WO2014088277A1 - Elastic structure having variable piston made from soft sealing film - Google Patents

Elastic structure having variable piston made from soft sealing film Download PDF

Info

Publication number
WO2014088277A1
WO2014088277A1 PCT/KR2013/011070 KR2013011070W WO2014088277A1 WO 2014088277 A1 WO2014088277 A1 WO 2014088277A1 KR 2013011070 W KR2013011070 W KR 2013011070W WO 2014088277 A1 WO2014088277 A1 WO 2014088277A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure vessel
elastic
space
elastic structure
Prior art date
Application number
PCT/KR2013/011070
Other languages
French (fr)
Korean (ko)
Inventor
이재성
Original Assignee
Lee Jae-Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Jae-Sung filed Critical Lee Jae-Sung
Publication of WO2014088277A1 publication Critical patent/WO2014088277A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
    • F16F7/09Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other in dampers of the cylinder-and-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]

Definitions

  • the present invention is a technology that together with the pneumatic spring or pneumatic damper using the cylinder and the piston and its application field, the soft sealing membrane is in close contact with or peeled from the inner surface of the pressure vessel by the pressure difference inside and outside the pressure vessel in a variable form like a piston in the cylinder An elastic structure using the phenomenon of reciprocating inside the container.
  • Apparatus for converting the pressure of the fluid into mechanical forces and movements are conventional combinations of cylinders and pistons (eg actuators).
  • a diaphragm drive device as an elastic membrane type piston used for mechanical motion.
  • Pneumatic dampers using weak fluid pressure may be used for shock absorbers, etc. of bicycles. Hydraulic actuators using strong fluid pressure can also be used for joint driving of excavators and robots. If a high airtight level is not required or only a relatively short driving width is required, a diaphragm driving device using a bellows using a rubber tube or a short deformation of an elastic membrane may be used. The diaphragm drive device is particularly useful when a pressure-driven fluid such as a vacuum booster of an automobile brake or a flush valve of a toilet may dissipate to the outside of the drive system after performing its role.
  • a pressure-driven fluid such as a vacuum booster of an automobile brake or a flush valve of a toilet may dissipate to the outside of the drive system after performing its role.
  • an elastic body that is the object of the present invention can be made by appropriately applying a pneumatic damper or a diaphragm driving device among the above three devices.
  • a pneumatic damper or a diaphragm driving device among the above three devices.
  • the piston of the pneumatic damper is composed of a hermetic seal
  • the bellows of the diaphragm is composed of a hermetic seal
  • an elastic body capable of elastic resistance against external force and having an appropriate elastic stroke is realized.
  • Patent Document 1 Korea Registered Patent 10-0527732 Pneumatic Suspension Device
  • Patent Document 2 Korean Registered Patent 10-0844596 Diaphragm Compressor
  • Patent Document 3 Actuator structure of Korea Patent Registration 10-1177269 Engine Turbocharger
  • Hydraulic pneumatic structures which follow the conventional sliding methods of conventional springs or cylinders and pistons, including the prior art literature, have a disadvantage in that the elastic force or the range of elastic movement that occur in comparison with the total weight and volume of the structure are generally small. have.
  • the actuator of document (3) also produces only a reciprocating stroke (elastic drive range) of extremely small magnitude relative to the supply pressure required for driving, similarly to document (1).
  • the present invention is to implement an innovative elastic structure and an elastic drive device using the same, which overcomes the limitations of the prior art as above, specifically, having a light weight and a wide range of elastic movement, and combining the two at the same time, a high speed elastic movement speed.
  • innovative elastic mechanism to implement.
  • the elastic structure 30 of the present invention for achieving the above technical goal is the pressure vessel 10 that serves as a cylinder first and the flexible piston membrane of the flexible sealing membrane type bonded to it as the core configuration.
  • the main difference between the present invention and the conventional diaphragm is that the diaphragm has to withstand all pressures by the elastic membrane itself, while the inelastic sealing membrane of the present invention has a force that expands laterally outside the direction of movement of the piston. It is supported.
  • variable piston 20 by rolling a thin, wide and elongated hermetic membrane incomparable with the diaphragm, which can be combined with various types of pressure vessels 10 to withstand a high pressure difference which cannot be compared with the diaphragm, and also Long strokes are incomparable.
  • the pressure vessel 10, which is one of the main components of the present invention, is, for example, when the inside is in a vacuum state, because it is easily bent and wrinkled due to slight deformation due to partial force due to atmospheric pressure. It is more durable to make thicker materials with a smaller specific gravity rather than to make them thicker (high Young's modulus), and it is more durable in the molding method and strength. Importantly, materials with very high Young's modulus, such as beryllium, may be adopted. Exceptionally, when intentional plastic deformation of a disposable product (such as a lifesaving mat) or a pressure vessel is required, the pressure vessel 10 of the present invention can be made thinner and lighter with synthetic resin.
  • Breakage of the pressure vessel or complete permanent deformation will make it difficult to recover the elasticity of the sealing membrane, but in the process it can produce a wider range of elastic movements only once, and it is very necessary when intentionally suppressing the repulsive action of the elastic body. This is useful.
  • a component that is considered more important than the pressure vessel is a flexible sealing membrane that constitutes virtually all of the variable piston 20.
  • Sealing membranes are thin and flexible, so it is basically required to be well crimped or straightened and also to ensure almost complete airtightness. In other words, the strength and airtightness should be sufficiently maintained even if the operation process of closely adhering to the inner wall of the pressure vessel and peeling it is repeated.
  • the material of the sealing film in the present invention needs to be designed with sufficient strength so that the elastic displacement in the tensile direction of the elastic structure 30 is substantially close to zero within a given load range according to the use of the product.
  • the true elastic displacement in the present invention refers to the change in volume caused by expansion and compression of the pressure fluid (even if it is a vacuum or a fluid having a pressure close to vacuum), that is, the fluid pressure difference of the pressure fluids.
  • the movement of the encapsulation membrane seems to occur as an elastic displacement, but does not mean that the encapsulation membrane is stretched by itself.
  • the sealing membrane is formed by arranging a plurality of first synthetic fibers 21 in the tensile direction so as to have a width and strength that are not substantially elastically deformed in the tensile direction, that is, the piston movement direction.
  • the type of the first synthetic fiber 21 may be a high-strength fiber called a reinforcing polymer fiber or a super fiber that is in the spotlight recently.
  • Typical high-strength fibers include aramid fibers used for tire cords and body armor, and carbon fibers having a weight of only 10% but 10 times stronger than steel may be used.
  • polymer polyethylene fiber used as a rope or fishing line, polyarylate fiber called Vectran, or PBO fiber called Zylon can be sufficiently applied according to the use and grade of elastic structure.
  • These high-strength fibers are relatively small, for example, in the pressure vessel in the elastic structure according to the present invention, the pressure cross-sectional area in the pressure vessel is 100 cm2 to 1000 cm2, and the pressure difference between the inner and the outer is only a few strands to several ten strands when applied to a typical embodiment using simple vacuum pressure. In fact, it is possible to secure sufficient strength so that the elastic deformation amount is close to zero. Therefore, even thinner, high-strength fibers can be evenly spread to form a closed membrane that can be made thin and have a very strong sealing membrane in the tensile direction while folding well in the circumferential direction of the pressure vessel.
  • the Vectran fiber is evenly stretched to one thickness to make an elastic structure with a pressure area of 100 cm2, and the actual maximum pressure and elastic deformation are calculated.
  • Vectran has a specific gravity of 1.4 g / cm 3 and one den of 5 denier, so the diameter of one of the balls is 0.0224 mm.
  • the maximum tension of the vectran is 25 gf / denier, so the maximum tension of each roll is 125 gf.
  • the inner diameter of a cylinder with a cross-section of 100cm2 is 11.28cm and the circumference is 35.45cm, so it takes 15,826ol when arranged in one layer.
  • the maximum tension of the sealed membrane consisting of 15,826 Vectran fibers, reaches 1.98 ton, so the maximum pressure that can be applied in the cylinder is 3.88 MPa, which is equivalent to 38.3 atmospheres.
  • the elastic strain at this time is 3.8% (3.8% longer than the original fiber length), so if 0.1 MPa is applied, the elastic strain is 0.098%, which is almost zero.
  • the amount of creep is not measured when it is continuously pulled for more than one year within 50% of the maximum tension, and when used at 2.6% of the maximum tension as described above, it may sag even after decades of use. creep) does not occur.
  • the sealing membrane additionally needs to be configured such that the second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged.
  • the second synthetic fibers 22 are required in the direction in which the second synthetic fibers are arranged. It is necessary to set so as to be elastically deformable.
  • the second synthetic fiber 22 is preferably a fiber having easy airtightness and flexibility rather than strength.
  • the circumferential length of the sealing membrane needs to be set to the longest circumferential length in the circumferential direction of the pressure vessel.
  • the binding of the first synthetic fiber and the second synthetic fiber which determines the airtightness and abrasion resistance of the sealing membrane, is suitable for general composite resins for bonding composite materials and has excellent ductility at most temperature ranges such as polymer resins for binding tire cords. It should maintain low friction properties, cracks should not occur in numerous repeated use, and it should be excellent in heat resistance and corrosion resistance because it can be exposed to various usage environments.
  • pressure vessels having various shapes and a wide range of sizes having extremely superior degrees of freedom compared to conventional cylindrical cylinders can be used as a cylinder. Therefore, it greatly improves the freedom of design and the performance of the design in all applied technical fields regardless of vehicle, ship, aircraft, etc.
  • the closed membrane variable piston serving as the driving body is initially in close contact with the inner surface (mainly the inner circumferential surface or the inner surface) of the pressure vessel and moves while being peeled and deformed, thereby participating in the piston movement to the portion that is substantially folded and unfolded. Therefore, in most environments, it has a wide range of motion that is at least 1.5 times larger than the range of conventional piston movements. Due to the light, thin, and flexible sealing membrane, the ultra-high speed of movement that can not be followed by the conventional piston is achieved with strong tensile force. There is.
  • the present invention has the advantage that the piston rod is not necessarily arranged on the central axis line of the container because the sealing membrane that is freely deformed performs the same role as the piston rod.
  • This can be laminated with a plurality of sealing membranes in one pressure vessel has an effect that is very useful to implement a multi-joint movement, such as the finger joints of the humanoid robot.
  • FIG. 1 is a perspective view and a cross-sectional view showing a basic embodiment of the present invention
  • FIG. 2 is a perspective view of a preferred embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing an elastic mechanism of the embodiment of the present invention
  • valve 15 pressure gauge
  • variable piston 21 first synthetic fiber
  • Figure 1 is an embodiment shown in the most simple and basic cylindrical form to determine the principle of operation and elastic capacity of the present invention elastic structure.
  • one end has an opening 11 and a variable piston 20 made of a soft sealing membrane in the pressure vessel 10 acting as a cylinder is the opening 11 It can be seen that the elastic structure 30 in the form of a typical cylindrical cylinder is joined to a position close to the.
  • variable piston 20 is formed such that at least a portion of the sealing membrane is in close contact with the inner surface of the pressure vessel 10, and the sealing membrane is at least partially at the inner surface of the pressure vessel when the sealing membrane is pulled with the outer direction of the pressure vessel as the tensile direction. It is characterized by moving the variable piston 20 as a result of being peeled off in close contact with the.
  • the part of the peeled sealing film acts like a piston rod, and the part where the sealed film is peeled off (the length of the cylinder) and the peeled sealing film are based on the simple cylindrical pressure vessel of FIG. Together with the rod-like extension (extended piston length), an elastic displacement of about twice the size of a conventional piston is obtained.
  • the sealing film is formed in a width and strength that is not elastically deformed in the tensile direction, a plurality of first synthetic fibers 21 are arranged in the tensile direction and the direction in which the first synthetic fibers 21 are arranged
  • the second synthetic fibers 22 are arranged vertically or obliquely.
  • the first synthetic fiber 21 is set at a very high strength so that the sealing film does not stretch itself when pulled out, and is perpendicular to the direction in which the first synthetic fiber 21 is arranged, that is, the pressure.
  • the second synthetic fiber 22 arranged in the circumferential direction of the container is made of a flexible material in order to be smoothly re-adhered to the inner surface of the pressure vessel at the time of return in consideration of the relatively small force is applied.
  • the second synthetic fiber needs to be made of a flexible material, but it does not necessarily need to be elastically deformable, and it does not matter even if it is made of a material that is not elastically deformable.
  • the important thing is to be fast, perfect and re-adherent to the inner surface of the pressure vessel without being folded when re-adhesion after peeling. If it is made of inelastic material, if the circumference or diameter of the inner surface of the pressure vessel is changed, it is designed according to the largest perimeter or diameter It needs to be designed to fit the circumference or diameter of each corresponding point.
  • the sealing membrane uniformly formed in accordance with the largest circumference length will have many folded portions when in close contact. Therefore, it may be configured to be elastically deformable in the second synthetic fiber arrangement direction only in the portion where such a design is required.
  • This part can be sufficiently solved by the super fibers mentioned in the above-mentioned problem solving means, and the synthetic resin binding the fiber array can also be sufficiently solved by the special polymer resin.
  • the embodiment of FIG. 1 is the same as the elastic membrane spring of the vacuum method without any pressure fluid outflow.
  • the first pressure space (A) is set to a pressure different from that of the n-th pressure space (N) which is its external space, that is, the vacuum (A) and the atmospheric pressure (N), respectively.
  • a typical piston cross-sectional area for example, the installation cross-sectional area of a coil spring and a cylindrical damper for a passenger car is 500 cm 2 or less and is manufactured to bear a weight in the range of 500 kg to 1000 kg. If the cross-sectional area 500 cm 2 of the cylindrical pressure vessel 10 is set in the elastic structure 30 of FIG. 1, even when only a simple vacuum is used, an elastic force of 250 kg is generated, which exceeds half of the atmospheric pressure 500 kg acting on the cross-sectional area.
  • the weight of the two pressure vessels 10 may be reduced when the weight of the variable piston 20 is closed. If it can be made smaller than the weight of the vehicle coil spring, even in the extremely simple embodiment as shown in FIG. 1 can exhibit a strong elastic force, such as a vehicle coil spring.
  • the lightweight sealing membrane also has the advantage of greatly reducing the inertial mass of the elastic moving part.
  • the pressure vessel 10 has a protruding space 13 at the top of the container in an elongated rectangular cross section with rounded corners, and a pressure increasing space in which the cross-sectional area gradually increases in the middle ( 12) have more.
  • another pressure increasing space 12 is formed in which the pressure action area temporarily increases.
  • the inner surface of the pressure vessel 10 is formed smoothly without angled corners, and the other end of the pressure vessel 11 opposite to the opening 11 has a valve 14 for adjusting pressure and a protruding space for adjusting an initial pressure state. (13) may be further formed.
  • the pressure vessel 10 may further include a pressure outlet tube 23 through which the pressure fluid flows in and out of the space formed by the sealing membrane and the pressure vessel.
  • the protruding space 13 can be usefully used to create an initial vacuum state by, for example, depressurizing the pressure inlet and outlet pipe 23.
  • the pressure indicator 15 provided in the protruding space makes it easy to see how closely the inner sealing membrane is in close contact.
  • the closed space formed by the variable piston 20 and the pressure vessel 10 is represented by the first pressure space A and the outside space of the pressure vessel is represented by the nth pressure space N,
  • the outermost space may be defined as the n th pressure space (N).
  • the pressure vessel 10 means that the pressure action area of the pressure received from the first pressure space or the nth pressure space is changed according to the displacement direction of the variable piston 20.
  • the projection area projecting the pressure action area in the displacement direction may be circular (or isotropic regular polygonal) shape as in FIG. 1 or elliptical (or elongated polygonal) shape as in FIG. 3.
  • the pressure increasing space 12 formed near the opening temporarily increases the elastic force near the distal end of the elastic movement displacement in order to prevent the junction of the sealing membrane from being broken by the shocking high load.
  • This sudden pressure increase space 12 can be applied not only to prevent breakage of the joint but also to change the elastic modulus with various cross-sectional changes over the beginning and end of the pressure vessel. That is, in the conventional coil spring, a very simple change in elastic force is obtained, but the present invention obtains a change in elastic force according to the working area of the pressure fluid, and thus intentionally pressurizes the pressure increase space 12 in the initial pressure vessel 10 design. If designed to change the area can be obtained a variety of elastic force in accordance with the displacement of the variable piston (20).
  • FIG. 3 shows stepwise half of an elastic process in which the tensile force is applied to the variable piston in the embodiment shown in FIG. 2.
  • the soft sealing membrane which has been peeled off will again stick to the inner surface of the pressure vessel and the variable piston will return to the pressure vessel.
  • the pressure vessel 10 can be freely set the pressure action area in the form of a combination of a rectangle and an ellipse, and the pressure increase space 12 also increases the pressure action area monotonically (elastic resistance) There is a monotonically increasing section and a safety section that prevents bursting of the sealing membrane, breakage of the pressure vessel, or breakage of the coupling site by increasing the pressure operating area relatively suddenly.
  • the distance that the variable piston moves can be seen that at least three times greater than L1 considering the peeling part of the sealing membrane.
  • three times is generated in an extremely long and thin uniform cylindrical pressure vessel, and in the case of FIGS. 2 and 3, the cross section of the pressure vessel is increasing, so the moving distance of the variable piston will be slightly more than three times.
  • FIG. 4 is an example of using the configuration of the present invention according to the basic design method of FIG. 2 as an alternative to a coil spring for a vehicle
  • FIG. 5 is an example used for a flat elastic membrane, for example, a lifesaving mat.
  • the frame and the elastic structure 30 can be stored separately when not in use, and can be fully equipped with the initial elastic force by immediately taking out the air to the pressure outflow pipe 23 by assembling urgently in use.
  • the embodiment of the plate-type elastic membrane is light, capable of high-speed movement, and can be sufficiently buffered by an elastic stroke sufficiently secured even by a highly secured object by a sealing membrane that can be significantly increased structurally. Able to know.
  • the pressure vessel 10 of the present invention has a feature close to a rigid body in the allowable pressure range set according to the intended use, and may be elastic or plastic deformation when a pressure outside the allowable pressure range is applied. That is, in the one-time use where weight reduction and low price are important, not only the pressure vessel 10 but also the variable piston 20 made of a closed membrane do not necessarily need to be repeatedly elastically returned to the airtight state. This is also very useful to meet the requirement that bounce should not occur in life-saving mats, etc., and it is a function that can never be realized by an elastic body using a solid elastic deformation.
  • the pressure vessel 10 is configured such that plastic deformation does not occur and is disposed in a circular shape, and then, when each sealing membrane is connected to the edge of a wide circular mat, a trampoline is widely used for exercise and leisure purposes.
  • the trampoline thus made has a much lighter weight and superior elasticity than the conventional one in which a plurality of coil springs are arranged around.
  • the present invention can be applied to various elastic bodies by modifying the shape and size of the pressure vessel.
  • it can replace the coil spring of automobile, and it can be used as a hanger of electronic equipment or surgical instruments that are suspended from the ceiling, and can be used as a lightest trampoline or a lifesaving mat that can be folded and carried.
  • the high-speed motion performance of the present invention can be very useful as the firing power of all kinds of low noise projectiles, including bows and catapults.
  • the actuator when the actuator is applied by applying the elastic structure of the present invention, it is very suitable as a flat object, for example, a flap driving or airfoil conversion device of a light aircraft, and has a narrow design space and a relatively large size. It can be used as a joint drive for human body implantable artificial muscles or humanoid robots that require force and require highly complex multi-stage movements.
  • the intake valve and the discharge valve is installed in the pressure vessel (cylinder) of the actuator while driving the closed membrane by external power can be used as a vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

