前细菌个体的当前位置与所述 中的细菌个体进行比较,如果当前 细菌个体的新位置更优, 将最优细菌个体更新为当前细菌个体, 并将细菌群最 优适应度值也相应进行更新; 否则, 当前细菌个体下一次趋向性操作时, 向最 优细菌个体的位置靠拢。
18. 如权利要求 17所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块在对各细菌个体执行群体感应操作过程中, 如发现当前细菌个体停顿, 重新 选定一个方向, 再次对该细菌个体进行搜索; 或停止当前细菌个体的搜索, 跳 至下一细菌个体进行搜索操作。
19. 如权利要求 17所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块在判断当前细菌个体的新位置更优时,将最优细菌个体更新为当前细菌个体, 并将细菌群最优适应度值也相应进行更新具体如下:
if
Figure imgf000027_0001
+\,k )>jbestu,k,i)
U +\χΐ) = θ ]+\χΐ)+ ccc χ (eb uxi)- θι u, k, /)) 式中: z)为当前细菌个体 i 进行群体感应后的更新位置;
J'(j + l,kJ) 为当前细菌个体 i的适应度值; ^O,0和 ^ z)分别为当前 细菌群位置最优的细菌个体 b的位置和适应度值; c为吸引因子,决定细菌个 体向群体历史最优位置游动的步幅。
20. 如权利要求 17所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块在将当前细菌个体下一次趋向性操作向最优细菌个体的位置靠拢具体如下: ν-Γ = · v + ·^· (0b uxi)- » U + , /))
Figure imgf000027_0002
式中, 表示当前细菌个体 i经第 d次趋向性操作后的速度; ω为惯性 权重, 使细菌保持运动惯性和扩展搜索空间的趋势; ω表示当前细菌个体 i 经第 d-1次趋向性操作后的速度; (^为加速度常数; 是 [0,1]区间内均勾分布 的伪随机数; 为细菌个体 i的速度; ^dz)为当前细菌群位置最优的细菌 个体 b的位置; u + 1, k, /)为当前细菌个体 i经第 d-i次趋向性操作后的位 置; /w(' + l /)为当前细菌个体 i经第 d次趋向性操作后的位置。
21. 如权利要求 15所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块对当前细菌个体 i进行趋向性操作具体如下:
Figure imgf000028_0001
式中: C()>0, 表示细菌向前游动的步长; , Δ«表示旋转向量, 取值范围为 [-1,1]。
Figure imgf000028_0002
22. 如权利要求 15所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块对当前细菌个体 i进行趋向性操作具体如下:
· (7 + 1, k, /) = · (j, k, I) + C(k, /)Φ(7) 式中:
Figure imgf000028_0003
C^,/)表示细菌第 次复制、 第 /次迁徙时的趋 向操作步长; 为初始趋向步长; n为控制步长下降梯度的参数; , 表示旋转向量, 取值范围为 [-u]。
Figure imgf000028_0004
23. 如权利要求 15所述的云计算中的任务调度系统,其中,所述资源分配与调度模 块对当前细菌个体 i进行趋向性操作后, 计算其适应度值具体如下:
J' (j + l,kj) = ji (j, k,l) + Jcc ψ (j + \,k, /), P(j + \,k, /))
Jcc{e,P{j,k,l)) = exp(- „r| m - )2] + exp(- - )2]
Figure imgf000028_0005
P(j,k,l) = {0iU,k,l)\i = l,2,..S} 式中, Λ ', )为细菌 i在第 j次趋向操作, 第 k次复制操作和第 /次迁徙 操作之后的适应度值; Κ^' + 1Λ ),Ρ(' + 1, ))为细菌 i的个体间感应度值; ^ + I ,/)为细菌个体 i进行第 j+1次趋向操作后的更新位置; ( ' + ,/)为 细菌个体 i进行第」'+1次趋向操作后在细菌群中的个体位置; 为细菌个 体 i进行第」'次趋向操作后在细菌群中的个体位置; ^^和1^。 分别表示吸引因 子的数量和释放速率; 和1 分别表示排斥因子的数量和释放速率;
∑[-dattr eXp(-v^ M - )2]表示第 i个细菌所在位置对细菌群的群聚性影响,
^ ^^^!^ - )2表示第 i个细菌所在位置对细菌群的群聚性影响系数, j(^ _ )2表示第〖个细菌所在位置的方差, ^表示细菌群所在位置的第 m 维, 表示第 i 个细菌所在位置的第 m维, D 表示细菌搜索环境的维数, ∑[hrep - )2]表示第 i个细菌所在位置对细菌群的排斥性影响,
Figure imgf000029_0001
^V(-wrep∑(0m - & 表示第 i个细菌所在位置对细菌群的排斥性影响系数。
24. 如权利要求 14-23任一项所述的云计算中的任务调度系统, 其中, 所述任务的 特征信息包括 CPU、 内存个数、 带宽、 资源成本以及故障率的倒数中的至少一 种。
25. 如权利要求 14-23任一项所述的云计算中的任务调度系统, 其中, 对所述任务 进行分类包为根据各任务的优先级和 /或各任务执行的评判指标对各任务进行 分类。
26. 如权利要求 25所述的云计算中的任务调度系统,其中,所述任务执行的评判指 标为任务完成时间、 网络带宽、 资源成本或可靠性参数。
PCT/CN2013/085186 2012-12-10 2013-10-14 云计算中的任务调度方法及系统 WO2014090037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157018393A KR101942617B1 (ko) 2012-12-10 2013-10-14 클라우드 컴퓨팅중의 태스크 스케줄링 방법 및 시스템
US14/650,747 US10127085B2 (en) 2012-12-10 2013-10-14 Method and system for scheduling task in cloud computing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210527819.4 2012-12-10
CN201210527819.4A CN103870317B (zh) 2012-12-10 2012-12-10 云计算中的任务调度方法及系统

