WO2014087881A1 - Cellulose-based resin composition - Google Patents

Cellulose-based resin composition Download PDF

Info

Publication number
WO2014087881A1
WO2014087881A1 PCT/JP2013/081765 JP2013081765W WO2014087881A1 WO 2014087881 A1 WO2014087881 A1 WO 2014087881A1 JP 2013081765 W JP2013081765 W JP 2013081765W WO 2014087881 A1 WO2014087881 A1 WO 2014087881A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
group
acid
polyether
cardanol
Prior art date
Application number
PCT/JP2013/081765
Other languages
French (fr)
Japanese (ja)
Inventor
曽山 誠
幸浩 木内
位地 正年
修吉 田中
清彦 當山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014551047A priority Critical patent/JPWO2014087881A1/en
Publication of WO2014087881A1 publication Critical patent/WO2014087881A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate

Definitions

  • the present invention relates to a cellulose resin composition, and more particularly to a cellulose resin composition having improved mechanical strength, heat resistance, water resistance, thermoplasticity, impact resistance, and bleed out.
  • bioplastics using cellulose which is a major component of wood and vegetation, have been developed and commercialized as bioplastics made from non-edible parts among bioplastics made from plants.
  • this type of bioplastic there are cellulose derivatives of cellulose derivatives. Specifically, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and the like are used in many fields.
  • Cellulose is a polymer in which ⁇ -glucose is polymerized, but has high crystallinity, so it is hard and brittle and has no thermoplasticity. Furthermore, since it contains many hydroxy groups, its water absorption is high and its water resistance is low.
  • Various studies have been conducted to improve the properties of cellulose.
  • Patent Document 1 discloses a thermoplastic biodegradable graft polymer obtained by ring-opening graft polymerization of ⁇ -caprolactone to cellulose acetate having a hydroxy group.
  • Patent Document 2 discloses a brake substrate formed using a fiber base material made of aramid pulp and cellulose fiber, a filler made of calcium carbonate and cashew dust, and a binder made of phenol resin.
  • a friction material is disclosed.
  • Patent Document 3 discloses a friction material formed using a base substrate made of aramid fibers and cellulose fibers, a filler made of graphite and cashew dust, and an organic-inorganic composite binder. It is described that this friction material is applied to clutch facing of a power transmission system such as an automobile.
  • Non-Patent Document 1 describes that the water resistance of paper can be improved by immersing a paper sheet in cardanol and performing a grafting reaction that binds cardanol to cellulose constituting the paper sheet.
  • this grafting reaction it is described that the terminal double bond of cardanol and the hydroxy group of cellulose are bonded in the presence of boron trifluoride diethyl ether (BF3-OEt2).
  • BF3-OEt2 boron trifluoride diethyl ether
  • Cellulosic bioplastics are inferior in strength, heat resistance, water resistance, thermoplasticity, and impact resistance compared to petroleum plastics, and these characteristics are improved especially for application to durable products such as exteriors for electronic devices. is required.
  • An object of the present invention is to provide a cellulose-based resin composition having improved impact resistance as well as thermoplasticity, heat resistance, strength, moldability and water resistance.
  • the present inventors include a cellulose resin in which a carboxylic acid, an alcohol, or a phenol is reacted with a hydroxyl group of cellulose and chemically bonded thereto, and a polyether-modified polysiloxane having an ether group.
  • the dispersibility of the polysiloxane in the cellulosic resin can be improved by a synergistic effect between the formed acyl group, ether group, and the like and the polyether group of the polysiloxane.
  • mechanical properties, particularly toughness and impact resistance can be improved, water resistance and plasticity can be improved, and the amount of plasticizer added can be reduced or not added.
  • the present inventors have obtained knowledge that heat resistance and strength, particularly rigidity, can be prevented from being lowered, and that additive and polysiloxane bleed-out can be suppressed in the molded product, and the present invention has been completed based on such knowledge.
  • the present invention relates to a cellulose resin obtained by reacting and chemically bonding one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols and derivatives thereof to the hydroxy group of cellulose or a derivative thereof,
  • the cellulose resin composition of the present invention can improve impact resistance as well as thermoplasticity, heat resistance, strength, moldability and water resistance.
  • the cellulose-based resin composition of the present invention is a cellulose-based resin in which one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols, and derivatives thereof are reacted and chemically bonded to the hydroxy group of cellulose or a derivative thereof.
  • Cellulosic resins are those obtained by reacting and chemically bonding one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols, or derivatives thereof to the hydroxy group of cellulose or a derivative thereof.
  • cellulose is a main component of vegetation and is obtained by separating other components such as lignin from vegetation. In addition to those obtained in this manner, cotton or pulp having a high cellulose content can be purified or used as it is.
  • Cellulose is a linear polymer of ⁇ -glucose represented by the following formula (3), and each glucose unit has three hydroxy groups.
  • the polymerization degree of cellulose and its derivatives is preferably in the range of 50 to 5000, more preferably 100 to 3000, as the glucose polymerization degree. If it is the said range, sufficient intensity
  • cellulose derivative examples include those in which a substituent is introduced by a living organism or by chemical synthesis using cellulose as a raw material, and those obtained by acylating, etherifying, or grafting a part of the hydroxy group can be exemplified.
  • organic acid esters such as cellulose acetate, cellulose butyrate, and cellulose propionate
  • inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate
  • cellulose acetate propionate cellulose acetate butyrate
  • cellulose acetate acetate examples thereof include hybrid esters such as phthalate and cellulose nitrate acetate; etherified celluloses such as methylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose.
  • grafted cellulose in which a polymer such as styrene, (meth) acrylic acid, (meth) acrylic ester, ⁇ -caprolactone, lactide, glycolide, etc. is bonded to cellulose can be mentioned.
  • At least one acylated cellulose selected from cellulose acetate, cellulose propionate, and cellulose butyrate in which a part of the hydroxy group of cellulose is acylated can be suitably used.
  • the average value of the number of hydroxyl groups reacted and acylated in the glucose unit and the hydroxyl group substitution degree (DSXX) are 2.0 from the viewpoint of water resistance, mechanical properties, heat resistance, and the like. As mentioned above, 2.8 or less is more preferable.
  • the average value of the number of hydroxy groups remaining in the glucose unit of the cellulose derivative and the hydroxyl group residual degree (DSOH) are preferably 0.9 or less, more preferably 0.7 or less, from the viewpoint of sufficiently securing water resistance. preferable.
  • the above cellulose or cellulose derivative may be used alone or in combination of two or more.
  • chitin or chitosan having a similar structure may be mixed with cellulose or a derivative thereof, and when mixed, the content of chitin or chitosan is preferably 30% by mass or less based on the entire mixture, 20 mass% or less is preferable and 10 mass% or less is still more preferable.
  • the cellulose or derivatives thereof are those in which the hydroxy group is chemically bonded by reacting with a carboxylic acid having 1 to 32 carbon atoms, alcohol, phenol or a derivative thereof.
  • the hydroxy group of cellulose or its derivative reacts with the carboxyl group of carboxylic acid or the hydroxy group of alcohol or phenol to form a glycoside.
  • carboxylic acid, alcohol, or phenol has an aromatic group or alicyclic group, it is effective for improving rigidity and heat resistance of the molded article by grafting cellulose or a derivative thereof, carboxylic acid, alcohol, When phenol has an aliphatic group, it is effective for improving the toughness of the molded article by grafting cellulose or a derivative thereof.
  • carboxylic acids, alcohols or phenols have 1 to 32 carbon atoms, preferably 1 to 20 carbon atoms. When the carbon number is within this range, steric hindrance can be suppressed and the grafting rate of the hydroxy group of cellulose can be increased.
  • the carboxylic acid may be a linear or branched aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, or carboxylic anhydride.
  • the carboxyl group may be directly bonded to the alicyclic group or aromatic ring, or may be bonded to the alicyclic group or aromatic ring substituent. .
  • carboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid. Acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, etc.
  • Carboxylic acids unsaturated monocarboxylic acids such as butenoic acid, pentenoic acid, hexenoic acid, octenoic acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid. Furthermore, as alicyclic monocarboxylic acid, cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, cyclohexyl acetic acid, etc., and aromatic carboxylic acid as benzoic acid, toluic acid, phenylacetic acid, phenylpropionic acid, biphenyl, etc. Carboxylic acid, biphenylacetic acid, naphthalene carboxylic acid, tetralin carboxylic acid and the like can be mentioned. Of these, particularly preferred are acetic acid, propionic acid, and butyric acid.
  • the carboxylic acid derivative has a substituent.
  • a functional group having reactivity with a hydroxy group of cellulose is preferable.
  • a carboxylic acid halide group such as a carboxylic acid chloride group and a carboxylic acid anhydride group
  • a halogen such as an epoxy group, an isocyanate group, and a chlorine atom. Atoms can be mentioned.
  • carboxylic acid halide groups such as carboxylic acid chloride and isocyanate groups are preferred.
  • the alcohol having 1 to 32 carbon atoms bonded to cellulose or a derivative thereof may be either an aliphatic alcohol or an alicyclic alcohol.
  • the aliphatic alcohol include methanol, ethanol, propanol, etc.
  • examples of the alicyclic alcohol include cyclohexylol and cycloheptalol
  • examples of the aromatic alcohol include phenol.
  • Cardanol is a phenol having a linear hydrocarbon group R as shown in Formula (4).
  • the linear hydrocarbon group R of cardanol has four types of isomers of pentadecyl group, 8-pentadecenyl group, pentadecyl 8,11-diene group, and pentadecyl 8,11,14-triene group having different numbers of unsaturated bonds.
  • Cardanol exists as a mixture of these four isomers.
  • the linear hydrocarbon group R of cardanol contributes to the improvement of the flexibility and hydrophobicity of the resin, and the hydroxy group forms glucoside with cellulose or its derivatives.
  • a cellulose resin in which the cardanol component is bound in a brush shape is formed.
  • mechanical properties are obtained by the interaction between cardanols glycosylated into cellulose or its derivative. (Especially toughness) can be improved, thermoplasticity can be imparted, and the water resistance can be improved by the hydrophobicity of cardanol.
  • a dehydration catalyst such as sulfuric acid, toluenesulfonic acid or hydrogen chloride may be added.
  • Cardanol is preferably used after the unsaturated bond of the linear hydrocarbon group of cardanol is hydrogenated and converted to a saturated bond.
  • a cardanol derivative in which unsaturated bonds of linear hydrocarbon groups are sufficiently converted to saturated bonds by hydrogenation, side reactions can be suppressed and cellulose and cardanol can be bound efficiently. Moreover, the solubility fall to the solvent of a product can be suppressed.
  • the conversion rate (hydrogenation rate) of unsaturated bonds by hydrogenation is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the residual ratio of unsaturated bonds in cardanol after hydrogenation is preferably 0.2 or less, more preferably 0.1 or less. .
  • a normal method can be used.
  • the catalyst a noble metal such as palladium, ruthenium or rhodium or nickel or a metal selected from these metals supported on a support such as activated carbon, activated alumina or diatomaceous earth is used, and the powdered catalyst is suspended and stirred.
  • a batch method in which the reaction is performed or a continuous method using a reaction tower filled with a molded catalyst can be employed.
  • the solvent for hydrogenation may not be used depending on the method of hydrogenation. However, when a solvent is used, alcohols, ethers, esters, and saturated hydrocarbons can usually be used.
  • the reaction temperature at the time of hydrogenation can be usually set to 20 to 250 ° C., preferably 50 to 200 ° C. in order to appropriately adjust the hydrogenation rate.
  • the hydrogen pressure at the time of hydrogenation is usually 10 to 80 kgf / cm 2 (9.8 ⁇ 10 5 to 78.4 ⁇ 10 5 Pa), preferably 20 to 50 kgf / cm 2 (19.6 ⁇ 10 4 to 49.0 ⁇ 10 5 Pa). ).
  • Hydrogenation can be performed before the cardanol derivative is formed, after the cardanol derivative is formed, before the bond with the cellulose, and after the bond with the cellulose. From the viewpoint of the hydrogenation and grafting reaction efficiency, etc. Before bonding with cellulose is preferred, and before formation of the cardanol derivative is more preferred.
  • the grafting of cellulose or a derivative thereof with alcohol or phenol can be performed using a polyfunctional compound having a functional group that binds to both of these hydroxy groups, and cellulose or a derivative thereof is introduced via the polyfunctional compound. Grafted.
  • bonded with the hydroxyl group of cellulose, alcohol, and phenol is the derivative
  • one functional group of a polyfunctional compound is bonded to the hydroxy group of phenol to form a cardanol derivative, and the functional group of the cardanol derivative is bonded to cellulose. According to such bonding with a polyfunctional compound, the reaction efficiency of the hydroxy group of cellulose can be improved, and side reactions can be suppressed.
  • cellulose and a functional group that is bonded to a hydroxy group of alcohol or phenol are preferably bonded to a hydrocarbon group, and the hydrocarbon group preferably has 1 or more carbon atoms, more preferably 2 or more.
  • the number of carbon atoms is preferably 20 or less, more preferably 14 or less, and even more preferably 8 or less. When the number of carbon atoms is within this range, a decrease in reactivity can be suppressed and grafting can be performed efficiently.
  • a divalent group is preferable, and a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a decamethylene group, a dodecamethylene group, Divalent linear aliphatic hydrocarbon groups such as hexadecamethylene group; cycloheptane ring, cyclohexane ring, cyclooctane ring, bicyclopentane ring, tricyclohexane ring, bicyclooctane ring, bicyclononane ring, tricyclodecane ring, etc.
  • Examples thereof include a divalent alicyclic hydrocarbon group; a divalent aromatic hydrocarbon group such as a benzene ring, a naphthalene ring and a biphenylene group, and a divalent group composed of a combination thereof. Of these, a chain alkylene group is preferred.
  • the rigidity of the resin can be improved due to their rigidity.
  • the hydrocarbon group is a linear aliphatic hydrocarbon group, the toughness of the resin can be improved due to its flexibility.
  • the functional group of the polyfunctional compound is preferably a group selected from a carboxyl group, a carboxylic acid anhydride group, a carboxylic acid halide group such as a carboxylic acid chloride, an epoxy group, an isocyanate group, and a halogen atom.
  • carboxyl groups, carboxylic acid anhydride groups, halogen atoms such as chlorine atoms, and isocyanate groups are preferred.
  • the functional group to be reacted with the hydroxyl group of alcohol or phenol is preferably a carboxylic acid anhydride group, a halogen atom such as a chlorine atom, or an isocyanate group.
  • the functional group to be reacted with the hydroxy group of cellulose or a derivative thereof is carboxylic acid chloride.
  • Carboxylic acid halide groups such as groups and isocyanate groups are preferred.
  • the carboxylic acid halide group can be formed by converting a carboxyl group into an acid halide.
  • polyfunctional compounds include dicarboxylic acids, carboxylic anhydrides, dicarboxylic acid halides, monochlorocarboxylic acids, and diisocyanates.
  • dicarboxylic acid include malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, pentadecanedicarboxylic acid, and hexadecanedicarboxylic acid.
  • the dicarboxylic acid anhydride can be exemplified, and examples of the dicarboxylic acid halide include acid halides of these dicarboxylic acids.
