WO2014087858A1 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
WO2014087858A1
WO2014087858A1 PCT/JP2013/081586 JP2013081586W WO2014087858A1 WO 2014087858 A1 WO2014087858 A1 WO 2014087858A1 JP 2013081586 W JP2013081586 W JP 2013081586W WO 2014087858 A1 WO2014087858 A1 WO 2014087858A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode active
active material
storage device
composite
Prior art date
Application number
PCT/JP2013/081586
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 正男
大谷 彰
岸井 豊
植谷 慶裕
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014087858A1 publication Critical patent/WO2014087858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electricity storage device, and more specifically, while maintaining the excellent weight output density and rapid charge / discharge characteristics inherent in conventional electric double layer capacitors, the weight energy is significantly higher than that of conventional electric double layer capacitors.
  • the present invention relates to an electric double layer capacitor type electricity storage device having a density.
  • lithium ion secondary batteries lithium secondary batteries
  • the performance is still not enough. That is, the lithium ion secondary battery has a high energy density, but the output density is not so high.
  • an electric double layer capacitor has a very low weight energy density, but inherently has a very high weight output density, and can easily obtain characteristics reaching several thousand mW / g. Are better.
  • the electric double layer capacitor originally has a high weight output density and rapid charge / discharge characteristics, and has very excellent characteristics as an electric storage device. Have the disadvantages.
  • an electric double layer capacitor usually uses a polarizable electrode formed using a conductive porous carbon material such as powdered activated carbon or fibrous activated carbon, and exhibits physical adsorption characteristics of supporting electrolyte ions in an electrolytic solution. Since it is a device that uses electricity to store electricity, its weight energy density is extremely small compared to a battery using a chemical reaction called redox reaction, and it cannot maintain a long-term discharge in actual use. Have a problem.
  • activated carbon used for an electric double layer capacitor is generally manufactured by steam activation and chemical activation of raw materials such as coconut shell carbide, phenol resin carbide, and coal.
  • a solvent extract of coal ashless coal
  • the resulting solid residue is alkali activated.
  • the electric double layer capacitor has been improved in various ways, it is not yet sufficient in performance, and a lithium secondary battery using a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate for the electrode.
  • a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate for the electrode.
  • the capacity density and energy density are low, and it is not possible to exhibit excellent performance as a power storage device for automobiles.
  • the present invention has been made to solve the above-described problems, and provides a novel power storage device having excellent weight output density and rapid charge / discharge characteristics and high weight energy density.
  • An electricity storage device of the present invention is an electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, and the positive electrode is a composite electrode comprising at least the following (A) and (B): In addition, the following (B) is fixed in the composite, and the negative electrode is an electrode of a composite comprising at least the following (B) and (C), and the following (B) Is configured to be fixed.
  • A An electrode active material whose conductivity changes due to ion insertion / extraction.
  • B Polycarboxylic acid.
  • C An electrode active material whose conductivity is changed by insertion / extraction of ions, and has an oxidation-reduction potential lower than that of (A) above.
  • the present inventors have conducted intensive research to solve the above problems.
  • the present inventors configured both positive and negative electrodes in a capacitor-type electricity storage device using a composite of an electrode active material such as polyaniline and a polycarboxylic acid as a binder.
  • an electrode active material such as polyaniline and a polycarboxylic acid as a binder.
  • both the weight output density and the weight energy density can be increased. I found out that I could do it. Accordingly, the present inventors have found that such an electrode configuration greatly improves the characteristics of the electricity storage device.
  • “(B) is fixed in the composite” means that the component (B) is fixed in the composite formed together with other electrode forming materials. Since the polycarboxylic acid (B), which is an anionic material, is fixed and does not move, the cation moves, and the electricity storage device using the same has a rocking chair type mechanism. Means that.
  • the electricity storage device of the present invention is an electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, wherein the positive electrode is at least the specific electrode active material (A) and the polyelectrolyte.
  • the composite electrode is composed of a carboxylic acid (B), the polycarboxylic acid (B) is fixed in the composite, and the negative electrode includes at least the polycarboxylic acid (B) and the specific electrode active material. (C) and the following (B) is being fixed in the composite. For this reason, while having the outstanding weight output density and rapid charge / discharge characteristic, it can be set as the high performance electrical storage device which has a high weight energy density.
  • the output characteristics are further improved.
  • the oxidation-reduction potential difference between the electrode active materials (A) and (C) is 5 mV or more, the energy density is further improved.
  • the electricity storage device of the present invention is an electricity storage device having an electrolyte layer 3, a positive electrode 2 and a negative electrode 4 provided with the electrolyte layer 3 interposed therebetween, and the positive electrode 2 is at least the following (A): And (B), the following (B) is fixed in the composite, and the negative electrode 4 is at least a composite electrode comprising (B) and (C) below. In addition, the following (B) is fixed in the complex.
  • A An electrode active material whose conductivity changes due to ion insertion / extraction.
  • B Polycarboxylic acid.
  • C An electrode active material whose conductivity is changed by insertion / extraction of ions, and has an oxidation-reduction potential lower than that of (A) above.
  • FIG. 1 schematically shows the structure of the electricity storage device, and the thickness of each layer is different from the actual one.
  • the present invention uses an electrode composed of a composite having the above components (A) and (B) as constituents for a positive electrode, and an electrode composed of a composite having the above (B) and (C) components as constituents Is the most important feature, but the materials used will be described in order.
  • Electrode active materials are electrode active materials whose conductivity is changed by ion insertion / extraction (hereinafter sometimes referred to as “electrode active materials”).
  • electrode active materials polyacetylene, polypyrrole, polyaniline , Polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as “PEDOT”), and substituted polymers thereof
  • Conductive polymer materials such as polyacene, graphite, carbon nanotubes, carbon nanofibers, graphene, and the like.
  • a material having a high redox potential is preferably used for the electrode active material (A) used for the positive electrode.
  • a material having a high redox potential is preferably used for the electrode active material (A) used for the positive electrode.
  • a material having a low redox potential is preferably used for the electrode active material (C) used for the negative electrode.
  • polypyrrole-based or substituted polyaniline-based materials are preferably used.
  • the combination of the positive electrode and the negative electrode if a material having a high redox potential is used for the positive electrode and a material having a low redox potential is used for the negative electrode, a battery having a high discharge voltage can be obtained and a battery having a high energy density can be obtained.
  • Preferred examples include a combination using polythiophene-based PEDOT as the positive electrode and polypyrrole as the negative electrode, or a combination of the same polyaniline-based material using polyaniline as the positive electrode and poly (o-toluidine) as the negative electrode. Etc.
  • the redox potential difference of the electrode active materials (A) and (C) is preferably 5 mV or more, more preferably 10 mV or more.
  • the redox potential difference between the electrode active materials (A) and (C) is preferably 2500 mV or less, more preferably 2000 mV or less.
  • the oxidation-reduction potential difference is obtained from the difference between values obtained by measuring the average values of the peak values of the oxidation wave and the reduction wave by the cyclic voltammetry at the (A) electrode and the (C) electrode, respectively.
  • the counter electrode at this time is lithium metal and is based on the oxidation-reduction potential of lithium.
  • the electrolyte used is the same as that used when forming the battery cell, and the potential scanning speed is 20 mV / sec.
  • the ion insertion / desorption in the above (A) and (C) is also referred to as so-called doping / dedoping as described above, and the doping / dedoping amount per certain molecular structure is called the doping rate.
  • doping rate the doping rate per certain molecular structure. The higher the doping rate, the higher the capacity of the battery.
  • the conductive polymer doping ratios of (A) and (C) are said to be 0.5 for polyaniline and 0.25 for polypyrrole.
  • the conductivity of conductive polyaniline is about 10 0 to 10 3 S / cm in the doped state, and 10 ⁇ 15 to 10 ⁇ 2 S / cm in the undoped state.
  • a dedope state is obtained by neutralizing the dopant which (A) or (C) has.
  • (A) or (C) in a dedope state is obtained by stirring in a solution for neutralizing the dopant (A) or (C) and then washing and filtering.
  • a method of neutralizing by stirring in an aqueous sodium hydroxide solution can be mentioned.
  • a reduced dedope state is obtained.
  • (A) or (C) in the reduced dedoped state is obtained by stirring in a solution for reducing (A) or (C) in the dedoped state, and then washing and filtering.
  • a method of reducing polyaniline in a dedoped state by stirring in an aqueous methanol solution of phenylhydrazine can be mentioned.
  • (1) and (2) When forming a storage battery, the combinations shown in the following (1) and (2) are effective.
  • (1) The reduction-dedoped material (A) is used for the positive electrode, and the oxidation-doped material (C) is used for the negative electrode. This is charged and used first.
  • (2) The oxidation-doped material (A) is used for the positive electrode, and the reductive dedope material (C) is used for the negative electrode. This is first discharged and used.
  • those obtained by coating the electrode active material (A) or (C) on the porous surface of a porous carbon material are preferably used as the electrode active material for the positive electrode or the negative electrode.
  • the porous carbon material is a material having a porous structure mainly composed of a carbon material, and activated carbon subjected to chemical or physical treatment (activation, activation) is preferably used in order to increase adsorption efficiency.
  • activated carbon subjected to the chemical treatment include phenol resin activated carbon, coconut shell activated carbon, and petroleum coke activated carbon.
  • the activated carbon subjected to the above physical treatment include activated carbon obtained from a steam activation treatment method, activated carbon obtained from a molten KOH activation treatment method, and the like. Among these, it is preferable to use activated carbon obtained by a steam activation treatment method in that a large capacity can be obtained.
  • activated carbon for electric double layer capacitors having a large specific surface area is preferably used. It is preferable to use activated carbon having an average particle size of 20 ⁇ m or less and a specific surface area of 1000 to 3000 m 2 / g so as to obtain an electricity storage device having a large capacity and a low internal resistance.
  • the electrode active material (A) or (C) is coated on the porous carbon material, for example, the porous carbon material in a solution obtained by dissolving the electrode active material (A) or (C) in an appropriate solvent.
  • the porous carbon material is immersed in a polymerization solution at the time of chemical oxidative polymerization of the electrode active material of (A) or (C), a method of taking out and drying it, a method by an electrolytic method, Examples thereof include a method of attaching the electrode active material (A) or (C) to the surface (hereinafter abbreviated as “in situ polymerization method”).
  • the in-situ polymerization method is particularly preferably used because a uniform thin film can be obtained.
  • the method described in Patent Document 6 Japanese Patent Laid-Open No. 2012-33783
  • the coating thickness of the conductive polymer is usually 0.1 to 500 nm, preferably 0.5 to 50 nm. That is, if it is too thin, there is a tendency that a storage battery with a high capacity density cannot be obtained, and if it is too thick, it is difficult for ions to diffuse and a high capacity density tends not to be obtained.
  • the weight ratio of the conductive polymer to the composite of the conductive polymer and the porous carbon material is usually 0.5 to 40%, preferably 1 to 10%.
  • the electricity storage device of the present invention is a positive electrode made of a material containing the electrode active material (A) and the polycarboxylic acid (B) described below, and the electrode active material (C),
  • a negative electrode is made from a material containing the polycarboxylic acid (B) to be described, and this is used. Both electrodes are made of a porous sheet or the like using at least an electrode active material and polycarboxylic acid.
  • the polycarboxylic acid (B) include a polymer, a carboxylic acid substitution compound having a relatively large molecular weight, and a carboxylic acid substitution compound having low solubility in an electrolytic solution. More specifically, a compound having a carboxyl group in the molecule is preferably used, and the polycarboxylic acid (B) as a polymer has an advantage that it can also serve as a binder.
  • polycarboxylic acid (B) examples include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, and polyaspartic acid.
  • polyacrylic acid and polymaleic acid are particularly preferably used. These may be used alone or in combination of two or more.
  • the polycarboxylic acid (B) when used together with the electrode active material (A) or (C), the polycarboxylic acid (B) has a function as a binder and a dopant. Therefore, it is considered that it has a rocking chair type mechanism and is involved in improving the characteristics of the electricity storage device according to the present invention.
  • the polycarboxylic acid (B) those in which at least a part of the carboxyl group in the molecule is substituted with lithium to form a lithium type are preferably used. Such lithium substitution is preferably 40% or more of the carboxyl groups in the polymer, more preferably 100%.
  • the polycarboxylic acid (B) is usually 1 to 100 parts by weight, preferably 2 to 70 parts by weight, most preferably 5 parts per 100 parts by weight of the electrode active material (A) or (C). Used in the range of up to 40 parts by weight. If the amount of the polycarboxylic acid (B) with respect to the electrode active material (A) is too small, it tends to be difficult to obtain an electricity storage device with excellent energy density, while the polycarboxylic acid with respect to the electrode active material (A) tends to be difficult. Even if the amount of the acid (B) is too large, it tends to be difficult to obtain an electricity storage device having a high energy density.
  • the conductive auxiliary agent may be any conductive material whose properties do not change depending on the potential applied during the discharge of the electricity storage device, and examples thereof include conductive carbon materials and metal materials, among which acetylene black and ketjen black A conductive carbon black such as carbon fiber, or a fibrous carbon material such as carbon fiber or carbon nanotube is preferably used. Particularly preferred is conductive carbon black.
  • the conductive assistant is preferably 1 to 30 parts by weight, more preferably 4 to 20 parts by weight, and particularly preferably 8 parts by weight based on 100 parts by weight of the electrode active material (A) or (C). ⁇ 18 parts by weight.
  • the blending amount of the conductive aid is within this range, the shape and characteristics as the active material can be prepared without abnormality, and the rate characteristics can be effectively improved.
  • binder other than the polycarboxylic acid (B) examples include vinylidene fluoride.
  • the electrode according to the electricity storage device of the present invention is composed of a composite comprising at least the electrode active material (A) or (C) and the polycarboxylic acid (B), and is preferably formed on a porous sheet.
  • the thickness of the electrode is preferably 1 to 1000 ⁇ m, and more preferably 10 to 700 ⁇ m.
  • the thickness of the electrode is obtained by measuring the electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.), which is a flat plate having a tip shape of 5 mm in diameter, and obtaining an average of 10 measurement values with respect to the surface of the electrode. .
  • a dial gauge manufactured by Ozaki Mfg. Co., Ltd.
  • the thickness of the composite is measured in the same manner as described above, and the average of the measured values is obtained. Thereafter, the thickness of the electrode is obtained by subtracting the thickness of the current collector.
  • the electrode according to the electricity storage device of the present invention is produced, for example, as follows. That is, the polycarboxylic acid (B) is dissolved in water to form an aqueous solution, and an electrode active material (A) or (C) and, if necessary, a conductive assistant such as conductive carbon black are added thereto. To prepare a paste. After applying this on the current collector, water is evaporated to form a composite (porous sheet) of a mixture of the electrode active material and polycarboxylic acid (conducting aid if necessary) on the current collector. ) Can be obtained as an electrode (sheet electrode).
  • the polycarboxylic acid (B) is present as a composite of a mixture with the electrode active material (A) or (C), thereby fixing in the composite, and thus the electrode. Fixed inside.
  • the polycarboxylic acid (B) fixedly arranged in the vicinity of the electrode active material (A) or (C) in this way is used for charge compensation during oxidation / reduction of the electrode active material (A) or (C).
  • a suitable electrode can be obtained by placing a polycarboxylic acid in the vicinity of the electrode active material. Factors such as an active material concentration environment and facilitating the movement of ions that are inserted and desorbed from the electrode active material can be considered. Furthermore, the polycarboxylic acid, which is an anionic material, becomes a counter ion of a cation such as lithium ion, contributes to the so-called rocking chair type ion transfer, and prevents a decrease in capacity even when the total amount of electrolyte is reduced. Conceivable.
  • the electrolyte layer according to the electricity storage device of the present invention is composed of an electrolyte.
  • a sheet formed by impregnating a separator with an electrolytic solution or a sheet formed of a solid electrolyte is preferably used.
  • the sheet made of the solid electrolyte itself also serves as a separator.
  • examples of the electrolyte constituting such an electrolytic solution include protons, alkali metal ions, quaternary ammonium ions, At least one cation such as quaternary phosphonium ion, sulfonate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenic ion, halogen ion, phosphate ion, sulfate ion, A combination of at least one anion such as nitrate ion is preferably used.
  • the solvent constituting the electrolytic solution at least one organic solvent such as carbonates, alcohols, nitriles, amides, ethers and the like is used in addition to water.
  • organic solvent such as carbonates, alcohols, nitriles, amides, ethers and the like is used in addition to water.
  • electrolytic solution what melt
  • the separator can be used in various modes.
  • the separator it is possible to prevent an electrical short circuit between the positive electrode and the negative electrode that are arranged to face each other across the separator.
  • the separator is electrochemically stable, has a large ion permeability, and has a certain level. Any insulating porous sheet having mechanical strength may be used. Therefore, as a material for the separator, for example, a porous porous sheet made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used. These may be used alone or in combination of two or more.
  • the production of an electricity storage device using the above materials will be described with reference to FIG.
  • the device is preferably assembled in a glove box under an inert gas atmosphere such as ultra-high purity argon gas.
  • metal foils and meshes such as nickel, aluminum, stainless steel, and copper are appropriately used as current collectors of positive electrode 2 and negative electrode 4 (1, 5 in FIG. 1).
  • the power storage device of the present invention is formed in various shapes such as a laminate cell, a porous sheet type, a sheet type, a square type, a cylindrical type, and a button type.
  • the electricity storage device of the present invention is the energy per total weight of the positive electrode and the negative electrode of the specific electrode active materials (A) and (C), that is, the “electrode active material whose conductivity is changed by insertion / extraction of ions”.
  • the density is usually 30 mWh / g or more, preferably 40 mWh / g or more.
  • the electricity storage device of the present invention has such an excellent energy density, even if the amount of the electrolytic solution is reduced, the total weight of the used electrolytic solution and the weight of the electrode active materials (A) and (C) The capacity density is not greatly reduced.
  • the electricity storage device of the present invention uses electrodes in combination with the A component and B component, and in combination with the B component and C component, it has excellent charge / discharge characteristics like an electric double layer capacitor.
  • the capacitance density is higher than that of the conventional electric double layer capacitor. From this, it can be said that the electrical storage device according to the present invention is a capacitor-like secondary battery.
  • the weight of the electrode active material is the weight including the dopant for the oxidized state (A) or (C), and the weight not including the dopant for the reduced state (A) or (C). Calculate based on the original. Further, the same applies to (A) or (C) coated with the porous carbon material. In this case, the weight of the porous carbon material is also summed up.
  • each material was manufactured according to the following manufacturing examples 1 to 7.
  • the conductive polyaniline powder in the doped state thus obtained was put into a 2 mol / dm 3 sodium hydroxide aqueous solution and stirred for 30 minutes to neutralize the conductive polyaniline. Thereby, the tetrafluoroboric acid which is a dopant was dedope from polyaniline.
  • the dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, and then filtered under reduced pressure using a Buchner funnel and a suction bottle. 2 A polyaniline powder was obtained which was dedoped on the filter paper. This was vacuum-dried at room temperature for 10 hours to obtain undoped polyaniline as a brown powder.
  • the dedope polyaniline powder thus obtained was put in a methanol solution of phenylhydrazine and subjected to a reduction treatment with stirring for 30 minutes.
  • the polyaniline powder changed its color from brown to gray.
  • the obtained polyaniline powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain a reduced dedope polyaniline (reduced polyaniline). It was.
  • this polyaniline has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
  • Production Example 2 Production of poly (o-toluidine) powder
  • Production Example 1 in place of 10.0 g of aniline, 11.47 g of o-toluidine was used. Otherwise, in the same manner as in Production Example 1, conductive poly (o-toluidine) (oxidized poly (o-toluidine)) having tetrafluoroborate anion as a dopant was obtained as a powder. The conductivity was 0.8 S / cm as a result of measurement by the same method as in Production Example 1.
  • the doped conductive poly (o-toluidine) powder thus obtained was put into a 2 mol / dm 3 aqueous sodium hydroxide solution and stirred for 30 minutes to obtain conductive poly (o-toluidine). Neutralized. As a result, the dopant tetrafluoroborate anion was dedoped from poly (o-toluidine).
  • the dedoped poly (o-toluidine) was washed with water until the filtrate became neutral, then stirred and washed in acetone, and then filtered under reduced pressure using a Buchner funnel and a suction bottle.
  • Poly (o-toluidine) powder was obtained which was dedope on the filter paper.
  • the poly (o-toluidine) powder was vacuum-dried at room temperature for 10 hours to obtain undope poly (o-toluidine) as a brown powder.
  • the undoped poly (o-toluidine) powder thus obtained was placed in a methanol solution of phenylhydrazine and subjected to a reduction treatment for 30 minutes with stirring.
  • the poly (o-toluidine) powder changed its color from brown to gray.
  • the thus-reduced poly (o-toluidine) powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain poly (o-toluidine) (reduced state) in a reduced and undoped state.
  • poly (o-toluidine) The electrical conductivity was 2.5 ⁇ 10 ⁇ 4 S / cm as a result of measurement by the same method as in Production Example 1.
  • this poly (o-toluidine) has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
  • the thus obtained PEDOT powder in the oxidized state had a conductivity of 30.1 S / cm as a result of measurement by the same method as in Production Example 1.
  • the oxidized PEDOT powder was placed in a 2N aqueous sodium hydroxide solution and stirred for 30 minutes. And after washing with water until the filtrate became neutral, it was stirred and washed in acetone, and then filtered.
  • the PEDOT powder was put in a methanol solution of phenylhydrazine and subjected to a reduction treatment for 30 minutes with stirring. After the reaction, the product was washed with methanol and acetone in this order, filtered and vacuum dried at room temperature. In this way, reduced PEDOT powder was obtained. The yield was 15.5 g. And the electrical conductivity of the said PEDOT powder of the said reduction
  • this PEDOT has higher electrical conductivity in the oxidized state in which ions are inserted than in the reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
  • the oxidized polypyrrole powder was put in a 2N aqueous sodium hydroxide solution and stirred for 30 minutes. And after washing with water until the filtrate became neutral, it was stirred and washed in acetone, and then filtered.
  • the polypyrrole powder was put into a methanol solution of phenylhydrazine and subjected to a reduction treatment with stirring for 30 minutes. After the reaction, the product was washed with methanol and acetone in this order, filtered and vacuum dried at room temperature. In this way, a reduced polypyrrole powder was obtained. The yield was 15.5 g. And the electric conductivity of the polypyrrole powder in the reduced state was 3.1 ⁇ 10 ⁇ 2 S / cm as a result of measurement by the same method as in Production Example 1.
  • this polypyrrole has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
  • an oxidizing agent aqueous solution in which 1.53 g (0.0067 mol) of ammonium peroxodisulfate was dissolved in 13.8 g of ion-exchanged water was added to the aqueous solution of the aniline salt, and the mixture was stirred and mixed uniformly.
  • An aniline / oxidizer aqueous solution was obtained. While this aniline / oxidant aqueous solution is colorless and transparent, that is, within the polymerization induction period before the aniline oxidative polymerization begins, 50 g of steam-activated activated carbon (JSC 18 manufactured by JFE Chemical Co., Ltd.) is used as the porous carbon material. (Activated carbon / aniline weight ratio 40) was added and subjected to ultrasonic dispersion treatment with an ultrasonic homogenizer for 2 minutes to suspend the activated carbon in the aqueous aniline / oxidant solution.
  • JSC 18 steam-activated activated carbon
  • the aniline / oxidant aqueous solution in which the activated carbon was suspended as described above was placed under a reduced pressure of 30 hPa, defoamed for 5 minutes, and impregnated with the aniline / oxidant aqueous solution into the pores of the activated carbon.
  • the aqueous aniline / oxidant solution was then returned to atmospheric pressure and stirring was continued.
  • the aniline / oxidant aqueous solution which was initially colorless and transparent, continued to be transparent during the treatment so far. Thereafter, oxidative polymerization of aniline was started in the aniline / oxidant aqueous solution, and as the water proceeded, the water-soluble color changed from blue to blue-green and further to black-green.
  • the oxidized polymer of aniline thus obtained was filtered under reduced pressure to obtain a black powder. This was washed with acetone and filtered again under reduced pressure. This operation was performed three times in total, and the resulting black powder was vacuum-dried at room temperature for 10 hours in a desiccator, and a conductive polyaniline / activated carbon composite having tetrafluoroboric acid as a dopant, that is, oxidized polyaniline. 51.2 g of activated carbon coated with was obtained.
  • the weight increase of the conductive polyaniline / activated carbon composite thus obtained was an increase of 1.2 g based on the weight of the activated carbon used. That is, the proportion of the weight increase in the composite was 2.3% by weight.
  • the specific surface area of this conductive polyaniline / activated carbon composite by BET method was 1600 m 2 / g.
  • the weight increase of the conductive poly (o-toluidine) / activated carbon composite thus obtained was an increase of 1.5 g relative to the weight of the activated carbon used. That is, the proportion of the weight increase in the composite was 3.2% by weight.
  • the conductive poly (o-toluidine) / activated carbon composite had a specific surface area of 1400 m 2 / g as measured by the BET method.
  • the activated carbon powder coated with the dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, filtered under reduced pressure using a Buchner funnel and a suction bottle. 2 Activated carbon powder coated with de-doped polyaniline was obtained on filter paper. This was vacuum-dried at room temperature for 10 hours to obtain activated carbon powder coated with dedope polyaniline.
  • the obtained polyaniline powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain activated carbon powder coated with polyaniline in a reduced dedope state (reduced state). Obtained.
  • Example 1 Preparation of positive electrode sheet
  • 0.1 g of polyacrylic acid manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 1,000,000
  • an etching aluminum foil for electric double layer capacitor having a thickness of 50 ⁇ m (manufactured by Hosen Co., Ltd., 30CB) was prepared as a current collector.
  • the said defoaming paste was apply
  • the composite sheet was punched into a disk shape with a punching jig on which a punching blade having a diameter of 15.95 mm was installed, and this was used as a positive electrode sheet.
  • a non-woven fabric having a porosity of 68% (manufactured by Hosen Co., Ltd., TF40-50) was prepared, and dried together with the positive electrode sheet and the negative electrode sheet in a vacuum dryer at 100 ° C. for 5 hours. Thereafter, the following assembly was performed in a glove box having a dew point of ⁇ 100 ° C. in an ultrahigh purity argon gas atmosphere.
  • a positive electrode sheet and a negative electrode sheet were placed facing each other in a stainless steel HS cell (manufactured by Hosen Co., Ltd.) for a non-aqueous electrolyte secondary battery experiment, and the separator was positioned so that they did not short-circuit. Thereafter, an electrolytic solution of 1 mol / dm 3 lithium tetrafluoroborate (LiBF 4 ) in ethylene carbonate / dimethyl carbonate (manufactured by Kishida Chemical Co., Ltd.) was injected.
  • LiBF 4 lithium tetrafluoroborate
  • the HS cell After injecting the electrolyte, the HS cell was sealed by heat-sealing the injection port portion to complete the cell.
  • Example 2 Instead of the reduced polyaniline powder used as the positive electrode active material of Example 1, the polyaniline (reduced state) -coated activated carbon obtained in Production Example 7 was used, and the negative electrode active material of Example 1 was used. Instead of 1.2 g of the oxidized polyaniline powder, 1.0 g of poly (o-toluidine) (oxidized state) -coated activated carbon obtained in Production Example 6 was used. Moreover, the thickness of the positive electrode sheet was 315 ⁇ m, and the thickness of the negative electrode sheet was 305 ⁇ m. Otherwise, the cell was fabricated in the same manner as in Example 1.
  • Example 3 instead of the reduced polyaniline powder used as the positive electrode active material in Example 1, the oxidized PEDOT obtained in Production Example 3 was used, and the oxidation used as the negative electrode active material in Example 1 Instead of the polyaniline powder in the state, the reduced state polypyrrole obtained in Production Example 4 was used.
  • the thickness of the positive electrode sheet was 270 ⁇ m, and the thickness of the negative electrode sheet was 285 ⁇ m. Otherwise, the cell was fabricated in the same manner as in Example 1.
  • Examples 1 to 3 had a higher energy density per weight of the active material (total of both electrodes) than the comparative example.
  • the present inventors confirmed that Examples 1 to 3 were excellent in charge / discharge rate, and found that the battery was a capacitor-like secondary battery. Furthermore, the electricity storage device of the present invention was more effective than the capacitor. It was confirmed to have a high energy density.
  • the electricity storage device of the present invention can be suitably used as an electricity storage device such as a lithium secondary battery or a high-capacity capacitor.
  • the electricity storage device of the present invention can be used for the same applications as conventional secondary batteries and electric double layer capacitors.
  • portable electronic devices such as portable PCs, cellular phones, and personal digital assistants (PDAs), Widely used in driving power sources for hybrid electric vehicles, electric vehicles, fuel cell vehicles and the like.