Publications (1)

Publication Number Publication Date
WO2014090037A1 true WO2014090037A1 (zh) 2014-06-19

Family

ID=50908884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085186 WO2014090037A1 (zh) 2012-12-10 2013-10-14 云计算中的任务调度方法及系统

Country Status (4)

Country Link
US (1) US10127085B2 (zh)
KR (1) KR101942617B1 (zh)
CN (1) CN103870317B (zh)
WO (1) WO2014090037A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640218A (zh) * 2015-01-29 2015-05-20 南京理工大学 有比例率约束的异构网络无线资源分配方法
CN104917812A (zh) * 2015-04-16 2015-09-16 西安交通大学 一种应用于群智计算的服务节点选择方法
CN106296044A (zh) * 2016-10-08 2017-01-04 南方电网科学研究院有限责任公司 电力系统风险调度方法和系统
CN111061331A (zh) * 2019-12-31 2020-04-24 内蒙古工业大学 光伏最大功率控制系统和方法
CN111427688A (zh) * 2020-03-23 2020-07-17 武汉轻工大学 云任务多目标调度方法、装置、电子设备及存储介质
CN113138848A (zh) * 2020-01-20 2021-07-20 中移(上海)信息通信科技有限公司 获取资源分配策略的方法、装置、设备及存储介质
CN114326720A (zh) * 2021-12-20 2022-04-12 上海大学 一种无人艇实时避障方法及系统