  • Monochlorocarboxylic acids include monochloroacetic acid, 3-chloropropionic acid, 3-fluoropropionic acid, 4-chlorobutyric acid, 4-fluorobutyric acid, 5-chlorovaleric acid, 5-fluorovaleric acid, 6-chlorohexanoic acid, 6 -Fluorohexanoic acid, 8-chlorooctanoic acid, 8-fluorooctanoic acid, 12-chlorododecanoic acid, 12-fluorododecanoic acid, 18-chlorostearic acid, 18-fluorostearic acid.
  • Diisocyanates include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI), Isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (HMDI: hydrogenated MDI) It can be mentioned. Among these, tolylene diisocyanate
  • the grafting of cellulose or a derivative thereof with alcohol or phenol through these polyfunctional compounds is carried out through an ester bond, an ether bond or a urethane bond.
  • the carboxylic acid, alcohol, phenol or derivative thereof may have a group derived from an organic silicon compound or an organic fluorine compound in the structure in order to obtain an effect of improving water resistance.
  • Grafting rate by carboxylic acid, alcohol, phenol or derivatives thereof on cellulose or its derivatives that is, the number of hydroxyl groups contained in the glucose unit of cellulose or its derivatives reacted with carboxylic acid, alcohol or derivatives thereof Is preferably from 0.1 to 2.9, more preferably from 1.0 to 2.8, in view of water resistance, mechanical properties, heat resistance, and the like. It is. Further, the average value of the number of hydroxy groups remaining in the glucose unit of cellulose or its derivative, and the hydroxyl group residual degree (DSOH) is 0.9 or less from the viewpoint of sufficiently ensuring water resistance, mechanical strength, and plasticity. Preferably, 0.7 or less is more preferable.
  • the grafting rate of cardanol to cellulose and its derivatives is the average value of the number of hydroxyl groups bonded to cardanol in the glucose unit of cellulose and its derivatives, the degree of hydroxyl substitution (DSCD) is water resistance, mechanical properties From the viewpoint of improving heat resistance, 0.1 or more is preferable, 0.2 or more is more preferable, and 0.4 or more is more preferable.
  • the maximum value of DSCD is theoretically “3”, but is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less in order to perform efficient bonding. Further, the DSCD may be 1 or less, and a sufficient improvement effect can be obtained.
  • the average value of the number of hydroxyl groups remaining in the glucose unit of cellulose and its derivatives bound with cardanol, and the residual hydroxyl group (DSOH) are 0 from the viewpoint of sufficiently ensuring water resistance, mechanical strength, and plasticity. .9 or less is preferable, and 0.7 or less is more preferable.
  • Grafting cellulose or its derivatives with carboxylic acids, alcohols, phenols or their derivatives heats cellulose or its derivatives, carboxylic acids, alcohols, phenols or their derivatives at a suitable temperature in a solvent that can dissolve them. Can be implemented. Although cellulose is difficult to dissolve in ordinary solvents, it can be dissolved in dimethylsulfoxide-amine solvents, dimethylformamide-chloral-pyridine solvents, dimethylacetamide-lithium chloride solvents, imidazolium ionic liquids, and the like.
  • solubility is achieved by preliminarily binding a part of the hydroxy group of cellulose or its derivative with carboxylic acid or alcohol to reduce intermolecular force.
  • a solvent such as dioxane, chloroform, methylene chloride, acetone, etc.
  • solubility is achieved by preliminarily binding a part of the hydroxy group of cellulose or its derivative with carboxylic acid or alcohol to reduce intermolecular force.
  • an acylated cellulose such as acetyl cellulose, propionyl cellulose, butyryl cellulose, etc., and particularly preferably acetyl cellulose.
  • the acylation rate in the acylated cellulose is an average value of the number of hydroxy groups contained in the glucose unit subjected to the acylation reaction, and the degree of hydroxyl group substitution (DSAC), in order to increase the solubility of cellulose. 5 or more is preferable, 1.0 or more is more preferable, 1.5 or more is more preferable, and 2.9 or less is preferable and 2.8 or less is more preferable in order to perform efficient grafting of cellulose or a derivative thereof. preferable.
  • grafting of cellulose or a derivative thereof can be completed by a reaction between the hydroxy group of acylated cellulose and the hydroxy group of phenol such as cardanol.
  • the polyether-modified polysiloxane has a polyether group represented by — (CmH2mO) n— (m is an integer of 2 to 4, n is an integer of 1 to 80) or a polyether group having a substituent. Although it will not specifically limit if it has, The polyether modified polysiloxane represented by Formula (1) is preferable.
  • R 1 to R 10 independently represent a hydrogen atom, an alkyl group, or an aryl group, and at least one of R 1 , R 4 , R 6 , and R 8 is — (CmH 2 mO) n—.
  • a polyether group (m is an integer of 2 to 4, n is an integer of 1 to 80), and a and b are integers having a total of 10 to 1000.
  • the alkyl group represented by R 1 to R 10 is preferably a lower alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group, and among these, a methyl group is preferable.
  • the aryl group represented by R 1 to R 10 is preferably an aryl group having 6 to 12 carbon atoms such as a phenyl group or a naphthyl group, and particularly preferably a phenyl group.
  • the polyether group represented by the above-(CmH2mO) n- represented by at least one of R 1 , R 4 , R 6 and R 8 is a polymethyl ether group, a polyethyl ether group, a polypropyl ether group or a polybutyl ether group. Even those having one kind of polyether group, those having two or more kinds, or having two or more kinds, alternately, even if the same kind is continuous, Moreover, you may couple
  • the oxyethylene group and the oxypropylene group may be the same or may be bonded alternately or randomly, and R is a hydrogen atom or the above alkyl group or aryl group.
  • R is a hydrogen atom or the above alkyl group or aryl group.
  • the polyether group may have a substituent, and examples of the substituent include the above alkyl group and aryl group.
  • the polyether group may have at least one of R 1 , R 4 , R 6 , and R 8 , and may have two or more, or all of them.
  • R 1 , R 4 , R 6 , and R 8 may have two or more, or all of them.
  • the HLB value is a value indicating a hydrophilic-lipophilic balance, and is defined by the formula (2) based on the Griffin method.
  • the polyether-modified polysiloxane preferably has an HLB value of 7 or more and 14 or less.
  • the balance between the hydrophilic polyether group and the hydrophobic siloxane structure is such that the hydroxy group of the hydrophilic cellulose is converted to carboxylic acid, alcohol, or It can be matched with the hydrophilic-hydrophobic balance of the cellulose-based resin having a hydrophobic residue bonded to the derivative, and the dispersibility in the resin composition containing these can be improved.
  • the HLB value of the polyether-modified polysiloxane is more preferably 7 or more and 8 or less. In the formula (2), the number average molecular weight can be used as the molecular weight.
  • a cellulose resin composition containing these bleeding out of the polyether-modified polysiloxane can be suppressed, and the impact resistance of the cellulose-based resin composition can be improved by the flexible structure of the polyether-modified polysiloxane.
  • the number average molecular weight of the polyether-modified polysiloxane is preferably 900 or more, more preferably 1000 or more, and preferably 100,000 or less, more preferably 60000 or less.
  • the molecular weight of the polyether-modified polysiloxane is sufficiently large, loss due to volatilization can be suppressed during kneading with the molten cellulose resin during the production of the cellulose resin composition. Further, when the molecular weight of the polyether-modified polysiloxane is an appropriate size, a uniform molded article with good dispersibility can be obtained.
  • the number average molecular weight a value measured by GPC of a 0.1% chloroform solution of the sample (calibrated with a polystyrene standard sample) can be adopted.
  • the content of such a polyether-modified polysiloxane is preferably 0.1% by mass or more and more preferably 1% by mass or more with respect to the whole cellulose resin composition in order to improve the impact resistance of the molded article obtained. . 10 mass% or less is preferable from the point which ensures characteristics, such as an intensity
  • the polyether-modified polysiloxane By adding such a polyether-modified polysiloxane to a cellulosic resin, the polyether-modified polysiloxane can be dispersed in the resin with an appropriate particle size, for example, an average particle size of 0.1 to 100 ⁇ m.
  • the impact resistance of the composition can be improved.
  • Cellulose-based resin composition Addition of colorants, antioxidants, heat stabilizers, plasticizers, flame retardants, etc., as necessary, to the cellulose-based resin composition as long as the functions of the cellulose-based resin and the polyether-modified polysiloxane are not impaired. An agent may be added.
  • Such a cellulose resin composition can be produced by, for example, hand-mixing various additives, a cellulose resin, and a polyether-modified polysiloxane, or a mixer such as a tumbler mixer, a ribbon blender, a single-screw or multi-screw mixing extruder. It can be produced by melting and mixing with a compounding apparatus such as a kneader kneader or a kneading roll, and granulating it into an appropriate shape as necessary.
  • various additives and a resin dispersed in a solvent such as an organic solvent are mixed, and if necessary, a coagulation solvent is added to mix the various additives and the resin. And then the solvent is evaporated.
  • the cellulosic resin can be used as a base resin for molding materials.
  • a molding material using the cellulose-based resin as a base resin is suitable for a molded body such as a casing such as an exterior for an electronic device.
  • the base resin is contained in a larger amount than the other components contained in the molding material, and allows other components to be contained within a range that does not hinder the function of the base resin.
  • the base resin includes 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more in the composition.
  • Cardanol derivative 1 Preparation of monochloroacetic acid-modified cardanol chloride compound Hydrogenated cardanol mn-pentadecylphenol (ACROS: manufactured by Organics) in which unsaturated bond of the linear hydrocarbon part of cardanol is hydrogenated is used as a raw material. The hydroxyl group was reacted with monochloroacetic acid to obtain carboxylated hydrogenated cardanol. Next, the carboxyl group of the carboxylated hydrogenated cardanol was converted to an acid chloride group by chlorination with oxalyl chloride to obtain a chloride hydrogenated cardanol.
  • ACROS Hydrogenated cardanol mn-pentadecylphenol
  • a chlorinated hydrogenated cardanol was obtained according to the following.
  • grafted cellulose acetate was obtained according to the following.
  • the obtained grafted cellulose acetate was measured by 1H-NMR (AV-400, 400 MHz: manufactured by Bruker), and the DSCD was 0.47.
  • the purity of the obtained hydrogenated cardanol was measured by a liquid chromatograph (LC-10ADVP: manufactured by Shimadzu Corporation), and the purity was 99% by mass.
  • the reaction solution was cooled to 40 ° C., 375 mL of acetonitrile was added, and the mixture was stirred at room temperature for 1 hour, and then allowed to stand at ⁇ 15 ° C. for 17 hours. Thereafter, the crystals were filtered (5A, 185 mm ⁇ ), and washed with liquid using 125 ml of ice-cooled acetonitrile. The obtained crystals were slurried in 125 ml of acetonitrile and stirred at room temperature for 1 hour. After standing at ⁇ 15 ° C. overnight, the crystals were filtered (5A, 185 mm ⁇ ), dried under reduced pressure ( ⁇ 0.4 kPa) at 30 ° C.
  • grafted cellulose acetate was prepared according to the following.
  • the obtained polymer was dried and then dissolved in 250 ml of chloroform at a liquid temperature of 60 ° C. After cooling, 1.3 L of methanol was added with stirring to precipitate the polymer. The polymer was filtered and washed twice with 100 ml of methanol. The polymer was dried in vacuo ( ⁇ 0.7 kPa) at 105 ° C. for 16 hours to give 35.8 g of cardanol grafted cellulose acetate propionate.
  • Polyether-modified silicone compound The polyether-modified polysiloxane shown in Table 1 was used.
  • Example 1 [Kneading] Cellulose acetate propionate (base resin 1) and SH8700 (Toray Dow Corning Co., Ltd.) were blended as shown in Table 1 using a twin-screw kneader (HAKE-MiniLab (Micro-Extruder: manufactured by Thermo Electron Corp.)). Then, the mixture was melt-kneaded for 7 minutes under the conditions of 200 to 210 ° C. and a rotational speed of 60 rpm to recover the cellulose resin composition.
  • HAKE-MiniLab Micro-Extruder: manufactured by Thermo Electron Corp.
  • the obtained cellulose resin composition was injection-molded by injection molding (HAKKE-MiniJetII: manufactured by Thermo Scientific) under the conditions of an injection temperature of 200 to 210 ° C., an injection pressure of 800 bar to 1200 bar, a mold temperature of 100 ° C., and a holding pressure of 400 bar.
  • this molded body was evaluated according to the following. The results are shown in Table 2.
  • Example 1 A test piece was prepared and tested in the same manner as in Example 1 except that the polyether-modified polysiloxane was not used. The results are shown in Table 2.
  • Example 1 the impact strength was improved while maintaining good strength and water resistance.
  • Examples 2 to 21, Comparative Example 3 Test pieces were prepared and tested in the same manner as in Example 1 except that the base resins and polyether-modified polysiloxanes shown in Tables 3 to 6 were used. The results are shown in Tables 3-6.
  • Test pieces were prepared and tested in the same manner as in Example 1 except that the polyether-modified polysiloxane was not used and the base resins shown in Tables 3 to 6 were used. The results are shown in Tables 3-6.
  • the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 7 to 8 is added to the base resin 2 has a large impact strength while maintaining good strength and water resistance. It can be seen that there is an improvement. Since the polyether-modified polysiloxane having an HLB value of 7 to 8 is moderately dispersed in the base resin 2, shear deformation due to the plasticizing effect of the base resin 2 and the low-elasticity region of the polyether-modified polysiloxane at the time of failure It is thought that stress concentration on the surface causes impact energy to be absorbed efficiently.
  • the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 10 to 14 is added to the base resin 2 has an impact strength while maintaining good strength and water resistance. It turns out that it is improving. Since the polyether-modified polysiloxane having an HLB value of 10 to 14 is highly dispersed in the base resin 2, it is considered that the plasticity of the base resin 2 is promoted at the time of breakage and energy absorption occurs due to shear deformation.
  • the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 10 to 14 is added to the base resin 2 has an impact strength while maintaining good strength and water resistance. You can see that it has improved. Since the polyether-modified polysiloxane having an HLB value of 10 to 14 is highly dispersed in the base resin 2, it is considered that the plasticity of the base resin 2 is promoted at the time of breakage and energy absorption occurs due to shear deformation.
  • the impact strength of the cellulosic resin composition obtained by adding the polyether-modified polysiloxane having an HLB value of 8 to the base resin 3 is improved while maintaining good strength and water resistance.
  • the polyether-modified polysiloxane having an HLB value of 8 is moderately dispersed in the base resin 3 and absorbs impact energy by stress concentration in the low elasticity region of the polysiloxane when broken.
  • the water absorption is HLB value although the compatibility with the base resin 3 is poor.
  • the difference from 7 and 8 is small. Furthermore, it can be seen that the cellulose resin composition to which the polyether-modified polysiloxane having an HLB value of 10 to 13 shown in Examples 20 and 21 is added has good compatibility between the base resin 3 and the polysiloxane.
  • the cellulose resin composition of the present invention is a bioplastic, it can improve mechanical properties, impact resistance, plasticity, and water resistance, and can be used for the casing of electrical equipment similar to petroleum plastic.
  • the present invention can be used in all industrial fields that require a power source, as well as industrial fields related to the transportation, storage and supply of electrical energy. Specifically, it can be used as a power source for mobile devices such as mobile phones and notebook computers.