Abstract

Disclosed is an electricity storage device comprising: an electrolyte layer (3); and a positive electrode (2) and a negative electrode (4) that are provided so as to sandwich the electrolyte layer. The positive electrode (2) is an electrode made of a composite including at least (A) and (B) described below, wherein (B) is fixed within the composite. The negative electrode (4) is an electrode made of a composite including at least (B) and (C) described below, wherein (B) is fixed within the composite. Thus, an excellent output density per weight and excellent quick charging/discharging characteristics are obtained, and a high energy density per weight is obtained. (A) An electrode active material having an electroconductivity that changes according to the insertion/desorption of ions. (B) A polycarboxylic acid. (C) An electrode active material having an electroconductivity that changes according to the insertion/desorption of ions, the electrode active material having a lower oxidation-reduction potential than said (A).

Description

蓄電デバイスPower storage device
 本発明は蓄電デバイスに関するものであり、詳しくは、従来の電気二重層キャパシタが本来有する優れた重量出力密度と急速充放電特性を維持しつつ、従来の電気二重層キャパシタに比べ格段に高い重量エネルギー密度を有する電気二重層キャパシタ型の蓄電デバイスに関するものである。 The present invention relates to an electricity storage device, and more specifically, while maintaining the excellent weight output density and rapid charge / discharge characteristics inherent in conventional electric double layer capacitors, the weight energy is significantly higher than that of conventional electric double layer capacitors. The present invention relates to an electric double layer capacitor type electricity storage device having a density.
 近年、高い出力特性と共に長寿命を有するエネルギー貯蓄デバイスとして、例えば、多孔性セパレータと、この多孔性セパレータを挟んで対向して配設した一対の分極性電極と、上記多孔性セパレータと分極性電極に含浸させた電解液を含む電気二重層キャパシタが注目されている。 In recent years, as an energy storage device having high output characteristics and long life, for example, a porous separator, a pair of polarizable electrodes disposed opposite to each other with the porous separator interposed therebetween, and the porous separator and polarizable electrode An electric double layer capacitor containing an electrolytic solution impregnated in has attracted attention.
 また、最近、低炭素社会実現のための技術開発が活発に行われており、特に、自動車市場においては、ガソリン車に代わって、ハイブリッド自動車や電気自動車の需要が急速に増えている。ハイブリッド自動車や電気自動車のための蓄電デバイスとしては、主としてリチウムイオン二次電池(リチウム二次電池)が、その高いエネルギー密度のために実用されているが、しかし、リチウムイオン二次電池も、現在、その性能は未だ、充分とはいえない。すなわち、リチウムイオン二次電池は、エネルギー密度は高いが、出力密度はそれほど高くない。 Recently, technology development for realizing a low-carbon society has been actively carried out. In particular, in the automobile market, demand for hybrid cars and electric cars is rapidly increasing in place of gasoline cars. As power storage devices for hybrid and electric vehicles, lithium ion secondary batteries (lithium secondary batteries) are mainly used because of their high energy density. However, lithium ion secondary batteries are also currently used. The performance is still not enough. That is, the lithium ion secondary battery has a high energy density, but the output density is not so high.
 また、自動車用の動力源としては、加速に対応し得る高い出力密度が求められている。そこで、リチウム二次電池では、エネルギー密度特性を犠牲にして、重量出力密度を高めるための様々な工夫が凝らされている。 Also, as a power source for automobiles, high power density that can cope with acceleration is required. Therefore, in the lithium secondary battery, various ideas have been devised for increasing the weight output density at the expense of energy density characteristics.
 一方、電気二重層キャパシタは、重量エネルギー密度は非常に低いが、本来、重量出力密度は非常に高く、数1000mW/gにも達する特性を容易に得ることができ、更に、充放電速度にも優れている。このように、電気二重層キャパシタは、本来、高い重量出力密度と急速充放電特性を有しており、蓄電デバイスとして非常に優れた特性を有しているが、重量エネルギー密度が低いところに唯一の欠点を有する。 On the other hand, an electric double layer capacitor has a very low weight energy density, but inherently has a very high weight output density, and can easily obtain characteristics reaching several thousand mW / g. Are better. As described above, the electric double layer capacitor originally has a high weight output density and rapid charge / discharge characteristics, and has very excellent characteristics as an electric storage device. Have the disadvantages.
 すなわち、従来、電気二重層キャパシタは、通常、粉末活性炭や繊維状活性炭等の導電性多孔性炭素材を用いて形成された分極性電極を用い、電解液中の支持電解質イオンの物理吸着特性を利用して、電気を貯蔵するデバイスであるので、酸化還元反応という化学反応を用いる電池に比べて、重量エネルギー密度が極めて小さく、実際の使用において、長時間にわたる放電を維持することができないという大きな問題を有している。 That is, conventionally, an electric double layer capacitor usually uses a polarizable electrode formed using a conductive porous carbon material such as powdered activated carbon or fibrous activated carbon, and exhibits physical adsorption characteristics of supporting electrolyte ions in an electrolytic solution. Since it is a device that uses electricity to store electricity, its weight energy density is extremely small compared to a battery using a chemical reaction called redox reaction, and it cannot maintain a long-term discharge in actual use. Have a problem.
 高容量化のためには、その電極に用いられる活性炭の高比表面積化が必須となっている。従来、電気二重層キャパシタに用いられる活性炭は、一般にヤシガラ炭化物、フェノール樹脂炭化物、石炭などの原料を水蒸気賦活、薬品賦活することにより製造されている。このような活性炭の製造方法として、例えば、石炭の溶剤抽出物(無灰炭)を不活性雰囲気下で800℃から950℃の温度範囲において加熱し、得られた固体残渣をアルカリ賦活する方法や、石炭系ピッチを400℃~600℃及び600℃~900℃の2段階の温度範囲で熱処理し、熱処理した石炭系ピッチをアルカリ賦活する方法、さらには粒状の等方性ピッチを不融化した後、薬剤で賦活する方法などが検討されている(特許文献1~3参照)。さらには、活性炭の表面に酸化還元特性を有する導電性ポリマーなどをコーティングすることによる化学修飾により高容量化することを試みることも検討されている。(特許文献4~6参照)。 In order to increase the capacity, it is essential to increase the specific surface area of the activated carbon used for the electrodes. Conventionally, activated carbon used for an electric double layer capacitor is generally manufactured by steam activation and chemical activation of raw materials such as coconut shell carbide, phenol resin carbide, and coal. As a method for producing such activated carbon, for example, a solvent extract of coal (ashless coal) is heated in a temperature range of 800 ° C. to 950 ° C. in an inert atmosphere, and the resulting solid residue is alkali activated. , A method in which the coal-based pitch is heat-treated in a two-step temperature range of 400 ° C. to 600 ° C. and 600 ° C. to 900 ° C., and the heat-treated coal-based pitch is alkali-activated. A method of activating with a drug has been studied (see Patent Documents 1 to 3). Furthermore, attempts have been made to increase the capacity by chemical modification by coating the surface of activated carbon with a conductive polymer having oxidation-reduction characteristics. (See Patent Documents 4 to 6).
 しかし、これらの方法において形成された分極性電極を有する電気二重層キャパシタは、重量エネルギー密度において、依然、充分に改善されない。また、導電性ポリマー系において、その特性を向上させるために、ポリマーアニオンを利用したロッキングチェア型の電池形成も試みられているが、その特性は充分でない(特許文献7参照)。さらに、特性の異なる導電性ポリマーを正極・負極の両方に使用しての改良も試みられたが、その特性も充分でない(特許文献8参照)。 However, electric double layer capacitors having polarizable electrodes formed in these methods are still not sufficiently improved in weight energy density. In addition, in order to improve the characteristics of conductive polymer systems, formation of a rocking chair type battery using a polymer anion has been attempted, but the characteristics are not sufficient (see Patent Document 7). Furthermore, although improvement was attempted by using conductive polymers having different characteristics for both the positive electrode and the negative electrode, the characteristics were not sufficient (see Patent Document 8).
特開2007-142204号公報JP 2007-142204 A 特開2004-149399号公報JP 2004-149399 A 特開2002-104817号公報JP 2002-104817 A 特開2008-72079号公報JP 2008-72079 A 特開2002-25865号公報Japanese Patent Laid-Open No. 2002-25865 特開2012-33783公報JP 2012-33783 A 特開平1-132052号公報Japanese Patent Laid-Open No. 1-132052 特開昭63-69156号公報JP-A-63-69156
 このように、電気二重層キャパシタは、様々な改良がなされているものの、性能において未だ充分ではなく、電極にマンガン酸リチウムやコバルト酸リチウムのようなリチウム含有遷移金属酸化物を用いたリチウム二次電池に比べ、容量密度やエネルギー密度が低く、自動車用の蓄電デバイスとして優れた性能を発揮することができない現状にある。 As described above, although the electric double layer capacitor has been improved in various ways, it is not yet sufficient in performance, and a lithium secondary battery using a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate for the electrode. Compared to batteries, the capacity density and energy density are low, and it is not possible to exhibit excellent performance as a power storage device for automobiles.
 本発明は、上述した問題を解決するためになされたものであって、優れた重量出力密度と急速充放電特性を有するとともに、高い重量エネルギー密度を有する新規な蓄電デバイスを提供する。 The present invention has been made to solve the above-described problems, and provides a novel power storage device having excellent weight output density and rapid charge / discharge characteristics and high weight energy density.
 本発明の蓄電デバイスは、電解質層と、これを挟んで設けられた正極と負極とを有する蓄電デバイスであって、上記正極が、少なくとも下記(A)と(B)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されており、上記負極が、少なくとも下記(B)と(C)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されているという構成をとる。
(A)イオンの挿入・脱離により導電性が変化する電極活物質。
(B)ポリカルボン酸。
(C)イオンの挿入・脱離により導電性が変化する電極活物質であって、上記(A)よりも酸化還元電位が低い電極活物質。
An electricity storage device of the present invention is an electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, and the positive electrode is a composite electrode comprising at least the following (A) and (B): In addition, the following (B) is fixed in the composite, and the negative electrode is an electrode of a composite comprising at least the following (B) and (C), and the following (B) Is configured to be fixed.
(A) An electrode active material whose conductivity changes due to ion insertion / extraction.
(B) Polycarboxylic acid.
(C) An electrode active material whose conductivity is changed by insertion / extraction of ions, and has an oxidation-reduction potential lower than that of (A) above.
 すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、本発明者らは、キャパシタ系の蓄電デバイスにおいて、ポリアニリン等の電極活物質と、バインダーであるポリカルボン酸との複合体を用いて、正極、負極の両方の電極を構成し、かつ、正極側に用いる電極活物質よりも負極側に用いる電極活物質のほうが、酸化還元電位が低いものとなるよう設定することにより、重量出力密度と重量エネルギー密度とを双方とも高めることができるようになることを突き止めた。したがって、このような電極構成により、蓄電デバイス特性が大幅に向上することを本発明者らは見出した。 That is, the present inventors have conducted intensive research to solve the above problems. In the course of that research, the present inventors configured both positive and negative electrodes in a capacitor-type electricity storage device using a composite of an electrode active material such as polyaniline and a polycarboxylic acid as a binder. In addition, by setting the electrode active material used on the negative electrode side to have a lower oxidation-reduction potential than the electrode active material used on the positive electrode side, both the weight output density and the weight energy density can be increased. I found out that I could do it. Accordingly, the present inventors have found that such an electrode configuration greatly improves the characteristics of the electricity storage device.
 なお、本発明において、「複合体内に(B)が固定されている」とは、(B)成分が他の電極形成材料ととともに形成された複合体内に固定されることをいい、これにより、アニオン性材料であるポリカルボン酸(B)が固定され動かないことにより、対するカチオンが移動する性質を有するようになり、ひいては、これを用いた蓄電デバイスがロッキングチェア型の機構を有するようになることを意味する。 In the present invention, “(B) is fixed in the composite” means that the component (B) is fixed in the composite formed together with other electrode forming materials. Since the polycarboxylic acid (B), which is an anionic material, is fixed and does not move, the cation moves, and the electricity storage device using the same has a rocking chair type mechanism. Means that.
 このように、本発明の蓄電デバイスは、電解質層と、これを挟んで設けられた正極と負極とを有する蓄電デバイスであって、上記正極が、少なくとも前記特定の電極活物質(A)とポリカルボン酸(B)とからなる複合体の電極であるとともに、その複合体内にポリカルボン酸(B)が固定されており、上記負極が、少なくともポリカルボン酸(B)と前記特定の電極活物質(C)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されている。このため、優れた重量出力密度と急速充放電特性を有するとともに、高い重量エネルギー密度を有する、高性能の蓄電デバイスとすることができる。 Thus, the electricity storage device of the present invention is an electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, wherein the positive electrode is at least the specific electrode active material (A) and the polyelectrolyte. The composite electrode is composed of a carboxylic acid (B), the polycarboxylic acid (B) is fixed in the composite, and the negative electrode includes at least the polycarboxylic acid (B) and the specific electrode active material. (C) and the following (B) is being fixed in the composite. For this reason, while having the outstanding weight output density and rapid charge / discharge characteristic, it can be set as the high performance electrical storage device which has a high weight energy density.
 また、上記(A)および(C)の電極活物質の少なくとも一方が、多孔質炭素材料の多孔質表面に被覆されたものであると、さらに出力特性に優れるようになる。 Further, when at least one of the electrode active materials (A) and (C) is coated on the porous surface of the porous carbon material, the output characteristics are further improved.
 さらに、上記(A)および(C)の電極活物質の酸化還元電位差が、5mV以上であると、さらに一層エネルギー密度が向上する。 Furthermore, when the oxidation-reduction potential difference between the electrode active materials (A) and (C) is 5 mV or more, the energy density is further improved.
蓄電デバイスの構造を示す断面図である。It is sectional drawing which shows the structure of an electrical storage device.
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例であり、本発明は、以下の内容に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the description described below is an example of embodiments of the present invention, and the present invention is not limited to the following contents.
 本発明の蓄電デバイスは、図1に示すように、電解質層3と、これを挟んで設けられた正極2と負極4とを有する蓄電デバイスであって、上記正極2が、少なくとも下記(A)と(B)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されており、上記負極4が、少なくとも下記(B)と(C)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されている構成を有する。
(A)イオンの挿入・脱離により導電性が変化する電極活物質。
(B)ポリカルボン酸。
(C)イオンの挿入・脱離により導電性が変化する電極活物質であって、上記(A)よりも酸化還元電位が低い電極活物質。
As shown in FIG. 1, the electricity storage device of the present invention is an electricity storage device having an electrolyte layer 3, a positive electrode 2 and a negative electrode 4 provided with the electrolyte layer 3 interposed therebetween, and the positive electrode 2 is at least the following (A): And (B), the following (B) is fixed in the composite, and the negative electrode 4 is at least a composite electrode comprising (B) and (C) below. In addition, the following (B) is fixed in the complex.
(A) An electrode active material whose conductivity changes due to ion insertion / extraction.
(B) Polycarboxylic acid.
(C) An electrode active material whose conductivity is changed by insertion / extraction of ions, and has an oxidation-reduction potential lower than that of (A) above.
 なお、1は集電体(正極用)、5は集電体(負極用)である。また、図1は、蓄電デバイスの構造を模式的に示したものであり、各層の厚み等は実際とは異なっている。 Incidentally, 1 is a current collector (for positive electrode), and 5 is a current collector (for negative electrode). FIG. 1 schematically shows the structure of the electricity storage device, and the thickness of each layer is different from the actual one.
