WO2014088454A1 - Low-alloy, high-strength structural steel - Google Patents

Low-alloy, high-strength structural steel Download PDF

Info

Publication number
WO2014088454A1
WO2014088454A1 PCT/RU2013/000485 RU2013000485W WO2014088454A1 WO 2014088454 A1 WO2014088454 A1 WO 2014088454A1 RU 2013000485 W RU2013000485 W RU 2013000485W WO 2014088454 A1 WO2014088454 A1 WO 2014088454A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel
carbon
increased
manganese
Prior art date
Application number
PCT/RU2013/000485
Other languages
French (fr)
Russian (ru)
Inventor
Александр Дмитриевич ВОЛОСКОВ
Original Assignee
Закрытое акционерное общество "Омутнинский металлургический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Омутнинский металлургический завод" filed Critical Закрытое акционерное общество "Омутнинский металлургический завод"
Priority to EP13861471.4A priority Critical patent/EP2803749A4/en
Priority to CN201380027375.0A priority patent/CN104471098B/en
Publication of WO2014088454A1 publication Critical patent/WO2014088454A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to ferrous metallurgy, namely to the production of steel with increased strength for the manufacture of hot-rolled automotive components.
  • This steel is the closest to the proposed mechanical properties, composition and purpose and is taken as a prototype.
  • DIN EN 10025-2: 2005 contains the upper limits of the chemical composition and the obligatory list of elements, but does not indicate the specific limits of their content and additional elements to obtain the required mechanical properties according to DIN and special customer requirements corresponding to operating conditions.
  • the main technical objective of the invention is to obtain steel with a high yield strength, with an increased ductility index, an increased index of impact work, the ability to be used at low temperatures, with good weldability, increased machinability, while maintaining a strength interval that is economically feasible in use due to the use of non-deficient alloying elements.
  • the carbon and manganese content provides a predetermined interval of tensile strength (470-630 MPa) and increased ductility (elongation) of at least 20% (instead of at least 16%).
  • the necessary and sufficient content of vanadium as an element binding nitrogen provides carbonitride hardening in the process of ⁇ - and transformation by the dispersion hardening mechanism due to which there is an increase in the yield strength of the material not less than 400 MPa.
  • the increased yield strength allows to reduce the metal consumption in operation and allows to obtain an indicator of impact at a temperature from 0 ° C to -40 ° C of at least 80 J.
  • the increased sulfur content leads to improved machinability of steel by cutting.
  • the figure 1 presents a photograph of the microstructure of a sample of a hot-rolled profile of a modified steel of one of the melts with a grain size of 8 number according to ASTM E 112 (according to GOST 5639) at 100-fold magnification with an installed scale bar 400 microns long.
  • Smelting of the declared steel grade is carried out at CJSC Omutninsky Metallurgical Plant in a steelmaking unit.
  • steel of the main composition is smelted, containing carbon, manganese, silicon, iron and inevitable impurities; after heating to 1620-1640 ° C, it is released into a steel pouring ladle.
  • Deoxidation of steel by aluminum is carried out at a drain from the steelmaking unit into the ladle, components for deoxidation are introduced into the bottom zone of the ladle at the optimal ratio [Mn] / [Si] ⁇ 3.
  • a sufficiently deep deoxidation of steel by secondary aluminum is carried out to obtain optimal conditions for the ascent of the formed large aluminum oxides. Additionally, oxygen is controlled (not more than 0.001% on the proposed steel grade).
  • furnace slag is removed from the steel pouring ladle.
  • lime-alumina slag is induced by additives of lime and aluminum-containing material. Get branded content of the basic elements (carbon, manganese, silicon) and deoxidated refining "white" slag.
  • Vanadium is introduced in the form of lumpy ferroalloy to achieve the target concentration. Then the metal is heated to a temperature guaranteeing a predetermined overheating of the metal above the liquidus temperature of the steel in the intermediate ladle during casting at the continuous casting machine, taking into account the existing heat losses and subsequent alloying with sulfur. Sulfur is introduced into steel by flux-cored wire using a tribamer after thickening the slag with magnesite powder.
  • Casting in the continuous casting machine is carried out with the protection of the metal from secondary oxidation in a "under the level” way. Exposure of the metal surface in the bucket (sparking) is not allowed.
  • the billet is rolled in hot rolling mills according to technological instructions and rolling schemes of OMZ CJSC. Get a hot-rolled profile for the manufacture of the door hinge of a Volkswagen car.
  • the proposed chemical composition allows to obtain steel with a high yield strength, with an increased ductility index, good weldability, increased machinability, reduced tendency to mechanical aging, the possibility of use at low temperatures, the possibility of eliminating additional heat treatment, while maintaining an interval of strength that is economically feasible in use due to the use of non-deficient alloying elements in the manufacture of hot-rolled cars beat components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The invention relates to ferrous metallurgy, and specifically to the production of high-strength steel for manufacturing hot-rolled automobile components. Steel of the following composition is proposed: 0.15-0.20% by mass of carbon; 1.3-1.5% by mass of manganese; 0.05-0.45% by mass of silicon; a maximum of 0.02% by mass of phosphorus; 0.02-0.05% by mass of sulphur; a maximum of 0.25% by mass of copper; 0.03-0.055% by mass of vanadium; 0.004-0.015% by mass of nitrogen, with the remainder being iron and impurities. The technical result of the invention is the production of a hot-rolled product with an increased yield limit, with an increased index of plasticity, good weldability, increased workability, reduced susceptibility to mechanical ageing, possibility of use at temperatures below 0̊C, possibility of excluding additional thermal processing, with a range of strength being maintained and with economical expedience in use in view of employing readily available alloying elements.