The present invention relates to an elastic structure using a phenomenon in which a soft sealing film moves reciprocally inside a container while having a variable form, like a piston inside a cylinder, as the soft sealing film comes into close contact with or separates from a pressure container. The present invention basically comprises: the pressure container which functions as a cylinder, and a variable piston having a form in which the soft sealing film is adhered near an opening, wherein the pressure in a first pressure space (A) defined by the sealing film and the pressure container is set to be different from an nth pressure space (N) on the outside, so that the sealing film separates from being in close contact with an inner surface of the pressure container when pulled to move the variable piston (20). As a result, the pressure container, which can have a variety of shapes and sizes compared to a conventional cylinder having a cylindrical shape, can be used as the cylinder, and the distance and speed of form change can be simultaneously increased during a process of compressing and stretching the soft sealing film through repeated contact and separation, thereby exhibiting a wide range and a high speed of movement that cannot be enabled by a conventional piston.

Description

연질의 밀폐막으로 된 가변형 피스톤을 갖는 탄성구조체Elastic structure with variable piston with soft sealing membrane
본 발명은 실린더와 피스톤을 이용하는 유공압 스프링 또는 유공압 댐퍼와 그 적용분야를 함께하는 기술로서, 압력용기 내외부의 압력차이에 의해 연질의 밀폐막이 압력용기 내면에서 밀착 또는 박리되면서 마치 실린더 내의 피스톤처럼 가변 형태로 용기 내부를 왕복 운동하는 현상을 이용한 탄성구조체에 관한 것이다.The present invention is a technology that together with the pneumatic spring or pneumatic damper using the cylinder and the piston and its application field, the soft sealing membrane is in close contact with or peeled from the inner surface of the pressure vessel by the pressure difference inside and outside the pressure vessel in a variable form like a piston in the cylinder An elastic structure using the phenomenon of reciprocating inside the container.
유체의 압력을 기구적인 힘과 움직임으로 바꾸는 장치로는 통상적인 실린더와 피스톤의 결합체(예컨대 액추에이터)가 있다. 또한 기구적 운동에 사용되는 탄성막 타입의 피스톤으로서 다이어프램 구동장치가 있다.Apparatus for converting the pressure of the fluid into mechanical forces and movements are conventional combinations of cylinders and pistons (eg actuators). There is also a diaphragm drive device as an elastic membrane type piston used for mechanical motion.
약한 유체압력을 이용하는 공압 댐퍼는 자전거의 쇽업소버 등에 사용될 수 있다. 또한 강한 유체압력을 이용하는 유압 액추에이터는 굴삭기나 로봇의 관절구동에 사용될 수 있다. 그리고 높은 기밀수준을 필요로 하지 않거나, 비교적 짧은 구동폭만이 요구되는 경우에는 고무튜브를 이용하는 벨로우즈나 탄성막의 짧은 변형을 이용하는 다이어프램 구동장치가 사용될 수 있다. 다이어프램 구동장치는 자동차 브레이크의 진공 부스터나 변기의 수세밸브와 같이 구동동력이 되는 압력유체가 자기 역할을 다한 다음에 구동계 외부로 소산되어도 무방할 때 특히 유용하다.Pneumatic dampers using weak fluid pressure may be used for shock absorbers, etc. of bicycles. Hydraulic actuators using strong fluid pressure can also be used for joint driving of excavators and robots. If a high airtight level is not required or only a relatively short driving width is required, a diaphragm driving device using a bellows using a rubber tube or a short deformation of an elastic membrane may be used. The diaphragm drive device is particularly useful when a pressure-driven fluid such as a vacuum booster of an automobile brake or a flush valve of a toilet may dissipate to the outside of the drive system after performing its role.
한편 본 발명이 중점적으로 추구하는 대상인 탄성체, 대표적으로 코일 스프링과 같은 왕복동식 탄성체는 상술한 세 가지의 장치 중 공압 댐퍼나 다이어프램 구동장치를 적절히 응용하여 만들어낼 수 있다. 예를 들어 공압 댐퍼의 피스톤을 완전 밀폐형으로 구성한다든지, 또는 다이어프램의 벨로우즈를 완전 밀폐형으로 구성한다면 외력에 탄성저항 가능하면서도 적절한 탄성스트로크를 갖는 탄성체가 구현된다.On the other hand, an elastic body that is the object of the present invention, and typically a reciprocating elastic body such as a coil spring, can be made by appropriately applying a pneumatic damper or a diaphragm driving device among the above three devices. For example, if the piston of the pneumatic damper is composed of a hermetic seal, or if the bellows of the diaphragm is composed of a hermetic seal, an elastic body capable of elastic resistance against external force and having an appropriate elastic stroke is realized.
그러나 상술한 배경기술에서 본 발명과 같이 유연 재질의 밀폐막으로 된 가변형 피스톤이 압력용기 내에서 직접 밀착되거나 박리되고, 동시에 피스톤로드의 역할까지 수행하며 작동하는 구조는 찾아보기 어렵다.However, in the above-mentioned background, a structure in which a variable piston made of a flexible membrane, such as the present invention, adheres or peels directly in a pressure vessel and performs a role of a piston rod, is difficult to find.
아래 소개한 선행기술문헌은 본 발명의 고유하고 독특한 구성과는 직접적인 관련이 없으며, 단지 본 발명의 이해를 돕기 위해 소개하는 탄성운동체 타입의 공압피스톤과 밀폐형 다이어프램에 관한 것이다.The prior art document introduced below is not directly related to the unique and unique configuration of the present invention, but only relates to the pneumatic piston and the hermetic diaphragm of the elastic body type introduced to aid the understanding of the present invention.
(특허문헌 1) 한국등록특허 10-0527732 공압현가장치(Patent Document 1) Korea Registered Patent 10-0527732 Pneumatic Suspension Device
(특허문헌 2) 한국등록특허 10-0844596 다이어프램 압축기(Patent Document 2) Korean Registered Patent 10-0844596 Diaphragm Compressor
(특허문헌 3) 한국등록특허 10-1177269 엔진 터보차저의 액추에이터 구조(Patent Document 3) Actuator structure of Korea Patent Registration 10-1177269 Engine Turbocharger
선행기술문헌을 포함하여 통상적인 금속재질의 스프링이나 실린더와 피스톤의 전형적인 미끄럼운동 방식을 따르는 유공압 탄성구조체들은 공통적으로 구조체의 총 중량과 부피에 비해 발생하는 탄성력이나 탄성운동범위가 매우 작다는 단점이 있다.Hydraulic pneumatic structures, which follow the conventional sliding methods of conventional springs or cylinders and pistons, including the prior art literature, have a disadvantage in that the elastic force or the range of elastic movement that occur in comparison with the total weight and volume of the structure are generally small. have.
예를 들어 문헌(1)과 같이 통상적인 차량 에어서스펜션용 쇽업소버를 살펴보면 대부분의 탄성지지력은 무거운 금속제 코일스프링이 부담하고 있고, 공압피스톤은 그 부피와 무게 대비 현저히 작은 탄성 저항력만을 발생시킬 뿐이다. 이때 금속재질의 코일스프링 또한 충분한 탄성력을 갖고 있으나 그 탄성운동범위는 극히 작다.For example, referring to a conventional vehicle air suspension shock absorber as shown in Document (1), most of the elastic bearing force is burdened by a heavy metal coil spring, and the pneumatic piston only generates a remarkably small elastic resistance to its volume and weight. At this time, the coil spring made of metal also has sufficient elastic force, but its elastic motion range is extremely small.
이는 문헌(2)도 예외가 아니어서 압축기의 피스톤 역할을 하는 탄성막은 그 주변을 둘러싼 모든 부속장치의 부피와 무게를 고려하여 볼 때, 그리고 통상의 탄성막 변형한계를 살펴볼 때, 장비의 전체규모에 현저히 못 미치는 작은 압축용량을 지니고 있다.This is not an exception in the literature (2), where the elastic membrane acting as the piston of the compressor is considered to be the overall size of the equipment, considering the volume and weight of all the accessories surrounding it and the usual elastic membrane deformation limits. It has a small compression capacity that is significantly less than.
마찬가지로 문헌(3)의 액츄에이터 또한 문헌 (1)과 유사하게 구동에 필요한 공급압력 대비 극히 작은 크기의 왕복 스트로크(탄성구동범위) 만을 생성한다.Similarly, the actuator of document (3) also produces only a reciprocating stroke (elastic drive range) of extremely small magnitude relative to the supply pressure required for driving, similarly to document (1).
이렇듯 고체변형은 물론 유체변형에 까지 걸쳐서 탄성의 중심이 되는 변형체의 대상을 막론하고 종래의 탄성체들은 공통적으로 원하는 일의 양이나 원하는 탄성변위를 충족하기 위해서 지나치게 큰 부피와 무거운 중량을 동반할 수 밖에 없었다.As such, regardless of the object of the elastic body, which is the center of elasticity, not only the solid deformation but also the fluid deformation, conventional elastic bodies have to be accompanied by excessively large volume and heavy weight in order to satisfy a desired amount of work or a desired elastic displacement. There was no.
본 발명은 위와 같은 종래기술의 한계를 뛰어넘는 혁신적인 탄성구조체 및 그것을 이용한 탄성구동장치를 구현하는 것으로서 구체적으로는 가벼운 중량과 넓은 탄성운동범위를 가지며 그 둘을 결합한 개념인 초고속의 탄성운동속도를 한꺼번에 구현하는 혁신적인 탄성기구를 구현하는 것이다.The present invention is to implement an innovative elastic structure and an elastic drive device using the same, which overcomes the limitations of the prior art as above, specifically, having a light weight and a wide range of elastic movement, and combining the two at the same time, a high speed elastic movement speed. To implement innovative elastic mechanism to implement.
위와 같은 기술적 목표를 달성하기 위한 본 발명의 탄성구조체(30)는 우선 실린더 역할을 하는 압력용기(10)와 그것에 접합되는 연질 밀폐막 타입의 가변형 피스톤(20)을 핵심적인 구성으로 한다.The elastic structure 30 of the present invention for achieving the above technical goal is the pressure vessel 10 that serves as a cylinder first and the flexible piston membrane of the flexible sealing membrane type bonded to it as the core configuration.
본 발명이 통상의 다이어프램과 다른 가장 큰 차이점은, 다이어프램의 경우 탄성막 그 자체로 모든 압력을 견뎌야 하는 반면에 사실상 비탄성인 본 발명의 밀폐막은 피스톤의 운동방향외에 옆으로 팽창하는 힘은 압력용기가 지탱해 준다는 점이다.The main difference between the present invention and the conventional diaphragm is that the diaphragm has to withstand all pressures by the elastic membrane itself, while the inelastic sealing membrane of the present invention has a force that expands laterally outside the direction of movement of the piston. It is supported.