 本発明は、上記(A)成分および(B)成分を構成要素として有する複合体からなる電極を正極に使用し、上記(B)成分および(C)成分を構成要素として有する複合体からなる電極を負極に使用することが最大の特徴であるが、その使用材料等について順を追って説明する。 The present invention uses an electrode composed of a composite having the above components (A) and (B) as constituents for a positive electrode, and an electrode composed of a composite having the above (B) and (C) components as constituents Is the most important feature, but the materials used will be described in order.
<電極活物質(A)および(C)について>
 上記(A)および(C)は、イオンの挿入・脱離により導電性が変化する電極活物質であり(以後、「電極活物質」と呼ぶことがある。)、例えば、ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4-エチレンジオキシチオフェン)(以下、「PEDOT」と略す。)、およびこれらの置換体ポリマー等の導電性ポリマー系材料、あるいはポリアセン、グラファイト、カーボンナノチューブ、カーボンナノファイバー、グラフェン等のカーボン系材料があげられる。
<About electrode active materials (A) and (C)>
The above (A) and (C) are electrode active materials whose conductivity is changed by ion insertion / extraction (hereinafter sometimes referred to as “electrode active materials”). For example, polyacetylene, polypyrrole, polyaniline , Polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as “PEDOT”), and substituted polymers thereof Conductive polymer materials such as polyacene, graphite, carbon nanotubes, carbon nanofibers, graphene, and the like.
 そして、正極に用いる電極活物質(A)には、酸化還元電位の高い材料が好ましく用いられる。具体的には、ポリチオフェン系やポリアニリン系の材料が好ましく用いられる。一方、負極に用いる電極活物質(C)には、酸化還元電位の低い材料が好ましく用いられる。具体的には、ポリピロール系や置換体のポリアニリン系の材料が好ましく用いられる。 And for the electrode active material (A) used for the positive electrode, a material having a high redox potential is preferably used. Specifically, polythiophene-based or polyaniline-based materials are preferably used. On the other hand, a material having a low redox potential is preferably used for the electrode active material (C) used for the negative electrode. Specifically, polypyrrole-based or substituted polyaniline-based materials are preferably used.
 正極と負極の組合せは、酸化還元電位の高い材料を正極に、酸化還元電位の低い材料を負極に使用すれば、蓄電池の放電電圧が高く取れ、エネルギー密度が高い電池が得られる。好ましい具体例としては、ポリチオフェン系のPEDOTを正極に、ポリピロールを負極に用いた組合せのものや、同じポリアニリン系材料でも、ポリアニリンを正極に、ポリ(o-トルイジン)を負極に用いた組合せのもの等があげられる。 As for the combination of the positive electrode and the negative electrode, if a material having a high redox potential is used for the positive electrode and a material having a low redox potential is used for the negative electrode, a battery having a high discharge voltage can be obtained and a battery having a high energy density can be obtained. Preferred examples include a combination using polythiophene-based PEDOT as the positive electrode and polypyrrole as the negative electrode, or a combination of the same polyaniline-based material using polyaniline as the positive electrode and poly (o-toluidine) as the negative electrode. Etc.
 そして、上記(A)および(C)の電極活物質の酸化還元電位差は、好ましくは5mV以上、より好ましくは10mV以上である。また、上記(A)および(C)の電極活物質の酸化還元電位差は、好ましくは2500mV以下、より好ましくは2000mV以下である。上記酸化還元電位差は、サイリックボルタンメトリーによる酸化波と還元波のそれぞれのピーク値の平均値を(A)電極と(C)電極でそれぞれ測定した値の差から求められる。このときの対極は、リチウム金属とし、リチウムの酸化還元電位を基準とする。電解液は、電池セル形成時と同様のものを使用し、電位走査速度は20mV/secとする。そして、上記範囲で酸化還元電位差を設けることによって、よりエネルギー密度が高い蓄電デバイスとすることができるようになる。 The redox potential difference of the electrode active materials (A) and (C) is preferably 5 mV or more, more preferably 10 mV or more. The redox potential difference between the electrode active materials (A) and (C) is preferably 2500 mV or less, more preferably 2000 mV or less. The oxidation-reduction potential difference is obtained from the difference between values obtained by measuring the average values of the peak values of the oxidation wave and the reduction wave by the cyclic voltammetry at the (A) electrode and the (C) electrode, respectively. The counter electrode at this time is lithium metal and is based on the oxidation-reduction potential of lithium. The electrolyte used is the same as that used when forming the battery cell, and the potential scanning speed is 20 mV / sec. By providing the oxidation-reduction potential difference in the above range, an energy storage device with higher energy density can be obtained.
 上記(A)および(C)の、イオンの挿入・脱離は、先に述べたように、いわゆるドーピング・脱ドーピングとも称され、一定の分子構造あたりのドーピング・脱ドーピング量をドープ率と呼び、ドープ率が高い材料ほど、電池としては高容量化が可能となる。 The ion insertion / desorption in the above (A) and (C) is also referred to as so-called doping / dedoping as described above, and the doping / dedoping amount per certain molecular structure is called the doping rate. The higher the doping rate, the higher the capacity of the battery.
 例えば、(A)および(C)の、導電性ポリマーのドープ率は、ポリアニリンでは0.5、ポリピロールでは0.25と言われている。ドープ率が高いほど、高容量の電池が形成できる。例えば導電性ポリアニリンの導電性は、ドープ状態では100~103S/cm程度、脱ドープ状態では、10-15~10-2S/cmとなる。 For example, the conductive polymer doping ratios of (A) and (C) are said to be 0.5 for polyaniline and 0.25 for polypyrrole. The higher the doping rate, the higher the capacity of the battery can be formed. For example, the conductivity of conductive polyaniline is about 10 0 to 10 3 S / cm in the doped state, and 10 −15 to 10 −2 S / cm in the undoped state.
 一方、上記(A)または(C)を初期に還元脱ドープ状態とする方法としては、例えば、直接還元脱ドープ状態にする方法もあるが、脱ドープ状態にした後、還元する方法があげられ、これが一般的である。 On the other hand, as a method of bringing the above (A) or (C) into the reduction-dedoped state in the initial stage, for example, there is a method of directly making the reduction-dedoped state, but there is a method of reducing after making the dedope state. This is common.
 上記後者の方法について説明する。まず、脱ドープ状態は、(A)または(C)が有するドーパントを中和することによって得られる。例えば、上記(A)または(C)のドーパントを中和する溶液中で撹拌し、その後洗浄濾過することにより、脱ドープ状態の(A)または(C)が得られる。具体的には、テトラフルオロホウ酸をドーパントとするポリアニリンを脱ドープするには、水酸化ナトリウム水溶液中で撹拌することにより中和させる方法があげられる。 The latter method will be described. First, a dedope state is obtained by neutralizing the dopant which (A) or (C) has. For example, (A) or (C) in a dedope state is obtained by stirring in a solution for neutralizing the dopant (A) or (C) and then washing and filtering. Specifically, in order to dedope polyaniline having tetrafluoroboric acid as a dopant, a method of neutralizing by stirring in an aqueous sodium hydroxide solution can be mentioned.
 つぎに、脱ドープ状態の(A)または(C)を還元することにより、還元脱ドープ状態が得られる。例えば、脱ドープ状態の(A)または(C)を還元する溶液中で撹拌し、その後洗浄濾過することにより、還元脱ドープ状態の(A)または(C)が得られる。具体的には、脱ドープ状態となったポリアニリンを、フェニルヒドラジンのメタノール水溶液中で撹拌することにより還元させる方法があげられる。 Next, by reducing (A) or (C) in the dedope state, a reduced dedope state is obtained. For example, (A) or (C) in the reduced dedoped state is obtained by stirring in a solution for reducing (A) or (C) in the dedoped state, and then washing and filtering. Specifically, a method of reducing polyaniline in a dedoped state by stirring in an aqueous methanol solution of phenylhydrazine can be mentioned.
 蓄電池形成時には、次の(1)や(2)に示す組合せが有効である。
(1)正極に(A)の還元脱ドープ状態の材料を、負極に(C)の酸化ドープ状態の材料を用いる。これを最初に充電して使用する。
(2)正極に(A)の酸化ドープ状態の材料を、負極に(C)の還元脱ドープ状態の材料を用いる。これを最初に放電して使用する。
When forming a storage battery, the combinations shown in the following (1) and (2) are effective.
(1) The reduction-dedoped material (A) is used for the positive electrode, and the oxidation-doped material (C) is used for the negative electrode. This is charged and used first.
(2) The oxidation-doped material (A) is used for the positive electrode, and the reductive dedope material (C) is used for the negative electrode. This is first discharged and used.
 また、上記(A)や(C)の電極活物質を多孔質炭素材料の多孔質表面に被覆したものも、正極や負極の電極活物質として好ましく用いられる。 Also, those obtained by coating the electrode active material (A) or (C) on the porous surface of a porous carbon material are preferably used as the electrode active material for the positive electrode or the negative electrode.
 上記多孔質炭素材料は、炭素材料を主成分とする多孔質構造の材料であり、吸着効率を高めるために化学的または物理的な処理(活性化、賦活化)を施した活性炭が好ましく用いられる。上記化学的な処理を施した活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。また、上記物理的な処理を施した活性炭としては、水蒸気賦活処理法より得られた活性炭、溶融KOH賦活処理法より得られた活性炭等がある。これらのうち大きい容量を得られる点で、水蒸気賦活処理法により得られた活性炭を用いることが好ましい。 The porous carbon material is a material having a porous structure mainly composed of a carbon material, and activated carbon subjected to chemical or physical treatment (activation, activation) is preferably used in order to increase adsorption efficiency. . Examples of the activated carbon subjected to the chemical treatment include phenol resin activated carbon, coconut shell activated carbon, and petroleum coke activated carbon. Examples of the activated carbon subjected to the above physical treatment include activated carbon obtained from a steam activation treatment method, activated carbon obtained from a molten KOH activation treatment method, and the like. Among these, it is preferable to use activated carbon obtained by a steam activation treatment method in that a large capacity can be obtained.
 さらに、上記活性炭としては、比表面積の大きい電気二重層キャパシタ用の活性炭が好ましく用いられる。大容量で低内部抵抗の蓄電デバイスが得られるように、平均粒径が20μm以下で比表面積が1000~3000m2/gの活性炭を使用するのが好ましい。 Further, as the activated carbon, activated carbon for electric double layer capacitors having a large specific surface area is preferably used. It is preferable to use activated carbon having an average particle size of 20 μm or less and a specific surface area of 1000 to 3000 m 2 / g so as to obtain an electricity storage device having a large capacity and a low internal resistance.
 上記(A)や(C)の電極活物質の多孔質炭素材料への被覆は、例えば、(A)や(C)の電極活物質を適度な溶剤に溶解させた溶液中に多孔質炭素材料を浸漬させ、それを取り出し乾燥させる方法や、電解方法による方法、(A)や(C)の電極活物質の化学酸化重合時の重合溶液に多孔質炭素材料を浸漬させ、多孔質炭素材料の表面に(A)や(C)の電極活物質を付着させる方法(以下、「その場重合法」と略す)などがあげられる。これらの中でも、その場重合法は、均一な薄膜を得ることができ特に好ましく用いられる。その場重合法としては、前記特許文献6(特開2012-33783号公報)に記載の方法を用いることができる。 The electrode active material (A) or (C) is coated on the porous carbon material, for example, the porous carbon material in a solution obtained by dissolving the electrode active material (A) or (C) in an appropriate solvent. The porous carbon material is immersed in a polymerization solution at the time of chemical oxidative polymerization of the electrode active material of (A) or (C), a method of taking out and drying it, a method by an electrolytic method, Examples thereof include a method of attaching the electrode active material (A) or (C) to the surface (hereinafter abbreviated as “in situ polymerization method”). Among these, the in-situ polymerization method is particularly preferably used because a uniform thin film can be obtained. As the in-situ polymerization method, the method described in Patent Document 6 (Japanese Patent Laid-Open No. 2012-33783) can be used.
 上記導電性ポリマーの被覆厚みは、通常0.1~500nmであり、好ましくは0.5~50nmである。すなわち、薄すぎると容量密度の高い蓄電池が得られない傾向があり、また厚過ぎても、イオンの拡散がしにくくなり高い容量密度が得られない傾向があるからである。 The coating thickness of the conductive polymer is usually 0.1 to 500 nm, preferably 0.5 to 50 nm. That is, if it is too thin, there is a tendency that a storage battery with a high capacity density cannot be obtained, and if it is too thick, it is difficult for ions to diffuse and a high capacity density tends not to be obtained.
 上記導電性ポリマーの、上記導電性ポリマーと多孔質炭素材料との複合体に対する重量比率は、通常0.5~40%であり、好ましくは1~10%である。 The weight ratio of the conductive polymer to the composite of the conductive polymer and the porous carbon material is usually 0.5 to 40%, preferably 1 to 10%.
 本発明の蓄電デバイスは、上記(A)の電極活物質と、つぎに説明するポリカルボン酸(B)とを含有する材料から正極電極をつくり、上記(C)の電極活物質と、つぎに説明するポリカルボン酸(B)とを含有する材料から負極電極をつくり、これを用いて構成される。両電極は、少なくとも電極活物質およびポリカルボン酸を用いて多孔質シート状等にしたものからなる。 The electricity storage device of the present invention is a positive electrode made of a material containing the electrode active material (A) and the polycarboxylic acid (B) described below, and the electrode active material (C), A negative electrode is made from a material containing the polycarboxylic acid (B) to be described, and this is used. Both electrodes are made of a porous sheet or the like using at least an electrode active material and polycarboxylic acid.
<ポリカルボン酸(B)について>
 上記ポリカルボン酸(B)としては、例えば、ポリマーや分子量の比較的大きなカルボン酸置換化合物、電解液に溶解性の低いカルボン酸置換化合物等があげられる。さらに詳細には、分子中にカルボキシル基を有する化合物が好ましく用いられ、特にポリマーであるポリカルボン酸(B)は、バインダーを兼ねることもできるという利点を有している。
<About polycarboxylic acid (B)>
Examples of the polycarboxylic acid (B) include a polymer, a carboxylic acid substitution compound having a relatively large molecular weight, and a carboxylic acid substitution compound having low solubility in an electrolytic solution. More specifically, a compound having a carboxyl group in the molecule is preferably used, and the polycarboxylic acid (B) as a polymer has an advantage that it can also serve as a binder.
 上記ポリカルボン酸(B)としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸およびポリアスパラギン酸等があげられ、なかでも、ポリアクリル酸およびポリマレイン酸が特に好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the polycarboxylic acid (B) include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, and polyaspartic acid. However, polyacrylic acid and polymaleic acid are particularly preferably used. These may be used alone or in combination of two or more.
 本発明の蓄電デバイスにおいて、前記(A)または(C)の電極活物質とともに上記ポリカルボン酸(B)を用いた場合、このポリカルボン酸(B)が、バインダーとしての機能を有するとともに、ドーパントとしても機能することから、ロッキングチェア型の機構を有し、本発明による蓄電デバイスの特性の向上に関与しているものとみられる。 In the electricity storage device of the present invention, when the polycarboxylic acid (B) is used together with the electrode active material (A) or (C), the polycarboxylic acid (B) has a function as a binder and a dopant. Therefore, it is considered that it has a rocking chair type mechanism and is involved in improving the characteristics of the electricity storage device according to the present invention.
 上記ポリカルボン酸(B)としては、分子中のカルボキシル基の少なくとも一部をリチウムで置換し、リチウム型とするものが好ましく用いられる。このようなリチウム置換は、ポリマー中のカルボキシル基の40%以上であることが好ましく、より好ましくは100%である。 As the polycarboxylic acid (B), those in which at least a part of the carboxyl group in the molecule is substituted with lithium to form a lithium type are preferably used. Such lithium substitution is preferably 40% or more of the carboxyl groups in the polymer, more preferably 100%.
 上記ポリカルボン酸(B)は、前記(A)または(C)の電極活物質100重量部に対して、通常、1~100重量部、好ましくは、2~70重量部、最も好ましくは、5~40重量部の範囲で用いられる。上記電極活物質(A)に対するポリカルボン酸(B)の量が少なすぎると、エネルギー密度に優れる蓄電デバイスを得ることが困難となる傾向にあり、他方、上記電極活物質(A)に対するポリカルボン酸(B)の量が多すぎても、エネルギー密度の高い蓄電デバイスを得ることが困難となる傾向にある。 The polycarboxylic acid (B) is usually 1 to 100 parts by weight, preferably 2 to 70 parts by weight, most preferably 5 parts per 100 parts by weight of the electrode active material (A) or (C). Used in the range of up to 40 parts by weight. If the amount of the polycarboxylic acid (B) with respect to the electrode active material (A) is too small, it tends to be difficult to obtain an electricity storage device with excellent energy density, while the polycarboxylic acid with respect to the electrode active material (A) tends to be difficult. Even if the amount of the acid (B) is too large, it tends to be difficult to obtain an electricity storage device having a high energy density.
<他の電極形成材料について>
 さらに、電極形成材料としては、前記(A)または(C)の電極活物質、ポリカルボン酸(B)とともに、必要に応じて、上記ポリカルボン酸(B)以外のバインダー、導電助剤等を適宜配合することができる。
<Other electrode forming materials>
Further, as the electrode forming material, the electrode active material (A) or (C), polycarboxylic acid (B), and a binder other than the polycarboxylic acid (B), a conductive auxiliary agent, etc., if necessary. It can mix | blend suitably.