Description

НИЗКОЛЕГИРОВАННАЯ КОНСТРУКЦИОННАЯ СТАЛЬ С ПОВЫШЕННОЙ  LOW-ALLOY STRUCTURAL STEEL WITH INCREASED
ПРОЧНОСТЬЮ  STRENGTH
Изобретение относится к черной металлургии, а именно к производству стали с повышенной прочностью для изготовления горячекатаных автомобильных компонентов. The invention relates to ferrous metallurgy, namely to the production of steel with increased strength for the manufacture of hot-rolled automotive components.
Известна нелегированная конструкционная сталь S355J0 с минимальным пределом текучести 355 МРа, содержащая, мае. % max:  Known unalloyed structural steel S355J0 with a minimum yield strength of 355 MPa, containing May. % max:
углерод - не более 0,22;  carbon - not more than 0.22;
кремний - не более 0,55;  silicon - not more than 0.55;
марганец - не более 1,60;  Manganese - not more than 1.60;
фосфор - не более 0,03;  phosphorus - not more than 0.03;
сера - не более 0,03;  sulfur - not more than 0.03;
азот - не более 0,012;  nitrogen - not more than 0.012;
медь - не более 0,55;  copper - not more than 0.55;
железо и примеси- остальное.[1]  iron and impurities - the rest. [1]
Эта сталь наиболее близка к предлагаемой по механическим свойствам, составу и назначению и взята за прототип.  This steel is the closest to the proposed mechanical properties, composition and purpose and is taken as a prototype.
DIN EN 10025-2:2005 содержит верхние границы химического состава и обязательный перечень элементов, но не указывает конкретные пределы их содержания и дополнительные элементы для получения требуемых механических свойств по DIN и специальных требований заказчика, соответствующим условиям эксплуатации.  DIN EN 10025-2: 2005 contains the upper limits of the chemical composition and the obligatory list of elements, but does not indicate the specific limits of their content and additional elements to obtain the required mechanical properties according to DIN and special customer requirements corresponding to operating conditions.
Основная техническая задача изобретения состоит в получении стали с повышенным пределом текучести, с увеличенным показателем пластичности, повышенным показателем работы удара, возможностью использования при отрицательных температурах, с хорошей свариваемостью, повышенной обрабатываемостью, с сохранением интервала по прочности, экономически целесообразной в применении ввиду использования недефицитных легирующих элементов.  The main technical objective of the invention is to obtain steel with a high yield strength, with an increased ductility index, an increased index of impact work, the ability to be used at low temperatures, with good weldability, increased machinability, while maintaining a strength interval that is economically feasible in use due to the use of non-deficient alloying elements.
Техническое решение задачи достигается за счет того, что предлагается модифицированная низкоуглеродистая конструкционная, низколегированная с повышенной прочностью сталь, содержащая в мае. %:  The technical solution to the problem is achieved due to the fact that a modified low-carbon structural, low-alloy, high-strength steel containing in May is proposed. %:
углерод - 0,15-0,20;  carbon 0.15-0.20;
марганец - 1,3-1,5;  Manganese - 1.3-1.5;
кремний - 0,05-0,45;  silicon - 0.05-0.45;
фосфор - не более 0,02; сера - 0,02 - 0,05; phosphorus - not more than 0.02; sulfur - 0.02 - 0.05;
медь - не более 0,25;  copper - not more than 0.25;
ванадий - 0,03-0,055;  vanadium - 0.03-0.055;
азот - 0,004-0,015  nitrogen - 0.004-0.015
железо и примеси - остальное. Условное обозначение стали S355J0 mod.  iron and impurities - the rest. Steel symbol S355J0 mod.
Содержанием углерода и марганца обеспечивается заданный интервал по пределу прочности (470-630 МПа) и обеспечение повышенной пластичности (относительного удлинения) не менее 20% (вместо не менее 16%).  The carbon and manganese content provides a predetermined interval of tensile strength (470-630 MPa) and increased ductility (elongation) of at least 20% (instead of at least 16%).
