WO2014088066A1 - High transmission glass - Google Patents

High transmission glass Download PDF

Info

Publication number
WO2014088066A1
WO2014088066A1 PCT/JP2013/082698 JP2013082698W WO2014088066A1 WO 2014088066 A1 WO2014088066 A1 WO 2014088066A1 JP 2013082698 W JP2013082698 W JP 2013082698W WO 2014088066 A1 WO2014088066 A1 WO 2014088066A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
transparent conductive
conductive film
highly permeable
present
Prior art date
Application number
PCT/JP2013/082698
Other languages
French (fr)
Japanese (ja)
Inventor
博之 土屋
淳 笹井
近藤 裕己
志堂寺 栄治
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014551137A priority Critical patent/JPWO2014088066A1/en
Priority to CN201380063616.7A priority patent/CN104918895A/en
Publication of WO2014088066A1 publication Critical patent/WO2014088066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a highly permeable glass, and more particularly to a highly permeable glass on which a film such as a transparent conductive film can be formed.
  • Highly transmissive glass having a transparent conductive film on the surface can be used for, for example, solar cell panels and low-reflection glass (Low-E glass).
  • High transmittance glass usually requires high light transmittance. In order to realize this high light transmittance, it is necessary to reduce the coloring components contained in the glass as much as possible. Therefore, a highly permeable glass having a composition with a very small content of iron as a coloring component is used.
  • Patent Document 1 describes a glass plate with a conductive film in which total iron contained in glass is suppressed to less than 0.06% in terms of Fe 2 O 3 .
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a highly permeable glass capable of significantly suppressing peeling of a film placed on the surface.
  • a highly transmissive glass In mass percentage display, Containing more than 0.7% K 2 O, Provided is a highly permeable glass characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 .
  • the logarithm log ( ⁇ ) of the volume resistivity ⁇ ( ⁇ ⁇ cm) at 150 ° C. may be greater than 8.8.
  • the highly transmissive glass according to the present invention is expressed in terms of mass percentage based on oxide, 60-75% SiO 2 , 0-3% Al 2 O 3 , 0-15% CaO, 0-12% MgO, and 5-20% Na 2 O May be included.
  • a transparent conductive film may be formed on the surface.
  • FIG. 1 schematically shows a cross section of a glass product 1 having a high light transmittance.
  • the glass product 1 is formed by forming a transparent conductive film 30 on the surface of a highly transmissive glass 20.
  • reference numeral 25 represents an interface between the highly transmissive glass 20 and the transparent conductive film 30.
  • the transparent conductive film 30 is assumed to contain tin oxide (SnO 2 ) that has been widely used in the past in applications where transparency and conductivity are required.
  • the following can be considered as a peeling mechanism of the transparent conductive film 30 in the glass product 1.
  • sodium ions (Na + ) contained in the highly permeable glass 20 move toward the interface 25 with the transparent conductive film 30.
  • the cause of the movement of sodium ions is not particularly limited.
  • a temperature gradient of the glass product 1 under use conditions, a potential difference due to voltage application, and the like are conceivable.
  • the generated hydrogen reduces tin oxide constituting the transparent conductive film 30 according to the following formula (2) to form metallic tin: 2H 2 + SnO 2 ⁇ Sn + 2H 2 O (2)
  • the inventors of the present application have significant peeling of the transparent conductive film as described above when K 2 O is contained in a predetermined amount or more in the highly permeable glass in which the iron content is suppressed to a certain amount or less. As a result, the present invention has been found.
  • a highly transmissive glass In mass percentage display, Containing more than 0.7% K 2 O, Provided is a highly permeable glass characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 .
  • the highly permeable glass according to the present invention is characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 in terms of mass percentage.
  • the highly permeable glass in the present invention can exhibit high permeability.
  • the solar radiation transmittance at a thickness of 3.2 mm of the highly transmissive glass in one embodiment of the present invention is 90% or more.
  • the light transmittance of the highly transmissive glass is, for example, 90.5% or more, and preferably 90.8% or more.
  • the highly transmissive glass according to the present invention is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage.
  • the volume resistance ⁇ of the highly permeable glass can be increased.
  • volume resistance ( ⁇ ) is an index correlated with the reciprocal of electrical conductivity.
  • the mobility of sodium ions in the glass decreases as the volume resistance ( ⁇ ) of the glass increases.
  • the volume resistance ⁇ increases as the content of potassium contained in the glass increases.
  • the highly permeable glass in the present invention contains a relatively “high concentration” of potassium, which can increase the volume resistance ⁇ of the highly permeable glass. Moreover, the mobility of sodium ions is suppressed by increasing the volume resistance ⁇ of the highly permeable glass. Therefore, when the transparent conductive film is formed on the surface of the highly permeable glass in the present invention, the reaction of the above-described formula (1) is suppressed at the interface between the highly permeable glass and the transparent conductive film, and the transparent conductive film It is possible to significantly suppress peeling of the film.
  • the iron content is preferably 0.02% or less, and 0.01% or less as the total iron amount converted to Fe 2 O 3. It is more preferable that The smaller the iron content, the higher the light transmittance of the highly transmissive glass.
  • the total iron content is expressed as the amount of Fe 2 O 3 according to the standard analysis method, but not all iron present in the glass exists as trivalent iron. Absent. Usually, divalent iron is present in the glass. Divalent iron has an absorption peak mainly in the vicinity of a wavelength of 1000 to 1100 nm, and also absorbs at a wavelength shorter than a wavelength of 800 nm. Trivalent iron has an absorption peak mainly in the vicinity of a wavelength of 400 nm. An increase in divalent iron results in an increase in absorption in the near-infrared region around 1000 nm, which means that Te decreases when expressed in terms of energy transmittance (Te).
  • Te energy transmittance
  • the amount of potassium may be, for example, 1.0% or more, preferably 1.2% or more in terms of K 2 O.
  • the amount of potassium in K 2 O in terms is preferably 5% or less. If the amount of potassium exceeds 5%, the raw material cost will increase significantly. On the other hand, if the amount of potassium exceeds 5%, the viscosity of the glass at a high temperature increases and the solubility deteriorates.
  • the highly transmissive glass according to one embodiment of the present invention may have a logarithm of volume resistivity ⁇ ( ⁇ ⁇ cm) at 150 ° C., that is, log ( ⁇ ) exceeding 8.8.
  • the value of log ( ⁇ ) at 150 ° C. is preferably 8.9 or more, and more preferably 8.95 or more.
  • the volume resistivity ⁇ of the glass is a value measured by a method based on ASTM C657-78.
  • the highly permeable glass according to one embodiment of the present invention may be, for example, soda lime silicate glass.
  • the highly transmissive glass according to an embodiment of the present invention is, for example, expressed in mass percentage on an oxide basis, 60-75% SiO 2 , 0-3% Al 2 O 3 , 0-15% CaO, 0-12% MgO, and 5-20% Na 2 O May be included.
  • SiO 2 is a main component of soda lime silicate glass.
  • the content of SiO 2 is preferably 62 to 73% and more preferably 62 to 72% in terms of mass percentage based on oxide.
  • Al 2 O 3 is a component that improves the weather resistance of the glass.
  • the content of Al 2 O 3 is preferably 0 to 2.8%, more preferably 0 to 2.5% in terms of mass percentage based on oxide.
  • CaO is a component that promotes the melting of the glass raw material and adjusts the viscosity and the coefficient of thermal expansion.
  • the content of CaO is preferably 3 to 12%, more preferably 3 to 11% in terms of mass percentage based on oxide.
  • MgO is a component that promotes the melting of the glass raw material and adjusts the viscosity, thermal expansion coefficient, and the like.
  • the content of MgO is preferably 2 to 12% and more preferably 2 to 6% in terms of mass percentage based on oxide.
  • Na 2 O is a component that promotes melting of the glass raw material.
  • the content of Na 2 O is preferably 7 to 19% and more preferably 9 to 17% in terms of mass percentage based on oxide.
  • the highly transmissive glass according to an embodiment of the present invention may further include TiO 2 , ZrO 2 , and Li 2 O.
  • the content of TiO 2 is preferably 0 to 2% in terms of oxide-based mass percentage. If the content of TiO 2 exceeds 2%, the glass plate may be colored.
  • the ZrO 2 content is preferably 0 to 3% in terms of mass percentage based on oxide. When the content of Zr exceeds 3%, the melting characteristics deteriorate.
  • Li 2 O may promote melting of glass raw material, to lower the melting temperature.
  • the content of Li 2 O is 0 to 3% in terms of mass percentage based on oxide. When the content of Li 2 O exceeds 3%, the stability of the glass deteriorates. Moreover, raw material cost will rise remarkably.
  • the highly transmissive glass according to an embodiment of the present invention may include SO 3 , SnO 2 , Sb 2 O 3 , and the like used as a fining agent.
  • the highly transmissive glass is: (I) mixing a glass matrix composition raw material weighed to a target composition with other additives to prepare a glass raw material; (Ii) melting the glass raw material to produce molten glass; (Iii) after refining the molten glass, forming a glass plate having a predetermined thickness by a float method or a downdraw method (fusion method); (Iv) cooling the glass plate, and (V) cutting the glass plate to a predetermined size, It is manufactured through.
  • dolomite having a low iron content as a glass matrix composition raw material (mainly including a mixture of magnesium carbonate (MgCO 3 ) and calcium carbonate (CaCO 3 ))
  • a glass matrix composition raw material mainly including a mixture of magnesium carbonate (MgCO 3 ) and calcium carbonate (CaCO 3 )
  • raw materials containing sodium carbonate (Na 2 CO 3 ) and alumina (Al 2 O 3 ) or aluminum hydroxide (Al (OH) 3 have been used.
  • step (i) the glass matrix composition raw material is adjusted so that the high-permeability glass after production contains K 2 O exceeding 0.7%.
  • the highly permeable glass after production has a significantly high volume resistivity ⁇ , and even if a transparent conductive film is formed on the surface of the highly permeable glass, the peeling of the transparent conductive film is significantly suppressed. Can do.
  • an additive may be added to the glass raw material.
  • the additive may be, for example, cullet and clarifier.
  • the fining agent may be, for example, SO 3 , SnO 2 , or Sb 2 O 3 .
  • the glass raw material is melted by, for example, continuously supplying the glass raw material to a glass melting furnace (melting kiln), and by using heavy oil, gas, electricity, etc. It may be performed by heating to ° C.
  • a highly transmissive glass according to an embodiment of the present invention can be manufactured.
  • a transparent conductive film may be provided on the surface of the highly transmissive glass according to an embodiment of the present invention.
  • Examples of such a transparent conductive film include a film containing SnO 2 as a main component, a film containing ZnO as a main component, and a film containing tin-doped indium oxide (ITO) as a main component.
  • the “main component” means that the component is contained in 90% or more in terms of oxide based mass percentage.
  • film made of SnO 2 film made of fluorine-doped tin oxide (FTO), and film or the like made of antimony-doped tin oxide.
  • FTO fluorine-doped tin oxide
  • Such a transparent conductive film may be formed on the highly transmissive glass according to the present invention by, for example, a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method, an ion plating method, or a spray method.
  • the thickness of the transparent conductive film may be, for example, in the range of 200 nm to 1200 nm.
  • the highly transmissive glass according to an embodiment of the present invention is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. Therefore, it is possible to obtain a transparent conductive film that hardly peels off from the highly permeable glass.
  • FIG. 2 shows a thin film solar cell provided with a highly transmissive glass according to an embodiment of the present invention.
  • the thin film solar cell 100 is configured by disposing an alkali barrier film 130 and a thin film solar cell element 140 on one surface of a glass plate 120.
  • an antireflection film or the like may be provided on the other surface of the glass plate 120 (that is, the surface opposite to the surface on which the thin film solar cell element 140 is formed).
  • the thin film solar cell 100 may be a thin film silicon solar cell or a CdTe thin film solar cell.
  • the alkali barrier film 130 is installed to prevent the sodium ions in the glass plate 120 from diffusing toward the thin film solar cell element 140 during use of the thin film solar cell 100. However, the alkali barrier film 130 may be omitted.
  • the thin film solar cell element 140 is configured by laminating a transparent electrode layer 150, a photoelectric conversion layer (that is, a power generation layer) 160, and a back electrode layer 170 in this order from the side close to the glass plate 120.
  • the transparent electrode layer 150 is made of a transparent conductive film such as tin oxide (SnO 2 ) or ITO.
  • the photoelectric conversion layer 160 is a layer made of a thin film semiconductor.
  • the thin film semiconductor include an amorphous silicon semiconductor, a microcrystalline silicon semiconductor, a compound semiconductor (eg, chalcopyrite semiconductor, CdTe semiconductor, etc.), an organic semiconductor, and the like.
  • the back electrode layer 170 may be made of, for example, a material that does not transmit light (for example, silver, aluminum, or the like) or a material that transmits light (for example, ITO, SnO 2 , or ZnO).
  • the glass plate 120 is comprised with the highly permeable glass by one Example of this invention which has the above characteristics. That is, the glass plate 120 is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. For this reason, the glass plate 120 has a significantly high volume resistivity ⁇ and can significantly suppress the movement of sodium ions.
  • FIG. 3 shows a multilayer glass provided with a highly transmissive glass according to an embodiment of the present invention.
  • the multilayer glass 200 is configured by laminating a first glass plate 212A and a second glass plate 212B so that a gap 260 is formed therebetween.
  • a frame-shaped sealing material 265 is disposed around the gap 260, so that the gap 260 can be blocked from the external environment.
  • the first glass plate 212A is configured by laminating an alkali barrier film 240 and a transparent conductive film 250 in this order on a Low-E glass substrate 230 having Low-E (Low Emissivity) performance.
  • the alkali barrier film 240 may be omitted.
  • a low reflection film or the like may be provided on the surface of the second glass plate 212B far from the gap 260.
  • the glass substrate 230 is made of a highly transmissive glass according to an embodiment of the present invention having the above-described characteristics. That is, the glass substrate 230 is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. For this reason, the glass substrate 230 has a significantly high volume resistivity ⁇ , and can significantly suppress the movement of sodium ions.
  • the multilayer glass 200 provided with such a glass substrate 230 even if the alkali barrier film 240 is not present, peeling of the transparent conductive film 250 from the glass substrate 230 can be significantly suppressed. .
  • Examples 1 to 8 were produced by the method described below, and their characteristics were evaluated.
  • Examples 1 to 6 are examples, and examples 7 to 8 are comparative examples.
  • Example 1 Each raw material was mixed so as to have the composition shown in the column of Example 1 in Table 1 below to prepare a glass raw material.
  • the obtained glass raw material was put in a crucible and heated in an electric furnace at 1500 ° C. for 3 hours to obtain molten glass.
  • the glass plate was manufactured by pouring molten glass on a carbon plate and cooling it. Thereafter, both surfaces of the glass plate were polished to obtain a glass plate having a thickness of 3.2 mm (the glass plate according to Example 1).
  • Example 2 Each raw material was mixed so as to have a composition shown in the column of Example 2 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 2) was obtained in the same manner as in Example 1.
  • Example 3 Each raw material was mixed so as to have a composition shown in the column of Example 3 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 3) was obtained in the same manner as in Example 1.
  • Example 4 Each raw material was mixed so that the composition shown in the column of Example 4 in Table 1 was prepared, thereby preparing a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 4) was obtained in the same manner as in Example 1.
  • Example 5 Each raw material was mixed so as to have the composition shown in the column of Example 5 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 5) was obtained in the same manner as in Example 1.
  • Example 6 Each raw material was mixed so as to have the composition shown in the column of Example 6 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 6) was obtained in the same manner as in Example 1.
  • Example 7 Each raw material was mixed so as to have a composition shown in the column of Example 7 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 7) was obtained in the same manner as in Example 1.
  • Example 8 Each raw material was mixed so as to have a composition shown in the column of Example 8 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 8) was obtained in the same manner as in Example 1.
  • the energy transmittance was measured using the glass samples according to Examples 1 to 8.
  • the energy transmittance was measured by LAMBDA950 manufactured by PerkinElmer.
  • the “energy transmittance” is the total solar energy transmittance defined in ISO 9050: 2003 (E).
  • the amount of divalent iron in the glass plate necessary for the calculation of Redox was determined by conversion from the transmittance at a wavelength of 1000 nm obtained by measuring the transmittance.
  • volume resistivity measurement The volume resistivity ⁇ of the glass plates according to Examples 1 to 8 was measured. The volume resistivity ⁇ was measured by a method based on ASTM C657-78.
  • a metal Al film was formed by vapor deposition on both surfaces of each glass plate having a size of about 50 mm ⁇ about 50 mm, and these were used as electrodes for measurement. Moreover, the measurement was implemented in the state which hold
  • Example 1 The measurement results are summarized in Table 1 above. Examples 1 to 7 are predicted values, and Example 8 is an actually measured value.
  • DHB test A DHB test was performed using the glass plates according to Examples 1 to 8.
  • the DHB test is an abbreviation of the Dump Heat Bias test, and in this test, it is possible to grasp the peel resistance of the transparent conductive film installed on the surface of the glass plate.
  • DHB test is conducted as follows.
  • a glass plate (sample) with a transparent conductive film is prepared.
  • the voltage application device has two electrodes (anode / cathode) and the sample is placed between the two electrodes.
  • the anode is made of a graphite plate
  • the cathode is made of a copper plate coated with aluminum.
  • the sample is placed so that the transparent conductive film side is in contact with the anode and the exposed surface side of the glass plate is in contact with the cathode.
  • a voltage is applied between both electrodes, that is, the sample.
  • the applied voltage is 500 V
  • the application time is 15 minutes.
  • the sample is exposed to the transparent conductive film side of the sample in a high temperature / high humidity environment for 1 hour.
  • the water temperature is 55 ° C.
  • the environmental temperature is 50 ⁇ 2 ° C.
  • the relative humidity of the environment is 100%.
  • This operation was performed in a sealed container, and water was kept at the above water temperature at the bottom of the container, and the conductive thin film portion of the sample placed at the top of the container was kept at the above aggregation temperature.
  • the vaporization temperature represents the temperature of the vapor in the container.
  • Such a test is performed by changing the sample temperature at the time of voltage application, and the maximum temperature at which the transparent conductive film of the sample does not peel is defined as the maximum endurance temperature Tmax (° C.).
  • the maximum durable temperature Tmax (° C.) measured by such a DHB test is an index of the peel resistance of the transparent conductive film formed on the sample, that is, the higher the maximum durable temperature Tmax (° C.), the more the glass plate It can be considered that good adhesion is made between the transparent conductive film and the transparent conductive film.
  • a sample having a TiO 2 film, a SiO 2 film, and a tin oxide (SnO 2 ) film formed on one surface of the glass plates according to Examples 1 to 8 was used as a sample for the DHB test.
  • the tin oxide film was prepared by heating the glass plates according to Examples 1 to 8 to 580 ° C., and then by CVD, an TiO 2 film having a thickness of 8 nm, an alkali barrier film made of SiO 2 having a thickness of 25 nm, and a thickness of 550 nm.
  • a transparent conductive film made of SnO 2 was formed.
  • Example 8 having a low K 2 O content has a low temperature T max at which peeling of the transparent conductive film occurs in the DHB test.
  • the temperature T max at which peeling of the transparent conductive film occurs is increased in the DHB test, It was found that peeling of the transparent conductive film from the alkali barrier film can be suppressed over a long period of time.
  • the present invention can be used, for example, for solar cell panels and low reflection glass (Low-E glass).