따라서 다이어프램과는 비교할 수 없이 얇고 넓으며 길쭉한 밀폐막을 말아서 가변형 피스톤(20)으로 사용 가능하며 이는 다양한 형태의 압력용기(10)와 결합되어 다이어프램과 비교할 수 없는 높은 압력차이를 견뎌낼 수 있고 또한 다이어프램과 비교할 수 없는 긴 행정(stroke)이 확보된다. 이것이 바로 본 발명이 종래의 모든 탄성막 타입 구동체와 차별화되는 핵심적인 특징이다.Therefore, it can be used as a variable piston 20 by rolling a thin, wide and elongated hermetic membrane incomparable with the diaphragm, which can be combined with various types of pressure vessels 10 to withstand a high pressure difference which cannot be compared with the diaphragm, and also Long strokes are incomparable. This is the key feature that the present invention is different from all conventional elastic membrane type driving bodies.
본 발명의 주요한 구성요소 중 하나인 압력용기(10)는 예를 들어 내부가 진공인 상태일 때에는 대기압으로 인해 부분적인 힘에 의한 약간의 변형에도 구겨지면서 찌그러지기 쉬우므로 비중이 크고 강한 재료로 얇게 만드는 것 보다는 비중이 작고 다소 약한 재료(영률이 높은 재료)로 두껍게 만드는 것이 같은 중량일 경우 훨씬 내구성이 있으며 그 성형방식이나 강도확보에 있어서 듀랄루민 같은 경합금이나 FRP 같은 강화프라스틱 등이 적합하고 특별히 경량화가 중요한 경우는 베릴륨 등과 같이 영률(Young s modulus)이 아주 높은 재료를 채택하는 것도 좋다. 예외적으로, 일회용의 제품(예컨대 인명구조용 매트와 같은)이나 압력용기의 의도적인 소성변형이 요구될 때에, 본 발명의 압력용기(10)는 합성수지로 더욱 얇고 가볍게 만들 수 있다. 압력용기의 파손이나 완전한 영구변형은 밀폐막의 탄성회복을 어렵게 하겠지만 그 과정에서 더욱 넓은 범위의 탄성운동범위를 1회에 한하여 만들어낼 수 있으며 또한 탄성체의 반발작용을 의도적으로 억제할 필요가 있을 때 매우 요긴하다.The pressure vessel 10, which is one of the main components of the present invention, is, for example, when the inside is in a vacuum state, because it is easily bent and wrinkled due to slight deformation due to partial force due to atmospheric pressure. It is more durable to make thicker materials with a smaller specific gravity rather than to make them thicker (high Young's modulus), and it is more durable in the molding method and strength. Importantly, materials with very high Young's modulus, such as beryllium, may be adopted. Exceptionally, when intentional plastic deformation of a disposable product (such as a lifesaving mat) or a pressure vessel is required, the pressure vessel 10 of the present invention can be made thinner and lighter with synthetic resin. Breakage of the pressure vessel or complete permanent deformation will make it difficult to recover the elasticity of the sealing membrane, but in the process it can produce a wider range of elastic movements only once, and it is very necessary when intentionally suppressing the repulsive action of the elastic body. This is useful.
한편 압력용기보다 더욱 중요하게 고려되는 구성요소는 가변형 피스톤(20)의 사실상 전부를 이루는 연질의 밀폐막(flexible sealing membrane)이다. 밀폐막은 얇고 유연하여 주름이 잘 잡히거나 잘 펴지는 것이 기본적으로 요구되며 또한 거의 완전한 기밀성이 보장되어야 한다. 다시 말해서 압력용기의 내벽면에 밀착되었다가 박리되는 작동과정을 무수히 반복하여도 그 강도와 기밀성이 충분히 유지되어야 한다.On the other hand, a component that is considered more important than the pressure vessel is a flexible sealing membrane that constitutes virtually all of the variable piston 20. Sealing membranes are thin and flexible, so it is basically required to be well crimped or straightened and also to ensure almost complete airtightness. In other words, the strength and airtightness should be sufficiently maintained even if the operation process of closely adhering to the inner wall of the pressure vessel and peeling it is repeated.
이론적인 완전한 비탄성체는 없지만 본 발명에서 밀폐막을 이루는 재질은 제품의 용도에 따라 주어진 부하범위 내에서 탄성구조체(30)의 인장방향으로 탄성변위가 실질적으로 0에 가깝도록 매우 충분한 강도로 설계될 필요가 있다. 즉 본 발명에서 진정한 탄성변위라 함은 압력용기 내외부에 충전되는 압력유체(그것이 진공이거나 진공에 가까운 압력을 가진 유체라 하더라도) 팽창과 압축에 따른 부피변화, 다시 말해서 압력유체들이 갖는 유체압력차이에 따른 밀폐막의 이동이 마치 탄성변위로 일어나는 것처럼 보이는 것이지 밀폐막이 그 자체로 늘어나는 것을 의미하지는 않는다.Although there is no theoretically perfect inelastic material, the material of the sealing film in the present invention needs to be designed with sufficient strength so that the elastic displacement in the tensile direction of the elastic structure 30 is substantially close to zero within a given load range according to the use of the product. There is. In other words, the true elastic displacement in the present invention refers to the change in volume caused by expansion and compression of the pressure fluid (even if it is a vacuum or a fluid having a pressure close to vacuum), that is, the fluid pressure difference of the pressure fluids. The movement of the encapsulation membrane seems to occur as an elastic displacement, but does not mean that the encapsulation membrane is stretched by itself.
따라서 밀폐막은 인장방향, 즉 피스톤의 운동방향으로 실질적으로 탄성 변형되지 않는 넓이와 강도로 형성되기 위하여 상기 인장방향으로 다수의 제1합성섬유(21)가 배열되어 구성된다.Therefore, the sealing membrane is formed by arranging a plurality of first synthetic fibers 21 in the tensile direction so as to have a width and strength that are not substantially elastically deformed in the tensile direction, that is, the piston movement direction.
여기서 제1합성섬유(21)의 종류는 최근 각광받고 있는 강화 고분자 섬유나 수퍼섬유로 불리우는 고강도 섬유들이 사용될 수 있다. 대표적인 고강도 섬유로는 타이어 코드나 방탄복 등에 사용되는 아라미드 섬유가 있고, 또한 강철과 비교하여 무게가 25%에 불과하지만 강도가 10배에 이르는 탄소섬유 등이 사용될 수 있다.Here, the type of the first synthetic fiber 21 may be a high-strength fiber called a reinforcing polymer fiber or a super fiber that is in the spotlight recently. Typical high-strength fibers include aramid fibers used for tire cords and body armor, and carbon fibers having a weight of only 10% but 10 times stronger than steel may be used.
또한 비중이 낮고 내마모성이 우수하여 로프나 낚시줄로 사용되는 고분자 폴리에틸렌 섬유나 상품명 Vectran으로 불리우는 폴리아리레이트 섬유, 또는 상품명 Zylon으로 불리우는 PBO섬유 등도 탄성구조체의 용도와 사용등급에 따라 충분히 적용 가능하다. 이들 고강도 섬유들은 예컨대 본 발명에 따른 탄성구조체 중에서 압력용기 내 압력작용 단면적이 100㎠~1000㎠의 비교적 소형이며 내외부의 압력차는 단순 진공압을 이용한 전형적인 실시예에 적용될 경우에 단 몇가닥~몇십가닥 만으로도 사실상 탄성변형량이 0에 가까울 정도로 충분한 강도를 확보할 수 있다. 따라서 매우 가느다란 고강도 섬유를 고르게 펴서 밀폐막을 만들면 두께가 얇고, (인장방향과 수직한) 압력용기의 둘레방향으로는 잘 접히면서도 인장방향으로는 매우 질긴 밀폐막을 만들 수 있다.In addition, low specific gravity and excellent wear resistance, polymer polyethylene fiber used as a rope or fishing line, polyarylate fiber called Vectran, or PBO fiber called Zylon can be sufficiently applied according to the use and grade of elastic structure. These high-strength fibers are relatively small, for example, in the pressure vessel in the elastic structure according to the present invention, the pressure cross-sectional area in the pressure vessel is 100 cm2 to 1000 cm2, and the pressure difference between the inner and the outer is only a few strands to several ten strands when applied to a typical embodiment using simple vacuum pressure. In fact, it is possible to secure sufficient strength so that the elastic deformation amount is close to zero. Therefore, even thinner, high-strength fibers can be evenly spread to form a closed membrane that can be made thin and have a very strong sealing membrane in the tensile direction while folding well in the circumferential direction of the pressure vessel.
예를 들어 Vectran섬유를 한 올 두께로 고르게 펴서 압력작용단면적 100㎠인 탄성구조체를 만들 경우를 가정하고 최대 압력 및 탄성변형량을 실제 계산해 본다.For example, suppose that the Vectran fiber is evenly stretched to one thickness to make an elastic structure with a pressure area of 100 cm2, and the actual maximum pressure and elastic deformation are calculated.
Vectran의 비중은 1.4g/㎤, 한 올이 5 denier이므로, 한 올의 직경=0.0224mm. Vectran의 최대 장력은 25gf/denier이므로 한 올의 최대 장력은 125gf이다. 단면적이 100㎠ 인 실린더의 내경은 11.28cm이고 원주는 35.45cm이므로 한 층으로 배열 시 15,826올이 소요된다.Vectran has a specific gravity of 1.4 g / cm 3 and one den of 5 denier, so the diameter of one of the balls is 0.0224 mm. The maximum tension of the vectran is 25 gf / denier, so the maximum tension of each roll is 125 gf. The inner diameter of a cylinder with a cross-section of 100cm2 is 11.28cm and the circumference is 35.45cm, so it takes 15,826ol when arranged in one layer.
상기 Vectran섬유 15,826올로 이루어진, 이 밀폐막의 최대 장력은 1.98 ton에 이르므로 실린더 내에 인가할 수 있는 최대 압력은 3.88 MPa이며 이는 대기압으로 환산하면 무려 38.3기압에 이른다.The maximum tension of the sealed membrane, consisting of 15,826 Vectran fibers, reaches 1.98 ton, so the maximum pressure that can be applied in the cylinder is 3.88 MPa, which is equivalent to 38.3 atmospheres.
이 때의 탄성변형량은 3.8%( 원래 섬유 길이보다 3.8% 늘어남 )이므로 만약 0.1 MPa을 인가한다면 탄성변형량은 0.098%로 거의 0에 가깝다.The elastic strain at this time is 3.8% (3.8% longer than the original fiber length), so if 0.1 MPa is applied, the elastic strain is 0.098%, which is almost zero.
참고로 Vectran섬유의 경우 최대 장력의 50%이내에서는 1년 이상 지속적으로 당겼을 때 늘어나는(creep) 양이 측정되지 않을 정도이며 위에서처럼 최대 장력의 2.6%로 사용 시에는 수십년을 사용해도 처짐(creep)은 발생하지 않는다.For the Vectran fiber, the amount of creep is not measured when it is continuously pulled for more than one year within 50% of the maximum tension, and when used at 2.6% of the maximum tension as described above, it may sag even after decades of use. creep) does not occur.