 上記導電助剤としては、蓄電デバイスの放電時に印加する電位によって性状の変化しない導電性材料であればよく、例えば、導電性炭素材料、金属材料等があげられ、なかでもアセチレンブラック、ケッチェンブラック等の導電性カーボンブラックや、炭素繊維、カーボンナノチューブ等の繊維状炭素材料が好ましく用いられる。特に好ましくは導電性カーボンブラックである。 The conductive auxiliary agent may be any conductive material whose properties do not change depending on the potential applied during the discharge of the electricity storage device, and examples thereof include conductive carbon materials and metal materials, among which acetylene black and ketjen black A conductive carbon black such as carbon fiber, or a fibrous carbon material such as carbon fiber or carbon nanotube is preferably used. Particularly preferred is conductive carbon black.
 上記導電助剤は、前記(A)または(C)の電極活物質100重量部に対して1~30重量部であることが好ましく、さらに好ましくは4~20重量部であり、特に好ましくは8~18重量部である。導電助剤の配合量がこの範囲内であれば、活物質としての形状や特性に異常なく調製でき、効果的にレート特性を向上させることが可能となる。 The conductive assistant is preferably 1 to 30 parts by weight, more preferably 4 to 20 parts by weight, and particularly preferably 8 parts by weight based on 100 parts by weight of the electrode active material (A) or (C). ~ 18 parts by weight. When the blending amount of the conductive aid is within this range, the shape and characteristics as the active material can be prepared without abnormality, and the rate characteristics can be effectively improved.
 上記ポリカルボン酸(B)以外のバインダーとしては、例えば、フッ化ビニリデン等があげられる。 Examples of the binder other than the polycarboxylic acid (B) include vinylidene fluoride.
<電極について>
 本発明の蓄電デバイスに係る電極は、少なくとも、前記(A)または(C)の電極活物質と、ポリカルボン酸(B)とからなる複合体からなり、好ましくは多孔質シートに形成される。通常、電極の厚みは、1~1000μmであることが好ましく、10~700μmであることがさらに好ましい。
<About electrodes>
The electrode according to the electricity storage device of the present invention is composed of a composite comprising at least the electrode active material (A) or (C) and the polycarboxylic acid (B), and is preferably formed on a porous sheet. Usually, the thickness of the electrode is preferably 1 to 1000 μm, and more preferably 10 to 700 μm.
 上記電極の厚みは、電極を先端形状が直径5mmの平板であるダイヤルゲージ(尾崎製作所社製)を用いて測定し、電極の面に対して10点の測定値の平均を求めることにより得られる。図1に示すように、集電体上に電極(多孔質層)が設けられ複合化している場合には、その複合化物の厚みを、上記と同様に測定し、測定値の平均を求めた後、集電体の厚みを差し引いて計算することにより電極の厚みが得られる。 The thickness of the electrode is obtained by measuring the electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.), which is a flat plate having a tip shape of 5 mm in diameter, and obtaining an average of 10 measurement values with respect to the surface of the electrode. . As shown in FIG. 1, when an electrode (porous layer) is provided on the current collector and composited, the thickness of the composite is measured in the same manner as described above, and the average of the measured values is obtained. Thereafter, the thickness of the electrode is obtained by subtracting the thickness of the current collector.
 本発明の蓄電デバイスに係る電極は、例えば、つぎのようにして作製される。すなわち、上記ポリカルボン酸(B)を水に溶解して水溶液とし、これに電極活物質(A)または(C)と、必要に応じて導電性カーボンブラックのような導電助剤を加え、充分に分散させて、ペーストを調製する。これを集電体上に塗布した後、水を蒸発させることによって、集電体上に、電極活物質とポリカルボン酸(必要に応じて、導電助剤)の混合物の複合体(多孔質シート)として電極(シート電極)を得ることができる。 The electrode according to the electricity storage device of the present invention is produced, for example, as follows. That is, the polycarboxylic acid (B) is dissolved in water to form an aqueous solution, and an electrode active material (A) or (C) and, if necessary, a conductive assistant such as conductive carbon black are added thereto. To prepare a paste. After applying this on the current collector, water is evaporated to form a composite (porous sheet) of a mixture of the electrode active material and polycarboxylic acid (conducting aid if necessary) on the current collector. ) Can be obtained as an electrode (sheet electrode).
 上記のように形成された電極においては、ポリカルボン酸(B)は、電極活物質(A)または(C)との混合物の複合体として存在しており、それによって複合体内に固定、ひいては電極内に固定される。そして、このように電極活物質(A)または(C)の近傍に固定配置されたポリカルボン酸(B)は、電極活物質(A)または(C)の酸化還元時の電荷補償に使用される。 In the electrode formed as described above, the polycarboxylic acid (B) is present as a composite of a mixture with the electrode active material (A) or (C), thereby fixing in the composite, and thus the electrode. Fixed inside. The polycarboxylic acid (B) fixedly arranged in the vicinity of the electrode active material (A) or (C) in this way is used for charge compensation during oxidation / reduction of the electrode active material (A) or (C). The
 このような電極を使用することにより高エネルギー密度の蓄電デバイスとなる理由に関しては、未だ充分に解明されていないが、電極活物質の近傍にポリカルボン酸が固定配置されることにより、適度な電極活物質濃度環境になるとともに、電極活物質から挿入・脱離するイオンの移動を容易にする等といった要因が考えられる。さらに、アニオン性材料であるポリカルボン酸は、リチウムイオンなどのカチオンの対イオンとなり、いわゆるロッキングチェア型のイオン移動に寄与し、全体の電解液量が低減しても容量低下を防いでいると考えられる。 Although the reason why it becomes an energy storage device with a high energy density by using such an electrode has not yet been fully elucidated, a suitable electrode can be obtained by placing a polycarboxylic acid in the vicinity of the electrode active material. Factors such as an active material concentration environment and facilitating the movement of ions that are inserted and desorbed from the electrode active material can be considered. Furthermore, the polycarboxylic acid, which is an anionic material, becomes a counter ion of a cation such as lithium ion, contributes to the so-called rocking chair type ion transfer, and prevents a decrease in capacity even when the total amount of electrolyte is reduced. Conceivable.
<電解質層について>
 本発明の蓄電デバイスに係る電解質層は、電解質により構成されるが、例えば、セパレータに電解液を含浸させてなるシートや、固体電解質からなるシートが好ましく用いられる。固体電解質からなるシートは、それ自体がセパレータを兼ねている。
<About the electrolyte layer>
The electrolyte layer according to the electricity storage device of the present invention is composed of an electrolyte. For example, a sheet formed by impregnating a separator with an electrolytic solution or a sheet formed of a solid electrolyte is preferably used. The sheet made of the solid electrolyte itself also serves as a separator.
 上記電解質層として、例えば、上述したように、電解液を含浸させたセパレータを用いる場合には、そのような電解液を構成する電解質として、例えば、プロトン、アルカリ金属イオン、第4級アンモニウムイオン、第4級ホスホニウムイオン等の少なくとも1種のカチオンと、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ハロゲンイオン、リン酸イオン、硫酸イオン、硝酸イオン等の少なくとも1種のアニオンとを組み合せたものが好ましく用いられる。 As the electrolyte layer, for example, as described above, when using a separator impregnated with an electrolytic solution, examples of the electrolyte constituting such an electrolytic solution include protons, alkali metal ions, quaternary ammonium ions, At least one cation such as quaternary phosphonium ion, sulfonate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenic ion, halogen ion, phosphate ion, sulfate ion, A combination of at least one anion such as nitrate ion is preferably used.
 電解液を構成する溶媒としては、水のほか、カーボネート類、アルコール類、ニトリル類、アミド類、エーテル類等の少なくとも1種の有機溶媒が用いられる。なお、溶媒に上記電解質が溶解したものを「電解液」ということがある。 As the solvent constituting the electrolytic solution, at least one organic solvent such as carbonates, alcohols, nitriles, amides, ethers and the like is used in addition to water. In addition, what melt | dissolved the said electrolyte in the solvent may be called "electrolytic solution."
 また、本発明においては、セパレータを各種の態様で用いることができる。上記セパレータとしては、これを挟んで対向して配設される正極と負極の間の電気的な短絡を防ぐことができ、さらに、電気化学的に安定であり、イオン透過性が大きく、ある程度の機械強度を有する絶縁性の多孔質シートであればよい。したがって、上記セパレータの材料としては、例えば、紙、不織布や、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂からなる多孔性の多孔質シートが好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。 In the present invention, the separator can be used in various modes. As the separator, it is possible to prevent an electrical short circuit between the positive electrode and the negative electrode that are arranged to face each other across the separator. Furthermore, the separator is electrochemically stable, has a large ion permeability, and has a certain level. Any insulating porous sheet having mechanical strength may be used. Therefore, as a material for the separator, for example, a porous porous sheet made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used. These may be used alone or in combination of two or more.
<蓄電デバイスについて>
 上記材料を用いて、蓄電デバイスの作製を、図1にもとづき説明する。なお、デバイスの組立ては、グローブボックス中、超高純度アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
<About electricity storage devices>
The production of an electricity storage device using the above materials will be described with reference to FIG. The device is preferably assembled in a glove box under an inert gas atmosphere such as ultra-high purity argon gas.
 図1において、正極2および負極4の集電体(図1の1,5)としては、ニッケル、アルミ、ステンレス、銅等の金属箔やメッシュが適宜用いられる。 In FIG. 1, metal foils and meshes such as nickel, aluminum, stainless steel, and copper are appropriately used as current collectors of positive electrode 2 and negative electrode 4 (1, 5 in FIG. 1).
 本発明の蓄電デバイスとしては、ラミネートセル、多孔質シート型、シート型、角型、円筒型、ボタン型、等の種々の形状に形成される。 The power storage device of the present invention is formed in various shapes such as a laminate cell, a porous sheet type, a sheet type, a square type, a cylindrical type, and a button type.
 本発明の蓄電デバイスは、前記特定の電極活物質(A)および(C)、つまり「イオンの挿入・脱離により導電性が変化する電極活物質」の、正極・負極の合計重量当たりのエネルギー密度が、通常30mWh/g以上であり、好ましくは40mWh/g以上である。 The electricity storage device of the present invention is the energy per total weight of the positive electrode and the negative electrode of the specific electrode active materials (A) and (C), that is, the “electrode active material whose conductivity is changed by insertion / extraction of ions”. The density is usually 30 mWh / g or more, preferably 40 mWh / g or more.
 本発明の蓄電デバイスは、このように優れたエネルギー密度を有することから、電解液量を減らしても、使用した電解液重量と電極活物質(A),(C)の重量との合計重量当たりの容量密度が大きく減少しないといった特徴を有する。 Since the electricity storage device of the present invention has such an excellent energy density, even if the amount of the electrolytic solution is reduced, the total weight of the used electrolytic solution and the weight of the electrode active materials (A) and (C) The capacity density is not greatly reduced.
 さらに、本発明の蓄電デバイスは、上記A成分およびB成分との組合せ、かつ、B成分およびC成分との組合せの電極を用いているため、電気二重層キャパシタのように充放電特性に優れるうえ、従来の電気二重層キャパシタの容量密度よりも高い容量密度を有するようになる。このことから、本発明に係る蓄電デバイスは、キャパシタ的二次電池ということができる。 Furthermore, since the electricity storage device of the present invention uses electrodes in combination with the A component and B component, and in combination with the B component and C component, it has excellent charge / discharge characteristics like an electric double layer capacitor. The capacitance density is higher than that of the conventional electric double layer capacitor. From this, it can be said that the electrical storage device according to the present invention is a capacitor-like secondary battery.
 なお、本発明において、電極活物質重量は、酸化状態の(A)または(C)については、ドーパントを含む重量とし、還元状態の(A)または(C)については、ドーパントを含まない重量を元に計算する。さらに多孔質炭素材料に被覆された(A)または(C)も同様とし、この場合は多孔質炭素材料の重量も合計したものとする。 In the present invention, the weight of the electrode active material is the weight including the dopant for the oxidized state (A) or (C), and the weight not including the dopant for the reduced state (A) or (C). Calculate based on the original. Further, the same applies to (A) or (C) coated with the porous carbon material. In this case, the weight of the porous carbon material is also summed up.
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.
 まず、実施例,比較例に先立ち、以下の製造例1~7に従い、各素材の製造を行った。 First, prior to the examples and comparative examples, each material was manufactured according to the following manufacturing examples 1 to 7.
[製造例1:ポリアニリン粉末の製造]
 イオン交換水138gを入れた300mL容量のガラス製ビーカーに42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、特級)84.0g(0.402モル)を加え、磁気スターラーにて撹拌しながら、これにアニリン10.0g(0.107モル)を加えた。テトラフルオロホウ酸水溶液にアニリンを加えた当初は、アニリンは、テトラフルオロホウ酸水溶液に油状の液滴として分散していたが、その後、数分以内に水に溶解して、均一で透明なアニリン水溶液となった。このようにして得られたアニリン水溶液は、低温恒温槽を用いて-4℃以下に冷却した。
[Production Example 1: Production of polyaniline powder]
To a glass beaker having a capacity of 138 g of ion-exchanged water, 84.0 g (0.402 mol) of a 42 wt% tetrafluoroboric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added. While stirring, 10.0 g (0.107 mol) of aniline was added thereto. When aniline was first added to an aqueous tetrafluoroboric acid solution, the aniline was dispersed as oily droplets in the aqueous tetrafluoroboric acid solution, but then dissolved in water within a few minutes, resulting in a uniform and transparent aniline. It became an aqueous solution. The aniline aqueous solution thus obtained was cooled to −4 ° C. or lower using a low-temperature thermostatic bath.
 次に、酸化剤として二酸化マンガン粉末(和光純薬工業社製、1級)11.63g(0.134モル)を上記アニリン水溶液中に少量ずつ加えて、ビーカー内の混合物の温度が-1℃を超えないようにした。このようにして、アニリン水溶液に酸化剤を加えることにより、アニリン水溶液は直ちに黒緑色に変化した。その後、しばらく撹拌を続けたとき、黒緑色の固体が生成し始めた。 Next, 11.63 g (0.134 mol) of manganese dioxide powder (1st grade, manufactured by Wako Pure Chemical Industries, Ltd.) as an oxidizing agent was added little by little to the aniline aqueous solution, and the temperature of the mixture in the beaker was −1 ° C. Not to exceed. Thus, by adding an oxidizing agent to the aniline aqueous solution, the aniline aqueous solution immediately turned black-green. Thereafter, when stirring was continued for a while, a black-green solid started to be formed.
 このようにして、80分間かけて酸化剤を加えた後、生成した反応生成物を含む反応混合物を冷却しながら、更に、100分間、撹拌した。その後、ブフナーロートと吸引瓶を用いて、得られた固体をNo.2濾紙(ADVANTEC社製)にて吸引濾過して、粉末を得た。この粉末を約2モル/dm3のテトラフルオロホウ酸水溶液中にて磁気スターラーを用いて撹拌、洗浄し、次いで、アセトンにて数回、撹拌、洗浄し、これを減圧濾過した。得られた粉末を室温で10時間真空乾燥して、テトラフルオロホウ酸アニオンをドーパントとする導電性ポリアニリン(酸化状態のポリアニリン)12.5gを、鮮やかな緑色粉末として得た。 Thus, after adding an oxidizing agent over 80 minutes, it stirred for further 100 minutes, cooling the reaction mixture containing the produced | generated reaction product. Thereafter, using a Buchner funnel and a suction bottle, the obtained solid was No. Suction filtration was performed with two filter papers (manufactured by ADVANTEC) to obtain a powder. This powder was stirred and washed in a tetrafluoroboric acid aqueous solution of about 2 mol / dm 3 using a magnetic stirrer, then stirred and washed several times with acetone, and this was filtered under reduced pressure. The obtained powder was vacuum-dried at room temperature for 10 hours to obtain 12.5 g of conductive polyaniline (oxidized polyaniline) having tetrafluoroborate anion as a dopant as a bright green powder.
 上記導電性ポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、300MPaの圧力下に10分間真空加圧成形して、厚み720μmの導電性ポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、19.5S/cmであった。 After pulverizing 130 mg of the conductive polyaniline powder in a smoked mortar, vacuum-pressing was performed for 10 minutes under a pressure of 300 MPa using a KBr tablet molding machine for infrared spectrum measurement, and a conductive polyaniline disk having a thickness of 720 μm was formed. Obtained. The conductivity of the disk measured by the 4-terminal method conductivity measurement by the Van der Pau method was 19.5 S / cm.
 このようにして得たドープ状態の導電性ポリアニリン粉末を2モル/dm3水酸化ナトリウム水溶液中に投入し、30分間撹拌して、導電性ポリアニリンを中和処理した。これにより、ドーパントであるテトラフルオロホウ酸を、ポリアニリンから脱ドープした。 The conductive polyaniline powder in the doped state thus obtained was put into a 2 mol / dm 3 sodium hydroxide aqueous solution and stirred for 30 minutes to neutralize the conductive polyaniline. Thereby, the tetrafluoroboric acid which is a dopant was dedope from polyaniline.