Abstract

Provided is a high transmission glass characterized in that in mass percentage display more than 0.7% of K2O is included, and the inclusion of total iron converted to Fe2O3 is no more than 0.03%.

Description

高透過性ガラスHigh transmission glass
 本発明は、高透過性ガラスに関し、特に、表面に透明導電膜のような膜が形成され得る高透過性ガラスに関する。 The present invention relates to a highly permeable glass, and more particularly to a highly permeable glass on which a film such as a transparent conductive film can be formed.
 表面に透明導電膜が設置された高透過性ガラスは、例えば、太陽電池用パネルおよび低反射ガラス(Low-Eガラス)等に利用することができる。 Highly transmissive glass having a transparent conductive film on the surface can be used for, for example, solar cell panels and low-reflection glass (Low-E glass).
 高透過性ガラスには、通常、高い光線透過率が要求される。この高い光線透過率を実現するためには、ガラスに含まれる着色成分を極力少なくする必要がある。そのため、高透過性ガラスには、着色成分となる鉄の含有量が極めて少ない組成のものが使用されている。 High transmittance glass usually requires high light transmittance. In order to realize this high light transmittance, it is necessary to reduce the coloring components contained in the glass as much as possible. Therefore, a highly permeable glass having a composition with a very small content of iron as a coloring component is used.
 例えば、特許文献1には、ガラス中に含まれる全鉄を、Fe換算で0.06%未満に抑制した導電膜付きガラス板が記載されている。 For example, Patent Document 1 describes a glass plate with a conductive film in which total iron contained in glass is suppressed to less than 0.06% in terms of Fe 2 O 3 .
特許第4568712号明細書Japanese Patent No. 4568712
 前述のように、ガラス中に含まれる全鉄量を抑制することにより、光線透過率を高めた高透過性ガラスが提案されている。 As described above, there has been proposed a highly transmissive glass in which the light transmittance is increased by suppressing the total amount of iron contained in the glass.
 しかしながら、本願発明者らによれば、そのような高透過性ガラスの表面に、実際に透明導電膜を設置した場合、使用中に、しばしば透明導電膜が剥離するという問題が生じることが見出されている。 However, according to the inventors of the present invention, when a transparent conductive film is actually installed on the surface of such a highly permeable glass, it has been found that the problem arises that the transparent conductive film often peels off during use. Has been.
 本発明は、このような背景に鑑みなされたものであり、本発明では、表面に設置される膜の剥離を有意に抑制可能な高透過性ガラスを提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a highly permeable glass capable of significantly suppressing peeling of a film placed on the surface.
 本発明では、高透過性ガラスであって、
 質量百分率表示で、
 KOを0.7%超含み、
 Feに換算した全鉄を0.03%以下含むことを特徴とする高透過性ガラスが提供される。
In the present invention, a highly transmissive glass,
In mass percentage display,
Containing more than 0.7% K 2 O,
Provided is a highly permeable glass characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 .
 ここで、本発明による高透過性ガラスにおいて、150℃における体積抵抗率ρ(Ω・cm)の対数log(ρ)が、8.8超であっても良い。 Here, in the highly transmissive glass according to the present invention, the logarithm log (ρ) of the volume resistivity ρ (Ω · cm) at 150 ° C. may be greater than 8.8.
 また、本発明による高透過性ガラスは、酸化物基準の質量百分率表示で、
 60~75%のSiO
 0~3%のAl
 0~15%のCaO、
 0~12%のMgO、および
 5~20%のNa
 を含んでも良い。
Moreover, the highly transmissive glass according to the present invention is expressed in terms of mass percentage based on oxide,
60-75% SiO 2 ,
0-3% Al 2 O 3 ,
0-15% CaO,
0-12% MgO, and 5-20% Na 2 O
May be included.
 また、本発明による高透過性ガラスにおいて、表面に透明導電膜が形成されていても良い。 Further, in the highly transmissive glass according to the present invention, a transparent conductive film may be formed on the surface.
 本発明では、表面に設置される膜の剥離を有意に抑制可能な高透過性ガラスを提供することができる。 In the present invention, it is possible to provide a highly permeable glass capable of significantly suppressing peeling of a film placed on the surface.
ガラス製品における透明導電膜の剥離現象を説明するための模式図である。It is a schematic diagram for demonstrating the peeling phenomenon of the transparent conductive film in glassware. 本発明の一実施例による高透過性ガラスを備える薄膜太陽電池を概略的に示した図である。It is the figure which showed roughly the thin film solar cell provided with the highly permeable glass by one Example of this invention. 本発明の一実施例による高透過性ガラスを備える複層ガラスを概略的に示した図である。It is the figure which showed schematically the multilayer glass provided with the highly permeable glass by one Example of this invention.
 以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.
 前述のように、本願発明者らによれば、高透過性ガラスの表面に透明導電膜を設置して構成されたガラス製品において、ガラス製品の使用中に、しばしば透明導電膜が剥離するという問題が生じることが見出されている。 As described above, according to the inventors of the present invention, in a glass product configured by installing a transparent conductive film on the surface of a highly permeable glass, the problem that the transparent conductive film often peels off during use of the glass product. Has been found to occur.
 まず、図面を参照して、この透明導電膜の剥離現象について考察する。 First, the peeling phenomenon of this transparent conductive film will be considered with reference to the drawings.
 図1には、高い光線透過率を有するガラス製品1の断面を模式的に示す。 FIG. 1 schematically shows a cross section of a glass product 1 having a high light transmittance.
 図1に示すように、このガラス製品1は、高透過性ガラス20の表面に、透明導電膜30を形成することにより形成される。図1において、参照符号25は、高透過性ガラス20と透明導電膜30の界面を表す。ここで、透明導電膜30は、透明性および導電性が要求される用途において、従来から広く使用されている酸化スズ(SnO)を含むものと仮定する。 As shown in FIG. 1, the glass product 1 is formed by forming a transparent conductive film 30 on the surface of a highly transmissive glass 20. In FIG. 1, reference numeral 25 represents an interface between the highly transmissive glass 20 and the transparent conductive film 30. Here, the transparent conductive film 30 is assumed to contain tin oxide (SnO 2 ) that has been widely used in the past in applications where transparency and conductivity are required.
 ここで、ガラス製品1における透明導電膜30の剥離のメカニズムとして、以下のことが考えられる。 Here, the following can be considered as a peeling mechanism of the transparent conductive film 30 in the glass product 1.
 ガラス製品1の使用中に、高透過性ガラス20に含まれるナトリウムイオン(Na)は、透明導電膜30との界面25の方に移動する。ナトリウムイオンの移動が生じる要因は、特に限られないが、例えば、使用条件下でのガラス製品1の温度勾配や、電圧印加による電位差等が考えられる。 During use of the glass product 1, sodium ions (Na + ) contained in the highly permeable glass 20 move toward the interface 25 with the transparent conductive film 30. The cause of the movement of sodium ions is not particularly limited. For example, a temperature gradient of the glass product 1 under use conditions, a potential difference due to voltage application, and the like are conceivable.
 高透過性ガラス20と透明導電膜30の界面25に移動したナトリウムイオンは、ここで、透明導電膜30中に含まれるキャリアである自由電子および水分と反応する。この際に、(1)式の反応式に示すように水素が発生する:
 
   2Na+2HO+2e → 2NaOH+H   (1)式
 
The sodium ions that have moved to the interface 25 between the highly transmissive glass 20 and the transparent conductive film 30 react with free electrons and moisture that are carriers contained in the transparent conductive film 30 here. At this time, hydrogen is generated as shown in the reaction formula (1):

2Na + + 2H 2 O + 2e → 2NaOH + H 2 (1) formula
 発生した水素は、以下の(2)式により、透明導電膜30を構成する酸化スズを還元し、金属スズが形成される:
 
   2H+SnO → Sn+2HO   (2)式
 
The generated hydrogen reduces tin oxide constituting the transparent conductive film 30 according to the following formula (2) to form metallic tin:

2H 2 + SnO 2 → Sn + 2H 2 O (2) Formula
 透明導電膜30の還元により界面25近傍に生じた金属スズは、高透過性ガラス20と透明導電膜30の間の密着性を低下させる。その結果、高透過性ガラス20から、透明導電膜30が剥離するものと考えられる。(なお、以上の考察は、高透過性ガラスを備える製品において、しばしば生じる透明導電膜の剥離現象から発明者等が想像したものであって、実際の透明導電膜の剥離メカニズムは、これとは異なっていても良い。)
 以上の考察を元に、本願発明者らは、高透過性ガラスの組成と、透明導電膜の剥離との相関について、鋭意研究を進めてきた。その結果、本願発明者らは、鉄の含有量が一定量以下に抑制された高透過性ガラスにおいて、KOが所定量以上含まれる場合に、前述のような透明導電膜の剥離を有意に抑制することができることを見出し、本願発明に至った。
Metal tin produced in the vicinity of the interface 25 due to the reduction of the transparent conductive film 30 reduces the adhesion between the highly transmissive glass 20 and the transparent conductive film 30. As a result, it is considered that the transparent conductive film 30 peels from the highly permeable glass 20. (In addition, the above consideration is what the inventors have imagined from the phenomenon of peeling of the transparent conductive film that often occurs in products with high-transmissivity glass, and the actual peeling mechanism of the transparent conductive film is May be different.)
Based on the above considerations, the inventors of the present application have made extensive studies on the correlation between the composition of the highly transmissive glass and the peeling of the transparent conductive film. As a result, the inventors of the present application have significant peeling of the transparent conductive film as described above when K 2 O is contained in a predetermined amount or more in the highly permeable glass in which the iron content is suppressed to a certain amount or less. As a result, the present invention has been found.
 すなわち、本発明では、高透過性ガラスであって、
 質量百分率表示で、
 KOを0.7%超含み、
 Feに換算した全鉄を0.03%以下含むことを特徴とする高透過性ガラスが提供される。
That is, in the present invention, a highly transmissive glass,
In mass percentage display,
Containing more than 0.7% K 2 O,
Provided is a highly permeable glass characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 .
 本発明による高透過性ガラスは、質量百分率表示で、Feに換算した全鉄を0.03%以下含むという特徴を有する。 The highly permeable glass according to the present invention is characterized by containing 0.03% or less of total iron converted to Fe 2 O 3 in terms of mass percentage.
 鉄の含有量をこのような範囲に低下させることにより、本願発明における高透過性ガラスは、高い透過性を発揮することができる。 By reducing the iron content in such a range, the highly permeable glass in the present invention can exhibit high permeability.
 例えば、本発明の一実施例における高透過性ガラスの厚み3.2mmにおける日射透過率は、90%以上である。高透過性ガラスの光線透過率は、例えば、90.5%以上であり、90.8%以上であることが好ましい。 For example, the solar radiation transmittance at a thickness of 3.2 mm of the highly transmissive glass in one embodiment of the present invention is 90% or more. The light transmittance of the highly transmissive glass is, for example, 90.5% or more, and preferably 90.8% or more.
 また、本発明による高透過性ガラスは、質量百分率表示で、KOを0.7%超含むという特徴を有する。 The highly transmissive glass according to the present invention is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage.
 高透過性ガラスに含まれるKOの含有量をこのような範囲に調整することにより、高透過性ガラスの体積抵抗ρを上昇させることができる。 By adjusting the content of K 2 O contained in the highly permeable glass to such a range, the volume resistance ρ of the highly permeable glass can be increased.
 ここで、「体積抵抗(ρ)」とは、電気伝導度の逆数と相関する指標である。一般に、ガラスの体積抵抗(ρ)が大きくなるほど、ガラス中のナトリウムイオンの移動性は低下すると言える。また、ガラス中に含まれるカリウムイオンの量が多くなるほど、ナトリウムイオンの移動が抑制されるため、ガラスに含まれるカリウムの含有量が高くなるほど、体積抵抗ρは上昇する。 Here, “volume resistance (ρ)” is an index correlated with the reciprocal of electrical conductivity. In general, it can be said that the mobility of sodium ions in the glass decreases as the volume resistance (ρ) of the glass increases. Moreover, since the movement of sodium ions is suppressed as the amount of potassium ions contained in the glass increases, the volume resistance ρ increases as the content of potassium contained in the glass increases.
 本発明における高透過性ガラスは、比較的「高濃度」のカリウムを含んでおり、これにより、高透過性ガラスの体積抵抗ρを上昇させることができる。また、高透過性ガラスの体積抵抗ρが上昇することにより、ナトリウムイオンの移動性が抑制される。従って、本発明における高透過性ガラスの表面に透明導電膜を形成した場合、高透過性ガラスと透明導電膜の界面において、前述の(1)式の反応が生じることが抑制され、透明導電膜の剥離を有意に抑制することが可能となる。 The highly permeable glass in the present invention contains a relatively “high concentration” of potassium, which can increase the volume resistance ρ of the highly permeable glass. Moreover, the mobility of sodium ions is suppressed by increasing the volume resistance ρ of the highly permeable glass. Therefore, when the transparent conductive film is formed on the surface of the highly permeable glass in the present invention, the reaction of the above-described formula (1) is suppressed at the interface between the highly permeable glass and the transparent conductive film, and the transparent conductive film It is possible to significantly suppress peeling of the film.
 ここで、本発明の一実施例による高透過性ガラスにおいて、鉄の含有量は、Feに換算した全鉄量として、0.02%以下であることが好ましく、0.01%以下であることがより好ましい。鉄の含有量が少ないほど、高透過性ガラスの光線透過率を高めることができる。 Here, in the highly permeable glass according to one embodiment of the present invention, the iron content is preferably 0.02% or less, and 0.01% or less as the total iron amount converted to Fe 2 O 3. It is more preferable that The smaller the iron content, the higher the light transmittance of the highly transmissive glass.
 本明細書においては、全鉄の含有量を、標準分析法に従ったFeの量として表しているが、ガラス中に存在する鉄がすべて3価の鉄として存在しているわけではない。通常、ガラス中には2価の鉄が存在している。2価の鉄は、主として波長1000~1100nm付近に吸収のピークを有し、波長800nmよりも短い波長にも吸収を有し、3価の鉄は、主として波長400nm付近に吸収のピークを有する。2価の鉄の増加は、1000nm前後の近赤外線領域の吸収の増加になり、これをエネルギー透過率(Te)で表現するとTeが低下することを意味する。そのため、Teについて着目した場合、Feに換算した全鉄の含有量を抑えることで、2価の鉄よりも3価の鉄を多くでき、Teの低下を抑える。従って、Teの低下を抑える点では、全鉄量を減らし、Feに換算した全鉄中のFeに換算した2価の鉄の質量割合(以下、Redoxと記す。)を低く抑えることが好ましい。 In this specification, the total iron content is expressed as the amount of Fe 2 O 3 according to the standard analysis method, but not all iron present in the glass exists as trivalent iron. Absent. Usually, divalent iron is present in the glass. Divalent iron has an absorption peak mainly in the vicinity of a wavelength of 1000 to 1100 nm, and also absorbs at a wavelength shorter than a wavelength of 800 nm. Trivalent iron has an absorption peak mainly in the vicinity of a wavelength of 400 nm. An increase in divalent iron results in an increase in absorption in the near-infrared region around 1000 nm, which means that Te decreases when expressed in terms of energy transmittance (Te). Therefore, when paying attention to Te, by suppressing the content of total iron converted to Fe 2 O 3 , trivalent iron can be increased more than divalent iron, and a decrease in Te is suppressed. Therefore, in terms of suppressing the decrease of Te, reduce Zentetsuryou, mass percentage of divalent iron in terms of Fe 2 O 3 in the total iron in terms of Fe 2 O 3 (hereinafter referred to as Redox.) The It is preferable to keep it low.
 一方、本発明の一実施例による高透過性ガラスにおいて、カリウムの量は、KO換算で、例えば、1.0%以上であっても良く、1.2%以上であることが好ましい。なお、カリウムの量は、KO換算で、5%以下であることが好ましい。カリウムの量が5%を超えると、原料コストが有意に上昇してしまう。また、カリウムの量が5%を超えると、ガラスの高温での粘性が上昇し、溶解性が悪化する。 On the other hand, in the highly permeable glass according to one embodiment of the present invention, the amount of potassium may be, for example, 1.0% or more, preferably 1.2% or more in terms of K 2 O. The amount of potassium in K 2 O in terms, is preferably 5% or less. If the amount of potassium exceeds 5%, the raw material cost will increase significantly. On the other hand, if the amount of potassium exceeds 5%, the viscosity of the glass at a high temperature increases and the solubility deteriorates.
 また、本発明の一実施例による高透過性ガラスは、150℃における体積抵抗率ρ(Ω・cm)の対数、すなわちlog(ρ)が8.8超であっても良い。150℃におけるlog(ρ)の値は、8.9以上であることが好ましく、8.95以上であることがより好ましい。 Also, the highly transmissive glass according to one embodiment of the present invention may have a logarithm of volume resistivity ρ (Ω · cm) at 150 ° C., that is, log (ρ) exceeding 8.8. The value of log (ρ) at 150 ° C. is preferably 8.9 or more, and more preferably 8.95 or more.
 なお、本願において、ガラスの体積抵抗率ρは、ASTM C657-78に準拠した方法で測定された値である。 In the present application, the volume resistivity ρ of the glass is a value measured by a method based on ASTM C657-78.
 本発明の一実施例による高透過性ガラスは、例えば、ソーダライムシリケートガラスであっても良い。 The highly permeable glass according to one embodiment of the present invention may be, for example, soda lime silicate glass.
 本発明の一実施例による高透過性ガラスは、例えば、酸化物基準の質量百分率表示で、
 60~75%のSiO
 0~3%のAl
 0~15%のCaO、
 0~12%のMgO、および
 5~20%のNa
 を含んでも良い。
The highly transmissive glass according to an embodiment of the present invention is, for example, expressed in mass percentage on an oxide basis,
60-75% SiO 2 ,
0-3% Al 2 O 3 ,
0-15% CaO,
0-12% MgO, and 5-20% Na 2 O
May be included.
 ここで、SiOは、ソーダライムシリケートガラスの主成分である。 Here, SiO 2 is a main component of soda lime silicate glass.
 SiOの含有量が60%未満では、ガラスの安定性が低下する。また、SiOの含有量が75%を超えると、ガラスの溶解温度が上昇し、溶解性が悪くなるおそれがある。SiOの含有量は、酸化物基準の質量百分率表示で、62~73%が好ましく、62~72%がより好ましい。 When the content of SiO 2 is less than 60%, the stability of the glass is lowered. If the content of SiO 2 exceeds 75%, there is a possibility that the melting temperature of the glass is increased, the solubility becomes poor. The content of SiO 2 is preferably 62 to 73% and more preferably 62 to 72% in terms of mass percentage based on oxide.
 Alは、ガラスの耐候性を向上させる成分である。 Al 2 O 3 is a component that improves the weather resistance of the glass.