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518894A (en) * 2013-10-07 2015-04-08 Ibm A method and a system for operating programs on a computer cluster
US10459892B2 (en) 2014-04-23 2019-10-29 Qumulo, Inc. Filesystem hierarchical aggregate metrics
US11132336B2 (en) 2015-01-12 2021-09-28 Qumulo, Inc. Filesystem hierarchical capacity quantity and aggregate metrics
CN105022406B (zh) * 2015-06-29 2017-10-27 徐州工程学院 基于改进细菌觅食算法的多机器人协作气味源定位方法
CN105138404B (zh) * 2015-10-09 2018-04-03 电子科技大学 面向功耗延时与热均衡的多核阵列任务调度方法
CN106020927B (zh) * 2016-05-05 2018-03-16 中国人民解放军国防科学技术大学 一种云计算系统中任务调度与资源配置的通用方法
US10223172B2 (en) * 2016-05-10 2019-03-05 International Business Machines Corporation Object storage workflow optimization leveraging storage area network value adds
US10225343B2 (en) * 2016-05-10 2019-03-05 International Business Machines Corporation Object storage workflow optimization leveraging underlying hardware, operating system, and virtualization value adds
US10628222B2 (en) * 2016-05-17 2020-04-21 International Business Machines Corporation Allocating compute offload resources
CN108062243B (zh) * 2016-11-08 2022-01-04 杭州海康威视数字技术股份有限公司 执行计划的生成方法、任务执行方法及装置
US10095729B2 (en) 2016-12-09 2018-10-09 Qumulo, Inc. Managing storage quotas in a shared storage system
CN106685720B (zh) * 2016-12-30 2020-08-25 南京理工大学 基于层次竞价机制的网络安全资源分配方法
CN107172627B (zh) * 2017-05-31 2021-03-12 江西理工大学 基于混沌优化细菌觅食算法的传感器节点部署方法
CN107045455B (zh) * 2017-06-19 2019-06-11 华中科技大学 一种基于负载预测的Docker Swarm集群资源调度优化方法
CN107672586B (zh) * 2017-09-30 2023-05-30 中北润良新能源汽车(徐州)股份有限公司 一种电动汽车智能倒车辅助系统及方法
CN108469988B (zh) * 2018-02-28 2021-12-17 西北大学 一种基于异构Hadoop集群的任务调度方法
CN108596359A (zh) * 2018-03-16 2018-09-28 泰康保险集团股份有限公司 康复医嘱任务分派优化方法、装置和设备
CN108776612A (zh) * 2018-04-11 2018-11-09 深圳大学 一种云计算任务分配方法、装置、设备及存储介质
US10936374B2 (en) 2018-05-17 2021-03-02 International Business Machines Corporation Optimizing dynamic resource allocations for memory-dependent workloads in disaggregated data centers
US11221886B2 (en) 2018-05-17 2022-01-11 International Business Machines Corporation Optimizing dynamical resource allocations for cache-friendly workloads in disaggregated data centers
US10893096B2 (en) 2018-05-17 2021-01-12 International Business Machines Corporation Optimizing dynamical resource allocations using a data heat map in disaggregated data centers
US10841367B2 (en) * 2018-05-17 2020-11-17 International Business Machines Corporation Optimizing dynamical resource allocations for cache-dependent workloads in disaggregated data centers
US10977085B2 (en) 2018-05-17 2021-04-13 International Business Machines Corporation Optimizing dynamical resource allocations in disaggregated data centers
US11330042B2 (en) 2018-05-17 2022-05-10 International Business Machines Corporation Optimizing dynamic resource allocations for storage-dependent workloads in disaggregated data centers
US10601903B2 (en) 2018-05-17 2020-03-24 International Business Machines Corporation Optimizing dynamical resource allocations based on locality of resources in disaggregated data centers
US11360936B2 (en) 2018-06-08 2022-06-14 Qumulo, Inc. Managing per object snapshot coverage in filesystems
CN110750341B (zh) * 2018-07-24 2022-08-02 深圳市优必选科技有限公司 任务调度方法、装置、系统、终端设备及存储介质
CN109495314B (zh) * 2018-12-07 2020-12-18 达闼科技(北京)有限公司 云端机器人的通信方法、装置、介质及电子设备
US10534758B1 (en) 2018-12-20 2020-01-14 Qumulo, Inc. File system cache tiers
US11151092B2 (en) 2019-01-30 2021-10-19 Qumulo, Inc. Data replication in distributed file systems
CN110120888B (zh) * 2019-04-26 2022-03-18 井冈山大学 一种云众包平台海量服务资源组合优化方法与系统
CN110147280B (zh) * 2019-05-14 2023-01-31 河南城建学院 基于安全与成本感知的大数据应用调度方法
CN110297694A (zh) * 2019-07-05 2019-10-01 桂林理工大学 一种基于资源分类和任务优先级的启发式云计算调度方法
CN110750355B (zh) * 2019-08-26 2022-03-25 北京丁牛科技有限公司 控制系统、控制方法及装置
US11182724B2 (en) * 2019-08-30 2021-11-23 Tata Consultancy Services Limited Estimation of per-application migration pricing and application move group sequence for cloud migration
US10860372B1 (en) * 2020-01-24 2020-12-08 Qumulo, Inc. Managing throughput fairness and quality of service in file systems
US10795796B1 (en) 2020-01-24 2020-10-06 Qumulo, Inc. Predictive performance analysis for file systems
US11151001B2 (en) 2020-01-28 2021-10-19 Qumulo, Inc. Recovery checkpoints for distributed file systems
CN111314361B (zh) * 2020-02-24 2022-09-23 杭州安恒信息技术股份有限公司 一种基于细菌觅食算法的攻击威胁感知方法和装置
CN111818119B (zh) * 2020-05-04 2023-10-24 国网浙江省电力有限公司 基于改进的蜘蛛集群的数据服务资源优化调度方法
US11775481B2 (en) 2020-09-30 2023-10-03 Qumulo, Inc. User interfaces for managing distributed file systems
CN112559135B (zh) * 2020-12-24 2023-09-26 重庆邮电大学 一种基于QoS的容器云资源的调度方法
CN112667379B (zh) * 2020-12-29 2024-06-07 深圳Tcl新技术有限公司 任务调度方法及服务器
US11157458B1 (en) 2021-01-28 2021-10-26 Qumulo, Inc. Replicating files in distributed file systems using object-based data storage
US11461241B2 (en) 2021-03-03 2022-10-04 Qumulo, Inc. Storage tier management for file systems
US11567660B2 (en) 2021-03-16 2023-01-31 Qumulo, Inc. Managing cloud storage for distributed file systems
US11132126B1 (en) 2021-03-16 2021-09-28 Qumulo, Inc. Backup services for distributed file systems in cloud computing environments
US11669255B2 (en) 2021-06-30 2023-06-06 Qumulo, Inc. Distributed resource caching by reallocation of storage caching using tokens and agents with non-depleted cache allocations
US11294604B1 (en) 2021-10-22 2022-04-05 Qumulo, Inc. Serverless disk drives based on cloud storage
US11354273B1 (en) 2021-11-18 2022-06-07 Qumulo, Inc. Managing usable storage space in distributed file systems
US11599508B1 (en) 2022-01-31 2023-03-07 Qumulo, Inc. Integrating distributed file systems with object stores
US11722150B1 (en) 2022-09-28 2023-08-08 Qumulo, Inc. Error resistant write-ahead log
US11729269B1 (en) 2022-10-26 2023-08-15 Qumulo, Inc. Bandwidth management in distributed file systems
US11966592B1 (en) 2022-11-29 2024-04-23 Qumulo, Inc. In-place erasure code transcoding for distributed file systems
CN116187724B (zh) * 2023-04-27 2023-07-14 成都秦川物联网科技股份有限公司 智慧燃气平台工单联动处理方法、物联网系统及存储介质
CN116302451B (zh) * 2023-05-18 2023-08-08 广州豪特节能环保科技股份有限公司 一种云计算数据中心离线节能调度的方法及系统
US11934660B1 (en) 2023-11-07 2024-03-19 Qumulo, Inc. Tiered data storage with ephemeral and persistent tiers
US11921677B1 (en) 2023-11-07 2024-03-05 Qumulo, Inc. Sharing namespaces across file system clusters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986272A (zh) * 2010-11-05 2011-03-16 北京大学 一种云计算环境下的任务调度方法
CN102111337A (zh) * 2011-03-14 2011-06-29 浪潮(北京)电子信息产业有限公司 任务调度方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG119169A1 (en) * 2003-01-20 2006-02-28 Nanyang Polytechnic Path searching system using multiple groups of cooperating agents and method thereof
WO2005073854A2 (en) 2004-01-27 2005-08-11 Koninklijke Philips Electronics, N.V. System and method for providing an extended computing capacity
US7810099B2 (en) * 2004-06-17 2010-10-05 International Business Machines Corporation Optimizing workflow execution against a heterogeneous grid computing topology
JP4781089B2 (ja) * 2005-11-15 2011-09-28 株式会社ソニー・コンピュータエンタテインメント タスク割り当て方法およびタスク割り当て装置
US8190543B2 (en) * 2008-03-08 2012-05-29 Tokyo Electron Limited Autonomous biologically based learning tool
KR101350755B1 (ko) * 2011-01-14 2014-01-10 대전대학교 산학협력단 클라우드 컴퓨팅에서 다중 워크플로우를 위한 비용기반 스케줄링 방법 및 그 시스템
US8706869B2 (en) * 2011-06-14 2014-04-22 International Business Machines Corporation Distributed cloud placement software
US8631154B2 (en) * 2011-06-29 2014-01-14 International Business Machines Corporation Dynamically modifying quality of service levels for resources in a networked computing environment
CN106155807A (zh) * 2015-04-15 2016-11-23 阿里巴巴集团控股有限公司 一种实现资源调度的方法与设备
US10390114B2 (en) * 2016-07-22 2019-08-20 Intel Corporation Memory sharing for physical accelerator resources in a data center