한편 밀폐막은 추가로 제2합성섬유(22)가 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 배열되어 구성될 필요가 있고 이때 상기 제2합성섬유가 배열된 방향으로는 필요에 따라 탄성변형 가능하도록 설정될 필요가 있다. 이때 제2합성섬유(22)는 제1합성섬유(21)와 달리 강도보다는 기밀성과 유연성의 확보가 용이한 섬유가 바람직하다. 밀폐막이 제2합성섬유가 배열된 방향, 또는 압력용기의 둘레방향으로 탄성 변형되지 않는 섬유재질로 설계된다면 밀폐막의 둘레길이는 압력용기의 둘레방향 중 가장 긴 둘레길이로 설정될 필요가 있다.Meanwhile, the sealing membrane additionally needs to be configured such that the second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers 21 are arranged. In this case, the second synthetic fibers 22 are required in the direction in which the second synthetic fibers are arranged. It is necessary to set so as to be elastically deformable. In this case, unlike the first synthetic fiber 21, the second synthetic fiber 22 is preferably a fiber having easy airtightness and flexibility rather than strength. If the sealing membrane is designed with a fiber material which does not elastically deform in the direction in which the second synthetic fibers are arranged or in the circumferential direction of the pressure vessel, the circumferential length of the sealing membrane needs to be set to the longest circumferential length in the circumferential direction of the pressure vessel.
밀폐막의 기밀성과 내마모성을 결정짓는 제1합성섬유와 제2합성섬유의 결착은 통상적인 복합재료 접착용 합성수지(resin)가 적당하며 타이어코드를 결착시키는 고분자 수지와 같이 대부분의 온도범위에서 뛰어난 연성과 저마찰 특성을 유지하여야 하고 무수한 반복 사용에 있어서도 갈라짐이 발생하지 않아야 하며 다양한 사용환경에 노출될 수 있으므로 내열성과 내식성이 뛰어나야 한다.The binding of the first synthetic fiber and the second synthetic fiber, which determines the airtightness and abrasion resistance of the sealing membrane, is suitable for general composite resins for bonding composite materials and has excellent ductility at most temperature ranges such as polymer resins for binding tire cords. It should maintain low friction properties, cracks should not occur in numerous repeated use, and it should be excellent in heat resistance and corrosion resistance because it can be exposed to various usage environments.
본 발명은 통상의 원통형 실린더와 비교하여 극히 우수한 자유도를 갖는 다양한 형태와 광범위한 크기를 갖는 압력용기를 실린더 역할로 사용할 수 있다. 따라서 차량이나 선박, 항공기 등을 막론하고 적용되는 모든 기술분야에서 설계의 자유도와 설계품의 성능을 크게 향상시킨다.According to the present invention, pressure vessels having various shapes and a wide range of sizes having extremely superior degrees of freedom compared to conventional cylindrical cylinders can be used as a cylinder. Therefore, it greatly improves the freedom of design and the performance of the design in all applied technical fields regardless of vehicle, ship, aircraft, etc.
또한 본 발명은 구동체가 되는 밀폐막 가변형 피스톤이 압력용기의 내면(주로 내주면 또는 내측면)을 따라 초기 밀착되었다가 박리 변형되면서 움직이므로 실질적으로 접혔다가 펴지는 부분까지 피스톤 운동에 동참하게 된다. 따라서 대부분의 환경에서 종래의 피스톤 운동범위에 비해 최소 1.5배가 넘는 넓은 운동범위를 가지며 가볍고 얇으며 유연한 밀폐막의 특성상 종래의 피스톤이 따라올 수 없는 초고속의 운동속도가 강력한 인장력과 함께 발휘되는 매우 뛰어난 효과가 있다.In addition, in the present invention, the closed membrane variable piston serving as the driving body is initially in close contact with the inner surface (mainly the inner circumferential surface or the inner surface) of the pressure vessel and moves while being peeled and deformed, thereby participating in the piston movement to the portion that is substantially folded and unfolded. Therefore, in most environments, it has a wide range of motion that is at least 1.5 times larger than the range of conventional piston movements. Due to the light, thin, and flexible sealing membrane, the ultra-high speed of movement that can not be followed by the conventional piston is achieved with strong tensile force. There is.
덧붙여서 본 발명은 자유롭게 변형되는 밀폐막이 피스톤로드와 같은 역할을 수행하므로 반드시 용기의 중심축 선상에 피스톤로드가 배치되지 않아도 되는 장점이 있다. 이는 하나의 압력용기에 여러 개의 밀폐막을 적층할 수 있어 인간형 로봇의 손가락 관절과 같은 다관절 운동 구현에 매우 유용하게 적용되는 효과가 있다.In addition, the present invention has the advantage that the piston rod is not necessarily arranged on the central axis line of the container because the sealing membrane that is freely deformed performs the same role as the piston rod. This can be laminated with a plurality of sealing membranes in one pressure vessel has an effect that is very useful to implement a multi-joint movement, such as the finger joints of the humanoid robot.
도 1은 본 발명의 기초적인 실시예를 나타낸 사시도 및 단면도1 is a perspective view and a cross-sectional view showing a basic embodiment of the present invention
도 2는 본 발명의 최선의 실시예를 나타낸 사시도2 is a perspective view of a preferred embodiment of the present invention;
도 3은 본 발명 실시예의 탄성작용 메커니즘을 나타낸 단면도Figure 3 is a cross-sectional view showing an elastic mechanism of the embodiment of the present invention
도 4는 본 발명을 차량용 코일스프링으로 이용한 실시예4 is an embodiment using the present invention as a vehicle coil spring
도 5는 본 발명을 평판형 탄성막 형태로 이용한 실시예5 is an embodiment using the present invention in the form of a flat elastic membrane
<부호의 설명><Description of the code>
10: 압력용기 11: 개구부10: pressure vessel 11: opening
12: 압력증가공간 13: 돌출공간12: pressure increase space 13: protrusion space
14: 밸브 15: 압력상태표시계14: valve 15: pressure gauge
20: 가변형 피스톤 21: 제1합성섬유20: variable piston 21: first synthetic fiber
22: 제2합성섬유 23: 압력유출입관22: second synthetic fiber 23: pressure outflow pipe
30: 탄성구조체30: elastic structure
A: 제1압력공간 (B = 2, C = 3, D = 4, ..)A: first pressure space (B = 2, C = 3, D = 4, ..)
N: 제n압력공간N: nth pressure space
상술한 본 발명의 과제 해결수단을 기술적으로 뒷받침하기 위하여 도면에 포함된 본 발명의 일 실시예를 참조하여 상세히 설명한다.With reference to the embodiment of the present invention included in the drawings in order to technically support the above-described solution of the present invention will be described in detail.
다만 아래의 실시예에서 특정 전문용어로 표현되는 구성요소들과 그 결합구조가 본 발명에 포괄적으로 내재된 기술적 사상을 제한하는 것은 아니다.However, the components represented by the specific terminology in the following embodiments and their coupling structures do not limit the technical spirit inherent in the present invention.
도 1은 본 발명 탄성구조체의 작동원리와 탄성능력을 가늠해보기 위해 가장 간단하고 기초적인 원통형 형태로 도시한 실시예이다.Figure 1 is an embodiment shown in the most simple and basic cylindrical form to determine the principle of operation and elastic capacity of the present invention elastic structure.
도 1a에 도시된 탄성구조체(30)의 실시예를 살펴보면 일단에 개구부(11)를 가지며 실린더 역할을 하는 압력용기(10)에 연질의 밀폐막으로 이루어진 가변형 피스톤(20)이 상기 개구부(11)에 가까운 위치에 접합되어 구성된 전형적인 원통 실린더 형태의 탄성구조체(30)임을 알 수 있다.Looking at the embodiment of the elastic structure 30 shown in Figure 1a one end has an opening 11 and a variable piston 20 made of a soft sealing membrane in the pressure vessel 10 acting as a cylinder is the opening 11 It can be seen that the elastic structure 30 in the form of a typical cylindrical cylinder is joined to a position close to the.
도 1b에 도시된 단면도를 참조하면 도 1 실시예의 작동구조가 잘 이해된다. 가변형 피스톤(20)은 적어도 일부의 밀폐막이 압력용기(10)의 내면에 밀착 가능하도록 형성되며, 또한 밀폐막은 압력용기의 바깥쪽 방향을 인장방향으로 하여 잡아당겨졌을 때 적어도 일부분이 상기 압력용기 내면에 밀착된 상태에서 박리되면서 결과적으로 가변형 피스톤(20)을 이동시키는 것이 특징이다.Referring to the cross section shown in FIG. 1B, the operating structure of the FIG. 1 embodiment is well understood. The variable piston 20 is formed such that at least a portion of the sealing membrane is in close contact with the inner surface of the pressure vessel 10, and the sealing membrane is at least partially at the inner surface of the pressure vessel when the sealing membrane is pulled with the outer direction of the pressure vessel as the tensile direction. It is characterized by moving the variable piston 20 as a result of being peeled off in close contact with the.
*이때 박리된 밀폐막의 일부분은 마치 피스톤 로드(Piston rod)와 같은 역할을 하며 도 1의 단순한 원통형 압력용기를 기준으로 할 때 밀착된 밀폐막이 박리된 부분(실린더의 길이)과 박리된 밀폐막이 피스톤 로드처럼 늘어난 부분(피스톤이 연장된 길이)을 합쳐 기존 피스톤의 2배 가량에 해당되는 탄성운동변위가 얻어진다.* At this time, the part of the peeled sealing film acts like a piston rod, and the part where the sealed film is peeled off (the length of the cylinder) and the peeled sealing film are based on the simple cylindrical pressure vessel of FIG. Together with the rod-like extension (extended piston length), an elastic displacement of about twice the size of a conventional piston is obtained.
한편 상기 밀폐막은 상기 인장방향으로 탄성 변형되지 않는 넓이와 강도로 형성되되, 상기 인장방향으로 다수의 제1합성섬유(21)가 배열되어 구성되며 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 제2합성섬유(22)가 배열되어 구성된다.On the other hand, the sealing film is formed in a width and strength that is not elastically deformed in the tensile direction, a plurality of first synthetic fibers 21 are arranged in the tensile direction and the direction in which the first synthetic fibers 21 are arranged The second synthetic fibers 22 are arranged vertically or obliquely.
앞서 기술한 바와 같이 제1합성섬유(21)는 매우 고강도로 설정되어 잡아당겼을 때 밀폐막이 그 자체로 늘어나지 않게 하며, 제1합성섬유(21)가 배열된 방향과 수직한 방향, 다시 말해 압력용기의 둘레방향으로 배열된 제2합성섬유(22)의 배열방향으로는 상대적으로 적은 힘이 가해지는 것을 감안하여 복귀 시에 압력용기 내면에 원활히 재밀착될 필요가 있도록 유연한 재질로 구성된다.As described above, the first synthetic fiber 21 is set at a very high strength so that the sealing film does not stretch itself when pulled out, and is perpendicular to the direction in which the first synthetic fiber 21 is arranged, that is, the pressure. The second synthetic fiber 22 arranged in the circumferential direction of the container is made of a flexible material in order to be smoothly re-adhered to the inner surface of the pressure vessel at the time of return in consideration of the relatively small force is applied.