 Alの含有量が3%を超えると、溶解性が悪化する。また、Alの含有量が3%を超えると、体積抵抗が低くなる。Alの含有量は、酸化物基準の質量百分率表示で、0~2.8%が好ましく、0~2.5%がより好ましい。 When the content of Al 2 O 3 exceeds 3%, the solubility is deteriorated. If the content of Al 2 O 3 exceeds 3%, the volume resistivity decreases. The content of Al 2 O 3 is preferably 0 to 2.8%, more preferably 0 to 2.5% in terms of mass percentage based on oxide.
 CaOは、ガラス原料の溶融を促進するとともに、粘性および熱膨張係数等を調整する成分である。 CaO is a component that promotes the melting of the glass raw material and adjusts the viscosity and the coefficient of thermal expansion.
 CaOの含有量が15%を超えると、失透温度が上昇する。CaOの含有量は、酸化物基準の質量百分率表示で、3~12%が好ましく、3~11%がより好ましい。 When the CaO content exceeds 15%, the devitrification temperature rises. The content of CaO is preferably 3 to 12%, more preferably 3 to 11% in terms of mass percentage based on oxide.
 MgOは、ガラス原料の溶融を促進するとともに、粘性および熱膨張係数等を調整する成分である。 MgO is a component that promotes the melting of the glass raw material and adjusts the viscosity, thermal expansion coefficient, and the like.
 MgOの含有量が12%を超えると、失透温度が上昇する。MgOの含有量は、酸化物基準の質量百分率表示で、2~12%が好ましく、2~6%がより好ましい。 When the MgO content exceeds 12%, the devitrification temperature rises. The content of MgO is preferably 2 to 12% and more preferably 2 to 6% in terms of mass percentage based on oxide.
 NaOは、ガラス原料の溶融を促進する成分である。 Na 2 O is a component that promotes melting of the glass raw material.
 NaOの含有量が5%未満では、ガラス原料の溶解が難しくなる。また、NaOの含有量が20%を超えると、ガラス板の耐候性および安定性が悪化する。NaOの含有量は、酸化物基準の質量百分率表示で、7~19%が好ましく、9~17%がより好ましい。 When the content of Na 2 O is less than 5%, it is difficult to dissolve the glass raw material. Further, when the content of Na 2 O exceeds 20%, weather resistance and stability of the glass plate may be deteriorated. The content of Na 2 O is preferably 7 to 19% and more preferably 9 to 17% in terms of mass percentage based on oxide.
 なお、本発明の一実施例による高透過性ガラスは、さらに、TiO、ZrO、およびLiOを含んでも良い。 The highly transmissive glass according to an embodiment of the present invention may further include TiO 2 , ZrO 2 , and Li 2 O.
 TiOが含有される場合、TiOの含有量は、酸化物基準の質量百分率表示で、0~2%が好ましい。TiOの含有量が2%を超えると、ガラス板が着色する可能性がある。 When TiO 2 is contained, the content of TiO 2 is preferably 0 to 2% in terms of oxide-based mass percentage. If the content of TiO 2 exceeds 2%, the glass plate may be colored.
 一方、ZrOを含有した場合、ガラスの化学的な耐久性が向上するとともに、弾性率および硬度等の物理的な強度を向上させることができる。ZrOの含有量は、酸化物基準の質量百分率表示で0~3%が好ましい。Zrの含有量が3%を超えると、溶融特性が
悪化する。
On the other hand, when ZrO 2 is contained, the chemical durability of the glass is improved and the physical strength such as the elastic modulus and the hardness can be improved. The ZrO 2 content is preferably 0 to 3% in terms of mass percentage based on oxide. When the content of Zr exceeds 3%, the melting characteristics deteriorate.
 また、LiOは、ガラス原料の溶融を促進し、溶解温度を低下することができる。LiOの含有量は、酸化物基準の質量百分率表示で、0~3%である。LiOの含有量が3%を超えると、ガラスの安定性が悪化する。また、原料コストが著しく上昇してしまう。 Further, Li 2 O may promote melting of glass raw material, to lower the melting temperature. The content of Li 2 O is 0 to 3% in terms of mass percentage based on oxide. When the content of Li 2 O exceeds 3%, the stability of the glass deteriorates. Moreover, raw material cost will rise remarkably.
 また、本発明の一実施例による高透過性ガラスは、清澄剤として用いられるSO、SnO、およびSb等を含んでも良い。 In addition, the highly transmissive glass according to an embodiment of the present invention may include SO 3 , SnO 2 , Sb 2 O 3 , and the like used as a fining agent.
 (本発明の一実施例による高透過性ガラスの製造方法について)
 次に、前述のような特徴を有する、本発明の一実施例による高透過性ガラスの一製造方法について説明する。なお、ここでは、高透過性ガラスがソーダライムシリケートガラスである場合を例に、その製造方法を説明する。
(About the manufacturing method of the highly permeable glass by one Example of this invention)
Next, a method for manufacturing a highly transmissive glass having the above-described features according to an embodiment of the present invention will be described. Here, the manufacturing method will be described by taking as an example the case where the highly transmissive glass is soda lime silicate glass.
 本発明の一実施例による高透過性ガラスは、
(i)目標組成となるように秤量されたガラス母組成原料を、その他の添加剤と混合し、ガラス原料を調製するステップ、
(ii)前記ガラス原料を溶融させて、溶融ガラスを製造するステップ、
(iii)前記溶融ガラスを清澄した後、フロート法またはダウンドロー法(フュージョン法)により、所定の厚さのガラス板を成形するステップ、
(iv)ガラス板を冷却するステップ、および
(V)ガラス板を所定の大きさに切断するステップ、
 を経て製造される。
The highly transmissive glass according to one embodiment of the present invention is:
(I) mixing a glass matrix composition raw material weighed to a target composition with other additives to prepare a glass raw material;
(Ii) melting the glass raw material to produce molten glass;
(Iii) after refining the molten glass, forming a glass plate having a predetermined thickness by a float method or a downdraw method (fusion method);
(Iv) cooling the glass plate, and (V) cutting the glass plate to a predetermined size,
It is manufactured through.
 ここで、従来、高透過性ガラスを製造する際には、ガラス母組成原料として、鉄の含有量の少ないドロマイト(主として、炭酸マグネシウム(MgCO)と炭酸カルシウム(CaCO)の混合物を含む)と、炭酸ナトリウム(NaCO)と、アルミナ(Al)または水酸化アルミニウム(Al(OH))と、を含む原料が使用されてきた。 Here, conventionally, when producing a highly permeable glass, dolomite having a low iron content as a glass matrix composition raw material (mainly including a mixture of magnesium carbonate (MgCO 3 ) and calcium carbonate (CaCO 3 )) And raw materials containing sodium carbonate (Na 2 CO 3 ) and alumina (Al 2 O 3 ) or aluminum hydroxide (Al (OH) 3 ) have been used.
 しかしながら、これらの原料中には、カリウム化合物がほとんど含まれていない。このため、従来のガラス母組成原料を使用して、高透過性ガラスを製造した場合、カリウム含有量の少ないガラスが製造される。 However, these raw materials contain almost no potassium compound. For this reason, when highly permeable glass is manufactured using the conventional glass mother composition raw material, glass with little potassium content is manufactured.
 前述のように、高透過性ガラスにおいて、カリウムは、ガラスの体積抵抗ρに大きな影響を及ぼす。例えば、従来の一般的な製造方法で製造された高透過性ガラスを用いて、この表面に透明導電膜を設置した場合、高透過性ガラス中に含まれるカリウムの量が少なくなる。その結果、ガラスの体積抵抗ρが小さくなり、ナトリウムイオンの移動を抑制することが難しくなる。このため、従来の一般的な製造方法で製造されたカリウム含有量の少ないガラスでは、透明導電膜に剥離が生じる可能性が高くなる。 As described above, in highly permeable glass, potassium has a great influence on the volume resistance ρ of the glass. For example, when a transparent conductive film is placed on this surface using a highly permeable glass produced by a conventional general production method, the amount of potassium contained in the highly permeable glass is reduced. As a result, the volume resistance ρ of the glass becomes small and it becomes difficult to suppress the movement of sodium ions. For this reason, in the glass with little potassium content manufactured with the conventional general manufacturing method, possibility that peeling will arise in a transparent conductive film becomes high.
 これに対して、本発明の一実施例では、(i)のステップにおいて、製造後の高透過性ガラスに0.7%超のKOが含まれるように、ガラス母組成原料が調整される。 On the other hand, in one embodiment of the present invention, in step (i), the glass matrix composition raw material is adjusted so that the high-permeability glass after production contains K 2 O exceeding 0.7%. The
 従って、製造後の高透過性ガラスは、有意に高い体積抵抗率ρを有し、高透過性ガラスの表面に透明導電膜を形成しても、該透明導電膜の剥離を有意に抑制することができる。 Therefore, the highly permeable glass after production has a significantly high volume resistivity ρ, and even if a transparent conductive film is formed on the surface of the highly permeable glass, the peeling of the transparent conductive film is significantly suppressed. Can do.
 なお、(i)のステップにおいて、ガラス原料には、添加剤が添加されても良い。 In the step (i), an additive may be added to the glass raw material.
 添加剤は、例えば、カレットおよび清澄剤等であっても良い。清澄剤は、例えば、SO、SnO、またはSb等であっても良い。 The additive may be, for example, cullet and clarifier. The fining agent may be, for example, SO 3 , SnO 2 , or Sb 2 O 3 .
 また、(ii)のステップにおいて、ガラス原料の溶融は、例えば、ガラス原料を連続的にガラス溶融炉(溶融窯)に供給し、重油、ガス、または電気等により、ガラス原料を約1300~1600℃に加熱することによって行われても良い。 In the step (ii), the glass raw material is melted by, for example, continuously supplying the glass raw material to a glass melting furnace (melting kiln), and by using heavy oil, gas, electricity, etc. It may be performed by heating to ° C.
 (i)~(V)のステップにより、本発明の一実施例による高透過性ガラスを製造することができる。 Through the steps (i) to (V), a highly transmissive glass according to an embodiment of the present invention can be manufactured.
 なお、本発明の一実施例による高透過性ガラスの表面には、透明導電膜が設置されても良い。 A transparent conductive film may be provided on the surface of the highly transmissive glass according to an embodiment of the present invention.
 そのような透明導電膜としては、例えば、SnOを主成分とする膜、ZnOを主成分とする膜、スズドープ酸化インジウム(ITO)を主成分とする膜等が挙げられる。ここで、「主成分」とは、該成分が酸化物基準の質量百分率表示で、90%以上含まれていることを意味する。 Examples of such a transparent conductive film include a film containing SnO 2 as a main component, a film containing ZnO as a main component, and a film containing tin-doped indium oxide (ITO) as a main component. Here, the “main component” means that the component is contained in 90% or more in terms of oxide based mass percentage.
 例えば、SnOを主成分とする膜としては、SnOからなる膜、フッ素ドープ酸化スズ(FTO)からなる膜、およびアンチモンドープ酸化スズからなる膜等が挙げられる。 For example, as a film composed mainly of SnO 2, film made of SnO 2, film made of fluorine-doped tin oxide (FTO), and film or the like made of antimony-doped tin oxide.
 そのような透明導電膜は、例えば、熱分解法、CVD法、スパッタリング法、蒸着法、イオンプレーティング法、またはスプレー法等により、本発明による高透過性ガラス上に成膜されても良い。 Such a transparent conductive film may be formed on the highly transmissive glass according to the present invention by, for example, a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method, an ion plating method, or a spray method.
 透明導電膜の厚さは、例えば、200nm~1200nmの範囲であっても良い。 The thickness of the transparent conductive film may be, for example, in the range of 200 nm to 1200 nm.
