WO2013172221A1 - Method for manufacturing electricity storage device and electricity storage device obtained using said method - Google Patents

Method for manufacturing electricity storage device and electricity storage device obtained using said method Download PDF

Info

Publication number
WO2013172221A1
WO2013172221A1 PCT/JP2013/062883 JP2013062883W WO2013172221A1 WO 2013172221 A1 WO2013172221 A1 WO 2013172221A1 JP 2013062883 W JP2013062883 W JP 2013062883W WO 2013172221 A1 WO2013172221 A1 WO 2013172221A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
positive electrode
electricity storage
negative electrode
state
Prior art date
Application number
PCT/JP2013/062883
Other languages
French (fr)
Japanese (ja)
Inventor
弘義 武
大谷 彰
阿部 正男
植谷 慶裕
由姫 加治佐
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201380014715.6A priority Critical patent/CN104247140A/en
Publication of WO2013172221A1 publication Critical patent/WO2013172221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electricity storage device and an electricity storage device obtained by the method, and more particularly, to produce a novel electricity storage device having sufficient battery performance without the complicated work of pre-doping electrodes with lithium ions.
  • the present invention relates to a method and an electricity storage device obtained thereby.
  • the electrode of the electricity storage device contains an active material having a function capable of inserting and removing ions.
  • the insertion / desorption of ions of the active material is also referred to as so-called doping / dedoping (or sometimes referred to as “doping / dedoping”), and the doping / dedoping amount per certain molecular structure is called a doping rate.
  • doping rate the doping rate, the higher the capacity of the battery.
  • Electrochemically it is possible to increase the capacity of a battery by using a material having a large amount of ion insertion / desorption as an electrode. More specifically, lithium secondary batteries, which are attracting attention as power storage devices, use a graphite-based negative electrode that can insert and desorb lithium ions, and about one lithium ion is inserted per six carbon atoms. -Desorption and high capacity have been achieved.
  • lithium secondary batteries a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate is used for the positive electrode, and a carbon material capable of inserting and removing lithium ions is used for the negative electrode.
  • Lithium secondary batteries that face each other in an electrolytic solution have a high energy density, and thus are widely used as power storage devices for the electronic devices described above.
  • the lithium secondary battery is a secondary battery that obtains electric energy by an electrochemical reaction, and has a drawback that the output density is low because the speed of the electrochemical reaction is low. Furthermore, since the internal resistance of the secondary battery is high, rapid discharge is difficult and rapid charge is also difficult. Moreover, since an electrode and electrolyte solution deteriorate by the electrochemical reaction accompanying charging / discharging, generally a lifetime, ie, a cycling characteristic, is not good.
  • a lithium secondary battery using a conductive polymer such as polyaniline having a dopant as a positive electrode active material is also known (see Patent Document 1).
  • a secondary battery having a conductive polymer as a positive electrode active material is an anion transfer type in which an anion is doped into the conductive polymer during charging and the anion is dedoped from the polymer during discharging. Therefore, when a carbon material that can insert and desorb lithium ions is used as the negative electrode active material, a cation-moving rocking chair type secondary battery in which cations move between both electrodes during charge and discharge cannot be configured.
  • the rocking chair type secondary battery has the advantage that the amount of the electrolyte is small, but the secondary battery having the conductive polymer as the positive electrode active material cannot do so, and contributes to the miniaturization of the electricity storage device. Can not.
  • a cation migration type secondary battery has also been proposed.
  • a positive electrode is formed using a conductive polymer having a polymer anion such as polyvinyl sulfonic acid as a dopant, and lithium metal is used for the negative electrode (see Patent Document 2).
  • JP-A-3-129679 Japanese Patent Laid-Open No. 1-132052
  • the secondary battery is still not sufficient in performance. That is, the capacity density and energy density are lower than those of a lithium secondary battery using a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate for the positive electrode.
  • an electric double layer capacitor called a lithium ion capacitor using activated carbon as a positive electrode and carbon pre-doped (pre-doped) with a lithium ion as a negative electrode can charge and discharge with a large current because ionic molecules store electric charge. Has become.
  • the present invention has been made in order to solve the above-described problems in power storage devices such as conventional lithium secondary batteries and electric double layer capacitors, and requires a complicated operation of pre-doping electrodes with lithium ions.
  • a method for producing a novel electricity storage device having sufficient battery performance and an electricity storage device obtained thereby are provided.
  • the present invention relates to a method of manufacturing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided to face each other with the electrolyte layer interposed therebetween, the step of forming a positive electrode by the following a to c, and the formation of a negative electrode by the following d
  • the manufacturing method of an electrical storage device provided with a process be a 1st summary.
  • a. The process of making following (X) into a reduction
  • b. The process of compensating the anion of the following (Y) with a counter ion.
  • a step of forming a negative electrode using the following (Z) in an undoped state (X) A positive electrode active material in a doped state whose conductivity is changed by insertion / extraction of ions (hereinafter also referred to as “positive electrode active material”). (Y) Anionic material. (Z) A negative electrode active material capable of inserting / extracting ions (hereinafter also referred to as “negative electrode active material”).
  • the second gist of the present invention is an electricity storage device obtained by the method for producing an electricity storage device.
  • the present inventors have made extensive studies in order to obtain a novel power storage device that can be manufactured without complicated operations and has a high capacity density and a high energy density.
  • the rocking chair type energy storage device mechanism which is a cation transfer type that requires less electrolyte
  • the reserve type energy storage device mechanism which is an anion transfer type that has excellent output characteristics. Further research centered on and conducted various experiments.
  • the inventors of the present invention can manufacture a power storage device that can easily and quickly be manufactured while eliminating the complicated work of pre-doping lithium ions on a negative electrode such as carbon, and can obtain a power storage device having sufficient battery characteristics. I found a way.
  • the present invention is a method for producing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided to face each other with the electrolyte layer interposed therebetween, and a method for producing an electricity storage device having the above steps a to d. .
  • this production method an electricity storage device having sufficient battery performance can be obtained, and a complicated operation of pre-doping lithium ions into a negative electrode such as carbon can be omitted, so that an electricity storage device can be produced easily and quickly. become.
  • a high-performance power storage device having a higher capacity density can be obtained when the power storage device is obtained by the method for manufacturing the power storage device.
  • the positive electrode is an electricity storage device including at least the above (X) and (Y), the negative electrode includes the above (Z), and the positive electrode (X) is in a reduction-dedoped state and is fixed in the positive electrode
  • the capacity density is further improved.
  • the method for producing an electricity storage device of the present invention is, as described above, a method for producing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided facing each other with the electrolyte layer interposed therebetween. And a step of forming a negative electrode by the following d.
  • a. The process of making following (X) into a reduction
  • b. The process of compensating the anion of the following (Y) with a counter ion.
  • c. A step of forming a positive electrode using at least the reduced and doped (X) obtained from a and the compensated (Y) obtained from b.
  • d A step of forming a negative electrode using the following (Z) in an undoped state.
  • (X) A positive electrode active material in a doped state in which conductivity is changed by insertion / extraction of ions.
  • Y) Anionic material.
  • Z) A negative electrode active material capable of inserting / extract
  • the electrical storage device obtained by the said manufacturing method is an electrical storage device which has the electrolyte layer 3, and the positive electrode 2 and the negative electrode 4 which were provided facing on both sides of this, as shown in FIG. (X) and (Y), the negative electrode 4 is an electricity storage device including the above (Z), and (X) of the positive electrode 2 is in a reduction-dedoped state, and is fixed in the positive electrode 2
  • the anion of (Y) is compensated by a counter ion, and (Z) of the negative electrode 4 is undoped.
  • (X) to (Z) will be described in the following order.
  • FIG. 1 shows that the positive electrode 2 and the electrolyte layer 3 contain ion (gray color part).
  • (X) is a positive electrode active material in a doped state in which the conductivity is changed by ion insertion / extraction, for example, polyacetylene, polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide Conductive polymer materials such as polyphenylene oxide, polyazulene and poly (3,4-ethylenedioxythiophene), and carbon materials such as polyacene, graphite, carbon nanotubes, carbon nanofibers and graphene. In particular, polyaniline or polyaniline derivatives having a large electrochemical capacity are preferably used. Usually, the conductive polymer-based material is in a doped state.
  • polyaniline derivative examples include at least a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, and an alkoxyalkyl group at positions other than the 4-position of the aniline.
  • a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, and an alkoxyalkyl group at positions other than the 4-position of the aniline.
  • a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, and an alkoxyalkyl group at positions other than the 4-position of the aniline.
  • o-substituted anilines such as o-methylaniline, o-ethylaniline, o-phenylaniline, o-methoxyaniline, o-ethoxyaniline, m-methylaniline, m-ethylaniline, m-methoxyaniline, m M-substituted anilines such as -ethoxyaniline and m-phenylaniline are preferably used. These may be used alone or in combination of two or more.
  • the production method of the present invention includes a step of bringing the above (X) into a reduced dedope state.
  • a step of bringing the above (X) into a reduced dedope state In order to obtain this reductive de-doping state, (i) a method obtained by passing the above (X) into a de-doped state and a reducing step, and (ii) direct reductive desorption of (X) above.
  • a method obtained by passing the above (X) into a de-doped state and a reducing step In order to obtain this reductive de-doping state, (i) a method obtained by passing the above (X) into a de-doped state and a reducing step, and (ii) direct reductive desorption of (X) above.
  • doping step There are two methods that can be obtained through the doping step. Hereinafter, it demonstrates in order.
  • the method (i) includes a step of bringing (X) into a dedope state, and this dedope state is obtained by neutralizing a dopant contained in (X).
  • (X) in a dedope state is obtained by stirring in a solution for neutralizing the dopant (X) and then washing and filtering.
  • a method of neutralizing by stirring in an aqueous sodium hydroxide solution can be mentioned.
  • the method (i) there is a step of changing the undoped (X) to a reduced dedope state.
  • the reductive dedope state is obtained by reducing (X) in the dedope state.
  • stirring in a solution for reducing (X) in the dedope state, followed by washing and filtering yields (X) in the reduced dedope state.
  • a method of reducing polyaniline in a dedoped state by stirring in an aqueous methanol solution of phenylhydrazine can be mentioned.
  • the method (ii) is a method in which reductive dedope is obtained by passing the step (X) directly into a reductive dedope state. For example, by stirring in a reducing agent solution for reducing polypyrrole and then washing and filtering, polypyrrole in a reduced and dedoped state can be obtained.
  • the positive electrode is comprised from the material containing (X) of this reduction
  • examples of the anionic material (Y) include a polymer anion, an anion compound having a relatively large molecular weight, and an anion compound having a low solubility in an electrolytic solution. More specifically, a compound having a carboxyl group in the molecule is preferably used, and in particular, a polycarboxylic acid that is a polymer is more preferably used because it can also serve as a binder.
  • polycarboxylic acid examples include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, and polyaspartic acid.
  • Methacrylic acid is particularly preferably used. These may be used alone or in combination of two or more.
  • the polymer when a polymer such as the above polycarboxylic acid is used, the polymer has a function as a binder and also functions as a dopant. It seems that it is also related to the improvement of the characteristics of the electricity storage device according to the invention.
  • the production method of the present invention includes a step of compensating the anion of the anionic material (Y) with a counter ion (becomes electrically neutral).
  • a counter ion becomes electrically neutral.
  • Examples thereof include those in which the carboxylic acid of a compound having a carboxyl group in the molecule is made into a lithium type.
  • the exchange rate for the lithium type is preferably 100%, but the exchange rate may be low depending on the situation, and is preferably 40% to 100%.
  • the anionic material (Y) is usually in the range of 1 to 100 parts by weight, preferably 2 to 70 parts by weight, and most preferably 5 to 40 parts by weight with respect to 100 parts by weight of the positive electrode active material (X). Used in If the amount of the anionic material (Y) relative to (X) is too small, it tends to be impossible to obtain an electricity storage device having excellent energy density, while the amount of the anionic material (Y) relative to (X) is large. Even if it is too much, there is a tendency that an energy storage device having a high energy density cannot be obtained.
  • the positive electrode according to the production method of the present invention is formed as follows.
  • the anionic material (Y) is dissolved in water to form an aqueous solution, and the positive electrode active material (X) and, if necessary, a conductive assistant such as conductive carbon black or vinylidene fluoride.
  • a binder and disperse well to prepare a paste.
  • the water is evaporated to form a composite having a layer of a mixture of the X component and the Y component (conducting aid and binder as required) on the current collector.
  • a sheet electrode can be obtained.
  • the anionic material (Y) is fixed in the positive electrode because it is arranged as a layer of a mixture with the X component.
  • the positive electrode is made of a composite composed of at least (X) and (Y), and is preferably formed into a porous sheet.
  • the thickness of the positive electrode is preferably 1 to 500 ⁇ m, more preferably 10 to 300 ⁇ m.
  • the thickness of the positive electrode is obtained by measuring the positive electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.), which is a flat plate with a tip shape of 5 mm in diameter, and obtaining the average of 10 measurement values with respect to the electrode surface.
  • a dial gauge manufactured by Ozaki Mfg. Co., Ltd.
  • the thickness of the composite is measured in the same manner as described above, the average of the measured values is obtained, and the thickness of the current collector is subtracted.
  • the thickness of the positive electrode can be obtained.
  • the electrolyte layer according to the production method of the present invention is composed of an electrolyte.
  • a sheet formed by impregnating a separator with an electrolytic solution or a sheet formed of a solid electrolyte is preferably used.
  • the sheet made of the solid electrolyte itself also serves as a separator.
  • the electrolyte is composed of a solute and, if necessary, a solvent and various additives.
  • solutes include metal ions such as lithium ions and appropriate counter ions, sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions, hexafluoroarsenic ions, bis ions.
  • metal ions such as lithium ions and appropriate counter ions
  • sulfonate ions such as lithium ions and appropriate counter ions
  • perchlorate ions such as sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions, hexafluoroarsenic ions, bis ions.
  • electrolyte examples include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCl. Etc.
  • the solvent used as necessary for example, at least one non-aqueous solvent such as carbonates, nitriles, amides, ethers, that is, an organic solvent is used.
  • an organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, propionitrile, N, N′-dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethoxyethane, diethoxyethane, and ⁇ -butyrolactone. These may be used alone or in combination of two or more. In addition, what melt
  • the separator can be used in various modes.
  • the separator it is possible to prevent an electrical short circuit between the positive electrode and the negative electrode that are arranged to face each other across the separator.
  • the separator is electrochemically stable, has a large ion permeability, and has a certain level. Any insulating porous sheet having mechanical strength may be used. Therefore, as the material of the separator, for example, a porous film made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used. These may be used alone or in combination of two or more.
  • the negative electrode in the electricity storage device according to the present invention is formed using a negative electrode active material (Z) that can insert and desorb ions.
  • a negative electrode active material (Z) a carbon material, a transition metal oxide, silicon, tin or the like from which lithium ions can be inserted / extracted during oxidation / reduction is preferably used.
  • “use” means not only the case where only the forming material is used, but also the case where the forming material is used in combination with another forming material. Is used at less than 50% by weight of the forming material.
  • the thickness of the negative electrode preferably conforms to the thickness of the positive electrode.
  • the battery is preferably assembled in a glove box under an inert gas atmosphere such as ultra-high purity argon gas.
  • metal foils and meshes such as nickel, aluminum, stainless steel, and copper are appropriately used as current collectors of positive electrode 2 and negative electrode 4 (1, 5 in FIG. 1).
  • the current collectors 1 and 5 are connected to positive and negative current extraction connection terminals (tab electrodes, not shown) using a spot welder.
  • the positive electrode 2 and the current collector 1 are vacuum-dried. Thereafter, an undoped hard carbon electrode is pressed against the stainless steel mesh in a ⁇ 100 ° C. glove box to produce a composite of the negative electrode 4 and the current collector 5.
  • a separator (not shown) is sandwiched between the positive electrode 2 and the negative electrode 4, and the positive electrode 2 and the negative electrode 4 are correctly opposed to each other in a heat-sealed laminate cell. Also, adjust the position of the separator to avoid short circuit.
  • the power storage device of the present invention is formed into various shapes such as a film type, a sheet type, a square type, a cylindrical type, and a button type in addition to the laminate cell.
  • the positive electrode size of the electricity storage device is preferably 1 to 300 mm on one side in the case of a laminate cell, particularly preferably 10 to 50 mm, and the electrode size of the negative electrode is 1 to 400 mm. It is preferably 10 to 60 mm.
  • the electrode size of the negative electrode is preferably slightly larger than the positive electrode size.
  • a negative electrode that does not require lithium pre-doping treatment can be used, and a high-performance electricity storage device that is excellent in capacity density per active material weight and capacity density per cathode volume can be easily produced.
  • the anionic material (Y) that is a polymer is used as a binder, but this binder itself functions as a dopant, and a rocking chair type mechanism exists in part. It is assumed. That is, although not yet clarified accurately, a rocking chair type mechanism in which cations such as lithium ions move from the negative electrode to the positive electrode during discharging and cations move from the positive electrode to the negative electrode during charging. Is assumed to exist.
  • the reaction mixture containing the produced reaction product was further stirred for 100 minutes while cooling. Then, using a Buchner funnel and a suction bottle, the obtained solid was No. No. 2 (manufactured by ADVANTEC) was suction filtered with a filter paper to obtain a powder. This powder was stirred and washed in a 2 mol / L tetrafluoroboric acid aqueous solution using a magnetic stirrer. Subsequently, it was stirred and washed several times with acetone, and this was filtered under reduced pressure.
  • conductive polyaniline having tetrafluoroboric acid as a dopant
  • the conductive polyaniline was a bright green powder.
  • anionic material (Y) Using polyacrylic acid (Wako Pure Chemical Industries, Ltd., weight average molecular weight 25,000) as an anionic material (Y) compensated for anion with counter ion, adding carboxylic acid equivalent lithium hydroxide in aqueous solution, A uniform and viscous polyacrylic acid aqueous solution having a concentration of 4.4% by weight was prepared.
  • negative electrode active material (Z) capable of inserting and removing ions As the negative electrode active material (Z), hard carbon (Bellfine LN-0010, manufactured by Air Water Co., Ltd.) was prepared.
  • FIG. 1 ⁇ Process of making conductive polyaniline powder into dedope state>
  • the conductive polyaniline powder in a doped state obtained as described above is placed in a 2 mol / L aqueous sodium hydroxide solution, stirred for 30 minutes in a 3 L separable flask, and the tetrafluoroboric acid as a dopant is removed by a neutralization reaction. Doped.
  • the dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, and filtered under reduced pressure using a Buchner funnel and a suction bottle to obtain a dedoped polyaniline powder on No. 2 filter paper. . This was vacuum-dried at room temperature for 10 hours to obtain a brown undoped polyaniline powder.
  • the positive electrode the polyaniline sheet electrode obtained above is used, and as the negative electrode, a hard carbon electrode not pre-doped with lithium ions is used.
  • the separator non-woven fabric TF40-50 (porosity: 55%) purchased from Hosen Co., Ltd. was used, and these electrodes and separator were placed in a vacuum dryer at 100 ° C. for 5 hours before cell assembly. Vacuum dried.
  • an ethylene carbonate / dimethyl carbonate solution manufactured by Kishida Chemical Co., Ltd.
  • lithium tetrafluoroborate LiBF 4
  • the assembly of a laminate cell, which is an electricity storage device (lithium secondary battery), using the prepared material is shown below.
  • the battery was assembled in a glove box under an ultrahigh purity argon gas atmosphere (dew point in the glove box: ⁇ 100 ° C.).
  • the electrode size of the positive electrode for the laminate cell is 27 mm ⁇ 27 mm, the negative electrode size is 29 mm ⁇ 29 mm, which is slightly larger than the positive electrode size.
  • a nickel metal foil having a thickness of 50 ⁇ m was connected by a spot welder.
  • an aluminum metal foil having a thickness of 50 ⁇ m was connected to the aluminum foil of the positive electrode current collector with a spot welder.
  • the positive electrode composite, the hard carbon as the negative electrode, the stainless mesh, and the separator are placed in a glove box with a dew point of ⁇ 100 ° C., and the hard carbon electrode is pressed against the stainless steel mesh of the current collector in the glove box. And a current collector composite.
  • the glove box put a separator between this positive electrode and negative electrode, and set them in a laminate cell that is heat-sealed on three sides, so that the positive electrode and negative electrode face each other correctly and do not short-circuit.
  • the position of the separator was also adjusted, and a sealing agent was set on the positive electrode and negative electrode tab portions, and the tab electrode portion was heat-sealed leaving a little electrolyte solution inlet.
  • a predetermined amount of battery electrolyte is sucked with a micropipette, and a predetermined amount is injected from the electrolyte inlet of the laminate cell.
  • the electrolyte inlet at the top of the laminate cell is sealed by heat sealing, and the laminate cell As completed.
  • the characteristics of the lithium secondary battery assembled in this way were performed in a constant current / constant voltage charging / constant current discharging mode using a battery charging / discharging device (Hokuto Denko, SD8).
  • the end-of-charge voltage is 3.8 V.
  • constant voltage charging at 3.8 V is performed for 2 minutes, and then constant current discharge is performed until the end-of-discharge voltage is 2.0 V. went.
  • the charge / discharge current was 0.18 mA.
  • the weight energy density was 225 Wh / kg.
  • the method for producing an electricity storage device of the present invention can be suitably used as a method for producing an electricity storage device such as a lithium secondary battery.
  • the power storage device of the present invention can be used for the same applications as conventional secondary batteries.
  • portable electronic devices such as portable PCs, mobile phones, and personal digital assistants (PDAs), hybrid electric vehicles, Widely used in power sources for driving automobiles, fuel cell vehicles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

In order to obtain a novel electricity storage device with sufficient battery performance without the need for cumbersome work of predoping an electrode with lithium ions, provided is a method for manufacturing an electricity storage device having an electrolyte layer (3) and a positive electrode (2) and a negative electrode (4) facing each other and sandwiching the electrolyte layer (3). The method is provided with a step in which the positive electrode (2) is formed by steps a through c described hereinafter and a step in which the negative electrode (4) is formed by step d described hereinafter. a. A step in which (X), described hereinafter, is put in a reduced dedoped state. b. A step in which the anions in (Y), described hereinafter, are compensated by counterions. c. A step in which the positive electrode (2) is formed using at least the (X) in a reduced dedoped state, obtained through the above-described step a, and the (Y) in a compensated state, obtained through the above-described step b. d. A step in which the negative electrode (4) is formed using (Z), described hereinafter, in an undoped state. (X) A positive electrode active material in a doped state, the conductivity of which changes according to the insertion and desorption of ions. (Y) An anionic material. (Z) A negative electrode active material capable of ion insertion and desorption.