Abstract

Provided is a cellulose-based resin composition which has improved impact resistance, while having improved thermal plasticity, heat resistance, strength, moldability and water resistance. This cellulose-based resin composition contains: a cellulose-based resin that is obtained by having one or more substances selected from among carboxylic acids having 1-32 carbon atoms, alcohols, phenols and derivatives of these substances react with and chemically bonded to a hydroxy group of a cellulose or a derivative thereof; and a polyether-modified polysiloxane which has a polyether group represented by -(CmH2mO)n- (wherein m represents an integer of 2-4 and n represents an integer of 1-80) or the polyether group having a substituent.

Description

セルロース系樹脂組成物Cellulosic resin composition
 本発明は、セルロース系樹脂組成物に関し、より詳しくは、機械的強度、耐熱性、耐水性、熱可塑性、耐衝撃性、ブリードアウトが改善されたセルロール系樹脂組成物に関する。 The present invention relates to a cellulose resin composition, and more particularly to a cellulose resin composition having improved mechanical strength, heat resistance, water resistance, thermoplasticity, impact resistance, and bleed out.
 植物を原料とするバイオプラスチックのうち非可食部を原料とするバイオプラスチックとして、木材や草木の主要成分であるセルロースを利用した種々のバイオプラスチックが開発され、製品化されている。この種のバイオプラスチックとしてセルロースの誘導体のセルロースエステルがあり、具体的に、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート等が、多くの分野で用いられている。
セルロースは、β-グルコースが重合した高分子であるが、結晶性が高いため、硬くて脆く、熱可塑性もない。さらに、多くのヒドロキシ基を含有するため吸水性が高く、耐水性が低い。セルロースの特性を改善するための種々の検討が行われている。
Various bioplastics using cellulose, which is a major component of wood and vegetation, have been developed and commercialized as bioplastics made from non-edible parts among bioplastics made from plants. As this type of bioplastic, there are cellulose derivatives of cellulose derivatives. Specifically, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and the like are used in many fields.
Cellulose is a polymer in which β-glucose is polymerized, but has high crystallinity, so it is hard and brittle and has no thermoplasticity. Furthermore, since it contains many hydroxy groups, its water absorption is high and its water resistance is low. Various studies have been conducted to improve the properties of cellulose.
 例えば、特許文献1には、ヒドロキシ基を有するセルロースアセテートにε-カプロラクトンを開環グラフト重合させてなる、熱可塑性を有する生分解性グラフト重合体が開示されている。 For example, Patent Document 1 discloses a thermoplastic biodegradable graft polymer obtained by ring-opening graft polymerization of ε-caprolactone to cellulose acetate having a hydroxy group.
 一方、セルロース以外の非可食部成分を利用した材料の開発も行われている。例えば、カシューナッツの殻由来のカルダノールは、安定した生産量に加え、特徴的な分子構造から機能性にも優れているため、様々な用途に適用されている。カルダノールを利用した例として、特許文献2には、アラミドパルプとセルロース繊維からなる繊維基材、炭酸カルシウムとカシューダストからなる充填材、及びフェノール樹脂からなる結合材を用いて形成されたブレーキ用の摩擦材が開示されている。特許文献3には、アラミド繊維とセルロース繊維からなるベース基材、グラファイトとカシューダストからなる充填材、及び有機無機複合バインダを用いて形成された摩擦材が開示されている。この摩擦材は、自動車等の動力伝達系のクラッチフェーシングに適用されることが記載されている。 On the other hand, materials using non-edible part components other than cellulose are also being developed. For example, cardanol derived from cashew nut shell has been applied to various uses because it has a stable molecular output and is excellent in functionality from a characteristic molecular structure. As an example using cardanol, Patent Document 2 discloses a brake substrate formed using a fiber base material made of aramid pulp and cellulose fiber, a filler made of calcium carbonate and cashew dust, and a binder made of phenol resin. A friction material is disclosed. Patent Document 3 discloses a friction material formed using a base substrate made of aramid fibers and cellulose fibers, a filler made of graphite and cashew dust, and an organic-inorganic composite binder. It is described that this friction material is applied to clutch facing of a power transmission system such as an automobile.
 非特許文献1には、紙シートをカルダノールに浸し、この紙シートを構成するセルロースにカルダノールを結合するグラフト化反応を行うことによって、紙の耐水性を向上できることが記載されている。このグラフト化反応においては、ボロントリフルオリドジエチルエーテル(BF3-OEt2)の存在下で、カルダノールの末端二重結合とセルロースのヒドロキシ基が結合することが記載されている。
セルロース系バイオプラスチックは、石油プラスチックと比較すると、強度や耐熱性、耐水性、熱可塑性、耐衝撃性に劣り、特に電子機器用外装などの耐久製品に適用するためには、これらの特性の改善が必要である。しかしながら、熱可塑性を改善するために石油油原料から得られる可塑剤を添加すると、植物利用率(植物性)が低下する上、耐熱性や強度(特に剛性)が低下し、均一性の低下や可塑剤のブリードアウト(成形体表面への染みだし)の問題が生じる。また、耐衝撃性を改善させるため、通常の柔軟成分を添加すると、成形時にこの柔軟成分がブリードアウトして成形性に支障をきたす場合がある。
Non-Patent Document 1 describes that the water resistance of paper can be improved by immersing a paper sheet in cardanol and performing a grafting reaction that binds cardanol to cellulose constituting the paper sheet. In this grafting reaction, it is described that the terminal double bond of cardanol and the hydroxy group of cellulose are bonded in the presence of boron trifluoride diethyl ether (BF3-OEt2).
Cellulosic bioplastics are inferior in strength, heat resistance, water resistance, thermoplasticity, and impact resistance compared to petroleum plastics, and these characteristics are improved especially for application to durable products such as exteriors for electronic devices. is required. However, when a plasticizer obtained from a petroleum oil raw material is added to improve the thermoplasticity, the plant utilization rate (plantiness) is lowered, and the heat resistance and strength (particularly rigidity) are lowered. There is a problem of bleed out of the plasticizer (seepage to the surface of the molded product). In addition, when a normal soft component is added to improve impact resistance, the soft component may bleed out during molding, thereby hindering moldability.
特開平11-255801号公報Japanese Patent Laid-Open No. 11-255801 特開平10-8035号公報Japanese Patent Laid-Open No. 10-8035 特開2001-32869号公報JP 2001-32869 A
  本発明の課題は、熱可塑性、耐熱性、強度、成形性および耐水性とともに、耐衝撃性が改善されたセルロース系樹脂組成物を提供することにある。 An object of the present invention is to provide a cellulose-based resin composition having improved impact resistance as well as thermoplasticity, heat resistance, strength, moldability and water resistance.
 本発明者らは、セルロースのヒドロキシ基に、カルボン酸やアルコール、フェノールを反応させ化学結合させたセルロース系樹脂と、エーテル基を有するポリエーテル変性ポリシロキサンとを含有することにより、セルロース系樹脂に形成されたアシル基やエーテル基等と、ポリシロキサンのポリエーテル基との相乗効果により、セルロース系樹脂へのポリシロキサンの分散性を向上させることができる。これにより、機械的特性、特に靭性、耐衝撃性を向上させると共に、耐水性、可塑性を向上させることができ、可塑剤の添加量を減少させ、若しくは添加せずに済むため、可塑剤によるセルロースの耐熱性や強度、特に剛性の低下を抑制すると共に、成形体において添加剤やポリシロキサンのブリードアウトを抑制することができることの知見を得、かかる知見に基づき、本発明を完成させた。 The present inventors include a cellulose resin in which a carboxylic acid, an alcohol, or a phenol is reacted with a hydroxyl group of cellulose and chemically bonded thereto, and a polyether-modified polysiloxane having an ether group. The dispersibility of the polysiloxane in the cellulosic resin can be improved by a synergistic effect between the formed acyl group, ether group, and the like and the polyether group of the polysiloxane. As a result, mechanical properties, particularly toughness and impact resistance can be improved, water resistance and plasticity can be improved, and the amount of plasticizer added can be reduced or not added. The present inventors have obtained knowledge that heat resistance and strength, particularly rigidity, can be prevented from being lowered, and that additive and polysiloxane bleed-out can be suppressed in the molded product, and the present invention has been completed based on such knowledge.
 即ち、本発明は、セルロース又はその誘導体のヒドロキシ基に、炭素数1~32のカルボン酸、アルコール、フェノール及びこれらの誘導体から選ばれる1種以上を反応させ化学結合させたセルロース系樹脂と、-(CmH2mO)n-(mは2~4の整数、nは1~80の整数を示す。)で表されるポリエーテル基又は置換基を有する該ポリエーテル基を有するポリエーテル変性ポリシロキサンとを含むセルロース系樹脂組成物に関する。 That is, the present invention relates to a cellulose resin obtained by reacting and chemically bonding one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols and derivatives thereof to the hydroxy group of cellulose or a derivative thereof, A polyether-modified polysiloxane having a polyether group or a substituent-containing polyether group represented by (CmH2mO) n- (m is an integer of 2 to 4, n is an integer of 1 to 80). It is related with the cellulosic resin composition containing.
 本発明のセルロース系樹脂組成物は、熱可塑性、耐熱性、強度、成形性および耐水性と共に、耐衝撃性を改善することができる。 The cellulose resin composition of the present invention can improve impact resistance as well as thermoplasticity, heat resistance, strength, moldability and water resistance.
 本発明のセルロース系樹脂組成物は、セルロース又はその誘導体のヒドロキシ基に、炭素数1~32のカルボン酸、アルコール、フェノール及びこれらの誘導体から選ばれる1種以上を反応させ化学結合させたセルロース系樹脂と、-(CmH2mO)n-(mは2~4の整数、nは1~80の整数を示す。)で表されるポリエーテル基又は置換基を有する該ポリエーテル基を有するポリエーテル変性ポリシロキサンとを含むことを特徴とする。 The cellulose-based resin composition of the present invention is a cellulose-based resin in which one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols, and derivatives thereof are reacted and chemically bonded to the hydroxy group of cellulose or a derivative thereof. A polyether modified with a polyether group or a substituent represented by a resin and-(CmH2mO) n- (m is an integer of 2 to 4, n is an integer of 1 to 80) It contains polysiloxane.
 [セルロース系樹脂]
 セルロース系樹脂は、セルロース又はその誘導体のヒドロキシ基に、炭素数1~32のカルボン酸、アルコール、フェノール又はこれらの誘導体から選ばれる1種以上を反応させ化学結合させたものである。
[Cellulosic resin]
Cellulosic resins are those obtained by reacting and chemically bonding one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols, or derivatives thereof to the hydroxy group of cellulose or a derivative thereof.
 上記セルロースは、草木類の主成分であり、草木類からリグニン等の他の成分を分離処理することによって得られる。このように得られたものの他、セルロース含有量の高い綿やパルプを精製してあるいはそのまま用いることができる。セルロースは下記式(3)で示されるβ-グルコースの直鎖状重合物であり、各グルコース単位は三つのヒドロキシ基を有している。 The above cellulose is a main component of vegetation and is obtained by separating other components such as lignin from vegetation. In addition to those obtained in this manner, cotton or pulp having a high cellulose content can be purified or used as it is. Cellulose is a linear polymer of β-glucose represented by the following formula (3), and each glucose unit has three hydroxy groups.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 セルロースやその誘導体の重合度は、グルコース重合度として、50~5000の範囲が好ましく、100~3000がより好ましい。上記範囲であれば、得られる成形体において充分な強度、耐熱性が得られ、樹脂の溶融粘度が高くなり成形に支障をきたすことを抑制することができる。 The polymerization degree of cellulose and its derivatives is preferably in the range of 50 to 5000, more preferably 100 to 3000, as the glucose polymerization degree. If it is the said range, sufficient intensity | strength and heat resistance will be acquired in the obtained molded object, and it can suppress that the melt viscosity of resin becomes high and causes trouble in shaping | molding.
 セルロース誘導体としては、セルロースを原料として生物により又は化学合成により置換基を導入したものであり、ヒドロキシ基の一部をアシル化、エーテル化、又はグラフト化したものを挙げることができる。具体的には、セルロースアセテート、セルロースブチレート、セルロースプロピオネート等の有機酸エステル;硝酸セルロース、硫酸セルロース、リン酸セルロース等の無機酸エステル;セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、硝酸酢酸セルロース等の混成エステル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のエーテル化セルロース等を挙げることができる。また、スチレン、(メタ)アクリル酸、(メタ)アクリル酸エステル、ε-カプロラクトン、ラクチド、グリコリド等の重合体がセルロースに結合したグラフト化セルロースを挙げることができる。 Examples of the cellulose derivative are those in which a substituent is introduced by a living organism or by chemical synthesis using cellulose as a raw material, and those obtained by acylating, etherifying, or grafting a part of the hydroxy group can be exemplified. Specifically, organic acid esters such as cellulose acetate, cellulose butyrate, and cellulose propionate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate Examples thereof include hybrid esters such as phthalate and cellulose nitrate acetate; etherified celluloses such as methylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose. Further, grafted cellulose in which a polymer such as styrene, (meth) acrylic acid, (meth) acrylic ester, ε-caprolactone, lactide, glycolide, etc. is bonded to cellulose can be mentioned.
 これらの誘導体のうち、セルロースのヒドロキシ基の一部がアシル化された、セルロースアセテート、セルロースプロピオネート及びセルロースブチレートから選ばれる少なくとも一種のアシル化セルロースを好適に用いることができる。 Among these derivatives, at least one acylated cellulose selected from cellulose acetate, cellulose propionate, and cellulose butyrate in which a part of the hydroxy group of cellulose is acylated can be suitably used.
 セルロース誘導体において、グルコース単位中に含まれるヒドロキシ基が反応してアシル化したその個数の平均値、水酸基置換度(DSXX)は、耐水性、機械的特性、耐熱性等の点から、2.0以上、2.8以下がより好ましい。また、セルロース誘導体のグルコース単位中に残存するヒドロキシ基の個数の平均値、水酸基残存度(DSOH)は、耐水性を十分に確保する点から、0.9以下が好ましく、0.7以下がより好ましい。 In the cellulose derivative, the average value of the number of hydroxyl groups reacted and acylated in the glucose unit and the hydroxyl group substitution degree (DSXX) are 2.0 from the viewpoint of water resistance, mechanical properties, heat resistance, and the like. As mentioned above, 2.8 or less is more preferable. In addition, the average value of the number of hydroxy groups remaining in the glucose unit of the cellulose derivative and the hydroxyl group residual degree (DSOH) are preferably 0.9 or less, more preferably 0.7 or less, from the viewpoint of sufficiently securing water resistance. preferable.
 上記セルロースやセルロース誘導体は1種又は2種以上を組み合わせて用いてもよい。 The above cellulose or cellulose derivative may be used alone or in combination of two or more.
 また、セルロース又はその誘導体には、類似の構造のキチンやキトサンが混合されていてもよく、混合されている場合は、キチンやキトサンの含有割合は混合物全体に対して30質量%以下が好ましく、20質量%以下が好ましく、10質量%以下が更に好ましい。 Further, chitin or chitosan having a similar structure may be mixed with cellulose or a derivative thereof, and when mixed, the content of chitin or chitosan is preferably 30% by mass or less based on the entire mixture, 20 mass% or less is preferable and 10 mass% or less is still more preferable.
 上記セルロース又はその誘導体は、そのヒドロキシ基が炭素数1~32のカルボン酸、アルコール、フェノール又はこれらの誘導体と反応して化学結合したものである。セルロース又はその誘導体のヒドロキシ基とカルボン酸のカルボキシル基やアルコールやフェノールのヒドロキシ基が反応しグリコシドを形成する。 The cellulose or derivatives thereof are those in which the hydroxy group is chemically bonded by reacting with a carboxylic acid having 1 to 32 carbon atoms, alcohol, phenol or a derivative thereof. The hydroxy group of cellulose or its derivative reacts with the carboxyl group of carboxylic acid or the hydroxy group of alcohol or phenol to form a glycoside.