 上記脱ドープしたポリアニリンを、その濾液が中性になるまで水洗した後、アセトン中で撹拌、洗浄し、次いで、ブフナーロートと吸引瓶を用い減圧濾過して、No.2濾紙上に脱ドープしたポリアニリン粉末を得た。これを室温下、10時間真空乾燥して、脱ドープ状態のポリアニリンを茶色粉末として得た。 The dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, and then filtered under reduced pressure using a Buchner funnel and a suction bottle. 2 A polyaniline powder was obtained which was dedoped on the filter paper. This was vacuum-dried at room temperature for 10 hours to obtain undoped polyaniline as a brown powder.
 次に、このようにして得た脱ドープ状態のポリアニリン粉末を、フェニルヒドラジンのメタノール水溶液中に入れ、撹拌下、30分間還元処理を行った。ポリアニリン粉末は、その色が茶色から灰色に変化した。 Next, the dedope polyaniline powder thus obtained was put in a methanol solution of phenylhydrazine and subjected to a reduction treatment with stirring for 30 minutes. The polyaniline powder changed its color from brown to gray.
 このような還元処理の後、得られたポリアニリン粉末をメタノール、次いで、アセトンで洗浄し、濾別した後、室温下、真空乾燥して、還元脱ドープ状態のポリアニリン(還元状態のポリアニリン)を得た。 After such a reduction treatment, the obtained polyaniline powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain a reduced dedope polyaniline (reduced polyaniline). It was.
 上記還元脱ドープ状態のポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、300MPaの圧力下に10分間真空加圧成形して、厚み720μmの還元脱ドープ状態のポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、5.8×10-3S/cmであった。 After pulverizing 130 mg of the above polyaniline powder in a reduced dedope state in a smoked mortar, vacuum reduced pressure molding was performed for 10 minutes under a pressure of 300 MPa using a KBr tablet molding machine for infrared spectrum measurement, and a reduced dedope having a thickness of 720 μm. A polyaniline disk in state was obtained. The electric conductivity of the disk measured by the 4-terminal conductivity measurement by the Van der Pau method was 5.8 × 10 −3 S / cm.
 つまり、このポリアニリンは、イオンが挿入されている酸化状態が、イオンが脱離している還元状態より電気導電性が高い。したがって、イオンの挿入・脱離により導電性が変化する電極活物質である。 That is, this polyaniline has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
[製造例2:ポリ(o-トルイジン)粉末の製造]
 製造例1において、アニリン10.0gに代えて、o-トルイジン11.47gを用いた。それ以外は、製造例1と同様にして、テトラフルオロホウ酸アニオンをドーパントとする導電性ポリ(o-トルイジン)(酸化状態のポリ(o-トルイジン))を、粉末として得た。その電導度は、製造例1と同様の方法で測定した結果、0.8S/cmであった。
[Production Example 2: Production of poly (o-toluidine) powder]
In Production Example 1, in place of 10.0 g of aniline, 11.47 g of o-toluidine was used. Otherwise, in the same manner as in Production Example 1, conductive poly (o-toluidine) (oxidized poly (o-toluidine)) having tetrafluoroborate anion as a dopant was obtained as a powder. The conductivity was 0.8 S / cm as a result of measurement by the same method as in Production Example 1.
 このようにして得たドープ状態の導電性ポリ(o-トルイジン)粉末を、2モル/dm3の水酸化ナトリウム水溶液中に投入し、30分間撹拌して、導電性ポリ(o-トルイジン)を中和処理した。これにより、ドーパントであるテトラフルオロホウ酸アニオンを、ポリ(o-トルイジン)から脱ドープした。 The doped conductive poly (o-toluidine) powder thus obtained was put into a 2 mol / dm 3 aqueous sodium hydroxide solution and stirred for 30 minutes to obtain conductive poly (o-toluidine). Neutralized. As a result, the dopant tetrafluoroborate anion was dedoped from poly (o-toluidine).
 上記脱ドープしたポリ(o-トルイジン)を、その濾液が中性になるまで水洗した後、アセトン中で撹拌、洗浄し、次いで、ブフナーロートと吸引瓶を用いて減圧濾過して、No.2濾紙上に脱ドープしたポリ(o-トルイジン)粉末を得た。このポリ(o-トルイジン)粉末を室温下、10時間真空乾燥して、脱ドープ状態のポリ(o-トルイジン)を茶色粉末として得た。 The dedoped poly (o-toluidine) was washed with water until the filtrate became neutral, then stirred and washed in acetone, and then filtered under reduced pressure using a Buchner funnel and a suction bottle. 2 Poly (o-toluidine) powder was obtained which was dedope on the filter paper. The poly (o-toluidine) powder was vacuum-dried at room temperature for 10 hours to obtain undope poly (o-toluidine) as a brown powder.
 次に、このようにして得た脱ドープ状態のポリ(o-トルイジン)粉末をフェニルヒドラジンのメタノール水溶液中に入れ、撹拌下、30分間還元処理を行った。ポリ(o-トルイジン)粉末は、その色が茶色から灰色に変化した。 Next, the undoped poly (o-toluidine) powder thus obtained was placed in a methanol solution of phenylhydrazine and subjected to a reduction treatment for 30 minutes with stirring. The poly (o-toluidine) powder changed its color from brown to gray.
 このように還元処理したポリ(o-トルイジン)粉末をメタノール、次いで、アセトンで洗浄し、濾別した後、室温下、真空乾燥して、還元脱ドープ状態のポリ(o-トルイジン)(還元状態のポリ(o-トルイジン))の粉末を得た。その電導度は、製造例1と同様の方法で測定した結果、2.5×10-4S/cmであった。 The thus-reduced poly (o-toluidine) powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain poly (o-toluidine) (reduced state) in a reduced and undoped state. Of poly (o-toluidine). The electrical conductivity was 2.5 × 10 −4 S / cm as a result of measurement by the same method as in Production Example 1.
 つまり、このポリ(o-トルイジン)は、イオンが挿入されている酸化状態が、イオンが脱離している還元状態より電気導電性が高い。したがって、イオンの挿入・脱離により導電性が変化する電極活物質である。 That is, this poly (o-toluidine) has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
[製造例3:ポリ(3,4-エチレンジオキシチオフェン)<PEDOT>の製造]
 窒素雰囲気下、3つ口フラスコ中で、三塩化鉄73.9gをアセトニトリル900gに溶解させた。その後、塩化ナトリウムを含む氷浴中にフラスコを浸漬し、0℃以下になるように保持した。
[Production Example 3: Production of poly (3,4-ethylenedioxythiophene) <PEDOT>]
Under a nitrogen atmosphere, 73.9 g of iron trichloride was dissolved in 900 g of acetonitrile in a three-necked flask. Thereafter, the flask was immersed in an ice bath containing sodium chloride and kept at 0 ° C. or lower.
 また、3,4-エチレンジオキシチオフェン(純正化学社製)26.0gを、20gのアセトニトリルに溶解させ、これを、上記調製の三塩化鉄とアセトニトリルからなる溶液中に、2時間かけて滴下した。滴下終了後、室温にて30分撹拌を続けた。 In addition, 26.0 g of 3,4-ethylenedioxythiophene (manufactured by Junsei Co., Ltd.) was dissolved in 20 g of acetonitrile, and this was dropped into the above-prepared solution of iron trichloride and acetonitrile over 2 hours. did. After completion of the dropwise addition, stirring was continued for 30 minutes at room temperature.
 続いて、上記溶液をろ過し、その固形分を、多量の水、アセトンで洗浄後、室温にて真空乾燥を行った。このようにして得られた、酸化状態のPEDOT粉末は、その電導度が、製造例1と同様の方法で測定した結果、30.1S/cmであった Subsequently, the solution was filtered, and the solid content was washed with a large amount of water and acetone and then vacuum-dried at room temperature. The thus obtained PEDOT powder in the oxidized state had a conductivity of 30.1 S / cm as a result of measurement by the same method as in Production Example 1.
 次いで、上記酸化状態のPEDOT粉末を、2N水酸化ナトリウム水溶液中に入れ、30分間撹拌した。そして、濾液が中性になるまで水洗した後、アセトン中で撹拌洗浄し、その後濾過した。 Next, the oxidized PEDOT powder was placed in a 2N aqueous sodium hydroxide solution and stirred for 30 minutes. And after washing with water until the filtrate became neutral, it was stirred and washed in acetone, and then filtered.
 次に、フェニルヒドラジンのメタノール水溶液中に、上記PEDOT粉末を入れ、撹拌下、30分間還元処理を行った。反応後、メタノール、アセトンの順で洗浄し、濾別後、室温下で真空乾燥を行った。このようにして、還元状態のPEDOT粉末を得た。その収量は15.5gであった。そして、上記還元状態のPEDOT粉末は、その電導度が、製造例1と同様の方法で測定した結果、1.8×10-1S/cmであった。 Next, the PEDOT powder was put in a methanol solution of phenylhydrazine and subjected to a reduction treatment for 30 minutes with stirring. After the reaction, the product was washed with methanol and acetone in this order, filtered and vacuum dried at room temperature. In this way, reduced PEDOT powder was obtained. The yield was 15.5 g. And the electrical conductivity of the said PEDOT powder of the said reduction | restoration was 1.8 * 10 < -1 > S / cm as a result of measuring by the method similar to manufacture example 1. FIG.
 つまり、このPEDOTは、イオンが挿入されている酸化状態が、イオンが脱離している還元状態より電気導電性が高い。したがって、イオンの挿入・脱離により導電性が変化する電極活物質である。 That is, this PEDOT has higher electrical conductivity in the oxidized state in which ions are inserted than in the reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
[製造例4:ポリピロールの製造]
 窒素雰囲気下、ピロール(和光純薬工業社製)3gを、0.5モル/dm3の三塩化鉄水溶液300g中に、2時間かけて滴下した。滴下終了後、室温にて30分撹拌を続けた。続いて、上記溶液をろ過し、その固形分を、多量の水、アセトンで洗浄後、室温にて真空乾燥を行った。このようにして得られた、酸化状態のポリピロール粉末は、その電導度が、製造例1と同様の方法で測定した結果、10.3S/cmであった。
[Production Example 4: Production of polypyrrole]
Under a nitrogen atmosphere, 3 g of pyrrole (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into 300 g of a 0.5 mol / dm 3 aqueous iron trichloride solution over 2 hours. After completion of the dropwise addition, stirring was continued for 30 minutes at room temperature. Subsequently, the solution was filtered, and the solid content was washed with a large amount of water and acetone and then vacuum-dried at room temperature. The conductivity of the polypyrrole powder in the oxidized state thus obtained was 10.3 S / cm as a result of measurement by the same method as in Production Example 1.
 次いで、上記酸化状態のポリピロール粉末を、2N水酸化ナトリウム水溶液中に入れ、30分間撹拌した。そして、濾液が中性になるまで水洗した後、アセトン中で撹拌洗浄し、その後濾過した。 Next, the oxidized polypyrrole powder was put in a 2N aqueous sodium hydroxide solution and stirred for 30 minutes. And after washing with water until the filtrate became neutral, it was stirred and washed in acetone, and then filtered.
 次に、フェニルヒドラジンのメタノール水溶液中に、上記ポリピロール粉末を入れ、撹拌下、30分間還元処理を行った。反応後、メタノール、アセトンの順で洗浄し、濾別後、室温下で真空乾燥を行った。このようにして、還元状態のポリピロール粉末を得た。その収量は15.5gであった。そして、上記還元状態のポリピロール粉末は、その電導度が、製造例1と同様の方法で測定した結果、3.1×10-2S/cmであった。 Next, the polypyrrole powder was put into a methanol solution of phenylhydrazine and subjected to a reduction treatment with stirring for 30 minutes. After the reaction, the product was washed with methanol and acetone in this order, filtered and vacuum dried at room temperature. In this way, a reduced polypyrrole powder was obtained. The yield was 15.5 g. And the electric conductivity of the polypyrrole powder in the reduced state was 3.1 × 10 −2 S / cm as a result of measurement by the same method as in Production Example 1.
 つまり、このポリピロールは、イオンが挿入されている酸化状態が、イオンが脱離している還元状態より電気導電性が高い。したがって、イオンの挿入・脱離により導電性が変化する電極活物質である。 That is, this polypyrrole has a higher electrical conductivity in an oxidized state in which ions are inserted than in a reduced state in which ions are desorbed. Therefore, it is an electrode active material whose conductivity is changed by ion insertion / extraction.
[製造例5:ポリアニリンを被覆した活性炭の製造]
 1L容量のガラス製ビーカー中のイオン交換水243.6gに、42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、特級)5.13g(0.0245モル)を加え、均一に混合した。これにより得られたテトラフルオロホウ酸水溶液を撹拌しながら、アニリン1.25g(0.0134モル)を加えて、アニリン塩の透明な水溶液を得た。
[Production Example 5: Production of activated carbon coated with polyaniline]
To 243.6 g of ion-exchanged water in a 1 L-capacity glass beaker, 5.13 g (0.0245 mol) of 42 wt% concentration tetrafluoroboric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd., special grade) Mixed. While stirring the tetrafluoroboric acid aqueous solution thus obtained, 1.25 g (0.0134 mol) of aniline was added to obtain a transparent aqueous solution of aniline salt.
 次いで、イオン交換水13.8gにペルオキソ二硫酸アンモニウム1.53g(0.0067モル)を溶解させた酸化剤水溶液を、上記アニリン塩の水溶液に加え、撹拌し、均一に混合して、無色透明のアニリン/酸化剤水溶液を得た。このアニリン/酸化剤水溶液が無色透明である間に、すなわちアニリンの酸化重合が始まる前の重合誘導期内に、上記水溶液に、多孔質炭素材として水蒸気賦活活性炭(JFEケミカル社製、JSC18)50g(活性炭/アニリン重量比40)を加え、超音波ホモジナイザーにて2分間超音波分散処理して、活性炭を上記アニリン/酸化剤水溶液に懸濁させた。 Next, an oxidizing agent aqueous solution in which 1.53 g (0.0067 mol) of ammonium peroxodisulfate was dissolved in 13.8 g of ion-exchanged water was added to the aqueous solution of the aniline salt, and the mixture was stirred and mixed uniformly. An aniline / oxidizer aqueous solution was obtained. While this aniline / oxidant aqueous solution is colorless and transparent, that is, within the polymerization induction period before the aniline oxidative polymerization begins, 50 g of steam-activated activated carbon (JSC 18 manufactured by JFE Chemical Co., Ltd.) is used as the porous carbon material. (Activated carbon / aniline weight ratio 40) was added and subjected to ultrasonic dispersion treatment with an ultrasonic homogenizer for 2 minutes to suspend the activated carbon in the aqueous aniline / oxidant solution.
 上記のようにして活性炭を懸濁させたアニリン/酸化剤水溶液を、30hPaの減圧下に置き、5分間脱泡処理して、活性炭の細孔内部まで上記アニリン/酸化剤水溶液を含浸させた。次いで、アニリン/酸化剤水溶液を大気圧下に戻し、撹拌を続けた。最初、無色透明であった上記アニリン/酸化剤水溶液は、ここまでの処理の間も透明であり続けた。この後、上記アニリン/酸化剤水溶液中にてアニリンの酸化重合が開始され、進行するに従って、水溶性の色は青色から青緑色に、更に、黒緑色に変化した。 The aniline / oxidant aqueous solution in which the activated carbon was suspended as described above was placed under a reduced pressure of 30 hPa, defoamed for 5 minutes, and impregnated with the aniline / oxidant aqueous solution into the pores of the activated carbon. The aqueous aniline / oxidant solution was then returned to atmospheric pressure and stirring was continued. The aniline / oxidant aqueous solution, which was initially colorless and transparent, continued to be transparent during the treatment so far. Thereafter, oxidative polymerization of aniline was started in the aniline / oxidant aqueous solution, and as the water proceeded, the water-soluble color changed from blue to blue-green and further to black-green.
 このようにして得られたアニリンの酸化重合物を減圧濾過して、黒色粉末を得た。これをアセトンで洗浄し、再度減圧濾過した。この操作を合計3回行い、得られた黒色粉末を、デシケータ中で、室温にて10時間真空乾燥し、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン/活性炭複合体、つまり、酸化状態のポリアニリンを被覆した活性炭を、51.2g得た。 The oxidized polymer of aniline thus obtained was filtered under reduced pressure to obtain a black powder. This was washed with acetone and filtered again under reduced pressure. This operation was performed three times in total, and the resulting black powder was vacuum-dried at room temperature for 10 hours in a desiccator, and a conductive polyaniline / activated carbon composite having tetrafluoroboric acid as a dopant, that is, oxidized polyaniline. 51.2 g of activated carbon coated with was obtained.
 このようにして得られた導電性ポリアニリン/活性炭複合体の重量増加は、用いた活性炭の重量に対して、1.2gの増加であった。すなわち、重量増加分の複合体に占める割合は2.3重量%であった。また、この導電性ポリアニリン/活性炭複合体のBET法による比表面積は1600m2/gであった。 The weight increase of the conductive polyaniline / activated carbon composite thus obtained was an increase of 1.2 g based on the weight of the activated carbon used. That is, the proportion of the weight increase in the composite was 2.3% by weight. The specific surface area of this conductive polyaniline / activated carbon composite by BET method was 1600 m 2 / g.
[製造例6:ポリ(o-トルイジン)を被覆した活性炭の製造]
 製造例5で使用のアニリン1.25gに代えて、o-トルイジン1.43gを使用した。それ以外は、製造例5と同様の製造工程を経て、テトラフルオロホウ酸をドーパントとする導電性ポリ(o-トルイジン)/活性炭複合体、つまり、酸化状態のポリ(o-トルイジン)を被覆した活性炭を、45.5g得た。
[Production Example 6: Production of activated carbon coated with poly (o-toluidine)]
Instead of 1.25 g of aniline used in Production Example 5, 1.43 g of o-toluidine was used. Other than that, through the same production process as in Production Example 5, the conductive poly (o-toluidine) / activated carbon composite with tetrafluoroboric acid as a dopant, ie, oxidized poly (o-toluidine) was coated. 45.5g of activated carbon was obtained.
 このようにして得られた導電性ポリ(o-トルイジン)/活性炭複合体の重量増加は、用いた活性炭の重量に対して、1.5gの増加であった。すなわち、重量増加分の複合体に占める割合は3.2重量%であった。また、この導電性ポリ(o-トルイジン)/活性炭複合体のBET法による比表面積は1400m2/gであった。 The weight increase of the conductive poly (o-toluidine) / activated carbon composite thus obtained was an increase of 1.5 g relative to the weight of the activated carbon used. That is, the proportion of the weight increase in the composite was 3.2% by weight. The conductive poly (o-toluidine) / activated carbon composite had a specific surface area of 1400 m 2 / g as measured by the BET method.