 前述のように、本発明の一実施例による高透過性ガラスは、質量百分率表示で、KOを0.7%超含むという特徴を有する。従って、高透過性ガラスからの剥離が生じ難い透明導電膜を得ることができる。 As described above, the highly transmissive glass according to an embodiment of the present invention is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. Therefore, it is possible to obtain a transparent conductive film that hardly peels off from the highly permeable glass.
 (本発明の一実施例による高透過性ガラスの適用例について)
 次に、図面を参照して、前述のような特徴を有する本発明の一実施例による高透過性ガラスの適用例について説明する。
(Application example of highly transmissive glass according to one embodiment of the present invention)
Next, with reference to the drawings, application examples of the highly transmissive glass according to an embodiment of the present invention having the above-described features will be described.
 図2には、本発明の一実施例による高透過性ガラスを備える薄膜太陽電池を示す。 FIG. 2 shows a thin film solar cell provided with a highly transmissive glass according to an embodiment of the present invention.
 図2に示すように、薄膜太陽電池100は、ガラス板120の一方の表面に、アルカリバリア膜130、および薄膜太陽電池素子140を配置することにより構成される。なお、図には示されていないが、ガラス板120の他方の表面(すなわち、薄膜太陽電池素子140の形成面と反対側の表面)には、反射防止膜等が設置されても良い。 As shown in FIG. 2, the thin film solar cell 100 is configured by disposing an alkali barrier film 130 and a thin film solar cell element 140 on one surface of a glass plate 120. Although not shown in the drawing, an antireflection film or the like may be provided on the other surface of the glass plate 120 (that is, the surface opposite to the surface on which the thin film solar cell element 140 is formed).
 薄膜太陽電池100は、薄膜シリコン系太陽電池またはCdTe系薄膜太陽電池であっても良い。 The thin film solar cell 100 may be a thin film silicon solar cell or a CdTe thin film solar cell.
 アルカリバリア膜130は、薄膜太陽電池100の使用中に、ガラス板120中のナトリウムイオンが、薄膜太陽電池素子140の方に拡散することを防止するために設置される。ただし、アルカリバリア膜130は、省略しても良い。 The alkali barrier film 130 is installed to prevent the sodium ions in the glass plate 120 from diffusing toward the thin film solar cell element 140 during use of the thin film solar cell 100. However, the alkali barrier film 130 may be omitted.
 薄膜太陽電池素子140は、ガラス板120に近い側から、透明電極層150、光電変換層(すなわち、発電層)160、および裏面電極層170を、この順に積層することにより構成される。 The thin film solar cell element 140 is configured by laminating a transparent electrode layer 150, a photoelectric conversion layer (that is, a power generation layer) 160, and a back electrode layer 170 in this order from the side close to the glass plate 120.
 透明電極層150は、例えば、酸化スズ(SnO)またはITOのような、透明導電膜で構成される。 The transparent electrode layer 150 is made of a transparent conductive film such as tin oxide (SnO 2 ) or ITO.
 光電変換層160は、薄膜半導体からなる層である。薄膜半導体としては、アモルファスシリコン系半導体、微結晶シリコン系半導体、化合物半導体(例えば、カルコパイライト系半導体、CdTe系半導体等)、および有機系半導体等が挙げられる。 The photoelectric conversion layer 160 is a layer made of a thin film semiconductor. Examples of the thin film semiconductor include an amorphous silicon semiconductor, a microcrystalline silicon semiconductor, a compound semiconductor (eg, chalcopyrite semiconductor, CdTe semiconductor, etc.), an organic semiconductor, and the like.
 裏面電極層170は、例えば、光透過性を有さない材料(例えば、銀、アルミニウム等)、または光透過性を有する材料(例えば、ITO、SnO、ZnO等)で構成されても良い。 The back electrode layer 170 may be made of, for example, a material that does not transmit light (for example, silver, aluminum, or the like) or a material that transmits light (for example, ITO, SnO 2 , or ZnO).
 ここで、薄膜太陽電池100において、ガラス板120は、前述のような特徴を有する本発明の一実施例による高透過性ガラスで構成されている。すなわち、ガラス板120は、質量百分率表示で、KOを0.7%超含むという特徴を有する。このため、ガラス板120は、有意に高い体積抵抗率ρを有し、ナトリウムイオンの移動を有意に抑制することができる。 Here, in the thin film solar cell 100, the glass plate 120 is comprised with the highly permeable glass by one Example of this invention which has the above characteristics. That is, the glass plate 120 is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. For this reason, the glass plate 120 has a significantly high volume resistivity ρ and can significantly suppress the movement of sodium ions.
 従って、このようなガラス板120を備える薄膜太陽電池100では、仮にアルカリバリア膜130が存在しない場合であっても、ガラス板120からの透明電極層150の剥離を、有意に抑制することができる。 Therefore, in the thin film solar cell 100 provided with such a glass plate 120, even if the alkali barrier film 130 is not present, peeling of the transparent electrode layer 150 from the glass plate 120 can be significantly suppressed. .
 次に、図3には、本発明の一実施例による高透過性ガラスを備える複層ガラスを示す。 Next, FIG. 3 shows a multilayer glass provided with a highly transmissive glass according to an embodiment of the present invention.
 図3に示すように、複層ガラス200は、第1のガラス板212Aと第2のガラス板212Bを、間に空隙260が形成されるようにして、積層することにより構成される。 As shown in FIG. 3, the multilayer glass 200 is configured by laminating a first glass plate 212A and a second glass plate 212B so that a gap 260 is formed therebetween.
 空隙260の周囲には、枠状のシール材265が配置されており、これにより空隙260を外部環境から遮断することができる。 A frame-shaped sealing material 265 is disposed around the gap 260, so that the gap 260 can be blocked from the external environment.
 第1のガラス板212Aは、Low-E(Low Emissivity、低輻射)性能を有するLow-Eガラス基板230上に、アルカリバリア膜240および透明導電膜250をこの順に積層することにより構成される。ただし、アルカリバリア膜240は、省略しても良い。 The first glass plate 212A is configured by laminating an alkali barrier film 240 and a transparent conductive film 250 in this order on a Low-E glass substrate 230 having Low-E (Low Emissivity) performance. However, the alkali barrier film 240 may be omitted.
 なお、図には示されていないが、第2のガラス板212Bの空隙260から遠い側の表面には、低反射膜等が設けられても良い。 Although not shown in the drawing, a low reflection film or the like may be provided on the surface of the second glass plate 212B far from the gap 260.
 ここで、ガラス基板230は、前述のような特徴を有する本発明の一実施例による高透過性ガラスで構成されている。すなわち、ガラス基板230は、質量百分率表示で、KOを0.7%超含むという特徴を有する。このため、ガラス基板230は、有意に高い体積抵抗率ρを有し、ナトリウムイオンの移動を有意に抑制することができる。 Here, the glass substrate 230 is made of a highly transmissive glass according to an embodiment of the present invention having the above-described characteristics. That is, the glass substrate 230 is characterized by containing K 2 O in excess of 0.7% in terms of mass percentage. For this reason, the glass substrate 230 has a significantly high volume resistivity ρ, and can significantly suppress the movement of sodium ions.
 従って、このようなガラス基板230を備える複層ガラス200では、仮にアルカリバリア膜240が存在しない場合であっても、ガラス基板230からの透明導電膜250の剥離を、有意に抑制することができる。 Therefore, in the multilayer glass 200 provided with such a glass substrate 230, even if the alkali barrier film 240 is not present, peeling of the transparent conductive film 250 from the glass substrate 230 can be significantly suppressed. .
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 以下に示す方法で、例1~例8に係るガラス板を製造し、その特性を評価した。なお、例1~例6は、実施例であり、例7~例8は、比較例である。 The glass plates according to Examples 1 to 8 were produced by the method described below, and their characteristics were evaluated. Examples 1 to 6 are examples, and examples 7 to 8 are comparative examples.
 (例1)
 以下に示す表1の例1の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。
(Example 1)
Each raw material was mixed so as to have the composition shown in the column of Example 1 in Table 1 below to prepare a glass raw material.
 次に、得られたガラス原料をるつぼに入れ、1500℃の電気炉内で3時間加熱し、溶融ガラスとした。また、溶融ガラスをカーボン板上に流し出し、冷却することにより、ガラス板を製造した。その後、ガラス板の両表面を研磨し、厚さが3.2mmのガラス板(例1に係るガラス板)を得た。 Next, the obtained glass raw material was put in a crucible and heated in an electric furnace at 1500 ° C. for 3 hours to obtain molten glass. Moreover, the glass plate was manufactured by pouring molten glass on a carbon plate and cooling it. Thereafter, both surfaces of the glass plate were polished to obtain a glass plate having a thickness of 3.2 mm (the glass plate according to Example 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (例2)
 前述の表1の例2の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例2に係るガラス板)を得た。
(Example 2)
Each raw material was mixed so as to have a composition shown in the column of Example 2 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 2) was obtained in the same manner as in Example 1.
 (例3)
 前述の表1の例3の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例3に係るガラス板)を得た。
(Example 3)
Each raw material was mixed so as to have a composition shown in the column of Example 3 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 3) was obtained in the same manner as in Example 1.
 (例4)
 前述の表1の例4の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例4に係るガラス板)を得た。
(Example 4)
Each raw material was mixed so that the composition shown in the column of Example 4 in Table 1 was prepared, thereby preparing a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 4) was obtained in the same manner as in Example 1.
 (例5)
 前述の表1の例5の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例5に係るガラス板)を得た。
(Example 5)
Each raw material was mixed so as to have the composition shown in the column of Example 5 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 5) was obtained in the same manner as in Example 1.
 (例6)
 前述の表1の例6の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例6に係るガラス板)を得た。
(Example 6)
Each raw material was mixed so as to have the composition shown in the column of Example 6 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 6) was obtained in the same manner as in Example 1.
 (例7)
 前述の表1の例7の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例7に係るガラス板)を得た。
(Example 7)
Each raw material was mixed so as to have a composition shown in the column of Example 7 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 7) was obtained in the same manner as in Example 1.
 (例8)
 前述の表1の例8の欄に示す組成となるように、各原料を混合して、ガラス原料を調製した。その後は、例1と同様の方法により、厚さが3.2mmのガラス板(例8に係るガラス板)を得た。
(Example 8)