Description

蓄電デバイスの製法およびそれにより得られる蓄電デバイスElectric storage device manufacturing method and electric storage device obtained thereby
 本発明は、蓄電デバイスの製法およびそれにより得られる蓄電デバイスに関し、詳しくは、電極をリチウムイオンでプリドープするという煩雑な作業をすることがなく、充分な電池性能を有する新規な蓄電デバイスを製造する方法およびそれにより得られる蓄電デバイスに関するものである。 The present invention relates to a method for producing an electricity storage device and an electricity storage device obtained by the method, and more particularly, to produce a novel electricity storage device having sufficient battery performance without the complicated work of pre-doping electrodes with lithium ions. The present invention relates to a method and an electricity storage device obtained thereby.
 近年、携帯型PC、携帯電話、携帯情報端末(PDA)等における電子技術の進歩、発展に伴い、これら電子機器の蓄電デバイスとして、繰り返し充放電することができる二次電池等が広く用いられている。このような二次電池等の電気化学的蓄電デバイスにおいては、電極として使用する材料の高容量化が望まれる。 In recent years, with the advancement and development of electronic technology in portable PCs, mobile phones, personal digital assistants (PDAs), secondary batteries that can be repeatedly charged and discharged are widely used as power storage devices for these electronic devices. Yes. In such an electrochemical storage device such as a secondary battery, it is desired to increase the capacity of a material used as an electrode.
 蓄電デバイスの電極は、イオンの挿入・脱離が可能な機能を有する活物質を含有する。活物質のイオンの挿入・脱離は、いわゆるドーピング・脱ドーピング(または「ドープ・脱ドープ」ということもある)とも称され、一定の分子構造あたりのドーピング・脱ドーピング量をドーピング率と呼び、ドーピング率が高い材料ほど、電池としては高容量化が可能となる。 The electrode of the electricity storage device contains an active material having a function capable of inserting and removing ions. The insertion / desorption of ions of the active material is also referred to as so-called doping / dedoping (or sometimes referred to as “doping / dedoping”), and the doping / dedoping amount per certain molecular structure is called a doping rate. The higher the doping rate, the higher the capacity of the battery.
 電気化学的には、イオンの挿入・脱離の量が多い材料を電極として使用することにより、電池として高容量化が可能となる。より詳しく述べると、蓄電デバイスとして注目されるリチウム二次電池においては、リチウムイオンを挿入・脱離することができるグラファイト系の負極が用いられ、6つの炭素原子あたり1つ程度のリチウムイオンが挿入・脱離し高容量化が得られている。 Electrochemically, it is possible to increase the capacity of a battery by using a material having a large amount of ion insertion / desorption as an electrode. More specifically, lithium secondary batteries, which are attracting attention as power storage devices, use a graphite-based negative electrode that can insert and desorb lithium ions, and about one lithium ion is inserted per six carbon atoms. -Desorption and high capacity have been achieved.
 このようなリチウム二次電池のなかでも、正極にマンガン酸リチウムやコバルト酸リチウムのようなリチウム含有遷移金属酸化物を用い、負極にリチウムイオンを挿入・脱離し得る炭素材料を用い、両電極を電解液中で対峙させたリチウム二次電池は、高エネルギー密度を有するようになるため、上述した電子機器の蓄電デバイスとして広く用いられている。 Among such lithium secondary batteries, a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate is used for the positive electrode, and a carbon material capable of inserting and removing lithium ions is used for the negative electrode. Lithium secondary batteries that face each other in an electrolytic solution have a high energy density, and thus are widely used as power storage devices for the electronic devices described above.
 しかし、上記リチウム二次電池は、電気化学反応によって電気エネルギーを得る二次電池であって、上記電気化学反応の速度が小さいために、出力密度が低いという欠点がある。さらに、二次電池の内部抵抗が高いため、急速な放電は困難であるとともに、急速な充電も困難となっている。また、充放電に伴う電気化学反応によって電極や電解液が劣化するため、一般に寿命、すなわち、サイクル特性もよくない。 However, the lithium secondary battery is a secondary battery that obtains electric energy by an electrochemical reaction, and has a drawback that the output density is low because the speed of the electrochemical reaction is low. Furthermore, since the internal resistance of the secondary battery is high, rapid discharge is difficult and rapid charge is also difficult. Moreover, since an electrode and electrolyte solution deteriorate by the electrochemical reaction accompanying charging / discharging, generally a lifetime, ie, a cycling characteristic, is not good.
 そこで、上記の問題を改善するため、ドーパントを有するポリアニリンのような導電性ポリマーを正極活物質に用いるリチウム二次電池も知られている(特許文献1参照)。 Therefore, in order to improve the above problem, a lithium secondary battery using a conductive polymer such as polyaniline having a dopant as a positive electrode active material is also known (see Patent Document 1).
 しかしながら、一般に、導電性ポリマーを正極活物質として有する二次電池は、充電時には導電性ポリマーにアニオンがドープされ、放電時にはそのアニオンがポリマーから脱ドープされるアニオン移動型である。そのため、負極活物質にリチウムイオンを挿入・脱離し得る炭素材料等を用いたときは、充放電時にカチオンが両電極間を移動するカチオン移動型のロッキングチェア型二次電池を構成することができない。ロッキングチェア型二次電池は電解液量が少なくてもすむという利点を有するが、上記導電性ポリマーを正極活物質として有する二次電池はそれができず、蓄電デバイスの小型化に寄与することができない。 However, in general, a secondary battery having a conductive polymer as a positive electrode active material is an anion transfer type in which an anion is doped into the conductive polymer during charging and the anion is dedoped from the polymer during discharging. Therefore, when a carbon material that can insert and desorb lithium ions is used as the negative electrode active material, a cation-moving rocking chair type secondary battery in which cations move between both electrodes during charge and discharge cannot be configured. . The rocking chair type secondary battery has the advantage that the amount of the electrolyte is small, but the secondary battery having the conductive polymer as the positive electrode active material cannot do so, and contributes to the miniaturization of the electricity storage device. Can not.
 このような問題を解決するために、電解液を大量に必要とせず、電解液中のイオン濃度を実質的に変化させないとともに、これにより体積や重量当たりの容量密度、エネルギー密度の向上を目的とした、カチオン移動型の二次電池も提案されている。これは、ドーパントとしてポリビニルスルホン酸のようなポリマーアニオンを有する導電性ポリマーを用いて正極を構成し、負極にリチウム金属を用いているものである(特許文献2参照)。 In order to solve such problems, a large amount of electrolytic solution is not required, and the ion concentration in the electrolytic solution is not substantially changed, thereby improving the capacity density per volume, weight, and energy density. A cation migration type secondary battery has also been proposed. In this method, a positive electrode is formed using a conductive polymer having a polymer anion such as polyvinyl sulfonic acid as a dopant, and lithium metal is used for the negative electrode (see Patent Document 2).
特開平3-129679号公報JP-A-3-129679 特開平1-132052号公報Japanese Patent Laid-Open No. 1-132052
 しかしながら、上記二次電池は、性能において未だ充分ではない。すなわち、正極にマンガン酸リチウムやコバルト酸リチウムのようなリチウム含有遷移金属酸化物を用いたリチウム二次電池に比べ、容量密度やエネルギー密度が低いものである。 However, the secondary battery is still not sufficient in performance. That is, the capacity density and energy density are lower than those of a lithium secondary battery using a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate for the positive electrode.
 一方、正極に活性炭、負極にリチウムイオンをプリドープ(あらかじめドーピングすること)したカーボンを用いたリチウムイオンキャパシタと呼ばれる電気二重層キャパシタは、イオン分子が電荷を蓄えるため、大電流での充放電が行なえるものとなっている。 On the other hand, an electric double layer capacitor called a lithium ion capacitor using activated carbon as a positive electrode and carbon pre-doped (pre-doped) with a lithium ion as a negative electrode can charge and discharge with a large current because ionic molecules store electric charge. Has become.
 しかしながら、上記リチウムイオンキャパシタにおいては、負極のカーボンにリチウムイオンをプリドープする必要があり、この作業は煩雑で時間がかかるものとなっている。 However, in the lithium ion capacitor, it is necessary to pre-dope lithium ions into the carbon of the negative electrode, and this work is complicated and time consuming.
 本発明は、従来のリチウム二次電池や電気二重層キャパシタのような蓄電デバイスにおける上述した問題を解決するためになされたものであって、電極をリチウムイオンでプリドープするという煩雑な作業を要することがなく充分な電池性能を有する新規な蓄電デバイスを製造する方法およびそれにより得られる蓄電デバイスを提供する。 The present invention has been made in order to solve the above-described problems in power storage devices such as conventional lithium secondary batteries and electric double layer capacitors, and requires a complicated operation of pre-doping electrodes with lithium ions. There are provided a method for producing a novel electricity storage device having sufficient battery performance and an electricity storage device obtained thereby.
 本発明は、電解質層と、これを挟んで対向して設けられた正極と負極を有する蓄電デバイスの製法であって、下記a~cにより正極を形成する工程と、下記dにより負極を形成する工程を備える蓄電デバイスの製法を第1の要旨とする。
a.下記(X)を還元脱ドープ状態にする工程。
b.下記(Y)のアニオンを対イオンで補償する工程。
c.少なくとも上記aより得られた還元脱ドープ状態の(X)と、上記bより得られた補償状態の(Y)とを用いて正極を形成する工程。
d.未ドープ状態の下記(Z)を用いて負極を形成する工程。
(X)イオンの挿入・脱離により導電性が変化するドープ状態の正極活物質(以下、「正極活物質」ということがある)。
(Y)アニオン性材料。
(Z)イオンを挿入・脱離し得る負極活物質(以下、「負極活物質」ということがある)。
The present invention relates to a method of manufacturing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided to face each other with the electrolyte layer interposed therebetween, the step of forming a positive electrode by the following a to c, and the formation of a negative electrode by the following d Let the manufacturing method of an electrical storage device provided with a process be a 1st summary.
a. The process of making following (X) into a reduction | restoration dedope state.
b. The process of compensating the anion of the following (Y) with a counter ion.
c. A step of forming a positive electrode using at least the reduced and doped (X) obtained from a and the compensated (Y) obtained from b.
d. A step of forming a negative electrode using the following (Z) in an undoped state.
(X) A positive electrode active material in a doped state whose conductivity is changed by insertion / extraction of ions (hereinafter also referred to as “positive electrode active material”).
(Y) Anionic material.
(Z) A negative electrode active material capable of inserting / extracting ions (hereinafter also referred to as “negative electrode active material”).
 また、本発明は、上記蓄電デバイスの製法により得られる蓄電デバイスを第2の要旨とする。 The second gist of the present invention is an electricity storage device obtained by the method for producing an electricity storage device.
