WO2014088373A1 - 백시트 - Google Patents

백시트 Download PDF

Info

Publication number
WO2014088373A1
WO2014088373A1 PCT/KR2013/011305 KR2013011305W WO2014088373A1 WO 2014088373 A1 WO2014088373 A1 WO 2014088373A1 KR 2013011305 W KR2013011305 W KR 2013011305W WO 2014088373 A1 WO2014088373 A1 WO 2014088373A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
backsheet
intermediate layer
fluororesin
perfluoro
Prior art date
Application number
PCT/KR2013/011305
Other languages
English (en)
French (fr)
Inventor
권윤경
김현철
고현성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/648,519 priority Critical patent/US20150303338A1/en
Priority claimed from KR1020130151367A external-priority patent/KR101552772B1/ko
Publication of WO2014088373A1 publication Critical patent/WO2014088373A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to a backsheet, a method for manufacturing the backsheet, and a photovoltaic module including the same.
  • Photovoltaic cell to which solar power generation principle is applied is a device that converts sunlight into electrical energy. Since it needs to be exposed to the external environment for a long time to absorb sunlight easily, various packaging is performed to protect cells. ), And these units are called photovoltaic modules.
  • the photovoltaic module uses a back sheet having excellent weather resistance and durability to stably protect the photovoltaic cell even when exposed to an external environment for a long time.
  • a backsheet it is common to include the backsheet by which the resin layer containing fluorine resins, such as PVF (Polyvinyl fluoride), is laminated
  • the resin layer containing fluorine resins such as PVF (Polyvinyl fluoride)
  • the fluoropolymer film obtained by extrusion or casting is laminated on a substrate using a urethane adhesive or the like.
  • this method requires expensive fluorine-based polymer film production equipment, additionally requires an adhesive coating process and a lamination process, and requires the use of a thick fluorine-based polymer film.
  • Patent Document 1 Korean Patent Publication No. 2011-0034665
  • Patent Document 2 Korean Patent Publication No. 2011-0031375
  • the present application provides a backsheet, a method of manufacturing the backsheet, and a photovoltaic module including the same.
  • the present application relates to a backsheet.
  • exemplary backsheets include substrate layers that are sequentially stacked; Middle layer; And a fluororesin layer.
  • the back sheet has excellent adhesion between the layers and can exhibit excellent durability.
  • the peeling area is 15% relative to the total area when the cross cut test is performed according to ASTM D3002 / D3359. Up to 10% or up to 5%.
  • the cross-cut test may be performed after the backsheet has been manufactured and maintained for 75 hours or 100 hours in the above conditions in the state before being applied to the product, for example, in the manner defined in the following examples. It can be performed on the layer surface.
  • the back sheet exhibiting excellent adhesive strength may be prepared by forming an intermediate layer including an aqueous dispersion binder by an in-line coating method, and forming a layer containing a fluorine resin having a predetermined degree of crystallinity thereon if necessary.
  • a fluorine resin having a predetermined degree of crystallinity thereon if necessary.
  • the backsheet 10 includes a base layer 13; An intermediate layer 12 formed on the base layer 13; And a fluororesin layer 11 formed on the intermediate layer 12.
  • the intermediate layer 12 is a layer for securing adhesion between the fluororesin layer 11 and the base layer 13, and may be referred to as a compatible polymer layer or an inline coating layer in another example.
  • the term compatible polymer layer may mean a layer including a component having excellent compatibility with a component of the fluororesin layer
  • the term inline coating layer may mean a layer formed by an inline coating method. As such, by forming the intermediate layer in an inline manner using a compatible polymer, a back sheet having excellent durability as described above may be provided.
  • the intermediate layer may comprise a water dispersion binder and thus may be an inline coating layer comprising a water dispersion binder.
  • the water dispersion binder is a crosslinkable water dispersion binder, that is, a water dispersion binder capable of crosslinking treatment, and the intermediate layer may further include a crosslinking agent.
  • the film according to another example of the present application may include an intermediate layer and a resin layer formed on the other side of the substrate layer, and the intermediate layer and the resin layer sequentially formed on both surfaces of the substrate layer.
  • the substrate layer may be various metal films or polymer films.
  • a metal film the film comprised from the normal metal component can be used according to a use.
  • the polymer film include a single sheet including an acrylic film, a polyolefin film, a polyamide film, a polyurethane film, or a polyester film, a laminated sheet in which one or two or more of them are laminated, or manufactured using the resin. And coextrusions.
  • a polymer film for example, a polyester film is used as the base layer, but is not limited thereto.
  • polyester film may include a PET (poly (ethylene terephtalate)) film, a PEN (poly (ethylene naphtalate)) film, or a PBT (poly (buthylene terephtalate)) film.
  • PET poly (ethylene terephtalate)
  • PEN poly (ethylene naphtalate)
  • PBT poly (buthylene terephtalate)
  • the base layer may include functional groups such as, for example, carboxyl groups, aromatic thiol groups, and phenolic hydroxyl groups on one or both surfaces thereof.
  • the functional groups on the surface of the substrate layer include, for example, high-frequency spark discharge treatment such as plasma treatment and corona treatment; Primer treatment; Anchor agent treatment; Coupling agent treatment; Deposition treatment; Flame treatment; Chemical activation using gaseous Lewis acid (ex. BF 3 ), sulfuric acid or hot sodium hydroxide and the like; And at least one surface treatment selected during the heat treatment.
  • the surface treatment method is not limited as long as it can induce the above-described functional group on the surface of the substrate layer, and may be by any known means generally used in the art.
  • the thickness of the base layer is not particularly limited and may be appropriately adjusted as necessary, but may be, for example, in a range of about 50 ⁇ m to 500 ⁇ m or about 100 ⁇ m to 300 ⁇ m. When adjusting the thickness of the base layer in the above range, it is possible to maintain excellent electrical insulation, moisture barrier properties, mechanical properties and handleability of the back sheet including the same.
  • the intermediate layer can include a water dispersion binder.
  • a water dispersion binder By using the water dispersion binder to form the intermediate layer by in-line coating, it is possible to improve the adhesion with the fluorine resin layer formed on the upper portion of the intermediate layer.
  • the kind of water dispersion binder for example, a crosslinkable water dispersion binder, is not specifically limited, If it is excellent in compatibility with the fluorine resin mentioned later, it can use without a restriction
  • the water dispersion binder include polyurethane, silane-modified urethane resin, acrylic resin, polyurea, polyamide, polyolefin, polyvinylacetate, polyether, alkyd resin, urethane-acrylate copolymer, vinyl-urethane copolymer, One or more selected from the group consisting of ethylene-vinyl alcohol copolymers, silicone-acryl-urethane copolymers, ethylene-vinylacetate copolymers, and acrylic modified polyesters may be mentioned, but is not limited thereto.
  • a crosslinking structure between the binder and the binder may be formed to increase crosslinkability.
  • a crosslinkable water dispersion binder what introduce
  • a hydroxy group, a carboxyl group, a cyano group, an epoxy group, a sulfonic acid group or an amine group may be exemplified, but is not limited thereto.
  • the intermediate layer may further include a crosslinking agent, thereby improving the adhesion or durability between the base layer and the resin layer.
  • the crosslinking agent included in the intermediate layer may provide a more dense internal structure by forming a crosslinked structure of the water-dispersing binder while improving the adhesion with the base layer through the functional group.
  • crosslinking agent for example, one or more selected from the group consisting of an isocyanate crosslinking agent, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, and an aziridine crosslinking agent may be used. It can form or react with the hydroxyl group and carboxyl group on the surface of a base material layer, and can improve an interface adhesive force further.
  • tolylene diisocyanate (TDI)
  • diaryl isocyanate diphenylmethane-4,4'- diisocyanate
  • diphenylmethane-2,4'- diisocyanate diphenylmethane-2,4'- diisocyanate
  • xylene diisocyanate for example.
  • XDI methaxylylene diisocyanate, hexamethylene-1,6-diisocyanate (HDI), 1,6-diisocyanate hexane, adduct of tolylene diisocyanate and hexane triol, tolylene diisocyanate and trimethylolpropane Adduct, polyol modified diphenylmethane-4,4'- diisocyanate, carbodiimide modified diphenylmethane-4,4'- diisocyanate, isophorone diisocyanate (IPDI), 1, 5- naphthalene diisocyanate, 3 3,3'-Bitolylene-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate or metaphenyl Rendiisocyanate and the like can be exemplified.
  • IPDI isophorone diisocyanate
  • the oxazoline crosslinking agent can be used without limitation as long as it is a compound having an oxazoline group as a functional group, such as a high molecular compound containing an oxazoline group-containing monomer or one or more monomers and copolymerized with one or more other monomers.
  • examples of the oxazoline crosslinking agents include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-isopropenyl.
  • Compounds such as 2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline or 2-isopropenyl-5-ethyl-2-oxazoline, and one or two or more of them To form a high molecular compound can be used.
  • Other comonomers may be copolymerized in the polymer compound, and such monomers include alkyl (meth) acrylates, amide group-containing monomers, unsaturated nitrile monomers, vinyl ester monomers, vinyl ether monomers, and halogen-containing ⁇ , ⁇ And at least one selected from the group consisting of -unsaturated monomers or ⁇ , ⁇ -unsaturated aromatic monomers.
  • the aziridine crosslinking agent examples include N, N'-toluene-2,4-bis (1-aziridinecarboxide) and N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxes). Id), triethylene melamine, bisisoprotaloyl-1- (2-methylaziridine) and tri-1-aziridinylphosphineoxide.
  • the carbodiimide crosslinking agent may be a carbodiimide compound or a polycarbodiimide, but is not limited thereto. In general, the carbodiimide compound has a structure represented by Formula 1 below, and the polycarbodiimide includes a repeating structure represented by Formula 2 below.
  • R is a known functional group which a carbodiimide compound or polycarbodiimide may contain, and n is any number.
  • a melamine-based resin or an epoxy-based resin may be selectively added in addition to the above-described crosslinking agent, and in this case, the adhesive performance may be improved while lowering the curing temperature.
  • the melamine crosslinking agent for example, melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a lower alcohol with methylolated melamine, a mixture thereof, and the like can be used. .
  • the epoxy crosslinking agent is a crosslinking agent containing an epoxy group in the molecule, for example, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, triglycidyl ether, trimethylolpropane Group consisting of triglycidyl ether, N, N, N ', N'-tetraglycidyl ethylenediamine, glycerin diglycidyl ether, propylene glycol-diglycidyl ether and polypropylene glycol diglycidyl ether One or more selected from can be used.
  • the crosslinking agent may be used in a ratio of 1 part by weight to 300 parts by weight with respect to 100 parts by weight of the water dispersion binder.
  • the unit weight part may represent a ratio of weight.
  • the crosslinking agent may be used in a ratio of 5 parts by weight or more or 8 parts by weight or more with respect to 100 parts by weight of the binder within the above range.
  • the crosslinking agent may be used in a ratio of 250 parts by weight or less, 200 parts by weight, 150 parts by weight, 100 parts by weight or 80 parts by weight or less with respect to 100 parts by weight of the binder within the above range.
  • the crosslinking density of the intermediate layer can be appropriately controlled, ensuring proper adhesion with the base layer, and improving the coating film properties such as coating property, stretchability, blocking property, and yellowing property.
  • the intermediate layer may further comprise conventional additives such as surfactants, ultraviolet stabilizers, heat stabilizers or barrier particles as required.
  • the thickness of the intermediate layer is not particularly limited, but may be, for example, 10 nm or more.
  • the thickness of the intermediate layer may be about 10 nm to 1,000 nm, 20 nm to 500 nm, 50 nm to 300 nm or 100 nm to 300 nm, and by adjusting the thickness of the intermediate layer within the above range, It is possible to maintain excellent durability and weather resistance while improving the.
  • the thickness of the intermediate layer is not limited to the above range and may be appropriately adjusted as necessary.
  • the back sheet may include a fluororesin layer on the intermediate layer.
  • fluororesin layer may mean a layer containing a fluororesin.
  • the fluororesin for example, one having an appropriate crystallinity can be used. Through the use of such a resin, it is possible to minimize the occurrence of inappropriate bonds such as urethane bonds by reaction with the crosslinking agent or the like of the intermediate layer. When the urethane bond is formed, it may exhibit good initial adhesion, but may be disadvantageous in durability or adhesion under conditions of high temperature and high humidity.
  • a resin having a degree of crystallinity of 55% or less, 50% or less, 10% to 55%, 20% to 55%, 30 to 55%, or 40% to 50% can be used.
  • the term "degree of crystallinity" means a percentage (by weight) of the crystalline region in the fluororesin, which can be measured by a known method such as differential scanning calorimetry.
  • the degree of crystallinity of the fluororesin is determined by copolymerizing comonomers in the manufacture of the fluororesin, releasing the regular elemental arrangement of the fluororesin, or polymerizing the fluororesin in the form of a branched polymer, I can regulate it.
  • the fluororesin may be a non-functionalized pure fluororesin.
  • the non-functionalized pure fluorine resin may have excellent weather resistance compared to the functionalized fluorine resin, for example, an acrylic modified fluorine resin, a crosslinkable end group-containing fluorine resin and the like.
  • the non-functionalized pure fluorine resin may be, for example, a thermoplastic fluorine resin containing no crosslinkable functional group, and this fluorine resin has an effect of showing better adhesion reliability compared to a fluorine-based amorphous thermosetting resin containing a crosslinkable functional group. Can be provided.