Each raw material was mixed so as to have a composition shown in the column of Example 8 in Table 1 described above to prepare a glass raw material. Thereafter, a glass plate having a thickness of 3.2 mm (a glass plate according to Example 8) was obtained in the same manner as in Example 1.
 (評価)
 前述の方法で作製した例1~例8に係るガラス板を用いて、以下の各種評価試験を実施した。
(Evaluation)
The following various evaluation tests were carried out using the glass plates according to Examples 1 to 8 produced by the method described above.
 (エネルギー透過率測定)
 例1~例8に係るガラス試料を用いて、エネルギー透過率を測定した。エネルギー透過率はパーキンエルマー社製LAMBDA950により測定した。ここで、「エネルギー透過率」とは、ISO 9050:2003(E)規定の全太陽エネルギー透過率である。
(Energy transmittance measurement)
The energy transmittance was measured using the glass samples according to Examples 1 to 8. The energy transmittance was measured by LAMBDA950 manufactured by PerkinElmer. Here, the “energy transmittance” is the total solar energy transmittance defined in ISO 9050: 2003 (E).
 (Redox)
 得られたガラス板のFe量は、蛍光X線測定によって求めた、Feに換算した全鉄の含有量(%=質量百分率)である。
(Redox)
The amount of Fe 2 O 3 in the obtained glass plate is the total iron content (% = mass percentage) calculated by fluorescent X-ray measurement and converted to Fe 2 O 3 .
 Redoxの算出に必要なガラス板中の2価の鉄の量は、透過率測定によって得られた、波長1000nmの透過率から換算して求めた。ここでは、波長1000nmでの反射による影響を8%として差し引いた後に吸収係数に変換し、湿式分析法により事前に作成した検量線を元に2価の鉄の量を定量した。 The amount of divalent iron in the glass plate necessary for the calculation of Redox was determined by conversion from the transmittance at a wavelength of 1000 nm obtained by measuring the transmittance. Here, after subtracting the influence of reflection at a wavelength of 1000 nm as 8%, it was converted into an absorption coefficient, and the amount of divalent iron was quantified based on a calibration curve prepared in advance by a wet analysis method.
 (体積抵抗率測定)
 例1~例8に係るガラス板の体積抵抗率ρを測定した。体積抵抗率ρは、ASTM C657-78に準拠した方法で測定した。
(Volume resistivity measurement)
The volume resistivity ρ of the glass plates according to Examples 1 to 8 was measured. The volume resistivity ρ was measured by a method based on ASTM C657-78.
 測定の際には、寸法約50mm×約50mmの各ガラス板の両表面に、蒸着法によって金属Al膜を形成し、これらを測定用の電極として使用した。また、測定は、ガラス板を150℃に保持した状態で実施した。 In the measurement, a metal Al film was formed by vapor deposition on both surfaces of each glass plate having a size of about 50 mm × about 50 mm, and these were used as electrodes for measurement. Moreover, the measurement was implemented in the state which hold | maintained the glass plate at 150 degreeC.
 測定結果を前述の表1にまとめて示した。なお、例1~7は予測値であり、例8は実測値である。 The measurement results are summarized in Table 1 above. Examples 1 to 7 are predicted values, and Example 8 is an actually measured value.
 この体積抵抗率測定の結果から、例1~例6に係るガラス板の体積抵抗率ρ(Ω・cm)は、例7~例8に係るガラス板に比べて高くなっていることがわかる。 From the results of the volume resistivity measurement, it can be seen that the volume resistivity ρ (Ω · cm) of the glass plates according to Examples 1 to 6 is higher than that of the glass plates according to Examples 7 to 8.
 (DHB試験)
 例1~例8に係るガラス板を用いてDHB試験を実施した。
(DHB test)
A DHB test was performed using the glass plates according to Examples 1 to 8.
 ここで、DHB試験とは、Dump Heat Bias試験の略であり、この試験では、ガラス板の表面に設置された透明導電膜の耐剥離性を把握することができる。 Here, the DHB test is an abbreviation of the Dump Heat Bias test, and in this test, it is possible to grasp the peel resistance of the transparent conductive film installed on the surface of the glass plate.
 DHB試験は、以下のようにして実施される。 DHB test is conducted as follows.
 まず、透明導電膜付きガラス板(サンプル)が準備される。 First, a glass plate (sample) with a transparent conductive film is prepared.
 次に、サンプルを電圧印加装置に設置する。電圧印加装置は、2つの電極(アノード/カソード)を有し、サンプルは、両電極の間に配置される。なお、アノードは、グラファイト板で構成され、カソードは、アルミニウムで被覆された銅板で構成される。サンプルは、透明導電膜の側がアノードと接触し、ガラス板の露出表面の側がカソードと接するようにして配置される。この状態で、サンプルを所定の温度に加熱した後に、両電極間、すなわちサンプルに、電圧が印加される。印加電圧は、500Vであり、印加時間は、15分間である。 Next, the sample is installed in the voltage application device. The voltage application device has two electrodes (anode / cathode) and the sample is placed between the two electrodes. The anode is made of a graphite plate, and the cathode is made of a copper plate coated with aluminum. The sample is placed so that the transparent conductive film side is in contact with the anode and the exposed surface side of the glass plate is in contact with the cathode. In this state, after heating the sample to a predetermined temperature, a voltage is applied between both electrodes, that is, the sample. The applied voltage is 500 V, and the application time is 15 minutes.
 その後、サンプルへの電圧印加および加熱を終了し、室温まで冷却後、サンプルの透明導電膜側をサンプルを高温・高湿度環境中に、1時間暴露する。水温は55℃とし、環境温度は、50±2℃であり、環境の相対湿度は、100%である。 After that, voltage application and heating to the sample are finished, and after cooling to room temperature, the sample is exposed to the transparent conductive film side of the sample in a high temperature / high humidity environment for 1 hour. The water temperature is 55 ° C., the environmental temperature is 50 ± 2 ° C., and the relative humidity of the environment is 100%.
 サンプルが室温まで降温されてから、サンプルの透明導電膜に剥離が生じているかどうかを目視で確認する。 After the sample has been cooled to room temperature, it is visually confirmed whether or not peeling has occurred in the transparent conductive film of the sample.
 本操作は、密閉した容器内で行い、容器底部に水を上記水温で保ち、容器上部に配置したサンプルの導電性薄膜部分を上記凝集温度に保つことにより行った。また、気化温度とは容器内の蒸気の温度を表す。 This operation was performed in a sealed container, and water was kept at the above water temperature at the bottom of the container, and the conductive thin film portion of the sample placed at the top of the container was kept at the above aggregation temperature. The vaporization temperature represents the temperature of the vapor in the container.
 このような試験を、電圧印加時のサンプル温度を変えて実施し、サンプルの透明導電膜に剥離が生じない最高温度を、最大耐久温度Tmax(℃)として定義する。 Such a test is performed by changing the sample temperature at the time of voltage application, and the maximum temperature at which the transparent conductive film of the sample does not peel is defined as the maximum endurance temperature Tmax (° C.).
 このようなDHB試験によって測定される最大耐久温度Tmax(℃)は、サンプルに形成された透明導電膜の耐剥離性の指標となり、すなわち、最大耐久温度Tmax(℃)が高いサンプルほど、ガラス板と透明導電膜との間に、良好な密着がなされていると見なすことができる。 The maximum durable temperature Tmax (° C.) measured by such a DHB test is an index of the peel resistance of the transparent conductive film formed on the sample, that is, the higher the maximum durable temperature Tmax (° C.), the more the glass plate It can be considered that good adhesion is made between the transparent conductive film and the transparent conductive film.
 本願では、DHB試験用のサンプルとして、例1~例8に係るガラス板の一方の表面に、TiO膜、SiO膜および酸化スズ(SnO)膜を成膜したものを使用した。 In the present application, a sample having a TiO 2 film, a SiO 2 film, and a tin oxide (SnO 2 ) film formed on one surface of the glass plates according to Examples 1 to 8 was used as a sample for the DHB test.
 酸化スズ膜は、例1~例8に係るガラス板を580℃まで加熱した後、CVD法により、厚さ8nmのTiO膜、厚さ25nmのSiOからなるアルカリバリア膜、および厚さ550nmのSnOからなる透明導電膜を形成した。 The tin oxide film was prepared by heating the glass plates according to Examples 1 to 8 to 580 ° C., and then by CVD, an TiO 2 film having a thickness of 8 nm, an alkali barrier film made of SiO 2 having a thickness of 25 nm, and a thickness of 550 nm. A transparent conductive film made of SnO 2 was formed.
 例1~例8に係るガラス板を使用して得られたDHB試験結果を、まとめて前述の表1の最大耐久温度Tmaxの欄に示す。なお、空欄は、測定していないことを示す。 DHB test results obtained using the glass plates according to Examples 1 to 8 are collectively shown in the column of maximum durability temperature Tmax in Table 1 above. Note that the blank indicates that no measurement was performed.
 この結果から、KOの含有量が少ない例8は、DHB試験において、透明導電膜の剥離が発生する温度Tmaxが低いことがわかる。一方、KOの含有量が、酸化物基準の質量百分率表示で0.7%超である例4~6では、DHB試験において、透明導電膜の剥離が発生する温度Tmaxが高くなり、アルカリバリア膜からの透明導電膜の剥離が長期間にわたって抑えられることがわかった。 From this result, it can be seen that Example 8 having a low K 2 O content has a low temperature T max at which peeling of the transparent conductive film occurs in the DHB test. On the other hand, in Examples 4 to 6 in which the content of K 2 O is more than 0.7% in terms of oxide-based mass percentage, the temperature T max at which peeling of the transparent conductive film occurs is increased in the DHB test, It was found that peeling of the transparent conductive film from the alkali barrier film can be suppressed over a long period of time.
 本発明は、例えば、太陽電池用パネルおよび低反射ガラス(Low-Eガラス)等に利用することができる。 The present invention can be used, for example, for solar cell panels and low reflection glass (Low-E glass).
 本願は、2012年12月7日に出願した日本国特許出願2012-268792号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2012-268792 filed on Dec. 7, 2012, the entire contents of which are incorporated herein by reference.
 1   ガラス製品
 20  高透過性ガラス
 25  界面
 30  透明導電膜
 100  薄膜太陽電池
 120  ガラス板
 130  アルカリバリア膜
 140  薄膜太陽電池素子
 150  透明電極層
 160  光電変換層
 170  裏面電極層
 200  複層ガラス
 212A 第1のガラス板
 212B 第2のガラス板
 230  ガラス基板
 240  アルカリバリア膜
 250  透明導電膜
 260  空隙
 265  シール材
DESCRIPTION OF SYMBOLS 1 Glass product 20 Highly permeable glass 25 Interface 30 Transparent conductive film 100 Thin film solar cell 120 Glass plate 130 Alkali barrier film 140 Thin film solar cell element 150 Transparent electrode layer 160 Photoelectric conversion layer 170 Back surface electrode layer 200 Multi-layer glass 212A 1st Glass plate 212B Second glass plate 230 Glass substrate 240 Alkali barrier film 250 Transparent conductive film 260 Void 265 Sealing material