 すなわち、本発明者らは、煩雑な作業なく製造でき、高容量密度や高エネルギー密度を有する新規な蓄電デバイスを得るために鋭意検討を重ねた。その過程で、電解液量が少なくて済むカチオン移動型であるロッキングチェア型の蓄電デバイス機構と、出力特性に優れるアニオン移動型であるリザーブ型の蓄電デバイス機構とに着目し、これらの両方の機構を中心にさらに研究を重ね、各種実験を行った。その結果、本発明者らは、カーボン等の負極にリチウムイオンをプリドープする煩雑な作業を省き、簡便迅速に製造できるとともに、充分な電池特性を有する蓄電デバイスを得ることができる蓄電デバイスを製造する方法を見出した。 That is, the present inventors have made extensive studies in order to obtain a novel power storage device that can be manufactured without complicated operations and has a high capacity density and a high energy density. In the process, we focused on the rocking chair type energy storage device mechanism, which is a cation transfer type that requires less electrolyte, and the reserve type energy storage device mechanism, which is an anion transfer type that has excellent output characteristics. Further research centered on and conducted various experiments. As a result, the inventors of the present invention can manufacture a power storage device that can easily and quickly be manufactured while eliminating the complicated work of pre-doping lithium ions on a negative electrode such as carbon, and can obtain a power storage device having sufficient battery characteristics. I found a way.
 本発明による蓄電デバイスが高容量を有する理由は、上述したロッキングチェア型と、リザーブ型の両特性を有しているからと推察される。 The reason why the electricity storage device according to the present invention has a high capacity is presumed to have both the above-mentioned rocking chair type and reserve type characteristics.
 このように、本発明は、電解質層と、これを挟んで対向して設けられた正極と負極とを有する蓄電デバイスの製法であって、上記a~dの工程を有する蓄電デバイスの製法である。この製法によれば、充分な電池性能を有する蓄電デバイスが得られるようになるとともに、カーボン等の負極にリチウムイオンをプリドープする煩雑な作業を省くことができ、簡便迅速に蓄電デバイスを製造できるようになる。 Thus, the present invention is a method for producing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided to face each other with the electrolyte layer interposed therebetween, and a method for producing an electricity storage device having the above steps a to d. . According to this production method, an electricity storage device having sufficient battery performance can be obtained, and a complicated operation of pre-doping lithium ions into a negative electrode such as carbon can be omitted, so that an electricity storage device can be produced easily and quickly. become.
 また、上記aの還元脱ドープ状態が、上記(X)を脱ドープする工程と、還元する工程とを経ることにより得られるものであると、容量密度に優れる高性能な蓄電デバイスが得られるようになる。 Moreover, if the reduced and dedoped state of a is obtained through the steps of dedoping and reducing (X), a high-performance power storage device with excellent capacity density can be obtained. become.
 さらに、上記aの還元脱ドープ状態が、上記(X)を直接還元脱ドープする工程を経ることにより得られるものであると、容量密度に優れる高性能な蓄電デバイスが得られるようになる。 Furthermore, when the reduced and dedope state a is obtained through the step of directly reducing and dedoping the above (X), a high-performance power storage device having excellent capacity density can be obtained.
 上記蓄電デバイスの製法により得られる蓄電デバイスであると、上述のように、より容量密度に優れる高性能の蓄電デバイスが得られるようになる。 As described above, a high-performance power storage device having a higher capacity density can be obtained when the power storage device is obtained by the method for manufacturing the power storage device.
 正極が少なくとも上記(X)と(Y)とからなり、負極が上記(Z)を含む蓄電デバイスであって、正極の(X)が還元脱ドープ状態であり、かつ、正極内に固定された(Y)のアニオンが対イオンで補償され、負極の(Z)が未ドープ処理である蓄電デバイスであると、容量密度に一層優れるようになる。 The positive electrode is an electricity storage device including at least the above (X) and (Y), the negative electrode includes the above (Z), and the positive electrode (X) is in a reduction-dedoped state and is fixed in the positive electrode In the case of an electricity storage device in which the anion of (Y) is compensated by a counter ion and (Z) of the negative electrode is undoped, the capacity density is further improved.
蓄電デバイスの製造により得られる蓄電デバイスの構造を示す断面図であり、特に組立初期の状態を示す。It is sectional drawing which shows the structure of the electrical storage device obtained by manufacture of an electrical storage device, and shows the state of an assembly initial stage especially.
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例であり、本発明は、以下の内容に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the description described below is an example of embodiments of the present invention, and the present invention is not limited to the following contents.
 本発明の蓄電デバイスの製法は、先に述べたように、電解質層と、これを挟んで対向して設けられた正極と負極を有する蓄電デバイスの製法であって、下記a~cにより正極を形成する工程と、下記dにより負極を形成する工程を備える。
a.下記(X)を還元脱ドープ状態にする工程。
b.下記(Y)のアニオンを対イオンで補償する工程。
c.少なくとも上記aより得られた還元脱ドープ状態の(X)と、上記bより得られた補償状態の(Y)とを用いて正極を形成する工程。
d.未ドープ状態の下記(Z)を用いて負極を形成する工程。
(X)イオンの挿入・脱離により導電性が変化するドープ状態の正極活物質。
(Y)アニオン性材料。
(Z)イオンを挿入・脱離し得る負極活物質。
The method for producing an electricity storage device of the present invention is, as described above, a method for producing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided facing each other with the electrolyte layer interposed therebetween. And a step of forming a negative electrode by the following d.
a. The process of making following (X) into a reduction | restoration dedope state.
b. The process of compensating the anion of the following (Y) with a counter ion.
c. A step of forming a positive electrode using at least the reduced and doped (X) obtained from a and the compensated (Y) obtained from b.
d. A step of forming a negative electrode using the following (Z) in an undoped state.
(X) A positive electrode active material in a doped state in which conductivity is changed by insertion / extraction of ions.
(Y) Anionic material.
(Z) A negative electrode active material capable of inserting / extracting ions.
 そして、上記製法により得られる蓄電デバイスは、図1に示すように、電解質層3と、これを挟んで対向して設けられた正極2と負極4とを有する蓄電デバイスであり、正極2が少なくとも上記(X)と(Y)とからなり、負極4が上記(Z)を含む蓄電デバイスであって、正極2の(X)が還元脱ドープ状態であり、かつ、正極2内に固定された(Y)のアニオンが対イオンで補償され、負極4の(Z)が未ドープ処理であることを特徴とする。
 (X)~(Z)について、以下順に説明する。
 なお、図1において、正極2および電解質層3は、イオンを含有していることを示す(グレー色部分)。
And the electrical storage device obtained by the said manufacturing method is an electrical storage device which has the electrolyte layer 3, and the positive electrode 2 and the negative electrode 4 which were provided facing on both sides of this, as shown in FIG. (X) and (Y), the negative electrode 4 is an electricity storage device including the above (Z), and (X) of the positive electrode 2 is in a reduction-dedoped state, and is fixed in the positive electrode 2 The anion of (Y) is compensated by a counter ion, and (Z) of the negative electrode 4 is undoped.
(X) to (Z) will be described in the following order.
In addition, in FIG. 1, it shows that the positive electrode 2 and the electrolyte layer 3 contain ion (gray color part).
<正極活物質(X)について>
 上記(X)は、イオンの挿入・脱離により導電性が変化するドープ状態の正極活物質であり、例えば、ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4-エチレンジオキシチオフェン)、などの導電性ポリマー系材料、あるいはポリアセン、グラファイト、カーボンナノチューブ、カーボンナノファイバー、グラフェン等のカーボン系材料があげられる。特に、電気化学的容量の大きなポリアニリンまたはポリアニリン誘導体が好ましく用いられる。通常、導電性ポリマー系材料はドープ状態にある。
<About positive electrode active material (X)>
(X) is a positive electrode active material in a doped state in which the conductivity is changed by ion insertion / extraction, for example, polyacetylene, polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide Conductive polymer materials such as polyphenylene oxide, polyazulene and poly (3,4-ethylenedioxythiophene), and carbon materials such as polyacene, graphite, carbon nanotubes, carbon nanofibers and graphene. In particular, polyaniline or polyaniline derivatives having a large electrochemical capacity are preferably used. Usually, the conductive polymer-based material is in a doped state.
 上記ポリアニリンの誘導体としては、例えば、アニリンの4位以外の位置にアルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、アルキルアリール基、アリールアルキル基、アルコキシアルキル基等の置換基を少なくとも1つ有するものがあげられる。なかでも、o-メチルアニリン、o-エチルアニリン、o-フェニルアニリン、o-メトキシアニリン、o-エトキシアニリン等のo-置換アニリン、m-メチルアニリン、m-エチルアニリン、m-メトキシアニリン、m-エトキシアニリン、m-フェニルアニリン等のm-置換アニリンが好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the polyaniline derivative include at least a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, and an alkoxyalkyl group at positions other than the 4-position of the aniline. One that has one. Among them, o-substituted anilines such as o-methylaniline, o-ethylaniline, o-phenylaniline, o-methoxyaniline, o-ethoxyaniline, m-methylaniline, m-ethylaniline, m-methoxyaniline, m M-substituted anilines such as -ethoxyaniline and m-phenylaniline are preferably used. These may be used alone or in combination of two or more.
 本発明の製法では、上記(X)を還元脱ドープ状態にする工程を有する。この還元脱ドープ状態を得るためには、(i)上記(X)を脱ドープ状態にする工程と、還元する工程とを経ることにより得られる方法、(ii)上記(X)を直接還元脱ドープする工程を経ることにより得られる方法の2つの方法があげられる。以下、順に説明する。 The production method of the present invention includes a step of bringing the above (X) into a reduced dedope state. In order to obtain this reductive de-doping state, (i) a method obtained by passing the above (X) into a de-doped state and a reducing step, and (ii) direct reductive desorption of (X) above. There are two methods that can be obtained through the doping step. Hereinafter, it demonstrates in order.
 〔(i)の方法について〕
 まず、上記(i)の方法は、(X)を脱ドープ状態にする工程を有するが、この脱ドープ状態は、(X)が有するドーパントを中和することによって得られる。例えば、上記(X)のドーパントを中和する溶液中で撹拌し、その後洗浄濾過することにより、脱ドープ状態の(X)が得られる。具体的には、テトラフルオロホウ酸をドーパントとするポリアニリンを脱ドープするには、水酸化ナトリウム水溶液中で撹拌することにより中和させる方法があげられる。
[About method (i)]
First, the method (i) includes a step of bringing (X) into a dedope state, and this dedope state is obtained by neutralizing a dopant contained in (X). For example, (X) in a dedope state is obtained by stirring in a solution for neutralizing the dopant (X) and then washing and filtering. Specifically, in order to dedope polyaniline having tetrafluoroboric acid as a dopant, a method of neutralizing by stirring in an aqueous sodium hydroxide solution can be mentioned.
 つぎに、(i)の方法では、脱ドープ状態の(X)を還元脱ドープ状態にする工程を有する。還元脱ドープ状態は、脱ドープ状態の(X)を還元することにより得られる。例えば、脱ドープ状態の(X)を還元する溶液中で撹拌し、その後洗浄濾過することにより、還元脱ドープ状態の(X)が得られる。具体的には、脱ドープ状態となったポリアニリンを、フェニルヒドラジンのメタノール水溶液中で撹拌することにより還元させる方法があげられる。 Next, in the method (i), there is a step of changing the undoped (X) to a reduced dedope state. The reductive dedope state is obtained by reducing (X) in the dedope state. For example, stirring in a solution for reducing (X) in the dedope state, followed by washing and filtering yields (X) in the reduced dedope state. Specifically, a method of reducing polyaniline in a dedoped state by stirring in an aqueous methanol solution of phenylhydrazine can be mentioned.