참고로 제2합성섬유는 유연한 재질로 구성되어야 할 필요는 있지만 반드시 탄성변형이 가능해야 할 필요는 없으며 탄성변형 가능하지 않은 재료로 구성되어도 상관은 없다. 중요한 것은 박리 후 재 밀착시 접히지 않으면서 압력용기 내면에 신속하고 완벽하며 재 밀착되는 것이며 만약 비탄성 재질로 구성될 경우 압력용기 내면의 둘레나 직경이 변화하는 경우는 가장 큰 둘레나 직경에 맞추어 설계되거나 각 대응지점의 둘레나 직경에 맞추어 설계될 필요가 있다. 압력용기가 길이방향에 걸쳐서 단면적이나 둘레의 변화폭이 크다면 가장 큰 둘레길이에 맞추어 일률적으로 형성된 밀폐막은 아무래도 밀착시 접히는 부분이 많게 된다. 따라서 그러한 설계가 요구되는 부분에만 제2합성섬유 배열방향으로 탄성변형 가능하도록 구성하면 좋다.For reference, the second synthetic fiber needs to be made of a flexible material, but it does not necessarily need to be elastically deformable, and it does not matter even if it is made of a material that is not elastically deformable. The important thing is to be fast, perfect and re-adherent to the inner surface of the pressure vessel without being folded when re-adhesion after peeling. If it is made of inelastic material, if the circumference or diameter of the inner surface of the pressure vessel is changed, it is designed according to the largest perimeter or diameter It needs to be designed to fit the circumference or diameter of each corresponding point. If the pressure vessel has a large variation in cross-sectional area or circumference over the longitudinal direction, the sealing membrane uniformly formed in accordance with the largest circumference length will have many folded portions when in close contact. Therefore, it may be configured to be elastically deformable in the second synthetic fiber arrangement direction only in the portion where such a design is required.
이 부분은 상술한 과제 해결수단에서 언급된 수퍼 섬유들로 충분히 해결할 수 있으며 섬유배열을 결착하는 합성수지 또한 특수 고분자수지로 충분히 해결할 수 있다.This part can be sufficiently solved by the super fibers mentioned in the above-mentioned problem solving means, and the synthetic resin binding the fiber array can also be sufficiently solved by the special polymer resin.
참고로 도 1의 실시예는 아무런 압력유체 유출이 없는 진공압 방식의 탄성막 스프링과 같다. 이때 제1압력공간(A)는 자신의 외부공간인 제n압력공간(N)과 서로 다른 압력, 즉 각각 진공(A)과 대기압(N)으로 설정된 상태이다.For reference, the embodiment of FIG. 1 is the same as the elastic membrane spring of the vacuum method without any pressure fluid outflow. At this time, the first pressure space (A) is set to a pressure different from that of the n-th pressure space (N) which is its external space, that is, the vacuum (A) and the atmospheric pressure (N), respectively.
진공은 제1압력공간(A)의 밀폐구조만 잘 만들어놓으면 가변형 피스톤(20)을 단순히 잡아당기기만 해도 쉽게 생성된다. 통상의 피스톤 단면적, 예컨대 승용차용 코일스프링과 원통형 댐퍼의 설치단면적은 500㎠ 이하이며 통상 500㎏~1000㎏ 범위의 무게를 감당하도록 제조된다. 도 1의 탄성구조체(30)에서 원통형 압력용기(10)의 단면적 500㎠으로 설정한다면 단순 진공만을 이용할 경우에도 해당 단면적에 작용하는 대기압 500㎏의 절반을 넘는 250㎏의 탄성력이 발생된다.(고도에 따라 차이가 있겠지만 평균적인 대기압을 대략 1㎠ 당 1㎏f로 환산하였을 경우이다.) 따라서 밀폐막으로 된 가변형 피스톤(20)의 무게를 무시한다고 할 때 압력용기(10) 2개의 무게를 기존 차량용 코일스프링의 무게보다 작게 할 수 있다면 도 1과 같이 지극히 간단한 실시예로도 차량용 코일스프링과 같은 강력한 탄성력을 발휘할 수 있는 것이다. 게다가 경량의 밀폐막에 의해 탄성운동부의 관성질량이 대폭 줄어드는 장점도 발생된다.The vacuum is easily generated by simply pulling the variable piston 20 as long as the sealing structure of the first pressure space A is well made. A typical piston cross-sectional area, for example, the installation cross-sectional area of a coil spring and a cylindrical damper for a passenger car is 500 cm 2 or less and is manufactured to bear a weight in the range of 500 kg to 1000 kg. If the cross-sectional area 500 cm 2 of the cylindrical pressure vessel 10 is set in the elastic structure 30 of FIG. 1, even when only a simple vacuum is used, an elastic force of 250 kg is generated, which exceeds half of the atmospheric pressure 500 kg acting on the cross-sectional area. This is a case where the average atmospheric pressure is converted to approximately 1 kgf per 1 cm 2.) Therefore, the weight of the two pressure vessels 10 may be reduced when the weight of the variable piston 20 is closed. If it can be made smaller than the weight of the vehicle coil spring, even in the extremely simple embodiment as shown in FIG. 1 can exhibit a strong elastic force, such as a vehicle coil spring. In addition, the lightweight sealing membrane also has the advantage of greatly reducing the inertial mass of the elastic moving part.
도 2는 좀 더 실전적인 응용을 위하여 추가 구성이 더 결합된 본 발명의 확장 실시예이다. 본 발명의 주요 특징이 대부분 내재되어 있다.2 is an expanded embodiment of the present invention further combined with additional configurations for more practical applications. Most of the main features of the present invention are inherent.
도 2a에 도시된 사시도를 참조하면서, 압력용기(10)는 모서리가 라운드 된 가늘고 긴 직사각형의 단면모양에 용기 상부에 돌출공간(13)을 갖고 있으며 또한 중간에 단면적이 점차 증가하는 압력증가공간(12)을 더 갖고 있다.Referring to the perspective view shown in Fig. 2a, the pressure vessel 10 has a protruding space 13 at the top of the container in an elongated rectangular cross section with rounded corners, and a pressure increasing space in which the cross-sectional area gradually increases in the middle ( 12) have more.
상기 개구부(11) 근방에는 상기 압력작용면적이 일시적으로 증가하는 또 하나의 압력증가공간(12)이 형성된다. 또한 압력용기(10)의 내부면은 각진 모서리 없이 매끄럽게 형성되며 상기 개구부(11)의 반대편인 상기 압력용기(11) 타단에는 압력조절을 위한 밸브(14)와 초기압력상태를 조절하기 위한 돌출공간(13)이 더 형성될 수 있다.In the vicinity of the opening 11, another pressure increasing space 12 is formed in which the pressure action area temporarily increases. In addition, the inner surface of the pressure vessel 10 is formed smoothly without angled corners, and the other end of the pressure vessel 11 opposite to the opening 11 has a valve 14 for adjusting pressure and a protruding space for adjusting an initial pressure state. (13) may be further formed.
한편 압력용기(10)는 상기 밀폐막과 상기 압력용기가 이루는 공간에 압력유체가 유출입되기 위한 압력유출입관(23)을 더 포함하여 구성될 수 있다.Meanwhile, the pressure vessel 10 may further include a pressure outlet tube 23 through which the pressure fluid flows in and out of the space formed by the sealing membrane and the pressure vessel.
돌출공간(13)은 예컨대 압력유출입관(23)으로 압력을 빼내서 초기진공상태를 만드는 데에 요긴하게 사용될 수 있다. 돌출공간에 마련된 압력상태표시계(15)는 내부의 밀폐막이 어느 만큼 밀착되어 있는지 쉽게 알아볼 수 있게 해 준다. 일단 밸브(14)를 통한 압력유출입 초기 설정이 끝나면 밸브(14)를 잠궈서 독립된 탄성구조체로 활용가능하며 돌출공간의 부피가 커질수록 반복사용에 따른 밀폐막의 늘어남에 여유롭게 대처할 수 있으므로 결과적으로 탄성구조체의 사용수명이 늘어난다.The protruding space 13 can be usefully used to create an initial vacuum state by, for example, depressurizing the pressure inlet and outlet pipe 23. The pressure indicator 15 provided in the protruding space makes it easy to see how closely the inner sealing membrane is in close contact. Once the initial setting of the pressure flow in and out through the valve 14 is completed, the valve 14 can be locked and used as an independent elastic structure. As the volume of the protruding space increases, the elastic structure can be easily coped with as the volume of the sealing membrane increases due to repeated use. Increases the service life of.
도 2b의 단면도를 참조하면 각 부위의 구체적인 형상과 기술적인 역할이 더욱 잘 이해된다.Referring to the cross-sectional view of Figure 2b the specific shape and technical role of each site is better understood.
도면상으로는 도시되지 않았지만 밀폐막은 필요에 따라 두 개 이상 다수 개로 적층되어 배치될 수 있다. 즉 도면상으로는 가변형 피스톤(20)과 압력용기(10)가 이루는 폐쇄된 공간을 제1압력공간(A)으로 표시하였고 압력용기 외부 공간을 제n압력공간(N)으로 표시하였지만, 밀폐막이 다수 개일때 압력공간은 제1압력공간(A), 제2압력공간(B), 제3압력공간(C)등으로 확장되며 가장 외부의 공간이 제n압력공간(N)으로 정의될 수 있다.Although not illustrated in the drawings, two or more sealing films may be stacked and disposed as necessary. That is, in the drawing, the closed space formed by the variable piston 20 and the pressure vessel 10 is represented by the first pressure space A and the outside space of the pressure vessel is represented by the nth pressure space N, When the pressure space is extended to the first pressure space (A), the second pressure space (B), the third pressure space (C) and the like, the outermost space may be defined as the n th pressure space (N).
상기 발전된 실시예를 개념적으로 정의한다면 압력용기(10)는 가변형 피스톤(20)의 변위방향에 따라 상기 제1압력공간 또는 제n압력공간으로부터 받는 압력의 압력작용면적이 변화하도록 형성된 것을 의미하며 이때 상기 압력작용면적을 상기 변위방향으로 투영시킨 투영면적은 도 1에서와 같이 원형(또는 등방성의 정다각형의) 모양이거나 또는 도 3을 포함한 타원 (또는 가늘고 긴 다각형의) 모양일 수 있다.If the developed embodiment is conceptually defined, the pressure vessel 10 means that the pressure action area of the pressure received from the first pressure space or the nth pressure space is changed according to the displacement direction of the variable piston 20. The projection area projecting the pressure action area in the displacement direction may be circular (or isotropic regular polygonal) shape as in FIG. 1 or elliptical (or elongated polygonal) shape as in FIG. 3.
개구부 근처에 형성된 압력증가공간(12)은 밀폐막의 접합부가 충격적인 고하중으로 파손되는 것을 방지하기 위해 탄성운동변위 말단근처에서 탄성력을 일시에 증가시킨다. 이러한 돌발적인 압력증가공간(12)은 접합부의 파손을 방지하기 위해서 뿐 아니라 압력용기의 처음과 끝 부분에 걸쳐 다양한 단면적 변화로 탄성계수를 변화시키는 데에도 응용될 수 있다. 즉 통상의 코일스프링은 매우 단순한 탄성력 추이가 얻어지지만 본 발명은 압력유체의 작용면적에 따른 탄성력 추이가 얻어지므로 최초 압력용기(10) 설계 시에 압력증가공간(12)을 포함에 의도적으로 압력작용면적을 변화시키도록 설계한다면 가변형 피스톤(20)의 변위에 따라 다양한 탄성력을 얻을 수 있다.The pressure increasing space 12 formed near the opening temporarily increases the elastic force near the distal end of the elastic movement displacement in order to prevent the junction of the sealing membrane from being broken by the shocking high load. This sudden pressure increase space 12 can be applied not only to prevent breakage of the joint but also to change the elastic modulus with various cross-sectional changes over the beginning and end of the pressure vessel. That is, in the conventional coil spring, a very simple change in elastic force is obtained, but the present invention obtains a change in elastic force according to the working area of the pressure fluid, and thus intentionally pressurizes the pressure increase space 12 in the initial pressure vessel 10 design. If designed to change the area can be obtained a variety of elastic force in accordance with the displacement of the variable piston (20).