Необходимое и достаточное содержание ванадия в качестве элемента, связывающего азот, обеспечивает карбонитридное упрочнение в процессе γ — а превращения по механизму дисперсионного твердения за счет чего происходит повышение предела текучести материала не менее 400 МПа. Повышенный предел текучести позволяет снизить расход металла в эксплуатации и позволяет получить показатель работы удара при температуре от 0°С до -40°С не менее 80 Дж.  The necessary and sufficient content of vanadium as an element binding nitrogen provides carbonitride hardening in the process of γ - and transformation by the dispersion hardening mechanism due to which there is an increase in the yield strength of the material not less than 400 MPa. The increased yield strength allows to reduce the metal consumption in operation and allows to obtain an indicator of impact at a temperature from 0 ° C to -40 ° C of at least 80 J.
Экспериментально установлено, что при содержании марганца ниже установленного предела и отсутствии ванадия заявленный предел текучести и работа удара не достигаются.  It was experimentally established that when the manganese content is below the specified limit and the absence of vanadium, the claimed yield strength and impact work are not achieved.
Повышенное содержание серы приводит к улучшению обрабатываемости стали резанием.  The increased sulfur content leads to improved machinability of steel by cutting.
Способность материала к сварке оценивается величиной углеродного эквивалента. Для определения углеродного эквивалента используется следующая формула Международного института сварки, приведенная в DIN EN 10025-1 :  The ability of the material to weld is estimated by the value of carbon equivalent. To determine the carbon equivalent, the following formula of the International Welding Institute is used, which is given in DIN EN 10025-1:
Cr + Mo + V Ni + Cu  Cr + Mo + V Ni + Cu
CEV = C + + +  CEV = C ++ ++
5 15  5 15
агаемая сталь характеризуется величиной углеродного эквивалента Сэкв  aggreated steel is characterized by carbon equivalent
Оптимальный химический состав, способ раскисления, технология производстваOptimum chemical composition, deoxidation method, production technology
(горячая деформация) готового позволяют получать однородную мелкозернистую феррито-перлитную структуру с минимальной разнозернистостью не превышающей 3-х смежных номеров. Балл зерна 7-8-9 по ASTM Е 112 (ГОСТ 5639-82) при требовании заказчика к размеру зерна не крупнее 5 номера. Кроме того, в феррито- перлитной структуре не наблюдается присутствие игольчатой бейнитной структуры (требования заказчика: максимальное содержание бейнита в феррито-перлитпой структуре не более 6 %). На фигуре 1 представлена фотография микроструктуры образца горячекатаного профиля модифицированной стали одной из плавок с величиной зерна 8 номер по ASTM Е 112 (по ГОСТ 5639) при 100-кратном увеличении с установленной масштабной линейкой длиной 400 мкм. (hot deformation) of the finished one allows to obtain a homogeneous fine-grained ferrite-pearlite structure with a minimum different grain size not exceeding 3 adjacent numbers. Grain point 7-8-9 according to ASTM E 112 (GOST 5639-82) at the customer's request for grain size not larger than 5 numbers. In addition, the presence of acicular bainitic structure is not observed in the ferrite-perlite structure (customer requirements: the maximum content of bainite in the ferrite-pearlite structure is not more than 6%). The figure 1 presents a photograph of the microstructure of a sample of a hot-rolled profile of a modified steel of one of the melts with a grain size of 8 number according to ASTM E 112 (according to GOST 5639) at 100-fold magnification with an installed scale bar 400 microns long.
Практический пример выполнения.  Practical implementation example.