 〔(ii)の方法について〕
 上記(ii)の方法は、(X)を直接還元脱ドープ状態にする工程を経ることにより還元脱ドープが得られる方法である。例えば、ポリピロールを還元する還元剤溶液中で撹拌し、その後洗浄濾過することにより、還元脱ドープ状態のポリピロールが得られる。
[About method (ii)]
The method (ii) is a method in which reductive dedope is obtained by passing the step (X) directly into a reductive dedope state. For example, by stirring in a reducing agent solution for reducing polypyrrole and then washing and filtering, polypyrrole in a reduced and dedoped state can be obtained.
 上記のようにして還元脱ドープ状態の(X)が得られる。そして、この還元脱ドープ状態の(X)と、アニオンが対イオンで補償されたアニオン性材料(Y)とを含有する材料から正極が構成される。 As described above, (X) in the reduced and dedoped state is obtained. And the positive electrode is comprised from the material containing (X) of this reduction | restoration dedope state, and the anionic material (Y) by which the anion was compensated with the counter ion.
<アニオン性材料(Y)について>
 ここで、アニオン性材料(Y)としては、例えば、ポリマーアニオンや分子量の比較的大きなアニオン化合物、電解液に溶解性の低いアニオン化合物等があげられる。さらに詳細には、分子中にカルボキシル基を有する化合物が好ましく用いられ、特にポリマーであるポリカルボン酸は、バインダーを兼ねることもできるためより好適に用いられる。
<About anionic material (Y)>
Here, examples of the anionic material (Y) include a polymer anion, an anion compound having a relatively large molecular weight, and an anion compound having a low solubility in an electrolytic solution. More specifically, a compound having a carboxyl group in the molecule is preferably used, and in particular, a polycarboxylic acid that is a polymer is more preferably used because it can also serve as a binder.
 ポリカルボン酸としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸およびポリアスパラギン酸等があげられ、ポリアクリル酸およびポリメタクリル酸が特に好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, and polyaspartic acid. Methacrylic acid is particularly preferably used. These may be used alone or in combination of two or more.
 本発明による蓄電デバイスにおいて、上記ポリカルボン酸などのポリマーを用いた場合は、このポリマーが、バインダーとしての機能を有するとともに、ドーパントとしても機能することから、ロッキングチェア型の機構を有し、本発明による蓄電デバイスの特性の向上にも関与しているものとみられる。 In the electricity storage device according to the present invention, when a polymer such as the above polycarboxylic acid is used, the polymer has a function as a binder and also functions as a dopant. It seems that it is also related to the improvement of the characteristics of the electricity storage device according to the invention.
 本発明の製法においては、アニオン性材料(Y)のアニオンを対イオンで補償する(電気的に中性になる)工程を有する。分子中にカルボキシル基を有する化合物のカルボン酸をリチウム型にするものがあげられる。リチウム型への交換率は、好ましくは100%であるが、状況に応じては交換率は低くてもよく、好ましくは40%~100%である。 The production method of the present invention includes a step of compensating the anion of the anionic material (Y) with a counter ion (becomes electrically neutral). Examples thereof include those in which the carboxylic acid of a compound having a carboxyl group in the molecule is made into a lithium type. The exchange rate for the lithium type is preferably 100%, but the exchange rate may be low depending on the situation, and is preferably 40% to 100%.
 上記アニオン性材料(Y)は、正極活物質(X)100重量部に対して、通常、1~100重量部、好ましくは、2~70重量部、最も好ましくは、5~40重量部の範囲で用いられる。上記(X)に対するアニオン性材料(Y)の量が少なすぎると、エネルギー密度に優れる蓄電デバイスを得ることができない傾向にあり、他方、上記(X)に対するアニオン性材料(Y)の量が多すぎても、エネルギー密度の高い蓄電デバイスを得ることができない傾向にある。 The anionic material (Y) is usually in the range of 1 to 100 parts by weight, preferably 2 to 70 parts by weight, and most preferably 5 to 40 parts by weight with respect to 100 parts by weight of the positive electrode active material (X). Used in If the amount of the anionic material (Y) relative to (X) is too small, it tends to be impossible to obtain an electricity storage device having excellent energy density, while the amount of the anionic material (Y) relative to (X) is large. Even if it is too much, there is a tendency that an energy storage device having a high energy density cannot be obtained.
<正極について>
 本発明の製法に係る正極は、次のようにして形成される。例えば、上記アニオン性材料(Y)を水に溶解して水溶液とし、これに正極活物質(X)と、必要に応じて、導電性カーボンブラックのような導電助剤あるいはフッ化ビニリデンのようなバインダーを加え、充分に分散させて、ペーストを調製する。これを集電体上に塗布した後、水を蒸発させることによって、集電体上にX成分とY成分と(必要に応じて、導電助剤とバインダー)の混合物の層を有する複合体としてシート電極を得ることができる。
<About positive electrode>
The positive electrode according to the production method of the present invention is formed as follows. For example, the anionic material (Y) is dissolved in water to form an aqueous solution, and the positive electrode active material (X) and, if necessary, a conductive assistant such as conductive carbon black or vinylidene fluoride. Add a binder and disperse well to prepare a paste. After applying this onto the current collector, the water is evaporated to form a composite having a layer of a mixture of the X component and the Y component (conducting aid and binder as required) on the current collector. A sheet electrode can be obtained.
 上記のように形成された正極においては、アニオン性材料(Y)は、X成分との混合物の層として配置されるため、正極内に固定される。 In the positive electrode formed as described above, the anionic material (Y) is fixed in the positive electrode because it is arranged as a layer of a mixture with the X component.
 上記正極は、少なくとも(X)と(Y)とからなる複合体からなり、好ましくは多孔質シートに形成される。通常正極の厚みは、1~500μmであることが好ましく、10~300μmであることがさらに好ましい。 The positive electrode is made of a composite composed of at least (X) and (Y), and is preferably formed into a porous sheet. Usually, the thickness of the positive electrode is preferably 1 to 500 μm, more preferably 10 to 300 μm.
 上記正極の厚みは、正極を先端形状が直径5mmの平板であるダイヤルゲージ(尾崎製作所製)を用いて測定し、電極の面に対して10点の測定値の平均をもとめることにより得られる。集電体上に正極(多孔質層)が設けられ複合化している場合には、その複合化物の厚みを、上記と同様に測定し、測定値の平均をもとめ、集電体の厚みを差し引いて計算することにより正極の厚みが得られる。 The thickness of the positive electrode is obtained by measuring the positive electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.), which is a flat plate with a tip shape of 5 mm in diameter, and obtaining the average of 10 measurement values with respect to the electrode surface. When a positive electrode (porous layer) is provided on the current collector and is composited, the thickness of the composite is measured in the same manner as described above, the average of the measured values is obtained, and the thickness of the current collector is subtracted. Thus, the thickness of the positive electrode can be obtained.
<電解質層について>
 本発明の製法に係る電解質層は、電解質により構成されるが、例えば、セパレータに電解液を含浸させてなるシートや、固体電解質からなるシートが好ましく用いられる。固体電解質からなるシートは、それ自体がセパレータを兼ねている。
<About the electrolyte layer>
The electrolyte layer according to the production method of the present invention is composed of an electrolyte. For example, a sheet formed by impregnating a separator with an electrolytic solution or a sheet formed of a solid electrolyte is preferably used. The sheet made of the solid electrolyte itself also serves as a separator.
 上記電解質は、溶質と、必要に応じて溶媒と各種添加剤とを含むものから構成される。このような溶質としては、例えば、リチウムイオンなどの金属イオンとこれに対する適宜のカウンターイオン、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、ハロゲンイオン等を組み合わせてなるものが好ましく用いられる。従って、このような電解質の具体例としては、LiCF3SO3、LiClO4、LiBF4、LiPF6、LiAsF6、LiN(SO2CF32、LiN(SO2252、LiCl等をあげることができる。 The electrolyte is composed of a solute and, if necessary, a solvent and various additives. Examples of such solutes include metal ions such as lithium ions and appropriate counter ions, sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions, hexafluoroarsenic ions, bis ions. A combination of (trifluoromethanesulfonyl) imide ion, bis (pentafluoroethanesulfonyl) imide ion, halogen ion and the like is preferably used. Therefore, specific examples of such an electrolyte include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCl. Etc.
 必要に応じて用いられる溶媒としては、例えば、カーボネート類、ニトリル類、アミド類、エーテル類等の少なくとも1種の非水溶媒、すなわち、有機溶媒が用いられる。このような有機溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル、プロピオニトリル、N,N'-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメトキシエタン、ジエトキシエタン、γ-ブチロラクトン等をあげることができる。これらは単独でもしくは2種以上併せて用いられる。なお、溶媒に溶質が溶解したものを「電解液」ということがある。 As the solvent used as necessary, for example, at least one non-aqueous solvent such as carbonates, nitriles, amides, ethers, that is, an organic solvent is used. Specific examples of such an organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, propionitrile, N, N′-dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethoxyethane, diethoxyethane, and γ-butyrolactone. These may be used alone or in combination of two or more. In addition, what melt | dissolved the solute in the solvent may be called "electrolyte solution."
 また、本発明においては、上述のように、セパレータを各種の態様で用いることができる。上記セパレータとしては、これを挟んで対向して配設される正極と負極の間の電気的な短絡を防ぐことができ、さらに、電気化学的に安定であり、イオン透過性が大きく、ある程度の機械強度を有する絶縁性の多孔質シートであればよい。従って、上記セパレータの材料としては、例えば、紙、不織布や、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂からなる多孔性のフィルムが好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。 In the present invention, as described above, the separator can be used in various modes. As the separator, it is possible to prevent an electrical short circuit between the positive electrode and the negative electrode that are arranged to face each other across the separator. Furthermore, the separator is electrochemically stable, has a large ion permeability, and has a certain level. Any insulating porous sheet having mechanical strength may be used. Therefore, as the material of the separator, for example, a porous film made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used. These may be used alone or in combination of two or more.
<負極について>
 本発明による蓄電デバイスにおける負極としては、イオンを挿入・脱離し得る負極活物質(Z)を用いて形成される。上記負極活物質(Z)としては、酸化・還元時にリチウムイオンが挿入・脱離し得る炭素材料や遷移金属酸化物、シリコン、スズなどが好ましく用いられる。また、本発明において、「用いる」とは、その形成材料のみを使用する場合以外に、その形成材料と他の形成材料とを組み合わせて使用する場合も含める趣旨であり、通常、他の形成材料の使用割合は、その形成材料の50重量%未満に設定される。
<About negative electrode>
The negative electrode in the electricity storage device according to the present invention is formed using a negative electrode active material (Z) that can insert and desorb ions. As the negative electrode active material (Z), a carbon material, a transition metal oxide, silicon, tin or the like from which lithium ions can be inserted / extracted during oxidation / reduction is preferably used. In addition, in the present invention, “use” means not only the case where only the forming material is used, but also the case where the forming material is used in combination with another forming material. Is used at less than 50% by weight of the forming material.