 ここで、セルロース又はその誘導体と、カルボン酸のカルボキシル基やアルコールやフェノールのヒドロキシ基が反応しグリコシドを形成することを、セルロース又はその誘導体のグラフト化という。 Here, the reaction of cellulose or its derivative with the carboxyl group of carboxylic acid or the hydroxy group of alcohol or phenol to form a glycoside is called grafting of cellulose or its derivative.
 カルボン酸やアルコール、フェノールが芳香族基又は脂環基を有する場合、セルロース又はその誘導体のグラフト化により、成形体の曲げ強度等の剛性、耐熱性の改善に有効であり、カルボン酸やアルコール、フェノールが脂肪族基を有する場合、セルロース又はその誘導体のグラフト化により、成形体の靭性の改善に有効である。 When carboxylic acid, alcohol, or phenol has an aromatic group or alicyclic group, it is effective for improving rigidity and heat resistance of the molded article by grafting cellulose or a derivative thereof, carboxylic acid, alcohol, When phenol has an aliphatic group, it is effective for improving the toughness of the molded article by grafting cellulose or a derivative thereof.
 これらのカルボン酸やアルコール又はフェノールは炭素数1~32であり、好ましくは炭素数1~20である。炭素数がこの範囲であると、立体障害を抑制し、セルロースのヒドロキシ基のグラフト化率を上昇させることができる。 These carboxylic acids, alcohols or phenols have 1 to 32 carbon atoms, preferably 1 to 20 carbon atoms. When the carbon number is within this range, steric hindrance can be suppressed and the grafting rate of the hydroxy group of cellulose can be increased.
 上記カルボン酸としては、直鎖状、分枝状の脂肪族モノカルボン酸、脂環式モノカルボン酸、芳香族モノカルボン酸、カルボン酸無水物いずれであってもよい。脂環式モノカルボン酸、芳香族モノカルボン酸においては、カルボキシル基は脂環基、芳香族環に直接結合していても、脂環基、芳香族環の置換基に結合していてもよい。 The carboxylic acid may be a linear or branched aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, or carboxylic anhydride. In the alicyclic monocarboxylic acid and aromatic monocarboxylic acid, the carboxyl group may be directly bonded to the alicyclic group or aromatic ring, or may be bonded to the alicyclic group or aromatic ring substituent. .
 このようなカルボン酸としては、具体的には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和モノカルボン酸;ブテン酸、ペンテン酸、ヘキセン酸、オクテン酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和モノカルボン酸を挙げることができる。更に、脂環族モノカルボン酸としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、シクロヘキシル酢酸等、芳香族カルボン酸としては、安息香酸、トルイル酸、フェニル酢酸、フェニルプロピオン酸、ビフェニルカルボン酸、ビフェニル酢酸、ナフタリンカルボン酸、テトラリンカルボン酸等を挙げることができる。これらのうち、特に、酢酸、プロピオン酸、ブチリル酸を好ましいものとして挙げることができる。 Specific examples of such carboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid. Acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, etc. Carboxylic acids; unsaturated monocarboxylic acids such as butenoic acid, pentenoic acid, hexenoic acid, octenoic acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid. Furthermore, as alicyclic monocarboxylic acid, cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, cyclohexyl acetic acid, etc., and aromatic carboxylic acid as benzoic acid, toluic acid, phenylacetic acid, phenylpropionic acid, biphenyl, etc. Carboxylic acid, biphenylacetic acid, naphthalene carboxylic acid, tetralin carboxylic acid and the like can be mentioned. Of these, particularly preferred are acetic acid, propionic acid, and butyric acid.
 カルボン酸の誘導体としては、上記カルボン酸に置換基を有するものである。置換基としては、セルロースのヒドロキシ基との反応性を有する官能基が好ましく、カルボン酸クロライド基等のカルボン酸ハライド基、カルボン酸無水物基の他、エポキシ基、イソシアネート基、塩素原子等のハロゲン原子を挙げることができる。これらの中でもカルボン酸クロライド等のカルボン酸ハライド基、イソシアネート基が好ましい。 As the carboxylic acid derivative, the carboxylic acid has a substituent. As the substituent, a functional group having reactivity with a hydroxy group of cellulose is preferable. In addition to a carboxylic acid halide group such as a carboxylic acid chloride group and a carboxylic acid anhydride group, a halogen such as an epoxy group, an isocyanate group, and a chlorine atom. Atoms can be mentioned. Among these, carboxylic acid halide groups such as carboxylic acid chloride and isocyanate groups are preferred.
 また、セルロースやその誘導体に結合する炭素数1~32のアルコールとしては、脂肪族アルコール、脂環式アルコールいずれであってもよい。脂肪族アルコールとしては、メタノール、エタノール、プロパノール等、脂環式アルコールとしては、シクロヘキシロール、シクロヘプタロール等、芳香族アルコールとしては、フェノール等を挙げることができる。特に、芳香族アルコールとして、カシューナッツの殻に含まれるカルダノールを抽出して用いることが好ましい。カルダノールは式(4)で示されるように、直鎖状炭化水素基Rを有するフェノールである。カルダノールの直鎖状炭化水素基Rは不飽和結合数の異なる4種類、ペンタデシル基、8-ペンタデセニル基、ペンタデシル8,11-ジエン基、ペンタデシル8,11,14-トリエン基の異性体が存在し、カルダノールはこれらの4種の異性体の混合物として存在する。 In addition, the alcohol having 1 to 32 carbon atoms bonded to cellulose or a derivative thereof may be either an aliphatic alcohol or an alicyclic alcohol. Examples of the aliphatic alcohol include methanol, ethanol, propanol, etc., examples of the alicyclic alcohol include cyclohexylol and cycloheptalol, and examples of the aromatic alcohol include phenol. In particular, it is preferable to extract and use cardanol contained in the cashew nut shell as the aromatic alcohol. Cardanol is a phenol having a linear hydrocarbon group R as shown in Formula (4). The linear hydrocarbon group R of cardanol has four types of isomers of pentadecyl group, 8-pentadecenyl group, pentadecyl 8,11-diene group, and pentadecyl 8,11,14-triene group having different numbers of unsaturated bonds. Cardanol exists as a mixture of these four isomers.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 カルダノールの直鎖状炭化水素基Rは樹脂の柔軟性と疎水性の向上に寄与し、ヒドロキシ基はセルロース又はその誘導体とグルコシドを形成する。このようなカルダノールをセルロースやその誘導体に結合させると、カルダノール成分がブラシ状に結合されたセルロース系樹脂が形成され、この結果、セルロース又はその誘導体にグリコシド化したカルダノール同士の相互作用によって機械的特性(特に靭性)を改善できるとともに、熱可塑性も付与でき、さらにカルダノールの疎水性によって耐水性を改善できる。上記カルダノールとセルロースやその誘導体とグリコシド化する際、硫酸、トルエンスルホン酸、塩化水素などの脱水触媒を添加して行ってもよい。 The linear hydrocarbon group R of cardanol contributes to the improvement of the flexibility and hydrophobicity of the resin, and the hydroxy group forms glucoside with cellulose or its derivatives. When such cardanol is bound to cellulose or its derivative, a cellulose resin in which the cardanol component is bound in a brush shape is formed. As a result, mechanical properties are obtained by the interaction between cardanols glycosylated into cellulose or its derivative. (Especially toughness) can be improved, thermoplasticity can be imparted, and the water resistance can be improved by the hydrophobicity of cardanol. When glycosidating the above cardanol with cellulose or a derivative thereof, a dehydration catalyst such as sulfuric acid, toluenesulfonic acid or hydrogen chloride may be added.
 カルダノールは、カルダノールの直鎖状炭化水素基の不飽和結合が水素添加され飽和結合に変換されて用いられることが好ましい。水素添加を行って直鎖状炭化水素基の不飽和結合が飽和結合に十分に変換されたカルダノール誘導体を用いることにより、副反応が抑制され、セルロースとカルダノールの結合を効率的に行うことができ、また生成物の溶媒への溶解性低下を抑制することができる。水素添加による不飽和結合の変換率(水添率)は、90モル%以上が好ましく、95モル%以上がより好ましい。水素添加後のカルダノール中の不飽和結合の残存率(カルダノールの1分子当たりの不飽和結合の平均の数)は、0.2個/分子以下が好ましく、0.1個/分子以下がより好ましい。 Cardanol is preferably used after the unsaturated bond of the linear hydrocarbon group of cardanol is hydrogenated and converted to a saturated bond. By using a cardanol derivative in which unsaturated bonds of linear hydrocarbon groups are sufficiently converted to saturated bonds by hydrogenation, side reactions can be suppressed and cellulose and cardanol can be bound efficiently. Moreover, the solubility fall to the solvent of a product can be suppressed. The conversion rate (hydrogenation rate) of unsaturated bonds by hydrogenation is preferably 90 mol% or more, and more preferably 95 mol% or more. The residual ratio of unsaturated bonds in cardanol after hydrogenation (average number of unsaturated bonds per molecule of cardanol) is preferably 0.2 or less, more preferably 0.1 or less. .
 水素添加する方法としては、通常の方法を用いることができる。触媒としては、パラジウム、ルテニウム、ロジウムなどの貴金属またはニッケル、或いはこれらから選ばれる金属を活性炭素、活性アルミナ、珪藻土等の担体上に担持したものを用い、粉末状の触媒を懸濁攪拌しながら反応を行うバッチ方式や、成形した触媒を充填した反応塔を用いた連続方式を採用することができる。水素添加の際の溶媒は、水素添加の方式によっては用いなくてもよいが、溶媒を使用する場合は、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類を用いることができる。水素添加の際の反応温度は、水素化速度を適当に調整するため、通常20~250℃、好ましくは50~200℃に設定することができる。水素添加の際の水素圧は、通常10~80kgf/cm(9.8×105~78.4×105Pa)、好ましくは20~50kgf/cm(19.6×105~49.0×105Pa)に設定できる。 As a method for hydrogenation, a normal method can be used. As the catalyst, a noble metal such as palladium, ruthenium or rhodium or nickel or a metal selected from these metals supported on a support such as activated carbon, activated alumina or diatomaceous earth is used, and the powdered catalyst is suspended and stirred. A batch method in which the reaction is performed or a continuous method using a reaction tower filled with a molded catalyst can be employed. The solvent for hydrogenation may not be used depending on the method of hydrogenation. However, when a solvent is used, alcohols, ethers, esters, and saturated hydrocarbons can usually be used. The reaction temperature at the time of hydrogenation can be usually set to 20 to 250 ° C., preferably 50 to 200 ° C. in order to appropriately adjust the hydrogenation rate. The hydrogen pressure at the time of hydrogenation is usually 10 to 80 kgf / cm 2 (9.8 × 10 5 to 78.4 × 10 5 Pa), preferably 20 to 50 kgf / cm 2 (19.6 × 10 4 to 49.0 × 10 5 Pa). ).
 水素添加は、カルダノール誘導体を形成する前、カルダノール誘導体を形成した後セルロースとの結合前、セルロースとの結合後のいずれにおいても行うことができるが、水素添加やグラフト化の反応効率等の観点から、セルロースとの結合前が好ましく、カルダノール誘導体の形成前がさらに好ましい。 Hydrogenation can be performed before the cardanol derivative is formed, after the cardanol derivative is formed, before the bond with the cellulose, and after the bond with the cellulose. From the viewpoint of the hydrogenation and grafting reaction efficiency, etc. Before bonding with cellulose is preferred, and before formation of the cardanol derivative is more preferred.
 また、アルコール又はフェノールによるセルロース又はその誘導体のグラフト化は、これら双方のヒドロキシ基と結合する官能基を有する多官能化合物を用いて行うことができ、多官能化合物を介して、セルロース又はその誘導体がグラフト化される。尚、セルロース、アルコール、フェノールのヒドロキシ基に多官能化合物が結合したものは、それぞれ、セルロースの誘導体、アルコールの誘導体、フェノールの誘導体である。例えば、フェノールのヒドロキシ基に多官能化合物の一つの官能基を結合させカルダノール誘導体とし、カルダノール誘導体の官能基とセルロースと結合させる。このような多官能化合物による結合によれば、セルロースのヒドロキシ基の反応効率を向上することができ、また副反応を抑制することができる。 In addition, the grafting of cellulose or a derivative thereof with alcohol or phenol can be performed using a polyfunctional compound having a functional group that binds to both of these hydroxy groups, and cellulose or a derivative thereof is introduced via the polyfunctional compound. Grafted. In addition, the thing which the polyfunctional compound couple | bonded with the hydroxyl group of cellulose, alcohol, and phenol is the derivative | guide_body of a cellulose, the derivative | guide_body of alcohol, and the derivative | guide_body of phenol, respectively. For example, one functional group of a polyfunctional compound is bonded to the hydroxy group of phenol to form a cardanol derivative, and the functional group of the cardanol derivative is bonded to cellulose. According to such bonding with a polyfunctional compound, the reaction efficiency of the hydroxy group of cellulose can be improved, and side reactions can be suppressed.
 上記の多官能化合物は、セルロースと、アルコール又はフェノールのヒドロキシ基と結合する官能基が炭化水素基に結合したものが好ましく、この炭化水素基の炭素数は1以上が好ましく、2以上がより好ましく、また炭素数は20以下が好ましく、14以下がより好ましく、8以下がさらに好ましい。炭素数がこの範囲であれば、反応性の低下を抑制し、グラフト化を効率よく行うことができる。このような炭化水素基としては、2価基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基などの2価の直鎖状脂肪族炭化水素基;シクロヘプタン環、シクロヘキサン環、シクロオクタン環、ビシクロペンタン環、トリシクロヘキサン環、ビシクロオクタン環、ビシクロノナン環、トリシクロデカン環などの2価の脂環式炭化水素基;ベンゼン環、ナフタレン環、ビフェニレン基などの2価の芳香族炭化水素基、これらの組み合わせからなる2価基を挙げることができる。これらのうち、鎖状アルキレン基が好ましい。 In the polyfunctional compound, cellulose and a functional group that is bonded to a hydroxy group of alcohol or phenol are preferably bonded to a hydrocarbon group, and the hydrocarbon group preferably has 1 or more carbon atoms, more preferably 2 or more. The number of carbon atoms is preferably 20 or less, more preferably 14 or less, and even more preferably 8 or less. When the number of carbon atoms is within this range, a decrease in reactivity can be suppressed and grafting can be performed efficiently. As such a hydrocarbon group, a divalent group is preferable, and a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a decamethylene group, a dodecamethylene group, Divalent linear aliphatic hydrocarbon groups such as hexadecamethylene group; cycloheptane ring, cyclohexane ring, cyclooctane ring, bicyclopentane ring, tricyclohexane ring, bicyclooctane ring, bicyclononane ring, tricyclodecane ring, etc. Examples thereof include a divalent alicyclic hydrocarbon group; a divalent aromatic hydrocarbon group such as a benzene ring, a naphthalene ring and a biphenylene group, and a divalent group composed of a combination thereof. Of these, a chain alkylene group is preferred.
 上記の炭化水素基が、芳香族炭化水素基や脂環式炭化水素基である場合、それらの剛直性から、樹脂の剛性を向上できる。一方、その炭化水素基が直鎖状脂肪族炭化水素基である場合、その柔軟性から、樹脂の靭性を向上できる。 When the above hydrocarbon group is an aromatic hydrocarbon group or an alicyclic hydrocarbon group, the rigidity of the resin can be improved due to their rigidity. On the other hand, when the hydrocarbon group is a linear aliphatic hydrocarbon group, the toughness of the resin can be improved due to its flexibility.
 上記の多官能化合物の官能基としては、カルボキシル基、カルボン酸無水物基、カルボン酸クロライド等のカルボン酸ハライド基、エポキシ基、イソシアネート基、ハロゲン原子から選ばれる基が好ましい。これらのうちカルボキシル基、カルボン酸無水物基、塩素原子等のハロゲン原子、及びイソシアネート基が好ましい。アルコール又はフェノールのヒドロキシル基と反応させる官能基としては、カルボン酸無水物基、塩素原子等のハロゲン原子、イソシアネート基が好ましく、セルロース又はその誘導体のヒドロキシ基と反応させる官能基としては、カルボン酸クロライド基等のカルボン酸ハライド基、イソシアネート基が好ましい。カルボン酸ハライド基は、カルボキシル基を酸ハライド化して形成することができる。 The functional group of the polyfunctional compound is preferably a group selected from a carboxyl group, a carboxylic acid anhydride group, a carboxylic acid halide group such as a carboxylic acid chloride, an epoxy group, an isocyanate group, and a halogen atom. Of these, carboxyl groups, carboxylic acid anhydride groups, halogen atoms such as chlorine atoms, and isocyanate groups are preferred. The functional group to be reacted with the hydroxyl group of alcohol or phenol is preferably a carboxylic acid anhydride group, a halogen atom such as a chlorine atom, or an isocyanate group. The functional group to be reacted with the hydroxy group of cellulose or a derivative thereof is carboxylic acid chloride. Carboxylic acid halide groups such as groups and isocyanate groups are preferred. The carboxylic acid halide group can be formed by converting a carboxyl group into an acid halide.