도 3은 도 2에 도시된 실시예에서 가변형 피스톤에 인장력이 작용하여 늘어나는 탄성과정 중 절반부분을 단계적으로 도시한 것이다. 물론 인장력이 해제되면 박리되었던 연질의 밀폐막은 다시 압력용기 내면에 밀착될 것이고 가변형 피스톤은 압력용기 쪽으로 복귀할 것이다.FIG. 3 shows stepwise half of an elastic process in which the tensile force is applied to the variable piston in the embodiment shown in FIG. 2. Of course, when the tensile force is released, the soft sealing membrane which has been peeled off will again stick to the inner surface of the pressure vessel and the variable piston will return to the pressure vessel.
도 3을 살펴보면 압력용기(10)는 직사각형과 타원이 조합된 형태 등으로 자유롭게 압력작용면적을 설정할 수 있는 것을 알 수 있으며 압력증가공간(12) 또한 압력작용면적이 단조롭게(monotonous) 증가하여 탄성저항력이 단조롭게 증가하는 구간과, 압력작용면적이 비교적 돌발적으로(jumping) 증가하여 밀폐막의 파열(bursting)이나 압력용기의 파손 또는 결합부위의 파손을 막아주는 안전구간이 있다.Referring to Figure 3 it can be seen that the pressure vessel 10 can be freely set the pressure action area in the form of a combination of a rectangle and an ellipse, and the pressure increase space 12 also increases the pressure action area monotonically (elastic resistance) There is a monotonically increasing section and a safety section that prevents bursting of the sealing membrane, breakage of the pressure vessel, or breakage of the coupling site by increasing the pressure operating area relatively suddenly.
한편 용기 내에 밀착된 부분의 길이를 L1이라고 할 때 가변형 피스톤이 이동하는 거리는 밀폐막의 박리부분까지 고려한다면 적어도 L1의 3배가 넘을 것을 충분히 알 수 있다. 이론적으로 3배는 극히 길고 가는 균일한 원통형 압력용기에서 발생되며, 도 2,3의 경우에는 압력용기의 단면적이 증가하고 있으므로 가변형 피스톤의 이동거리는 3배가 약간 넘을 것이다.On the other hand, when the length of the part in close contact with the container is L1, the distance that the variable piston moves can be seen that at least three times greater than L1 considering the peeling part of the sealing membrane. Theoretically, three times is generated in an extremely long and thin uniform cylindrical pressure vessel, and in the case of FIGS. 2 and 3, the cross section of the pressure vessel is increasing, so the moving distance of the variable piston will be slightly more than three times.
도 2의 기본적인 설계방식을 따른 본 발명의 구성을 차량용 코일스프링 대체역할로 활용한 사례가 도 4이며 평판형 탄성막, 예컨대 인명구조용 매트에 활용한 사례가 도 5이다.FIG. 4 is an example of using the configuration of the present invention according to the basic design method of FIG. 2 as an alternative to a coil spring for a vehicle, and FIG. 5 is an example used for a flat elastic membrane, for example, a lifesaving mat.
도 4를 대기압 하에서의 진공압 작용면적과 탄성작용 거리측면에서 살펴보면 컴팩트한 설치공간 내에서 충분한 탄성력과 탄성스트로크가 얻어지고 있음을 알 수 있다. 밀폐막의 예기치 않은 손상을 막을 수 있도록 노면과의 적절한 차폐 설계를 도입해야 하는 단점은 압력용기의 형태와 크기, 배치공간을 자유롭게 할 수 있는 장점은 물론 밀폐막의 가벼운 관성질량에 의한 탄성운동부의 전체 관성질량 감소의 장점으로 충분히 상쇄된다.Referring to FIG. 4 in terms of the vacuum working area and the elastic working distance under atmospheric pressure, it can be seen that sufficient elastic force and elastic stroke are obtained in a compact installation space. The disadvantage that the proper shielding design with the road surface should be introduced to prevent the unexpected damage of the sealing membrane is that the shape and size of the pressure vessel and the space for the placement can be freed, as well as the total inertia of the elastic motion part due to the light inertial mass of the sealing membrane. This is offset by the advantages of mass reduction.
도 5는 본 발명의 탄성구조체를 다양한 형태로 확장 배열하는 것이 가능함을 잘 보여준다. 프레임과 탄성구조체(30)는 사용하지 않을 때 분리되어 보관할 수 있으며, 사용시에 긴급하게 조립하여 압력유출입관(23)으로 즉시 공기를 빼내 초기 탄성력을 완벽히 갖출 수 있다.5 shows that it is possible to expand and arrange the elastic structure of the present invention in various forms. The frame and the elastic structure 30 can be stored separately when not in use, and can be fully equipped with the initial elastic force by immediately taking out the air to the pressure outflow pipe 23 by assembling urgently in use.
도 5b의 단면도에서 유추되는 바와 같이 평판형 탄성막의 실시예는 가볍고 고속운동 가능하며 구조적으로 현저하게 많이 늘어날 수 있는 밀폐막에 의하여 극히 고속의 물체도 충분히 확보된 탄성스트로크로 넉넉히 완충시킬 수 있음을 알 수 있다.As inferred from the cross-sectional view of FIG. 5B, the embodiment of the plate-type elastic membrane is light, capable of high-speed movement, and can be sufficiently buffered by an elastic stroke sufficiently secured even by a highly secured object by a sealing membrane that can be significantly increased structurally. Able to know.
한편 도 5b와 같이 본 발명의 압력용기(10)는 사용용도에 따라 설정된 허용압력 범위에서 강체에 가까운 특징을 가지며 상기 허용압력 범위를 벗어나는 압력이 작용할 경우 탄성 또는 소성변형 할 수 있다. 즉 경량화와 저렴한 가격이 중요시되는 일회성의 사용용도에서 압력용기(10)는 물론 밀폐막으로 된 가변형 피스톤(20) 조차도 반드시 기밀 상태로 반복적으로 탄성 복귀될 필요는 없다. 이것은 인명구조용 매트 등에서 되튕김이 발생하지 않아야 하는 요구조건을 충족시키는 데에도 매우 유용하며, 고체의 탄성변형을 이용하는 탄성체로는 결코 구현할 수 없는 기능이다.Meanwhile, as shown in FIG. 5B, the pressure vessel 10 of the present invention has a feature close to a rigid body in the allowable pressure range set according to the intended use, and may be elastic or plastic deformation when a pressure outside the allowable pressure range is applied. That is, in the one-time use where weight reduction and low price are important, not only the pressure vessel 10 but also the variable piston 20 made of a closed membrane do not necessarily need to be repeatedly elastically returned to the airtight state. This is also very useful to meet the requirement that bounce should not occur in life-saving mats, etc., and it is a function that can never be realized by an elastic body using a solid elastic deformation.
한편 도 5에서 압력용기(10)를 소성변형이 일어나지 않도록 구성하고 이를 원형으로 배치한 다음, 각각의 밀폐막을 넓은 원형 매트의 가장자리에 연결할 경우에 운동 및 레저 용도로 널리 쓰이는 트램펄린(trampoline)으로 만들 수 있다. 이렇게 만들어진 트램펄린은 다수의 코일스프링을 둘레로 배치한 종래의 것보다 월등히 가벼운 중량과 뛰어난 탄성을 갖게 된다.Meanwhile, in FIG. 5, the pressure vessel 10 is configured such that plastic deformation does not occur and is disposed in a circular shape, and then, when each sealing membrane is connected to the edge of a wide circular mat, a trampoline is widely used for exercise and leisure purposes. Can be. The trampoline thus made has a much lighter weight and superior elasticity than the conventional one in which a plurality of coil springs are arranged around.
이상 본 발명이 구체화된 실시예를 도면과 함께 상세히 설명하였으나, 본 발명의 기술적 사상은 상기 실시예에만 국한되지 않는다.While the embodiments of the present invention have been described in detail with reference to the drawings, the technical spirit of the present invention is not limited to the above embodiments.
다시 말해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 발명이 내포하고 있는 기술사상을 활용하여 필요에 따라 명세서 및 도면에 미처 포함되지 않은 단순 변경 또는 간단 확장 사례를 구현할 수도 있겠으나, 그 또한 이하의 청구범위로 표현되는 본 발명 기술사상의 범위에 자명하게 포함된다.In other words, one of ordinary skill in the art to which the present invention pertains may utilize a technical idea implied by the present invention to implement a simple change or simple extension case, which is not included in the specification and drawings as necessary. It is also clearly included in the scope of the technical idea of the present invention expressed by the following claims.
본 발명은 압력용기의 형태와 크기를 변형하여 각종 탄성체에 적용될 수 있다.The present invention can be applied to various elastic bodies by modifying the shape and size of the pressure vessel.
대표적으로 자동차의 코일스프링을 대체할 수 있고 천정에 매달아서 움직이는 전자장비나 수술기구의 행거로 유용하며, 접어서 운반 가능한 초경량의 트램펄린이나 인명구조용 매트로 활용가능하다.Typically, it can replace the coil spring of automobile, and it can be used as a hanger of electronic equipment or surgical instruments that are suspended from the ceiling, and can be used as a lightest trampoline or a lifesaving mat that can be folded and carried.
또한 본 발명의 고속운동 성능은 활과 투석기를 포함한 모든 종류의 저소음 발사체의 발사동력으로 매우 유용하게 활용될 수 있다.In addition, the high-speed motion performance of the present invention can be very useful as the firing power of all kinds of low noise projectiles, including bows and catapults.
마지막으로 본 발명에서 권리로 청구되지는 않았으나 본 발명의 탄성구조체를 응용하여 액추에이터를 구성할 경우, 납작한 물체 예를 들어 초경량 항공기의 플랩 구동이나 익형변환 장치로 매우 적합하며 좁은 설계공간과 상대적으로 큰 힘이 요구되며 고도로 복잡한 중첩식의 다단 움직임을 필요로 하는 인체 삽입형 인조근육 또는 인간형 로봇의 관절 구동장치로 사용될 수 있다. 또한 외부의 동력으로 밀폐막을 구동시키면서 액추에이터의 압력용기(실린더)에 흡입밸브와 배출밸브를 설치할 경우 진공펌프로도 활용될 수 있다.Finally, although not claimed as a right in the present invention, when the actuator is applied by applying the elastic structure of the present invention, it is very suitable as a flat object, for example, a flap driving or airfoil conversion device of a light aircraft, and has a narrow design space and a relatively large size. It can be used as a joint drive for human body implantable artificial muscles or humanoid robots that require force and require highly complex multi-stage movements. In addition, when the intake valve and the discharge valve is installed in the pressure vessel (cylinder) of the actuator while driving the closed membrane by external power can be used as a vacuum pump.

Claims (10)

  1. 일단에 개구부(11)를 가지며 실린더 역할을 하는 압력용기(10);와A pressure vessel 10 having an opening 11 at one end and serving as a cylinder; and
    적어도 하나의 연질의 밀폐막으로 이루어지며 상기 개구부(11)에 가까운 위치에 접합되는 가변형 피스톤(20);을 포함하여 구성되며,And a variable piston 20 made of at least one soft sealing film and bonded to a position close to the opening 11.
    상기 가변형 피스톤(20)과 상기 압력용기(10)가 이루는 폐쇄된 공간인 제1압력공간(A)은 자신의 외부공간인 제n압력공간(N)과 서로 다른 압력으로 설정되고,The first pressure space A, which is a closed space formed by the variable piston 20 and the pressure vessel 10, is set to a different pressure from the nth pressure space N, which is an external space thereof.
    상기 가변형 피스톤(20)은 적어도 일부의 밀폐막이 상기 압력용기(10)의 내면에 밀착 가능하도록 형성되며,The variable piston 20 is formed such that at least a part of the sealing membrane is in close contact with the inner surface of the pressure vessel 10,
    또한 상기 밀폐막은 상기 압력용기의 바깥쪽 방향을 인장방향으로 하여 잡아당겨졌을 때 적어도 일부분이 상기 압력용기 내면에 밀착된 상태에서 박리되면서 상기 가변형 피스톤(20)을 이동시키는 것을 특징으로 하는 탄성구조체(30).In addition, the sealing membrane is an elastic structure, characterized in that when moving the variable piston (20) while at least part is peeled in close contact with the inner surface of the pressure vessel when pulled in the direction of the outer direction of the pressure vessel ( 30).
  2. 제1항에 있어서,The method of claim 1,
    상기 밀폐막은 상기 인장방향으로 탄성 변형되지 않는 넓이와 강도로 형성되는 것을 특징으로 하는 탄성구조체(30).The sealing film is an elastic structure 30, characterized in that formed in a width and strength that is not elastically deformed in the tensile direction.
  3. 제2항에 있어서,The method of claim 2,
    상기 밀폐막은 상기 인장방향으로 다수의 제1합성섬유(21)가 배열되어 구성되는 탄성구조체(30).The sealing membrane is an elastic structure (30) is composed of a plurality of first synthetic fibers 21 are arranged in the tensile direction.
  4. 제3항에 있어서,The method of claim 3,
    상기 밀폐막은 상기 제1합성섬유(21)가 배열된 방향과 수직하거나 비스듬하게 탄성 또는 비탄성의 제2합성섬유(22)가 배열되어 구성되는 것을 특징으로 하는 탄성구조체(30).The sealing membrane is an elastic structure (30) characterized in that the elastic or inelastic second synthetic fibers 22 are arranged perpendicularly or obliquely to the direction in which the first synthetic fibers (21) are arranged.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 압력용기(10)는 상기 가변형 피스톤(20)의 변위방향에 따라 상기 제1압력공간 또는 제n압력공간으로부터 받는 압력의 압력작용면적이 변화하도록 형성되는 탄성구조체(30).The pressure vessel (10) is an elastic structure (30) formed to change the pressure action area of the pressure received from the first pressure space or the n-th pressure space in accordance with the displacement direction of the variable piston (20).
  6. 제5항에 있어서,The method of claim 5,
    상기 압력작용면적을 상기 변위방향으로 투영시킨 투영면적은 원형 또는 타원 또는 정다각형 또는 가늘고 긴 다각형으로 형성되는 탄성구조체(30).And a projection area projecting the pressure action area in the displacement direction is formed in a circular or ellipse or regular polygon or elongated polygon.
  7. 제6항에 있어서,The method of claim 6,
    상기 압력용기(10)는 상기 밀폐막과 상기 압력용기가 이루는 공간에 압력유체가 유출입되기 위한 압력유출입관(23)을 더 포함하여 구성되는 탄성구조체(30).The pressure vessel (10) is an elastic structure (30) further comprises a pressure outflow pipe (23) for the flow in and out of the pressure fluid in the space formed by the sealing membrane and the pressure vessel.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 개구부(11) 근방에는 상기 압력작용면적이 일시적으로 증가하는 압력증가공간(12)이 더 형성되는 탄성구조체(30).The elastic structure (30) is further formed in the vicinity of the opening 11, the pressure increasing space 12 which temporarily increases the pressure action area.
  9. 제8항에 있어서,The method of claim 8,
    상기 압력용기(10)의 내부면은 각진 모서리 없이 매끄럽게 형성되며 상기 개구부(11)의 반대편인 상기 압력용기(11) 타단에는 압력조절을 위한 밸브(14)와 압력상태표시계(15)를 위한 돌출공간(13)이 더 형성되는 탄성구조체(30).The inner surface of the pressure vessel 10 is formed smoothly without angled edges, and the other end of the pressure vessel 11 opposite to the opening 11 protrudes for the valve 14 and the pressure state indicator 15 for pressure control. An elastic structure 30 in which a space 13 is further formed.
  10. 제9항에 있어서,The method of claim 9,
    상기 압력용기(10)는 사용용도에 따라 설정된 허용압력 범위에서 강체에 가까운 특정을 가지며 상기 허용압력 범위를 벗어나는 압력이 작용할 경우 탄성 또는 소성변형 하는 것을 특징으로 하는 탄성구조체(30).The pressure vessel 10 has a specific close to the rigid body in the allowable pressure range set according to the intended use and elastic or plastic deformation when the pressure outside the allowable pressure range is applied to the elastic structure 30.
PCT/KR2013/011070 2012-12-06 2013-12-02 Elastic structure having variable piston made from soft sealing film WO2014088277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0140819 2012-12-06
KR1020120140819A KR101226285B1 (en) 2012-12-06 2012-12-06 Elastic structure with a variable forming pistons that are made of a flexible sealing membrane