 また、負極の厚みは、正極の厚みに準ずることが好ましい。 Also, the thickness of the negative electrode preferably conforms to the thickness of the positive electrode.
<蓄電デバイスの作製について>
 上記材料を用いて、蓄電デバイスの作製を図1にもとづき説明する。なお、電池の組立ては、グローブボックス中、超高純度アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
<Production of power storage device>
The production of an electricity storage device using the above materials will be described with reference to FIG. The battery is preferably assembled in a glove box under an inert gas atmosphere such as ultra-high purity argon gas.
 図1において、正極2および負極4の集電体(図1の1,5)としては、ニッケル、アルミ、ステンレス、銅等の金属箔やメッシュが適宜用いられる。そして、この集電体1,5に、正極および負極の電流取り出し用接続端子(タブ電極、図示せず)を、スポット溶接機にて接続して用いられる。 In FIG. 1, metal foils and meshes such as nickel, aluminum, stainless steel, and copper are appropriately used as current collectors of positive electrode 2 and negative electrode 4 (1, 5 in FIG. 1). The current collectors 1 and 5 are connected to positive and negative current extraction connection terminals (tab electrodes, not shown) using a spot welder.
 つぎに、正極2と、集電体1とを真空乾燥する。この後、-100℃のグローブボックス内にて未ドープ状態のハードカーボン電極をステンレスメッシュに押しつけて、負極4と集電体5の複合体を作製する。 Next, the positive electrode 2 and the current collector 1 are vacuum-dried. Thereafter, an undoped hard carbon electrode is pressed against the stainless steel mesh in a −100 ° C. glove box to produce a composite of the negative electrode 4 and the current collector 5.
 グローブボックス内にて、この正極2と負極4の間にセパレータ(図示せず)を挟み、これらの三方をヒートシールされたラミネートセルの中に、正極2と負極4が正しく対向するように、またショートしないようにセパレータの位置を調整する。 In the glove box, a separator (not shown) is sandwiched between the positive electrode 2 and the negative electrode 4, and the positive electrode 2 and the negative electrode 4 are correctly opposed to each other in a heat-sealed laminate cell. Also, adjust the position of the separator to avoid short circuit.
 正極および負極用タブ部分にシール剤をセットした上で、電解液注入口を少し残して、タブ電極部分のヒートシールを行う。その後、所定量の電池電解液をマイクロピペットで吸引して、ラミネートセルの電解液注入口から所定量注入する。最後にラミネートセル上部の電解液注入口をヒートシールにて溶封し、本発明の蓄電デバイス(ラミネートセル)が完成する。 シ ー ル After setting the sealant on the positive electrode and negative electrode tab parts, heat seal the tab electrode part leaving a little electrolyte inlet. Thereafter, a predetermined amount of the battery electrolyte is sucked with a micropipette, and a predetermined amount is injected from the electrolyte solution inlet of the laminate cell. Finally, the electrolyte solution inlet at the top of the laminate cell is sealed by heat sealing to complete the electricity storage device (laminate cell) of the present invention.
 本発明の蓄電デバイスとしては、上記ラミネートセル以外に、フィルム型、シート型、角型、円筒型、ボタン型等種々の形状に形成される。また、蓄電デバイスの正極電極サイズとしては、ラミネートセルであれば1辺が、1~300mmであることが好ましく、特に好ましくは10~50mmであり、負極の電極サイズは1~400mmであることが好ましく、特に好ましくは10~60mmである。負極の電極サイズは、正極電極サイズより、わずかに大きくすることが好ましい。 The power storage device of the present invention is formed into various shapes such as a film type, a sheet type, a square type, a cylindrical type, and a button type in addition to the laminate cell. In addition, the positive electrode size of the electricity storage device is preferably 1 to 300 mm on one side in the case of a laminate cell, particularly preferably 10 to 50 mm, and the electrode size of the negative electrode is 1 to 400 mm. It is preferably 10 to 60 mm. The electrode size of the negative electrode is preferably slightly larger than the positive electrode size.
 本発明の蓄電デバイスの製法によれば、リチウムのプリドープ処理の必要のない負極を使用でき、活物質重量当たりの容量密度や正極体積当たりの容量密度に優れる高性能の蓄電デバイスを簡便に製造できる。 According to the method for producing an electricity storage device of the present invention, a negative electrode that does not require lithium pre-doping treatment can be used, and a high-performance electricity storage device that is excellent in capacity density per active material weight and capacity density per cathode volume can be easily produced. .
 本発明の蓄電デバイスの充放電機構としては、ポリマーであるアニオン性材料(Y)はバインダーとして用いられるが、このバインダー自身がドーパントとして機能して、一部ロッキングチェア型の機構が存在しているものと想定される。すなわち、まだ正確には解明されていないが、放電時においては、リチウムイオン等のカチオンが負極から正極に移動し、充電時においては、カチオンが正極から負極へ移動する、というロッキングチェア型の機構が存在するものと想定される。 As the charge / discharge mechanism of the electricity storage device of the present invention, the anionic material (Y) that is a polymer is used as a binder, but this binder itself functions as a dopant, and a rocking chair type mechanism exists in part. It is assumed. That is, although not yet clarified accurately, a rocking chair type mechanism in which cations such as lithium ions move from the negative electrode to the positive electrode during discharging and cations move from the positive electrode to the negative electrode during charging. Is assumed to exist.
 つぎに、実施例について説明する。ただし、本発明は、これら実施例に限定されるものではない。 Next, examples will be described. However, the present invention is not limited to these examples.
 まず、実施例となる蓄電デバイスの作製に先立ち、下記に示す各成分を準備した。 First, prior to the production of an electricity storage device as an example, the following components were prepared.
〔イオンの挿入・脱離により導電性が変化するドープ状態の正極活物質(X)の調製〕
 正極活物質(X)として、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン粉末を下記のように調製した。
[Preparation of Doped Cathode Active Material (X) whose Conductivity is Changed by Ion Insertion and Desorption]
As the positive electrode active material (X), conductive polyaniline powder using tetrafluoroboric acid as a dopant was prepared as follows.
 イオン交換水138gを入れた300mL容量のガラス製ビーカーに42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、試薬特級)84.0g(0.402モル)を加え、磁気スターラーにて撹拌しながら、これにアニリン10.0g(0.107モル)を加えた。テトラフルオロホウ酸水溶液にアニリンを加えた当初は、アニリンは、テトラフルオロホウ酸水溶液に油状の液滴として分散していたが、その後、数分以内に水に溶解し、均一で透明なアニリン水溶液になった。このようにして得られたアニリン水溶液を低温恒温槽を用いて-4℃以下に冷却した。 To a 300 mL glass beaker containing 138 g of ion-exchanged water, 84.0 g (0.402 mol) of a 42 wt% concentration tetrafluoroboric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) is added to a magnetic stirrer. While stirring, 10.0 g (0.107 mol) of aniline was added thereto. When aniline was added to the tetrafluoroboric acid aqueous solution, the aniline was dispersed as oily droplets in the tetrafluoroboric acid aqueous solution, but then dissolved in water within a few minutes, and the uniform and transparent aniline aqueous solution. Became. The aniline aqueous solution thus obtained was cooled to −4 ° C. or lower using a low temperature thermostat.
 つぎに、酸化剤として二酸化マンガン粉末(和光純薬工業社製、試薬1級)11.63g(0.134モル)を上記アニリン水溶液中に少量ずつ加えて、ビーカー内の混合物の温度が-1℃を超えないようにした。このようにして、アニリン水溶液に酸化剤を加えることによって、アニリン水溶液は直ちに黒緑色に変化した。その後、しばらく撹拌を続けたとき、黒緑色の固体が生成し始めた。 Next, 11.63 g (0.134 mol) of manganese dioxide powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) as an oxidizing agent is added little by little to the above aniline aqueous solution, and the temperature of the mixture in the beaker is −1. The temperature was not exceeded. Thus, by adding an oxidizing agent to the aniline aqueous solution, the aniline aqueous solution immediately turned black-green. Thereafter, when stirring was continued for a while, a black-green solid started to be formed.
 このようにして、80分間かけて酸化剤を加えた後、生成した反応生成物を含む反応混合物を冷却しながら、さらに、100分間、撹拌した。その後、ブフナー漏斗と吸引瓶を用いて、得られた固体をNo.2(ADVANTEC社製)濾紙にて吸引濾過して、粉末を得た。この粉末を約2モル/Lのテトラフルオロホウ酸水溶液中にて磁気スターラーを用いて撹拌、洗浄した。ついで、アセトンにて数回、撹拌、洗浄し、これを減圧濾過した。得られた粉末を室温(25℃)で10時間真空乾燥することにより、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(以下、単に、「導電性ポリアニリン」という。)12.5gを得た。この導電性ポリアニリンは鮮やかな緑色粉末であった。 Thus, after adding the oxidizing agent over 80 minutes, the reaction mixture containing the produced reaction product was further stirred for 100 minutes while cooling. Then, using a Buchner funnel and a suction bottle, the obtained solid was No. No. 2 (manufactured by ADVANTEC) was suction filtered with a filter paper to obtain a powder. This powder was stirred and washed in a 2 mol / L tetrafluoroboric acid aqueous solution using a magnetic stirrer. Subsequently, it was stirred and washed several times with acetone, and this was filtered under reduced pressure. The obtained powder was vacuum-dried at room temperature (25 ° C.) for 10 hours to obtain 12.5 g of conductive polyaniline having tetrafluoroboric acid as a dopant (hereinafter simply referred to as “conductive polyaniline”). The conductive polyaniline was a bright green powder.
〔導電性ポリアニリン粉末の電導度〕
 上記導電性ポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、厚み720μmの導電性ポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、19.5S/cmであった。
[Conductivity of conductive polyaniline powder]
After pulverizing 130 mg of the conductive polyaniline powder in a smoked mortar, vacuum-pressing was performed for 10 minutes under a pressure of 75 MPa using a KBr tablet molding machine for infrared spectrum measurement, and a conductive polyaniline disk having a thickness of 720 μm was formed. Obtained. The conductivity of the disk measured by the 4-terminal method conductivity measurement by the Van der Pau method was 19.5 S / cm.
〔アニオン性材料(Y)の準備〕
 アニオンを対イオンで補償したアニオン性材料(Y)として、ポリアクリル酸(和光純薬工業社製、重量平均分子量2.5万)を用い、水溶液中でカルボン酸当量の水酸化リチウムを加え、4.4重量%濃度の均一で粘稠なポリアクリル酸水溶液を準備した。
[Preparation of anionic material (Y)]
Using polyacrylic acid (Wako Pure Chemical Industries, Ltd., weight average molecular weight 25,000) as an anionic material (Y) compensated for anion with counter ion, adding carboxylic acid equivalent lithium hydroxide in aqueous solution, A uniform and viscous polyacrylic acid aqueous solution having a concentration of 4.4% by weight was prepared.
〔イオンを挿入・脱離し得る負極活物質(Z)の準備〕
 負極活物質(Z)として、ハードカーボン(エア・ウォータ社製、ベルファイン LN-0010)を準備した。
[Preparation of negative electrode active material (Z) capable of inserting and removing ions]
As the negative electrode active material (Z), hard carbon (Bellfine LN-0010, manufactured by Air Water Co., Ltd.) was prepared.
〔実施例1〕(図1)
<導電性ポリアニリン粉末を脱ドープ状態にする工程>