  • the fluororesin may have a weight average molecular weight of about 50,000 to 1,000,000.
  • a weight average molecular weight is a conversion value of standard polystyrene measured by GPC (Gel Permeation Chromatograph).
  • GPC Gel Permeation Chromatograph
  • the weight average molecular weight of the fluororesin is not particularly limited.
  • the weight average molecular weight can be appropriately adjusted in consideration of the solubility of the fluororesin in the solvent and durability of the film.
  • Melting point of the fluororesin may be about 80 to 175 °C or 120 to 165 °C.
  • the melting point of the fluororesin may be selected in consideration of the possibility of deformation in the process of using the backsheet, the solubility in the solvent in the process of manufacture, and the like.
  • fluorine resin for example, vinylidene fluoride (VDF, PolyVinylidene Fluoride), vinyl fluoride (VF, PolyVinyl Fluoride), tetrafluoroethylene (TFE, Tetrafluoroethylene) hexafluoropropylene (HFP, Hexafluoropropylene), chloro Trifluoroethylene (CTFE, chlorotrifluoroethylene), trifluoroethylene, hexafluoroisobutylene, perfluoro butylethylene, perfluoro methyl vinyl ether (PMVE, perfluoro (methylvinylether)), perfluoro ethyl vinyl ether ( PEVE, perfluoro (ethylvinylether)), perfluoro propyl vinyl ether (PPVE), perfluoro hexyl vinyl ether (PHVE), perfluoro-2,2-dimethyl-1,3-diosol (PDD) and perfluor Homopolymers
  • the fluorine resin may be a homopolymer comprising a polymer unit derived from vinylidene fluoride (VDF) or vinyl fluoride (VF) or a copolymer of the above with other comonomers; Or it may be a mixture containing two or more of the above.
  • the fluororesin may be fluorinated olefin, fluorinated alkyl vinyl ether, perfluoro-2,2-dialkyl- with polymerized units derived from vinylidene fluoride (VDF) or vinyl fluoride (VF).
  • Poly (vinylidene) comprising polymerized units derived from one or two or more comonomers selected from 1,3-dioxol and perfluoro-2-alkylene-4-alkyl-1,3-dioxolane and the like Fluoride) (PVDF) or poly (vinyl fluoride) (PVF).
  • the olefin may be an alpha olefin having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms
  • alkyl or alkylene may be 1 to 20 carbon atoms, 1 to 16 carbon atoms
  • Alkyl or alkylene having 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CFE chlorotrifluoroethylene
  • trifluoroethylene trifluoroethylene
  • hexafluoroisobutylene or purple Fluorobutylethylene and the like can be exemplified, and as the alkyl fluorinated vinyl ether, perfluoromethyl vinyl ether (PMVE, perfluoro (methylvinylether)), perfluoroethyl vinyl ether (PEVE, perfluoro (ethylvinylether)), purple Fluoropropyl vinyl ether (PPVE) or perfluorohexyl vinyl ether (PHVE) and the like can be exemplified, for example, perfluoro-2,2-dialkyl-1,3-diosol or perfluoro-2-alkyl.
  • PMVE perfluoromethyl vinyl ether
  • PEVE perfluoroethyl vinyl ether
  • PEVE perflu
  • Examples of the ethylene-4-alkyl-1,3-dioxolane include perfluoro-2,2-dimethyl-1,3-dioxol (PDD) or perfluoro-2-methylene-4-methyl-1,3 Dioxolane (PMD) and the like can be exemplified, but is not limited thereto.
  • PDD perfluoro-2,2-dimethyl-1,3-dioxol
  • PMD perfluoro-2-methylene-4-methyl-1,3 Dioxolane
  • the proportion of the comonomer included in polyvinylidene fluoride (PVDF) or polyvinyl fluoride (PVF) or polymerized units derived therefrom is not particularly limited, but is, for example, 0.5 to 50% by weight relative to the total weight of the fluorine resin. Weight percent, 1 weight percent to 40 weight percent, 7 weight percent to 40 weight percent, 10 weight percent to 30 weight percent, or about 10 weight percent to 20 weight percent. Within this range, while maintaining the durability and weather resistance of the back sheet, it is possible to induce effective cross-diffusion action and low temperature drying and further improve the adhesion.
  • the fluororesin layer may further include various additives such as pigments, fillers, ultraviolet stabilizers, or heat stabilizers, in addition to the fluororesin.
  • pigments or fillers examples include metal oxides such as titanium dioxide, silica or alumina; Black pigments such as calcium carbonate, barium sulfate or carbon black; Or a pigment component representing another color, but is not limited thereto.
  • Such pigments or fillers may act to further improve the adhesion of the resin layer by the inherent functional groups included in each component together with the inherent effect of controlling the color or opacity of the resin layer.
  • the ultraviolet stabilizer, heat stabilizer or barrier particles may use conventional ingredients known in the art.
  • the content of the other additives such as pigments or fillers may be 60 wt% or less based on the solids content of the fluororesin, but is not limited thereto.
  • the thickness of the resin layer containing the fluororesin is not particularly limited, and may be, for example, 3 ⁇ m to 50 ⁇ m, or 10 ⁇ m to 30 ⁇ m.
  • the thickness of the resin layer containing the fluorine resin in the above range it is possible to improve the light blocking properties, it is possible to prevent the increase in manufacturing cost.
  • the fluororesin layer may be a coating layer.
  • coating layer used in the present specification means a resin layer formed by a coating method. More specifically, the “coating layer” is not a method of laminating a sheet produced by a casting method (casting method) or extrusion method using an adhesive or the like, the composition prepared by dissolving the components constituting each layer in a solvent applied to the coating surface It means the case formed in a way.
  • the fluorine resin layer when the fluorine resin layer is formed by a coating method, it may be easy to form an interpenetrating polymer network (IPN) by penetrating into the intermediate layer formed under the in-line coating method.
  • IPN interpenetrating polymer network
  • the CF 2 bond dipole of the fluororesin, the water dispersion binder of the intermediate layer, and the functional groups included in the crosslinking agent can improve the interaction by van der Waals bonds between the dipole moments, thereby improving the adhesion and mechanical properties at the contact interface Furthermore, durability and weather resistance can be improved.
  • the present application also relates to a method of making the backsheet.
  • the method may include, for example, forming an intermediate layer on the substrate layer layer by an inline coating method, and forming a fluororesin layer on the intermediate layer.
  • the fluororesin layer may be formed by a coating method.
  • the intermediate layer may be formed by an in-line coating method in the manufacturing process of the base layer, thereby providing a back sheet having excellent adhesion or durability.
  • the in-line coating method may include, for example, stretching the base layer in one direction in a state in which a layer of the dispersion composition including the water dispersion binder is formed on one surface of the base layer.
  • the layer of the water dispersion composition may be formed, for example, by coating on the base layer an aqueous dispersion composition containing the above-described water dispersion binder and other additives such as a crosslinking agent, if necessary.
  • the aqueous dispersion composition can be prepared by dissolving or dispersing the above-mentioned components in a suitable aqueous solvent such as water or the like.
  • a suitable aqueous solvent such as water or the like.
  • water-dispersible compositions can include water-dispersing binders, crosslinking agents and aqueous solvents.
  • the method of dispersing the various components in an aqueous solvent in order to prepare an aqueous dispersion composition is not particularly limited, and methods generally used in the art may be used without limitation.
  • the water dispersion composition may, for example, further include a surfactant to prevent deterioration in dispersibility and wettability, thereby preventing the weather resistance from deteriorating while the intermediate layer is uniformly applied.
  • the surfactant may be present in the state included in the preparation of the water dispersion binder.
  • the water-dispersible composition may include in an dispersed form an additive that may be included in the above-described intermediate layer within a range that does not impair the physical properties of the intermediate layer.
  • the coating method of the water dispersion composition is a coating method applicable to the in-line process
  • various known coating methods can be applied without limitation.
  • well-known printing methods such as the offset printing method or the gravure printing method
  • well-known coating methods such as a roll coat or a knife edge coat or a gravure coat, can be included.
  • the substrate layer may be stretched while the layer of the water dispersion composition is formed.
  • the "stretching process of the base layer” refers to, for example, the substrate layer after the step of cooling and solidifying the melt-extruded base layer resin on a cast roll to form the unstretched base layer. Alternatively, it may mean a process of pulling in the transverse direction (TD).
  • the stretching conditions are not particularly limited.
  • the draw ratio of the substrate layer may be about 1.5 times to 10 times, about 1.5 times to 8 times, about 1.5 times to 6 times, or about 2 times to 5 times, and the stretching temperature may also be considered in consideration of process progress efficiency. This is a good choice.
  • drying conditions are not particularly limited and may be, for example, performed for 10 seconds to 30 minutes or 1 minute to 10 minutes at a temperature of 200 ° C. or lower or 100 ° C. to 180 ° C.
  • the base layer on which the layer of the water dispersion composition is formed is a uniaxially stretched base layer, and in the state where the layer of the water dispersion composition is formed, the base layer may be stretched in a direction perpendicular to the uniaxial stretching. That is, for example, before forming a layer of the water dispersion composition, the base layer is stretched in the MD or TD direction, and then a layer of the water dispersion composition is formed, and again in a direction perpendicular to the stretching direction, for example, TD. Direction, or the base layer may be stretched in the MD direction.
  • the stretching conditions of the base layer carried out before the water dispersion composition is formed are also not particularly limited, and the foregoing may be similarly applied.
  • the unstretched substrate layer is uniaxially stretched at a necessary elongation in the machine direction (or transverse direction) by a roll heated to an appropriate temperature, for example, about 100 ° C to 200 ° C, and a suitable temperature, for example, After cooling using a roll of about 50 ° C. to 100 ° C., a layer of the water dispersion composition is formed, and both ends of the substrate layer are used at a proper temperature, for example, about 100 ° C. using a stretching machine of a roll or a tender method. It can extend
  • a method of simultaneously stretching the uniaxial and vertical axes may be applied after applying the water dispersion composition to the base material layer.
  • a relaxation treatment process may be further performed after the stretching.
  • a relaxation treatment process may be further performed after the stretching.
  • the range of relaxation is not particularly limited, and the relaxation process can be performed, for example, by shrinking in the range of the relaxation rate within 30% in the machine and / or transverse direction.
  • the term "relaxation rate" refers to a value obtained by dividing the length of relaxation by the dimension before stretching.
  • a heat setting process by heat treatment may be performed between the relaxation processes. Relaxation may be performed after such heat setting.
  • the conditions of heat setting are not particularly limited, and for example, after stretching, a method of appropriately removing moisture from the base layer to which the water-dispersing composition is applied using an oven, and heating the base layer to which the water-dispersing composition is applied during the stretching process. Can be used.
  • the process temperature may be, for example, about 150 ° C. to 350 ° C.
  • the time may be in a range of about 1 second to 60 seconds.
  • the fluorine resin layer may be formed after the intermediate layer is formed in the inline manner as described above.
  • the fluororesin layer is formed by coating, for example, an intermediate layer with a composition (hereinafter sometimes referred to as a "resin layer composition") containing a fluororesin having a crystallinity of 55% or less and a solvent having a boiling point of 200 ° C or lower. can do.
  • the resin layer-forming composition may further include an additive as described above.
  • the additive may be dissolved in a solvent together with a fluorine resin or the like, or prepared in a millbase form separately from the above components, and then mixed with a solvent including the fluorine resin.
  • Chemical interactions such as van der Waals bonds, hydrogen bonds, ionic bonds, or covalent bonds may also occur by functional groups included in additives such as fillers or pigment dispersants that may be included in the resin layer including the fluorine resin.
  • solvent having a boiling point of 200 ° C. or less one or more selected from the group consisting of acetone, methyl ethyl ketone (MEK), dimethylformamide (DMF), and dimethylacetamide (DMAC) may be exemplified, but is not limited thereto.
  • MEK methyl ethyl ketone
  • DMF dimethylformamide
  • DMAC dimethylacetamide
  • the surface of the intermediate layer is swelled at the contact interface when the resin layer containing the fluorine resin and the intermediate layer contact each other, thereby causing the fluorine resin contained in the resin layer to diffuse into the intermediate layer.
  • the method of coating the resin layer composition on the intermediate layer is not particularly limited, and for example, well-known printing methods such as offset printing and gravure printing and well-known coating methods such as roll coat or knife edge coat and gravure coat can be used. Including any method can be applied as long as it can form a uniform resin layer. In addition to the above manner, various methods known in the art may be applied.
  • a process of drying the coated resin layer composition may be further performed after the process of coating the resin layer composition on the intermediate layer.
  • the drying conditions are not particularly limited and may be performed, for example, for 30 seconds to 30 minutes, or 1 minute to 10 minutes at a temperature of 200 ° C. or less, or 100 ° C. to 180 ° C.
  • the backsheet of the present application may further comprise various functional layers known in the art as needed.
  • the functional layer include an adhesive layer or an insulating layer.
  • the back sheet may sequentially include a resin layer including the above-described intermediate layer and a fluorine resin on one surface of the substrate layer, and sequentially include an adhesive layer and an insulating layer on the other surface.
  • the adhesive layer or insulating layer may be formed in various ways known in the art.