Claims (4)

  1.  高透過性ガラスであって、
     質量百分率表示で、
     KOを0.7%超含み、
     Feに換算した全鉄を0.03%以下含むことを特徴とする高透過性ガラス。
    Highly permeable glass,
    In mass percentage display,
    Containing more than 0.7% K 2 O,
    A highly permeable glass containing 0.03% or less of total iron converted to Fe 2 O 3 .
  2.  150℃における体積抵抗率ρ(Ω・cm)の対数log(ρ)が、8.8超である、請求項1に記載の高透過性ガラス。 The highly permeable glass according to claim 1, wherein a logarithm log (ρ) of a volume resistivity ρ (Ω · cm) at 150 ° C is more than 8.8.
  3.  酸化物基準の質量百分率表示で、
     60~75%のSiO
     0~3%のAl
     0~15%のCaO、
     0~12%のMgO、および
     5~20%のNa
     を含む、請求項1または2に記載の高透過性ガラス。
    In mass percentage display based on oxide,
    60-75% SiO 2 ,
    0-3% Al 2 O 3 ,
    0-15% CaO,
    0-12% MgO, and 5-20% Na 2 O
    The highly transmissive glass according to claim 1, comprising:
  4.  表面に透明導電膜が形成された、請求項1乃至3のいずれか一つに記載の高透過性ガラス。 The highly permeable glass according to any one of claims 1 to 3, wherein a transparent conductive film is formed on the surface.
PCT/JP2013/082698 2012-12-07 2013-12-05 High transmission glass WO2014088066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551137A JPWO2014088066A1 (en) 2012-12-07 2013-12-05 High transmission glass
CN201380063616.7A CN104918895A (en) 2012-12-07 2013-12-05 High transmission glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268792 2012-12-07
JP2012268792 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014088066A1 true WO2014088066A1 (en) 2014-06-12

Family

ID=50883478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082698 WO2014088066A1 (en) 2012-12-07 2013-12-05 High transmission glass

Country Status (3)

Country Link
JP (1) JPWO2014088066A1 (en)
CN (1) CN104918895A (en)
WO (1) WO2014088066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115880A (en) * 2014-12-17 2016-06-23 積水化学工業株式会社 Organic/inorganic hybrid solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585768A (en) * 1991-03-22 1993-04-06 Pilkington Plc Borosilicate glass composition
WO2000014021A1 (en) * 1998-09-04 2000-03-16 Nippon Sheet Glass Co., Ltd. Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article
JP2000226228A (en) * 1999-02-05 2000-08-15 Corning Inc Cover glass for solar cell
WO2001066477A1 (en) * 2000-03-06 2001-09-13 Nippon Sheet Glass Co., Ltd. Flat glass having high transmittance
WO2009060871A1 (en) * 2007-11-06 2009-05-14 Asahi Glass Company, Limited Glass plate for substrate
JP2011256102A (en) * 2010-06-09 2011-12-22 Schott Ag Method of manufacturing transparent glass or transparent pull-up glass by special clarifying method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460044B2 (en) * 2001-12-28 2016-10-26 Nippon Sheet Glass Company, Limited Sheet glass and photoelectric converter-use sheet glass
FR2937798B1 (en) * 2008-10-24 2010-12-24 Saint Gobain GLASS SUBSTRATE WITH ELECTRODE PARTICULARLY FOR ORGANIC ELECTROLUMINESCENT DIODE DEVICE
FR2972446B1 (en) * 2011-03-09 2017-11-24 Saint Gobain SUBSTRATE FOR PHOTOVOLTAIC CELL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585768A (en) * 1991-03-22 1993-04-06 Pilkington Plc Borosilicate glass composition
WO2000014021A1 (en) * 1998-09-04 2000-03-16 Nippon Sheet Glass Co., Ltd. Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article
JP2000226228A (en) * 1999-02-05 2000-08-15 Corning Inc Cover glass for solar cell
WO2001066477A1 (en) * 2000-03-06 2001-09-13 Nippon Sheet Glass Co., Ltd. Flat glass having high transmittance
WO2009060871A1 (en) * 2007-11-06 2009-05-14 Asahi Glass Company, Limited Glass plate for substrate
JP2011256102A (en) * 2010-06-09 2011-12-22 Schott Ag Method of manufacturing transparent glass or transparent pull-up glass by special clarifying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115880A (en) * 2014-12-17 2016-06-23 積水化学工業株式会社 Organic/inorganic hybrid solar cell

Also Published As

Publication number Publication date
CN104918895A (en) 2015-09-16
JPWO2014088066A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5962663B2 (en) Glass plate with transparent conductive film
TWI614224B (en) Glass
US8940996B2 (en) Substrate for photovoltaic cell
CA2769014A1 (en) Fusion formable silica and sodium containing glasses
CA2762873A1 (en) Fusion formable sodium containing glass
US9428415B2 (en) Glass and manufacturing method of glass plate
KR20140053832A (en) Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel
TW201139316A (en) Lead-free low-melting-point glass paste for insulation coating
JP2014527499A (en) Float glass plate with high energy transmittance
TW201302654A (en) Glass plate for film solar cell
JP6023098B2 (en) Photovoltaic cell and photovoltaic module including semiconductor device
US20130053233A1 (en) Method for producing a sheet of glass
WO2014088066A1 (en) High transmission glass
JP6044772B2 (en) Glass substrate with protective film
JPH1025128A (en) Glass for substrate
WO2013099768A1 (en) Glass substrate and process for producing glass substrate
WO2015076208A1 (en) Glass sheet
JP2021011403A (en) Glass substrate for csp mirror, method for manufacturing the same, and csp mirror
JP2017149646A (en) High strain point glass
JP2012140296A (en) Lead-free low-melting glass composition with corrosion resistance
JP2018177592A (en) Cigs solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859797

Country of ref document: EP

Kind code of ref document: A1