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986272A (zh) * 2010-11-05 2011-03-16 北京大学 一种云计算环境下的任务调度方法
CN102111337A (zh) * 2011-03-14 2011-06-29 浪潮(北京)电子信息产业有限公司 任务调度方法和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU: "Xiaolong Modification and application of bacterial foraging optimization algorithm.", INFORMATION TECHNOLOGY ALBUM OF CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, June 2012 (2012-06-01) *
WU, BO ET AL.: "Task scheduling of multi-core processor system based on improved bacteria foraging optimization algorithm.", MICROELECTRONICS & COMPUTER., vol. 30, no. 3, March 2013 (2013-03-01), pages 143 - 147 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640218A (zh) * 2015-01-29 2015-05-20 南京理工大学 有比例率约束的异构网络无线资源分配方法
CN104640218B (zh) * 2015-01-29 2018-12-14 南京理工大学 有比例率约束的异构网络无线资源分配方法
CN104917812A (zh) * 2015-04-16 2015-09-16 西安交通大学 一种应用于群智计算的服务节点选择方法
CN104917812B (zh) * 2015-04-16 2018-03-02 西安交通大学 一种应用于群智计算的服务节点选择方法
CN106296044A (zh) * 2016-10-08 2017-01-04 南方电网科学研究院有限责任公司 电力系统风险调度方法和系统
CN106296044B (zh) * 2016-10-08 2023-08-25 南方电网科学研究院有限责任公司 电力系统风险调度方法和系统
CN111061331A (zh) * 2019-12-31 2020-04-24 内蒙古工业大学 光伏最大功率控制系统和方法
CN113138848A (zh) * 2020-01-20 2021-07-20 中移(上海)信息通信科技有限公司 获取资源分配策略的方法、装置、设备及存储介质
CN111427688A (zh) * 2020-03-23 2020-07-17 武汉轻工大学 云任务多目标调度方法、装置、电子设备及存储介质
CN111427688B (zh) * 2020-03-23 2023-08-11 武汉轻工大学 云任务多目标调度方法、装置、电子设备及存储介质
CN114326720A (zh) * 2021-12-20 2022-04-12 上海大学 一种无人艇实时避障方法及系统
CN114326720B (zh) * 2021-12-20 2023-08-22 上海大学 一种无人艇实时避障方法及系统