  • the insulating layer may be, for example, a layer composed of ethylene vinyl acetate (EVA) or low density linear polyethylene (LDPE).
  • the EVA or LDPE layer is not only a function of an insulating layer but also a function of increasing adhesion to an encapsulant of a photovoltaic module, reducing manufacturing costs, and maintaining excellent re-workability. Can be performed simultaneously.
  • Such a backsheet for a photovoltaic module includes an intermediate layer including a water dispersion binder formed on a base layer and a fluororesin layer formed on the intermediate layer, wherein the intermediate layer has various functional groups on the surface of the base layer.
  • the water-dispersing binder of the intermediate layer further improves the adhesive force between the intermediate layer and the resin layer by the mutual diffusion effect with the fluorine resin contained in the upper resin layer, and also includes a fluororesin having excellent weather resistance in the outermost layer of the backsheet. Due to the presence of the resin layer, durability and weather resistance can be improved.
  • the water dispersion binder included in the intermediate layer may be mutually diffused into the base layer or the surface treatment layer of the base layer, whereby the chemical between the base layer and the intermediate layer
  • the adhesive force can be improved by the chain entanglement between the molecular chains and van der Waals forces, and the like, and at the interface between the resin layer and the intermediate layer containing the fluorine resin, the resin layer The fluorine resin contained in the interlayer can be diffused into the intermediate layer, thereby improving adhesion between the resin layer and the intermediate layer containing the fluorine resin by entanglement between the molecular chains and van der Waals forces.
  • the strength of the adhesive force between the base layer and the intermediate layer may be stronger than that formed by the offline process.
  • the backsheet can be used for, for example, a photovoltaic module, and has properties such as insulation, moisture barrier, as well as durability and weather resistance to stably protect the photovoltaic cell even after long-term exposure to an external environment.
  • the present application also relates to a photovoltaic module comprising the backsheet.
  • the structure of the photovoltaic module is not particularly limited as long as it includes the backsheet for the photovoltaic module, and various structures generally known in the art may be adopted without limitation.
  • the photovoltaic module can include a transparent front substrate, a backsheet and a photovoltaic cell encapsulated by an encapsulant between the front substrate and the backsheet, or a photovoltaic array disposed in series or in parallel.
  • the structure of the photovoltaic module is a backsheet; A photovoltaic cell or photovoltaic array formed on the backsheet; A light receiving sheet formed on the photovoltaic cell or photovoltaic array; And an encapsulant layer encapsulating the photovoltaic cell or the photovoltaic cell array between the backsheet and the light receiving sheet.
  • the thickness of the backsheet is not particularly limited and may be, for example, 30 ⁇ m to 2,000 ⁇ m, 50 ⁇ m to 1,000 ⁇ m, or 100 ⁇ m to 600 ⁇ m.
  • the photovoltaic module can be made thinner, and excellent physical properties such as weather resistance of the photovoltaic module can be maintained.
  • photovoltaic cells formed on the backsheet are not particularly limited as long as they can generate photovoltaic power, and photovoltaic devices generally available in this field may be used.
  • crystalline silicon photovoltaic cells such as monocrystalline silicon and polycrystalline silicon
  • amorphous silicon photovoltaic cells such as single bond type or tandem structure type
  • gallium arsenide (GaAs) indium phosphorus (InP), and the like.
  • Group III-V compound semiconductor photovoltaic cells and group II-VI compound semiconductor photovoltaic cells such as cadmium-tellurium (CdTe) and copper-indium-selenide (CuInSe 2 ), and the like, and thin film polycrystalline silicon photovoltaic cells Thin film microcrystalline silicon photovoltaic cells and hybrid photovoltaic cells of thin film crystalline silicon and amorphous silicon.
  • the photovoltaic cell can form a photovoltaic array (photovoltaic cell assembly) by wiring connecting the photovoltaic cell and the photovoltaic cell.
  • photovoltaic array photovoltaic cell assembly
  • the light-receiving sheet formed on the photovoltaic cell or photovoltaic cell array may perform a function of protecting the inside of the photovoltaic module from wind, external shock or fire and ensuring long-term reliability upon outdoor exposure of the photovoltaic module.
  • Specific types of the light-receiving sheet are not particularly limited as long as the light-receiving sheet is excellent in light transmittance, electrical insulation, mechanical or physical, and chemical strength.
  • a glass plate, a fluorine-based resin sheet, a cyclic polyolefin-based resin sheet, a polycarbonate-based resin sheet, A poly (meth) acrylic resin sheet, a polyamide resin sheet, a polyester resin sheet, etc. can be used.
  • a glass plate having excellent heat resistance may be used, but is not limited thereto.
  • the thickness of the light receiving substrate is not particularly limited, and may be, for example, 0.5 mm to 10 mm, 1 mm to 8 mm, or 2 mm to 5 mm.
  • the photovoltaic module can be made thinner, but excellent physical properties such as long-term reliability of the photovoltaic module can be maintained.
  • the encapsulant layer encapsulating the photovoltaic cell or the photovoltaic cell array inside the photovoltaic module, specifically between the backsheet and the light receiving sheet may employ any encapsulant generally known in the art.
  • FIGS. 2 and 3 are views illustrating cross-sectional views of photovoltaic modules according to various embodiments of the present application.
  • a photovoltaic module according to one example of the present application typically includes a light receiving sheet 21, which may be composed of a ferroelectric (ex. Glass); A backsheet 23 for photovoltaic module according to examples of the present application; Photovoltaic elements 24 such as the silicon wafer; And an encapsulant layer 22 encapsulating the photovoltaic device 24.
  • a light receiving sheet 21 which may be composed of a ferroelectric (ex. Glass)
  • a backsheet 23 for photovoltaic module according to examples of the present application Photovoltaic elements 24 such as the silicon wafer
  • an encapsulant layer 22 encapsulating the photovoltaic device 24.
  • the encapsulant layer 22 encapsulates the photovoltaic device 24 and attaches to the backsheet 23 while encapsulating the first layer 22a and the photovoltaic device 24 attached to the light receiving sheet 21. It may include a second layer 22b. As described above, the first layer and the second layer constituting the encapsulant layer 22 may be formed of a material generally known in the art.
  • FIG. 3 is a cross-sectional view of a thin film photovoltaic module 30 according to another example of the present application.
  • the photovoltaic device 34 may be formed on the light receiving sheet 31, which may typically be made of a ferroelectric.
  • Such a thin film photovoltaic device 34 may be deposited by conventional methods such as chemical vapor deposition (CVD).
  • the photovoltaic module 30 of FIG. 3 includes an encapsulant layer 32 and a backsheet 33 similar to the photovoltaic module 20 of FIG. 2, and the encapsulant layer 32 may be formed of a single layer. A detailed description of the encapsulant layer 32 and the backsheet 33 is as described above.
  • the method for manufacturing the various photovoltaic modules described above is not particularly limited, and various methods known to those skilled in the art may be employed without limitation.
  • the photovoltaic module illustrated in FIGS. 2 and 3 is only one example of various embodiments of the photovoltaic module of the present application, and in the case of including the backsheet for the photovoltaic module according to the present application, the structure of the module, the module The kind, size, etc. of the material constituting the same are not particularly limited, and those generally known in this field may be employed without limitation.
  • a back sheet having improved weather resistance and durability by exhibiting excellent reliability and adhesion in heat and / or moisture resistance conditions.
  • Such a backsheet can be applied to, for example, a photovoltaic module or the like.
  • FIG. 1 is a view showing a cross-sectional view of a back sheet according to an embodiment of the present application.
  • FIG 2 and 3 are cross-sectional views of photovoltaic modules according to one embodiment of the present application.
  • the specimen (back sheet) was cut to a width of 10 mm, and measured while peeling at a peel rate of 4.2 mm / sec and a peel angle of 180 degrees.
  • the backsheet for photovoltaic module produced in Examples and Comparative Examples (coated both sides of the base layer with an intermediate layer and a resin layer) was placed in an oven maintained at 2 atmospheres, 121 ° C. and 100% relative humidity (RH) for 25 hours. After 50 hours, 75 hours and 100 hours, the change in adhesion was observed.
  • the crystallinity of the fluororesin was measured using a differential scanning calorimeter. Heat of fusion ( ⁇ Hf) during secondary heating was measured using a differential scanning calorimeter, and the rate of heating was 10 K / min. The ⁇ Hf measurement criterion obtained the area between 80 ° C and the part 3 ° C higher than the melting phase end. Since ⁇ Hf of 100% crystalline PVDF was 105 J / g, the crystallinity was calculated based on this value. In the case of the copolymer, the degree of crystallinity was calculated based on ⁇ Hf of 100% crystalline PVDF.
  • the kind of fluororesin used in the Example and the comparative example is as Table 1 below.
  • Table 1 the weight average molecular weight (Mw) of the fluorine resin was evaluated in a conventional manner using GPC (Gel Permeation Chromatogrphy).
  • a urethane water-dispersing binder containing a siloxane bond (Takelec WS-5000, manufactured by Mitsui Corporation, solids 30%) and 20 g of an oxazoline crosslinking agent (Epocros WS-500, manufactured by Nippon Catalysts, Inc., 40% solids)
  • PET poly (ethylene terephthalte)
  • a sufficiently dried PET (poly (ethylene terephthalte)) chip was injected into a melt extruder, a PET film was prepared by a T-die method, and stretched about 3.5 times in the machine direction at 100 ° C. to produce a uniaxially stretched PET film.
  • the intermediate layer composition was coated on the uniaxially stretched PET film, and after appropriately drying at 120 ° C., the film was stretched about 3.5 times in the transverse direction (the direction perpendicular to the machine direction). Subsequently, heat treatment was performed at 240 ° C. for about 10 seconds, and 10% was relaxed at 200 ° C. in the machine direction and the transverse direction to form an intermediate layer having a thickness of about 200 nm.
  • the coating solution for the fluororesin layer was coated on the intermediate layer by a comma reverse method so as to have a thickness of about 20 ⁇ m after drying. Thereafter, the coating film coated with the fluorine resin layer was sequentially coated in the order of 1 m / min in three ovens each having a length of about 2 m and a temperature of 80 ° C., 180 ° C. and 180 ° C., respectively.
  • the back sheet was formed by sequentially forming the intermediate layer and the fluororesin layer on both sides of the PET film (substrate layer) in such a manner as to form a fluororesin layer by passing through.
  • Bag for photovoltaic module in the same manner as in Example 1 except that a urethane-based water dispersion binder (Takelec WS-5030, Mitsui Corporation, solid content 30%) was used as the water dispersion binder in the process of preparing the water-dispersion composition for forming the intermediate layer. Sheets were prepared.
  • a urethane-based water dispersion binder Takelec WS-5030, Mitsui Corporation, solid content 30%
  • An acrylic modified polyester water dispersion binder (Pesresin A645GH, manufactured by Takamatsu Co., Ltd., 30% solids) is used as a water dispersion binder in the preparation of the coating solution for the intermediate layer, and an oxazoline crosslinking agent (Epocros WS-700, Japanese catalyst) is used as a crosslinking agent.
  • a photosheet for a photovoltaic module was prepared in the same manner as in Example 1 except that 40 g of a yarn (manufactured) and a solid content of 25%) were used.
  • An acrylic modified polyester water dispersion binder (Pesresin A645GH, manufactured by Takamatsu Co., Ltd., 30% solids) was used as a water dispersion binder in the preparation of the coating solution for the intermediate layer, and a carbodiimide crosslinking agent (Carbodilite V02-L2, Nisshibo) was used as a crosslinking agent.
  • a carbodiimide crosslinking agent Carbodilite V02-L2, Nisshibo
  • the backsheet for photovoltaic module was manufactured by the same method as Example 1 except having used the solid content 40%).
  • a backsheet for a photovoltaic module was prepared in the same manner as in Example 1, except that 50 g of an acrylic aqueous dispersion binder (Maincoat PR71, Rohm and Haas (manufactured), 50% of solid content) was used as a water dispersion binder in the process of preparing the coating solution for the intermediate layer. .
  • a backsheet for a photovoltaic module was manufactured in the same manner as in Example 1, except that 8 g of an isocyanate-based crosslinking agent (Duranate WB40-100, manufactured by Asahi Kasei Co., Ltd.) was used as a crosslinking agent in the process of preparing the coating solution for the intermediate layer.
  • an isocyanate-based crosslinking agent Duranate WB40-100, manufactured by Asahi Kasei Co., Ltd.
  • a backsheet having a structure in which commercially available Tedlar films, adhesives, PET films, adhesives, and Tedlar films were sequentially laminated was used as Comparative Example 1.
  • the back sheet is a product in which a DuPont Tedlar film (PVF, polyvinyl fluoride film (thickness 38 ⁇ m)) manufactured by an extrusion process is laminated on both sides of a PET film using an adhesive.
  • PVF DuPont Tedlar film
  • a backsheet having a structure in which commercially available Tedlar films, adhesives, PET films, adhesives, and Tedlar films were sequentially stacked was used as Comparative Example 2.
  • the back sheet is a product in which a DuPont Tedlar film (PVF film, 25 ⁇ m thick) manufactured by a casting process is laminated on both sides of a PET film using an adhesive.
  • PVF film DuPont Tedlar film
  • a backsheet was manufactured in the same manner as in Example 1, except that the step of forming the intermediate layer was omitted.
  • a backsheet for a photovoltaic module was manufactured in the same manner as in Example 1, except that an offline process, that is, an inline process, that is, a method of forming an intermediate layer on the finished PET film was applied.
  • a backsheet for a photovoltaic module was prepared in the same manner as in Example 6, except that 8 g of polyglycerol polyglycidyl ether (Denacol EX614B, manufactured by Nagase chemtex) was used as the crosslinking agent in the coating solution for the intermediate layer. .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