Выплавка заявленной марки стали проводится на ЗАО "Омутнинский металлургический завод" в сталеплавильном агрегате. В СПА выплавляют сталь основного состава, содержащую углерод, марганец, кремний, железо и неизбежные примеси, после нагрева до 1620-1640°С выпускают в сталеразливочный ковш. Раскисление стали алюминием проводят на сливе из сталеплавильного агрегата в ковш, вводят в донную зону ковша компоненты для раскисления при оптимальном соотношении [Mn]/[Si]<3. Проводится достаточно глубокое раскисление стали вторичным алюминием для получения оптимальных условий всплытия образовавшихся крупных оксидов алюминия. Дополнительно контролируется кислород (не более 0,001% на предлагаемой марке стали).  Smelting of the declared steel grade is carried out at CJSC Omutninsky Metallurgical Plant in a steelmaking unit. In the SPA, steel of the main composition is smelted, containing carbon, manganese, silicon, iron and inevitable impurities; after heating to 1620-1640 ° C, it is released into a steel pouring ladle. Deoxidation of steel by aluminum is carried out at a drain from the steelmaking unit into the ladle, components for deoxidation are introduced into the bottom zone of the ladle at the optimal ratio [Mn] / [Si] <3. A sufficiently deep deoxidation of steel by secondary aluminum is carried out to obtain optimal conditions for the ascent of the formed large aluminum oxides. Additionally, oxygen is controlled (not more than 0.001% on the proposed steel grade).
После выпуска плавки из СПА производят удаление печного шлака из сталеразливочного ковша. При внепечной обработке с продувкой металла аргоном наводят известково-глиноземистый шлак присадками извести и алюмосодержащего материала. Получают марочное содержание основных элементов (углерод, марганец, кремний) и раскисленный рафинировочный «белый» шлак.  After the release of the heat from the spa, furnace slag is removed from the steel pouring ladle. During out-of-furnace treatment with a metal purge with argon, lime-alumina slag is induced by additives of lime and aluminum-containing material. Get branded content of the basic elements (carbon, manganese, silicon) and deoxidated refining "white" slag.
Ванадий вводят в виде кускового ферросплава до достижения целевой концентрации. Затем нагревают металл до температуры, гарантирующей заданный перегрев металла над температурой ликвидус стали в промежуточном ковше при разливке на МНЛЗ, с учетом существующих тепловых потерь и последующего легирования серой. Ввод серы в сталь осуществляют порошковой проволокой при помощи трайб-аппарата после загущения шлака магнезитовым порошком.  Vanadium is introduced in the form of lumpy ferroalloy to achieve the target concentration. Then the metal is heated to a temperature guaranteeing a predetermined overheating of the metal above the liquidus temperature of the steel in the intermediate ladle during casting at the continuous casting machine, taking into account the existing heat losses and subsequent alloying with sulfur. Sulfur is introduced into steel by flux-cored wire using a tribamer after thickening the slag with magnesite powder.
Разливку на МНЛЗ производят с защитой металла от вторичного окисления способом «под уровень». Оголение поверхности металла в промковше (искрение) не допускают.  Casting in the continuous casting machine is carried out with the protection of the metal from secondary oxidation in a "under the level" way. Exposure of the metal surface in the bucket (sparking) is not allowed.
Заготовку прокатывают на станах горячей прокатки по технологическим инструкциям и схемам прокатки ЗАО "ОМЗ". Получают горячекатаный профиль для изготовления петли двери автомобиля Фольксваген.  The billet is rolled in hot rolling mills according to technological instructions and rolling schemes of OMZ CJSC. Get a hot-rolled profile for the manufacture of the door hinge of a Volkswagen car.
Произвели семь плавок с предложенным составом модифицированной стали, две плавки 8 и 9 с пониженным содержанием марганца и без ванадия. Полученный химический состав в сравнении с прототипом приведен в таблице 1. Заявленному изобретению соответствуют плавки с 1 по 7. They made seven heats with the proposed composition of the modified steel, two heats 8 and 9 with a low manganese content and without vanadium. Received the chemical composition in comparison with the prototype are shown in table 1. The claimed invention corresponds to the trunks 1 to 7.