 このような多官能化合物の具体例としては、ジカルボン酸、カルボン酸無水物、ジカルボン酸ハライド、モノクロロカルボン酸、ジイソシアネート類を挙げることができる。ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸を挙げることができ、カルボン酸無水物としてはこれらのジカルボン酸の無水物を挙げることができ、ジカルボン酸ハライドとしてはこれらのジカルボン酸の酸ハライドを挙げることができる。モノクロロカルボン酸としては、モノクロロ酢酸、3-クロロプロピオン酸、3-フルオロプロピオン酸、4-クロロ酪酸、4-フルオロ酪酸、5-クロロ吉草酸、5-フルオロ吉草酸、6-クロロヘキサン酸、6-フルオロヘキサン酸、8-クロロオクタン酸、8-フルオロオクタン酸、12-クロロドデカン酸、12-フルオロドデカン酸、18-クロロステアリン酸、18-フルオロステアリン酸を挙げることができる。ジイソシアネート類としては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(HMDI:水素添加MDI)を挙げることができる。これらの中でも、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)を好適に用いることができる。 Specific examples of such polyfunctional compounds include dicarboxylic acids, carboxylic anhydrides, dicarboxylic acid halides, monochlorocarboxylic acids, and diisocyanates. Examples of the dicarboxylic acid include malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, pentadecanedicarboxylic acid, and hexadecanedicarboxylic acid. The dicarboxylic acid anhydride can be exemplified, and examples of the dicarboxylic acid halide include acid halides of these dicarboxylic acids. Monochlorocarboxylic acids include monochloroacetic acid, 3-chloropropionic acid, 3-fluoropropionic acid, 4-chlorobutyric acid, 4-fluorobutyric acid, 5-chlorovaleric acid, 5-fluorovaleric acid, 6-chlorohexanoic acid, 6 -Fluorohexanoic acid, 8-chlorooctanoic acid, 8-fluorooctanoic acid, 12-chlorododecanoic acid, 12-fluorododecanoic acid, 18-chlorostearic acid, 18-fluorostearic acid. Diisocyanates include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI), Isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (HMDI: hydrogenated MDI) It can be mentioned. Among these, tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI) and 1,6-hexamethylene diisocyanate (HDI) can be preferably used.
 これらの多官能化合物を介してアルコール又はフェノールによるセルロース又はその誘導体のグラフト化は、エステル結合、エーテル結合、ウレタン結合を介するグラフト化がなされる。 The grafting of cellulose or a derivative thereof with alcohol or phenol through these polyfunctional compounds is carried out through an ester bond, an ether bond or a urethane bond.
 上記カルボン酸、アルコール、フェノール又はその誘導体は、耐水性の改善効果を得るために、構造中に有機シリコン化合物や有機フッ素化合物由来の基を有していてもよい。 The carboxylic acid, alcohol, phenol or derivative thereof may have a group derived from an organic silicon compound or an organic fluorine compound in the structure in order to obtain an effect of improving water resistance.
 セルロースやその誘導体に対するカルボン酸、アルコール、フェノール又はこれらの誘導体によるグラフト化率、即ち、セルロースやその誘導体のグルコース単位中に含まれるヒドロキシ基がカルボン酸、アルコール、又はこれらの誘導体と反応したその個数の平均値、水酸基置換度(DSXX)は、耐水性、機械的特性、耐熱性等の点から、0.1以上、2.9以下が好ましく、より好ましくは、1.0以上2.8以下である。また、セルロースやその誘導体のグルコース単位中に残存するヒドロキシ基の個数の平均値、水酸基残存度(DSOH)は、耐水性、機械的強度、可塑性を十分に確保する点から、0.9以下が好ましく、0.7以下がより好ましい。 Grafting rate by carboxylic acid, alcohol, phenol or derivatives thereof on cellulose or its derivatives, that is, the number of hydroxyl groups contained in the glucose unit of cellulose or its derivatives reacted with carboxylic acid, alcohol or derivatives thereof Is preferably from 0.1 to 2.9, more preferably from 1.0 to 2.8, in view of water resistance, mechanical properties, heat resistance, and the like. It is. Further, the average value of the number of hydroxy groups remaining in the glucose unit of cellulose or its derivative, and the hydroxyl group residual degree (DSOH) is 0.9 or less from the viewpoint of sufficiently ensuring water resistance, mechanical strength, and plasticity. Preferably, 0.7 or less is more preferable.
 セルロースやその誘導体に対するカルダノールのグラフト化率は、セルロースやその誘導体のグルコース単位中に含まれるヒドロキシ基がカルダノールと結合したその個数の平均値、水酸基置換度(DSCD)は、耐水性、機械的特性、耐熱性の向上の点から、0.1以上が好ましく、0.2以上がより好ましく、0.4以上が、更に好ましい。DSCDの最大値は、理論上「3」であるが、効率のよい結合を行うために、2.5以下が好ましく、2以下がより好ましく、1.5以下がさらに好ましい。更に、DSCDが1以下の場合であってもよく、十分な改善効果を得ることができる。DSCDが大きくなると、引張破断歪み(靱性)が高くなる一方で最大強度(引張強度、曲げ強度)が低下する傾向があるため、所望の特性に応じて適宜設定することが好ましい。また、カルダノールが結合したセルロースやその誘導体のグルコース単位中に残存するヒドロキシ基の個数の平均値、水酸基残存度(DSOH)は、耐水性、機械的強度、可塑性を十分に確保する点から、0.9以下が好ましく、0.7以下がより好ましい。 The grafting rate of cardanol to cellulose and its derivatives is the average value of the number of hydroxyl groups bonded to cardanol in the glucose unit of cellulose and its derivatives, the degree of hydroxyl substitution (DSCD) is water resistance, mechanical properties From the viewpoint of improving heat resistance, 0.1 or more is preferable, 0.2 or more is more preferable, and 0.4 or more is more preferable. The maximum value of DSCD is theoretically “3”, but is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less in order to perform efficient bonding. Further, the DSCD may be 1 or less, and a sufficient improvement effect can be obtained. As DSCD increases, tensile fracture strain (toughness) tends to increase while maximum strength (tensile strength, bending strength) tends to decrease. Therefore, it is preferable to set appropriately according to desired properties. In addition, the average value of the number of hydroxyl groups remaining in the glucose unit of cellulose and its derivatives bound with cardanol, and the residual hydroxyl group (DSOH) are 0 from the viewpoint of sufficiently ensuring water resistance, mechanical strength, and plasticity. .9 or less is preferable, and 0.7 or less is more preferable.
 セルロースやその誘導体に対する、カルボン酸、アルコール、フェノール又はその誘導体によるグラフト化は、セルロースやその誘導体、カルボン酸、アルコール、フェノール又はその誘導体を、これらを溶解できる溶媒中で、適切な温度で加熱することによって実施できる。セルロースは通常の溶媒には溶解しにくいが、ジメチルスルホキシド-アミン系溶媒、ジメチルホルムアミド-クロラール-ピリジン系溶媒、ジメチルアセトアミド-リチウムクロライド系溶媒、イミダゾリウム系イオン液体などに溶解できる。ジオキサン、クロロホルム、塩化メチレン、アセトン等の溶媒中でグラフト化を行う場合、セルロース又はその誘導体のヒドロキシ基の一部を、予めカルボン酸やアルコールと結合させ、分子間力を低下させることによって溶解性を高めた、アセチルセルロース、プロピオニルセルロース、ブチリルセルロース等のアシル化セルロース等を用いることが好ましく、特にアセチルセルロースが好ましい。 Grafting cellulose or its derivatives with carboxylic acids, alcohols, phenols or their derivatives heats cellulose or its derivatives, carboxylic acids, alcohols, phenols or their derivatives at a suitable temperature in a solvent that can dissolve them. Can be implemented. Although cellulose is difficult to dissolve in ordinary solvents, it can be dissolved in dimethylsulfoxide-amine solvents, dimethylformamide-chloral-pyridine solvents, dimethylacetamide-lithium chloride solvents, imidazolium ionic liquids, and the like. When grafting in a solvent such as dioxane, chloroform, methylene chloride, acetone, etc., solubility is achieved by preliminarily binding a part of the hydroxy group of cellulose or its derivative with carboxylic acid or alcohol to reduce intermolecular force. It is preferable to use an acylated cellulose such as acetyl cellulose, propionyl cellulose, butyryl cellulose, etc., and particularly preferably acetyl cellulose.
 このアシル化セルロースにおけるアシル化率は、アシル化反応に与ったグルコース単位中に含まれるヒドロキシ基の個数の平均値、水酸基置換度(DSAC)として、セルロースの溶解性を高めるために、0.5以上が好ましく、1.0以上がより好ましく、1.5以上が、更に好ましく、効率のよいセルロース又はその誘導体のグラフト化を行うために、2.9以下が好ましく、2.8以下がより好ましい。 The acylation rate in the acylated cellulose is an average value of the number of hydroxy groups contained in the glucose unit subjected to the acylation reaction, and the degree of hydroxyl group substitution (DSAC), in order to increase the solubility of cellulose. 5 or more is preferable, 1.0 or more is more preferable, 1.5 or more is more preferable, and 2.9 or less is preferable and 2.8 or less is more preferable in order to perform efficient grafting of cellulose or a derivative thereof. preferable.
 その後、アシル化セルロースのヒドロキシ基と、カルダノール等のフェノールのヒドロキシ基との反応により、セルロース又はその誘導体のグラフト化を完成することができる。 Thereafter, grafting of cellulose or a derivative thereof can be completed by a reaction between the hydroxy group of acylated cellulose and the hydroxy group of phenol such as cardanol.
 [ポリエーテル変性ポリシロキサン]
 ポリエーテル変性ポリシロキサンは、-(CmH2mO)n-(mは2~4の整数、nは1~80の整数を示す。)で表されるポリエーテル基又は置換基を有する該ポリエーテル基を有するものであれば、特に限定されるものではないが、式(1)で表されるポリエーテル変性ポリシロキサンが好ましい。
[Polyether-modified polysiloxane]
The polyether-modified polysiloxane has a polyether group represented by — (CmH2mO) n— (m is an integer of 2 to 4, n is an integer of 1 to 80) or a polyether group having a substituent. Although it will not specifically limit if it has, The polyether modified polysiloxane represented by Formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、R~R10は、独立して水素原子、アルキル基、又はアリール基を示し、R、R、R、Rのうち少なくとも一つは、-(CmH2mO)n-で表されるポリエーテル基(mは2~4の整数、nは1~80の整数を示す。)を示し、a、bは合計が10から1000となる整数を示す。 In the formula, R 1 to R 10 independently represent a hydrogen atom, an alkyl group, or an aryl group, and at least one of R 1 , R 4 , R 6 , and R 8 is — (CmH 2 mO) n—. A polyether group (m is an integer of 2 to 4, n is an integer of 1 to 80), and a and b are integers having a total of 10 to 1000.
 R~R10が示すアルキル基としては、メチル基、エチル基、プロピル基、ブチル基の炭素数1~4の低級アルキル基が好ましく、これらのうちメチル基が好ましい。R~R10が示すアリール基としては、フェニル基、ナフチル基等の炭素数6~12のアリール基が好ましく、フェニル基が特に好ましい。 The alkyl group represented by R 1 to R 10 is preferably a lower alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group, and among these, a methyl group is preferable. The aryl group represented by R 1 to R 10 is preferably an aryl group having 6 to 12 carbon atoms such as a phenyl group or a naphthyl group, and particularly preferably a phenyl group.
 R、R、R、Rのうち少なくとも一つが示す上記-(CmH2mO)n-で表されるポリエーテル基は、ポリメチルエーテル基、ポリエチルエーテル基、ポリプロピルエーテル基、ポリブチルエーテル基の1種のポリエーテル基を有するものであっても、これらを2種以上を有するものであってもよく、2種以上を有する場合、同種のものが連続したものであっても、交互に、また、ランダムに結合されていてもよい。具体的には、R(CO)(CO)-等を挙げることができる。式中、オキシエチレン基、オキシプロピレン基は、同種のものが連続してものであっても、交互に、また、ランダムに結合されていてもよく、Rは水素原子又は上記アルキル基、アリール基を挙げることができる。ポリエーテル基は置換基を有していてもよく、該置換基としては、上記アルキル基、アリール基を挙げることができる。 The polyether group represented by the above-(CmH2mO) n- represented by at least one of R 1 , R 4 , R 6 and R 8 is a polymethyl ether group, a polyethyl ether group, a polypropyl ether group or a polybutyl ether group. Even those having one kind of polyether group, those having two or more kinds, or having two or more kinds, alternately, even if the same kind is continuous, Moreover, you may couple | bond together at random. Specific examples include R (C 2 H 4 O) a (C 3 H 6 O) b — and the like. In the formula, the oxyethylene group and the oxypropylene group may be the same or may be bonded alternately or randomly, and R is a hydrogen atom or the above alkyl group or aryl group. Can be mentioned. The polyether group may have a substituent, and examples of the substituent include the above alkyl group and aryl group.
 上記ポリエーテル基は、R、R、R、Rのうち少なくとも一つが有していればよく、2以上、或いは総てが有していてもよい。このように、主鎖又は側鎖の末端にポリエーテル基を有することにより、ポリエーテル変性ポリシロキサンのセルロース中への分散性を向上させることができ、ブリードアウトを抑制し、耐衝撃性を向上させることができる。 The polyether group may have at least one of R 1 , R 4 , R 6 , and R 8 , and may have two or more, or all of them. Thus, by having a polyether group at the end of the main chain or side chain, the dispersibility of the polyether-modified polysiloxane in cellulose can be improved, bleed-out is suppressed, and impact resistance is improved. Can be made.
 ここで、HLB値は、親水親油バランス(Hydrophile?Lipophile?Balance)を示す値であり、グリフィン法に基づいて式(2)により定義される。 Here, the HLB value is a value indicating a hydrophilic-lipophilic balance, and is defined by the formula (2) based on the Griffin method.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 上記ポリエーテル変性ポリシロキサンはHLB値が7以上14以下であることが好ましい。ポリエーテル変性ポリシロキサンがHLB値として7以上14以下の値を有することにより、親水性のポリエーテル基と疎水性のシロキサン構造のバランスが、親水性のセルロースのヒドロキシ基をカルボン酸、アルコール、又はその誘導体と結合させた疎水性の残基を有するセルロース系樹脂の親水疎水性バランスと調和させることができ、これらを含む樹脂組成物中の分散性を向上させることができる。ポリエーテル変性ポリシロキサンのHLB値はより好ましくは7以上8以下である。式(2)中、分子量としては、数平均分子量を用いることができる。 The polyether-modified polysiloxane preferably has an HLB value of 7 or more and 14 or less. When the polyether-modified polysiloxane has a value of 7 or more and 14 or less as the HLB value, the balance between the hydrophilic polyether group and the hydrophobic siloxane structure is such that the hydroxy group of the hydrophilic cellulose is converted to carboxylic acid, alcohol, or It can be matched with the hydrophilic-hydrophobic balance of the cellulose-based resin having a hydrophobic residue bonded to the derivative, and the dispersibility in the resin composition containing these can be improved. The HLB value of the polyether-modified polysiloxane is more preferably 7 or more and 8 or less. In the formula (2), the number average molecular weight can be used as the molecular weight.
 これらを含むセルロース系樹脂組成物において、ポリエーテル変性ポリシロキサンのブリードアウトを抑制し、ポリエーテル変性ポリシロキサンの柔軟な構造によりセルロース系樹脂組成物の耐衝撃性を改善することができる。 In a cellulose resin composition containing these, bleeding out of the polyether-modified polysiloxane can be suppressed, and the impact resistance of the cellulose-based resin composition can be improved by the flexible structure of the polyether-modified polysiloxane.
 ポリエーテル変性ポリシロキサンの数平均分子量は、900以上が好ましく、1000以上がより好ましく、また100000以下が好ましく、60000以下がより好ましい。ポリエーテル変性ポリシロキサンの分子量が十分に大きいと、セルロース系樹脂組成物の製造時において、溶融したセルロース系樹脂と混練時に揮発による喪失を抑制することができる。また、ポリエーテル変性ポリシロキサンの分子量が適度な大きさであると、分散性がよく均一な成形品を得ることができる。 The number average molecular weight of the polyether-modified polysiloxane is preferably 900 or more, more preferably 1000 or more, and preferably 100,000 or less, more preferably 60000 or less. When the molecular weight of the polyether-modified polysiloxane is sufficiently large, loss due to volatilization can be suppressed during kneading with the molten cellulose resin during the production of the cellulose resin composition. Further, when the molecular weight of the polyether-modified polysiloxane is an appropriate size, a uniform molded article with good dispersibility can be obtained.