 上記により得られたドープ状態である導電性ポリアニリン粉末を2モル/L水酸化ナトリウム水溶液中に入れ、3Lセパラブルフラスコ中にて30分間撹拌し、中和反応によりドーパントのテトラフルオロホウ酸を脱ドープした。濾液が中性になるまで脱ドープしたポリアニリンを水洗した後、アセトン中で撹拌洗浄し、ブフナー漏斗と吸引瓶を用いて減圧濾過し、No.2濾紙上に、脱ドープしたポリアニリン粉末を得た。これを室温下、10時間真空乾燥して、茶色の脱ドープ状態のポリアニリン粉末を得た。
[Example 1] (FIG. 1)
<Process of making conductive polyaniline powder into dedope state>
The conductive polyaniline powder in a doped state obtained as described above is placed in a 2 mol / L aqueous sodium hydroxide solution, stirred for 30 minutes in a 3 L separable flask, and the tetrafluoroboric acid as a dopant is removed by a neutralization reaction. Doped. The dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, and filtered under reduced pressure using a Buchner funnel and a suction bottle to obtain a dedoped polyaniline powder on No. 2 filter paper. . This was vacuum-dried at room temperature for 10 hours to obtain a brown undoped polyaniline powder.
<脱ドープ状態のポリアニリン粉末を還元脱ドープ状態にする工程>
 つぎに、フェニルヒドラジンのメタノール水溶液中に、この脱ドープ状態のポリアニリン粉末を入れ、撹拌下30分間還元処理を行った。ポリアニリン粉末の色は、還元により、茶色から灰色に変化した。反応後、メタノール洗浄、アセトン洗浄し、濾別後、室温下真空乾燥し、還元脱ドープ状態のポリアニリンを得た。
<The process which makes polyaniline powder of a dedope state reduction | restoration dedope>
Next, this dedope polyaniline powder was put into a methanol solution of phenylhydrazine and subjected to reduction treatment for 30 minutes with stirring. The color of the polyaniline powder changed from brown to gray by reduction. After the reaction, it was washed with methanol, washed with acetone, filtered, and vacuum dried at room temperature to obtain polyaniline in a reduced and dedoped state.
〔還元脱ドープ状態のポリアニリン粉末の電導度〕
 上記還元脱ドープ状態のポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、厚み720μmの還元脱ドープ状態のポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、5.8×10-3S/cmであった。
[Conductivity of polyaniline powder in reduced and undoped state]
After pulverizing 130 mg of the above polyaniline powder in the reduced dedope state in a smoked mortar, vacuum reduced pressure molding was performed for 10 minutes under a pressure of 75 MPa using a KBr tablet molding machine for infrared spectrum measurement, and a reduced dedope having a thickness of 720 μm. A polyaniline disk in state was obtained. The electric conductivity of the disk measured by the 4-terminal conductivity measurement by the Van der Pau method was 5.8 × 10 −3 S / cm.
<還元脱ドープ状態の(X)と、上記(Y)とを用いて正極を形成する工程>
 上記Y成分として準備したリチウム化したポリアクリル酸水溶液21.0g準備した。
<Step of Forming Positive Electrode Using (X) in Reduced Dedoped State and (Y)>
21.0 g of the lithiated polyacrylic acid aqueous solution prepared as the Y component was prepared.
 上記調製した還元脱ドープ状態のポリアニリン粉末4gと、導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.5gとを混合した後、これを上記4.4重量%濃度のポリアクリル酸水溶液21.0g中に加え、スパチュラでよく練った。これを超音波式ホモジナイザーにて1分間超音波処理を施し、流動性を有するペーストを得た。このペーストをさらに真空吸引鐘とロータリーポンプを用いて脱泡した。 After mixing 4 g of the above-prepared polyaniline powder in a reduced dedope state and 0.5 g of conductive carbon black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) powder, this was mixed with the above polyacrylic acid having a concentration of 4.4 wt%. In addition to 21.0 g of aqueous solution, well kneaded with a spatula. This was subjected to ultrasonic treatment for 1 minute with an ultrasonic homogenizer to obtain a paste having fluidity. This paste was further defoamed using a vacuum suction bell and a rotary pump.
 卓上型自動塗工装置(テスター産業社製)を用い、マイクロメーター付きドクターブレ-ド式アプリケータによって、溶液塗工厚みを360μmに調整し、塗布速度10mm/秒にて、上記脱泡ペーストを電気二重層キャパシタ用エッチングアルミニウム箔(宝泉社製、30CB)上に塗布した。ついで、室温で45分間放置した後、温度100℃のホットプレート上で乾燥した。この後、真空プレス機(北川精機社製、KVHC)を用いて、15cm角のステンレス板に挟んで、温度140℃、圧力1.5MPaで5分間プレスして、多孔質のポリアニリンシート電極を作製し、正極と集電体の複合体を得た。 Using a tabletop automatic coating apparatus (manufactured by Tester Sangyo Co., Ltd.), using a doctor blade type applicator with a micrometer, the solution coating thickness was adjusted to 360 μm, and the defoaming paste was applied at a coating speed of 10 mm / second. It apply | coated on the etching aluminum foil (The Hosen company make, 30CB) for electric double layer capacitors. Subsequently, after leaving at room temperature for 45 minutes, it dried on the hotplate with a temperature of 100 degreeC. Then, using a vacuum press machine (KVHC, manufactured by Kitagawa Seiki Co., Ltd.), sandwiched between 15 cm square stainless steel plates and pressed at a temperature of 140 ° C. and a pressure of 1.5 MPa for 5 minutes to produce a porous polyaniline sheet electrode Thus, a composite of the positive electrode and the current collector was obtained.
<蓄電デバイスの材料の作製>
 まず、蓄電デバイス(リチウム二次電池)の組立前に、次の材料を準備した。
<Production of materials for electricity storage devices>
First, the following materials were prepared before assembling the electricity storage device (lithium secondary battery).
 正極としては、上記により得られたポリアニリンシート電極を用いるとともに、負極としては、リチウムイオンをプリドープしていないハードカーボン電極を用いる。また、セパレータとしては宝泉社より購入した不織布TF40-50(空孔率:55%)を用い、これらの電極とセパレータは、セルの組立前に、真空乾燥機にて100℃で5時間、真空乾燥した。電解液には1モル/dm3濃度のテトラフルオロホウ酸リチウム(LiBF4)のエチレンカーボネート/ジメチルカーボネート溶液(キシダ化学社製)を用いた。 As the positive electrode, the polyaniline sheet electrode obtained above is used, and as the negative electrode, a hard carbon electrode not pre-doped with lithium ions is used. As the separator, non-woven fabric TF40-50 (porosity: 55%) purchased from Hosen Co., Ltd. was used, and these electrodes and separator were placed in a vacuum dryer at 100 ° C. for 5 hours before cell assembly. Vacuum dried. As the electrolytic solution, an ethylene carbonate / dimethyl carbonate solution (manufactured by Kishida Chemical Co., Ltd.) of lithium tetrafluoroborate (LiBF 4 ) having a concentration of 1 mol / dm 3 was used.
 準備した上記材料を用いて、蓄電デバイス(リチウム二次電池)であるラミネートセルの組立をつぎに示す。なお、電池の組立てはグローブボックス中、超高純度アルゴンガス雰囲気下にて行った(グローブボックス内の露点:-100℃)。 The assembly of a laminate cell, which is an electricity storage device (lithium secondary battery), using the prepared material is shown below. The battery was assembled in a glove box under an ultrahigh purity argon gas atmosphere (dew point in the glove box: −100 ° C.).
 ラミネートセル用正極の電極サイズは27mm×27mmとし、負極サイズは29mm×29mmとし、正極電極サイズより、わずかに大きくしてある。 The electrode size of the positive electrode for the laminate cell is 27 mm × 27 mm, the negative electrode size is 29 mm × 29 mm, which is slightly larger than the positive electrode size.
 負極の電流取り出し用タブ電極としては、厚み50μmのニッケル金属箔をスポット溶接機にて接続して用いた。正極の電流取り出し用タブ電極としては、厚み50μmのアルミ金属箔を正極集電体のアルミ箔にスポット溶接機にて接続して用いた。正極複合体と、負極であるハードカーボンと、ステンレスメッシュと、セパレータとを、露点-100℃のグローブボックスに入れ、グローブボックス内にてハードカーボン電極を集電体のステンレスメッシュに押しつけて、負極と集電体の複合体を作製した。 As the negative electrode current extraction tab electrode, a nickel metal foil having a thickness of 50 μm was connected by a spot welder. As the positive electrode current extraction tab electrode, an aluminum metal foil having a thickness of 50 μm was connected to the aluminum foil of the positive electrode current collector with a spot welder. The positive electrode composite, the hard carbon as the negative electrode, the stainless mesh, and the separator are placed in a glove box with a dew point of −100 ° C., and the hard carbon electrode is pressed against the stainless steel mesh of the current collector in the glove box. And a current collector composite.
 また、グローブボックス内にて、この正極と負極の間にセパレータを挟み、これらを三方がヒートシールされたラミネートセルの中にセットし、正極と負極が正しく対向するように、またショートしないようにセパレータの位置も調整し、正極および負極用タブ部分にシール剤をセットした上で、電解液注入口を少し残して、タブ電極部分のヒートシールを行った。その後、所定量の電池電解液をマイクロピペットで吸引して、ラミネートセルの電解液注入口から所定量注入し、最後にラミネートセル上部の電解液注入口をヒートシールにて溶封し、ラミネートセルとして完成させた。 Also, in the glove box, put a separator between this positive electrode and negative electrode, and set them in a laminate cell that is heat-sealed on three sides, so that the positive electrode and negative electrode face each other correctly and do not short-circuit. The position of the separator was also adjusted, and a sealing agent was set on the positive electrode and negative electrode tab portions, and the tab electrode portion was heat-sealed leaving a little electrolyte solution inlet. Then, a predetermined amount of battery electrolyte is sucked with a micropipette, and a predetermined amount is injected from the electrolyte inlet of the laminate cell. Finally, the electrolyte inlet at the top of the laminate cell is sealed by heat sealing, and the laminate cell As completed.
 このようにして組み立てたリチウム二次電池の特性は、電池充放電装置(北斗電工社製、SD8)を用いて、定電流一定電圧充電/定電流放電モードにて行った。充電終止電圧は3.8Vとし、定電流充電により電圧が3.8Vに到達した後は、3.8Vの定電圧充電を2分間行い、この後、放電終止電圧2.0Vまで定電流放電を行った。充放電電流は0.18mAで行った。15サイクル目で重量エネルギー密度225Wh/kgであった。 The characteristics of the lithium secondary battery assembled in this way were performed in a constant current / constant voltage charging / constant current discharging mode using a battery charging / discharging device (Hokuto Denko, SD8). The end-of-charge voltage is 3.8 V. After the voltage reaches 3.8 V by constant current charging, constant voltage charging at 3.8 V is performed for 2 minutes, and then constant current discharge is performed until the end-of-discharge voltage is 2.0 V. went. The charge / discharge current was 0.18 mA. In the 15th cycle, the weight energy density was 225 Wh / kg.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の蓄電デバイスの製法は、リチウム二次電池等の蓄電デバイスの製法として好適に使用できる。また、本発明の蓄電デバイスは、従来の二次電池と同様の用途に使用でき、例えば、携帯型PC、携帯電話、携帯情報端末(PDA)等の携帯用電子機器や、ハイブリッド電気自動車、電気自動車、燃料電池自動車等の駆動用電源に広く用いられる。 The method for producing an electricity storage device of the present invention can be suitably used as a method for producing an electricity storage device such as a lithium secondary battery. The power storage device of the present invention can be used for the same applications as conventional secondary batteries. For example, portable electronic devices such as portable PCs, mobile phones, and personal digital assistants (PDAs), hybrid electric vehicles, Widely used in power sources for driving automobiles, fuel cell vehicles and the like.
1 集電体(正極用)
2 正極
3 電解質層
4 負極
5 集電体(負極用)
1 Current collector (for positive electrode)
2 Positive electrode 3 Electrolyte layer 4 Negative electrode 5 Current collector (for negative electrode)