본 출원은 백시트, 백시트의 제조방법 및 이를 포함하는 광전지 모듈에 관한 것이다. 본 출원에서는 내열 및/또는 내습 조건에서의 우수한 신뢰성 및 접착력을 나타내어서 내후성 및 내구성이 향상된 백시트를 제공할 수 있다. 이러한 백시트는 예를 들면 광전지 모듈 등에 적용될 수 있다.

Description

백시트
본 출원은 백시트, 백시트의 제조방법 및 이를 포함하는 광전지 모듈에 관한 것이다.
지구 환경 문제와 화석 연료의 고갈 등에 따른 신 재생 에너지 및 청정 에너지에 대한 관심이 고조되고 있으며, 그 중 태양광 에너지는 환경 오염 문제 및 화석 연료 고갈 문제를 해결할 수 있는 대표적인 무공해 에너지원으로 주목을 받고 있다.
태양광 발전원리가 적용되는 광전지는 태양광을 전기 에너지로 전환시키는 소자로서, 태양광을 용이하게 흡수할 수 있도록 외부환경에 장기간 노출되어야 하므로 셀을 보호하기 위한 여러 가지 패키징이 수행되어 유닛(unit) 형태로 제조되며, 이러한 유닛을 광전지 모듈(Photovoltaic Modules)이라 한다.
일반적으로 광전지 모듈은 장기간 외부환경에 노출된 상태에서도 광전지를 안정적으로 보호할 수 있도록, 내후성 및 내구성이 우수한 백시트를 사용한다. 이와 같은 백시트로는 예를 들어, 기재에 PVF(Polyvinyl fluoride) 등의 불소 수지를 포함하는 수지층이 적층되어 있는 백시트를 포함하는 것이 일반적이다.
그러나, 상기 PVF 수지는 백시트의 기재로 대표적으로 사용되는 PET(Polyethylene Terephtalate) 필름에 대한 접착력이 좋지 못하기 때문에, 압출 또는 캐스팅으로 얻어진 불소계 중합체 필름을 우레탄계 접착제 등을 사용하여 기재에 라미네이션하여 사용되고 있다. 그러나, 이러한 방법은 고가의 불소계 중합체 필름 제조설비가 필요하고, 접착제 코팅 공정과 라미네이션 공정이 추가적으로 필요하며, 두꺼운 불소계 중합체 필름의 사용이 필요하다.
불소 수지를 포함하는 수지층을 수지 현탁액이나 용액으로 제조하여 기재에 코팅하여 사용하는 방법이 있으나, 이러한 방법은 통상적으로 비점(boiling point)이 높은 용매를 사용하기 때문에 200℃ 이상의 높은 건조 온도를 필요로 한다. 이와 같이 높은 건조온도를 제공하기 위해서는 많은 에너지가 필요하여 광전지 모듈의 백시트의 제조비용을 증가시키고, 열충격에 취약하고, 열변형 등의 문제를 유발하여 제품의 기계적 물성 등의 품질을 악화시킨다.
[선행기술문헌]
(특허문헌 1) 한국공개특허 제2011-0034665호
(특허문헌 2) 한국공개특허 제2011-0031375호
본 출원은 백시트, 백시트의 제조방법 및 이를 포함하는 광전지 모듈을 제공한다.
본 출원은 백시트에 관한 것이다. 예시적인 백시트는 순차 적층되어 있는 기재층; 중간층; 및 불소 수지층을 포함할 수 있다.
상기 백시트는 각층간의 접착력이 우수하고, 탁월한 내구성을 나타낼 수 있다. 예를 들어, 상기 백시트를 2기압, 121℃ 및 100% 상대 습도의 조건에서 75 시간 또는 100 시간 동안 유지한 후에 ASTM D3002/D3359에 따라서 크로스 컷 테스트를 수행하였을 때에 박리 면적은 총 면적 대비 15% 이하, 10% 이하 또는 5% 이하일 수 있다. 상기 크로스 컷 테스트는, 백시트가 제조된 후 제품에 적용되기 전의 상태에서 상기 조건에서 75 시간 또는 100 시간 유지한 후에 수행할 수 있고, 예를 들면, 하기의 실시예에서 규정한 방식으로 불소 수지층면에 대하여 수행할 수 있다. 상기와 같이 우수한 접착력을 보이는 백시트는, 후술하는 바와 같이 수분산 바인더를 포함하는 중간층을 인라인 코팅 방식으로 형성하고, 필요한 경우 그 상부에 소정 결정화도를 가지는 불소 수지를 포함하는 층을 형성하여 제조할 수 있다. 상기에서 박리 면적은 낮을수록 백시트의 내구성이 우수함을 나타내는 것으로 그 하한은 제한되지 않으며, 예를 들면, 0%일 수 있다.
도 1은 예시적인 백시트의 단면도이다. 도 1과 같이, 백시트(10)는 기재층(13); 기재층(13) 상부에 형성되는 중간층(12); 및 중간층(12) 상부에 형성되는 불소 수지층(11)을 포함할 수 있다.
중간층(12)은 불소 수지층(11)과 기재층(13)간의 접착력의 확보를 위한 층으로 다른 예시에서는 상용성 고분자층 또는 인라인 코팅층으로 호칭될 수 있다. 용어 상용성 고분자층은, 불소 수지층의 성분과 상용성이 우수한 성분을 포함하는 층을 의미할 수 있고, 용어 인라인 코팅층은, 인라인 코팅 방식으로 형성된 층을 의미할 수 있다. 이처럼 상용성 고분자를 사용하여 인라인 방식으로 중간층을 형성하여 전술한 바와 같이 우수한 내구성을 나타내는 백시트가 제공될 수 있다.
예를 들면, 중간층은, 수분산 바인더를 포함할 수 있고, 따라서 수분산 바인더를 포함하는 인라인 코팅층을 수 있다. 예를 들면, 상기 수분산 바인더는, 가교성 수분산 바인더, 즉 가교 처리가 가능한 수분산 바인더이고, 상기 중간층은 가교제를 추가로 포함할 수 있다.
본 출원의 다른 예시에 따른 필름은 기재층의 다른 면에도 중간층 및 수지층이 형성되어, 기재층의 양면에 순차 형성된 중간층 및 수지층을 포함할 수도 있다.
기재층의 구체적인 종류는 특별히 제한되지 않고, 이 분야에서 공지된 다양한 소재를 요구되는 기능 내지는 용도에 따라 적절히 선택하여 사용할 수 있다. 하나의 예시에서, 기재층은 각종 금속 필름 또는 고분자 필름일 수 있다. 금속 필름으로는 용도에 따라 통상의 금속 성분으로 구성된 필름을 사용할 수 있다. 고분자 필름의 예시로는 아크릴 필름, 폴리올레핀 필름, 폴리아미드 필름, 폴리우레탄 필름 또는 폴리에스테르 필름을 포함하는 단일 시트, 상기 중 1종 또는 2종 이상이 적층된 적층 시트 또는 상기 수지를 사용하여 제조된 공압출물 등을 들 수 있다. 통상적으로 기재층으로 고분자 필름, 예를 들면, 폴리에스테르 필름을 사용하지만, 이에 제한되는 것은 아니다. 폴리에스테르 필름의 예로는, PET(poly(ethylene terephtalate)) 필름, PEN(poly(ethylene naphtalate)) 필름 또는 PBT(poly(buthylene terephtalate)) 필름 등이 예시될 수 있다. 폴리에스테르 필름을 사용하는 경우, 백시트의 내가수분해 특성을 고려하여, 예를 들면, 축합 중합 시 발생하는 올리고머의 함량이 적은 것을 선택하여 사용하거나, 폴리에스테르 필름에 공지의 내가수분해 특성을 향상시키는 열처리를 추가로 가함으로써, 폴리에스테르의 수분 함량을 줄이고, 수축률을 줄여 내가수분해 특성을 더욱 향상 시킬 수 있다.
기재층은 일측 또는 양측 표면에 예를 들면, 카르복실기, 방향족 티올기 및 페놀성 히드록실기 등과 같은 관능기를 포함할 수 있다. 이러한 경우, 기재층과 중간층의 공유 결합을 증가시켜 계면 결합력을 더욱 향상시킬 수 있다. 기재층 표면의 관능기는 예를 들면, 플라즈마 처리, 코로나 처리와 같은 고주파수의 스파크 방전 처리; 프라이머 처리; 앵커제 처리; 커플링제 처리; 증착 처리; 화염 처리; 기상 루이스산(ex. BF3), 황산 또는 고온 수산화나트륨 등을 사용한 화학적 활성화 처리; 및 열처리 중 선택되는 하나 이상의 표면 처리를 통해 유도될 수 있다. 표면 처리 방법은 기재층의 표면에 전술한 관능기를 유도할 수 있다면, 제한되지 않고 이 분야에서 일반적으로 통용되는 모든 공지의 수단에 의할 수 있다.
기재층의 두께는 특별히 제한되지 않고 필요에 따라 적절히 조절하여 사용할 수 있으나, 예를 들면, 약 50 ㎛ 내지 500 ㎛ 또는 약 100 ㎛ 내지 300 ㎛의 범위일 수 있다. 기재층의 두께를 상기와 같은 범위로 조절하는 경우, 이를 포함하는 백시트의 전기 절연성, 수분 차단성, 기계적 특성 및 취급성 등을 우수하게 유지할 수 있다.
하나의 예시에서, 중간층은 수분산 바인더를 포함할 수 있다. 수분산 바인더를 사용하여 중간층을 인라인 코팅으로 형성하여, 중간층의 상부에 형성되는 불소 수지층과의 접착력을 향상시킬 수 있다.
수분산 바인더, 예를 들면 가교성 수분산 바인더의 종류는 특별히 한정되지 않고, 후술할 불소 수지와의 상용성이 우수한 것이라면 제한 없이 사용할 수 있다. 수분산 바인더의 예시로는, 폴리우레탄, 실란 변성 우레탄 수지, 아크릴 수지, 폴리우레아, 폴리아미드, 폴리올레핀, 폴리비닐아세테이트, 폴리에테르, 알키드 수지, 우레탄-아크릴레이트 공중합체, 비닐-우레탄 공중합체, 에틸렌-비닐알코올 공중합체, 실리콘-아크릴-우레탄 공중합체, 에틸렌-비닐아세테이트 공중합체 및 아크릴 변성 폴리에스테르로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 실란 변성 우레탄 수지, 폴리우레아, 폴리아미드, 비닐-우레탄 공중합체 또는 아크릴-우레탄 공중합체 등을 사용하는 경우, 바인더와 바인더 간의 가교 구조가 형성되어 가교성이 증가될 수 있다. 가교성 수분산 바인더의 다른 예시로는, 가교성 관능기를 포함하지 않는 수분산 바인더에 필요한 가교성 관능기를 그래프팅 중합 등을 통해 측쇄 등으로 도입한 것을 사용할 수 있다. 이러한 경우, 수분산 바인더에 그래프팅 되는 가교성 관능기로는, 히드록시기, 카르복실기, 시아노기, 에폭시기, 술폰산기 또는 아민기 등을 예시할 수 있으나, 이에 제한되는 것은 아니다.
중간층은 가교제를 추가로 포함할 수 있고, 이에 따라 기재층과 수지층 간의 접착력이나 내구성을 개선할 수 있다. 예를 들어, 중간층에 포함되는 가교제는 관능기를 통해 기재층과의 접착력을 향상시키면서도, 수분산 바인더의 가교 구조를 형성함으로써, 보다 치밀한 내부 구조를 제공할 수 있다.
가교제로는, 예를 들면, 이소시아네이트 가교제, 옥사졸린 가교제, 카보디이미드 가교제 및 아지리딘 가교제로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있으며, 이러한 가교제는 수분산 바인더와 결합하여 상호 침투 가교 구조를 형성하거나, 기재층 표면의 히드록시기나 카르복실기와 반응하여 계면 접착력을 더욱 향상시킬 수 있다.
이소시아네이트 가교제로는, 예를 들면, 톨릴렌디이소시아네이트(tolylene diisocyanate, TDI), 디아릴 이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 디페닐메탄-2,4'-디이소시아네이트, 크실렌 디이소시아네이트(XDI), 메타크실릴렌디이소시아네이트, 헥사메틸렌-1,6-디이소시아네이트(HDI), 1,6-디이소시아네이트헥산, 톨릴렌디이소시아네이트와 헥산트리올의 부가물, 톨릴렌디이소시아네이트와 트리메틸올프로판의 부가물, 폴리올 변성 디페닐메탄-4,4'-디이소시아네이트, 카보디이미드 변성 디페닐메탄-4,4'-디이소시아네이트, 이소포론디이소시아네이트(IPDI), 1,5-나프탈렌디이소시아네이트, 3,3'-비톨릴렌-4,4'-디이소시아네이트(3,3'-Bitolylene-4,4'-diisocyanate), 3,3'-디메틸디페닐메탄-4,4'-디이소시아네이트 또는 메타페닐렌디이소시아네이트 등이 예시될 수 있다. 옥사졸린 가교제로는 옥사졸린기 함유 단량체 또는 상기 단량체를 1종 이상 포함하고, 또한 1종 이상의 다른 단량체가 공중합되어 있는 고분자 화합물과 같은 옥사졸린기를 관능기로서 갖는 화합물이라면 제한 없이 사용될 수 있다. 옥사졸린 가교제로는, 예를 들면, 2-비닐-2-옥사졸린, 2-비닐-4-메틸-2-옥사졸린, 2-비닐-5-메틸-2-옥사졸린, 2-이소프로페닐-2-옥사졸린, 2-이소프로페닐-4-메틸-2-옥사졸린 또는 2-이소프로페닐-5-에틸-2-옥사졸린 등의 화합물이나, 상기 중 1종 또는 2종 이상이 중합되어 형성되는 고분자 화합물 등을 사용할 수 있다. 고분자 화합물에는 다른 공단량체가 공중합되어 있을 수 있는데, 이러한 단량체로는, 알킬 (메타)아크릴레이트, 아미드기 함유 단량체, 불포화 니트릴계 단량체, 비닐 에스테르계 단량체, 비닐 에테르계 단량체, 할로겐 함유 α,β-불포화 단량체 또는 α,β-불포화 방향족 단량체로 이루어진 군으로부터 선택된 하나 이상을 예시로 들 수 있다. 아지리딘 가교제로는, N,N'-톨루엔-2,4-비스(1-아지리딘카르복사이드), N,N'-디페닐메탄-4,4'-비스(1-아지리딘카르복사이드), 트리에틸렌 멜라민, 비스이소프로탈로일-1-(2-메틸아지리딘) 및 트리-1-아지리디닐포스핀옥시드로 이루어진 군으로부터 선택된 하나 이상을 예시로 들 수 있다. 카보디이미드 가교제로는 카보디이미드 화합물 또는 폴리카보디이미드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 통상 카보디이미드 화합물은 하기 화학식 1의 구조를 가지며, 폴리카보디이미드는 하기 화학식 2와 같은 반복 구조를 포함한다.
[화학식 1]
Figure PCTKR2013011305-appb-I000001
[화학식 2]
Figure PCTKR2013011305-appb-I000002
화학식 1 및 2에서 R은 카보디이미드 화합물 또는 폴리카보디이미드가 포함할 수 있는 공지의 관능기이고, n은 임의의 수이다.
가교제로는, 상기 예시한 가교제 외에 멜라민계 수지 또는 에폭시계 수지를 선택적으로 추가적하여 사용할 수 있으며, 이러한 경우 경화 온도를 낮추면서도 접착 성능을 향상시킬 수 있다. 멜라민계 가교제로는 예를 들면, 멜라민, 멜라민과 포름알데히드를 축합해서 얻어지는 메틸올화 멜라민 유도체, 메틸올화 멜라민에 저급 알콜을 반응시켜서 부분적 또는 완전히 에테르화한 화합물, 및 이들의 혼합물 등을 사용할 수 있다. 에폭시계 가교제는 분자 내에 에폭시기를 포함하는 가교제로 예를 들면, 에틸렌글리콜-디글리시딜에테르, 폴리에틸렌글리콜-디글리시딜에테르, 폴리글리세롤 폴리글리시딜에테르, 트리글리시딜에테르, 트리메틸올프로판 트리글리시딜에테르, N,N,N',N'-테트라글리시딜 에틸렌디아민, 글리세린 디글리시딜에테르, 프로필렌글리콜-디글리시딜에테르 및 폴리프로필렌글리콜-디글리시딜에테르로 이루어진 그룹에서 선택된 1종 이상을 사용할 수 있다.