Also Published As

Publication number Publication date
KR20150110511A (ko) 2015-10-02
CN103870317A (zh) 2014-06-18
US20160292013A1 (en) 2016-10-06
KR101942617B1 (ko) 2019-04-11
US10127085B2 (en) 2018-11-13
CN103870317B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
WO2014090037A1 (zh) 云计算中的任务调度方法及系统
US20220083389A1 (en) Ai inference hardware resource scheduling
Vijayanarasimhan et al. Far-sighted active learning on a budget for image and video recognition
Kaur et al. Bio-inspired workflow scheduling on HPC platforms
Junaid et al. Modeling an optimized approach for load balancing in cloud
CN109067834B (zh) 基于振荡式惯性权重的离散粒子群调度算法
Cao et al. A PSO-based cost-sensitive neural network for imbalanced data classification
Mondal et al. Scheduling of time-varying workloads using reinforcement learning
US20230401092A1 (en) Runtime task scheduling using imitation learning for heterogeneous many-core systems
Zhang et al. Learning-driven interference-aware workload parallelization for streaming applications in heterogeneous cluster
Jacob et al. Resource scheduling in cloud using bacterial foraging optimization algorithm
Lai et al. A parallel social spider optimization algorithm based on emotional learning
Robu et al. A genetic algorithm for classification
KR101580202B1 (ko) 대규모 데이터를 위한 서포트 벡터 머신 이진 트리 구조 갱신 장치 및 방법
CN112529211A (zh) 一种超参数确定方法、装置、计算机设备和存储介质
CN112380006A (zh) 一种数据中心资源分配方法及装置
Raghav et al. A comparative analysis report of nature-inspired algorithms for load balancing in cloud environment
CN116033026A (zh) 一种资源调度方法
US20220358357A1 (en) Utilizing a neural network model to predict content memorability based on external and biometric factors
KR102573366B1 (ko) 인공지능 기반의 모델의 벤치마크 결과를 제공하기 위한 방법 및 디바이스
CN111338757A (zh) 能量优化的虚拟机部署方法及系统
Saemi et al. Solving task scheduling problem in mobile cloud computing using the hybrid multi-objective Harris Hawks optimization algorithm
KR102645690B1 (ko) 노드에 대응되는 인공지능 기반의 모델을 제공하기 위한 방법 및 디바이스
JP7398072B1 (ja) 人工知能基盤のモデルのベンチマーク結果を提供するための方法及びデバイス(device and method for providing benchmark result of artificial intelligence based model)
KR102587263B1 (ko) 인공지능 기반의 모델의 벤치마크 결과를 제공하기 위한 방법 및 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14650747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157018393

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13863416

Country of ref document: EP

Kind code of ref document: A1