Оценку механических свойств и структуры стали проводили в лаборатории контрольных испытаний ЗАО "ОМЗ". Испытания механических свойств проводились на 25-тонной разрывной машине фирмы "QUASAR 250", испытание твердости проводились на твердомере типа ТШ-2М по методу Бриннеля. Результаты исследования механических свойств известной и предлагаемой стали, а также углеродный эквивалент приведены в таблице 2. Испытания работы удара при отрицательных температурах проведены на образцах 3-х опытных плавок. Для одной из плавок представлен пример рассчета:  The mechanical properties and structure of the steel were evaluated in the laboratory of control tests of OMZ CJSC. The mechanical properties were tested on a QUASAR 250 25-ton tensile testing machine; the hardness tests were carried out on a TSh-2M hardness tester according to the Brinnel method. The results of the study of the mechanical properties of the known and proposed steel, as well as the carbon equivalent are shown in table 2. Tests of the impact at low temperatures were carried out on samples of 3 experimental melts. An example of calculation is presented for one of the heats:
1,48 0,09+ 0,01 + 0,048 0,11+ 0,19  1.48 0.09+ 0.01 + 0.048 0.11+ 0.19
Сэкв = 0,17 + + + = 0,466 %  Seq = 0.17 + + + = 0.466%
6 5 15  6 5 15
Опытно-промышленные испытания по критериям прочности, пластичности и работы удара провела фирма "EDSCHA", изготавливающая петли дверей автомобилей различных типоразмеров. Продукция с указанными параметрами удовлетворила потребителей фирмы. Поступило предложение о замене марки стали S355 JO всех поставляемых горячекатаных профилей на S355 JO mod как наиболее удовлетворяющую условиям эксплуатации. Pilot tests according to the criteria of strength, ductility and impact performance were carried out by EDSCHA, a manufacturer of door hinges for cars of various sizes. Products with the specified parameters satisfied the consumers of the company. There was a proposal to replace the S355 JO steel grade of all supplied hot-rolled sections with the S355 JO mod as the most satisfying operating conditions.
Таким образом, предложенный химический состав позволяет получить сталь с повышенным пределом текучести, с повышенным показателем пластичности, хорошей свариваемостью, повышенной обрабатываемостью, пониженной склонностью к механическому старению, возможностью использования при отрицательных температурах, возможностью исключения дополнительной термообработки, с сохранением интервала по прочности, экономически целесообразной в применении ввиду использования недефицитных легирующих элементов при изготовлении горячекатаных автомобильных компонентов. Thus, the proposed chemical composition allows to obtain steel with a high yield strength, with an increased ductility index, good weldability, increased machinability, reduced tendency to mechanical aging, the possibility of use at low temperatures, the possibility of eliminating additional heat treatment, while maintaining an interval of strength that is economically feasible in use due to the use of non-deficient alloying elements in the manufacture of hot-rolled cars beat components.
Таблица 1 Table 1
Figure imgf000007_0001
Figure imgf000007_0001
Продолжение таблицы 1 Continuation of table 1
Сг, % v, % А1, % Mo, % N, % Сэкв, %Cr,% v,% A1,% Mo,% N,% SEC,%
1 0,09 0,048 0,011 0,01 0,0048 0,4661 0.09 0.048 0.011 0.01 0.0048 0.466
2 0,09 0,043 0,011 0,01 0,0052 0,4612 0.09 0.043 0.011 0.01 0.0052 0.461
3 0,10 0,043 0,013 0,015 0,0044 0,4633 0.10 0.043 0.013 0.015 0.0044 0.463
4 0,12 0,044 0,012 0,014 0,0051 0,4634 0.12 0.044 0.012 0.014 0.0051 0.463
5 0,10 0,045 0,013 0,014 0,0055 0,4695 0.10 0.045 0.013 0.014 0.0055 0.469
6 од 0,044 0,014 0,014 0,0047 0,4696 od 0.044 0.014 0.014 0.0047 0.469
7 0,07 0,035 0,008 0,017 0,006 0,4447 0.07 0.035 0.008 0.017 0.006 0.444
8 0,08 - 0,023 0,012 0,0050 -8 0.08 - 0.023 0.012 0.0050 -
9 0,12 - 0,021 0,011 0,0048 -9 0.12 - 0.021 0.011 0.0048 -
Предла <0,2 0,03-0,055 0,01- <0,05 0,004-0,015 <0,47 гаемая 0,015 Limit <0.2 0.03-0.055 0.01- <0.05 0.004-0.015 <0.47 desired 0.015
S355J0  S355J0
mod  mod
Аналог - - - - <0,012  Analog - - - - <0.012
S355J0 Таблица 2 S355J0 table 2
Figure imgf000008_0001
Figure imgf000008_0001
Источники информации: Information sources:
1. DIN EN 10025-2:2005 1. DIN EN 10025-2: 2005