하나의 예시에서, 가교제는 수분산 바인더 100 중량부 대비 1 중량부 내지 300 중량부의 비율로 사용될 수 있다. 본 명세서에서 단위 중량부는 중량의 비율을 나타낼 수 있다. 가교제는 다른 예시에서 상기 범위 내에서 바인더 100 중량부 대비 5 중량부 이상 또는 8 중량부 이상의 비율로 사용될 수 있다. 또한, 다른 예시에서 가교제는 상기 범위 내에서 바인더 100 중량부 대비 250 중량부 이하, 200 중량부 이하, 150 중량부 이하, 100 중량부 이하 또는 80 중량부 이하의 비율로 사용될 수 있다. 이러한 범위 내에서 중간층의 가교 밀도를 적절하게 조절할 수 있으며, 기재층과의 적절한 접착력을 확보하고, 코팅성, 연신성, 블로킹 특성 및 황변 특성 등과 같은 도막 물성도 향상시킬 수 있다.
중간층은 필요에 따라 계면 활성제, 자외선 안정제, 열 안정제 또는 장벽 입자와 같은 통상적인 첨가제를 추가로 포함할 수 있다.
중간층의 두께는 특별히 제한되지 않지만, 예를 들면, 10 nm 이상일 수 있다. 예를 들면, 상기 중간층의 두께는 10 nm 내지 1,000 nm, 20 nm 내지 500 nm, 50 nm 내지 300 nm 또는 100 nm 내지 300 nm 정도일 수 있으며, 중간층의 두께를 상기의 범위 내로 조절함으로써, 중간층의 접착력을 향상시키면서도 내구성 및 내후성을 우수하게 유지할 수 있다. 다만, 중간층의 두께는 전술한 범위에 제한되는 것은 아니며, 필요에 따라서 적절히 조절될 수 있다.
백시트는 상기 중간층 상부에 불소 수지층을 포함할 수 있다. 용어 불소 수지층은, 불소 수지를 포함하는 층을 의미할 수 있다.
불소 수지로는, 예를 들면, 적절한 결정화도를 가지는 것을 사용할 수 있다. 이러한 수지의 사용을 통해 중간층의 가교제 등과의 반응에 의해 우레탄 결합 등과 같은 적절하지 못한 결합이 발생하는 것을 최소화할 수 있다. 상기 우레탄 결합이 형성되면, 양호한 초기 접착력을 나타낼 수는 있으나, 고온 고습의 조건 하에서의 내구성이나 접착성에는 불리할 수 있다. 불소 수지로는 예를 들면, 결정화도가 55% 이하, 50% 이하, 10% 내지 55%, 20% 내지 55%, 30 내지 55% 또는 40% 내지 50% 정도인 수지를 사용할 수 있다. 본 명세서에서 용어 「결정화도」는, 불소 수지 내의 결정질 영역의 백분율(중량 기준)을 의미하며, 이는 시차 주사 열량 분석 등과 같은 공지의 방식으로 측정할 수 있다. 하나의 예시에서, 불소 수지의 결정화도는, 불소 수지의 제조 시에 공단량체를 공중합시켜, 불소 수지의 규칙적인 원소 배열을 해제시키거나, 불소 수지를 가지형 중합체(branched polymer) 형태로 중합시킴으로써, 조절할 수 있다.
하나의 예시에서, 불소 수지는 비관능화된(non-functionalized) 순수 불소 수지일 수 있다. 비관능화된 순수 불소 수지의 경우, 관능화된 불소 수지, 예를 들어 아크릴 변성 불소 수지, 가교성 말단기 함유 불소 수지 등에 비해 우수한 내후성을 가질 수 있다. 비관능화된 순수 불소 수지는 예를 들면, 가교성 관능기를 함유하지 않는 열가소성 불소 수지일 수 있으며, 이러한 불소 수지는, 가교성 관능기를 함유하는 불소계 비결정성 열경화성 수지에 비하여 보다 우수한 접착 신뢰성을 나타내는 효과를 제공할 수 있다.
불소 수지는, 50,000 내지 1,000,000 정도의 중량평균분자량을 가질 수 있다. 본 명세서에서 중량평균분자량은, GPC(Gel Permeation Chromatograph)로 측정되는 표준 폴리스티렌의 환산 수치이다. 불소 수지의 중량평균분자량은 특별히 제한되지 않으며, 예를 들면, 제조 과정에서의 상기 불소 수지의 용매로의 용해도나 필름의 내구성 등을 고려하여 적절하게 조절할 수 있다.
불소 수지의 융점(melting point)은 80℃ 내지 175℃ 또는 120℃ 내지 165℃ 정도일 수 있다. 불소 수지의 융점은 백시트의 사용 과정에서의 변형 가능성 등이나 제조 과정에서의 용매로의 용해도 등을 고려하여 선택될 수 있다.
불소 수지로는, 예를 들면, 비닐리덴 플루오라이드(VDF, PolyVinylidene Fluoride), 비닐 플루오라이드(VF, PolyVinyl Fluoride), 테트라플루오로에틸렌(TFE, Tetrafluoroethylene) 헥사플루오로프로필렌(HFP, Hexafluoropropylene), 클로로트리플루오로에틸렌(CTFE, chlorotrifluoroethylene), 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로 부틸에틸렌, 퍼플루오로 메틸 비닐 에테르(PMVE, perfluoro(methylvinylether)), 퍼플루오로 에틸 비닐 에테르(PEVE, perfluoro(ethylvinylether)), 퍼플루오로 프로필 비닐 에테르(PPVE), 퍼플루오로 헥실 비닐 에테르(PHVE), 퍼플루오로-2,2-디메틸-1,3-디옥솔(PDD) 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란(PMD)으로 이루어진 군으로부터 선택된 하나 또는 2개 이상의 단량체로부터 유래된 중합 단위를 포함하는 단독 중합체, 공중합체 또는 이들의 혼합물 등을 사용할 수 있다.
불소 수지는, 비닐리덴 플루오라이드(VDF) 또는 비닐 플루오라이드(VF)로부터 유래된 중합 단위를 포함하는 단독 중합체 또는 상기와 다른 공단량체와의 공중합체; 또는 상기 중 2종 이상을 포함하는 혼합물일 수 있다. 예를 들면, 상기 불소 수지는 비닐리덴 플루오라이드(VDF) 또는 비닐 플루오라이드(VF)로부터 유래된 중합 단위와 함께 플루오르화 올레핀, 플루오르화알킬 비닐 에테르, 퍼플루오로-2,2-디알킬-1,3-디옥솔 및 퍼플루오로-2-알킬렌-4-알킬-1,3-디옥솔란 등으로부터 선택되는 1종 또는 2종 이상의 공단량체로부터 유래된 중합 단위를 포함하는 폴리(비닐리덴 플루오라이드)(PVDF) 또는 폴리(비닐 플루오라이드)(PVF)일 수 있다. 상기에서 올레핀은 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알파 올레핀일 수 있으며, 알킬 또는 알킬렌은 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬 또는 알킬렌일 수 있다. 플루오르화 올레핀으로는, 테트라플루오로에틸렌(TFE, Tetrafluoroethylene), 헥사플루오로프로필렌 (HFP,Hexafluoropropylene), 클로로트리플루오로에틸렌 (CTFE,chlorotrifluoroethylene), 트리플루오로에틸렌, 헥사플루오로이소부틸렌 또는 퍼플루오로부틸에틸렌 등이 예시될 수 있고, 플루오르화알킬 비닐 에테르로는, 퍼플루오로메틸 비닐 에테르(PMVE, perfluoro(methylvinylether)), 퍼플루오로에틸 비닐 에테르(PEVE, perfluoro(ethylvinylether)), 퍼플루오로프로필 비닐 에테르(PPVE) 또는 퍼플루오로헥실 비닐 에테르(PHVE) 등이 예시될 수 있으며, 퍼플루오로-2,2-디알킬-1,3-디옥솔이나 퍼플루오로-2-알킬렌-4-알킬-1,3-디옥솔란으로는, 퍼플루오로-2,2-디메틸-1,3-디옥솔(PDD) 또는 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란(PMD) 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
폴리비닐리덴 플루오라이드(PVDF) 또는 폴리비닐 플루오라이드(PVF)에 포함되는 공단량체 또는 그로부터 유래되는 중합 단위의 비율은 특별히 제한되지 않으나, 예를 들면, 불소 수지의 총 중량 대비 0.5 중량% 내지 50 중량%, 1 중량% 내지 40 중량%, 7 중량% 내지 40 중량%, 10 중량% 내지 30 중량% 또는 10 중량% 내지 20 중량% 정도일 수 있다. 이러한 범위에서 백시트의 내구성 및 내후성 등을 확보하면서 효과적인 상호 확산 작용 및 저온 건조를 유도할 수 있고 접착력을 더욱 향상시킬 수 있다.
하나의 예시에서 불소 수지층은, 불소 수지 이외에도 안료, 충전제, 자외선 안정제 또는 열 안정제와 같은 다양한 첨가제를 추가로 포함할 수 있다. 이때 사용될 수 있는 안료 또는 충전제의 예로는, 이산화티탄, 실리카 또는 알루미나 등과 같은 금속 산화물; 탄산 칼슘, 황산 바륨 또는 카본 블랙 등과 같은 블랙 피그먼트; 또는 다른 색상을 나타내는 피그먼트 성분을 들 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 안료 또는 충전제는 수지층의 색상이나 불투명도를 제어하는 고유의 효과와 함께 각 성분이 포함하는 고유의 작용기에 의하여 수지층의 접착력을 추가로 개선하는 작용을 할 수도 있다. 상기 자외선 안정제, 열 안정제 또는 장벽 입자는 당업계에 공지된 통상적인 성분을 사용할 수 있다. 상기 안료 또는 충전제와 같은 기타 첨가제의 함량은 불소 수지의 고형분을 기준으로 60 중량% 이하일 수 있으나, 이에 한정되는 것은 아니다.
불소 수지를 포함하는 수지층의 두께는 특별히 제한되지 않고, 예를 들면, 3 ㎛ 내지 50 ㎛, 또는 10 ㎛ 내지 30 ㎛일 수 있다. 상기 불소 수지를 포함하는 수지층의 두께를 상기와 같은 범위로 조절하는 경우, 광차단성을 향상시킬 수 있으며, 제조 단가 상승을 방지할 수 있다.
상기 불소 수지층은 코팅층일 수 있다. 본 명세서에서 사용하는 용어인 「코팅층」은, 코팅 방식에 의해 형성된 수지층을 의미한다. 보다 구체적으로, 「코팅층」은 주조법(casting method) 또는 압출 방식으로 제조된 시트를 접착제 등을 사용하여 라미네이트되는 방식이 아닌, 용매에 각층을 구성하는 성분을 용해하여 제조된 조성물을 코팅면에 도포하는 방식으로 형성된 경우를 의미한다.
하나의 예시에서, 불소 수지층이 코팅 방식으로 형성되는 경우, 불소 수지가 하부에 인라인 코팅 방식으로 형성되는 중간층으로 침투하여 상호침투 네트워크(IPN: Interpenetrating Polymer Networks)를 형성하는 것이 용이할 수 있다. 또한, 불소 수지의 C-F2 결합 쌍극자와 중간층의 수분산 바인더 및 가교제에 포함된 관능기가 쌍극자 모멘트 간의 반데르발스 결합으로 상호 작용을 향상시켜, 접촉 계면에서의 접착력 및 기계적 특성을 향상시킬 수 있으며, 나아가 내구성 및 내후성을 향상시킬 수 있다.
본 출원은 또한 상기 백시트의 제조 방법에 대한 것이다. 상기 방법은, 예를 들면, 기재층층 상에 인라인 코팅 방식으로 중간층을 형성하고, 상기 중간층상에 불소 수지층을 형성하는 것을 포함할 수 있다. 전술한 바와 같이 불소 수지층은 코팅 방식으로 형성될 수 있다.
중간층은, 기재층의 제조 과정에서 인라인 코팅 방식으로 형성될 수 있으며, 이에 따라 접착력이나 내구성이 우수한 백시트의 제공이 가능하다. 상기 인라인 코팅 방식은, 예를 들면, 기재층의 일면에 수분산 바인더를 포함하는 수분산 조성물의 층을 형성한 상태에서 상기 기재층을 일 방향으로 연신하는 과정을 포함할 수 있다.
수분산 조성물의 층은, 예를 들면, 상기 기술한 수분산 바인더 및 필요하다면 가교제 등의 다른 첨가제를 배합한 수분산 조성물을 기재층상에 코팅하여 형성할 수 있다.
수분산 조성물은, 상기 언급한 성분을 적절한 수성 용매, 예를 들어, 물 등에 용해 또는 분산시켜 제조할 수 있다. 이러한 수분산 조성물은 수분산 바인더, 가교제 및 수성 용매를 포함할 수 있다.
수분산 조성물을 제조하기 위하여 상기 각종 성분들을 수성 용매에 분산시키는 방법은 특별히 제한되지 않고, 당해 분야에서 일반적으로 통용되는 방법을 제한 없이 사용할 수 있다. 하나의 예시에서, 수분산 조성물은 예를 들어, 계면 활성제를 추가로 포함함으로써 분산성 및 젖음성의 저하를 방지하여, 중간층이 균일하게 도포되면서도 내후성이 저하되는 것을 방지할 수 있다. 상기 계면 활성제는 수분산 바인더의 제조 시 함께 포함된 상태로 존재할 수 있다. 또한, 수분산 조성물은 중간층의 물성을 해치지 않는 범위 내에서 전술한 중간층에 포함될 수 있는 첨가제를 분산된 형태로 포함하고 있을 수 있다.
수분산 조성물의 도포 방법은 인라인 공정에 적용 가능한 코팅 방법이라면, 공지되어 있는 다양한 코팅 방법이 제한 없이 적용될 수 있다. 예를 들면, 오프셋 인쇄법 또는 그라비어 인쇄법 등의 주지의 인쇄 방식이나, 롤 코트 또는 나이프 엣지 코트 또는 그라비어 코트 등의 주지의 도포 방식을 포함할 수 있다.
수분산 조성물의 층이 형성된 상태에서 기재층은 연신될 수 있다. 본 명세서에서 「기재층의 연신 공정」은 예를 들면, 용융 압출된 기재층 수지를 캐스트 롤 상에서 냉각 고화하여 무연신 기재층을 형성하는 공정 이후에, 기재층을 기계 방향(MD, Mechanical direction) 또는 횡 방향(TD, Transvers direction)으로 잡아당기는 공정을 의미할 수 있다.
상기 연신 조건은 특별히 제한되지 않는다. 예를 들면, 기재층의 연신 배율은 약 1.5배 내지 10배, 약 1.5배 내지 8배, 약 1.5배 내지 6배 또는 약 2배 내지 5배일 수 있고, 연신 온도도 공정 진행 효율 등을 고려하여 적절하게 선택하면 된다.