[製造例7]
 製造例5で得た、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン/活性炭複合体の粉末を、2モル/dm3水酸化ナトリウム水溶液中に投入し、30分間撹拌して、導電性ポリアニリンを中和処理し、ドーパントであるテトラフルオロホウ酸をポリアニリンから脱ドープした。
[Production Example 7]
The conductive polyaniline / activated carbon composite powder having tetrafluoroboric acid as a dopant obtained in Production Example 5 is put into a 2 mol / dm 3 aqueous sodium hydroxide solution and stirred for 30 minutes to obtain conductive polyaniline. After neutralization, tetrafluoroboric acid as a dopant was dedoped from polyaniline.
 そして、濾液が中性になるまで、この脱ドープしたポリアニリンで被覆した活性炭粉末を水洗した後、アセトン中で撹拌、洗浄し、ブフナーロートと吸引瓶を用いて減圧濾過し、No.2濾紙上に、脱ドープしたポリアニリンで被覆した活性炭粉末を得た。これを室温下、10時間真空乾燥して、脱ドープ状態のポリアニリンで被覆した活性炭粉末として得た。 The activated carbon powder coated with the dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, filtered under reduced pressure using a Buchner funnel and a suction bottle. 2 Activated carbon powder coated with de-doped polyaniline was obtained on filter paper. This was vacuum-dried at room temperature for 10 hours to obtain activated carbon powder coated with dedope polyaniline.
 次に、このようにして得た、脱ドープ状態のポリアニリンで被覆した活性炭粉末を、フェニルヒドラジンのメタノール水溶液中に入れ、撹拌下、30分間還元処理を行った。 Next, the thus obtained activated carbon powder coated with polyaniline in a dedope state was placed in a methanol solution of phenylhydrazine and subjected to a reduction treatment for 30 minutes with stirring.
 上記還元処理の後、得られたポリアニリン粉末をメタノール、次いで、アセトンで洗浄し、濾別した後、室温下で真空乾燥して、還元脱ドープ状態(還元状態)のポリアニリンで被覆した活性炭粉末を得た。 After the reduction treatment, the obtained polyaniline powder is washed with methanol and then with acetone, filtered, and then vacuum-dried at room temperature to obtain activated carbon powder coated with polyaniline in a reduced dedope state (reduced state). Obtained.
〔実施例1〕
(正極シートの作製)
 ポリアクリル酸(和光純薬工業社製、重量平均分子量:100万)0.1gをイオン交換水3.9gに加え、一夜、静置して、膨潤させた。この後、超音波式ホモジナイザーを用いて1分間処理して溶解させて、2.5重量%濃度の均一で粘稠なポリアクリル酸水溶液4gを得た。
[Example 1]
(Preparation of positive electrode sheet)
0.1 g of polyacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 1,000,000) was added to 3.9 g of ion-exchanged water and allowed to stand overnight to swell. Then, it processed for 1 minute using the ultrasonic homogenizer, and it was made to melt | dissolve, and obtained the polyacrylic acid aqueous solution 4g of 2.5 weight% density | concentration uniformly.
 つぎに、製造例1で得られた還元状態のポリアニリン粉末0.8gを、導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.1gと混合した後、これを前記2.5重量%濃度のポリアクリル酸水溶液4gに加え、スパチュラでよく練った。さらにその後、超音波式ホモジナイザーにて1分間分散処理を施して、流動性を有するペーストを得た。このペーストを、更に真空吸引鐘とロータリーポンプを用いて脱泡した。 Next, 0.8 g of the reduced polyaniline powder obtained in Production Example 1 was mixed with 0.1 g of conductive carbon black (Denka Black, Denki Kagaku Kogyo Co., Ltd.), and the resulting mixture was mixed with 2.5 wt. It was kneaded well with a spatula in addition to 4 g of a polyacrylic acid aqueous solution with a% concentration. Thereafter, a dispersion treatment was performed for 1 minute with an ultrasonic homogenizer to obtain a paste having fluidity. This paste was further defoamed using a vacuum suction bell and a rotary pump.
 続いて、集電体として、厚み50μmの電気二重層キャパシタ用エッチングアルミニウム箔(宝泉社製、30CB)を準備した。そして、上記集電体上に、上記脱泡ペーストを、テスター産業社製の卓上型自動塗工装置を用い、マイクロメーター付きドクターブレード式アプリケータによって、塗布速度10mm/秒にて塗布した。次いで、室温で45分間放置した後、温度100℃のホットプレート上で乾燥した。この後、真空プレス機(北川精機社製、KVHC)を用いて、15cm角のステンレス板に挟んで、温度140℃、圧力1.49MPaで5分間プレスして、複合体シートを得た。なお、上記複合体シートの厚みから集電体の厚みを差し引いて算出される電極の厚みは265μmであった。 Subsequently, an etching aluminum foil for electric double layer capacitor having a thickness of 50 μm (manufactured by Hosen Co., Ltd., 30CB) was prepared as a current collector. And the said defoaming paste was apply | coated on the said electrical power collector with the application speed | rate of 10 mm / sec with the doctor blade type applicator with a micrometer using the desktop type | mold automatic coating apparatus by a tester industry company. Subsequently, after leaving at room temperature for 45 minutes, it dried on the hotplate with a temperature of 100 degreeC. Then, using a vacuum press (Kitagawa Seiki Co., Ltd., KVHC), it was sandwiched between 15 cm square stainless steel plates and pressed at a temperature of 140 ° C. and a pressure of 1.49 MPa for 5 minutes to obtain a composite sheet. The thickness of the electrode calculated by subtracting the thickness of the current collector from the thickness of the composite sheet was 265 μm.
 そして、上記複合体シートを、直径15.95mmの打ち抜き刃が据え付けられた打ち抜き治具にて円盤状に打ち抜いて、それを正極シートとした。 The composite sheet was punched into a disk shape with a punching jig on which a punching blade having a diameter of 15.95 mm was installed, and this was used as a positive electrode sheet.
(負極シートの作製)
 正極電極活物質として使用の、製造例1で得られた還元状態のポリアニリン粉末0.8gに代えて、製造例2で得られた酸化状態のポリ(o-トルイジン)1.2gを電極活物質(負極電極活物質)として用いた。それ以外は、上記正極シートと同様にして、複合体シート(負極シート)を作製した。厚みは270μmであった。
(Preparation of negative electrode sheet)
Instead of 0.8 g of the reduced polyaniline powder obtained in Production Example 1 used as the positive electrode active material, 1.2 g of oxidized poly (o-toluidine) obtained in Production Example 2 was used as the electrode active material. Used as (negative electrode active material). Other than that was carried out similarly to the said positive electrode sheet, and produced the composite sheet (negative electrode sheet). The thickness was 270 μm.
(セル(蓄電デバイス)の作製)
 セパレータとして、空隙率68%の不織布(宝泉社製、TF40-50)を準備し、上記正極シートおよび負極シートとともに、真空乾燥機にて100℃で5時間、真空乾燥した。その後、超高純度アルゴンガス雰囲気下の、露点が-100℃のグローブボックス内で、以下の組み立てを行った。まず、非水電解液二次電池実験用のステンレス製HSセル(宝泉社製)に、正極シートと負極シートとを正しく対向させて配置し、これらがショートしないようにセパレータを位置決めした。その後、電解液である、1モル/dm3濃度のテトラフルオロホウ酸リチウム(LiBF4)のエチレンカーボネート/ジメチルカーボネート溶液(キシダ化学社製)を注入した。
(Production of cell (electric storage device))
As a separator, a non-woven fabric having a porosity of 68% (manufactured by Hosen Co., Ltd., TF40-50) was prepared, and dried together with the positive electrode sheet and the negative electrode sheet in a vacuum dryer at 100 ° C. for 5 hours. Thereafter, the following assembly was performed in a glove box having a dew point of −100 ° C. in an ultrahigh purity argon gas atmosphere. First, a positive electrode sheet and a negative electrode sheet were placed facing each other in a stainless steel HS cell (manufactured by Hosen Co., Ltd.) for a non-aqueous electrolyte secondary battery experiment, and the separator was positioned so that they did not short-circuit. Thereafter, an electrolytic solution of 1 mol / dm 3 lithium tetrafluoroborate (LiBF 4 ) in ethylene carbonate / dimethyl carbonate (manufactured by Kishida Chemical Co., Ltd.) was injected.
 電解液量(mg)は、正極・負極の活物質材料の合計の重量(mg)に対して、4.50倍となるよう設定した。つまり、電解液重量(mg)/正極・負極の両極の活物質材料重量の合計(mg)=4.50(mg/mg)とした。 The electrolyte amount (mg) was set to be 4.50 times the total weight (mg) of the positive electrode and negative electrode active material. That is, the total weight of electrolytic solution weight (mg) / active material of both positive and negative electrodes (mg) = 4.50 (mg / mg).
 電解液の注入後、注入口部分をヒートシールすることにより、HSセルを密封し、セルを完成した。 After injecting the electrolyte, the HS cell was sealed by heat-sealing the injection port portion to complete the cell.
〔実施例2〕
 実施例1の正極電極活物質として使用の、還元状態のポリアニリン粉末に代えて、製造例7で得られたポリアニリン(還元状態)被覆活性炭を用い、かつ、実施例1の負極電極活物質として使用の、酸化状態のポリアニリン粉末1.2gに代えて、製造例6で得られたポリ(o-トルイジン)(酸化状態)被覆活性炭1・0gを使用した。また、正極シートの厚みは315μm、負極シートの厚みは305μmであった。それ以外は、実施例1と同様にしてセルを作製した。
[Example 2]
Instead of the reduced polyaniline powder used as the positive electrode active material of Example 1, the polyaniline (reduced state) -coated activated carbon obtained in Production Example 7 was used, and the negative electrode active material of Example 1 was used. Instead of 1.2 g of the oxidized polyaniline powder, 1.0 g of poly (o-toluidine) (oxidized state) -coated activated carbon obtained in Production Example 6 was used. Moreover, the thickness of the positive electrode sheet was 315 μm, and the thickness of the negative electrode sheet was 305 μm. Otherwise, the cell was fabricated in the same manner as in Example 1.
〔実施例3〕
 実施例1の正極電極活物質として使用の、還元状態のポリアニリン粉末に代えて、製造例3で得られた酸化状態のPEDOTを用い、かつ、実施例1の負極電極活物質として使用の、酸化状態のポリアニリン粉末に代えて、製造例4で得られた還元状態のポリピロールを使用した。また、正極シートの厚みは270μm、負極シートの厚みは285μmであった。それ以外は、実施例1と同様にしてセルを作製した。
Example 3
Instead of the reduced polyaniline powder used as the positive electrode active material in Example 1, the oxidized PEDOT obtained in Production Example 3 was used, and the oxidation used as the negative electrode active material in Example 1 Instead of the polyaniline powder in the state, the reduced state polypyrrole obtained in Production Example 4 was used. The thickness of the positive electrode sheet was 270 μm, and the thickness of the negative electrode sheet was 285 μm. Otherwise, the cell was fabricated in the same manner as in Example 1.
〔比較例1〕
 実施例1の正極・負極材料として使用の、2.5重量%濃度のポリアクリル酸水溶液4gに代えて、SBRエマルジョン(JSR社製、TRD2001、SBR含有量:48重量%)0.31gとポリ(N-ビニルピロリドン)水溶液(日本触媒社製、K-90W、含有量:19.8重量%)0.21gを混合した溶液を用いた。また、正極シートの厚みは265μm、負極シートの厚みは250μmであった。それ以外は、実施例1と同様にしてセルを作製した。
[Comparative Example 1]
Instead of 4 g of 2.5 wt% polyacrylic acid aqueous solution used as the positive electrode / negative electrode material of Example 1, 0.31 g of SBR emulsion (manufactured by JSR, TRD2001, SBR content: 48 wt%) and poly A solution obtained by mixing 0.21 g of an (N-vinylpyrrolidone) aqueous solution (manufactured by Nippon Shokubai Co., Ltd., K-90W, content: 19.8% by weight) was used. Moreover, the thickness of the positive electrode sheet was 265 μm, and the thickness of the negative electrode sheet was 250 μm. Otherwise, the cell was fabricated in the same manner as in Example 1.
〔比較例2〕
 実施例2の正極・負極材料として使用の、2.5重量%濃度のポリアクリル酸水溶液4gに代えて、SBRエマルジョン(JSR社製、TRD2001、SBR含有量:48重量%)0.31gとポリ(N-ビニルピロリドン)水溶液(日本触媒社製、K-90W、含有量:19.8重量%)0.21gを混合した溶液を用いた。また、正極シートの厚みは295μm、負極シートの厚みは225μmであった。それ以外は、実施例2と同様にしてセルを作製した。
[Comparative Example 2]
Instead of 4 g of the 2.5 wt% polyacrylic acid aqueous solution used as the positive electrode / negative electrode material of Example 2, 0.31 g of SBR emulsion (manufactured by JSR, TRD2001, SBR content: 48 wt%) and poly A solution obtained by mixing 0.21 g of an (N-vinylpyrrolidone) aqueous solution (manufactured by Nippon Shokubai Co., Ltd., K-90W, content: 19.8% by weight) was used. Moreover, the thickness of the positive electrode sheet was 295 μm, and the thickness of the negative electrode sheet was 225 μm. Otherwise, the cell was fabricated in the same manner as in Example 2.
〔比較例3〕
 実施例3の正極・負極材料として使用の、2.5重量%濃度のポリアクリル酸水溶液4gに代えて、SBRエマルジョン(JSR社製、TRD2001、SBR含有量:48重量%)0.31gとポリ(N-ビニルピロリドン)水溶液(日本触媒社製、K-90W、含有量:19.8重量%)0.21gを混合した溶液を用いた。また、正極シートの厚みは280μm、負極シートの厚みは290μmであった。それ以外は、実施例3と同様にしてセルを作製した。
[Comparative Example 3]
Instead of 4 g of the 2.5 wt% polyacrylic acid aqueous solution used as the positive electrode / negative electrode material of Example 3, 0.31 g of SBR emulsion (manufactured by JSR, TRD2001, SBR content: 48 wt%) and poly A solution obtained by mixing 0.21 g of an (N-vinylpyrrolidone) aqueous solution (manufactured by Nippon Shokubai Co., Ltd., K-90W, content: 19.8% by weight) was used. The thickness of the positive electrode sheet was 280 μm, and the thickness of the negative electrode sheet was 290 μm. Other than that was carried out similarly to Example 3, and produced the cell.
 このようにして得られた実施例および比較例のセルに関し、下記の基準に従って、セルの評価を行った。 For the cells of Examples and Comparative Examples thus obtained, the cells were evaluated according to the following criteria.
<セルの評価>
 上記で得た各セルを、25℃の恒温槽内に静置し、電池充放電装置(北斗電工社製、SD8)を用いて、定電流一定電圧充電/定電流放電モードにて測定を行った。すなわち、まず、0.14mAの電流値にて、3.5Vまで定電流充電を行った(実施例3、比較例3は、はじめに放電させた後、上記充電を行った。)。3.5Vに到達後、3.5Vの定電圧充電に切り替え、定電圧充電を電流値が定電流放電時の電流値に対して20%の値になるまで行い、充電後30分放置し、その後0.14mAの電流値にて、電圧が2.0Vになるまで放電を行った。
<Evaluation of cell>
Each cell obtained above is placed in a constant temperature bath at 25 ° C. and measured in a constant current / constant voltage charge / constant current discharge mode using a battery charging / discharging device (Hokuto Denko, SD8). It was. That is, first, constant current charging was performed up to 3.5 V at a current value of 0.14 mA (Example 3 and Comparative Example 3 were first charged and then charged). After reaching 3.5V, switch to constant voltage charging of 3.5V, perform constant voltage charging until the current value becomes 20% of the current value at the time of constant current discharge, leave for 30 minutes after charging, Thereafter, discharging was performed at a current value of 0.14 mA until the voltage reached 2.0V.
 そして、5回目の充放電サイクル後の放電エネルギー密度(mWh/g)を計測した。これをもとに、上記実施例および比較例の各セルのエネルギー密度を、活物質(両極合計)重量当たりに換算した結果について下記表1に示す。 The discharge energy density (mWh / g) after the fifth charge / discharge cycle was measured. Based on this, the energy density of each cell of the above Examples and Comparative Examples is shown in Table 1 below as a result of conversion per active material (total of both electrodes).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果より、実施例1~3は、比較例に比べ、活物質(両極合計)重量当たりのエネルギー密度が大きいことが分かった。 From the above results, it was found that Examples 1 to 3 had a higher energy density per weight of the active material (total of both electrodes) than the comparative example.
 なお、本発明者らは、実施例1~3が充放電速度にも優れていることを確認して、キャパシタ的二次電池であることが分かるとともに、さらに本発明の蓄電デバイスがキャパシタよりも高いエネルギー密度を有することを確認した。 The present inventors confirmed that Examples 1 to 3 were excellent in charge / discharge rate, and found that the battery was a capacitor-like secondary battery. Furthermore, the electricity storage device of the present invention was more effective than the capacitor. It was confirmed to have a high energy density.
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In addition, although the specific form in this invention was shown in the said Example, the said Example is only a mere illustration and is not interpreted limitedly. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の蓄電デバイスは、リチウム二次電池等の蓄電デバイスや高容量キャパシタとして好適に使用できる。また、本発明の蓄電デバイスは、従来の二次電池や電気二重層キャパシタと同様の用途に使用でき、例えば、携帯型PC、携帯電話、携帯情報端末(PDA)等の携帯用電子機器や、ハイブリッド電気自動車、電気自動車、燃料電池自動車等の駆動用電源に広く用いられる。 The electricity storage device of the present invention can be suitably used as an electricity storage device such as a lithium secondary battery or a high-capacity capacitor. In addition, the electricity storage device of the present invention can be used for the same applications as conventional secondary batteries and electric double layer capacitors. For example, portable electronic devices such as portable PCs, cellular phones, and personal digital assistants (PDAs), Widely used in driving power sources for hybrid electric vehicles, electric vehicles, fuel cell vehicles and the like.
1 集電体(正極用)
2 正極
3 電解質層
4 負極
5 集電体(負極用)
1 Current collector (for positive electrode)
2 Positive electrode 3 Electrolyte layer 4 Negative electrode 5 Current collector (for negative electrode)

Claims (3)

  1.  電解質層と、これを挟んで設けられた正極と負極とを有する蓄電デバイスであって、上記正極が、少なくとも下記(A)と(B)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されており、上記負極が、少なくとも下記(B)と(C)とからなる複合体の電極であるとともに、その複合体内に下記(B)が固定されていることを特徴とする蓄電デバイス。
    (A)イオンの挿入・脱離により導電性が変化する電極活物質。
    (B)ポリカルボン酸。
    (C)イオンの挿入・脱離により導電性が変化する電極活物質であって、上記(A)よりも酸化還元電位が低い電極活物質。
    An electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, wherein the positive electrode is an electrode of a composite composed of at least the following (A) and (B), and the composite (B) below is fixed, and the negative electrode is an electrode of a composite comprising at least the following (B) and (C), and the following (B) is fixed in the composite A power storage device characterized.
    (A) An electrode active material whose conductivity changes due to ion insertion / extraction.
    (B) Polycarboxylic acid.
    (C) An electrode active material whose conductivity is changed by insertion / extraction of ions, and has an oxidation-reduction potential lower than that of (A) above.
  2.  上記(A)および(C)の電極活物質の少なくとも一方が、多孔質炭素材料の多孔質表面に被覆されたものである請求項1記載の蓄電デバイス。 2. The electric storage device according to claim 1, wherein at least one of the electrode active materials (A) and (C) is coated on a porous surface of a porous carbon material.
  3.  上記(A)および(C)の電極活物質の酸化還元電位差が、5mV以上である請求項1または2記載の蓄電デバイス。 The electrical storage device according to claim 1 or 2, wherein the redox potential difference between the electrode active materials (A) and (C) is 5 mV or more.
PCT/JP2013/081586 2012-12-04 2013-11-25 Electricity storage device WO2014087858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-265520 2012-12-04
JP2012265520A JP2014110221A (en) 2012-12-04 2012-12-04 Power storage device

Publications (1)

Publication Number Publication Date
WO2014087858A1 true WO2014087858A1 (en) 2014-06-12

Family

ID=50883281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081586 WO2014087858A1 (en) 2012-12-04 2013-11-25 Electricity storage device

Country Status (2)

Country Link
JP (1) JP2014110221A (en)
WO (1) WO2014087858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030710A (en) * 1998-07-10 2000-01-28 Nec Corp Polymer secondary battery and its manufacture
JP2009021449A (en) * 2007-07-12 2009-01-29 Kaneka Corp Novel energy storage device utilizing electrolytic solution for electric storage
JP2010277701A (en) * 2009-05-26 2010-12-09 Denso Corp Secondary battery and its manufacturing method
WO2012141166A1 (en) * 2011-04-11 2012-10-18 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030710A (en) * 1998-07-10 2000-01-28 Nec Corp Polymer secondary battery and its manufacture
JP2009021449A (en) * 2007-07-12 2009-01-29 Kaneka Corp Novel energy storage device utilizing electrolytic solution for electric storage
JP2010277701A (en) * 2009-05-26 2010-12-09 Denso Corp Secondary battery and its manufacturing method
WO2012141166A1 (en) * 2011-04-11 2012-10-18 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same

Also Published As

Publication number Publication date
JP2014110221A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6478956B2 (en) Nonaqueous electrolyte secondary battery and positive electrode sheet therefor
JP6153124B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2014035836A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2015018635A (en) Electrode for power storage device and process of manufacturing the same, and power storage device using the same
JP2014099296A (en) Active material particle, positive electrode for power storage device, power storage device, and manufacturing method for active material particle
WO2014084155A1 (en) Electricity storage device, electrode used therein, and porous sheet
JP2014072129A (en) Electrode for power storage device and power storage device using the same
JP2014127445A (en) Nonaqueous electrolyte secondary battery
JP2014053298A (en) Cathode for power storage device and method of manufacturing the same, cathode active material for power storage device and method of manufacturing the same, and power storage device
JP2014013702A (en) Electrode for electricity storage device, electricity storage device including the same, and method for manufacturing the electrode
US10230097B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013239305A (en) Electricity storage device, positive electrode used for the same, porous sheet, and method for improving doping ratio
WO2014087859A1 (en) Electricity storage device
WO2014077226A1 (en) Power storage device, and electrode and porous sheet used in same
WO2014087858A1 (en) Electricity storage device
JP2013239306A (en) Dual-mode type electricity storage device
JP2014130753A (en) Nonaqueous electrolyte secondary battery, and positive electrode used for the same
JP2014116146A (en) Electricity storage device and electrode and porous sheet used for the same
WO2013172221A1 (en) Method for manufacturing electricity storage device and electricity storage device obtained using said method
JP2015026507A (en) Power storage device, and portable phone and battery type electric car using the same
WO2014065198A1 (en) Cation movement-type electricity storage device, electrode and porous sheet used in same, and dope rate improvement method
JP2014103144A (en) Electricity storage device
JP2014116145A (en) Electricity storage device
JP2014103146A (en) Electricity storage device, and electrode and porous sheet used in the same
JP2014103145A (en) Electricity storage device, and electrode and porous sheet used in the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860241

Country of ref document: EP

Kind code of ref document: A1