Publications (1)

Publication Number Publication Date
WO2014088277A1 true WO2014088277A1 (en) 2014-06-12

Family

ID=47842603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011070 WO2014088277A1 (en) 2012-12-06 2013-12-02 Elastic structure having variable piston made from soft sealing film

Country Status (2)

Country Link
KR (1) KR101226285B1 (en)
WO (1) WO2014088277A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884915A (en) * 2017-04-25 2017-06-23 无锡隆达金属材料有限公司 A kind of nickel-base alloy spring for being applied to general plug envelope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262079B1 (en) * 1986-09-24 1990-06-27 The Goodyear Tire & Rubber Company Air spring with fabric restraining cylinder
KR940009222B1 (en) * 1986-09-24 1994-10-01 더 굿이어 타이어 앤드 러버 캄파니 Air spring
US6199837B1 (en) * 1998-05-01 2001-03-13 Bridgestone/Firestone, Inc. Thermoplastic elastomer air spring
JP2006342940A (en) * 2005-06-10 2006-12-21 Japan Atom Power Co Ltd:The Air spring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005459A1 (en) * 2006-02-07 2007-08-09 Continental Aktiengesellschaft Air spring with external guide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262079B1 (en) * 1986-09-24 1990-06-27 The Goodyear Tire & Rubber Company Air spring with fabric restraining cylinder
KR940009222B1 (en) * 1986-09-24 1994-10-01 더 굿이어 타이어 앤드 러버 캄파니 Air spring
US6199837B1 (en) * 1998-05-01 2001-03-13 Bridgestone/Firestone, Inc. Thermoplastic elastomer air spring
JP2006342940A (en) * 2005-06-10 2006-12-21 Japan Atom Power Co Ltd:The Air spring

Also Published As

Publication number Publication date
KR101226285B1 (en) 2013-01-28

Similar Documents

Publication Publication Date Title
WO2014088278A1 (en) Actuator driven by variable piston made from soft sealing film
Daerden et al. Pneumatic artificial muscles: actuators for robotics and automation
US7086322B2 (en) Fluidic device
US11628560B2 (en) Programmable multi-scale fluidic artificial muscles and pistons
US10465723B2 (en) Soft robotic actuators
CN107088884B (en) Wearable hooped pneumatic inflatable bending flexible driver
Felt et al. Modeling vacuum bellows soft pneumatic actuators with optimal mechanical performance
CN108481318B (en) Variable-rigidity driving rod based on granular body blocking theory and working system thereof
US10683907B2 (en) Spring
US8904919B2 (en) Extensile fluidic muscle actuator
CN101863030B (en) Inflated elongation type pneumatic flexible actuator
US20210197397A1 (en) Control device for adhesion and detachment
CN113601542B (en) Variable-rigidity flexible manipulator based on bionic adhesion
CN110253602A (en) A kind of inner bearing type fixture
WO2014088277A1 (en) Elastic structure having variable piston made from soft sealing film
CN102756376A (en) Finger device for underactuated robot adapting along with shapes automatically
CN113104576A (en) Soft pneumatic claw
US7926794B2 (en) Air spring rolling-lobe flexible member made of elastomeric material
JP2022537027A (en) Retraction device for use as actuator, pump or compressor
CN116442207B (en) Software driving unit and modularized software mechanical arm with same
CN112775941B (en) Pneumatic-driven variable-rigidity flexible actuator
CN111203912B (en) Five-degree-of-freedom flexible arm driven by fluid and tendon rope in mixed mode
CN113954061B (en) Double-acting linear flexible pneumatic driver and preparation and use methods thereof
GB2207702A (en) Pneumatic or hydraulic actuator mechanism (an artificial muscle)
CN113997315A (en) Three-degree-of-freedom pneumatic variable-rigidity flexible mechanical arm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861412

Country of ref document: EP

Kind code of ref document: A1