 数平均分子量は、試料のクロロホルム0.1%溶液のGPCによる測定値(ポリスチレン標準試料で較正)を採用することができる。 As the number average molecular weight, a value measured by GPC of a 0.1% chloroform solution of the sample (calibrated with a polystyrene standard sample) can be adopted.
 このようなポリエーテル変性ポリシロキサンの含有量は、得られる成形体の耐衝撃性を改善するためセルロース系樹脂組成物全体に対して0.1質量%以上が好ましく、1質量%以上がより好ましい。セルロース系樹脂の強度等の特性を十分に確保し、またブリードアウトを抑制する点から10質量%以下が好ましく、5質量%以下がより好ましい。 The content of such a polyether-modified polysiloxane is preferably 0.1% by mass or more and more preferably 1% by mass or more with respect to the whole cellulose resin composition in order to improve the impact resistance of the molded article obtained. . 10 mass% or less is preferable from the point which ensures characteristics, such as an intensity | strength of a cellulose resin, and suppresses bleed-out, and 5 mass% or less is more preferable.
 このようなポリエーテル変性ポリシロキサンをセルロース系樹脂に添加することにより、樹脂中にポリエーテル変性ポリシロキサンを適度な粒径、例えば、平均粒径0.1~100μmで分散させることができ、樹脂組成物の耐衝撃性を向上できる。 By adding such a polyether-modified polysiloxane to a cellulosic resin, the polyether-modified polysiloxane can be dispersed in the resin with an appropriate particle size, for example, an average particle size of 0.1 to 100 μm. The impact resistance of the composition can be improved.
 [セルロース系樹脂組成物]
 セルロース系樹脂組成物には、上記セルロース系樹脂とポリエーテル変性ポリシロキサンの機能を阻害しない範囲において、必要に応じて、着色剤、酸化防止剤、熱安定剤、可塑剤、難燃剤等の添加剤を添加してもよい。
[Cellulose-based resin composition]
Addition of colorants, antioxidants, heat stabilizers, plasticizers, flame retardants, etc., as necessary, to the cellulose-based resin composition as long as the functions of the cellulose-based resin and the polyether-modified polysiloxane are not impaired. An agent may be added.
 このようなセルロース系樹脂組成物の製造方法は、例えば各種添加剤とセルロース系樹脂とポリエーテル変性ポリシロキサンをハンドミキシングや、混合機、例えばタンブラーミキサー、リボンブレンダー、単軸や多軸混合押出機、混練ニーダー、混練ロール等のコンパウンディング装置で溶融混合し、必要に応じ適当な形状に造粒等を行うことにより製造できる。また別の好適な製造方法として、有機溶媒等の溶剤に分散させた、各種添加剤と樹脂を混合し、さらに必要に応じて、凝固用溶剤を添加して各種添加剤と樹脂の混合組成物を得て、その後、溶剤を蒸発させる製造方法がある。 Such a cellulose resin composition can be produced by, for example, hand-mixing various additives, a cellulose resin, and a polyether-modified polysiloxane, or a mixer such as a tumbler mixer, a ribbon blender, a single-screw or multi-screw mixing extruder. It can be produced by melting and mixing with a compounding apparatus such as a kneader kneader or a kneading roll, and granulating it into an appropriate shape as necessary. As another preferred production method, various additives and a resin dispersed in a solvent such as an organic solvent are mixed, and if necessary, a coagulation solvent is added to mix the various additives and the resin. And then the solvent is evaporated.
 上記セルロース系樹脂は、成形用材料のベース樹脂として用いることができる。当該セルロース系樹脂をベース樹脂として用いた成形用材料は、電子機器用外装等の筺体などの成形体に好適である。 The cellulosic resin can be used as a base resin for molding materials. A molding material using the cellulose-based resin as a base resin is suitable for a molded body such as a casing such as an exterior for an electronic device.
 ここでベース樹脂とは、成形用材料中に含まれる他の成分より多量に含有されるものであり、このベース樹脂の機能を阻害しない範囲で他の成分を含有することを許容するものである。例えば、このベース樹脂が組成物中の50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上を占めることを包含するものである。 Here, the base resin is contained in a larger amount than the other components contained in the molding material, and allows other components to be contained within a range that does not hinder the function of the base resin. . For example, the base resin includes 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more in the composition.
 以下、具体例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with specific examples.
 [セルロース系樹脂]ベース樹脂1
 ベース樹脂1として、セルロースアセテートプロピオネート(CAP482-20:イーストマンケミカル社製:セルロースのグルコース単位当りのヒドロキシ基のアセチル化率:DSAce=0.18、セルロースのグルコース単位当りのヒドロキシ基のプロピオニル化率:DSPro=2.49)を用いた。
[Cellulosic resin] Base resin 1
As base resin 1, cellulose acetate propionate (CAP482-20: manufactured by Eastman Chemical Co., Ltd .: acetylation rate of hydroxy group per glucose unit of cellulose: DSAce = 0.18, propionyl of hydroxy group per glucose unit of cellulose Conversion rate: DSPro = 2.49).
 [セルロース系樹脂]ベース樹脂2
 合成例1、2によりベース樹脂として、カルダノールグラフト化セルロースアセテートを作製した。
[合成例1]カルダノール誘導体1
 モノクロロ酢酸変性カルダノールのクロライド化合物の調製
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノールのm-n-ペンタデシルフェノール(ACROS:Organics社製)を原料とし、フェノール性水酸基をモノクロロ酢酸と反応させ、カルボキシル化水添カルダノールを得た。次に、カルボキシル化水添カルダノールのカルボキシル基を、オキサリルクロライドでクロライド化して酸クロライド基へ変換し、クロライド化水添カルダノールを得た。
[Cellulosic resin] Base resin 2
According to Synthesis Examples 1 and 2, cardanol-grafted cellulose acetate was prepared as a base resin.
[Synthesis Example 1] Cardanol derivative 1
Preparation of monochloroacetic acid-modified cardanol chloride compound Hydrogenated cardanol mn-pentadecylphenol (ACROS: manufactured by Organics) in which unsaturated bond of the linear hydrocarbon part of cardanol is hydrogenated is used as a raw material. The hydroxyl group was reacted with monochloroacetic acid to obtain carboxylated hydrogenated cardanol. Next, the carboxyl group of the carboxylated hydrogenated cardanol was converted to an acid chloride group by chlorination with oxalyl chloride to obtain a chloride hydrogenated cardanol.
 具体的には、下記に従って、クロライド化水添カルダノールを得た。 Specifically, a chlorinated hydrogenated cardanol was obtained according to the following.
 まず、水添カルダノール80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解させた水溶液を加えた。その後、室温で、モノクロロ酢酸(関東化学株式会社製)66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、73℃で4時間還流させつつ攪拌を継続した。反応溶液を室温まで冷却後、この反応混合物を、希塩酸でpH=1となるまで酸性化し、メタノール250mLとジエチルエーテル500mL、さらに、蒸留水200mLを加えた。分液漏斗で水層を分離、廃棄し、エーテル層を蒸留水400mLで2回洗浄した。エーテル層に無水マグネシウムを加え乾燥させた後、これを濾別した。濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、残渣として黄茶色粉末状の粗生成物を得た。この粗生成物をn-ヘキサンから再結晶し、真空乾燥させることにより、目的のカルボキシル化水添カルダノールの白色粉末46g(0.12mol)を得た。 First, 80 g (0.26 mol) of hydrogenated cardanol was dissolved in 120 mL of methanol, and an aqueous solution in which 64 g (1.6 mol) of sodium hydroxide was dissolved in 40 mL of distilled water was added thereto. Thereafter, at room temperature, a solution prepared by dissolving 66 g (0.70 mol) of monochloroacetic acid (manufactured by Kanto Chemical Co., Ltd.) in 50 mL of methanol was dropped. After completion of the dropwise addition, stirring was continued while refluxing at 73 ° C. for 4 hours. After cooling the reaction solution to room temperature, the reaction mixture was acidified with dilute hydrochloric acid until pH = 1, and methanol (250 mL), diethyl ether (500 mL), and distilled water (200 mL) were added. The aqueous layer was separated and discarded with a separatory funnel, and the ether layer was washed twice with 400 mL of distilled water. After anhydrous magnesium was added to the ether layer and dried, this was filtered off. The filtrate (ether layer) was concentrated under reduced pressure using an evaporator (90 ° C./3 mmHg) to obtain a yellowish brown powdery crude product as a residue. This crude product was recrystallized from n-hexane and vacuum-dried to obtain 46 g (0.12 mol) of the desired carboxylated hydrogenated cardanol white powder.
 得られたカルボキシル化水添カルダノール46g(0.12mol)を脱水クロロホルム250mLに溶解させ、オキサリルクロライド24g(0.19mol)とN,N-ジメチルホルムアミド0.25mL(3.2mmol)を加え、室温で72時間撹拌した。クロロホルムと過剰のオキサリルクロライドを減圧留去し、クロライド化水添カルダノール48g(0.13mol)を得た。
[合成例2]カルダノールグラフト化セルロースアセテート
 合成例1で作製したクロライド化水添カルダノール(カルダノール誘導体)を、セルロースアセテート(LM-80:ダイセル化学工業(株)製:セルロースのグルコース単位当りのヒドロキシ基のアセチル化率:DSAce=2.1)に結合させ、グラフト化セルロースアセテートを得た。
46 g (0.12 mol) of the obtained carboxylated hydrogenated cardanol was dissolved in 250 mL of dehydrated chloroform, and 24 g (0.19 mol) of oxalyl chloride and 0.25 mL (3.2 mmol) of N, N-dimethylformamide were added at room temperature. Stir for 72 hours. Chloroform and excess oxalyl chloride were distilled off under reduced pressure to obtain 48 g (0.13 mol) of chlorinated hydrogenated cardanol.
[Synthesis Example 2] Cardanol-Grafted Cellulose Acetate The chlorinated hydrogenated cardanol (cardanol derivative) prepared in Synthesis Example 1 was converted into cellulose acetate (LM-80: manufactured by Daicel Chemical Industries, Ltd.): hydroxy per cellulose glucose unit Acetylation rate of the group: DSAce = 2.1) to obtain grafted cellulose acetate.
 具体的には、下記に従って、グラフト化セルロースアセテートを得た。 Specifically, grafted cellulose acetate was obtained according to the following.
 セルロースアセテート30g(水酸基量0.108mol)を脱水ジオキサン600mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン15mL(0.108mol)を加えた。この溶液に、合成例1で作製したクロライド化水添カルダノール32g(0.084mol)を溶解したジオキサン溶液300mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール4.5Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート23gを得た。 30 g of cellulose acetate (hydroxyl amount 0.108 mol) was dissolved in 600 mL of dehydrated dioxane, and 15 mL (0.108 mol) of triethylamine was added as a reaction catalyst and an acid scavenger. To this solution was added 300 mL of a dioxane solution in which 32 g (0.084 mol) of the chlorinated hydrogenated cardanol prepared in Synthesis Example 1 was dissolved, and the mixture was heated to reflux at 100 ° C. for 5 hours. The reaction solution was slowly added dropwise to 4.5 L of methanol while stirring to cause reprecipitation, and the solid was separated by filtration. The solid separated by filtration was air-dried overnight, and further vacuum-dried at 105 ° C. for 5 hours to obtain 23 g of grafted cellulose acetate.
 得られたグラフト化セルロースアセテートを1H-NMR(AV-400、400MHz:Bruker社製)によって測定したところ、DSCDは0.47であった。 The obtained grafted cellulose acetate was measured by 1H-NMR (AV-400, 400 MHz: manufactured by Bruker), and the DSCD was 0.47.
 [セルロース系樹脂]ベース樹脂3
 合成例3~6により、ベース樹脂として、カルダノールグラフト化セルロースアセテートプロピオネートを作製した。
[合成例3]水添カルダノール
 3-ペンタデシルシクロヘキサノールの調製
 内容積1.0リットルのバッチ式オートクレーブに、熱処理を行ったカシューナッツオイルから蒸留精製により得たカルダノールを20g、ルテニウム/炭素触媒(Ru:5質量%)を2g、テトラヒドロフランを20ml仕込み、室温下で20kgf/cm2(1.96×106Pa)の水素を圧入し、80℃で3時間攪拌することにより水素化反応を行った。その後、このオートクレーブから取り出した溶液を平均孔径0.2μmのフッ素樹脂製メンブレンフィルターを用いて濾過することにより、ルテニウム/炭素触媒を除去した。得られた濾液を加熱下で減圧にすることによりテトラヒドロフランを留去した結果、室温で白色固体である水添カルダノールを20.6g得た。
[Cellulosic resin] Base resin 3
According to Synthesis Examples 3 to 6, cardanol grafted cellulose acetate propionate was prepared as a base resin.
[Synthesis Example 3] Preparation of hydrogenated cardanol 3-pentadecylcyclohexanol In a batch-type autoclave with an internal volume of 1.0 liter, 20 g of cardanol obtained by distillation purification from heat-treated cashew nut oil, ruthenium / carbon catalyst (Ru : 5% by mass) and 20 ml of tetrahydrofuran were charged, 20 kgf / cm 2 (1.96 × 10 6 Pa) of hydrogen was injected at room temperature, and the mixture was stirred at 80 ° C. for 3 hours to carry out a hydrogenation reaction. Then, the ruthenium / carbon catalyst was removed by filtering the solution taken out from the autoclave using a fluororesin membrane filter having an average pore size of 0.2 μm. Tetrahydrofuran was distilled off by reducing the pressure of the obtained filtrate under heating to obtain 20.6 g of hydrogenated cardanol which was a white solid at room temperature.
 得られた水添カルダノールの純度を液体クロマトグラフ(LC-10ADVP:島津製作所製)で測定したところ、純度は99質量%であった。 The purity of the obtained hydrogenated cardanol was measured by a liquid chromatograph (LC-10ADVP: manufactured by Shimadzu Corporation), and the purity was 99% by mass.
 また、得られた水添カルダノールを1H-NMR(AV-400、400MHz:Bruker社製)によって測定したところ、水素化率(炭化水素部分の二重結合と芳香環の二重結合の変換率)は99mol%以上であった。
[合成例4]ジイソシアネート付加カルダノール誘導体
 ヘキサメチレンジイソシアネート(HDI)92.7g(0.55mol)を攪拌しながら50℃へ昇温し、そこへ合成例3で得られた水添カルダノール17.1g(0.055mol)を加えて80℃で3時間攪拌を継続した。反応溶液を40℃まで冷却後、アセトニトリル375mLを加えて室温で1時間攪拌した後、-15℃で17時間放置した。その後、結晶をろ過(5A、185mmφ)して、氷冷したアセトニトリル125mlを用いて通液洗浄した。得られた結晶をアセトニトリル125mlにスラリー化し、室温で1時間攪拌した。-15℃で終夜放置した後、結晶をろ過(5A、185mmφ)し、30℃で6時間、減圧乾燥(~0.4kPa)して、HDIと水添カルダノールが1:1で結合したジイソシアネート付加カルダノール誘導体の白色粉末(乾燥結晶)22.61gを得た。得られたジイソシアネート付加カルダノール誘導体を液体クロマトグラフ(LC-10ADVP島:津製作所製)によって測定したところ、純度は91質量%であった。
[合成例5]カルダノールグラフト化セルロースアセテート
 合成例4で得られたジイソシアネート付加カルダノール誘導体を、セルロースアセテート(LM-80:ダイセル化学工業(株)製:セルロースのグルコース単位当りのヒドロキシ基のアセチル化率:DSAce=2.1)に結合させ、グラフト化セルロースアセテートを得た。
The hydrogenated cardanol obtained was measured by 1H-NMR (AV-400, 400 MHz: manufactured by Bruker). Hydrogenation rate (conversion rate of double bond of hydrocarbon portion and double bond of aromatic ring) Was 99 mol% or more.
[Synthesis Example 4] Diisocyanate-added cardanol derivative 92.7 g (0.55 mol) of hexamethylene diisocyanate (HDI) was heated to 50 ° C. while stirring, and 17.1 g of hydrogenated cardanol obtained in Synthesis Example 3 ( 0.055 mol) was added and stirring was continued at 80 ° C. for 3 hours. The reaction solution was cooled to 40 ° C., 375 mL of acetonitrile was added, and the mixture was stirred at room temperature for 1 hour, and then allowed to stand at −15 ° C. for 17 hours. Thereafter, the crystals were filtered (5A, 185 mmφ), and washed with liquid using 125 ml of ice-cooled acetonitrile. The obtained crystals were slurried in 125 ml of acetonitrile and stirred at room temperature for 1 hour. After standing at −15 ° C. overnight, the crystals were filtered (5A, 185 mmφ), dried under reduced pressure (˜0.4 kPa) at 30 ° C. for 6 hours, and diisocyanate addition in which HDI and hydrogenated cardanol were combined at 1: 1. 22.61 g of a white powder (dry crystal) of a cardanol derivative was obtained. The obtained diisocyanate-added cardanol derivative was measured by liquid chromatography (LC-10ADVP island: manufactured by Tsu Seisakusho), and the purity was 91% by mass.