Claims

Формула изобретения Claim
Низкоуглеродистая конструкционная, низколегированная с повышенной прочностью сталь, содержащая углерод, кремний, марганец, фосфор, серу, азот, медь, железо, отличающаяся тем, что она дополнительно содержит ванадий, регламентированные пределы содержания углерода и марганца, повышенное количество серы, характеризуется величиной углеродного эквивалента Сэкв < 0,47% и имеет однородную мелкозернистую феррито-перлитную структуру с баллом зерна 7-8-9 номер, при следующем соотношении компонентов, мас.%:  Low-carbon structural, low-alloy, high-strength steel containing carbon, silicon, manganese, phosphorus, sulfur, nitrogen, copper, iron, characterized in that it additionally contains vanadium, the regulated limits of carbon and manganese content, an increased amount of sulfur, is characterized by the value of the carbon equivalent SEC <0.47% and has a homogeneous fine-grained ferrite-pearlite structure with a grain score of 7-8-9 number, with the following ratio of components, wt.%:
углерод - 0,15-0,20;  carbon 0.15-0.20;
марганец - 1,3-1,5;  Manganese - 1.3-1.5;
кремний - 0,05-0,45;  silicon - 0.05-0.45;
фосфор - не более 0,02;  phosphorus - not more than 0.02;
сера - 0,02 - 0,05;  sulfur - 0.02 - 0.05;
медь - не более 0,25;  copper - not more than 0.25;
ванадий - 0,03-0,055;  vanadium - 0.03-0.055;
азот - 0,004-0,015  nitrogen - 0.004-0.015
железо и примеси - остальное.  iron and impurities - the rest.
PCT/RU2013/000485 2012-12-04 2013-06-11 Low-alloy, high-strength structural steel WO2014088454A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13861471.4A EP2803749A4 (en) 2012-12-04 2013-06-11 Low-alloy, high-strength structural steel
CN201380027375.0A CN104471098B (en) 2012-12-04 2013-06-11 Low-alloy high-tensile structural steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012152045/02A RU2505618C1 (en) 2012-12-04 2012-12-04 Low-alloy structural steel with increased strength
RU2012152045 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014088454A1 true WO2014088454A1 (en) 2014-06-12

Family

ID=49957723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000485 WO2014088454A1 (en) 2012-12-04 2013-06-11 Low-alloy, high-strength structural steel

Country Status (4)