Claims (5)

  1.  電解質層と、これを挟んで対向して設けられた正極と負極を有する蓄電デバイスの製法であって、下記a~cにより正極を形成する工程と、下記dにより負極を形成する工程を備えることを特徴とする蓄電デバイスの製法。
    a.下記(X)を還元脱ドープ状態にする工程。
    b.下記(Y)のアニオンを対イオンで補償する工程。
    c.少なくとも上記aより得られた還元脱ドープ状態の(X)と、上記bより得られた補償状態の(Y)とを用いて正極を形成する工程。
    d.未ドープ状態の下記(Z)を用いて負極を形成する工程。
    (X)イオンの挿入・脱離により導電性が変化するドープ状態の正極活物質。
    (Y)アニオン性材料。
    (Z)イオンを挿入・脱離し得る負極活物質。
    A method of manufacturing an electricity storage device having an electrolyte layer and a positive electrode and a negative electrode provided opposite to each other, the method comprising the steps of forming a positive electrode by the following a to c and forming a negative electrode by the following d A process for producing an electricity storage device characterized by
    a. The process of making following (X) into a reduction | restoration dedope state.
    b. The process of compensating the anion of the following (Y) with a counter ion.
    c. A step of forming a positive electrode using at least the reduced and doped (X) obtained from a and the compensated (Y) obtained from b.
    d. A step of forming a negative electrode using the following (Z) in an undoped state.
    (X) A positive electrode active material in a doped state in which conductivity is changed by insertion / extraction of ions.
    (Y) Anionic material.
    (Z) A negative electrode active material capable of inserting / extracting ions.
  2.  上記aの還元脱ドープ状態が、上記(X)を脱ドープする工程と、還元する工程とを経ることにより得られる請求項1記載の蓄電デバイスの製法。 The method for producing an electricity storage device according to claim 1, wherein the reduced and dedoped state of a is obtained through a step of dedoping (X) and a step of reduction.
  3.  上記aの還元脱ドープ状態が、上記(X)を直接還元脱ドープする工程を経ることにより得られる請求項1記載の蓄電デバイスの製法。 The method for producing an electricity storage device according to claim 1, wherein the reductive and dedope state of a is obtained through a step of directly reducing and dedoping the (X).
  4.  請求項1~3のいずれか一項に記載の蓄電デバイスの製法により得られる蓄電デバイス。 An electricity storage device obtained by the method for producing an electricity storage device according to any one of claims 1 to 3.
  5.  正極が少なくとも上記(X)と(Y)とからなり、負極が上記(Z)を含む蓄電デバイスであって、正極の(X)が還元脱ドープ状態であり、かつ、正極内に固定された(Y)のアニオンが対イオンで補償され、負極の(Z)が未ドープ処理であることを特徴とする請求項4記載の蓄電デバイス。 The positive electrode is an electricity storage device including at least the above (X) and (Y), the negative electrode includes the above (Z), and the positive electrode (X) is in a reduction-dedoped state and is fixed in the positive electrode 5. The electricity storage device according to claim 4, wherein the anion of (Y) is compensated with a counter ion, and (Z) of the negative electrode is undoped.
PCT/JP2013/062883 2012-05-14 2013-05-08 Method for manufacturing electricity storage device and electricity storage device obtained using said method WO2013172221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380014715.6A CN104247140A (en) 2012-05-14 2013-05-08 Method for manufacturing electricity storage device and electricity storage device obtained using said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110778A JP2013239304A (en) 2012-05-14 2012-05-14 Method for manufacturing electricity storage device and electricity storage device obtained by the method
JP2012-110778 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172221A1 true WO2013172221A1 (en) 2013-11-21