[Synthesis Example 5] Cardanol-Grafted Cellulose Acetate The diisocyanate-added cardanol derivative obtained in Synthesis Example 4 was converted into cellulose acetate (LM-80: manufactured by Daicel Chemical Industries, Ltd.): acetylation of hydroxy groups per glucose unit of cellulose. Ratio: DSAce = 2.1) to obtain grafted cellulose acetate.
 具体的には、下記に従って、グラフト化セルロースアセテートを作製した。 Specifically, grafted cellulose acetate was prepared according to the following.
 セルロースアセテート27.5g(0.11mol/Glc)と脱水ジオキサン385mLを入れ、液温80~88度で1時間かけて溶解させた。40℃まで冷却し、ジブチルスズラウレート0.276g(0.437mmol)を脱水ジオキサン2.8mlに溶解して加えた。続けて、合成例4で合成したジイソシアネート付加カルダノール誘導体11.56g(純度91.0%、0.022mol)を脱水ジオキサン50mlに加熱溶解してから加え、液温80℃で3時間攪拌した。さらに、80℃のまま、ジイソシアネート付加カルダノール誘導体11.05g(純度91.0%、0.022mol)を脱水ジオキサン50mlに加熱溶解してから加え、80℃で18時間攪拌した。30℃まで冷却した後、攪拌しながらメタノール4.5Lを加えてポリマーを沈殿させた。ポリマーをろ過した後、105℃で14時間、減圧乾燥(~0.7kPa)して、乾燥ポリマー43.9gを得た。この乾燥ポリマーとメチルエチルケトン600mlを液温70~80℃で1時間攪拌し、ポリマーを溶解させた。その後30℃まで冷却した。ポリマー溶液を遠心分離機にかけて不溶物を沈降分離した(3500rpm×15分)。さらにポリマー溶液にヘキサン1L加えてポリマーを沈殿させた。ポリマーをろ過して、ヘキサン1L×2回、洗浄した。同様の操作を更に2回繰り返した後、50℃、14時間、減圧乾燥(~0.8kPa)して、カルダノールグラフト化セルロースアセテート36.4gを得た。
[合成例6]カルダノールグラフト化セルロースアセテートプロピオネート
 合成例5で得たカルダノールグラフト化セルロースアセテート36.4gと脱水ピリジン310mlを仕込み、液温75~80℃で20分かけて溶解させた。液温76℃で、N,N-ジメチルアミノピリジン18.3g(0.15mol)と無水プロピオン酸390mlを加え、液温100℃で1時間攪拌した。液温30℃まで冷却した後、氷冷しながらメタノール130mlを70分かけて加えた。その間、液温を30~40℃に保った。反応溶液を攪拌しながらメタノール250mlを加えてポリマーを沈殿させた。ポリマーをろ過し、メタノール200ml×2回、洗浄した。得られたポリマーを乾燥した後、クロロホルム250mlに液温60℃で溶解させた。冷却後、攪拌しながらメタノール1.3Lを加えてポリマーを沈殿させた。ポリマーをろ過して、メタノール100ml×2回、洗浄した。ポリマーを105℃で16時間、減圧乾燥(~0.7kPa)して、カルダノールグラフト化セルロースアセテートプロピオネート35.8gを得た。
27.5 g (0.11 mol / Glc) of cellulose acetate and 385 mL of dehydrated dioxane were added and dissolved at a liquid temperature of 80 to 88 ° C. over 1 hour. After cooling to 40 ° C., 0.276 g (0.437 mmol) of dibutyltin laurate was dissolved in 2.8 ml of dehydrated dioxane and added. Subsequently, 11.56 g (purity 91.0%, 0.022 mol) of the diisocyanate-added cardanol derivative synthesized in Synthesis Example 4 was dissolved in 50 ml of dehydrated dioxane after heating and added, and the mixture was stirred at a liquid temperature of 80 ° C. for 3 hours. Further, 11.05 g (purity 91.0%, 0.022 mol) of a diisocyanate-added cardanol derivative was heated and dissolved in 50 ml of dehydrated dioxane, and the mixture was stirred at 80 ° C. for 18 hours. After cooling to 30 ° C., 4.5 L of methanol was added with stirring to precipitate the polymer. After the polymer was filtered, it was dried under reduced pressure (˜0.7 kPa) at 105 ° C. for 14 hours to obtain 43.9 g of a dry polymer. This dry polymer and 600 ml of methyl ethyl ketone were stirred at a liquid temperature of 70 to 80 ° C. for 1 hour to dissolve the polymer. Thereafter, it was cooled to 30 ° C. The polymer solution was centrifuged to separate the insoluble matter by sedimentation (3500 rpm × 15 minutes). Further, 1 L of hexane was added to the polymer solution to precipitate the polymer. The polymer was filtered and washed twice with 1 L of hexane. The same operation was further repeated twice, followed by drying under reduced pressure (˜0.8 kPa) at 50 ° C. for 14 hours to obtain 36.4 g of cardanol-grafted cellulose acetate.
[Synthesis Example 6] Cardanol-grafted cellulose acetate propionate 36.4 g of cardanol-grafted cellulose acetate obtained in Synthesis Example 5 and 310 ml of dehydrated pyridine were charged and dissolved at a liquid temperature of 75 to 80 ° C. over 20 minutes. . At a liquid temperature of 76 ° C., 18.3 g (0.15 mol) of N, N-dimethylaminopyridine and 390 ml of propionic anhydride were added, and the mixture was stirred at a liquid temperature of 100 ° C. for 1 hour. After cooling to a liquid temperature of 30 ° C., 130 ml of methanol was added over 70 minutes while cooling with ice. Meanwhile, the liquid temperature was kept at 30-40 ° C. While stirring the reaction solution, 250 ml of methanol was added to precipitate the polymer. The polymer was filtered and washed twice with 200 ml of methanol. The obtained polymer was dried and then dissolved in 250 ml of chloroform at a liquid temperature of 60 ° C. After cooling, 1.3 L of methanol was added with stirring to precipitate the polymer. The polymer was filtered and washed twice with 100 ml of methanol. The polymer was dried in vacuo (˜0.7 kPa) at 105 ° C. for 16 hours to give 35.8 g of cardanol grafted cellulose acetate propionate.
 得られたカルダノールグラフト化セルロースアセテートプロピオネートを1H-NMR(AV-400、400MHz:Bruker社製)によって測定したところ、DSAce:2.1、DSPro:0.59、DSCD:0.25であった。 The obtained cardanol grafted cellulose acetate propionate was measured by 1H-NMR (AV-400, 400 MHz: manufactured by Bruker). DSAce: 2.1, DSPro: 0.59, DSCD: 0.25 there were.
 [ポリエーテル変性シリコーン化合物]
表1に示すポリエーテル変性ポリシロキサンを用いた。
[Polyether-modified silicone compound]
The polyether-modified polysiloxane shown in Table 1 was used.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 [実施例1]
[混練]
 セルロースアセテートプロピオネート(ベース樹脂1)とSH8700(東レ・ダウコーニング(株))を、表1に示す配合で2軸混練機(HAKKE-MiniLab(Micro-Extruder:Thermo Electron Corp.製)を用いて、200~210℃、回転数60rpmの条件で7分間、溶融混練し、セルロース系樹脂組成物を回収した。
[射出成形]
 得られたセルロース系樹脂組成物を射出成形(HAKKE-MiniJetII:Thermo Scientific製)により、射出温度200~210℃、射出圧力800bar~1200bar、金型温度100℃、保圧400barの条件で射出成形し、厚み:2mm、幅:13mm、長さ:80mmの試験片を得た。また、この成形体について、下記に従って評価を行った。結果を表2に示す。
[相溶性の評価]
 上記の成形により得られた成形体について、外観を目視で観察し、下記の基準にて相溶性を評価した。
[Example 1]
[Kneading]
Cellulose acetate propionate (base resin 1) and SH8700 (Toray Dow Corning Co., Ltd.) were blended as shown in Table 1 using a twin-screw kneader (HAKE-MiniLab (Micro-Extruder: manufactured by Thermo Electron Corp.)). Then, the mixture was melt-kneaded for 7 minutes under the conditions of 200 to 210 ° C. and a rotational speed of 60 rpm to recover the cellulose resin composition.
[injection molding]
The obtained cellulose resin composition was injection-molded by injection molding (HAKKE-MiniJetII: manufactured by Thermo Scientific) under the conditions of an injection temperature of 200 to 210 ° C., an injection pressure of 800 bar to 1200 bar, a mold temperature of 100 ° C., and a holding pressure of 400 bar. A test piece having a thickness of 2 mm, a width of 13 mm, and a length of 80 mm was obtained. Moreover, this molded body was evaluated according to the following. The results are shown in Table 2.
[Compatibility evaluation]
About the molded object obtained by said shaping | molding, the external appearance was observed visually and compatibility was evaluated on the following reference | standard.
 A:透明
 B:白濁(均一に分散)
C:不均一に分散
[アイゾット衝撃強度の評価]
 上記の成形により得られた成形体について、JIS K7110に準拠してノッチ付アイゾット衝撃強度を測定した。
[曲げ試験]
 上記の成形により得られた成形体について、JIS K7171に準拠して曲げ試験を行った。
[吸水率の測定]
 JIS K7209に準拠して吸水率を測定した。
A: Transparent B: Cloudiness (uniformly dispersed)
C: Unevenly distributed [Evaluation of Izod impact strength]
About the molded object obtained by said shaping | molding, the Izod impact strength with a notch was measured based on JISK7110.
[Bending test]
About the molded object obtained by said shaping | molding, the bending test was done based on JISK7171.
[Measurement of water absorption rate]
The water absorption was measured according to JIS K7209.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 [比較例1]
 ポリエーテル変性ポリシロキサンを用いなかった他は実施例1と同様に試験片を作製し、試験を行った。結果を表2に示す。
[Comparative Example 1]
A test piece was prepared and tested in the same manner as in Example 1 except that the polyether-modified polysiloxane was not used. The results are shown in Table 2.
 結果から、実施例1では、強度、耐水性を良好に保ちながら、衝撃強度が改善されていることがわかる。 From the results, it can be seen that in Example 1, the impact strength was improved while maintaining good strength and water resistance.
 [実施例2~21、比較例3]
 表3~6に示すベース樹脂、ポリエーテル変性ポリシロキサンを用いた他は、実施例1と同様に試験片を作製し、試験を行った。結果を表3~6に示す。
[Examples 2 to 21, Comparative Example 3]
Test pieces were prepared and tested in the same manner as in Example 1 except that the base resins and polyether-modified polysiloxanes shown in Tables 3 to 6 were used. The results are shown in Tables 3-6.
 [比較例2、4]
 ポリエーテル変性ポリシロキサンを用いず、表3~6に示すベース樹脂を用いた他は実施例1と同様に試験片を作製し、試験を行った。結果を表3~6に示す。
[Comparative Examples 2 and 4]
Test pieces were prepared and tested in the same manner as in Example 1 except that the polyether-modified polysiloxane was not used and the base resins shown in Tables 3 to 6 were used. The results are shown in Tables 3-6.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 実施例2~12に示すように、ベース樹脂2にHLB値が7~8のポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物は、強度、耐水性を良好に保ちながら、衝撃強度が大幅に改善されていることが分かる。HLB値が7~8のポリエーテル変性ポリシロキサンはベース樹脂2中に適度に分散しているため、破壊の際、ベース樹脂2の可塑化効果によるせん断変形とポリエーテル変性ポリシロキサンの低弾性領域への応力集中が生じ、効率的に衝撃エネルギーを吸収すると考える。実施例13~15に示すように、ベース樹脂2にHLB値が10~14を持つポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物は、強度、耐水性を良好に保ちながら、衝撃強度が改善されていることが分かる。HLB値が10~14のポリエーテル変性ポリシロキサンはベース樹脂2中に高分散しているため、破壊の際、ベース樹脂2の可塑化を促し、せん断変形によるエネルギー吸収が生じると考える。 As shown in Examples 2 to 12, the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 7 to 8 is added to the base resin 2 has a large impact strength while maintaining good strength and water resistance. It can be seen that there is an improvement. Since the polyether-modified polysiloxane having an HLB value of 7 to 8 is moderately dispersed in the base resin 2, shear deformation due to the plasticizing effect of the base resin 2 and the low-elasticity region of the polyether-modified polysiloxane at the time of failure It is thought that stress concentration on the surface causes impact energy to be absorbed efficiently. As shown in Examples 13 to 15, the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 10 to 14 is added to the base resin 2 has an impact strength while maintaining good strength and water resistance. It turns out that it is improving. Since the polyether-modified polysiloxane having an HLB value of 10 to 14 is highly dispersed in the base resin 2, it is considered that the plasticity of the base resin 2 is promoted at the time of breakage and energy absorption occurs due to shear deformation.
 一方、実施例16、17に示すように、ベース樹脂2にHLB値が6以下のポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物では、ベース樹脂2との相溶性が悪いものの、吸水率はHLB値が7、8のものとの差は小さいことが分かる。さらに、比較例3に示す、ジメチルシリコーンを添加したセルロース系樹脂組成物では、ベース樹脂2との相溶性が著しく悪く、ジメチルシリコーンが成形体表面に染みだす現象、ブリードアウトが生じる。 On the other hand, as shown in Examples 16 and 17, the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 6 or less was added to the base resin 2, although the compatibility with the base resin 2 was poor, the water absorption rate It can be seen that the difference between the HLB values of 7 and 8 is small. Furthermore, in the cellulose resin composition to which dimethyl silicone is added as shown in Comparative Example 3, the compatibility with the base resin 2 is remarkably poor, and the phenomenon that dimethyl silicone oozes out on the surface of the molded product, bleeding occurs.
 実施例13~15に示すように、ベース樹脂2にHLB値が10~14を持つポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物は、強度、耐水性を良好に保ちながら、衝撃強度が改善されていることがわかる。HLB値が10~14のポリエーテル変性ポリシロキサンはベース樹脂2中に高分散しているため、破壊の際、ベース樹脂2の可塑化を促し、せん断変形によるエネルギー吸収が生じると考える。 As shown in Examples 13 to 15, the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 10 to 14 is added to the base resin 2 has an impact strength while maintaining good strength and water resistance. You can see that it has improved. Since the polyether-modified polysiloxane having an HLB value of 10 to 14 is highly dispersed in the base resin 2, it is considered that the plasticity of the base resin 2 is promoted at the time of breakage and energy absorption occurs due to shear deformation.
 実施例19に示すように、ベース樹脂3にHLB値が8のポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物は、強度、耐水性を良好に保ちながら、衝撃強度が改善されていることが分かる。HLB値が8のポリエーテル変性ポリシロキサンはベース樹脂3中に適度に分散し、破壊の際、ポリシロキサンの低弾性領域に応力集中することで衝撃エネルギーを吸収していると考える。
一方、実施例18に示すように、ベース樹脂3にHLB値が6のポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物では、ベース樹脂3との相溶性が悪いものの、吸水率はHLB値が7、8のものとの差は小さいことが分かる。さらに、実施例20、21に示す、HLB値が10~13のポリエーテル変性ポリシロキサンを添加したセルロース系樹脂組成物では、ベース樹脂3とポリシロキサンとの相溶性がよいことが分かる。
As shown in Example 19, the impact strength of the cellulosic resin composition obtained by adding the polyether-modified polysiloxane having an HLB value of 8 to the base resin 3 is improved while maintaining good strength and water resistance. I understand. It is considered that the polyether-modified polysiloxane having an HLB value of 8 is moderately dispersed in the base resin 3 and absorbs impact energy by stress concentration in the low elasticity region of the polysiloxane when broken.
On the other hand, as shown in Example 18, in the cellulose resin composition in which the polyether-modified polysiloxane having an HLB value of 6 is added to the base resin 3, the water absorption is HLB value although the compatibility with the base resin 3 is poor. It can be seen that the difference from 7 and 8 is small. Furthermore, it can be seen that the cellulose resin composition to which the polyether-modified polysiloxane having an HLB value of 10 to 13 shown in Examples 20 and 21 is added has good compatibility between the base resin 3 and the polysiloxane.
 本願は、2012年12月7日出願の特願2012-268140に記載した総ての事項を、その内容として含むものである。 This application includes all matters described in Japanese Patent Application No. 2012-268140 filed on Dec. 7, 2012 as its contents.
 本発明のセルロース系樹脂組成物は、バイオプラスチックでありながら、機械特性、耐衝撃性、可塑性、耐水性の向上を図り、石油プラスチックと同様の電気機器の筐体等に利用することができる。 Although the cellulose resin composition of the present invention is a bioplastic, it can improve mechanical properties, impact resistance, plasticity, and water resistance, and can be used for the casing of electrical equipment similar to petroleum plastic.
 本発明は、電源を必要とするあらゆる産業分野、並びに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源等に利用することができる。
 
