WO2014088363A1 - 정유공정으로부터 배출된 폐촉매를 이용한 가스화 방법 - Google Patents
정유공정으로부터 배출된 폐촉매를 이용한 가스화 방법 Download PDFInfo
- Publication number
- WO2014088363A1 WO2014088363A1 PCT/KR2013/011260 KR2013011260W WO2014088363A1 WO 2014088363 A1 WO2014088363 A1 WO 2014088363A1 KR 2013011260 W KR2013011260 W KR 2013011260W WO 2014088363 A1 WO2014088363 A1 WO 2014088363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gasification reaction
- coal
- weight
- catalyst
- raw material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/33—Laboratory scale gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1269—Heating the gasifier by radiating device, e.g. radiant tubes
- C10J2300/1276—Heating the gasifier by radiating device, e.g. radiant tubes by electricity, e.g. resistor heating
Definitions
- the present invention relates to a gasification method using the waste catalyst discharged from the refinery process. More specifically, the present invention relates to a method of applying waste catalyst discharged from the desulfurization process of the refinery process in combination with coal as a reaction raw material of the gasification process.
- the refinery process involves various reaction steps and separation steps for crude oil as a raw material.
- the crude oil and the individual fractions obtained in its separation step contain significant amounts of various impurities in addition to the hydrocarbon component.
- various metal components such as vanadium
- sulfur components and / or nitrogen components
- the above-described impurity removal reaction may be performed through pretreatment. Examples thereof include a hydrotreating reaction. This hydrotreating step can be carried out, for example, on the following hydrocarbon feedstock (oil) during the refinery process.
- Naphtha contact reforming feedstock pretreatment: removes sulfur, nitrogen, and metals that contaminate the subsequent noble metal-based reforming catalysts.
- Kerosene and diesel remove sulfur in oil and saturate olefins and aromatics to improve properties (e.g., improve the smoke point of kerosene, cetane number of diesel, etc., and ensure storage stability ).
- Lubricants Improved viscosity index, color, stability and storage stability.
- FCC feedstock Improves FCC yield, catalyst life, and more.
- Residual oil to effectively carry out the conversion reaction to provide low sulfur fuel oil or pretreatment for subsequent conversion reaction steps.
- the hydrotreating reaction may involve specific reaction forms such as: (i) sulfur compound removal (HDS; organic sulfur compound converted to hydrogen sulfide), (ii) nitrogen compound removal (HDN; organic nitrogen compound converted to ammonia ), (iii) metal (organometal) removal (hydro-demetallization; organic metal components are converted to metal sulfides), (iv) oxygen removal (organic oxygen compounds are converted to water), (v) olefin saturation (containing double bonds) Organic compounds are converted to the corresponding saturated homologs), (vi) aromatic saturation (hydro-dearomatization; some of the aromatics are converted to naphthenic compounds), and (vi) halide removal (organic halide compounds are converted to hydrogenated halides).
- HDS sulfur compound removal
- HDN organic nitrogen compound converted to ammonia
- metal (organometal) removal hydro-demetallization
- oxygen removal organic oxygen compounds are converted to water
- olefin saturation containing double bonds
- Organic compounds are converted to the corresponding saturated homolog
- the hydrogenation step is widely used in various areas of the refinery process. Since the waste catalyst from the hydrogenation process contains valuable metal components and the like, research is being carried out mainly on techniques for recovering or recycling them (Domestic Patent Publication Nos. 2008-107905, 2011-22863, and Japanese Patent Publication No. 1995-252548, US Pat. No. 5,728,639, and the like.
- alkali metal catalysts such as lithium, sodium, potassium, rubidium and the like are mainly used (US Pat. No. 7,922,782, etc.), in particular potassium-based compounds (for example, K 2 CO 3 and KOH) are being used, and there have been no reports of utilizing waste catalysts from the refinery process.
- Spent catalysts containing 1 to 30% by weight of vanadium, 0.1 to 20% by weight of nickel and up to 5% by weight of iron in the spent catalysts discharged from the oil refining process;
- a gasification reaction feed is provided, wherein the content of spent catalyst is in the range of 0.5 to 20% by weight, based on the total weight.
- a method for producing a gasification reaction raw material in which the content of the spent catalyst is in the range of 0.5 to 20% by weight based on the total weight is provided.
- the gasification reaction may be a steam gasification reaction, a carbon dioxide gasification reaction or a combined gasification reaction thereof.
- FIG. 1 is a view schematically showing a steam gasification reaction apparatus used in one embodiment of the present invention
- 3 to 5 are each a case of not using a catalyst in the embodiment of the present invention, when using a waste catalyst (1% by weight and 5% by weight, respectively, based on the weight of the gasification reaction raw material) and conventional potassium carbonate Carbon conversion measured by steam gasification reaction (700 ° C, 800 ° C and 900 ° C) by temperature using a (K 2 CO 3 ) -based catalyst (1% by weight and 5% by weight, respectively, based on the weight of the gasification reaction raw materials)
- FIGS. 6A and 6B illustrate a case where a waste catalyst with respect to a reaction rate constant (K non-catal ) when the waste catalyst is not used according to temperature change in the steam gasification reaction according to an embodiment of the present invention ( Spent catalyst: 1 wt% and 5 wt%) of the rate constant (K catal );
- FIG. 7 is a view schematically showing a carbon dioxide gasification reaction apparatus used in another embodiment of the present invention.
- FIG. 8 is a graph showing carbon conversion rate with time of a carbon dioxide gasification reaction (reaction temperature: 800 ° C.) for a gasification reaction raw material (1 wt% of waste catalyst content based on the weight of the gasification reaction raw material) according to another embodiment of the present invention. to be.
- the waste catalyst discharged from the refining process is used as a component of the gasification reaction raw material.
- Many individual reaction units in the refinery process consist of a process using a catalyst.
- a heterogeneous catalyst is usually predominant.
- a catalyst of an inorganic oxide crystalline molecular sieve such as zeolite or amorphous molecular sieve, alumina, silica, alumina-silica, etc. It is used.
- hydrotreatment hydrodesulfurization
- metal removal and desulfurization are mainly targeted.
- the reactor which is mainly intended for metal removal, is disposed at the beginning of the entire desulfurization process, and as the reaction proceeds, a large amount of metal components are adsorbed to contain a significant amount of active metal components while the specific surface area is reduced.
- the hydrotreating catalysts whose primary purpose is metal removal, contain or contain relatively low levels of hydrogenated metal components (e.g., Co, Mo, Ni, or combinations thereof (CoMo and NiMo)) that act on the desulfurization reaction. In some cases, it may not contain substantially.
- the desulfurization process which is a typical hydrotreating process, is particularly a heavy oil desulfurization (or cracking) process such as atmospheric residue hydrodesulfurization (AR-HDS), vacuum residue hydrodesulfurization (VR-HDS), residue oil fluid catalytic cracking process. (R-FCC) and reduced pressure gas oil hydrocracking process (VGO-HC) are essential applications.
- AR-HDS atmospheric residue hydrodesulfurization
- VR-HDS vacuum residue hydrodesulfurization
- RV-HDS residue oil fluid catalytic cracking process
- RV-FCC residue oil fluid catalytic cracking process
- VGO-HC reduced pressure gas oil hydrocracking process
- V vanadium (V), nickel (Ni), iron (Fe), etc. contained in the oil to be treated are gradually deposited on the catalyst, and the waste catalyst discharged from the process contains a considerable amount of metal components.
- the sulfur component, carbon component, etc. contained in the inside are deposited.
- a waste catalyst discharged from a hydrogenation reaction whose main purpose is metal removal in oil may be used so that the metal component contained in the oil may be utilized as an effective catalyst component in the gasification reaction.
- the waste catalyst constituting the gasification reaction raw material together with coal may be selected based on the content of vanadium, nickel and iron, which are metal components (elements) incorporated during the reaction.
- vanadium may be contained, for example, in the range of about 1 to about 30 weight percent, specifically about 3 to about 25 weight percent, more specifically about 5 to about 20 weight percent, based on the spent catalyst weight.
- Nickel may be contained, for example, in the range of about 0.1 to about 20 weight percent, specifically about 2 to about 15 weight percent, more specifically about 3 to about 10 weight percent.
- Iron may also be contained, for example, in the range of about 5% by weight or less, specifically about 4% by weight or less and more specifically about 2% by weight or less.
- the spent catalyst may further comprise, for example, about 1 to about 50% by weight, in particular about 10 to 30% by weight, of sulfur components (based on elements), and the carbonaceous (or carbon) components may also be based on carbon atoms.
- the spent catalyst in combination with coal is an inorganic oxide series, for example about 5 to about 200 m 2 / g (specifically about 10 to about 100 m 2 / g, more specifically about 20 to 50). M2 / g) and a pore size of about 100 to about 180 mm 3 (specifically, about 120 to about 150 mm 3). More specifically, the catalyst may be an alumina-based waste catalyst (using an alumina support).
- the spent catalyst may be to have a suitable composition through pre-treatment.
- it may be heat treated at about 100 to 400 ° C. (eg, for about 1 to about 5 hours) to remove excess oil components, carbon, sulfur and the like deposited on the surface of the spent catalyst.
- the waste catalyst may be washed with an organic solvent (hexane, acetone, etc.) to remove excess oil components in the spent catalyst or to adjust the specific surface area to an appropriate range.
- an organic solvent hexane, acetone, etc.
- this acid treatment process is an excessive amount of metal eluted It can be used by adjusting to an appropriate concentration (for example, about 0.5 to 3% by weight) within a range that does not inhibit it and does not damage the support of the spent catalyst.
- the above-described pretreatment is selectively performed according to the characteristics of the waste catalyst, and does not detract from the advantages of the present embodiment, which can be used as a gasification reaction raw material without complicated processing of the waste catalyst.
- coal is used to include anthracite coal, bituminous coal (bituminous coal, lignite coal, peat, etc.), lower activated carbon, and the like. Therefore, it is not limited to a specific grade of coal, and it may be desirable to make the most of low-grade coal in terms of economic efficiency.
- the carbon content in the coal may range, for example, from about 20 to about 90 weight percent, specifically from about 30 to about 80 weight percent, more specifically from about 40 to about 70 weight percent, based on the total coal weight.
- the coal may comprise ash up to about 15% by weight, specifically about 5 to about 12% by weight, more specifically about 9 to about 11% by weight on a dry basis.
- the ash typically contains a significant proportion of silica, calcium oxide and iron oxide and small amounts of components such as potassium oxide, magnesium oxide, titania, zinc oxide and the like.
- the waste catalyst discharged from the refinery process may be combined with (coupled) coal to produce a solid gasification reaction raw material, for example, a dry method or a wet method may be used.
- the spent catalyst and coal are respectively ground to a size of about 50 ⁇ m to about 3 mm, specifically about 60 ⁇ m to about 250 ⁇ m, more specifically about 70 ⁇ m to about 100 ⁇ m, and classified or classified. If the particle size is too large or too small, problems such as scattering may be caused, and the particle size may be appropriately adjusted in consideration of the applicability to the gasification reaction.
- a pulverization apparatus known in the art such as a ball mill, a hammer mill, a roller crasher, or the like may be used.
- conventional sieve or screening devices e.g., wire mesh screens, etc.
- gas cyclones cyclones
- fluidized bed classifiers and the like
- the waste catalyst particles and the coal particles are mixed according to a predetermined ratio to prepare a gasification reaction raw material.
- the spent catalyst and coal may be introduced at a predetermined ratio from the beginning, and then the grinding and classification (classification) processes may be performed.
- the dry mixing method it may be advantageous to increase the intimacy between the waste catalyst particles and the coal particles during the gasification reaction.
- waste catalyst particles and coal particles are mixed as uniformly as possible and introduced into the gasifier.
- the pelletized form eg, from about 5 to about diameter
- a homogeneous mixture under high pressure eg, about 20 to about 100 kg / cm 2 , specifically about 30 to 70 kg / cm 2 ). 20 mm
- 20 mm may be introduced into the gasifier to make it suitable for movement when using a transfer gasifier (eg TRIG).
- coal slurry is prepared using water as the medium.
- the solids content in the slurry may be, for example, in the range of about 1 to about 50% by weight, specifically about 1 to about 20% by weight.
- the coal in the slurry may be in the form of particles having a size in the range of, for example, about 50 ⁇ m to about 3 mm, specifically about 70 ⁇ m to about 500 ⁇ m, more specifically about 80 to 200 ⁇ m.
- a spent catalyst having a particle size of about 1 mm or less is added to the coal slurry at a predetermined ratio.
- the spent catalyst may also be introduced in the form of a slurry having a solid content of about 1 to about 50% by weight and combined with the coal slurry.
- the waste catalyst-coal slurry prepared as above is dried under stirring to give a solid.
- the drying process may use a rotary evaporator, vacuum drying, heat drying and the like known in the art.
- the solid thus produced has a form in which waste catalyst components are attached to coal particles.
- the gasification reaction raw materials prepared according to the dry method or wet method described above still contain water, volatile substances, etc., for example, at about 80 to about 200 °C (specifically 90 to 120 °C) to remove them It may be dried for 10 minutes to about 30 hours and then subjected to a gasification reaction.
- the content of the waste catalyst in the gasification reaction raw material can be adjusted according to the intrinsic properties (composition and physical properties) of the waste catalyst, when considering the gasification reaction activity and economic efficiency, about 0.5 to about 20 weight percent, specifically about 1 to about 10 weight percent, more specifically about 2 to about 5 weight percent.
- gasification broadly means a thermo-chemical conversion process through a change in the chemical structure of a carbonaceous material in the presence of a gasifier (air, oxygen, steam, carbon dioxide or mixtures thereof). In a narrower sense, it means a process for converting carbonaceous material mainly to syngas (hydrogen and carbon monoxide).
- the gasification reaction typically comprises synthesis gas (which may consist of hydrogen and carbon monoxide and may contain small amounts of carbon dioxide) via a steam gasification reaction and / or a carbon dioxide gasification reaction according to Schemes 1 and 2 below. Will be created.
- the gasification reaction can be carried out using a reactor known in the art.
- the steam gasification reaction may be performed using a countercurrent fixed bed reactor, a cocurrent fixed bed reactor, a fluidized bed reactor, a moving bed reactor, an entrained bed reactor, and the like.
- a fluidized bed reactor may be used, and as such a fluidized bed reactor, a reactor in the form of a riser, bubbling, or turbulent may be exemplified.
- the reactor type and detailed configuration may be appropriately selected or adjusted from various gasifiers known in the art according to the intended gasification reaction route (eg, steam gasification reaction, carbon dioxide gasification reaction, or both).
- the reaction conditions may also be appropriately selected in consideration of the target reaction route and the like.
- the steam gasification reaction and the carbon dioxide gasification reaction considered as the main reaction route in the embodiments of the present invention will be described in more detail.
- the steam gasification reaction temperature may be set in the range of about 600 to about 1200 °C, specifically about 750 to about 1100 °C, more specifically about 800 to about 1000 °C.
- the reaction pressure is not particularly limited but may be, for example, in the range of about 1 to 50 bar, more specifically about 1 to 30 bar.
- the reaction gas mainly includes steam, but may optionally contain oxygen or air (for example, through air blowing), and may further contain a small amount of carbon dioxide.
- the supply ratio of steam / carbon may be, for example, within about 4 on a molar basis, specifically about 0.1 to about 3, and more specifically about 0.5 to about 2.
- the carbon conversion of coal may typically be at least about 80%, specifically at least about 90%, more specifically at least about 97%.
- the H 2 / CO molar ratio in the product gas (synthetic gas) may range from about 0.1 to about 3, more specifically from about 0.5 to about 2.5.
- the carbon dioxide gasification reaction may be performed, for example, in the range of about 600 to about 1200 ° C, specifically about 750 to about 1100 ° C, more specifically about 800 to about 1000 ° C.
- the reaction pressure is not particularly limited, for example, may be in the range of about 1 to 50 bar, more specifically about 1 to 30 bar.
- the feed ratio of CO 2 / carbon can be adjusted, for example, within about 4 on a molar basis, specifically from about 0.1 to about 3, more specifically from about 0.5 to about 2.
- the carbon conversion of coal in the carbon dioxide gasification reaction is typically at least about 80%, specifically at least about 90%, more specifically at least about 95%.
- the H 2 / CO molar ratio in the product gas (synthetic gas) may range from about 0 to about 2, more specifically from about 0.1 to about 1.
- the product gas in particular the synthesis gas prepared according to the above-described reaction route can be used as a raw material for the production of various chemicals, fuels and the like.
- the ratio of hydrogen may be increased through the water-gas shift (WGS) reaction route according to Scheme 6 below.
- the spent catalyst component remains in the form contained in the ash.
- conventionally known metal reclaiming techniques can be used.
- individual metal components in the spent catalyst can be recovered sequentially using a reducing solution, a metal extraction solution, or the like.
- Such a metal recovery method is disclosed in, for example, Korean Patent Publication No. 2011-22863, US Patent No. 5,431,892, and the like, and the disclosure of the patent document is included as a reference of the present invention.
- the catalyst raw material can be prepared again by using the spent catalyst remaining after the completion of the gasification reaction.
- an acid is added to the spent catalyst component as disclosed in Korean Patent Publication No. 2008-107905
- the vanadium may be separated using monooctylamine, and then precipitated by solidifying the metal component with a solvent (methyl acetate, acetone, etc.), followed by washing with water and firing to recover the complex of metal oxide as a catalyst raw material.
- a solvent methyl acetate, acetone, etc.
- the impurities, sulfur components and the like contained in the gasification reaction product can be removed using a conventional ceramic filter, a scrubber, a desulfurization facility, etc.
- a conventional ceramic filter e.g., alumina, alumina, etc.
- the alumina waste catalyst (R1310 and RHDS2 11-150) discharged from the atmospheric residue oil desulfurization process and the waste catalyst (R3311) discharged from the vacuum residue desulfurization process were used.
- the three spent catalysts were measured for vanadium, nickel and iron by using an coupled coupled plasma (ICP) analyzer (Optima 2100 DV, Perkin Elmer), and the results are shown in Table 2 below.
- ICP coupled coupled plasma
- Optima 2100 DV, Perkin Elmer Optima 2100 DV, Perkin Elmer
- the organic compound content in the spent catalyst was analyzed using an elemental analyzer (Vario EL) (the oil component deposited on the surface of the spent catalyst was removed and then measured in an oven at 100 ° C.), and the results are shown in Table 3 below. Shown in
- each of the waste catalysts (R1310, R3311 and RHDS2 11-150) and K 2 CO 3 were physically mixed with the fractionated coal using a weighing dish. At this time, the amount of waste catalyst mixed with coal was adjusted to 1 wt%, 5 wt%, 10 wt% and 20 wt% based on the total weight of the final gasification reaction raw materials.
- the spent catalyst and coal were separately crushed, and then sieves were used to classify particles having a particle size of 150 ⁇ m or less.
- the steam was combined with the amount of nitrogen controlled by the pressure regulator 11 and heated by the electric heater 4, and then the gasification reaction was performed in a thermobalance reactor.
- the amount of nitrogen was confirmed by the gas flow meter 12.
- an electronic balance (8: electric balance) and a winch assembly (9: winch assembly) were mounted in the reaction system.
- a sample basket 5 is attached to the lower portion of the electronic scale 8 at the top of the reactor, and the sample can be mounted and detached through a hatch located at the top of the reactor portion.
- the mass change of the sample was measured using a variable transformer (10) by receiving a numerical signal of the electronic balance (8).
- the gas product was vented by a gas pump 7 via a cold trap 6.
- nitrogen was supplied to the reaction system separately through a nitrogen purge line 14.
- the carbon conversion was gradually increased at 5% by weight, 10% by weight and 20% by weight compared with the case where the waste catalyst content in the gasification reaction raw material is 1% by weight.
- the increase in the carbon conversion rate was slowed or decreased slightly in some cases compared with the 5 wt% and 10 wt%. Therefore, it can be seen that it is desirable to adjust the waste catalyst content in an appropriate ratio rather than excessively increase the content of the waste catalyst in the raw material in terms of economic efficiency.
- waste catalysts R1310, R3311 and RHDS2 11-150
- conventionally commercialized catalysts K 2 CO 3
- the gasification reaction was carried out at the reaction temperature of 700 °C, 800 °C and 900 °C according to the above-described experimental procedure using the reaction apparatus shown in Figure 1 for the raw material.
- Carbon conversion over time was measured by the content (1 wt% and 5 wt%) of the catalyst components (waste catalyst and K 2 CO 3 ) and the temperature (700 ° C., 800 ° C. and 900 ° C.) in the gasification feed.
- the carbon conversion rate for the non-catalyst prepared in the same particle size was also measured for comparison purposes except that no spent catalyst was used. Measurement results of the carbon conversion rate according to the reaction time are shown in FIGS. 3 to 5.
- the carbon conversion was reduced overall at 700 °C compared to 800 °C and 900 °C.
- the waste catalyst component (particularly, RHDS2 11-150) exhibits excellent overall gasification reaction activity compared to the conventional commercial catalyst component K 2 CO 3 in the raw material having a waste catalyst content of 1% by weight.
- reaction rate constants (K) obtained under the respective operating conditions using the Modified Volumetric Model (MVM), which is the most suitable model for the reaction kinetics of steam-gasification reaction using the gas-phase reaction model, are shown in Tables 6 and 7 Summarized in
- the carbon dioxide gasification reaction was carried out on the raw material having a waste catalyst content of 1% by weight in the gasification reaction raw material prepared by the dry method in Example 1.
- the carbon dioxide gasification reaction system is shown in FIG. 7.
- the reaction system consists of reactant feed, reactor, condensate and gas chromatography (HP6890 GC, MD600 GC) analysis.
- a reactor a fixed bed atmospheric flow type reactor using U-quartz (23) was used, and gas components such as carbon dioxide, which is a reactant gas, and nitrogen flowing during a thermal reaction, were respectively used as a filter 21 and a mass flow controller 22 (MFC, Mass Flow). Controller, Brooks 5850E) was used to meter the reactor
- thermocouple thermocouple
- the product gas was transferred to a condenser 26 CT-50 (Operon) under operation of a circulator 25 to remove tar contained therein.
- the composition of the product gas was collected with a Tedlar Bag (27) and analyzed using a GC (28) equipped with a TCD.
- RHDS2 not only has a higher carbon conversion rate than K2CO3, but even when the remaining spent catalyst is used, the difference in carbon conversion rate with K2CO3 is not large.
- reaction rate constant (K) in the carbon dioxide reaction was obtained and shown in Table 9 below.
- the waste catalyst-containing gasification raw material prepared according to the present embodiment may substantially replace the gasification raw material manufactured using the conventional K 2 CO 3 even in the carbon dioxide gasification reaction.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명의 구체예에서는 정유공정, 구체적으로 정유공정의 탈황(desulfurization) 공정으로부터 배출되는 폐촉매를 석탄과 조합하여, 종래의 알칼리계 촉매를 사용하는 경우와 비교하여 동등 이상의 효과를 나타내는 가스화 반응 원료가 제공된다.
Description
[관련출원의 상호참조]
본 출원은 2012년 12월 7일 출원된 한국특허 출원번호 제10-2012-0142170호를 우선권 주장하고 있으며, 상기 특허 문헌의 내용은 참조를 위해 본 발명에 모두 포함된다
본 발명은 정유공정에서 배출되는 폐촉매를 이용한 가스화 방법에 관한 것이다. 보다 구체적으로, 본 발명은 정유공정의 탈황(desulfurization) 공정으로부터 배출되는 폐촉매를 석탄과 조합하여 가스화 공정의 반응 원료로 적용하는 방법에 관한 것이다.
정유공정은 원료인 원유를 대상으로 다양한 반응 단계 및 분리 단계를 수반한다. 통상적으로, 원유 및 이의 분리 단계에서 얻어지는 개별 유분(fractions)은 탄화수소 성분 이외에 다양한 불순물을 상당량 함유하고 있다. 상기 불순물로서, 원유 내에 존재하고 있는 각종 금속 성분(바나듐 등) 및 황 성분(및/또는 질소 성분)이 대표적이다. 따라서, 타겟 유분의 수득을 위하여는 전처리를 통하여 상술한 불순물의 제거 반응을 수행하게 되는 바, 그 예로서 수첨처리 반응을 들 수 있다. 이러한 수첨처리 단계는 예를 들면 정유 공정 중 하기의 탄화수소 공급원료(유분)에 대하여 수행될 수 있다.
(1) 나프타(접촉 개질 공급원료 전처리): 후단의 귀금속 계열 개질(reforming) 촉매를 오염시키는 황, 질소 및 금속을 제거함.
(2) 등유(kerosene) 및 디젤: 유분 내 황을 제거하고 올레핀 및 방향족 일부를 포화시켜 성상을 개선함(예를 들면, 등유의 스모크 포인트, 디젤의 세탄가 등을 개선하고, 저장 안정성을 확보함).
(3) 윤활유: 점도지수, 색상, 안정성 및 저장 안정성을 개선함.
(4) FCC 공급원료: FCC 수율, 촉매 수명 등을 개선함.
(5) 잔사유: 전환 반응을 효과적으로 수행하도록 하여 저황 연료유를 제공하거나 후속 전환 반응 단계를 위한 전처리.
수첨처리 반응은 하기와 같은 구체적 반응 형태를 수반할 수 있다: (i) 황 화합물 제거(HDS; 유기 황 화합물이 황화수소로 전환됨), (ii) 질소 화합물 제거(HDN; 유기질소 화합물이 암모니아로 전환됨), (iii) 금속(유기금속) 제거(hydro-demetallization; 유기 금속 성분이 금속 황화물로 전환됨), (iv) 산소 제거(유기산소 화합물이 물로 전환됨), (v) 올레핀 포화(이중 결합을 함유하는 유기 화합물이 대응하는 포화 동족체로 전환됨), (vi) 방향족 포화(hydro-dearomatization; 방향족 일부가 나프텐 화합물로 전환됨), 및 (vi) 할라이드 제거(유기 할라이드 화합물이 수소화할라이드로 전환됨).
특히, 최근 청정연료(저유황화) 추세, 석유 수급 구조의 경질화 등에 따라 수첨처리 단계는 정유 공정의 다양한 영역에서 광범위하게 사용되고 있다. 이러한 수첨처리 단계로부터 폐촉매는 유가 금속 성분 등을 함유하고 있기 때문에, 이를 회수하거나 재활용하는 기술 위주로 연구가 진행 중이다(국내특허공개번호 제2008-107905호, 제2011-22863호, 일본특허공개번호 제1995-252548호, 미국특허번호 제5,728,639호 등).
최근에는 전술한 유가 금속 회수 방식보다는 상기 정유공정의 폐촉매를 그대로 또는 간단한 전처리를 통하여 다양한 용도로 적용하는 기술이 알려져 있다.
예를 들면, 폐촉매를 배가스 내 질소산화물 제거를 위한 선택적 촉매환원 반응(selective catalytic reduction; SCR)에 적용하는 기술(국내특허번호 제584988호 등)이 대표적이다. 상술한 기술의 경우, 복잡한 유가 금속 회수 절차를 거치지 않고, 간단한 전처리 과정을 통하여 최근 중요성이 증가하고 있는 배가스 처리에 적용할 수 있는 장점을 갖고 있다.
한편, 최근 석유 자원의 고갈에 따라 석탄, 특히 저급탄 등을 활용하여 고부가 화학 제품을 생산하는 방안이 요구되고 있는 바, 이와 관련하여 합성 가스를 제조하고, 이를 피셔-트롭시(Fischer-Tropsch) 공정의 원료로 사용하여 휘발유 등의 탄화수소 유분을 제조하거나, 메탄올 등으로 합성 공정의 원료로 사용하는 기술을 예시할 수 있다. 합성 가스 제조를 위하여는 가스화 반응(gasification)이 필수적으로 수행되는데, 현재까지 알려진 바로는 정유공정의 폐촉매를 활용하여 합성 가스 제조에 적용하는 기술은 알려지지 않거나, 주로 폐촉매에 침적된 탄소 성분을 합성 가스로 전환시키는데 머물고 있어 상용화에 적합한 합성 가스 제조에는 제한적일 수밖에 없다(미국특허번호 제3,923,635호, 및 제5,466,363호).
또한, 기존에 알려진 석탄 가스화 공정의 경우, 주로 리튬, 나트륨, 칼륨, 루비듐 등의 알칼리 금속 촉매가 사용되고 있는 바(미국특허번호 제7,922,782호 등), 특히 칼륨계 화합물(예를 들면, K2CO3 및 KOH)이 사용되고 있을 뿐, 정유공정에서 배출되는 폐촉매를 활용하는 기술은 보고된 바 없다.
본 발명에서 제시되는 구체예에서는 종래의 정유공정으로부터 배출되는 폐촉매의 활용 방안을 확장하여, 효과적으로 가스화공정에 적용하는 기술을 제공하고자 한다.
본 발명에 따라 제공되는 구체예의 제1 면(aspect)에 따르면,
석탄; 및
정유공정으로부터 배출되는 폐촉매 중 금속 성분으로서 1 내지 30 중량%의 바나듐, 0.1 내지 20 중량%의 니켈 및 5 중량% 이하의 철을 함유하는 폐촉매;
를 포함하며,
전체 중량을 기준으로 폐촉매의 함량이 0.5 내지 20 중량% 범위인, 가스화 반응 원료가 제공된다.
본 발명에 따라 제공되는 구체예의 제2 면(aspect)에 따르면,
a) 정유공정으로부터 배출되는 폐촉매 중 금속 성분으로서 1 내지 30 중량%의 바나듐, 1 내지 20 중량%의 니켈 및 5 중량% 이하의 철을 함유하는 폐촉매를 제공하는 단계; 및
b) (i) 상기 폐촉매를 석탄과 건식법에 의하여 물리적으로 혼합하거나, 또는 (ii) 상기 폐촉매를 습식법에 의하여 석탄에 부착하는 단계;
를 포함하며,
여기서, 전체 중량을 기준으로 폐촉매의 함량이 0.5 내지 20 중량% 범위인 가스화 반응 원료의 제조방법이 제공된다.
본 발명에 따라 제공되는 구체예의 제3 면(aspect)에 따르면,
상기 가스화 반응 원료를 가스화 반응 조건 하에서 가스화하는 단계를 포함하는 석탄 가스화 방법이 제공된다. 이때, 가스화 반응은 스팀 가스화 반응, 이산화탄소 가스화 반응 또는 이의 조합된 가스화 반응일 수 있다.
본 발명의 구체예에서 제공되는, 정유공정의 폐촉매를 활용한 가스화 반응 원료를 사용할 경우, 종래에 가장 성능이 우수한 것으로 알려진 알칼리 금속계 촉매(특히, K2CO3)를 이용한 가스화 공정과 비교하여 동등하거나 경우에 따라서는 우수한 가스화 성능을 제공할 수 있다. 특히, 활용 영역이 제한적이었던 정유공정, 구체적으로 탈황 공정, 보다 구체적으로 중질유 탈황 공정의 폐촉매를 복잡한 전처리 과정 없이도 가스화 반응에 효과적으로 적용할 수 있기 때문에 간편성 및 경제성을 제고할 수 있고, 특히 종래의 알칼리 금속계 촉매를 대체할 수 있는 장점을 갖는다. 따라서, 향후 광범위한 상용화가 기대된다.
도 1은 본 발명의 일 실시예에서 사용된 스팀 가스화 반응 장치를 개략적으로 도시하는 도면이고;
도 2a 내지 도 2c는 본 발명의 일 실시예에 있어서 가스화 반응 원료 내 폐촉매(R1310, R3311 및 RHDS2) 각각의 함량을 1 중량%, 5 중량%, 10 중량% 및 20 중량%로 변화시키면서 측정한 탄소 전환율(반응온도: 900℃)을 나타낸 그래프이고;
도 3 내지 도 5는 각각 본 발명의 일 실시예에 있어서 촉매를 사용하지 않은 경우, 폐촉매를 사용하는 경우(가스화 반응 원료의 중량 기준으로 각각 1 중량% 및 5 중량%) 및 종래의 탄산칼륨(K2CO3)계 촉매(가스화 반응 원료의 중량 기준으로 각각 1 중량% 및 5 중량%)를 사용하여 온도 별(700℃, 800℃ 및 900℃) 스팀 가스화 반응을 수행하여 측정된 탄소 전환율을 나타내는 그래프이고;
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 스팀 가스화 반응에 있어서, 온도 변화에 따라 폐촉매를 사용하지 않은 경우의 반응속도 상수(Knon-catal)에 대한 폐촉매를 함유한 경우(폐촉매: 1 중량% 및 5 중량%)의 반응속도 상수(Kcatal)의 비율을 나타낸 그래프이고;
도 7은 본 발명의 다른 실시예에서 사용된 이산화탄소 가스화 반응 장치를 개략적으로 도시하는 도면이고; 그리고
도 8은 본 발명의 다른 실시예에 따라 가스화 반응 원료(가스화 반응 원료의 중량 기준으로 폐촉매 함량 1 중량%)에 대한 이산화탄소 가스화 반응(반응온도: 800℃)의 시간에 따른 탄소 전환율을 나타내는 그래프이다.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아님을 이해하여야 한다.
폐촉매
본 발명의 구체예에 따르면, 가스화 반응 원료의 성분으로서 정유공정에서 배출되는 폐촉매를 사용한다. 정유공정 내 많은 개별 반응 유닛은 촉매를 이용한 공정으로 구성된다. 이러한 정유공정에서 사용되는 촉매의 경우, 통상적으로 불균일계 촉매가 주종을 이루며, 구체적으로 무기 산화물(제올라이트와 같은 결정성 분자체 또는 비정질 분자체, 알루미나, 실리카, 알루미나-실리카 등) 계열의 촉매가 사용되고 있다.
전형적으로 수첨처리(수첨탈황) 과정은 크게 금속 제거 및 탈황 각각을 주목적으로 하는 단계로 구분된다.
금속 제거를 주목적으로 하는 반응기는 전체 탈황 공정의 앞부분에 배치되는 바, 반응의 진행에 따라 금속 성분을 다량 흡착하여 상당량의 활성 금속 성분을 함유하는 한편 비표면적은 감소하게 된다. 이처럼, 금속 제거를 주된 목적으로 하는 수첨처리 촉매는 탈황 반응에 작용하는 수소화 금속 성분(예를 들면, Co, Mo, Ni, 또는 이의 조합(CoMo 및 NiMo))을 비교적 낮은 함량으로 함유하거나, 경우에 따라서는 실질적으로 함유하지 않을 수 있다.
한편, 탈황을 주목적으로 하는 반응의 경우, 전술한 무기 산화물 재질의 지지체 상에 각종 금속 성분(예를 들면, 수소화 반응의 경우에는 VIB족 및/또는 VIII족)이 지지되어 있는 형태가 사용되고 있다. 상기 반응의 경우, 주로 유분 내 황 성분을 황화수소로 전환시키기 때문에 발생되는 폐촉매는 상대적으로 적은 금속함량 및 상대적으로 비표면적인 큰 특성을 갖게 된다.
상술한 수첨처리 공정의 경우, 유분 내에 함유된 금속, 황 및/또는 질소 성분을 제거하기 위하여 정유 공정의 다양한 유닛에서 사용되므로 다량의 폐촉매가 발생되고 있다. 전형적인 수첨 처리공정인 탈황 공정은 특히 중질유 탈황(또는 분해) 공정, 예를 들면 상압잔사유 수소화탈황공정(AR-HDS), 감압잔사유 수소화탈황공정(VR-HDS), 잔사유 유동접촉분해공정(R-FCC), 감압가스오일 수소화분해공정(VGO-HC) 등에서 필수적으로 적용되고 있다.
탈황 공정 중 처리 대상 유분 내에 함유된 바나듐(V), 니켈(Ni), 철(Fe) 등이 촉매 상에 점차 침적되어 상기 공정으로부터 배출되는 폐촉매는 상당량의 금속 성분을 함유하게 되며, 이외에도 유분 내에 함유되어 있는 황 성분, 탄소 성분 등이 침적된다. 이와 관련하여, 본원발명의 예시적 구체예에서는 유분 내 함유된 금속 성분을 가스화 반응시 유효한 촉매 성분으로 활용할 수 있도록, 유분 내 금속 제거를 주목적으로 하는 수첨 반응으로부터 배출된 폐촉매가 사용될 수 있다.
본 발명에 따른 구체예에 따르면, 석탄과 함께 가스화 반응 원료를 구성하는 폐촉매는 반응 중 혼입되는 금속 성분(원소)인 바나듐, 니켈 및 철 함량을 기준으로 선정될 수 있다.
이와 관련하여, 바나듐은 폐촉매 중량 기준으로 예를 들면 약 1 내지 약 30 중량%, 구체적으로 약 3 내지 약 25 중량%, 보다 구체적으로 약 5 내지 약 20 중량% 범위로 함유될 수 있다. 니켈은 예를 들면 약 0.1 내지 약 20 중량%, 구체적으로 약 2 내지 약 15 중량%, 보다 구체적으로 약 3 내지 약 10 중량% 범위로 함유될 수 있다. 또한, 철은 예를 들면 약 5 중량% 이하, 구체적으로 약 4 중량% 이하, 보다 구체적으로 약 2 중량% 이하의 범위로 함유될 수 있다.
이외에도, 폐촉매는 예를 들면 약 1 내지 약 50 중량%, 구체적으로 약 10 내지 30 중량%의 황 성분(원소 기준)을 더 포함할 수 있으며, 또한 탄소질(또는 탄소) 성분을 탄소 원자 기준으로 예를 들면 약 60 중량% 이하, 구체적으로 약 10 내지 약 60 중량%로 함유할 수 있다.
예시적 구체예에 있어서, 석탄과 조합되는 폐촉매는 무기 산화물계열로서, 예를 들면 약 5 내지 약 200 ㎡/g(구체적으로는 약 10 내지 약 100 ㎡/g, 보다 구체적으로 약 20 내지 50㎡/g)의 비표면적, 그리고 약 100 내지 약 180Å(구체적으로는 약 120 내지 약 150Å)의 기공 사이즈를 가질 수 있다. 보다 구체적으로는, 구체적으로 알루미나계열의 폐촉매(알루미나 지지체 사용)일 수 있다.
본 구체예에 적용 가능한 예시적인 탈황공정의 폐촉매 조성 범위를 하기 표 1에 나타내었다.
한편, 상술한 함량 범위를 벗어나는 폐촉매라 하더라도 경우에 따라서는 전처리를 통하여 적합한 조성을 갖게 할 수도 있다. 예를 들면, 폐촉매의 표면에 침적된 과량의 오일 성분, 탄소, 황 등을 제거하기 위하여 약 100 내지 400℃에서 열처리할 수 있다(예를 들면, 약 1 내지 약 5시간 동안). 또한, 열처리에 후속적으로 또는 별도로 폐촉매를 유기 용매(헥산, 아세톤 등)로 세척하여 폐촉매 내 과량의 오일 성분을 제거하거나 비표면적을 적정 범위로 조절할 수 있다. 이때, 선택적으로, 과량으로 존재하는 특정 금속성분을 제거하거나 금속 간 밸런스를 보다 균형있게 맞추기 위하여 옥살산과 같은 산(수용액)으로 처리할 수 있는 바, 이러한 산 처리 과정은 지나치게 많은 량의 금속이 용출되는 것을 억제하고 폐촉매의 지지체를 손상시키지 않는 범위 내에서 적절한 농도(예를 들면 약 0.5 내지 3 중량%)로 조절하여 사용될 수 있다.
다만, 상술한 전처리 과정은 폐촉매 성상에 따라 선택적으로 수행되는 것으로서, 폐촉매에 대한 복잡한 처리 과정없이 가스화 반응 원료로 사용될 수 있는 본 구체예의 장점을 훼손하는 것은 아님을 주목해야 한다.
석탄
본 명세서에 있어서, "석탄"은 무연탄, 유연탄(역청탄, 갈탄, 이탄 등), 저급 활성탄 등을 포함하는 것으로 사용된다. 따라서, 특정 등급의 석탄으로 제한되는 것은 아니며, 특히 저급 석탄을 최대한 활용하는 것이 경제성 제고 면에서 바람직할 수 있다.
석탄 내 탄소 함량은 전체 석탄 중량을 기준으로 예를 들면 약 20 내지 약 90 중량%, 구체적으로 약 30 내지 약 80 중량%, 보다 구체적으로 약 40 내지 약 70 중량% 범위일 수 있다.
또한, 석탄은 건조 기준으로 회재(ash)를 예를 들면 약 15 중량%까지, 구체적으로 약 5 내지 약 12 중량%, 보다 구체적으로 약 9 내지 약 11 중량%까지 포함할 수 있다. 상기 회재 내에는 전형적으로 실리카, 산화칼슘 및 산화철이 상당 비율로, 그리고 산화 칼륨, 산화 마그네슘, 티타니아, 산화아연 등의 성분이 소량 함유되어 있다.
가스화 반응 원료의 제조
본 발명의 구체예에 따르면, 정유공정으로 배출되는 폐촉매는 석탄과 조합(결합)되어 고상의 가스화 반응 원료를 제조할 수 있는 바, 이때 예를 들면 건식법 또는 습식법이 이용될 수 있다.
(1) 건식법(폐촉매와 석탄의 물리적 혼합물)
먼저, 폐촉매 및 석탄을 각각 예를 들면 약 50㎛ 내지 약 3 mm, 구체적으로 약 60㎛ 내지 약 250㎛, 보다 구체적으로 약 70㎛ 내지 약 100㎛의 크기로 분쇄하고 분급 또는 분류한다. 만약, 입자 사이즈가 지나치게 크거나 작은 경우에는 비산 등의 문제점이 유발될 수 있기 때문에 가스화 반응으로의 적용 가능성을 고려하여 적절히 조절할 수 있다. 또한, 폐촉매 및 석탄의 분쇄를 위하여는 볼 밀, 해머 밀, 롤러 크래셔(roller crasher) 등과 같은 당업계에서 알려진 분쇄 장치를 이용할 수 있다. 또한, 분급(또는 분류) 장치로서 통상의 체(sieve) 또는 스크리닝 장치(예를 들면, 와이어 메쉬 스크린 등) 및 가스사이클론, 유동층 분류기 등을 사용할 수 있다.
그 다음, 미리 정해진 비율에 따라 폐촉매 입자와 석탄 입자를 혼합하여 가스화 반응 원료를 제조한다. 경우에 따라서는, 폐촉매 및 석탄을 처음부터 미리 정해진 비율에 따라 투입한 다음, 분쇄 및 분급(분류) 과정을 수행할 수 있다. 상기 건식 혼합 방식의 경우, 가스화 반응시 폐촉매 입자와 석탄 입자 간 친밀도를 높도록 하는 것이 유리할 수 있다. 이를 위하여, 가급적 폐촉매 입자와 석탄 입자를 균일하게 혼합하여 가스화기로 도입한다. 선택적으로, 균일한 혼합물을 고압(예를 들면 약 20 내지 약 100 kg/cm2, 구체적으로 약 30 내지 70 kg/cm2) 하에서 압착(고밀도화)시킨 펠렛 형태(예를 들면, 직경 약 5 내지 약 20 mm)로 가스화기로 도입하여 이송형 가스화기(예를 들면, TRIG)를 사용 시 이동에 적합하도록 할 수 있다.
(2) 습식법(석탄에 폐촉매가 부착된 형태)
먼저, 매질로 물을 사용하여 석탄 슬러리를 제조한다. 이때, 슬러리 내 고형분 함량은 예를 들면 약 1 내지 약 50 중량%, 구체적으로 약 1 내지 약 20 중량% 범위일 수 있다. 또한, 예시적 구체예에 있어서, 슬러리 내 석탄은 예를 들면 약 50㎛ 내지 약 3 mm, 구체적으로 약 70㎛ 내지 약 500㎛, 보다 구체적으로 약 80 내지 200㎛ 범위의 사이즈를 갖는 입자 형태일 수 있다. 상기 석탄 슬러리에 예를 들면, 약 1 mm 이하(구체적으로 약 500 ㎛ 이하, 보다 구체적으로 약 150㎛ 이하)의 입자 사이즈를 갖는 폐촉매를 미리 정해진 비율대로 투입한다. 경우에 따라서는 상기 폐촉매 역시 약 1 내지 약 50 중량%의 고형분 함량을 갖는 슬러리 형태로 도입하여 석탄 슬러리와 조합할 수 있다.
상기와 같이 제조된 폐촉매-석탄 슬러리를 교반 하에서 건조시켜 고형물을 수득한다. 이때, 건조 과정에서는 당업계에서 알려진 로타리 증발기, 진공건조, 열건조 등을 사용할 수 있다. 이와 같이 제조된 고형물은 석탄 입자에 폐촉매 성분이 부착된 형태를 갖게 된다.
한편, 상술한 건식법 또는 습식법에 따라 제조된 가스화 반응 원료는 여전히 수분, 휘발성 물질 등을 함유하고 있기 때문에 이를 제거하기 위하여, 예를 들면 약 80 내지 약 200℃(구체적으로 90 내지 120℃)에서 약 10분 내지 약 30 시간동안 건조시킨 다음, 가스화 반응에 제공할 수 있다.
본 명세서에서는 특정 건식법 및 습식법을 중심으로 폐촉매 및 석탄의 조합 방법을 기술하였으나, 정유공정의 폐촉매가 석탄의 가스화 반응시 촉매적으로 유효하게 작용할 수 있을 정도로 석탄과 밀접한 접촉이 확보될 수 있는 한, 당업계에서 알려진 다양한 조합 방법들을 사용할 수 있다.
한편, 본 발명의 구체예에 따르면, 가스화 반응 원료 내 폐촉매 함량은 폐촉매의 고유 성상(조성 및 물리적 성상)에 따라 조절할 수 있으나, 가스화 반응 활성 및 경제성을 종합적으로 고려할 때, 약 0.5 내지 약 20 중량%, 구체적으로는 약 1 내지 약 10 중량%, 보다 구체적으로는 약 2 내지 약 5 중량% 범위 내에서 조절될 수 있다.
가스화 반응
본 명세서에 있어서, "가스화(gasification)"는 넓은 의미로는 가스화제(공기, 산소, 스팀, 이산화탄소 또는 이들의 혼합물)의 존재 하에서 탄소질 물질의 화학 구조 변화를 통한 열-화학적 전환 공정을 의미하는 것으로, 보다 좁은 의미로는 탄소질 물질을 주로 합성가스(수소 및 일산화탄소)로 전환시키는 공정을 의미한다.
본 구체예에 있어서, 가스화 반응은 전형적으로 하기 반응식 1 및 2에 따른 스팀 가스화 반응 및/또는 이산화탄소 가스화 반응을 통하여 주로 합성 가스(수소 및 일산화탄소로 이루어지고, 소량의 이산화탄소를 함유할 수 있음)를 생성하게 된다.
[반응식 1]
C (석탄) + H2O → CO + H2
[반응식 2]
C (석탄) + CO2 → 2CO
이외에도, 반응 가스 중에 산소 및 수소가 포함되는 경우에는 하기 반응식 3 내지 5에 따른 반응이 함께 진행된다.
[반응식 3]
C (석탄) + 1/2O2 → CO
[반응식 4]
C (석탄) + O2 → CO2
[반응식 5]
C (석탄) + 2H2 → CH4
상기 가스화 반응은 당업계에 알려진 반응기를 이용하여 수행할 수 있다. 예를 들면, 스팀 가스화 반응의 경우, 향류 고정층 반응기, 병류 고정층 반응기, 유동층(fluidized bed) 반응기, 이동층(moving bed) 반응기, 분류층(entrained bed) 반응기 등을 이용하여 수행될 수 있다. 또한, 이산화탄소 가스화 반응의 경우, 예를 들면 유동층 반응기를 사용할 수 있는 바, 이러한 유동층 반응기로서 라이저(riser), 버블링(bubbling) 또는 터뷸런트(turbulent) 형태의 반응기 등을 예시할 수 있다. 다만, 반응기 형태 및 세부 구성은 의도하는 가스화 반응 루트(예를 들면, 스팀 가스화 반응, 이산화탄소 가스화 반응 또는 양자 모두)에 따라 당업계에서 알려진 다양한 가스화기들로부터 적절하게 선택 또는 조절될 수 있다. 또한, 반응 조건 역시 타겟 반응 루트 등을 고려하여 적절히 선택될 수 있다. 이하에서는 본 발명의 구체예에서 주된 반응 루트로 고려된 스팀 가스화 반응 및 이산화탄소 가스화 반응에 관하여 보다 구체적으로 설명한다.
(1) 스팀 가스화 반응
예시적 구체예에 따르면, 상기 스팀 가스화 반응 온도는 약 600 내지 약 1200℃, 구체적으로 약 750 내지 약 1100℃, 보다 구체적으로 약 800 내지 약 1000℃ 범위에서 설정될 수 있다.
반응 압력은 특별히 한정되는 것은 아니지만, 예를 들면 약 1 내지 50 bar, 보다 구체적으로는 약 1 내지 30 bar 범위일 수 있다. 이때, 반응 가스는 주로 스팀을 포함하나, 선택적으로 산소 또는 공기(예를 들면, 공기 블로잉을 통하여)를 함유할 수 있고, 더 나아가 이산화탄소도 소량 함유할 수 있다. 경우에 따라서는, 질소, 아르곤 등과 같은 불활성 가스를 이용한 분압 조절을 통하여 반응 영역 내 스팀 량을 조절할 수 있다. 이때, 스팀/탄소의 공급 비는, 예를 들면 몰 기준으로 약 4 이내, 구체적으로는 약 0.1 내지 약 3, 보다 구체적으로는 약 0.5 내지 약 2 범위일 수 있다.
전형적으로, 스팀 가스화 반응 루트의 경우, 석탄의 탄소 전환율은 전형적으로 적어도 약 80%, 구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 97% 일 수 있다. 또한, 생성 가스(합성 가스) 내 H2/CO 몰 비는 약 0.1 내지 약 3, 보다 구체적으로는 약 0.5 내지 약 2.5 범위일 수 있다.
(2) 이산화탄소 가스화 반응
예시적 구체예에 따르면, 이산화탄소 가스화 반응은, 예를 들면 약 600 내지 약 1200℃, 구체적으로 약 750 내지 약 1100℃, 보다 구체적으로 약 800 내지 약 1000℃ 범위에서 수행될 수 있다. 한편, 반응 압력은 특별히 한정되는 것은 아니지만, 예를 들면 약 1 내지 50 bar, 보다 구체적으로는 약 1 내지 30 bar 범위일 수 있다.
이산화탄소 가스화 반응에 있어서, 생성 가스 내 최적의 일산화탄소 및 수소의 비율을 도출하고, 반응성을 높이기 위하여 반응 영역으로 공급되는 가스화 반응 원료 내 석탄과 이산화탄소의 공급 비를 적절히 조절하는 것이 요구될 수 있다. 이와 관련하여, CO2/탄소의 공급 비는, 예를 들면 몰 기준으로 약 4 이내, 구체적으로는 약 0.1 내지 약 3, 보다 구체적으로는 약 0.5 내지 약 2 범위로 조절할 수 있다.
예시적 구체예에 따르면, 상기 이산화탄소 가스화 반응에 있어서 석탄의 탄소 전환율은 전형적으로 적어도 약 80%, 구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 95%일 수 있다. 또한, 생성 가스(합성 가스) 내 H2/CO 몰 비는 약 0 내지 약 2, 보다 구체적으로는 약 0.1 내지 약 1 범위일 수 있다.
한편, 전술한 반응 루트에 따라 제조된 생성 가스, 특히 합성 가스는 다양한 화학물질, 연료 등의 제조를 위한 원료로 사용될 수 있다. 다만, 타겟 화학물질에 따라서는 생성 가스 내 H2/CO 몰 비를 조절하는 것이 바람직할 수 있다. 이 경우, 하기 반응식 6에 따른 WGS(water-gas shift) 반응 루트를 통하여 수소의 비율을 증가시킬 수 있다.
[반응식 6]
CO + H2O → H2 + CO2
한편, 가스화 반응을 거친 후에도 폐촉매 성분은 여전히 회재 내에 함유된 형태로 남게 된다. 이러한 폐촉매 내 유가 금속을 회수하기 위하여 종래에 알려진 금속 회수(metal reclaiming) 기술을 이용할 수 있는 바, 예를 들면 폐촉매 내 개별 금속 성분을 환원용액, 금속 추출 용액 등을 사용하여 순차적으로 회수할 수 있다. 이러한 금속 회수 방법은 예를 들면 국내특허공개번호 제2011-22863호, 미국특허번호 제5,431,892호 등에 개시되어 있는 바, 상기 특허문헌의 개시 내용은 본 발명의 참고자료로서 포함된다.
다른 접근 방법으로서, 가스화 반응 완료 후 남은 폐촉매를 활용하여 다시 촉매 원료를 제조할 수 있는 바, 예를 들면 국내특허공개번호 제2008-107905호에 개시된 바와 같이 폐촉매 성분에 산을 투입하고, 모노옥틸아민 등을 사용하여 바나듐을 분리한 다음, 용제(메틸 아세테이트, 아세톤 등)로 금속 성분을 고형화시켜 침전한 다음, 수세 및 소성하여 금속산화물의 복합물을 촉매 원료로 회수할 수 있다. 상기 선행문헌 역시 본 발명의 참고자료로 포함된다.
이외에도, 가스화 반응 생성물 내에 함유된 불순물, 황 성분 등은 통상의 세라믹 필터, 스크러버, 탈황설비 등을 이용하여 제거할 수 있는 바, 상기 예시된 후단 공정은 예시적인 의미로 이해되어야 하며, 본 발명이 이에 한정되는 것은 아니다.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.
실시예 1
스팀 가스화 반응
(1) 폐촉매
상압잔사유 탈황 공정으로부터 배출되는 알루미나계 폐촉매(R1310 및 RHDS2 11-150) 및 감압잔사유 탈황 공정으로부터 배출되는 폐촉매(R3311)를 사용하였다. 상기 3가지 폐촉매를 ICP(induced coupled plasma) 분석기(Optima 2100 DV, Perkin Elmer)를 이용하여 바나듐, 니켈 및 철 함량을 측정하였으며, 그 결과를 하기 표 2에 나타내었다. 또한, 원소분석기(Vario EL)를 이용하여 폐촉매 내 유기화합물 함량을 분석하였으며(폐촉매 표면에 침적된 오일 성분을 제거한 다음, 100℃ 오븐에서 처리한 후 측정하였음), 그 결과를 하기 표 3에 나타내었다.
상기 표에 따르면, 탈황 공정의 폐촉매 내에 V 및 Ni 함량이 다른 금속에 비하여 높은 것으로 확인되었다. 이는 탈황 처리 유분 내에 상당량 함유된 V 및 Ni이 탈황 촉매에 혼입됨에 따른 결과로 볼 수 있다.
(2) 석탄
내몽고탄 Meng Tai 지역 갈탄을 사용하였는 바, 이에 대한 조성 분석 결과를 하기 표 4 및 5에 나타내었다.
(3) 종래의 가스화 반응 촉매
탄산 칼륨(K2CO3): Showa Chemical사 제품
가스화 반응 원료의 제조
(1) 건식법에 의한 제조
막자 사발을 이용하여 폐촉매 및 갈탄을 별도로 분쇄한 다음, 체(sieve)를 사용하여 100 μm 이하의 입자 크기로 분류하였다. 그 다음, 상기 분류된 석탄에 폐촉매(R1310, R3311 및 RHDS2 11-150) 및 K2CO3 각각을 평량 디쉬(weighing dish)를 사용하여 물리적으로 혼합하였다. 이때, 석탄과 혼합되는 폐촉매 량은 최종 가스화 반응 원료의 전체 중량 기준으로 각각 1 중량%, 5 중량%, 10 중량% 및 20 중량%가 되도록 조절하였다. 상기와 같이 제조된, 각각의 폐촉매에 따른 4가지 혼합물을 각각 100℃ 오븐에서 24 시간 동안 건조시켜 전처리하였다.
(2) 습식법에 의한 제조
막자 사발을 이용하여 폐촉매 및 석탄을 별도로 분쇄한 다음, 체(sieve)를 사용하여 150㎛ 이하의 입자 크기로 분류하였다.
둥근 플라스크(0.5 L) 내에서 물 50 ml 및 석탄 5g를 투입하여 석탄 슬러리를 제조한 다음, 상기 석탄 슬러리에 폐촉매(R1310, R3311 및 RHDS2 11-150) 및 K2CO3를 각각 투입하였다. 이때, 첨가되는 폐촉매 량은 최종 가스화 반응 원료의 전체 중량 기준으로 각각 1 중량% 및 5 중량%가 되도록 조절하였다. 그 다음, 끓임쪽을 넣고, 로터리 증발기(rotary evaporator; 동서과학, R-Series)를 이용하여 60℃에서 10분 동안 30 rpm으로 교반하면서 증발/건조시켰다. 상기 건조된 고형분을 24시간 동안 오븐(100℃)에서 건조시켰다.
스팀 가스화 반응
상기 제조된 가스화 반응 원료 중 건식법에 의하여 제조된 3가지 폐촉매(R1310, R3311 및 RHDS2 11-150) 각각의 함량을 1 중량%, 5 중량%, 10 중량% 및 20 중량%로 변화시키면서 도 1에 도시된 열천칭 반응 시스템을 이용하여 900℃에서 스팀 가스화 반응시켰으며, 시간에 따른 탄소 전환율을 측정하였다. 열천칭반응 시스템은 크게 가스 주입부, 반응기, 전자저울, 측정부로 구성하였다 실험은 하기와 같이 실시하였다. 상기 도면에서 스팀은 증류수 저장조(distilled water reservoir; 1)로부터 증류수를 마이크로펌프(2)로 이송하여 스팀 발생기(3)에서 생성시켰다. 상기 스팀은 압력 조절기(11)에 의하여 조절된 량의 질소와 결합되어 전기 히터(4)에 의하여 가열된 후에 열천칭 반응기에서 가스화 반응을 수행하였다. 질소 량은 가스 흐름 측정기(12)에 의하여 확인하였다. 이때, 반응 시스템 내에는 전자저울(8: electric balance) 및 윈치 어셈블리(9: winch assembly)를 장착하였다.
반응기 상부의 전자저울(8) 하부에는 샘플 바스켓(5)이 달려있고 반응기 부분의 상부에 위치한 해치를 통하여 시료를 장착, 탈착할 수 있도록 하였다. 시료의 질량 변화는 전자저울(8)의 수치 신호를 받아 변동 변압기(10: variable transformer)를 이용하여 측정하였다. 가스 생성물은 냉각 트랩(6)을 거쳐 가스 펌프(7)에 의하여 벤팅시켰다. 또한, 질소 퍼지 라인(14)을 통하여 별도로 질소를 반응 시스템에 공급하였다.
반응원료 시료 약 1g을 사용하였고, 반응기 내 분압은 스팀/질소(N2) 50%로 조절하였다. 상기 설정된 온도에 도달할 때까지 10℃/min의 속도로 승온시킨 반응기에 N2 2.740ℓ/min을 흘려 N2 분압 100%를 유지한 상태로 반응 원료 시료를 주입하여 열분해하였고, 원료 내 잔여 수분 및 휘발 물질을 제거하였다. 더 이상 원료 시료의 중량 변화가 없음을 확인한 다음, N2 및 스팀을 각각 1.370ℓ/min(스팀/N2 50% 분압)로 흘리고, 산소 블로잉 조건 하에서 가스화 반응을 수행하였다. 이때, 압력은 상압으로 유지하였다. 반응 진행에 따른 고정탄소의 중량 변화율을 관찰하였다. 가스화 반응 종료 후에 미반응된 탄소 성분은 공기를 흘려 완전 연소시켰고, 회재를 확인한 다음 N2를 이용하여 잔류가스를 제거하였다. 상기 실험 결과를 도 2에 나타내었다.
상기 도면에 따르면, 가스화 반응 원료 내 폐촉매 함량이 1중량%인 경우와 비교하면, 5중량%, 10중량% 및 20중량%에서 탄소전환율이 점차 증가하였다. 반면, 폐촉매 함량 20중량%에서는 5중량% 및 10중량%인 경우와 비교하면 탄소전환율의 증가 정도가 둔화되거나 경우에 따라서는 약간 감소하는 경향을 나타내었다. 따라서, 폐촉매 활용에 따른 경제성 면에서 원료 내 폐촉매 함량을 지나치게 높이기보다는 적정 비율로 조절하는 것이 바람직함을 알 수 있다.
한편, 3가지 폐촉매(R1310, R3311 및 RHDS2 11-150) 및 기존 상용화된 촉매(K2CO3)를 각각 사용하였고, 폐촉매 함량이 각각 1중량% 및 5 중량%이 되도록 제조한 가스화 반응 원료를 대상으로 도 1에 도시된 반응 장치를 사용하여 전술한 실험 절차에 따라 각각 700℃, 800℃ 및 900℃의 반응 온도에서 가스화 반응을 수행하였다.
가스화 원료 내 촉매 성분(폐촉매 및 K2CO3)의 함량별(1 중량% 및 5 중량%), 그리고 온도별(700℃, 800℃ 및 900℃)로 시간에 따른 탄소 전환율을 측정하였다. 또한, 폐촉매를 사용하지 않은 것을 제외하고는 동일한 입자 사이즈로 제조된 가스화 원료(Non-catalyst)에 대한 탄소 전환율 역시 대비 목적으로 측정하였다. 반응 시간에 따른 탄소 전환율의 측정 결과를 도 3 내지 5에 나타내었다.
도 3a 및 도 3b에 따르면, 700℃에서 탄소전환율 75% 도달 기준으로, 폐촉매 함량이 1 중량%인 경우, RHDS2 11-150 > R3311 > K2CO3 > R1310 > non-catalyst 순으로 활성을 나타내었다. 한편, 5 중량%에서는 K2CO3 > R3311 > R1310 > RHDS2 11-150 > non-catalyst 순서로 활성을 나타내었다.
도 4a 및 도 4b에 따르면, 800℃의 반응 온도에서 탄소전환율 90% 도달 기준으로, 폐촉매 함량 1중량%의 가스화 원료의 경우, R3311 > R1310> RHDS2 11-150 > K2CO3 > Non-catalyst 순서로 활성을 나타내었고, 5 중량%에서는 K2CO3 > RHDS2 11-150 > R3311 > R1310 > Non-catalyst 순서로 활성을 나타내었다.
도 5a 및 도 5b에 따르면, 900℃의 반응 온도에서 탄소전환율 90% 도달 기준으로, 폐촉매 함량 1중량%의 가스화 원료의 경우, RHDS2 11-150 > R1310 > R3311 > K2CO3 > Non-catalyst의 순서로 활성을 나타내었고, 5 중량%에서는 K2CO3 > RHD2 11-150 > R3311 > R1310 > Non-catalyst 순으로 활성을 나타내었다.
상기 도면에 따르면, 700℃에서는 800℃ 및 900℃에 비하여 탄소 전환율이 전체적으로 감소하였다. 다만, 폐촉매 함량 1중량%인 원료에서 폐촉매 성분(특히, RHDS2 11-150)이 종래의 상용 촉매 성분인 K2CO3에 비하여 전체적으로 우수한 가스화 반응 활성을 나타내고 있다는 점은 주목할 만하다.
한편, 기상-고상 반응모델을 이용하여 스팀-가스화 반응의 반응속도론 해석에 있어서 가장 적합한 모델인 Modified Volumetric Model(MVM)을 사용하여 각각의 운전 조건 하에서 얻어진 반응속도상수(K)를 표 6 및 7에 정리하였다.
상기 표에 따르면, 반응속도상수의 경우 반응 원료 내 폐촉매 함량에 따른 변화 정도가 비교적 작음을 알 수 있다. 다만, 폐촉매 함량이 10중량% 이상으로 증가하였을 때, 반응속도상수가 다소 감소하는 경우가 관찰되었다.
한편, 폐촉매를 함유하지 않은 원료와 폐촉매를 함유한 원료 간의 반응속도 상수를 비교한 값(Kcat/Knon-catal)을 도 6a 및 도 6b에 나타내었다. 이러한 비교를 통하여 폐촉매를 함유하는 원료가 가스화 반응에 반응하는 정도를 평가할 수 있다.
또한, 폐촉매를 함유하지 않은 원료, K2CO3를 함유한 원료 및 폐촉매를 함유한 원료를 각각 사용하여 700℃, 800℃ 및 900℃에 대한 아레니우스 플롯(Arrhenius plot)을 그려 가상의 직선을 그으면 그 기울기로부터 스팀 가스화 반응에 대한 활성화 에너지(EA; kJ/mol)를 구할 수 있다. 그 결과를 하기 표 8에 나타내었다.
상기 표 6 내지 8에 기재된 반응속도상수 및 활성화 에너지 값에 따르면, 폐촉매를 사용할 경우가 기존에 가장 널리 사용되고 있는 촉매성분인 탄산칼륨(K2CO3)을 사용하는 경우와 비교하여 전체적으로 동등한 수준의 값을 얻을 수 있었다. 특정 폐촉매를 사용할 경우, 오히려 탄산칼륨에 비하여 개선된 값을 나타내는 것으로 확인되었다.
실시예 2
이산화탄소 가스화 반응
본 실시예에서는 실시예 1에서 건식법에 의하여 제조된 가스화 반응 원료 중 폐촉매 함량이 1 중량%인 원료를 대상으로 이산화탄소 가스화 반응을 수행하였다.
본 실시예에 따른 이산화탄소 가스화 반응 시스템을 도 7에 나타내었다. 도시된 바와 같이, 반응 시스템은 반응물 공급부, 반응기, 응축부 및 가스 크로마토그래피(HP6890 GC, MD600 GC) 분석부분으로 구성되어 있다. 반응기로서 U-quartz(23)를 이용한 고정층 상압 유동식 반응장치를 이용하였으며, 반응가스인 이산화탄소와 열반응시 흘려주는 질소와 같은 가스 성분은 각각 필터(21) 및 질량 유량 조절계(22: MFC, Mass Flow Controller, Brooks 5850E)를 이용하여 반응기에 정량 공급하였다
또한, 반응기는 전기로(24) 내부에 고정시켜 반응온도를 제어하였으며, 반응기 안에 열전대(thermocouple)를 설치하여 온도를 확인하였다. 생성 가스는 순환기(25: circulator)의 작동 하에서 응축기(26: CT-50, Operon)로 이송하여 이에 함유된 타르를 제거하였다. 생성 가스의 조성은 테들러 백(27; Tedlar Bag)으로 채집하여 TCD가 장착된 GC(28)를 이용하여 분석하였다.
본 실시예에서는 가스화 반응 원료 3g을 실험에 사용하였다. 랩-스케일 반응기의 이산화탄소 가스화 반응은 크게 열분해 및 Char 반응실험으로 구분하였는데, 먼저 열분해에서는 N2를 50ml/min을 흘려주면서 10℃/min속도로 120℃로 승온시켜 30분 동안 시료에 함유된 수분을 제거하였다. 그 후 계속 N2를 흘려주면서 10℃/min 속도로 측정온도(800℃)까지 승온시켰다. 승온 후, 열분해 과정에서 유량의 변화가 더 이상 없을 때까지 유지하여 잔여 수분 및 휘발성 물질이 제거되면서 열분해가 수행되었다. 더 이상의 유량 변화가 없으면 온도를 유지하면서 50ml/min 속도로 이산화탄소를 유입시켜 Char-CO2 가스화 반응을 진행하였고(질소 분압 1 및 이산화탄소 분압 1 조건), 탄소전환율을 측정하였다. 또한, 비교를 위하여, 종래에 알려진 촉매 성분인 K2CO3를 함유한 반응 원료 및 촉매 성분을 함유하지 않은 반응 원료(Non-catalyst)를 각각 제조하여 동일 조건 하에서 이산화탄소 가스화 반응을 수행하여 탄소전환율을 측정하였다. 그 결과를 도 8에 나타내었다.
도 8에 따르면, 탄소전환율에 있어서 RHDS2 1% > K2CO3 1% > R1310 1% > R3311 1% > Non-catalyst 순이었다. 상술한 도면에 따른 결과에서, RHDS2는 K2CO3에 비하여 탄소전환율이 높을 뿐만 아니라, 나머지 폐촉매를 사용한 경우에도 K2CO3와의 탄소 전환율 차이는 크지 않았다.
이와 함께, 상기 이산화탄소 반응에서의 반응속도 상수(K)를 구하여 하기 표 9에 나타내었다.
한편, 가스화 반응온도를 변화시켜, 700℃, 800℃ 및 900℃에서의 아레니우스 플롯을 그려 활성화 에너지를 구하였으며, 그 결과를 하기 표 10에 나타내었다.
이상에서 살펴본 바와 같이, 본 실시예에 따라 제조된 폐촉매-함유 가스화 원료는 이산화탄소 가스화 반응에서도 종래의 K2CO3를 사용하여 제조된 가스화 원료를 실질적으로 대체 가능할 것으로 판단되었다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
Claims (18)
- 석탄; 및정유공정으로부터 배출되는 폐촉매 중 금속 성분으로서 1 내지 30 중량%의 바나듐, 0.1 내지 20 중량%의 니켈 및 5 중량% 이하의 철을 함유하는 폐촉매;를 포함하며,전체 중량을 기준으로 폐촉매의 함량이 0.5 내지 20 중량% 범위인, 가스화 반응 원료.
- 제1항에 있어서, 상기 폐촉매는 알루미나계 폐촉매인 것을 특징으로 하는 가스화 반응 원료.
- 제1항에 있어서, 상기 폐촉매는 5 내지 200 ㎡/g의 비표면적, 그리고 100∼180Å의 기공 사이즈를 갖는 것을 특징으로 하는 가스화 반응 원료.
- 제1항에 있어서, 상기 폐촉매는 탄소질 성분을 탄소 원자 기준으로 60 중량% 이하, 그리고 원소 기준으로 황 성분을 1 내지 50 중량%로 함유하는 것을 특징으로 하는 가스화 반응 원료.
- 제1항에 있어서, 상기 폐촉매는 상압잔사유 수소화탈황공정(AR-HDS), 감압잔사유 수소화탈황공정(VR-HDS), 잔사유 유동접촉분해공정(R-FCC) 또는 감압가스오일 수소화분해공정(VGO-HC)으로부터 배출되는 폐촉매 또는 이의 혼합물인 것을 특징으로 하는 가스화 반응 원료.
- 제1항에 있어서, 상기 석탄은 20 내지 90 중량%의 탄소 함량을 갖는 것을 특징으로 하는 가스화 반응 원료.
- 제6항에 있어서, 상기 석탄은 건조 기준으로 회재를 15 중량%까지 함유하는 것을 특징으로 하는 가스화 반응 원료.
- a) 정유공정으로부터 배출되는 폐촉매 중 금속 성분으로서 1 내지 30 중량%의 바나듐, 1 내지 20 중량%의 니켈 및 5 중량% 이하의 철을 함유하는 폐촉매를 제공하는 단계; 및b) (i) 상기 폐촉매를 석탄과 건식법에 의하여 물리적으로 혼합하거나, 또는 (ii) 상기 폐촉매를 습식법에 의하여 석탄에 부착하는 단계;를 포함하며,여기서, 전체 중량을 기준으로 폐촉매의 함량이 0.5 내지 20 중량% 범위인 가스화 반응 원료의 제조방법.
- 제8항에 있어서, 단계 (i)은 폐촉매 및 석탄을 각각 50㎛ 내지 3mm의 입자 사이즈로 분쇄한 후 분급 또는 분류하는 단계; 및상기 분급 또는 분류된 폐촉매 및 석탄을 혼합하는 단계;를 포함하는 것을 특징으로 하는 가스화 반응 원료의 제조방법.
- 제8항에 있어서, 단계 (ii)는 석탄 및 매질로서 물을 사용하여 고형분 함량이 1 내지 50 중량%인 석탄 슬러리를 제조하는 단계;상기 석탄 슬러리에 폐촉매를 투입하는 단계; 및상기 폐촉매와 석탄을 함유하는 슬러리를 교반 하에서 건조시키는 단계;를 포함하는 것을 특징으로 하는 가스화 반응 원료의 제조방법.
- 제8항에 있어서, c) 상기 가스화 반응 원료를 80 내지 200℃에서 10분 내지 30시간 동안 건조시키는 단계를 더 포함하는 것을 특징으로 하는 가스화 반응 원료의 제조방법.
- 제8항에 있어서, 상기 단계 b)에 앞서 상기 폐촉매는 100 내지 400℃에서 열처리하는 단계를 포함하는 것을 특징으로 하는 가스화 반응 원료의 제조방법.
- 제1항 내지 제7항 중 어느 한 항에 따른 가스화 반응 원료를 가스화 반응 조건 하에서 가스화하는 단계를 포함하는 석탄 가스화 방법.
- 제13항에 있어서, 상기 가스화 반응은 스팀 가스화 반응, 이산화탄소 가스화 반응 또는 이의 조합인 것을 특징으로 하는 석탄 가스화 방법.
- 제14항에 있어서, 상기 스팀 가스화 반응은 600 내지 1200℃의 온도, 1 내지 30 bar의 압력 및 몰 기준으로 4 이내의 스팀/탄소의 공급 비 조건 하에서 수행되는 것을 특징으로 하는 석탄 가스화 방법.
- 제15항에 있어서, 상기 석탄의 탄소 전환율은 적ㅇ도 80%, 그리고 생성 가스 내 H2/CO 몰 비는 0.1 내지 3 범위인 것을 특징으로 하는 석탄 가스화 방법.
- 제14항에 있어서, 상기 이산화탄소 가스화 반응은 600 내지 1200℃의 온도, 1 내지 30 bar의 압력, 및 몰 기준으로 4 이내의 CO2/탄소의 공급 비 조건 하에서 수행되는 것을 특징으로 하는 석탄 가스화 방법.
- 제17항에 있어서, 석탄의 탄소 전환율은 적어도 80%, 그리고 생성 가스 내 H2/CO 몰 비는 0 내지 2인 것을 특징으로 하는 석탄 가스화 방법
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120142170A KR101890950B1 (ko) | 2012-12-07 | 2012-12-07 | 정유공정으로부터 배출된 폐촉매를 이용한 가스화 방법 |
KR10-2012-0142170 | 2012-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014088363A1 true WO2014088363A1 (ko) | 2014-06-12 |
Family
ID=50883713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/011260 WO2014088363A1 (ko) | 2012-12-07 | 2013-12-06 | 정유공정으로부터 배출된 폐촉매를 이용한 가스화 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101890950B1 (ko) |
WO (1) | WO2014088363A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101807648B1 (ko) * | 2016-04-14 | 2017-12-11 | 손민일 | 난연성 폴리스티렌계 발포 입자 및 그 제조방법 |
CN107583672A (zh) * | 2016-07-08 | 2018-01-16 | 中国石化扬子石油化工有限公司 | 一种钒污染催化裂化催化剂活性提高方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102287827B1 (ko) * | 2014-06-26 | 2021-08-10 | 에스케이이노베이션 주식회사 | 천연 광물을 기반으로 하는 촉매 및 이를 이용한 가스화 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4298453A (en) * | 1977-12-27 | 1981-11-03 | Mobil Oil Corporation | Coal conversion |
US4541841A (en) * | 1982-06-16 | 1985-09-17 | Kraftwerk Union Aktiengesellschaft | Method for converting carbon-containing raw material into a combustible product gas |
EP0487158A1 (en) * | 1990-11-19 | 1992-05-27 | Shell Internationale Researchmaatschappij B.V. | Spent catalyst disposal |
US20070094929A1 (en) * | 2004-08-05 | 2007-05-03 | Sung-Kyu Kang | Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof |
US20090084666A1 (en) * | 2007-08-27 | 2009-04-02 | Purdue Research Foundation | Novel integrated gasification - pyrolysis process |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011139694A1 (en) * | 2010-04-26 | 2011-11-10 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with vanadium recovery |
-
2012
- 2012-12-07 KR KR1020120142170A patent/KR101890950B1/ko active IP Right Grant
-
2013
- 2013-12-06 WO PCT/KR2013/011260 patent/WO2014088363A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4298453A (en) * | 1977-12-27 | 1981-11-03 | Mobil Oil Corporation | Coal conversion |
US4541841A (en) * | 1982-06-16 | 1985-09-17 | Kraftwerk Union Aktiengesellschaft | Method for converting carbon-containing raw material into a combustible product gas |
EP0487158A1 (en) * | 1990-11-19 | 1992-05-27 | Shell Internationale Researchmaatschappij B.V. | Spent catalyst disposal |
US20070094929A1 (en) * | 2004-08-05 | 2007-05-03 | Sung-Kyu Kang | Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof |
US20090084666A1 (en) * | 2007-08-27 | 2009-04-02 | Purdue Research Foundation | Novel integrated gasification - pyrolysis process |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101807648B1 (ko) * | 2016-04-14 | 2017-12-11 | 손민일 | 난연성 폴리스티렌계 발포 입자 및 그 제조방법 |
CN107583672A (zh) * | 2016-07-08 | 2018-01-16 | 中国石化扬子石油化工有限公司 | 一种钒污染催化裂化催化剂活性提高方法 |
CN107583672B (zh) * | 2016-07-08 | 2019-12-17 | 中国石化扬子石油化工有限公司 | 一种钒污染催化裂化催化剂活性提高方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101890950B1 (ko) | 2018-08-22 |
KR20140074025A (ko) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10144887B2 (en) | Method of gasifying carbonaceous material and a gasification system | |
EP3135747B1 (en) | Method and apparatus for producing liquid hydrocarbonaceous product from solid biomass | |
KR101140530B1 (ko) | 접촉 기화용 석유 코크스 조성물 | |
US7744753B2 (en) | Coking apparatus and process for oil-containing solids | |
US4655792A (en) | Partial oxidation process | |
US8696937B2 (en) | Process for obtaining petrochemical products from carbonaceous feedstock | |
WO2014003332A1 (ko) | 카본 블랙 촉매를 이용한 이산화탄소 개질 방법 | |
WO2014088363A1 (ko) | 정유공정으로부터 배출된 폐촉매를 이용한 가스화 방법 | |
WO2014098472A1 (ko) | 합성 가스 및 고품위 석탄의 동시 생산을 위한 건조 및 가스화 통합 공정 | |
JP2509192B2 (ja) | 一酸化炭素及び水素含有ガスの製造方法 | |
US4801440A (en) | Partial oxidation of sulfur-containing solid carbonaceous fuel | |
EP0012468A1 (en) | Process for the production of light hydrocarbons and synthesis gas | |
WO2021091822A1 (en) | Syngas production and recovery of active phase metals from gasifier slag containing spent catalyst | |
Assima et al. | Catalytic conversion of residual fine char recovered by aqueous scrubbing of syngas from urban biomass gasification | |
US4331530A (en) | Process for the conversion of coal | |
US4657698A (en) | Partial oxidation process | |
US2614038A (en) | Production of sulfur free water gas | |
WO2014204302A1 (en) | Process for converting a biomass feedstock into at least a liquid hydrocarbon product | |
US4758331A (en) | Low-sulfur fuels from coals | |
US4925644A (en) | Partial oxidation of sulfur-containing solid carbonaceous fuel | |
US4748141A (en) | Metal sulfide catalyst preparation | |
CA1274685A (en) | Partial oxidation process | |
WO2024219754A1 (en) | Method and system for producing syngas containing hydrogen from waste plastics | |
US10934498B1 (en) | Combustion of spent adsorbents containing HPNA compounds in a membrane wall partial oxidation gasification reactor | |
WO2013100695A1 (ko) | 용매를 이용한 중질 탄화수소 유분과 목질계 바이오매스의 동시 전처리 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13861014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13861014 Country of ref document: EP Kind code of ref document: A1 |