Family

ID=49583628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062883 WO2013172221A1 (en) 2012-05-14 2013-05-08 Method for manufacturing electricity storage device and electricity storage device obtained using said method

Country Status (3)

Country Link
JP (1) JP2013239304A (en)
CN (1) CN104247140A (en)
WO (1) WO2013172221A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702962A (en) * 2016-01-24 2016-06-22 北京化工大学 Positive pole plate of lithium-sulfur battery and preparation method of positive pole plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329495A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and production process thereof
JP2003168436A (en) * 2001-11-29 2003-06-13 Denso Corp Positive electrode for lithium battery and lithium battery
JP2003297362A (en) * 2002-03-29 2003-10-17 Asahi Glass Co Ltd Hybrid type secondary power supply
JP2009245921A (en) * 2008-03-13 2009-10-22 Denso Corp Electrode for secondary battery, method of manufacturing the same, and secondary battery employing the same
WO2013002415A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Nonaqueous-electrolyte secondary battery and positive-electrode sheet therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329495A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and production process thereof
JP2003168436A (en) * 2001-11-29 2003-06-13 Denso Corp Positive electrode for lithium battery and lithium battery
JP2003297362A (en) * 2002-03-29 2003-10-17 Asahi Glass Co Ltd Hybrid type secondary power supply
JP2009245921A (en) * 2008-03-13 2009-10-22 Denso Corp Electrode for secondary battery, method of manufacturing the same, and secondary battery employing the same
WO2013002415A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Nonaqueous-electrolyte secondary battery and positive-electrode sheet therefor

Also Published As

Publication number Publication date
CN104247140A (en) 2014-12-24
JP2013239304A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6153124B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2014035836A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2015005135A1 (en) Electricity-storage-device electrode, manufacturing method therefor, and electricity-storage device using said electrode
KR102157913B1 (en) Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles
JP2014130706A (en) Positive electrode for electricity storage device, and electricity storage device
JP2014123449A (en) Electrode for power storage device, process of manufacturing the same, and power storage device
WO2015115242A1 (en) Non-aqueous electrolyte secondary cell
WO2013172222A1 (en) Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
WO2014084182A1 (en) Electricity storage device, electrode used therein, and porous sheet
WO2015115243A1 (en) Non-aqueous electrolyte secondary cell
WO2014024940A1 (en) Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode
WO2014104005A1 (en) Nonaqueous electrolyte secondary battery
WO2014024941A1 (en) Positive electrode for electricity-storage device, manufacturing method therefor, positive-electrode active material for electricity-storage device, manufacturing method therefor, and electricity-storage device
JP2014072129A (en) Electrode for power storage device and power storage device using the same
JP2015225753A (en) Power storage device
WO2013172223A1 (en) Dual-mode electricity storage device
JP2014120453A (en) Nonaqueous electrolyte secondary battery
WO2013172221A1 (en) Method for manufacturing electricity storage device and electricity storage device obtained using said method
WO2014103779A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode used therein
WO2014077226A1 (en) Power storage device, and electrode and porous sheet used in same
JP2014072128A (en) Active material particle for power storage device positive electrode, positive electrode for power storage device using the same, power storage device, and method for manufacturing active material particle for power storage device positive electrode
WO2014103780A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode sheet used therein
WO2014065198A1 (en) Cation movement-type electricity storage device, electrode and porous sheet used in same, and dope rate improvement method
JP2015099663A (en) Conductive polymer particle and production method therefor, and positive electrode for power storage device using the same and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791688

Country of ref document: EP

Kind code of ref document: A1