The present invention can be used in all industrial fields that require a power source, as well as industrial fields related to the transportation, storage and supply of electrical energy. Specifically, it can be used as a power source for mobile devices such as mobile phones and notebook computers.

Claims (5)

  1.  セルロース又はその誘導体のヒドロキシ基に、炭素数1~32のカルボン酸、アルコール、フェノール及びこれらの誘導体から選ばれる1種以上を反応させ化学結合させたセルロース系樹脂と、-(CmH2mO)n-(mは2~4の整数、nは1~80の整数を示す。)で表されるポリエーテル基又は置換基を有する該ポリエーテル基を有するポリエーテル変性ポリシロキサンとを含むことを特徴とするセルロース系樹脂組成物。 A cellulose resin in which one or more selected from carboxylic acids having 1 to 32 carbon atoms, alcohols, phenols and derivatives thereof are chemically bonded to a hydroxy group of cellulose or a derivative thereof; and-(CmH2mO) n- ( m represents an integer of 2 to 4, and n represents an integer of 1 to 80.) and a polyether-modified polysiloxane having a polyether group having a substituent. Cellulosic resin composition.
  2.  前記ポリエーテル変性ポリシロキサンが、式(1)
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、R~R10は、独立して水素原子、アルキル基、又はアリール基を示し、R、R、R、Rのうち少なくとも一つは、前記ポリエーテル基又は置換基を有する前記ポリエーテル基を示し、a、bは合計が10から1000となる整数を示す。)で表される請求項1記載のセルロース系樹脂組成物。
    The polyether-modified polysiloxane has the formula (1)
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 to R 10 independently represent a hydrogen atom, an alkyl group, or an aryl group, and at least one of R 1 , R 4 , R 6 , and R 8 is the polyether group or The cellulose-based resin composition according to claim 1, wherein the polyether group has a group, and a and b are integers having a total of 10 to 1,000.
  3.  前記ポリエーテル変性ポリシロキサンは、式(2)に示すHLB値が7以上、14以下である請求項1又は2記載のセルロース系樹脂組成物。
    Figure JPOXMLDOC01-appb-M000002
     
    The cellulose-based resin composition according to claim 1 or 2, wherein the polyether-modified polysiloxane has an HLB value represented by the formula (2) of 7 or more and 14 or less.
    Figure JPOXMLDOC01-appb-M000002
  4.  前記ポリエーテル変性ポリシロキサンは、該ポリエーテル変性ポリシロキサンと前記セルロース系樹脂の合計量に対して0.1質量%以上10質量%以下で含有されている請求項1から4のいずれか一項に記載のセルロース系樹脂組成物。 The polyether-modified polysiloxane is contained in an amount of 0.1% by mass or more and 10% by mass or less based on the total amount of the polyether-modified polysiloxane and the cellulose resin. Cellulosic resin composition as described in 2.
  5.  請求項1~4のいずれか一項に記載のセルロース系樹脂組成物を含む成形用材料。
     
     
    A molding material comprising the cellulose resin composition according to any one of claims 1 to 4.

PCT/JP2013/081765 2012-12-07 2013-11-26 Cellulose-based resin composition WO2014087881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551047A JPWO2014087881A1 (en) 2012-12-07 2013-11-26 Cellulosic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012268140 2012-12-07
JP2012-268140 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014087881A1 true WO2014087881A1 (en) 2014-06-12

Family

ID=50883302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081765 WO2014087881A1 (en) 2012-12-07 2013-11-26 Cellulose-based resin composition

Country Status (2)

Country Link
JP (1) JPWO2014087881A1 (en)
WO (1) WO2014087881A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369846A (en) * 1986-09-11 1988-03-29 Tsutsunaka Plast Kogyo Kk Cellulosic resin composition for calender molding
JPH04370279A (en) * 1991-06-20 1992-12-22 Achilles Corp Suede-tone leather-like sheet and its production
JPH055281A (en) * 1991-06-20 1993-01-14 Achilles Corp Leather-like sheet and its production
JP2001139414A (en) * 1999-11-11 2001-05-22 Kose Corp Skin cosmetic
JP2006124491A (en) * 2004-10-28 2006-05-18 Toray Ind Inc Polyester resin composition and white-colored film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369846A (en) * 1986-09-11 1988-03-29 Tsutsunaka Plast Kogyo Kk Cellulosic resin composition for calender molding
JPH04370279A (en) * 1991-06-20 1992-12-22 Achilles Corp Suede-tone leather-like sheet and its production
JPH055281A (en) * 1991-06-20 1993-01-14 Achilles Corp Leather-like sheet and its production
JP2001139414A (en) * 1999-11-11 2001-05-22 Kose Corp Skin cosmetic
JP2006124491A (en) * 2004-10-28 2006-05-18 Toray Ind Inc Polyester resin composition and white-colored film

Also Published As

Publication number Publication date
JPWO2014087881A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
KR101515692B1 (en) Cellulose resin and process for production thereof
JP5853698B2 (en) Cellulosic resin and method for producing the same
WO2014119657A1 (en) Cellulose-type resin composition, molding material, and molded article
JP5737280B2 (en) Cardanol-modified silane coupling agent, cardanol-modified filler, and cellulosic resin composition
JP5786861B2 (en) Cellulosic resin composition
JP5846120B2 (en) Cellulosic resin
US9458251B2 (en) Cellulose resin and process for producing the same
WO2013180278A1 (en) Method for producing cellulose derivative and cellulose derivative
WO2012137622A1 (en) Cellulose resin and method for producing same
WO2016067662A1 (en) Cellulose derivative and resin composition for molding
JP6528684B2 (en) Method for producing cellulose derivative, cellulose derivative, resin composition for molding and molded body
JP2012219112A (en) Cellulosic resin and method for producing the same
JP2015081326A (en) Cellulose resin using cardanol analog and method of producing the same
JP2014162804A (en) Cellulose-based resin composition
WO2014087881A1 (en) Cellulose-based resin composition
WO2013186957A1 (en) Cellulose-based resin composition and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859819

Country of ref document: EP

Kind code of ref document: A1