Country Link
EP (1) EP2803749A4 (en)
CN (1) CN104471098B (en)
RU (1) RU2505618C1 (en)
WO (1) WO2014088454A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714172A (en) * 2019-10-15 2020-01-21 石家庄钢铁有限责任公司 Large-size building round steel with good longitudinal and transverse impact toughness and production method thereof
CN111187986A (en) * 2020-02-18 2020-05-22 山东钢铁股份有限公司 Low-alloy high-strength sleeve for connecting high-strength steel bars and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191114A1 (en) * 2000-02-23 2002-03-27 Kawasaki Steel Corporation High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
EP1146132B1 (en) * 1999-10-22 2007-02-21 JFE Steel Corporation Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
RU2330893C2 (en) * 2006-08-30 2008-08-10 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Pipe shell made of low-alloy steel
RU2339705C2 (en) * 2006-09-19 2008-11-27 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Section iron made of low-carbon chrome-bearing steel for cold extrusion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116722A (en) * 1983-11-28 1985-06-24 Nippon Steel Corp Manufacture of steel pipe for boiler having superior workability
AR046543A1 (en) * 2003-10-10 2005-12-14 Tenaris Connections A G STEEL TUBE WITH LOW CARBON CONTENT, AND MANUFACTURING METHOD OF THE SAME
RU2330895C2 (en) * 2006-08-30 2008-08-10 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Pipe shell made of low-carbon microalloyed steel
CN101509097A (en) * 2009-03-23 2009-08-19 唐山钢铁股份有限公司 Q460 level low alloy high-strength corner iron and production process
CN101880824B (en) * 2010-06-14 2012-05-23 南阳汉冶特钢有限公司 Q345q-series super-thick bridge steel plate and production method thereof
CN102605241A (en) * 2011-12-30 2012-07-25 内蒙古包钢钢联股份有限公司 Normalizing type 16MnDR low temperature pressure vessel steel plate and manufacturing method thereof
CN102776443B (en) * 2012-08-03 2014-05-07 武汉钢铁(集团)公司 420MPa-level low-alloy high-intensity ultra-thick steel plate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146132B1 (en) * 1999-10-22 2007-02-21 JFE Steel Corporation Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
EP1191114A1 (en) * 2000-02-23 2002-03-27 Kawasaki Steel Corporation High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
RU2330893C2 (en) * 2006-08-30 2008-08-10 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Pipe shell made of low-alloy steel
RU2339705C2 (en) * 2006-09-19 2008-11-27 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Section iron made of low-carbon chrome-bearing steel for cold extrusion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHAN B. X.: "Raskislenie, degazatsiia i legirovanie stali. Moscow", GOSUDARSTVENNOE NAUCHNO-TEKHNICHESKOE IZDATELSTVO LITERATURY PO CHERNOI I TSVETNOI METALLURGII, 1960, pages 174, XP008173067 *
V. G. SOROKINA ET AL.: "INTERME INZHINIRING", STALI I SPLAVY. MAROCHNIK, POD RED., 2001, MOSCOW, pages 95, XP008172462 *

Also Published As

Publication number Publication date
EP2803749A4 (en) 2015-05-06
CN104471098A (en) 2015-03-25
RU2505618C1 (en) 2014-01-27
EP2803749A1 (en) 2014-11-19
CN104471098B (en) 2017-11-07

Similar Documents

Publication Publication Date Title
RU2557035C1 (en) High-strength cold-rolled sheet steel and method of its production
CN101960034B (en) High-strength galvanized steel sheet, high-strength alloyed hot-dip galvanized sheet, and high-strength cold-rolled steel sheet which excel in moldability and weldability, and manufacturing method for the same
CN104379773B (en) Austenite stainless product made from steel and its manufacture method
RU2714975C1 (en) Method of making high-strength steel strip with improved properties for further processing and steel strip of this type
CN105008570A (en) Thick, tough, high tensile strength steel plate and production method therefor
EP2975149A1 (en) H-shaped steel and process for manufacturing same
CN107208232B (en) Self hardening superhigh intensity multi-phase Steels with excellent processability and the method that band is prepared by it
AU2014294080A1 (en) High-strength steel material for oil well and oil well pipes
CA2966476A1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
ES2929345T3 (en) High strength steel with improved mechanical properties
UA126038C2 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
Grajcar et al. Non-metallic inclusions in high manganese austenitic alloys
KR20220084382A (en) Steel plate for hot stamping and hot stamping
CN109023055A (en) A kind of high intensity high formability autobody sheet and its production technology
CA2882361C (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability
AU2013243635B2 (en) Cost-effective ferritic stainless steel
CN109097681A (en) A kind of high intensity is low to be mingled with autobody sheet and its continuous casting process electromagnetic agitation technique
WO2014088454A1 (en) Low-alloy, high-strength structural steel
CA2985544C (en) High manganese 3rd generation advanced high strength steels
RU2393236C1 (en) Procedure for production of plate iron
RU2688077C1 (en) Method for production of low-alloy cold-resistant sheet metal
FI127450B (en) Martensitic stainless steel and method for the manufacture
RU2336316C2 (en) Round bar out of boron containing steel for cold die forging
RU2541255C1 (en) Reinforced structural steel with enhanced strength and method of thermal strengthening hot rolled stock
RU2249629C1 (en) Round-profiled rolled iron from medium-carbon high-plasticity steel for cold die forging of high-strength especially high-profiled fastening members

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013861471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE