WO2014088278A1 - Actuator driven by variable piston made from soft sealing film - Google Patents

Actuator driven by variable piston made from soft sealing film Download PDF

Info

Publication number
WO2014088278A1
WO2014088278A1 PCT/KR2013/011071 KR2013011071W WO2014088278A1 WO 2014088278 A1 WO2014088278 A1 WO 2014088278A1 KR 2013011071 W KR2013011071 W KR 2013011071W WO 2014088278 A1 WO2014088278 A1 WO 2014088278A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
actuator
sealing membrane
piston
pressure vessel
Prior art date
Application number
PCT/KR2013/011071
Other languages
French (fr)
Korean (ko)
Inventor
이재성
Original Assignee
Lee Jae-Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Jae-Sung filed Critical Lee Jae-Sung
Publication of WO2014088278A1 publication Critical patent/WO2014088278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/06Bellows pistons

Definitions

  • the present invention is a technology that together with the hydraulic actuator or the hydraulic pneumatic damper using the cylinder and the piston and its application field, the flexible sealing membrane is in close contact or peeling from the inner surface of the pressure vessel by the pressure difference inside and outside the pressure vessel in a variable movement method as if the piston in the cylinder
  • the present invention relates to an actuator using the phenomenon of reciprocating inside the container.
  • An apparatus that converts the pressure of a fluid into mechanical force and movement is an actuator, which is a combination of a conventional cylinder and a piston. There is also a diaphragm drive device as an elastic membrane type piston used for mechanical motion.
  • Pneumatic actuators using weak fluid pressures can be used in automatic door openers and the like. Hydraulic actuators using strong fluid pressure can also be used for joint driving of excavators and robots.
  • Diaphragm drives tend to be used only in relatively short strokes, but they are especially useful when pressure-driven fluids, such as vacuum boosters in automobile brakes or flush valves in toilets, may dissipate outside the drive system after they have played their part.
  • the unidirectional or bidirectional actuated actuators mainly dealt with by the present invention maximize the expansion and contraction deformation of the diaphragm-like hermetic piston while exhibiting similar movements as conventional piston cylinder combinations.
  • the prior art document introduced below relates to a pneumatic piston and a hermetic diaphragm introduced to aid the understanding of the present invention.
  • a variable piston made of a soft hermetic membrane as in the present invention is directly adhered or peeled in a pressure vessel. At the same time, it is difficult to find a structure that performs partly as a piston rod.
  • Patent Document 1 Korean Registered Patent 10-0844596 Diaphragm Compressor
  • Patent Document 2 Actuator Structure of Korea Patent Registration 10-1177269 Engine Turbocharger
  • Patent Document 3 Korea Patent Publication 10-2008-0082046 Cylinder mounted with a port on a double tube shaft
  • Diaphragm actuators that follow the movement pattern by the expansion and contraction of the elastic membrane cannot exert great force and the elastic membrane itself must act as a cylinder and a piston. There is a disadvantage that increases the risk. Also, as is well known, the piston-cylinder actuator, which has a typical sliding contact type, has a very narrow driving range compared to the total weight and volume of the structure, and the driving part must perform a sealing function to prevent leakage of the pressure fluid. This is a big disadvantage.
  • Literature (1) describes a typical elastic membrane actuator using pneumatics.
  • the elastic membrane acting as a piston of a compressor is considered in consideration of the volume and weight of all the accessories surrounding it, and the conventional elastic membrane deformation limits. It has a small compression capacity that is significantly less than the overall size of.
  • the actuator of document (2) also produces only a reciprocating stroke (elastic drive range) of extremely small magnitude relative to the supply pressure required for driving, similarly to document (1).
  • Literature (3) introduces a double-acting hydraulic actuator, which is a combination of a typical rigid shaft-type piston and cylinder, which has a similar aspect to the present invention in terms of implementing double-acting drive in the form of a single-acting cylinder, but a friction surface still exists. And the reciprocating distance of the piston is also still within the limits of the prior art.
  • the conventional hydraulic actuators in addition to solid deformation as well as fluid deformation, are commonly accompanied by excessive volume and heavy weight, airtightness, and effort to reduce friction to satisfy a desired amount of work, a desired driving speed, and a displacement. There was no choice but to.
  • the present invention implements an innovative piston and cylinder structure and an actuator using the same, which overcomes the limitations of the prior art as described above. Specifically, a light weight, a wide operating range, high speed drive speed, and a low manufacturing cost are required. Is to implement an innovative pneumatic actuator.
  • the actuator 40 of the present invention for achieving the above technical goal includes a pressure vessel 10 serving as a cylinder and a flexible sealing membrane 20 and a piston rod 30 connected to the sealing membrane.
  • the variable piston is the key configuration.
  • the main difference between the present invention and the conventional diaphragm is that the diaphragm must withstand all pressures by the elastic membrane itself, while the inelastic sealing membrane 20 of the present invention has a force that expands laterally outside the direction of movement of the piston. Is that the pressure vessel 10 supports.
  • the present invention is combined with various types of pressure vessels 10 to withstand a high pressure difference that cannot be compared with a conventional diaphragm. It has a long drive stroke that can be made and can not be compared with the diaphragm. This is a key feature of the present invention that distinguishes it from all conventional elastic membrane type actuators.
  • the pressure vessel 10, which is one of the main components of the present invention, can be made of a relatively diverse material because less smooth processing of the inner surface is required as compared with a conventional cylinder.
  • a conventional cylinder Including ordinary metals and synthetic resin materials, light alloys such as duralumin and reinforced plastics such as FRP are suitable for forming method and securing strength, and in the case where weight reduction is particularly important, materials having very high Young's modulus such as beryllium may be used. It is good to adopt.
  • a more important component than a pressure vessel is a flexible sealing membrane which plays a key role in the variable piston.
  • Sealing membranes are thin and flexible, so it is basically required to be well crimped or straightened and also to ensure almost complete airtightness. In other words, the strength and airtightness should be sufficiently maintained even if the operation process of closely adhering to the inner wall of the pressure vessel and peeling it is repeated.
  • the material forming the sealing film 20 in the present invention is of sufficient strength so that the elastic displacement in the driving direction of the actuator 40 is substantially close to zero within a given load range according to the use of the product. It needs to be designed.
  • the true elastic displacement in the present invention refers to the change in volume caused by expansion and compression of the pressure fluid (even if it is a vacuum or a fluid having a pressure close to vacuum), that is, the fluid pressure difference of the pressure fluids.
  • the movement of the sealing membranes 20 according to the present invention seems to occur as an elastic displacement, but it does not mean that the sealing membrane 20 is stretched by itself.
  • the sealing membrane 20 is formed by arranging a plurality of first synthetic fibers 21 in the driving direction so as to have a width and strength that are not substantially elastically deformed in the driving direction, that is, in the movement direction of the piston.
  • the type of the first synthetic fiber 21 may be a high-strength fiber called a reinforcing polymer fiber or a super fiber that is in the spotlight recently.
  • Typical high-strength fibers include aramid fibers used for tire cords and body armor, and carbon fibers having a weight of only 25% of iron but 10 times stronger than iron may be used.
  • low specific gravity and excellent abrasion resistance, polymer polyethylene fiber used as a rope or fishing line, polyarylate fiber called Vectran, or PBO fiber called Zylon can be sufficiently applied according to the use and grade of use of the actuator.
  • These high-strength fibers, for example, in the actuator according to the present invention are relatively small in the pressure vessel cross-sectional area of 100 cm 2 ⁇ 1000 cm 2 and the internal and external pressure difference is 0.1 ⁇ 1.0 MPa or less when applied to a typical embodiment only a few strands to several strands In fact, it is possible to secure sufficient strength so that the elastic deformation amount is close to zero. In other words, even thinner, high-strength fibers can be spread evenly to form a thinner, thinner membrane that folds well in the circumferential direction of the pressure vessel (perpendicular to the driving direction) and is very tough in the driving direction.
  • Vectran fiber is spread evenly to one thickness to make an actuator with a pressure area of 100 cm2.
  • the maximum pressure and elastic strain are calculated.
  • Vectran has a specific gravity of 1.4 g / cm 3 and one den of 5 denier, so the diameter of one of the balls is 0.0224 mm.
  • the maximum tension of the vectran is 25 gf / denier, so the maximum tension of each roll is 125 gf.
  • the inner diameter of a cylinder with a cross-section of 100cm2 is 11.28cm and the circumference is 35.45cm, so it takes 15,826ol when arranged in one layer.
  • the maximum tension of the sealed membrane consisting of 15,826 Vectran fibers, reaches 1.98 ton, so the maximum pressure that can be applied in the cylinder is 3.88 MPa, which is equivalent to 38.3 atmospheres.
  • the elastic strain at this time is 3.8% (3.8% longer than the original fiber length), so if 0.1 MPa is applied, the elastic strain is 0.098%, which is almost zero.
  • the amount of creep is not measured when it is continuously pulled for more than one year within 50% of the maximum tension, and when used at 2.6% of the maximum tension as described above, it may sag even after decades of use. creep) does not occur.
  • the sealing membrane additionally needs to be configured such that the second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged.
  • the second synthetic fibers 22 are required in the direction in which the second synthetic fibers are arranged. It is necessary to set so as to be elastically deformable.
  • the second synthetic fiber 22 is preferably a fiber having easy airtightness and flexibility rather than strength.
  • the circumferential length of the sealing membrane needs to be set to the longest circumferential length in the circumferential direction of the pressure vessel.
  • the binding of the first synthetic fiber and the second synthetic fiber which determines the airtightness and abrasion resistance of the sealing membrane, is suitable for general composite resins for bonding composite materials and has excellent ductility at most temperature ranges such as polymer resins for binding tire cords. It should maintain low friction properties, cracks should not occur in numerous repeated use, and it should be excellent in heat resistance and corrosion resistance because it can be exposed to various usage environments.
  • pressure vessels having various shapes and a wide range of sizes having extremely superior degrees of freedom compared to conventional cylindrical cylinders can be used as a cylinder. Therefore, it greatly improves the freedom of design and the performance of the design in all applied technical fields regardless of vehicle, ship, aircraft, etc.
  • the closed membrane type variable piston serving as the driving body is initially in close contact with the inner surface (mainly the inner circumferential surface or the inner surface) of the pressure vessel and moves while being peeled and deformed, it participates in the piston movement to the portion that is substantially folded and unfolded. . Therefore, in most environments, it has a wide range of motion of at least 1.5 to 2 times that of the conventional piston range, and because of the light, thin and flexible sealing membrane, the ultra-high driving speed that the conventional piston cannot follow is shown with strong driving force and close contact. Slip friction is extremely reduced because the main action is the over peeling. This makes it possible to save nearly 100% of the mirror surface processing cost of the sealing-drive part required for the conventional rigid cylinder and the rigid piston combination, and the material selection cost for matching the thermal expansion coefficient of both driving surfaces.
  • the present invention has the advantage that it is not necessary to arrange the piston rod on the central axis line of the vessel because the freely deformed sealing membrane may also play a role as the piston rod.
  • This can be stacked several sealing membranes penetrating each other in one pressure vessel has the effect that is very useful to implement a multi-joint movement, such as the finger joints of the humanoid robot.
  • FIG. 1 is a perspective view and a cross-sectional view showing the most basic embodiment of the present invention
  • FIG. 2 is a cross-sectional view conceptually illustrating a single acting actuator embodiment which is the most basic embodiment of the present invention
  • FIG. 3 is a cross-sectional view conceptually illustrating a left-right double-acting actuator embodiment and an operation mechanism thereof in which the single-actuated actuators of FIGS. 2A and 2B are developed.
  • FIG. 4 is a cross-sectional view conceptually illustrating a double acting actuator embodiment developed by combining the single acting actuators of FIGS. 2A and 2C and an operation mechanism thereof;
  • 5 is an embodiment in which the present invention is developed into a single-acting compound coaxial drive actuator.
  • FIG. 1 illustrates an embodiment of the present invention actuator 40 in its simplest and basic cylindrical single-acting form.
  • actuator 40 shown in Figure 1a is a variable piston consisting of a flexible sealing membrane 30 and the piston rod 30 in the pressure vessel 10, one end of which is blocked by the guide cover 13 is a guide cover It can be seen that the actuator 40 in the form of a typical cylindrical cylinder formed through the guide hole 11 formed in the center.
  • FIG. 1B Referring to the cross section shown in FIG. 1B, the operating structure of the FIG. 1 embodiment is well understood.
  • the pressure vessel 10 is configured with a guide hole 11 for guiding the driving of the piston rod 30 or a guide cover 13 for guiding the driving of the sealing membrane 20 as necessary.
  • the pressure outlet tube 23 is formed through the guide cover 13 in the form of a soft tube attached to the inner surface or the outer surface of the sealing membrane 20.
  • variable piston is at least a portion of the sealing membrane 20 constituting it is in close contact with the inner surface of the pressure vessel (10). It is formed to be possible, and also the sealing membrane 20 drives the variable piston while at least a part (close to the inner surface of the pressure vessel) in close contact by the fluid inflow or fluid outflow from the pressure vessel 10 outside.
  • the pressure vessel 10 is not necessarily cylindrical, but may be formed in a non-cylindrical shape.
  • a cylindrical cylinder for preventing stress concentration or airtight performance deterioration is the most ideal design, but the present invention does not necessarily need to be cylindrical because the soft sealing membrane 20 mostly compensates for the above-mentioned disadvantages.
  • variable piston is composed of only the sealing membrane 20, or further comprises at least one pressure outlet tube 23 attached to the sealing membrane 20, or at least connected to the sealing membrane 20 It may be configured to further include one piston rod (30).
  • the most typical form consists of one sealing membrane and one or more piston rods, the most unusual of which is the absence of piston rods in many sealing membranes. That is, if the variable piston is designed with only a simple contraction action, it means that the piston rod 30 can be replaced by extending the sealing membrane as necessary.
  • the pressure inlet and outlet pipe 23 is formed in the disk-shaped guide cover 13 in FIGS. 1A and 1B, referring to FIG. 2A, the pressure outlet and inlet pipe penetrates through the shaft center of the piston rod 30 and the pressure vessel 10. It may be connected to the inside.
  • the pressure outflow pipe 23 has an inherent function of allowing the pressure fluid to flow in and out of the space formed by the sealing membrane 20 and the pressure vessel, that is, the sealing membrane 20 is repeatedly formed on the inner surface of the pressure vessel 10. If it does not interfere with the function of close peeling, even if installed in the guide cover, the piston rod, or any where necessary does not impair the technical idea of the present invention.
  • a part of the peeled sealing film 20 acts like a piston rod, and when the closed sealing film is peeled off (the length of the cylinder) and peeled off based on the simple cylindrical pressure vessel of FIG. Combined with the extension of the sealing membrane like the piston rod (extended length of the piston), the driving displacement is about twice that of the existing piston.
  • the sealing membrane 20 is formed in a width and strength that is not elastically deformed in the driving direction of the variable piston.
  • a plurality of first synthetic fibers 21 are arranged in the driving direction.
  • the second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged.
  • the first synthetic fiber 21 is set at a very high strength so that the sealing film does not stretch itself when pulled out, and is perpendicular to the direction in which the first synthetic fiber 21 is arranged, that is, the pressure.
  • the second synthetic fiber 22 arranged in the circumferential direction of the container is made of a flexible material in order to be smoothly re-adhered to the inner surface of the pressure vessel at the time of return in consideration of the relatively small force is applied.
  • the second synthetic fiber needs to be made of a flexible material, but does not necessarily need to be elastically deformable, and may be made of an inelastic material.
  • the important thing is to be fast, perfect and re-adherent to the inner surface of the pressure vessel without being folded when re-adhesion after peeling.
  • it is made of inelastic material, if the circumference or diameter of the inner surface of the pressure vessel is changed, it is designed according to the largest perimeter or diameter. It needs to be designed to fit the circumference or diameter of each corresponding point.
  • the pressure vessel has a large variation in cross-sectional area or circumference over the longitudinal direction, the sealing membrane uniformly formed in accordance with the largest circumference length will have many folded portions when in close contact. Therefore, it may be configured to be elastically deformable in the second synthetic fiber arrangement direction only in the portion where such design is required.
  • This part can be sufficiently solved by the super fibers mentioned in the above-mentioned problem solving means, and the synthetic resin binding the fiber array can also be sufficiently solved by the special polymer resin.
  • FIG. 2A is a cross-sectional view conceptually showing a single-acting actuator, which is the most basic embodiment of the present invention (structurally the same as FIG. 1), and FIGS. 2B and 2C conceptually illustrate a single-acting actuator embodiment modified from FIG. 2A. It is sectional drawing.
  • the sealing membrane 20 when the first pressure space A is supplied with a pressure different from the nth pressure space N, which is its external space, specifically, a high pressure, the sealing membrane 20 is in a close state from the peeled state.
  • the piston rod 30 is driven while being switched.
  • the concept of such a pressure space can be continuously extended to three or four spaces.
  • FIGS. 2A and 2B are preferred designs when the sealing membrane is smoothly adhered to or peeled off from the inner surface of the pressure vessel without a folding section, and is suitable when heat resistance and friction resistance of the sealing membrane are required and driving reactivity is required.
  • Fig. 2C is suitable when less heat resistance and friction resistance of the sealing membrane are required and more driving responsiveness is required.
  • the plate-shaped pressure surface formed in the piston rod 30 is designed in a relatively small size that is not at all friction with the inner surface of the pressure vessel in a different concept from the conventional piston.
  • two pressure inlet and outlet pipes are formed in the single-acting actuator of FIG. 2A or 2B, and the piston rod is driven with a check valve driven in one direction in the suction and discharge directions, respectively. If so, this could be a compressor or inhaler, as opposed to an actuator.
  • the fluid sucked through the pressure inlet tube may be discharged to the pressure outlet tube while being compressed by the sealing membrane.
  • a fluid pump such as a vacuum pump or an air compression pump, not an actuator for driving the piston rod by the force of the pressure fluid.
  • FIG. 3 is a cross-sectional view conceptually illustrating a left-right double-acting actuator embodiment and an operating mechanism thereof in which the single-actuated actuators of FIGS. 2A and 2B are developed.
  • Two or more sealing films 20 may be stacked and arranged as necessary. That is, in the drawing, the closed space formed by the variable piston and the pressure vessel 10 is denoted as the first pressure space A and the pressure vessel external space is denoted as the nth pressure space N. Is expanded to the first pressure space (A), the second pressure space (B), the third pressure space (C) and the like, the outermost space may be defined as the n-th pressure space (N).
  • the first to nth pressure spaces A to N expand or contract in the same direction or expand or contract in different directions within the pressure vessel 10.
  • the characteristics of such a pressure space can be basically defined in FIGS. 4 and 5 to be described later.
  • FIG. 3 can be applied to a typical reciprocating actuator.
  • the difference from conventional pneumatic piston-cylinder is that it can be made very cheap, very light and small because there is no need for precision machining. It also boasts extremely fast reciprocating speeds.
  • This characteristic means that the number of cranks that reciprocate rapidly can be significantly increased in the environment in which positive or negative air is continuously generated, or vice versa.
  • the former application could be a pneumatic hammer used in small factories, and in the latter case it would be a cheap and efficient air compressor by connecting multiple actuators in FIG. 3 to one reciprocating crank.
  • the driving displacement of the variable piston is at least twice that of L, considering the peeling portion of the sealing membrane. 2 and 3, since the cross-sectional area of the pressure vessel is constant, the drive stroke of the variable piston is about twice that of a conventional rigid piston drive stroke.
  • FIG. 4 is a cross-sectional view conceptually illustrating a bipolar contraction expansion actuator embodiment and an operation mechanism thereof developed by combining the single-acting contractive actuator of FIG. 2A and the single-acting inflatable actuator of FIG. 2B.
  • the pressure outflow pipe 23 is connected to the pressure vessel 10 to allow the pressure fluid to flow in and out of the space formed by the sealing membrane and the pressure vessel. More specifically, the flexible guide cover 13 plays a key role in allowing a plurality of coaxially arranged sealing membranes to extend as they are and serve as a tensioning rope such as a piston rod.
  • the pressure vessel 10 may be formed to change the pressure action area of the pressure received from the first pressure space or the nth pressure space according to the driving displacement of the variable piston, and at this time, the projection in which the pressure action area is projected in the displacement direction.
  • the area may be circular (or isotropic regular polygonal) shape as in FIG. 1 or any shape that is not cylindrical as in FIG.
  • the design of the pressure vessel 10 intentionally places a pressure increasing (or decreasing) space 12 at some drive displacement as shown in FIG. 5B. If it is designed to change the pressure action area, various driving force can be obtained according to the displacement of the variable piston.
  • the sealing membrane is arranged in at least two layers or more inside the pressure vessel 10 and deformed while being peeled off or in close contact with each other independently.
  • a plurality of pressure spaces are secured between the sealing membranes arranged in layers at intentionally set intervals.
  • the pressure space is equal to three when the closed membrane is three.
  • the first pressure space A, the second pressure space B, and the third pressure space C may be expanded and the nth pressure space N, which is the outermost space, may be a pressure space filled with a body fluid, not a vacuum. .
  • the pressure vessel 10 and the sealing membrane or between the plurality of sealing membranes further comprises a pressure outflow pipe 23 for performing the inflow and outflow of the pressure fluid
  • the first, second, third pressure space As the pressure flow inlet pipe 23, the fluid of different pressure may flow in and out.
  • Some pressure fluid may leak between the soft guide cover 13 and the outermost sealing membrane 20 or between the gaps penetrated between the sealing membrane and the sealing membrane.
  • the sealing membranes overlap each other in the state of overlapping the sealing membranes. The advantage is that even greater.
  • the actuator of the present invention is never used as a conventional piston. It is possible to construct a coaxially arranged piston that cannot be attempted and as shown in FIGS. 5C and 5D, it is possible to fully implement the winging motion of a bird or to perform a motion similar to a human finger. This process is similar to the movement between the fascia and the fascia in contact with each other and the blood supply through the blood vessels between them.
  • the present invention can be applied to various actuators by modifying the shape and size of the pressure vessel.
  • Typical flat objects such as flap drives or airfoils in ultralight aircraft, are ideal for implantable artificial muscles or humanoid robots that require narrow design space, relatively large forces, and require highly complex multi-stage movements. It can be used as a joint drive.
  • the actuator of the present invention when the actuator of the present invention is designed and modified to form an elastic structure used for compressive expansion of a hermetic fluid, the coil spring of an automobile may be replaced, and the electronic device or the device may be suspended by a ceiling. It is useful as a hanger for surgical instruments and can be used as an ultra-lightweight trampoline or a lifesaving mat that can be folded and carried.
  • the high-speed motion performance of the present invention can be very useful as the firing power of all kinds of low noise projectiles, including bows and catapults.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Actuator (AREA)

Abstract

The present invention relates to an actuator using a phenomenon in which a soft sealing film moves reciprocally inside a pressure container while having a variable form, like a piston inside a cylinder, as the soft sealing film comes into close contact with or separates from the container. The present invention basically comprises: the pressure container which functions as a cylinder; and a variable piston comprising the soft sealing film, and a piston rod, wherein the pressure in a first pressure space (A) defined by the sealing film and the pressure container is set to be different from an nth pressure space (N) on the outside, so that when a compressed fluid is applied the sealing film, which is separated from an inner surface of the pressure container, comes into close contact with the inner surface of the pressure container to deliver driving force to the outside through the sealing film or via the piston rod which is connected to the sealing film. As a result, the pressure container, which can have a variety of shapes and sizes compared to a conventional cylinder having a cylindrical shape, can be used as the cylinder, and the distance and speed of form change can be simultaneously increased during a process of compressing and stretching the soft sealing film through repeated contact and separation, thereby exhibiting a wide range and a high speed of movement that is not achievable by a conventional piston.

Description

연질의 밀폐막으로 된 가변형 피스톤으로 구동되는 액추에이터Actuator driven by variable piston with soft hermetic membrane
본 발명은 실린더와 피스톤을 이용하는 유공압 액추에이터 또는 유공압 댐퍼와 그 적용분야를 함께하는 기술로서, 압력용기 내외부의 압력차이에 의해 연질의 밀폐막이 압력용기 내면에서 밀착 또는 박리되면서 가변 이동방식으로 마치 실린더 내의 피스톤처럼 용기 내부를 왕복 운동하는 현상을 이용한 액추에이터에 관한 것이다.The present invention is a technology that together with the hydraulic actuator or the hydraulic pneumatic damper using the cylinder and the piston and its application field, the flexible sealing membrane is in close contact or peeling from the inner surface of the pressure vessel by the pressure difference inside and outside the pressure vessel in a variable movement method as if the piston in the cylinder Like the present invention relates to an actuator using the phenomenon of reciprocating inside the container.
유체의 압력을 기구적인 힘과 움직임으로 바꾸는 장치로는 통상적인 실린더와 피스톤의 결합체인 액추에이터가 있다. 또한 기구적 운동에 사용되는 탄성막 타입의 피스톤으로서 다이어프램 구동장치가 있다.An apparatus that converts the pressure of a fluid into mechanical force and movement is an actuator, which is a combination of a conventional cylinder and a piston. There is also a diaphragm drive device as an elastic membrane type piston used for mechanical motion.
약한 유체압력을 이용하는 공압 액추에이터는 자동문 개폐장치 등에 사용될 수 있다. 또한 강한 유체압력을 이용하는 유압 액추에이터는 굴삭기나 로봇의 관절구동에 사용될 수 있다.Pneumatic actuators using weak fluid pressures can be used in automatic door openers and the like. Hydraulic actuators using strong fluid pressure can also be used for joint driving of excavators and robots.
높은 기밀수준을 필요로 하지 않거나, 비교적 짧은 구동폭만이 요구되는 경우에는 고무튜브를 이용하는 벨로우즈나 탄성막의 짧은 변형을 이용하는 다이어프램 구동장치가 사용될 수 있다. 다이어프램 구동장치는 비교적 짧은 스트로크에서만 사용되는 경향이 있으나 자동차 브레이크의 진공 부스터나 변기의 수세밸브와 같이 구동동력이 되는 압력유체가 자기 역할을 다한 다음에 구동계 외부로 소산되어도 무방할 때 특히 유용하다.If a high tightness level is not required or only a relatively short drive width is required, a bellows using a rubber tube or a diaphragm drive using a short deformation of the elastic membrane may be used. Diaphragm drives tend to be used only in relatively short strokes, but they are especially useful when pressure-driven fluids, such as vacuum boosters in automobile brakes or flush valves in toilets, may dissipate outside the drive system after they have played their part.
본 발명이 주로 다루고 있는 단방향 또는 양방향 구동식 액추에이터는 통상의 피스톤 실린더 조합과 유사한 운동을 보여주면서도 다이어프램과 유사한 밀폐막 피스톤의 팽창과 축소변형을 극대화 시킨 것이다. 아래 소개한 선행기술문헌은 본 발명의 이해를 돕기 위해 소개하는 유공압피스톤과 밀폐형 다이어프램에 관한 것이며 이들 종래기술에서는 본 발명과 같이 연질의 밀폐막으로 된 가변형 피스톤이 압력용기 내에서 직접 밀착되거나 박리되고, 동시에 피스톤로드의 역할까지 일부분 수행하며 작동하는 구조는 찾아보기 어렵다.The unidirectional or bidirectional actuated actuators mainly dealt with by the present invention maximize the expansion and contraction deformation of the diaphragm-like hermetic piston while exhibiting similar movements as conventional piston cylinder combinations. The prior art document introduced below relates to a pneumatic piston and a hermetic diaphragm introduced to aid the understanding of the present invention. In these prior arts, a variable piston made of a soft hermetic membrane as in the present invention is directly adhered or peeled in a pressure vessel. At the same time, it is difficult to find a structure that performs partly as a piston rod.
(특허문헌 1) 한국등록특허 10-0844596 다이어프램 압축기(Patent Document 1) Korean Registered Patent 10-0844596 Diaphragm Compressor
(특허문헌 2) 한국등록특허 10-1177269 엔진 터보차저의 액추에이터 구조(Patent Document 2) Actuator Structure of Korea Patent Registration 10-1177269 Engine Turbocharger
(특허문헌 3) 한국공개특허 10-2008-0082046 이중 관 샤프트에 포트를 장착한 실린더(Patent Document 3) Korea Patent Publication 10-2008-0082046 Cylinder mounted with a port on a double tube shaft
선행기술문헌을 포함하여 탄성막의 팽창과 수축에 의한 운동형태를 따르는 다이어프램식 액추에이터는 큰 힘을 낼 수 없고 탄성막 스스로가 실린더와 피스톤 역할을 동시에 해야 하므로 구동범위를 늘릴수록 좌굴되거나 또는 중간부 수축의 위험이 높아지는 단점이 있다. 또한 주지하는 바와 같이 전형적인 미끄럼접촉에 의한 운동형태를 취하는 피스톤-실린터 액추에이터는 구조체의 총 중량과 부피에 비해 구동범위가 매우 좁고, 구동부가 압력유체의 누출을 막는 실링 기능까지 수행해야 하므로 마찰손실이 크다는 단점이 있다.Diaphragm actuators that follow the movement pattern by the expansion and contraction of the elastic membrane, including the prior art literature, cannot exert great force and the elastic membrane itself must act as a cylinder and a piston. There is a disadvantage that increases the risk. Also, as is well known, the piston-cylinder actuator, which has a typical sliding contact type, has a very narrow driving range compared to the total weight and volume of the structure, and the driving part must perform a sealing function to prevent leakage of the pressure fluid. This is a big disadvantage.
문헌 (1)은 공압을 이용한 전형적인 탄성막 액추에이터로서 압축기의 피스톤 역할을 하는 탄성막은 그 주변을 둘러싼 모든 부속장치의 부피와 무게를 고려하여 볼 때, 그리고 통상의 탄성막 변형한계를 살펴볼 때, 장비의 전체규모에 현저히 못 미치는 작은 압축용량을 지니고 있다. 마찬가지로 문헌(2)의 액추에이터 또한 문헌 (1)와 유사하게 구동에 필요한 공급압력 대비 극히 작은 크기의 왕복 스트로크(탄성구동범위) 만을 생성한다.Literature (1) describes a typical elastic membrane actuator using pneumatics. The elastic membrane acting as a piston of a compressor is considered in consideration of the volume and weight of all the accessories surrounding it, and the conventional elastic membrane deformation limits. It has a small compression capacity that is significantly less than the overall size of. Similarly, the actuator of document (2) also produces only a reciprocating stroke (elastic drive range) of extremely small magnitude relative to the supply pressure required for driving, similarly to document (1).
문헌 (3)은 전형적인 강체타입의 중공축 방식 피스톤과 실린더 조합으로 된 복동식 유압 액추에이터를 소개한 것으로 단동 실린더 형태에서 복동 구동을 구현한다는 점에서 일견 본 발명과 유사한 측면이 있으나 마찰면이 여전히 존재하고 피스톤의 왕복거리 또한 여전히 종래기술의 한계를 벗어나지 못한 것이다.Literature (3) introduces a double-acting hydraulic actuator, which is a combination of a typical rigid shaft-type piston and cylinder, which has a similar aspect to the present invention in terms of implementing double-acting drive in the form of a single-acting cylinder, but a friction surface still exists. And the reciprocating distance of the piston is also still within the limits of the prior art.
이렇듯 고체변형은 물론 유체변형에 까지 걸쳐서 종래의 유공압 액추에이터들은 공통적으로 원하는 일의 양이나 원하는 구동속도, 구동변위를 충족하기 위해서 지나치게 큰 부피와 무거운 중량 및 기밀유지와 마찰저감을 위한 노력을 동반할 수 밖에 없었다.As such, the conventional hydraulic actuators, in addition to solid deformation as well as fluid deformation, are commonly accompanied by excessive volume and heavy weight, airtightness, and effort to reduce friction to satisfy a desired amount of work, a desired driving speed, and a displacement. There was no choice but to.
본 발명은 위와 같은 종래기술의 한계를 뛰어넘는 혁신적인 피스톤과 실린더 구조 및 그것을 이용하는 액추에이터를 구현하는 것으로서 구체적으로는 가벼운 중량과 넓은 작동범위를 가지면서도 고속의 구동속도를 발휘하고 또한 제작가공비가 적게 소요되는 혁신적인 유공압 액추에이터를 구현하는 것이다.The present invention implements an innovative piston and cylinder structure and an actuator using the same, which overcomes the limitations of the prior art as described above. Specifically, a light weight, a wide operating range, high speed drive speed, and a low manufacturing cost are required. Is to implement an innovative pneumatic actuator.
위와 같은 기술적 목표를 달성하기 위한 본 발명의 액추에이터(40)는 우선 실린더 역할을 하는 압력용기(10)와 그것에 접합되는 연질 밀폐막(20)과 밀폐막에 연결되는 피스톤로드(30)을 포함하는 가변형 피스톤을 핵심적인 구성으로 한다.The actuator 40 of the present invention for achieving the above technical goal includes a pressure vessel 10 serving as a cylinder and a flexible sealing membrane 20 and a piston rod 30 connected to the sealing membrane. The variable piston is the key configuration.
본 발명이 통상의 다이어프램과 다른 가장 큰 차이점은, 다이어프램의 경우 탄성막 그 자체로 모든 압력을 견뎌야 하는 반면에 사실상 비탄성인 본 발명의 밀폐막(20)은 피스톤의 운동방향 외에 옆으로 팽창하는 힘은 압력용기(10)가 지탱해 준다는 점이다.The main difference between the present invention and the conventional diaphragm is that the diaphragm must withstand all pressures by the elastic membrane itself, while the inelastic sealing membrane 20 of the present invention has a force that expands laterally outside the direction of movement of the piston. Is that the pressure vessel 10 supports.
이는 곧 다이어프램과는 비교할 수 없이 얇고 넓으며 길쭉한 밀폐막을 말아서 가변형 피스톤으로 사용 가능하다는 의미이며 따라서 본 발명은 다양한 형태의 압력용기(10)와 결합되어 기존의 다이어프램과 비교할 수 없는 높은 압력차이를 견뎌낼 수 있고 또한 다이어프램과 비교할 수 없는 긴 구동행정(stroke)을 확보할 수 있다. 이것이 바로 본 발명이 종래의 모든 탄성막 타입 액추에이터와 차별화되는 핵심적인 특징이다.This means that it can be used as a variable piston by rolling a thin, wide and elongated closed membrane incomparable with a diaphragm. Therefore, the present invention is combined with various types of pressure vessels 10 to withstand a high pressure difference that cannot be compared with a conventional diaphragm. It has a long drive stroke that can be made and can not be compared with the diaphragm. This is a key feature of the present invention that distinguishes it from all conventional elastic membrane type actuators.
본 발명의 주요한 구성요소 중 하나인 압력용기(10)는 통상의 실린더와 비교하여 내표면의 매끄러운 가공이 덜 필요하므로 상대적으로 다양한 재료로 구성될 수 있다. 통상의 금속이나 합성수지 재료를 포함하여, 그 성형방식이나 강도확보에 있어서 듀랄루민 같은 경합금이나 FRP 같은 강화프라스틱 등이 적합하고 특별히 경량화가 중요한 경우는 베릴륨 등과 같이 영률(Young s modulus)이 아주 높은 재료를 채택하는 것도 좋다.The pressure vessel 10, which is one of the main components of the present invention, can be made of a relatively diverse material because less smooth processing of the inner surface is required as compared with a conventional cylinder. Including ordinary metals and synthetic resin materials, light alloys such as duralumin and reinforced plastics such as FRP are suitable for forming method and securing strength, and in the case where weight reduction is particularly important, materials having very high Young's modulus such as beryllium may be used. It is good to adopt.
한편 압력용기보다 더욱 중요하게 고려되는 구성요소는 가변형 피스톤의 핵심적 기능을 담당하는 연질의 밀폐막(flexible sealing membrane)이다. 밀폐막은 얇고 유연하여 주름이 잘 잡히거나 잘 펴지는 것이 기본적으로 요구되며 또한 거의 완전한 기밀성이 보장되어야 한다. 다시 말해서 압력용기의 내벽면에 밀착되었다가 박리되는 작동과정을 무수히 반복하여도 그 강도와 기밀성이 충분히 유지되어야 한다.On the other hand, a more important component than a pressure vessel is a flexible sealing membrane which plays a key role in the variable piston. Sealing membranes are thin and flexible, so it is basically required to be well crimped or straightened and also to ensure almost complete airtightness. In other words, the strength and airtightness should be sufficiently maintained even if the operation process of closely adhering to the inner wall of the pressure vessel and peeling it is repeated.
이론적인 완전한 비탄성체는 없지만 본 발명에서 밀폐막(20)을 이루는 재질은 제품의 용도에 따라 주어진 부하범위 내에서 액추에이터(40)의 구동방향으로 탄성변위가 실질적으로 0에 가깝도록 매우 충분한 강도로 설계될 필요가 있다. 즉 본 발명에서 진정한 탄성변위라 함은 압력용기 내외부에 충전되는 압력유체(그것이 진공이거나 진공에 가까운 압력을 가진 유체라 하더라도) 팽창과 압축에 따른 부피변화, 다시 말해서 압력유체들이 갖는 유체압력차이에 따른 밀폐막(20)들의 이동이 마치 탄성변위로 일어나는 것처럼 보이는 것이지 밀폐막(20)이 그 자체로 늘어나는 것을 의미하지는 않는다.Although there is no theoretically perfect inelastic material, the material forming the sealing film 20 in the present invention is of sufficient strength so that the elastic displacement in the driving direction of the actuator 40 is substantially close to zero within a given load range according to the use of the product. It needs to be designed. In other words, the true elastic displacement in the present invention refers to the change in volume caused by expansion and compression of the pressure fluid (even if it is a vacuum or a fluid having a pressure close to vacuum), that is, the fluid pressure difference of the pressure fluids. The movement of the sealing membranes 20 according to the present invention seems to occur as an elastic displacement, but it does not mean that the sealing membrane 20 is stretched by itself.
따라서 밀폐막(20)은 구동방향, 즉 피스톤의 운동방향으로 실질적으로 탄성 변형되지 않는 넓이와 강도로 형성되기 위하여 상기 구동방향으로 다수의 제1합성섬유(21)가 배열되어 구성된다.Therefore, the sealing membrane 20 is formed by arranging a plurality of first synthetic fibers 21 in the driving direction so as to have a width and strength that are not substantially elastically deformed in the driving direction, that is, in the movement direction of the piston.
여기서 제1합성섬유(21)의 종류는 최근 각광받고 있는 강화 고분자 섬유나 수퍼섬유로 불리우는 고강도 섬유들이 사용될 수 있다. 대표적인 고강도 섬유로는 타이어 코드나 방탄복 등에 사용되는 아라미드 섬유가 있고, 또한 무게가 철의 25%에 불과하지만 강도가 철의 10배에 이르는 탄소섬유 등이 사용될 수 있다.Here, the type of the first synthetic fiber 21 may be a high-strength fiber called a reinforcing polymer fiber or a super fiber that is in the spotlight recently. Typical high-strength fibers include aramid fibers used for tire cords and body armor, and carbon fibers having a weight of only 25% of iron but 10 times stronger than iron may be used.
또한 비중이 낮고 내마모성이 우수하여 로프나 낚시줄로 사용되는 고분자 폴리에틸렌 섬유나 상품명 Vectran으로 불리우는 폴리아리레이트 섬유, 또는 상품명 Zylon으로 불리우는 PBO섬유 등도 액추에이터의 용도와 사용등급에 따라 충분히 적용 가능하다. 이들 고강도 섬유들은 예컨대 본 발명에 따른 액추에이터 중에서 압력용기 내 압력작용 단면적이 100㎠~1000㎠의 비교적 소형이며 내외부의 압력차는 0.1~1.0 MPa 이하인 전형적인 실시예에 적용될 경우에 단 몇가닥~몇십가닥 만으로도 사실상 탄성변형량이 0에 가까울 정도로 충분한 강도를 확보할 수 있다. 다시 말해서 매우 가느다란 고강도 섬유를 고르게 펴서 밀폐막을 만들면 두께가 얇고, (구동방향과 수직한) 압력용기의 둘레방향으로는 잘 접히면서도 구동방향으로는 매우 질긴 밀폐막을 만들 수 있다.In addition, low specific gravity and excellent abrasion resistance, polymer polyethylene fiber used as a rope or fishing line, polyarylate fiber called Vectran, or PBO fiber called Zylon can be sufficiently applied according to the use and grade of use of the actuator. These high-strength fibers, for example, in the actuator according to the present invention are relatively small in the pressure vessel cross-sectional area of 100 cm 2 ~ 1000 cm 2 and the internal and external pressure difference is 0.1 ~ 1.0 MPa or less when applied to a typical embodiment only a few strands to several strands In fact, it is possible to secure sufficient strength so that the elastic deformation amount is close to zero. In other words, even thinner, high-strength fibers can be spread evenly to form a thinner, thinner membrane that folds well in the circumferential direction of the pressure vessel (perpendicular to the driving direction) and is very tough in the driving direction.
예를 들어 Vectran섬유를 한 올 두께로 고르게 펴서 압력작용단면적 100㎠인 액추에이터를 만들 경우를 가정하고 최대 압력 및 탄성변형량을 실제 계산해 본다.For example, suppose that the Vectran fiber is spread evenly to one thickness to make an actuator with a pressure area of 100 cm2. The maximum pressure and elastic strain are calculated.
Vectran의 비중은 1.4g/㎤, 한 올이 5 denier이므로, 한 올의 직경=0.0224mm. Vectran의 최대 장력은 25gf/denier이므로 한 올의 최대 장력은 125gf이다. 단면적이 100㎠ 인 실린더의 내경은 11.28cm이고 원주는 35.45cm이므로 한 층으로 배열 시 15,826올이 소요된다.Vectran has a specific gravity of 1.4 g / cm 3 and one den of 5 denier, so the diameter of one of the balls is 0.0224 mm. The maximum tension of the vectran is 25 gf / denier, so the maximum tension of each roll is 125 gf. The inner diameter of a cylinder with a cross-section of 100cm2 is 11.28cm and the circumference is 35.45cm, so it takes 15,826ol when arranged in one layer.
상기 Vectran섬유 15,826올로 이루어진, 이 밀폐막의 최대 장력은 1.98 ton에 이르므로 실린더 내에 인가할 수 있는 최대 압력은 3.88 MPa이며 이는 대기압으로 환산하면 무려 38.3기압에 이른다.The maximum tension of the sealed membrane, consisting of 15,826 Vectran fibers, reaches 1.98 ton, so the maximum pressure that can be applied in the cylinder is 3.88 MPa, which is equivalent to 38.3 atmospheres.
이 때의 탄성변형량은 3.8%( 원래 섬유 길이보다 3.8% 늘어남 )이므로 만약 0.1 MPa을 인가한다면 탄성변형량은 0.098%로 거의 0에 가깝다.The elastic strain at this time is 3.8% (3.8% longer than the original fiber length), so if 0.1 MPa is applied, the elastic strain is 0.098%, which is almost zero.
참고로 Vectran섬유의 경우 최대 장력의 50%이내에서는 1년 이상 지속적으로 당겼을 때 늘어나는(creep) 양이 측정되지 않을 정도이며 위에서처럼 최대 장력의 2.6%로 사용 시에는 수십년을 사용해도 처짐(creep)은 발생하지 않는다.For the Vectran fiber, the amount of creep is not measured when it is continuously pulled for more than one year within 50% of the maximum tension, and when used at 2.6% of the maximum tension as described above, it may sag even after decades of use. creep) does not occur.
한편 밀폐막은 추가로 제2합성섬유(22)가 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 배열되어 구성될 필요가 있고 이때 상기 제2합성섬유가 배열된 방향으로는 필요에 따라 탄성변형 가능하도록 설정될 필요가 있다. 이때 제2합성섬유(22)는 제1합성섬유(21)와 달리 강도보다는 기밀성과 유연성의 확보가 용이한 섬유가 바람직하다. 밀폐막이 제2합성섬유가 배열된 방향, 또는 압력용기의 둘레방향으로 탄성변형되지 않는 섬유재질로 설계된다면 밀폐막의 둘레길이는 압력용기의 둘레방향 중 가장 긴 둘레길이로 설정될 필요가 있다.Meanwhile, the sealing membrane additionally needs to be configured such that the second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged. In this case, the second synthetic fibers 22 are required in the direction in which the second synthetic fibers are arranged. It is necessary to set so as to be elastically deformable. In this case, unlike the first synthetic fiber 21, the second synthetic fiber 22 is preferably a fiber having easy airtightness and flexibility rather than strength. If the sealing membrane is designed with a fiber material which does not elastically deform in the direction in which the second synthetic fibers are arranged or in the circumferential direction of the pressure vessel, the circumferential length of the sealing membrane needs to be set to the longest circumferential length in the circumferential direction of the pressure vessel.
밀폐막의 기밀성과 내마모성을 결정짓는 제1합성섬유와 제2합성섬유의 결착은 통상적인 복합재료 접착용 합성수지(resin)가 적당하며 타이어코드를 결착시키는 고분자 수지와 같이 대부분의 온도범위에서 뛰어난 연성과 저마찰 특성을 유지하여야 하고 무수한 반복 사용에 있어서도 갈라짐이 발생하지 않아야 하며 다양한 사용환경에 노출될 수 있으므로 내열성과 내식성이 뛰어나야 한다.The binding of the first synthetic fiber and the second synthetic fiber, which determines the airtightness and abrasion resistance of the sealing membrane, is suitable for general composite resins for bonding composite materials and has excellent ductility at most temperature ranges such as polymer resins for binding tire cords. It should maintain low friction properties, cracks should not occur in numerous repeated use, and it should be excellent in heat resistance and corrosion resistance because it can be exposed to various usage environments.
본 발명은 통상의 원통형 실린더와 비교하여 극히 우수한 자유도를 갖는 다양한 형태와 광범위한 크기를 갖는 압력용기를 실린더 역할로 사용할 수 있다. 따라서 차량이나 선박, 항공기 등을 막론하고 적용되는 모든 기술분야에서 설계의 자유도와 설계품의 성능을 크게 향상시킨다.According to the present invention, pressure vessels having various shapes and a wide range of sizes having extremely superior degrees of freedom compared to conventional cylindrical cylinders can be used as a cylinder. Therefore, it greatly improves the freedom of design and the performance of the design in all applied technical fields regardless of vehicle, ship, aircraft, etc.
또한 본 발명은 구동체가 되는 밀폐막타입 가변형 피스톤이 압력용기의 내면(주로 내주면 또는 내측면)을 따라 초기 밀착되었다가 박리 변형되면서 움직이므로 실질적으로 접혔다가 펴지는 부분까지 피스톤 운동에 동참하게 된다. 따라서 대부분의 환경에서 종래의 피스톤 운동범위에 비해 최소 1.5~2배가 넘는 넓은 운동범위를 가지며 가볍고 얇으며 유연한 밀폐막의 특성상 종래의 피스톤이 따라올 수 없는 초고속의 구동속도가 강력한 구동력과 함께 발휘되며 밀착과 박리를 주된 작용으로 하므로 미끄럼마찰이 극도로 감소된다. 이는 통상의 강체실린더 및 강체피스톤 조합에 필요한 실링-구동부의 경면가공비용이나 구동면 양측의 열팽창률 일치를 위한 재료선정비용 등을 거의 100%에 가깝게 절약하게 만들어준다.In addition, in the present invention, since the closed membrane type variable piston serving as the driving body is initially in close contact with the inner surface (mainly the inner circumferential surface or the inner surface) of the pressure vessel and moves while being peeled and deformed, it participates in the piston movement to the portion that is substantially folded and unfolded. . Therefore, in most environments, it has a wide range of motion of at least 1.5 to 2 times that of the conventional piston range, and because of the light, thin and flexible sealing membrane, the ultra-high driving speed that the conventional piston cannot follow is shown with strong driving force and close contact. Slip friction is extremely reduced because the main action is the over peeling. This makes it possible to save nearly 100% of the mirror surface processing cost of the sealing-drive part required for the conventional rigid cylinder and the rigid piston combination, and the material selection cost for matching the thermal expansion coefficient of both driving surfaces.
덧붙여서 본 발명은 자유롭게 변형되는 밀폐막이 피스톤로드와 같은 역할을 수행할 수도 있으므로 반드시 용기의 중심축 선상에 피스톤로드를 배치하지 않아도 되는 장점이 있다. 이는 하나의 압력용기에 서로서로를 관통하는 여러 개의 밀폐막을 적층할 수 있어 인간형 로봇의 손가락 관절과 같은 다관절 운동 구현에 매우 유용하게 적용되는 효과가 있다.In addition, the present invention has the advantage that it is not necessary to arrange the piston rod on the central axis line of the vessel because the freely deformed sealing membrane may also play a role as the piston rod. This can be stacked several sealing membranes penetrating each other in one pressure vessel has the effect that is very useful to implement a multi-joint movement, such as the finger joints of the humanoid robot.
도 1은 본 발명의 가장 기초적인 실시예를 나타낸 사시도 및 단면도1 is a perspective view and a cross-sectional view showing the most basic embodiment of the present invention
도 2는 본 발명의 가장 기초적인 실시예인 단동식 액추에이터 실시예를 개념적으로 도시한 단면도2 is a cross-sectional view conceptually illustrating a single acting actuator embodiment which is the most basic embodiment of the present invention;
도 3은 도 2a와 도 2b의 단동식 액추에이터를 발전시킨 좌우 양동식 액추에이터 실시예와 그 작동 메커니즘을 개념적으로 도시한 단면도3 is a cross-sectional view conceptually illustrating a left-right double-acting actuator embodiment and an operation mechanism thereof in which the single-actuated actuators of FIGS. 2A and 2B are developed.
도 4는 도 2a와 도 2c의 단동식 액추에이터를 결합하여 발전시킨 양동식 액추에이터 실시예와 그 작동 메커니즘을 개념적으로 도시한 단면도4 is a cross-sectional view conceptually illustrating a double acting actuator embodiment developed by combining the single acting actuators of FIGS. 2A and 2C and an operation mechanism thereof;
도 5는 본 발명을 단동 복합동축구동식 액추에이터로 발전시킨 실시예.5 is an embodiment in which the present invention is developed into a single-acting compound coaxial drive actuator.
<도면부호의 설명><Description of Drawing>
10: 압력용기 11: 안내공10: pressure vessel 11: guide
13: 안내커버 20: 밀폐막13: guide cover 20: sealing film
21: 제1합성섬유 22: 제2합성섬유21: first synthetic fiber 22: second synthetic fiber
23: 압력유출입관 30: 피스톤로드23: pressure outlet pipe 30: piston rod
40: 액추에이터40: Actuator
A: 제1압력공간 (B = 2, C = 3, D = 4, ..)A: first pressure space (B = 2, C = 3, D = 4, ..)
N: 제n압력공간N: nth pressure space
상술한 본 발명의 과제 해결수단을 기술적으로 뒷받침하기 위하여 도면에 포함된 본 발명의 실시예를 참조하여 상세히 설명한다.With reference to the embodiments of the present invention included in the drawings in order to technically support the above-mentioned solution of the present invention will be described in detail.
다만 아래의 실시예에서 특정 전문용어로 표현되는 구성요소들과 그 결합구조가 본 발명에 포괄적으로 내재된 기술적 사상을 제한하는 것은 아니다.However, the components represented by the specific terminology in the following embodiments and their coupling structures do not limit the technical spirit inherent in the present invention.
도 1은 본 발명 액추에이터(40)를 가장 간단하고 기초적인 원통형 단동식 형태로 도시한 실시예이다.1 illustrates an embodiment of the present invention actuator 40 in its simplest and basic cylindrical single-acting form.
도 1a에 도시된 액추에이터(40)의 실시예를 살펴보면 일단이 안내커버(13)로 막혀 있는 압력용기(10)에 연질의 밀폐막(30)과 피스톤 로드(30)로 이루어진 가변형 피스톤이 안내커버 중심에 형성된 안내공(11)을 관통하여 구성된 전형적인 원통 실린더 형태의 액추에이터(40)임을 알 수 있다.Looking at the embodiment of the actuator 40 shown in Figure 1a is a variable piston consisting of a flexible sealing membrane 30 and the piston rod 30 in the pressure vessel 10, one end of which is blocked by the guide cover 13 is a guide cover It can be seen that the actuator 40 in the form of a typical cylindrical cylinder formed through the guide hole 11 formed in the center.
도 1b에 도시된 단면도를 참조하면 도 1 실시예의 작동구조가 잘 이해된다.Referring to the cross section shown in FIG. 1B, the operating structure of the FIG. 1 embodiment is well understood.
우선 압력용기(10)에는 상기 피스톤로드(30)의 구동을 안내하는 안내공(11) 또는 상기 밀폐막(20)의 구동을 안내하는 안내커버(13)가 각각 필요에 따라 구성된다.First, the pressure vessel 10 is configured with a guide hole 11 for guiding the driving of the piston rod 30 or a guide cover 13 for guiding the driving of the sealing membrane 20 as necessary.
그리고 압력유출입관(23)은 상기 밀폐막(20)의 내면 또는 외면에 부착된 연질관 형태로 상기 안내커버(13)를 관통하여 형성된다.In addition, the pressure outlet tube 23 is formed through the guide cover 13 in the form of a soft tube attached to the inner surface or the outer surface of the sealing membrane 20.
필요에 따라 피스톤로드(30)를 포함하거나 포함하지 않을 수도 있기 때문에 도면부호로 특정되지는 않았지만, 가변형 피스톤은 자신을 구성하는 적어도 일부의 밀폐막(20)이 압력용기(10)의 내면에 밀착 가능하도록 형성되며, 또한 밀폐막(20)은 압력용기(10) 외부로부터의 유체유입 또는 유체유출에 의하여 적어도 일부의 (압력용기 내면에) 밀착된 부분이 박리되면서 가변형 피스톤을 구동시킨다.Although it is not specified by the reference numeral because it may or may not include the piston rod 30 as needed, the variable piston is at least a portion of the sealing membrane 20 constituting it is in close contact with the inner surface of the pressure vessel (10). It is formed to be possible, and also the sealing membrane 20 drives the variable piston while at least a part (close to the inner surface of the pressure vessel) in close contact by the fluid inflow or fluid outflow from the pressure vessel 10 outside.
참고로 압력용기(10)는 반드시 원통형일 필요는 없고 비원통형으로 형성되어도 무방하다. 통상의 강체 피스톤과 실린더라면 응력집중이나 기밀성능 저하를 막기 위한 원통형 실린더가 가장 이상적인 설계겠지만 본 발명은 상술한 단점을 연질의 밀폐막(20)이 대부분 보완하여 주므로 반드시 원통형일 필요는 없다.For reference, the pressure vessel 10 is not necessarily cylindrical, but may be formed in a non-cylindrical shape. In the case of a conventional rigid piston and a cylinder, a cylindrical cylinder for preventing stress concentration or airtight performance deterioration is the most ideal design, but the present invention does not necessarily need to be cylindrical because the soft sealing membrane 20 mostly compensates for the above-mentioned disadvantages.
그리고 가변형 피스톤은 밀폐막(20) 만으로 구성되거나, 또는 상기 밀폐막(20)에 부착되는 적어도 하나의 압력유출입관(23)을 더 포함하여 구성되거나, 또는 상기 밀폐막(20)에 연결되는 적어도 하나의 피스톤로드(30)를 더 포함하여 구성될 수 있다. 가장 전형적인 형태는 하나의 밀폐막과 하나 이상의 피스톤로드로 구성되는 것이며 가장 특이한 형태는 다수의 밀폐막에 피스톤로드가 없는 형태이다. 즉 가변형 피스톤이 단순 수축작용만을 의도하고 설계된다면 필요에 따라 밀폐막을 늘여서 피스톤로드(30)를 대체할 수 있다는 뜻이다.And the variable piston is composed of only the sealing membrane 20, or further comprises at least one pressure outlet tube 23 attached to the sealing membrane 20, or at least connected to the sealing membrane 20 It may be configured to further include one piston rod (30). The most typical form consists of one sealing membrane and one or more piston rods, the most unusual of which is the absence of piston rods in many sealing membranes. That is, if the variable piston is designed with only a simple contraction action, it means that the piston rod 30 can be replaced by extending the sealing membrane as necessary.
또한 압력유출입관(23)은 도 1a, 1b에서 원판형의 안내커버(13)에 형성되어 있지만 도 2a를 참조하면 압력유출입관은 피스톤로드(30)의 축 중심을 관통하여 압력용기(10) 내부와 연결될 수도 있다. 다시 말해서 압력유출입관(23)은 밀폐막(20)과 상기 압력용기가 이루는 공간에 압력유체가 유출입되기 위한 본연의 기능, 다시 말해서 밀폐막(20)이 압력용기(10) 내측면에 반복적으로 밀착 박리되는 기능을 방해하지만 않는다면 안내커버나 피스톤로드, 또는 필요한 어느 곳에 설치된다 하더라도 본 발명의 기술적 사상을 훼손하지는 않는다.In addition, although the pressure inlet and outlet pipe 23 is formed in the disk-shaped guide cover 13 in FIGS. 1A and 1B, referring to FIG. 2A, the pressure outlet and inlet pipe penetrates through the shaft center of the piston rod 30 and the pressure vessel 10. It may be connected to the inside. In other words, the pressure outflow pipe 23 has an inherent function of allowing the pressure fluid to flow in and out of the space formed by the sealing membrane 20 and the pressure vessel, that is, the sealing membrane 20 is repeatedly formed on the inner surface of the pressure vessel 10. If it does not interfere with the function of close peeling, even if installed in the guide cover, the piston rod, or any where necessary does not impair the technical idea of the present invention.
이때 박리된 밀폐막(20)의 일부분은 마치 피스톤 로드(Piston rod)와 같은 역할을 하며 도 1의 단순한 원통형 압력용기를 기준으로 할 때 밀착된 밀폐막이 박리된 부분(실린더의 길이)과 박리된 밀폐막이 피스톤 로드처럼 늘어난 부분(피스톤이 연장된 길이)을 합쳐 기존 피스톤의 2배 가량에 해당되는 구동변위가 얻어진다.At this time, a part of the peeled sealing film 20 acts like a piston rod, and when the closed sealing film is peeled off (the length of the cylinder) and peeled off based on the simple cylindrical pressure vessel of FIG. Combined with the extension of the sealing membrane like the piston rod (extended length of the piston), the driving displacement is about twice that of the existing piston.
한편 이 과정에서 밀폐막(20)은 상기 가변형 피스톤의 구동방향으로 탄성 변형되지 않는 넓이와 강도로 형성되되, 도 1b를 참조하면 상기 구동방향으로 다수의 제1합성섬유(21)가 배열되어 구성되며 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 제2합성섬유(22)가 배열되어 구성된다.Meanwhile, in this process, the sealing membrane 20 is formed in a width and strength that is not elastically deformed in the driving direction of the variable piston. Referring to FIG. 1B, a plurality of first synthetic fibers 21 are arranged in the driving direction. The second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged.
앞서 기술한 바와 같이 제1합성섬유(21)는 매우 고강도로 설정되어 잡아당겼을 때 밀폐막이 그 자체로 늘어나지 않게 하며, 제1합성섬유(21)가 배열된 방향과 수직한 방향, 다시 말해 압력용기의 둘레방향으로 배열된 제2합성섬유(22)의 배열방향으로는 상대적으로 적은 힘이 가해지는 것을 감안하여 복귀 시에 압력용기 내면에 원활히 재밀착될 필요가 있도록 유연한 재질로 구성된다.As described above, the first synthetic fiber 21 is set at a very high strength so that the sealing film does not stretch itself when pulled out, and is perpendicular to the direction in which the first synthetic fiber 21 is arranged, that is, the pressure. The second synthetic fiber 22 arranged in the circumferential direction of the container is made of a flexible material in order to be smoothly re-adhered to the inner surface of the pressure vessel at the time of return in consideration of the relatively small force is applied.
참고로 제2합성섬유는 유연한 재질로 구성되어야 할 필요는 있지만 반드시 탄성변형이 가능해야 할 필요는 없으며 비탄성 재료로 구성되어도 상관은 없다. 중요한 것은 박리 후 재 밀착시 접히지 않으면서 압력용기 내면에 신속하고 완벽하며 재 밀착되는 것이며 만약 비탄성 재질로 구성될 경우 압력용기 내면의 둘레나 직경이 변화하는 경우는 가장 큰 둘레나 직경에 맞추어 설계되거나 각 대응지점의 둘레나 직경에 맞추어 설계될 필요가 있다. 압력용기가 길이방향에 걸쳐서 단면적이나 둘레의 변화폭이 크다면 가장 큰 둘레길이에 맞추어 일률적으로 형성된 밀폐막은 아무래도 밀착시 접히는 부분이 많게 된다. 따라서 그러한 설계가 요구되는 부분에만 제2합성섬유 배열방향으로 탄성변형 가능하도록 구성하면 좋다.For reference, the second synthetic fiber needs to be made of a flexible material, but does not necessarily need to be elastically deformable, and may be made of an inelastic material. The important thing is to be fast, perfect and re-adherent to the inner surface of the pressure vessel without being folded when re-adhesion after peeling. If it is made of inelastic material, if the circumference or diameter of the inner surface of the pressure vessel is changed, it is designed according to the largest perimeter or diameter. It needs to be designed to fit the circumference or diameter of each corresponding point. If the pressure vessel has a large variation in cross-sectional area or circumference over the longitudinal direction, the sealing membrane uniformly formed in accordance with the largest circumference length will have many folded portions when in close contact. Therefore, it may be configured to be elastically deformable in the second synthetic fiber arrangement direction only in the portion where such design is required.
이 부분은 상술한 과제 해결수단에서 언급된 수퍼 섬유들로 충분히 해결할 수 있으며 섬유배열을 결착하는 합성수지 또한 특수 고분자수지로 충분히 해결할 수 있다.This part can be sufficiently solved by the super fibers mentioned in the above-mentioned problem solving means, and the synthetic resin binding the fiber array can also be sufficiently solved by the special polymer resin.
도 2a는 본 발명의 가장 기초적인 실시예인 단동식 액추에이터를 개념적으로 도시한 단면도이며(도 1과 구조적으로 같다), 도 2b, 도 2c는 도 2a를 변형 설계한 단동식 액추에이터 실시예를 개념적으로 도시한 단면도이다.FIG. 2A is a cross-sectional view conceptually showing a single-acting actuator, which is the most basic embodiment of the present invention (structurally the same as FIG. 1), and FIGS. 2B and 2C conceptually illustrate a single-acting actuator embodiment modified from FIG. 2A. It is sectional drawing.
각각의 실시예 공히 제1압력공간(A)는 자신의 외부공간인 제n압력공간(N)과는 다른 압력, 구체적으로 높은 압력을 공급받을 때 밀폐막(20)은 박리상태에서 밀착상태로 전환되면서 피스톤로드(30)를 구동시킨다. 이후 도 3~5에서 추가 설명하겠지만 이 같은 압력공간의 개념은 3개, 4개의 공간으로 계속 확장될 수 있다.In each embodiment, when the first pressure space A is supplied with a pressure different from the nth pressure space N, which is its external space, specifically, a high pressure, the sealing membrane 20 is in a close state from the peeled state. The piston rod 30 is driven while being switched. As will be described later in FIGS. 3 to 5, the concept of such a pressure space can be continuously extended to three or four spaces.
참고로 도 2a, 2b는 밀폐막이 접히는 구간이 없이 매끈하게 압력용기 내면에 밀착되거나 박리되는 것을 의도할 때 바람직한 설계이며 밀폐막의 내열성, 내마찰성이 요구되고 구동 반응성이 덜 요구될 때 적합하다. 반면 도 2c는 밀폐막의 내열성, 내마찰성이 덜 요구되고 구동 반응성이 더욱 요구될 때 적합하다. 이때 피스톤 로드(30)에 형성된 접시모양의 압력면은 통상의 피스톤과는 다른 개념으로 압력용기 내면과 전혀 마찰되지 않는 비교적 작은 크기로 설계된다.For reference, FIGS. 2A and 2B are preferred designs when the sealing membrane is smoothly adhered to or peeled off from the inner surface of the pressure vessel without a folding section, and is suitable when heat resistance and friction resistance of the sealing membrane are required and driving reactivity is required. On the other hand, Fig. 2C is suitable when less heat resistance and friction resistance of the sealing membrane are required and more driving responsiveness is required. At this time, the plate-shaped pressure surface formed in the piston rod 30 is designed in a relatively small size that is not at all friction with the inner surface of the pressure vessel in a different concept from the conventional piston.
본 발명과 청구대상이 달라 도면상으로 도시되지는 않았지만, 도 2a 또는 도 2b의 단동식 액추에이터에 압력유출입관을 2개 구성하고 각각 흡입, 배출방향으로 일방향 구동되는 체크밸브를 달고 피스톤로드를 구동시킨다면 이는 액추에이터와 반대되는 개념인 압축기 또는 흡입기가 될 수 있다.Although the present invention and the subject matter are not shown in the drawings, two pressure inlet and outlet pipes are formed in the single-acting actuator of FIG. 2A or 2B, and the piston rod is driven with a check valve driven in one direction in the suction and discharge directions, respectively. If so, this could be a compressor or inhaler, as opposed to an actuator.
피스톤로드의 구동력으로 압력용기 내부의 유체를 압축시키거나 팽창시킨다면 압력유입관을 통해서 흡입된 유체가 밀폐막에 의해 압축되면서 압력유출관으로 토출될 수 있다. 이는 본 발명이 압력유체의 힘으로 피스톤로드를 구동시키는 액추에이터가 아니라 진공펌프나 공기압축펌프와 같은 유체펌프로 설계 변경되어 사용될 수도 있음을 의미한다.When the fluid inside the pressure vessel is compressed or expanded by the driving force of the piston rod, the fluid sucked through the pressure inlet tube may be discharged to the pressure outlet tube while being compressed by the sealing membrane. This means that the present invention can be used by changing the design of a fluid pump such as a vacuum pump or an air compression pump, not an actuator for driving the piston rod by the force of the pressure fluid.
도 3은 도 2a와 도 2b의 단동식 액추에이터를 발전시킨 좌우 양동식 액추에이터 실시예와 그 작동 메커니즘을 개념적으로 도시한 단면도이다.3 is a cross-sectional view conceptually illustrating a left-right double-acting actuator embodiment and an operating mechanism thereof in which the single-actuated actuators of FIGS. 2A and 2B are developed.
밀폐막(20)은 필요에 따라 두 개 이상 다수 개로 적층되어 배치될 수 있다. 즉 도면상으로는 가변형 피스톤과 압력용기(10)가 이루는 폐쇄된 공간을 제1압력공간(A)으로 표시하였고 압력용기 외부 공간을 제n압력공간(N)으로 표시하였지만, 밀폐막이 다수 개일때 압력공간은 제1압력공간(A), 제2압력공간(B), 제3압력공간(C)등으로 확장되며 가장 외부의 공간이 제n압력공간(N)으로 정의될 수 있다.Two or more sealing films 20 may be stacked and arranged as necessary. That is, in the drawing, the closed space formed by the variable piston and the pressure vessel 10 is denoted as the first pressure space A and the pressure vessel external space is denoted as the nth pressure space N. Is expanded to the first pressure space (A), the second pressure space (B), the third pressure space (C) and the like, the outermost space may be defined as the n-th pressure space (N).
제1내지 제n압력공간(A~N)들은 상기 압력용기(10) 내부에서 서로 같은 방향으로 팽창, 수축하거나 또는 서로 다른 방향으로 팽창, 수축한다. 이 같은 압력공간의 특성은 이후 설명할 도 4, 5 에서도 기본적으로 동일하게 정의될 수 있다.The first to nth pressure spaces A to N expand or contract in the same direction or expand or contract in different directions within the pressure vessel 10. The characteristics of such a pressure space can be basically defined in FIGS. 4 and 5 to be described later.
도 3의 구성은 전형적인 왕복운동 액추에이터에 적용될 수 있다. 통상의 유공압 피스톤-실린더와 다른 점은 내주면 정밀가공이 필요 없어 매우 값싸고, 매우 가볍고 작게 만들 수 있다는 것이다. 또한 극히 빠른 왕복속도를 자랑한다. 이 같은 특성은 양(+)압이나 음(-)압의 공기가 지속적으로 생성되는 환경에서 빠르게 왕복동 운동을 하는 크랭크의 개수를 대폭 늘릴 수 있거나 또는 그 반대의 경우도 가능하다는 의미이다. 전자의 응용예는 소규모 공장에서 쓰이는 공압 해머가 될 수 있으며 후자의 경우에는 하나의 왕복동 크랭크에 도 3 액추에이터를 다수 개 연결하여 저렴하고 효율적인 공기압축기가 될 수 있다.The configuration of FIG. 3 can be applied to a typical reciprocating actuator. The difference from conventional pneumatic piston-cylinder is that it can be made very cheap, very light and small because there is no need for precision machining. It also boasts extremely fast reciprocating speeds. This characteristic means that the number of cranks that reciprocate rapidly can be significantly increased in the environment in which positive or negative air is continuously generated, or vice versa. The former application could be a pneumatic hammer used in small factories, and in the latter case it would be a cheap and efficient air compressor by connecting multiple actuators in FIG. 3 to one reciprocating crank.
*한편 압력용기(10) 내에 밀폐막이 밀착가능한 부분의 총 길이를 L이라고 할 때 가변형 피스톤이 구동변위는 밀폐막의 박리부분까지 고려한다면 적어도 L의 2배가 넘을 것을 충분히 알 수 있다. 도 2,3의 경우에는 압력용기의 단면적이 일정하므로 가변형 피스톤의 구동스트로크는 통상의 강체피스톤 구동스트로크의 2배 가량이 된다.* On the other hand, when the total length of the portion close to the sealing membrane in the pressure vessel 10 is L, it can be seen that the driving displacement of the variable piston is at least twice that of L, considering the peeling portion of the sealing membrane. 2 and 3, since the cross-sectional area of the pressure vessel is constant, the drive stroke of the variable piston is about twice that of a conventional rigid piston drive stroke.
도 4는 도 2a의 단동 수축식 액추에이터와 도 2b의 단동 팽창식 액추에이터를 결합하여 발전시킨 양동 수축팽창식 액추에이터 실시예와 그 작동 메커니즘을 개념적으로 도시한 단면도이다.4 is a cross-sectional view conceptually illustrating a bipolar contraction expansion actuator embodiment and an operation mechanism thereof developed by combining the single-acting contractive actuator of FIG. 2A and the single-acting inflatable actuator of FIG. 2B.
도 4는 전형적인 생체근육의 수축작용을 수행할 수 있을 뿐 아니라 그 반대로 생체근육이 수행할 수 없는 팽창작용까지 수행할 수 있다. 본 발명의 고유한 특징인 경량, 고속, 저가의 가공비는 그대로 보유하고 있다. 결국 도 4와 같은 경우는 새의 날개짓이나 곤충의 점프와 같은 소형-경량-고속의 운동체에 가장 이상적인 액추에이터가 된다. 빠르게 왕복을 반복하거나 급격히 폈다가 오무리는 동작을 가능케 하는 액추에이터를 가볍고 값싸며 많이 만들고 싶을 때, 간단한 복합재료 합성수지로 구성한 압력용기와 초박막 수퍼섬유로 구성된 밀폐막은 어떠한 금속가공 방식의 피스톤 실린더 조합보다도 월등한 성능을 발휘하며 장기간 운용 시에도 유공압의 누설이 없는 신뢰성을 발휘한다.4 can perform not only the contraction of the typical biological muscles but also vice versa. Light weight, high speed, and low cost of processing are inherent in the present invention. After all, the case shown in Figure 4 is the most ideal actuator for small-light-speed high-speed moving objects, such as bird wings and insect jumps. When you want to make an actuator that allows you to reciprocate quickly or squeeze quickly and lightly, and make a lot of light, cheap and expensive, the airtight membrane made of a simple composite synthetic resin and ultra thin super fiber is more than any combination of metal cylinder type piston cylinders. Outstanding performance and reliability without leakage of pneumatic pressure even in long term operation.
도 5는 본 발명을 단동 복합동축구동식 액추에이터로 발전시킨 실시예이며 본 발명의 액추에이터가 가장 혁신적으로 응용되는 탄성액츄에이터 실시예를 소개한 것이다.5 is an embodiment in which the present invention is developed into a single-acting coaxial drive actuator, and the actuator of the present invention introduces an embodiment of an elastic actuator in which the present invention is most innovatively applied.
압력용기(10)에 상기 밀폐막과 상기 압력용기가 이루는 공간에 압력유체가 유출입되기 위한 압력유출입관(23)이 연결되는 것은 같다. 좀 더 구체적으로 유연한 재질의 안내커버(13)는 동축으로 배열된 복수의 밀폐막들이 그대로 연장되어 그 자체로 피스톤로드와 같은 인장로프의 역할을 겸하도록 하는 데에 핵심적인 역할을 한다.The pressure outflow pipe 23 is connected to the pressure vessel 10 to allow the pressure fluid to flow in and out of the space formed by the sealing membrane and the pressure vessel. More specifically, the flexible guide cover 13 plays a key role in allowing a plurality of coaxially arranged sealing membranes to extend as they are and serve as a tensioning rope such as a piston rod.
압력용기(10)는 가변형 피스톤의 구동변위에 따라 상기 제1압력공간 또는 제n압력공간으로부터 받는 압력의 압력작용면적이 변화하도록 형성될 수 있으며 이때 상기 압력작용면적을 상기 변위방향으로 투영시킨 투영면적은 도 1에서와 같이 원형(또는 등방성의 정다각형의) 모양이거나 또는 도 5a 처럼 원통형이 아닌 어떠한 모양도 무난하게 적용될 수 있다.The pressure vessel 10 may be formed to change the pressure action area of the pressure received from the first pressure space or the nth pressure space according to the driving displacement of the variable piston, and at this time, the projection in which the pressure action area is projected in the displacement direction. The area may be circular (or isotropic regular polygonal) shape as in FIG. 1 or any shape that is not cylindrical as in FIG.
특정 구동변위에서의 구동력은 그 지점에서 압력유체의 작용면적에 따라 결정되므로 압력용기(10) 설계 시에 도 5b에서와 같이 일부 구동변위에서 압력증가(또는 감소)공간(12)을 두어 의도적으로 압력작용면적을 변화시키도록 설계한다면 가변형 피스톤의 변위에 따라 다양한 구동력을 얻을 수 있다.Since the driving force at a particular drive displacement is determined by the working area of the pressure fluid at that point, the design of the pressure vessel 10 intentionally places a pressure increasing (or decreasing) space 12 at some drive displacement as shown in FIG. 5B. If it is designed to change the pressure action area, various driving force can be obtained according to the displacement of the variable piston.
한편 밀폐막은 압력용기(10) 내부에서 적어도 두 겹 이상으로 배열되며 서로 독립적으로 박리되거나 밀착되면서 변형된다.On the other hand, the sealing membrane is arranged in at least two layers or more inside the pressure vessel 10 and deformed while being peeled off or in close contact with each other independently.
따라서 의도적으로 설정된 간격을 두고 겹겹이 배열된 밀폐막 사이로 복수 개의 압력공간이 확보된다. 앞서 기술한 바와 같이 가변형 피스톤과 압력용기(10)가 이루는 폐쇄된 공간이 제1압력공간(A)이고 압력용기 외부 공간을 제n압력공간(N)이라면, 밀폐막이 3개 일때 압력공간은 제1압력공간(A), 제2압력공간(B), 제3압력공간(C)으로 확장되며 가장 외부의 공간인 제n압력공간(N)은 진공이 아닌 체액 등으로 채워진 압력공간일 수 있다.Therefore, a plurality of pressure spaces are secured between the sealing membranes arranged in layers at intentionally set intervals. As described above, if the closed space formed by the variable piston and the pressure vessel 10 is the first pressure space A and the outer space of the pressure vessel is the nth pressure space N, the pressure space is equal to three when the closed membrane is three. The first pressure space A, the second pressure space B, and the third pressure space C may be expanded and the nth pressure space N, which is the outermost space, may be a pressure space filled with a body fluid, not a vacuum. .
물론 상기 압력용기(10)와 상기 밀폐막 사이 또는 상기 복수의 밀폐막들 사이에는 압력유체의 유출입을 수행하는 압력유출입관(23)을 더 포함하여 구성되므로 제1, 제2, 제3 압력공간으로는 압력유출입관(23)에 의해 서로 다른 압력의 유체가 유출입될 수 있다.Of course, since the pressure vessel 10 and the sealing membrane or between the plurality of sealing membranes further comprises a pressure outflow pipe 23 for performing the inflow and outflow of the pressure fluid, the first, second, third pressure space As the pressure flow inlet pipe 23, the fluid of different pressure may flow in and out.
연질의 안내커버(13)와 가장 바깥쪽의 밀폐막(20)사이, 또는 밀폐막과 밀폐막 간에 관통된 틈새 사이로는 압력유체가 일부 누출될 수 있다. 그러나 근막 속으로 인대가 뚫고 지나가는 듯한 설계는 강체 바로 이루어진 피스톤로드로는 결코 구현할 수 없는 구성임을 감안하면 압력유체의 누출에 따른 단점보다는 밀폐막끼리 겹쳐진 상태로 각 밀폐막이 다른 밀폐막을 뚫고 관통하면서 운동할 수 있다는 장점이 더욱 크다. 예컨대 인간형 로봇을 설계할 때 피부 안쪽(압력용기의 바깥공간 전체)을 전부 압력유체로 채우고 약간의 누출은 피부 안쪽의 폐쇄계에서 재처리하여 압축펌프로 재공급하는 방식이 있을 수 있다. 이러한 설계경우에 관절과 근육(액추에이터)를 싸고 있는 외피의 기밀상태만 적절히 유지된다면 밀폐막과 밀폐막 사이, 연질의 안내커버와 밀폐막 사이의 압력유체 누출은 극소화되며 아주 고부하가 아닌 이상 액추에이터 본연의 구동력을 충분히 발휘할 수 있다.Some pressure fluid may leak between the soft guide cover 13 and the outermost sealing membrane 20 or between the gaps penetrated between the sealing membrane and the sealing membrane. However, considering that the ligament penetrates into the fascia, a design that can never be realized with a piston rod made of a rigid body, rather than the disadvantages caused by the leakage of pressure fluid, the sealing membranes overlap each other in the state of overlapping the sealing membranes. The advantage is that even greater. For example, when designing a humanoid robot, there may be a method in which the inside of the skin (the entire outer space of the pressure vessel) is filled with a pressure fluid, and a slight leak is reprocessed in a closed system inside the skin and resupplied by a compression pump. In this design, if only the airtightness of the envelope surrounding the joints and muscles (actuator) is properly maintained, the leakage of pressure fluid between the sealing membrane and the sealing membrane and the soft guide cover and the sealing membrane is minimized, and the actuator is inherently unloaded. The driving force of can fully be exhibited.
결국 안내커버(13) 또는 외부의 체액 등에 의해서 완전히 밀봉되지 않은 밀폐막의 기밀성이 어느 정도 보완된다면(압력유체의 누출이 구동력 획득효과에 비해 미미한 손실이라면) 본 발명의 액추에이터는 종래의 피스톤으로는 결코 시도할 수 없는 동축 배열식 피스톤을 구성할 수 있는 것이며 도 5c 및 도 5d에서 보는 바와 같이 새의 날개짓 동작을 완벽히 구현하거나 사람의 손가락과 유사한 동작을 수행할 수 있다. 이 과정은 마치 근막과 근막 사이에서 인접한 근육이 서로 접한 상태로 움직이며 그 사이로 통한 혈관을 통해 피를 공급받는 것과 유사하게 구현된다. 도 5와 같은 구성을 좀 더 발전시키면 이는 섬유 몇 가닥 ~ 몇십 가닥으로 만들어지는 초소형, 초박형의 밀폐막 구성으로 뱀의 몸체나 곤충의 다리와 같은 다관절 근육을 본 발명의 액추에이터(40)로서 구현할 수 있음을 의미한다.As a result, if the airtightness of the sealing membrane which is not completely sealed by the guide cover 13 or the external body fluid or the like is compensated to some extent (if the leakage of the pressure fluid is a slight loss compared to the driving force gain effect), the actuator of the present invention is never used as a conventional piston. It is possible to construct a coaxially arranged piston that cannot be attempted and as shown in FIGS. 5C and 5D, it is possible to fully implement the winging motion of a bird or to perform a motion similar to a human finger. This process is similar to the movement between the fascia and the fascia in contact with each other and the blood supply through the blood vessels between them. Further developing the configuration as shown in Figure 5 is a microscopic, ultra-thin sealing membrane made of several strands of fibers to implement a multi-joint muscle, such as the body of the snake or legs of the insect as the actuator 40 of the present invention That means you can.
이상 본 발명이 구체화된 실시예를 도면과 함께 상세히 설명하였으나, 본 발명의 기술적 사상은 상기 실시예에만 국한되지 않는다.While the embodiments of the present invention have been described in detail with reference to the drawings, the technical spirit of the present invention is not limited to the above embodiments.
다시 말해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 발명이 내포하고 있는 기술사상을 활용하여 필요에 따라 명세서 및 도면에 미처 포함되지 않은 단순 변경 또는 간단 확장 사례를 구현할 수도 있겠으나, 그 또한 이하의 청구범위로 표현되는 본 발명 기술사상의 범위에 자명하게 포함된다.In other words, one of ordinary skill in the art to which the present invention pertains may utilize a technical idea implied by the present invention to implement a simple change or simple extension case, which is not included in the specification and drawings as necessary. It is also clearly included in the scope of the technical idea of the present invention expressed by the following claims.
본 발명은 압력용기의 형태와 크기를 변형하여 각종 액추에이터에 적용될 수 있다.The present invention can be applied to various actuators by modifying the shape and size of the pressure vessel.
대표적으로 납작한 물체 예를 들어 초경량 항공기의 플랩 구동이나 익형변환 장치로 매우 적합하며 좁은 설계공간과 상대적으로 큰 힘이 요구되며 고도로 복잡한 중첩식의 다단 움직임을 필요로 하는 인체 삽입형 인조근육 또는 인간형 로봇의 관절 구동장치로 활용가능하다.Typical flat objects, such as flap drives or airfoils in ultralight aircraft, are ideal for implantable artificial muscles or humanoid robots that require narrow design space, relatively large forces, and require highly complex multi-stage movements. It can be used as a joint drive.
또한 소형경량의 유공압 동력원과 결합될 경우 날개짓 운동을 하는 새 형태의 초경량 항공기나 곤충 로봇에 매우 적합하다.It is also well suited for new types of ultra-lightweight aircraft or insect robots that make winged movements when combined with small, lightweight pneumatic power sources.
참고로 본 발명에서 권리로 청구되지는 않았으나 본 발명의 액추에이터를 설계변형하여 밀폐된 유체의 압축팽창에 이용한 탄성구조체를 구성할 경우 자동차의 코일스프링을 대체할 수 있고 천정에 매달아서 움직이는 전자장비나 수술기구의 행거로 유용하며, 접어서 운반 가능한 초경량의 트램펄린이나 인명구조용 매트로 활용가능하다.For reference, although not claimed as a right in the present invention, when the actuator of the present invention is designed and modified to form an elastic structure used for compressive expansion of a hermetic fluid, the coil spring of an automobile may be replaced, and the electronic device or the device may be suspended by a ceiling. It is useful as a hanger for surgical instruments and can be used as an ultra-lightweight trampoline or a lifesaving mat that can be folded and carried.
또한 본 발명의 고속운동 성능은 활과 투석기를 포함한 모든 종류의 저소음 발사체의 발사동력으로 매우 유용하게 활용될 수 있다.In addition, the high-speed motion performance of the present invention can be very useful as the firing power of all kinds of low noise projectiles, including bows and catapults.

Claims (9)

  1. 실린더 역할을 하는 원통형 또는 비원통형의 압력용기(10);와Cylindrical or non-cylindrical pressure vessel 10 that serves as a cylinder; And
    적어도 하나의 연질의 밀폐막(20)을 포함하여 구성되는 가변형 피스톤;과A variable piston including at least one soft sealing membrane 20; and
    상기 밀폐막(20)과 상기 압력용기가 이루는 공간에 압력유체가 유출입되기 위한 적어도 하나의 압력유출입관(23);을 포함하여 구성되고And at least one pressure inlet and outlet pipe 23 through which the pressure fluid flows in and out of the space formed by the sealing membrane 20 and the pressure vessel.
    상기 밀폐막은 상기 압력용기(10) 외부로부터의 유체 유출입에 의하여, 적어도 일부분이 상기 압력용기(10)의 내면에 밀착되거나 박리되고, 또한 적어도 일부의 박리된 부분이 상기 압력용기 내면에 밀착되면서 상기 가변형 피스톤을 구동시키도록 구성되며,The sealing membrane is at least partially adhered to or peeled off from the outside of the pressure vessel 10 by contacting the inner surface of the pressure vessel 10, and at least a part of the peeled portion is adhered to the inner surface of the pressure vessel. Configured to drive the variable piston,
    상기 가변형 피스톤은 상기 밀폐막(20) 만으로 구성되거나 또는 상기 밀폐막(20)에 연결되는 적어도 하나의 피스톤로드(30)를 포함하여 구성되는 것을 특징으로 하는 액추에이터.The variable piston is an actuator, characterized in that it comprises at least one piston rod (30) consisting of only the sealing membrane (20) or connected to the sealing membrane (20).
  2. 제1항에 있어서,The method of claim 1,
    상기 밀폐막(20)은 상기 가변형 피스톤의 구동방향으로 탄성 변형되지 않는 것을 특징으로 하는 액추에이터(40).Actuator (40) is characterized in that the sealing membrane (20) does not elastically deform in the driving direction of the variable piston.
  3. 제2항에 있어서,The method of claim 2,
    상기 가변형 피스톤과 상기 압력용기(10)가 이루는 제1압력공간(A)은 자신의 외부공간인 제2압력공간 내지 제n압력공간(B~N)과 서로 다른 압력으로 설정되는 액추에이터(40).The first pressure space A formed by the variable piston and the pressure vessel 10 has an actuator 40 set to a different pressure from the second pressure space n-th pressure spaces B to N, which are external spaces thereof. .
  4. 제3항에 있어서,The method of claim 3,
    상기 제1내지 제n압력공간(A~N)들은 상기 압력용기(10) 내부에서 서로 같은 방향으로 팽창, 수축하거나 또는 서로 다른 방향으로 팽창, 수축하도록 형성되는 것을 특징으로 하는 액추에이터(40).The first to n-th pressure space (A ~ N) is an actuator (40), characterized in that formed in the pressure vessel (10) in the same direction to expand or contract with each other, or to expand and contract in different directions.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 압력용기(10)는 상기 피스톤로드(30)의 구동을 안내하는 안내공(11) 또는 상기 밀폐막(20)의 구동을 안내하는 안내커버(13)를 더 포함하여 구성되는 액추에이터(40).The pressure vessel 10 further comprises a guide hole 11 for guiding the driving of the piston rod 30 or a guide cover 13 for guiding the driving of the sealing membrane 20. .
  6. 제5항에 있어서,The method of claim 5,
    상기 가변형 피스톤은 상기 밀폐막(20)에 부착되는 적어도 하나의 압력유출입관(23)을 더 포함하여 구성되고,The variable piston further comprises at least one pressure outlet pipe 23 attached to the sealing membrane 20,
    상기 압력유출입관(23)은 상기 밀폐막(20)의 내면 또는 외면에 부착된 연질관 형태로 상기 안내커버(13)를 관통하여 형성되는 것을 특징으로 하는 액추에이터(40).The pressure outflow tube 23 is an actuator 40, characterized in that formed through the guide cover 13 in the form of a flexible tube attached to the inner surface or the outer surface of the sealing membrane (20).
  7. 제2항에 있어서,The method of claim 2,
    상기 밀폐막(20)은 상기 구동방향으로 다수의 제1합성섬유(21)가 배열되어 구성되는 액추에이터(40).The sealing membrane 20 is an actuator 40 is composed of a plurality of first synthetic fibers 21 are arranged in the driving direction.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 밀폐막(20)은 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 탄성 또는 비탄성의 제2합성섬유(22)가 배열되어 구성되는 것을 특징으로 하는 액추에이터(40).The sealing membrane (20) is an actuator (40), characterized in that the elastic or inelastic second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged.
  9. 제3항에 있어서,The method of claim 3,
    상기 압력용기(10)는 상기 가변형 피스톤의 구동변위에 따라 상기 제1압력공간(A) 내지 상기 제n압력공간(N)으로부터 받는 압력의 압력작용면적이 변화하도록 형성되는 액추에이터(40).The pressure vessel (10) is an actuator (40) is formed so that the pressure action area of the pressure received from the first pressure space (A) to the n-th pressure space (N) in accordance with the drive displacement of the variable piston.
PCT/KR2013/011071 2012-12-06 2013-12-02 Actuator driven by variable piston made from soft sealing film WO2014088278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0140821 2012-12-06
KR1020120140821A KR101299985B1 (en) 2012-12-06 2012-12-06 Actuator which is worked by a variable forming pistons that are made of a flexible sealing membrane

Publications (1)

Publication Number Publication Date
WO2014088278A1 true WO2014088278A1 (en) 2014-06-12

Family

ID=49221215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011071 WO2014088278A1 (en) 2012-12-06 2013-12-02 Actuator driven by variable piston made from soft sealing film

Country Status (2)

Country Link
KR (1) KR101299985B1 (en)
WO (1) WO2014088278A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175371A1 (en) * 2015-04-25 2016-11-03 한국표준과학연구원 Corrugated-tube constant-pressure cylinder apparatus having no microleakage and method for using same
EP3492756A1 (en) * 2017-12-04 2019-06-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for centring a first mechanical member and a second mechanical member relative to the other
WO2020115573A1 (en) * 2018-12-02 2020-06-11 James Jun Lee Pistonless cylinder
EP3715645A1 (en) * 2019-03-26 2020-09-30 Achenbach Buschhütten GmbH & Co. KG Hydropneumatic membrane cylinder
WO2024059783A1 (en) * 2022-09-16 2024-03-21 Decker Colter J Programmable soft actuators for digital and analog control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013403312B2 (en) * 2013-10-14 2015-09-03 Halliburton Energy Services, Inc. Flexure membrane for drilling fluid test system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198591A (en) * 1995-01-24 1996-08-06 Kunitoshi Iwami Lifting device
JPH0989126A (en) * 1995-09-25 1997-03-31 Ckd Corp Sliding rod structure
JP2537215Y2 (en) * 1991-05-18 1997-05-28 株式会社日本製鋼所 Double acting metal bellows actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537215Y2 (en) * 1991-05-18 1997-05-28 株式会社日本製鋼所 Double acting metal bellows actuator
JPH08198591A (en) * 1995-01-24 1996-08-06 Kunitoshi Iwami Lifting device
JPH0989126A (en) * 1995-09-25 1997-03-31 Ckd Corp Sliding rod structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175371A1 (en) * 2015-04-25 2016-11-03 한국표준과학연구원 Corrugated-tube constant-pressure cylinder apparatus having no microleakage and method for using same
US10473562B2 (en) 2015-04-25 2019-11-12 Korea Research Institute Of Standards And Science Corrugated-tube constant-pressure cylinder apparatus having no microleakage and method for using same
EP3492756A1 (en) * 2017-12-04 2019-06-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for centring a first mechanical member and a second mechanical member relative to the other
FR3074439A1 (en) * 2017-12-04 2019-06-07 L'air Liquide, Societe Anonyme Pour L'etude Et L’Exploitation Des Procedes Georges Claude METHOD FOR CENTERING A FIRST MECHANICAL PIECE AND A SECOND MECHANICAL PART ONE IN RELATION TO THE OTHER
WO2020115573A1 (en) * 2018-12-02 2020-06-11 James Jun Lee Pistonless cylinder
EP3715645A1 (en) * 2019-03-26 2020-09-30 Achenbach Buschhütten GmbH & Co. KG Hydropneumatic membrane cylinder
WO2024059783A1 (en) * 2022-09-16 2024-03-21 Decker Colter J Programmable soft actuators for digital and analog control

Also Published As

Publication number Publication date
KR101299985B1 (en) 2013-08-26

Similar Documents

Publication Publication Date Title
WO2014088278A1 (en) Actuator driven by variable piston made from soft sealing film
US10619633B2 (en) Diaphragm compressor system and method
Daerden et al. Pneumatic artificial muscles: actuators for robotics and automation
US10233910B2 (en) Flexible thin robotic actuators
Kim et al. Design of a tubular snake-like manipulator with stiffening capability by layer jamming
Felt et al. Modeling vacuum bellows soft pneumatic actuators with optimal mechanical performance
US9464642B2 (en) Soft robotic actuators
US7086322B2 (en) Fluidic device
CN113104576B (en) Soft pneumatic claw
US11821412B2 (en) Contractile device for use as an actuator, pump or compressor
Li et al. A variable stiffness soft continuum robot based on pre-charged air, particle jamming, and origami
WO2014088277A1 (en) Elastic structure having variable piston made from soft sealing film
CN111203912B (en) Five-degree-of-freedom flexible arm driven by fluid and tendon rope in mixed mode
Prior et al. Actuators for rehabilitation robots
CN109397331B (en) Telescopic mechanism, mechanical arm and robot system
Felt An Inverting-Tube Clutching Contractile Soft Pneumatic Actuator
Ramasamy et al. Pneumatic artificial muscle in biomedical applications
CN113172647B (en) Swallowing robot
Yusoff et al. INITIAL EVALUATION OF A MCKIBBEN CYLINDER ACTUATOR
Garbin et al. Toward a low-cost soft robotic manipulator based on fluid-actuated bellows for gastric cancer screening
Hassan et al. A multifunctional pneumatic artificial muscle. Proof of concept.
ITMI20000063U1 (en) STRUCTURE OF REINFORCED FLEXIBLE HOSE FOR THE CONVEYMENT OF FLUIDS IN GENERAL
Coutinho et al. Control and Actuation Optimization of Hyper-Vacuum Artificial Muscles
Sozer et al. Multifunctional hybrid module for manipulators
Mendoza et al. High-curvature, high-force, vine robot for inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860846

Country of ref document: EP

Kind code of ref document: A1