필요하다면, 수분산 조성물이 형성된 기재층을 연신 공정에 적용하기 전에 적절한 건조 공정을 추가로 수행할 수 있다. 건조 조건은 특별히 제한되지 않으며, 예를 들면, 200℃ 이하 또는 100℃ 내지 180℃의 온도에서 10 초 내지 30 분 또는 1 분 내지 10 분 동안 수행할 수 있다.
하나의 예시에서 상기 수분산 조성물의 층이 형성되는 기재층은 일축 연신된 기재층이고, 수분산 조성물의 층을 형성한 상태에서 상기 기재층은 상기 일축 연신과 수직하는 방향으로 연신될 수 있다. 즉, 예를 들면, 수분산 조성물의 층을 형성하기 전에 기재층을 상기 MD 또는 TD 방향으로 연신한 후에 수분산 조성물의 층을 형성하고, 다시 상기 연신 방향과 수직하는 방향, 예를 들면, TD 방향 또는 MD 방향으로 기재층은 연신될 수 있다. 수분산 조성물이 형성되기 전에 수행되는 기재층의 연신 조건도 특별히 제한되지 않고, 전술한 내용이 유사하게 적용될 수 있다.
예를 들면, 무연신 기재층을 적절한 온도, 예를 들면, 약 100℃ 내지 200℃ 정도로 가열된 롤에 의하여 기계 방향(또는 횡방향)으로 필요한 연신율로 일축 연신하고, 적정 온도, 예를 들면, 약 50℃ 내지 100℃ 정도의 롤을 사용하여 냉각한 후, 수분산 조성물의 층을 형성하고, 다시 기재층의 양단을 롤 또는 텐더 방식의 연신기를 이용하여, 적정 온도, 예를 들면 약 100℃ 내지 200℃의 온도로 상기 일축 연신에 직각인 방향으로 필요한 비율로 연신할 수 있다. 필요하다면, 일축 연신과 수직축의 연신을 분리해서 행하는 순차적 연신 방법 이외에, 다른 예시로, 기재층에 수분산 조성물을 도포한 이후, 일축과 수직축의 연신을 동시에 행하는 방법을 적용할 수도 있다.
상기 방법에서는 상기 연신 후에 이완 처리 공정이 추가로 수행될 수 있다. 예를 들면, 약 150℃ 내지 250℃ 정도의 온도 범위 내에서 연신된 방향, 예를 들면, 기계 방향 및/또는 횡 방향으로의 이완시켜, 배향한 분자를 파괴하지 않고, 내가수분해성을 유지하면서 기재층의 치수 안정성을 개선할 수 있다. 이완의 범위는 특별히 제한되지 않고, 예를 들면, 기계 및/또는 횡 방향으로 30% 이내의 이완율의 범위에서 수축시킴으로써 이완 공정을 수행할 수 있다. 용어 「이완율」은 이완하는 길이를 연신 전의 치수로 나눈 값을 가리킨다.
상기 연신 후 이완 공정의 사이에 열 처리에 의한 열고정 공정이 수행될 수 있다. 이러한 열고정 후에 이완 처리를 수행할 수도 있다. 열고정의 조건은 특별히 제한되지 않으며, 예를 들면, 연신 이후, 오븐을 이용하여 수분산 조성물이 도포된 기재층의 수분을 적절하게 제거하는 방법, 연신 공정 중에서 수분산 조성물이 도포된 기재층을 가열하는 방법 등을 사용할 수 있다. 이때 공정 온도는 예를 들어 약 150℃ 내지 350℃ 정도이고, 시간은 약 1초 내지 60초의 범위 내일 수 있다.
상기와 같은 인라인 방식으로 중간층을 형성한 후에 불소 수지층이 형성될 수 있다. 불소 수지층은, 예를 들면, 상기 기술한 결정화도가 55% 이하인 불소 수지 등과 비점이 200℃ 이하인 용매를 포함하는 조성물(이하, "수지층 조성물"이라 하는 경우가 있다)을 중간층에 코팅하여 형성할 수 있다.
상기 수지층 형성용 조성물은 전술하나 첨가제를 추가로 포함할 수 있다. 이 때, 첨가제는 각각 불소 수지 등과 함께 용매에 용해되거나 또는 상기 성분과는 별도로 밀베이스 형태로 제조된 후, 다시 상기 불소 수지를 포함하는 용매와 혼합될 수도 있다. 상기와 같은 불소 수지를 포함하는 수지층에 포함될 수 있는 충전제 또는 안료 분산제 등의 첨가제에 포함된 작용기에 의해서도 반데르발스 결합, 수소결합, 이온결합, 또는 공유결합과 같은 화학적 상호작용이 발생할 수 있으며, 이에 의하여 수지층과 기재층 사이의 접착력이 추가로 향상될 수 있다.
비점이 200℃ 이하인 용매로는, 아세톤, 메틸에틸케톤(MEK), 디메틸포름아미드(DMF) 및 디메틸아세트아미드(DMAC)로 이루어진 군으로부터 선택된 하나 이상이 예시될 수 있으나, 이에 제한되는 것은 아니다. 이러한 용매들은 상기 불소 수지 등 수지층을 형성하는 성분을 잘 용해시킬 수 있을 뿐 아니라, 200℃ 이하의 온도에서 증발되기 쉬운 용매로서 기재층 상에 도포된 후 비교적 낮은 온도에서 건조될 수 있다. 또한, 상기 용매를 사용하는 경우, 상기 불소 수지를 포함하는 수지층과 상기 중간층의 접촉 시, 접촉계면에서 중간층의 표면을 스웰링시킴으로써, 수지층에 포함된 불소 수지가 중간층으로 상호 확산이 일어나게 할 수 있다. 이에 따라, 수지층과 중간층 사이의 물리적, 화학적 결합력이 향상되므로, 수지층 및 중간층 간의 접착력을 보다 향상시킬 수 있다.
수지층 조성물을 중간층에 코팅하는 방법은 특별히 제한되지 않으며, 예를 들면, 오프셋 인쇄법, 그라비어 인쇄법 등의 주지의 인쇄 방식이나, 롤 코트 또는 나이프 엣지 코트, 그라비어 코트 등의 주지의 코팅 방식을 포함하여, 균일한 수지층을 형성할 수 있는 것이라면 어떠한 방식도 적용 가능하다. 상기 방식 외에도 이 분야에서 공지되어 있는 다양한 방식이 적용될 수 있다.
하나의 예시에서, 상기 수지층 조성물을 중간층 상에 코팅하는 공정에 이어서, 코팅된 상기 수지층 조성물을 건조시키는 공정을 추가로 수행할 수 있다. 상기 건조 시의 조건은 특별히 제한되지 않으며 예를 들면, 200℃ 이하, 또는 100℃ 내지 180℃의 온도에서 30초 내지 30 분, 또는 1 분 내지 10 분 동안 수행될 수 있다. 상기와 같은 조건에서 건조 공정을 수행함으로써, 200℃ 이상의 고온 건조 공정에 의한 제조 비용의 상승을 방지하고, 열 변형 또는 열 충격 등에 의한 제품 품질 저하를 방지할 수 있다.
하나의 예시에서, 본 출원의 따른 백시트는 필요에 따라서 당업계에서 공지되어 있는 다양한 기능성층을 추가로 포함할 수 있다. 상기 기능성층의 예로는 접착층 또는 절연층 등을 들 수 있다. 예를 들면, 상기 백시트가 기재층의 일면에는 전술한 중간층 및 불소 수지를 포함하는 수지층을 순차적으로 포함하고, 다른 일면에는 접착층 및 절연층을 순차적으로 포함할 수 있다. 상기 접착층 또는 절연층은 이 분야에서 공지되어 있는 다양한 방식으로 형성할 수 있다. 상기 절연층은 예를 들면, 에틸렌비닐아세테이트(EVA) 또는 저밀도 선형 폴리에틸렌(LDPE)으로 구성된 층일 수 있다. 상기 EVA 또는 LDPE로 구성된 층은 절연층으로서의 기능은 물론 광전지 모듈의 봉지재(encapsulant)와의 접착력을 높이고, 제조 비용의 절감이 가능하도록 하며, 재작업성(re-workability)도 우수하게 유지하는 기능을 동시에 수행할 수 있다.
이와 같은 본 출원의 구현예들에 따른 광전지 모듈용 백시트는 기재층 상에 형성된 수분산 바인더를 포함하는 중간층 및 상기 중간층 상에 형성된 불소 수지층을 포함하고, 상기 중간층은 기재층 표면의 다양한 작용기와 화학적 공유결합을 형성함으로써, 기재층 및 중간층 간의 우수한 접착력을 제공한다. 또한 상기 중간층의 수분산 바인더는 상부의 수지층에 포함된 불소 수지와 상호 확산 효과에 의해 중간층과 수지층 간의 접착력을 더욱 향상시킬 뿐만 아니라, 백시트 최외각 층에 내후성이 우수한 불소 수지를 포함하는 수지층의 존재 때문에 내구성 및 내후성을 향상시킬 수 있다.
구체적으로 상기와 같은 광전지 모듈용 백시트의 제조 공정 중 상기 중간층 및 기재층의 계면; 또는 상기 중간층 및 기재층의 표면 처리층의 계면에서, 상기 중간층에 포함되는 수분산 바인더가 상기 기재층 또는 기재층의 표면 처리층으로 상호 확산될 수 있으며, 이에 의하여 상기 기재층 및 상기 중간층 간의 화학적 공유결합을 형성할 뿐 아니라, 분자 쇄 사이의 엉킴(chain entanglement)과 반데르발스 힘 등에 의해 접착력을 향상시킬 수 있고, 또한, 상기 불소 수지를 포함하는 수지층 및 중간층의 계면에서, 상기 수지층에 포함되는 불소 수지가 중간층으로 상호 확산될 수 있으며, 이에 의하여 분자 쇄 사이의 엉킴과 반데르발스 힘 등에 의해 불소 수지를 포함하는 수지층 및 중간층 간의 접착력을 향상시킬 수 있다.
인라인 코팅 공정에서 중간층을 형성함으로써 오프라인 공정으로 형성되는 경우에 비하여 기재층과 중간층 간의 접착력의 강도가 보다 강해질 수 있다.
하나의 예시에서, 백시트는 예를 들면, 광전지 모듈용으로 사용될 수 있고, 장기간 외부환경에의 노출에도 광전지를 안정적으로 보호할 수 있도록 내구성 및 내후성뿐만 아니라 절연성, 수분 차단 등의 특성을 갖는다.
본 출원은 또한 상기 백시트를 포함하는 광전지 모듈에 관한 것이다. 상기 광전지 모듈의 구조는 상기 광전지 모듈용 백시트를 포함하고 있는 한 특별히 제한되지 않고, 이 분야에서 일반적으로 공지되어 있는 다양한 구조를 제한 없이 채용할 수 있다.
하나의 예시에서, 광전지 모듈은 투명 전면 기판, 백시트 및 상기 전면 기판과 백시트의 사이에서 봉지재에 의해 봉지되어 있는 광전지 또는 직렬 또는 병렬로 배치된 광전지 어레이를 포함할 수 있다. 일례로, 광전지 모듈의 구조는 백시트; 상기 백시트 상에 형성된 광전지 또는 광전지 어레이; 상기 광전지 또는 광전지 어레이 상에 형성된 수광 시트; 및 상기 백시트 및 수광 시트 사이에서 상기 광전지 또는 광전지 어레이를 봉지하고 있는 봉지재층을 포함할 수 있다.
백시트의 두께는 특별히 제한되지 않고, 예를 들면 30 ㎛ 내지 2,000 ㎛, 50 ㎛ 내지 1,000 ㎛, 또는 100 ㎛ 내지 600 ㎛일 수 있다. 상기 백시트의 두께를 30 ㎛ 내지 2,000 ㎛의 범위로 제어함으로써, 광전지 모듈을 보다 박형으로 구성하면서도, 광전지 모듈의 내후성 등의 물성을 우수하게 유지할 수 있다.
백시트 위에 형성되는 광전지의 구체적인 종류로는, 광기전력을 일으킬 수 있는 것이라면 특별히 한정되지 않으며, 이 분야에서 일반적으로 통용될 수 있는 광전지 소자를 사용할 수 있다. 예를 들면, 단결정 실리콘, 다결정 실리콘 등의 결정 실리콘 광전지, 싱글(single) 결합형 또는 탠덤(tandem) 구조형 등의 무정형(amorphous) 실리콘 광전지, 갈륨-비소(GaAs), 인듐-인(InP) 등의 III-V족 화합물 반도체 광전지 및 카드뮴-텔루륨(CdTe), 구리-인듐-셀레나이드(CuInSe2) 등의 II-VI족 화합물 반도체 광전지 등을 사용할 수 있으며, 또한, 얇은 막 다결정성 실리콘 광전지, 얇은 막 미결정성 실리콘 광전지 및 얇은 막 결정 실리콘과 무정형(amorphous) 실리콘의 혼합형(hybrid) 광전지 등도 사용할 수 있다.
광전지는 광전지와 광전지 사이를 연결하는 배선에 의해 광전지 어레이(광전지 집합체)를 형성할 수 있다. 광전지 모듈에 태양광을 비추면, 광전지 내부에서 전자(-)와 정공(+)이 발생되어, 광전지와 광전지를 연결하는 배선을 통해 전류가 흐르게 된다.
광전지 또는 광전지 어레이 상에 형성된 수광 시트는, 광전지 모듈의 내부를 풍우, 외부 충격 또는 화재 등으로부터 보호하고 광전지 모듈의 옥외 노출시 장기 신뢰성을 확보하는 기능을 수행할 수 있다. 상기 수광 시트의 구체적인 종류로는 광 투과성, 전기 절연성, 기계적 또는 물리, 화학적 강도가 우수한 것이라면 특별히 한정되지 않으며, 예를 들면, 유리판, 불소계 수지 시트, 환상 폴리올레핀계 수지 시트, 폴리카보네이트계 수지 시트, 폴리(메타)아크릴계 수지 시트, 폴리아미드계 수지 시트 또는 폴리에스테르계 수지 시트 등을 사용할 수 있다. 본 출원의 일구현예에서는, 내열성이 우수한 유리판을 사용할 수 있으나, 이에 제한되는 것은 아니다.
수광 기판의 두께는 특별히 제한되지 않으며, 예를 들면 0.5 mm 내지 10 mm, 1 mm 내지 8 mm, 또는 2 mm 내지 5 mm일 수 있다. 상기 수광 기판의 두께를 0.5 mm 내지 10 mm의 범위로 제어함으로써, 광전지 모듈을 보다 박형으로 구성하면서도 광전지 모듈의 장기 신뢰성 등의 물성을 우수하게 유지할 수 있다.
또한, 광전지 모듈의 내부, 구체적으로 상기 백시트 및 수광 시트 사이에서 광전지 또는 광전지 어레이를 봉지하는 봉지재층은 이 분야에서 일반적으로 공지되어 있는 봉지재를 제한없이 채용할 수 있다.
첨부된 도 2 및 3 은 본 출원의 다양한 구현예에 따른 광전지 모듈의 단면도를 나타내는 도면이다.
첨부된 도 2 는 본 출원의 하나의 예시에 따른 광전지 모듈용 백시트를 포함하는 웨이퍼계 광전지 모듈(20)의 단면도이다. 도 2 에 나타난 바와 같이, 본 출원의 하나의 예시에 따른 광전지 모듈은 통상적으로 강유전체(ex. 유리)로 구성될 수 있는 수광 시트(21); 본 출원의 예시들에 따른 광전지 모듈용 백시트(23); 상기 실리콘계 웨이퍼 등의 광전지 소자(24); 및 상기 광전지 소자(24)를 봉지하고 있는 봉지재층(22)을 포함할 수 있다. 이때, 상기 봉지재층(22)은 광전지 소자(24)를 봉지하면서, 상기 수광 시트(21)에 부착되는 제 1층(22a) 및 광전지 소자(24)를 봉지하면서 상기 백시트(23)에 부착되는 제 2층(22b)을 포함할 수 있다. 상기 봉지재층(22)을 구성하는 제 1층 및 제 2층은 전술한 바와 같이, 이 분야에서 일반적으로 공지되어 있는 소재로 구성될 수 있다.
도 3 은 본 출원의 다른 하나의 예시에 따른 박막형 광전지 모듈(30)의 단면도이다. 도 3 에 나타난 바와 같이 박막형 광전지 모듈(30)의 경우, 광전지 소자(34)는 통상적으로 강유전체로 구성될 수 있는 수광 시트(31) 상에 형성될 수 있다. 이와 같은 박막 광전지 소자(34)는 통상적으로 화학적 증착(CVD) 등의 방법으로 침착될 수 있다. 도 3 의 광전지 모듈(30)은 도 2 의 광전지 모듈(20)과 유사하게 봉지재층(32) 및 백시트(33)를 포함하며, 상기 봉지재층(32)은 단층으로 구성될 수 있다. 상기 봉지재층(32) 및 백시트(33)에 대한 구체적인 설명은 전술한 바와 같다.
상기의 다양한 광전지 모듈을 제조하는 방법은 특별히 제한되지 않고, 이 분야에서 당업자에게 공지된 다양한 방법을 제한없이 채용하여 제조할 수 있다.
첨부된 도 2 및 3 에 도시된 광전지 모듈은 본 출원의 광전지 모듈의 다양한 구현예들 중 하나의 예시에 불과하며, 본 출원에 따른 광전지 모듈용 백시트를 포함하는 경우라면, 모듈의 구조, 모듈을 구성하는 소재의 종류 및 크기 등은 특별히 제한되지 않고, 이 분야에서 일반적으로 공지되어 있는 것을 제한없이 채용할 수 있다.
본 출원에서는, 내열 및/또는 내습 조건에서의 우수한 신뢰성 및 접착력을 나타내어서 내후성 및 내구성이 향상된 백시트를 제공할 수 있다. 이러한 백시트는 예를 들면 광전지 모듈 등에 적용될 수 있다.
도 1은 본 출원의 하나의 구현예에 따른 백시트의 단면도를 나타내는 도면이다.
도 2 및 3은 본 출원의 하나의 구현예에 따른 광전지 모듈의 단면도를 나타내는 도면이다.
이하 본 출원에 따르는 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 및 비교예에서 각 물성은 하기의 방식으로 측정하였다.
1. 180도 박리 강도
ASTM D1897의 규격에 준거하여, 시편(백시트)을 10 mm의 폭으로 재단하고, 4.2 mm/sec의 박리 속도 및 180도의 박리 각도로 박리하면서 측정하였다.
2. 크로스-해치 접착력
ASTM D3002/D3359의 규격에 준거하여, 크로스 컷 테스트를 수행하였다. 시편(백시트)의 불소 수지층에 1 mm의 간격으로 가로 및 세로 방향으로 각각 11줄씩 칼로 그어서 가로와 세로가 각각 1 mm인 100개의 정사각형의 격자를 형성하였다. 그 후, Nichiban사의 CT-24 접착 테이프를 상기 재단 면에 부착한 후 박리하면서 함께 박리되는 면의 상태를 측정하여 하기 기준으로 평가하였다.
<평가 기준>
5B: 박리 면이 없는 경우
4B: 박리 면의 면적이 총 면적 대비 5% 미만인 경우
3B: 박리 면의 면적이 총 면적 대비 5% 내지 15%인 경우
2B: 박리 면의 면적이 총 면적 대비 15% 초과 35% 이하인 경우
1B: 박리 면의 면적이 총 면적 대비 35% 초과 65% 이하인 경우
0B: 박리 면의 면적이 총 면적 대비 65%를 초과하는 경우
3. PCT (pressure cooker test)
실시예 및 비교예에서 제조된 광전지 모듈용 백시트(기재층의 양면을 중간층 및 수지층으로 코팅)을 2 기압, 121℃ 및 100%의 상대 습도(R.H.)의 조건이 유지되는 오븐에 25시간, 50 시간, 75 시간 및 100 시간 동안 방치한 후, 접착력의 변화를 관찰하였다.
4. 결정화도의 측정
불소 수지의 결정화도는, 시차주사열량계를 이용하여 측정하였다. 시차주사열량계를 사용하여 2차 가열시의 융해열(heat of fusion, △Hf)을 측정하였으며, 승온 속도는(Rate of heating)은 10K/min이었다. △Hf 측정 기준은 80℃와 melting phase 끝부분 보다 3℃ 높은 부분 사이의 면적을 구하였다. 100% crystalline PVDF의 △Hf가 105J/g이므로 이 값을 기준으로 결정화도를 구하였다. 공중합체의 경우에도 100% crystalline PVDF의 △Hf를 기준으로 결정화도를 계산하였다.
불소 수지의 준비
실시예 및 비교예에서 사용한 불소 수지의 종류는 하기 표 1과 같다. 표 1에서 불소 수지의 중량평균분자량(Mw)은 GPC(Gel Permeation Chromatogrphy)를 사용한 통상의 방식으로 평가하였다.
표 1
불소 수지 단량체 비율(단량체) 결정화도(%) 분자량(Mw) 융점(℃)
A VDF-CTFE 공중합체 85:15(VDF:CTFE) 23 270,000 166
B PVDF 100 (VDF) 44 550,000 160
단량체 비율 단위: 중량부VDF: 비닐리덴 플루오라이드(Vinylidene Fluoride)CTFE: 클로로트리플루오로에틸렌(Chlorotrifluoroethylene)VDF-CTFF: VDF 및 CTFE의 공중합체PVDF: 폴리비닐리덴플루오라이드(poly(vinylidene fluoride))
실시예 1.
불소 수지층용 코팅액
DMF(N,N-dimethyl formamide) 400g에 불소 수지 A 70 g과 불소 수지 B 30g을 미리 용해시켜 제 1 코팅액을 준비하였다. 별도로 DMF 20g에 BYK W9010(BYK사제) 0.6 g 및 이산화티탄(TiPure TS6200, 듀폰사(제)) 60 g을 용해시키고, 다시 직경이 약 0.3 mm 정도인 지르코니아 비드(Zirconia bead) 100 g을 넣은 후, 1,000 rpm의 속도로 1 시간 동안 교반시키고, 비드를 제거하여 밀 베이스를 제조하였다. 밀 베이스를 제 1 코팅액에 투입하고, 교반하여 불소 수지층용 코팅액을 준비하였다.
중간층용 조성물
실록산 결합을 포함하는 우레탄 수분산 바인더(Takelec WS-5000, 미쯔이사(제), 고형분 30%) 80 g과 옥사졸린 가교제(Epocros WS-500, 일본촉매사(제), 고형분 40%) 20g을 물에 배합하여 고형분이 10 중량%가 되도록 조절하여 중간층용 조성물을 준비하였다.
백시트의 제조
충분히 건조된 PET(poly(ethylene terephthalte)) 칩을 용융 압출기에 주입하고, T 다이 방식으로 PET 필름을 제조하고, 100℃에서 기계 방향으로 약 3.5배 연신하여 1축 연신된 PET 필름을 제조하였다. 상기 1축 연신된 PET 필름에 중간층용 조성물을 코팅하고, 120℃에서 적절히 건조한 후에 횡 방향(상기 기계 방향과 수직하는 방향)으로 약 3.5배 연신하였다. 이어서 240℃에서 약 10초 동안에서 열처리를 하고, 200℃에서 기계 방향 및 횡 방향으로 10% 이완시켜 두께가 약 200 nm 정도인 중간층을 형성하였다. 중간층 상에 상기 불소 수지층용 코팅액을 콤마 리버스(comma reverse) 방식으로 건조 후의 두께가 약 20 ㎛ 정도가 되도록 코팅하였다. 그 후 불소 수지층용 코팅액이 코팅된 필름을 각각의 길이가 2 m 정도이고, 온도가 각각 80℃, 180℃ 및 180℃로 조절된 세 개의 오븐에 1 m/min의 속도로 상기 순서로 순차적으로 통과시켜 불소 수지층을 형성하는 방식으로 PET 필름(기재층층)의 양면에 중간층 및 불소 수지층이 순차적으로 형성된 백시트를 제조하였다.
실시예 2.
중간층 형성용 수분산 조성물의 제조 과정에서 수분산 바인더로 우레탄계 수분산 바인더(Takelec WS-5030, 미쯔이사(제), 고형분 30%)를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
실시예 3.
중간층용 코팅액의 제조 과정에서 수분산 바인더로 아크릴 변성 폴리에스테르 수분산 바인더(Pesresin A124S, 다까마쯔사(제), 고형분 30%)를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
실시예 4.
중간층용 코팅액의 제조 과정에서 수분산 바인더로 아크릴 변성 폴리에스테르 수분산 바인더(Pesresin A645GH, 다까마쯔사(제), 고형분 30%)를 사용하고, 가교제로 옥사졸린 가교제(Epocros WS-700, 일본촉매사(제), 고형분 25%) 40g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
실시예 5.
중간층용 코팅액의 제조 과정에서 수분산 바인더로 아크릴 변성 폴리에스테르 수분산 바인더(Pesresin A645GH, 다까마쯔사(제), 고형분 30%)를 사용하고, 가교제로 카보디이미드 가교제(Carbodilite V02-L2, Nisshibo(제), 고형분 40%)를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
실시예 6.
중간층용 코팅액의 제조 과정에서 수분산 바인더로 아크릴 수분산 바인더(Maincoat PR71, 롬앤하스(제), 고형분 50%) 50g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
실시예 7.
중간층용 코팅액의 제조 과정에서 가교제로 이소시아네이트계 가교제(Duranate WB40-100, Asahi kasei사(제)) 8g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
비교예 1.
상업적 입수 가능한 테들라(Tedlar) 필름, 접착제, PET 필름, 접착제 및 테들라(Tedlar) 필름이 순차 적층된 구조를 가지는 백시트를 비교예 1로 사용하였다. 상기 백시트는 압출 공정으로 제조된 듀폰사의 테들라(Tedlar) 필름(PVF, polyvinyl fluoride 필름(두께 38㎛))을 접착제를 이용하여 PET 필름의 양면에 라미네이션한 제품이다.
비교예 2.
상업적으로 판매되고 있는 테들라(Tedlar) 필름, 접착제, PET 필름, 접착제 및 테들라(Tedlar) 필름이 순차 적층된 구조를 가지는 백시트를 비교예 2로 사용하였다. 상기 백시트는 캐스팅 공정으로 제조된 듀폰사의 테들라(Tedlar) 필름(PVF 필름, 두께 25㎛)을 접착제를 이용하여 PET 필름의 양면에 라미네이션한 제품이다.
비교예 3.
중간층을 형성하는 단계를 생략한 것을 제외하고는, 실시예 1과 동일한 방법으로 백시트를 제조하였다.
비교예 4.
인라인 공정이 아닌 오프라인 공정, 즉 연신 처리가 모두 종료된 PET 필름상에 중간층을 형성하는 방식을 적용한 것을 제외하고는, 실시예 1과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
비교예 5.
중간층용 코팅액에 가교제로 에폭시 화합물인 폴리글리세롤 폴리글리시딜에테르(Denacol EX614B, Nagase chemtex사(제)) 8g을 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 광전지 모듈용 백시트를 제조하였다.
표 2에 실시예 1 내지 7 및 비교예 1 내지 5의 광전지 모듈용 백시트의 중간층에 포함된 조성 및 그 함량을 기재층하였다.
표 2
중간층 조성물
수분산 바인더 (함량) 가교제(함량) 중간층 두께(nm)
실시예 1 WS-5000 (80g) WS-500 (20g) 200
2 WS-5030 (80g) WS-500 (20g) 200
3 A124S (80g) WS-500 (20g) 200
4 A645GH (80g) WS-700 (40g) 200
5 A645GH (80g) V02-L2 (20g) 200
6 PR71 (50g) WS-500 (20g) 200
7 WS-5000 (80g) WB40-100 (8g) 200
비교예 1 Tedlar(압출)/접착제/PET/Tedlar(압출) -
2 Tedlar(캐스트)/접착제/PET/Tedlar(캐스트) -
3 - -
4 WS-5000 (80g) WS-500 (20g) 200
5 WS-5000 (80g) EX614B (8g) 200
<시험예 1>
실시예 1 내지 7 및 비교예 1 내지 5의 광전지 모듈용 백시트에 대하여, PCT(Pressure cooker test) 수행 후, 180도 박리강도 및 크로스-해치 테스트를 각각 수행하였다. 구체적으로는, 각각의 광전지 모듈용 백시트를 2 기압, 121℃ 및 100% R.H.의 조건에서 각각 25 시간, 50 시간, 75 시간 및 100 시간 동안 방치한 후, 180도 박리강도 및 크로스-해치 테스트를 수행하여 접착력의 변화를 평가하였다. 평가 결과는 하기 표 3에 기재층하였다.
표 3
180° 박리 강도(N/cm) 크로스-해치 테스트 결과
초기 25 hrs 50 hrs 75 hrs 100hrs 초기 25 hrs 50 hrs 75 hrs 100 hrs
실시예 1 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
2 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
3 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
4 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
5 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
6 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
7 Coat-T Coat-T Coat-T Coat-T Coat-T 5B 5B 5B 5B 5B
비교예 1 PVF-T PVF-T PVF-T 0 0 5B 5B 5B 0B 0B
2 6.7 4.4 1.4 0 0 5B 5B 5B 0B 0B
3 0 0 0 0 0 0B 0B 0B 0B 0B
4 Coat-T Coat-T Coat-T 0 0 5B 5B 5B 0B 0B
5 Coat-T 0 0 0 0 5B 0B 0B 0B 0B
Coat-T: 박리 시 수지층이 찢어져서 정확한 박리력의 측정이 불가능한 경우PVF-T: 박리 시 PVF필름이 찢어져서 정확한 박리력의 측정이 불가능한 경우
[부호의 설명]
10: 백시트
11: 수지층
12: 중간층
13: 기재층
20: 웨이퍼계 광전지 모듈
30: 박막형 광전지 모듈
21,31: 수광 시트
22,32: 봉지재층
22a: 제1층
22b: 제2층
23,33: 백시트
24, 34: 광전지 소자

Claims (17)

  1. 기재층; 상기 기재층상에 형성되어 있고, 수분산 바인더를 포함하는 중간층; 및 상기 중간층상에 형성되어 있는 불소 수지층을 포함하고,
    2기압, 121℃ 및 100% 상대 습도의 조건에서 75 시간 동안 유지한 후에 ASTM D3002/D3359에 따라서 측정한 크로스 컷 테스트에 따른 박리 면적이 총 면적 대비 15% 이하인 백시트.
  2. 제 1 항에 있어서, 중간층은 수분산 바인더를 포함하는 인라인 코팅층인 백시트.
  3. 제 1 항에 있어서, 수분산 바인더가 폴리우레탄, 실란 변성 우레탄 수지, 아크릴 수지, 폴리우레아, 폴리아미드, 폴리올레핀, 폴리비닐아세테이트, 폴리에테르, 알키드 수지, 우레탄-아크릴레이트 공중합체, 비닐-우레탄 공중합체, 에틸렌-비닐알코올 공중합체, 실리콘-아크릴-우레탄 공중합체, 에틸렌-비닐아세테이트 공중합체 및 아크릴 변성 폴리에스테르로 이루어진 군으로부터 선택되는 하나 이상인 백시트.
  4. 제 1 항에 있어서, 중간층은, 이소시아네이트 가교제, 옥사졸린 가교제, 카보디이미드 가교제 및 아지리딘 가교제로 이루어진 군에서 선택되는 하나 이상의 가교제를 추가로 포함하는 백시트.
  5. 제 4 항에 있어서, 수분산 조성물은 가교제를 수분산 바인더 100 중량부 대비 1 중량부 내지 300 중량부로 포함하는 백시트.
  6. 제 1 항에 있어서, 불소 수지층은 결정화도가 55% 이하인 불소 수지를 포함하는 백시트.
  7. 제 6 항에 있어서, 불소 수지는 중량평균분자량은 50,000 내지 1,000,000인 백시트.
  8. 제 6 항에 있어서, 불소 수지는 융점이 80℃ 내지 175℃인 백시트.
  9. 제 6 항에 있어서, 불소 수지는 비닐리덴 플루오라이드, 비닐 플루오라이드, 테트라플루오로에틸렌, 헥사플루오로프로필렌, 클로로트리플루오로에틸렌, 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로 부틸에틸렌, 퍼플루오로 메틸 비닐 에테르, 퍼플루오로 에틸 비닐 에테르, 퍼플루오로 프로필 비닐 에테르, 퍼플루오로 헥실 비닐 에테르, 퍼플루오로-2,2-디메틸-1,3-디옥솔 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란으로 이루어진 군으로부터 선택된 하나 이상의 화합물로부터 유래된 중합 단위를 포함하는 백시트.
  10. 제 6 항에 있어서, 불소 수지는 플루오르화 올레핀, 플루오르화알킬 비닐 에테르, 퍼플루오로-2,2-디알킬-1,3-디옥솔 및 퍼플루오로-2-알킬렌-4-알킬-1,3-디옥솔란으로 이루어진 군으로부터 선택된 하나 이상의 공단량체로부터 유래된 중합 단위를 포함하는 폴리(비닐리덴 플루오라이드) 또는 폴리(비닐 플루오라이드)인 백시트.
  11. 제 10 항에 있어서, 공단량체로부터 유래된 중합 단위의 비율은 전체 불소 수지 내에서 0.5 중량% 내지 50 중량%인 백시트.
  12. 기재층상에 인라인 코팅 방식으로 중간층을 형성하고, 상기 중간층상에 불소 수지층을 형성하는 것을 포함하는 제 1 항의 백시트의 제조 방법.
  13. 제 12 항에 있어서, 인라인 코팅 방식은 기재층의 일면에 수분산 바인더를 포함하는 수분산 조성물의 층을 형성한 상태에서 상기 기재층을 일 방향으로 연신하는 것을 포함하는 백시트의 제조 방법.
  14. 제 13 항에 있어서, 수분산 조성물의 층이 형성되는 기재층은 일축 연신된 기재층이고, 수분산 조성물의 층을 형성한 상태에서 상기 기재층은 상기 일축 연신과 수직하는 방향으로 연신하는 백시트의 제조방법.
  15. 제 13 항에 있어서, 연신 후에 이완 처리 공정을 추가로 수행하는 백시트의 제조 방법.
  16. 제 12 항에 있어서, 불소 수지층은 결정화도가 55% 이하인 불소 수지 및 비점이 200℃ 이하인 용매를 포함하는 조성물을 중간층에 코팅하여 형성하는 백시트의 제조방법.
  17. 제 1 항의 백시트를 포함하는 광전지 모듈.
PCT/KR2013/011305 2012-12-06 2013-12-06 백시트 WO2014088373A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/648,519 US20150303338A1 (en) 2012-12-06 2013-12-06 Backsheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0141353 2012-12-06
KR20120141353 2012-12-06
KR1020130151367A KR101552772B1 (ko) 2012-12-06 2013-12-06 백시트
KR10-2013-0151367 2013-12-06

Publications (1)

Publication Number Publication Date
WO2014088373A1 true WO2014088373A1 (ko) 2014-06-12

Family

ID=50883722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011305 WO2014088373A1 (ko) 2012-12-06 2013-12-06 백시트

Country Status (1)

Country Link
WO (1) WO2014088373A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320176A (zh) * 2016-08-11 2017-01-11 王斐芬 高铁混凝土防水施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119134A (ko) * 2010-04-26 2011-11-02 코오롱인더스트리 주식회사 열접착성이 우수한 태양광모듈용 백 시트 및 이의 제조방법
WO2012063946A1 (ja) * 2010-11-12 2012-05-18 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに、太陽電池モジュール
KR20120074696A (ko) * 2010-12-28 2012-07-06 율촌화학 주식회사 태양전지 백시트 및 그 제조방법
KR20120106595A (ko) * 2011-03-17 2012-09-26 주식회사 엘지화학 친환경 태양전지용 백시트 및 이의 제조방법
US20120291845A1 (en) * 2010-02-10 2012-11-22 Akira Hatakeyama Solar cell backsheet and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120291845A1 (en) * 2010-02-10 2012-11-22 Akira Hatakeyama Solar cell backsheet and solar cell module
KR20110119134A (ko) * 2010-04-26 2011-11-02 코오롱인더스트리 주식회사 열접착성이 우수한 태양광모듈용 백 시트 및 이의 제조방법
WO2012063946A1 (ja) * 2010-11-12 2012-05-18 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに、太陽電池モジュール
KR20120074696A (ko) * 2010-12-28 2012-07-06 율촌화학 주식회사 태양전지 백시트 및 그 제조방법
KR20120106595A (ko) * 2011-03-17 2012-09-26 주식회사 엘지화학 친환경 태양전지용 백시트 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106320176A (zh) * 2016-08-11 2017-01-11 王斐芬 高铁混凝土防水施工方法
CN106320176B (zh) * 2016-08-11 2018-06-22 王斐芬 高铁混凝土防水施工方法

Similar Documents

Publication Publication Date Title
KR101552772B1 (ko) 백시트
WO2012091309A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2013073845A1 (ko) 수분산 조성물, 친환경 광전지 모듈용 백시트 및 이의 제조방법
WO2011139052A2 (ko) 다층 시트 및 이의 제조방법
KR101350517B1 (ko) 태양전지 백시트 및 이의 제조방법
WO2012102478A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2012141402A1 (ko) 수지 조성물, 다층 필름 및 이를 포함하는 광전지 모듈
WO2012064082A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2013058609A1 (ko) 다층 필름 및 이의 제조방법
WO2012125000A9 (ko) 친환경 태양전지용 백시트 및 이의 제조방법
WO2013180552A1 (ko) 친환경 광전지 모듈용 백시트 및 이의 제조방법
WO2014088373A1 (ko) 백시트
KR101510499B1 (ko) 불소계 고분자 코팅층을 포함하는 고신뢰성 다층 필름 및 이의 제조방법
WO2013180532A1 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
KR101593741B1 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
KR101554382B1 (ko) 다층 필름의 제조방법
KR20130134482A (ko) 다층 필름 및 이의 제조방법
KR20130006556A (ko) 불소계 수지 조성물, 이의 제조 방법 및 이를 포함하는 광전지 모듈
KR20140147935A (ko) 다층 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648519

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859963

Country of ref document: EP

Kind code of ref document: A1